EP2172804B1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
EP2172804B1
EP2172804B1 EP09171106.9A EP09171106A EP2172804B1 EP 2172804 B1 EP2172804 B1 EP 2172804B1 EP 09171106 A EP09171106 A EP 09171106A EP 2172804 B1 EP2172804 B1 EP 2172804B1
Authority
EP
European Patent Office
Prior art keywords
oxide semiconductor
layer
wiring
semiconductor layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09171106.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2172804A3 (en
EP2172804A2 (en
Inventor
Shunpei Yamazaki
Kengo Akimoto
Shigeki Komori
Hideki Uochi
Tomoya Futamura
Takahiro Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of EP2172804A2 publication Critical patent/EP2172804A2/en
Publication of EP2172804A3 publication Critical patent/EP2172804A3/en
Application granted granted Critical
Publication of EP2172804B1 publication Critical patent/EP2172804B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a display device including an oxide semiconductor.
  • a thin film transistor formed over a flat plate such as a glass substrate is manufactured using amorphous silicon or polycrystalline silicon, as typically seen in a liquid crystal display device.
  • Thin film transistors manufactured using amorphous silicon have low field effect mobility, but can be formed over a glass substrate with a larger area.
  • thin film transistor manufactured using polycrystalline silicon have high field effect mobility, but a crystallization step such as laser annealing is necessary and are not always suitable for a larger glass substrate.
  • Patent Document 1 and Patent Document 2 disclose a technique by which a thin film transistor is manufactured using an oxide semiconductor containing zinc oxide (ZnO) or containing indium, gallium, and zinc as an oxide semiconductor film and such a transistor is used as a switching element or the like of an image display device.
  • ZnO zinc oxide
  • Patent Document 2 disclose a technique by which a thin film transistor is manufactured using an oxide semiconductor containing zinc oxide (ZnO) or containing indium, gallium, and zinc as an oxide semiconductor film and such a transistor is used as a switching element or the like of an image display device.
  • a thin film transistor in which a channel formation region is formed using an oxide semiconductor has properties as follows: the operation speed is higher than that of a thin film transistor including amorphous silicon and the manufacturing process is simpler than that of a thin film transistor including polycrystalline silicon. That is, the use of an oxide semiconductor makes it possible to manufacture a thin film transistor with high field effect mobility even at low process temperatures ranging from room temperature to 300 °C or lower.
  • FIG illustrates a positional relationship among signal input terminals, scan lines, signal lines, protective circuits including non-linear elements, and a pixel portion in a display device.
  • scan lines 13 and signal lines 14 intersect with each other to form a pixel portion 17.
  • the pixel portion 17 includes a plurality of pixels 18 arranged in matrix.
  • the pixel 18 includes a pixel transistor 19 connected to the scan line 13 and the signal line 14, a storage capacitor portion 20, and a pixel electrode 21.
  • one electrode of the storage capacitor portion 20 is connected to the pixel transistor 19 and the other electrode is connected to a capacitor line 22.
  • the pixel electrode 21 forms one electrode which drives a display element (such as a liquid crystal element, a light-emitting element, or a contrast medium (electronic ink)).
  • the other electrode of such a display element is connected to a common terminal 23.
  • the protective circuit is provided between the pixel portion 17, and a scan line input terminal 11 and a signal line input terminal 12.
  • a plurality of protective circuits are provided. Therefore, even though surge voltage due to static electricity and the like is applied to the scan line 13, the signal line 14, and a capacitor bus line 27, the pixel transistor 19 and the like are not broken. Accordingly, the protective circuit has a structure for releasing charge two a common wiring 29 or a common wiring 28 when surge voltage is applied to the protective circuit.
  • a protective circuit 24, a protective circuit 25, and a protective circuit 26 are provided in the display device.
  • the structures of the protective circuits are not limited to those above.
  • FIG. 2 illustrates an example of the protective circuit.
  • This protective circuit includes a non-linear element 30 and a non-linear element 31 which are arranged in parallel between the scan line 13 and the common wiring 29.
  • Each of the non-linear element 30 and the non-linear element 31 is a two-terminal element such as a diode or a three-terminal element such as a transistor.
  • the non-linear element can be formed through the same steps as the pixel transistor of the pixel portion. For example, characteristics similar to those of a diode can be obtained by connecting a gate terminal to a drain terminal of the non-linear element.
  • a first terminal (gate) and a third terminal (drain) of the non-linear element 30 are connected to the scan line 13, and a second terminal (source) thereof is connected to the common wiring 29.
  • a first terminal (gate) and a third terminal (drain) of the non-linear element 31 are connected to the common wiring 29, and a second terminal (source) thereof is connected to the scan line 13. That is, the protective circuit illustrated in FIG. 2 includes two transistors whose rectifying directions are opposite to each other and which connect the scan line 13 and the common wiring 29 to each other.
  • the protective circuit has a structure in which between the scan line 13 and the common wiring 29, a transistor whose rectifying direction is from the scan line 13 to the common wiring 29 and a transistor whose rectifying direction is from the common wiring 29 to the scan line 13 are connected.
  • a pair of the non-linear elements the rectifying directions of which are opposite to each other are used: the non-linear element 30 whose first terminal (gate) is connected to the scan line 13 and the non-linear element 31 whose first terminal (gate) is connected to the common wiring 29.
  • the common wiring 29 and the scan line 13 are connected via the second terminal (source) and the third terminal (drain) of each non-linear element; that is, the non-linear element 30 and the non-linear element 31 are in parallel.
  • a non-linear element may be further added in parallel connection, so that the operation stability of the protective circuit can be enhanced. For example, FIG.
  • FIG. 3 illustrates a protective circuit provided between the scan line 13 and the common wiring 29 which includes a non-linear element 30a and a non-linear element 30b, and a non-linear element 31a and a non-linear element 31b.
  • This protective circuit includes four non-linear elements in total: two non-linear elements (30b and 31b) each having a first terminal (gate) which is connected to the common wiring 29 and two non-linear elements (30a and 31a) each having a first terminal (gate) which is connected to the scan line 13. That is to say, two pairs of non-linear elements are connected between the common wiring 29 and the scan line 13, each pair including two non-linear elements provided so that their rectifying directions are opposite to each other.
  • FIG 9A illustrates an example in which four non-linear elements are provided over a substrate
  • FIG. 9B is an equivalent circuit diagram thereof.
  • the equivalent circuit diagram of FIG. 9B corresponds to that of FIG.
  • the non-linear elements illustrated in FIG 9B correspond to the non-linear elements illustrated in FIG. 3 .
  • the non-linear element 740a corresponds to the non-linear element 30b; the non-linear element 740b, the non-linear element 31b; the non-linear element 740c, the non-linear element 30a; and the non-linear element 740d, the non-linear element 31a.
  • a scan line 651 and a common wiring 650 in FIGS. 9A and 9B correspond to the scan line 13 and the common wiring 29 in FIG. 3 , respectively.
  • the protective circuit illustrated in FIG. 9A in which four non-linear elements are provided over a substrate is another example of the protective circuit illustrated in FIG 3 .
  • FIG. 8A illustrates an example of a protective circuit which is formed using an odd number of non-linear elements over a substrate
  • FIG. 8B is an equivalent circuit diagram thereof.
  • a non-linear element 730b and a non-linear element 730a are connected to a non-linear element 730c to serve as switching elements.
  • FIG. 2 illustrates the protective circuit which is provided for the scan line 13; however, a protective circuit with a similar structure can be provided for the signal line 14.
  • FIG 4A is a plan view illustrating an example of a protective circuit and FIG 4B is an equivalent circuit diagram thereof.
  • FIG. 5 is a cross-sectional view taken along line Q1-Q2 of FIG. 4A .
  • a structure example of the protective circuit is described below with reference to FIGS. 4A and 4B and FIG. 5 .
  • a non-linear element 170a and a non-linear element 170b respectively include a gate electrode 111 and a gate electrode 16, which are formed using the same layer as the scan line 13.
  • a gate insulating film 102 is formed over the gate electrode 111 and the gate electrode 16.
  • a first oxide semiconductor layer 113 is formed over the gate insulating film 102.
  • a first wiring layer 117a and a second wiring layer 117b are provided so as to face each other over the gate electrode 111 with the first oxide semiconductor layer 113 interposed between the first and second wiring layers 117a and 117b and the gate electrode 111. Note that, main parts of the non-linear element 170a and the non-linear element 170b have the same structure.
  • the scan line 13 formed using the same layer as the gate electrode 111 and the third terminal (drain) of the non-linear element 170a are directly connected through a contact hole 128 provided in the gate insulating film 102.
  • the number of interfaces formed for connection can be reduced to be one, and the number of contact holes formed for one/the connection can be reduced to be one.
  • the first oxide semiconductor layer 113 is provided under the first wiring layer 117a and the second wiring layer 117b facing each other and covers the gate electrode 111 with the gate insulating film 102 interposed therebetween.
  • the first oxide semiconductor layer 113 is provided so as to overlap with the gate electrode 111 and to be in contact with an upper surface portion of the gate insulating film 102 and lower surface portions of second oxide semiconductor layers 114a and 114b.
  • the first wiring layer 117a has a structure in which the second oxide semiconductor layer 114a and a conductive layer 115a are stacked in that order over the first oxide semiconductor layer 113.
  • the second wiring layer 117b has a structure in which the second oxide semiconductor layer 114b and a conductive layer 115b are stacked in that order over the first oxide semiconductor layer 113.
  • the second oxide semiconductor layer (114a and 114b) is provided between and in contact with the conductive layer (115a and 115b) and the first oxide semiconductor layer 113.
  • the oxide semiconductor layers having different physical properties have contact with each other, that is, the first oxide semiconductor layer 113 and the second oxide semiconductor layer (114a and 114b) having higher electrical conductivity than the first oxide semiconductor layer 113 are in contact with each other.
  • Such a contact structure is provided in the non-linear element 170a and the non-linear element 170b, whereby stable operation becomes possible. In other words, the thermal stability is increased, so that the stable operation becomes possible. Accordingly, the function of the protective circuit is enhanced and then operation can be stabilized. In addition, the amount of junction leakage is reduced and the characteristics of the non-linear element 170a and the non-linear element 170b can be improved.
  • a thin film whose composition formula is represented as In M O 3 (ZnO) m ( m > 0) is formed as an oxide semiconductor used for the first oxide semiconductor layer, and a non-linear element and a thin film transistor are formed using the thin film as a semiconductor layer.
  • M denotes one or more metal elements selected from Ga, Fe, Ni, Mn, and Co.
  • Ga and any of the above metal elements other than Ga, for example, Ga and Ni or Ga and Fe are contained as M.
  • the above oxide semiconductor contains a transition metal element such as Fe or Ni or an oxide of the transition metal as an impurity element in addition to the metal element which is contained as M.
  • this thin film is also referred to as an In-Ga-Zn-O based non-single-crystal film.
  • Table 1 shows a typical measurement example by an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method.
  • an oxide semiconductor film of InGa 0.94 Zn 0.4 O 3.31 is obtained by employing Condition 2 where flow rates of an argon gas and oxygen in sputtering are set at 10 sccm and 5 sccm, respectively.
  • Condition 2 flow rates of an argon gas and oxygen in sputtering are set at 10 sccm and 5 sccm, respectively.
  • Table 2 shows a measurement result of quantification which is performed by a Rutherford Backscattering Spectrometry (RBS) method instead of an ICP-MS method.
  • RBS Rutherford Backscattering Spectrometry
  • the oxide semiconductor film As a result of measuring the sample of Condition 1 by RBS, the oxide semiconductor film is represented as InGa 0.93 Zn 0.44 O 3.49. Further, as a result of measuring the sample of Condition 2 by RBS, the oxide semiconductor film is represented as InGa 0.92 Zn 0.45 O 3.86.
  • In-Ga-Zn-O based non-single-crystal film As a crystalline structure of the In-Ga-Zn-O based non-single-crystal film, an amorphous structure is observed by X-ray diffraction (XRD) spectrometry.
  • XRD X-ray diffraction
  • In-Ga-Zn-O based non-single-crystal film of the examined sample is subjected to heat treatment at 200 °C to 500 °C, typically 300 °C to 400 °C for 10 minutes to 100 minutes after film formation by a sputtering method.
  • a thin film transistor having electric characteristics such as an on/off ratio of 10 9 or higher and mobility of 10 cm 2 /V ⁇ S or higher at a gate voltage of ⁇ 20 V can be manufactured.
  • the second oxide semiconductor layer (114a and 114b) has higher electrical conductivity than the first oxide semiconductor layer 113.
  • the second oxide semiconductor layer (114a and 114b) has a function similar to source and drain regions of a transistor in the non-linear element 170a and the non-linear element 170b described in this embodiment.
  • the second oxide semiconductor layer (114a and 114b) which is to be source and drain regions has n-type conductivity and activation energy ( ⁇ E) which is from 0.01 eV to 0.1 eV inclusive and can be also referred to as an n + region.
  • ⁇ E n-type conductivity and activation energy
  • nanocrystal is included in the non-single-crystal structure in some cases.
  • the interlayer insulating film 107 is provided over the first oxide semiconductor layer 113.
  • the interlayer insulating film 107 is formed of an oxide such as silicon oxide or aluminum oxide. Further, by stacking silicon nitride, aluminum nitride, silicon oxynitride, or aluminum oxynitride over silicon oxide or aluminum oxide, the function of the interlayer insulating film as a protective film can be enhanced.
  • the interlayer insulating film 107 being in contact with the first oxide semiconductor layer 113 is an oxide layer, whereby it is possible to prevent oxygen from being extracted from the first oxide semiconductor layer 113 and prevent the first oxide semiconductor layer 113 from changing into an oxygen-deficiency type, Moreover, in the case of having a structure where the first oxide semiconductor layer 113 is not in direct contact with an insulating layer including nitride, it is possible to prevent hydrogen in the nitride from diffusing and causing defects in the first oxide semiconductor layer 113 due to hydroxyl groups or the like.
  • a display device including a protective circuit including an oxide semiconductor can be obtained.
  • the third terminal (drain) of the non-linear element 170a and the scan line 13 formed with the same layer as the gate electrode 111 are directly connected through the contact hole 128 provided in the gate insulating film 102, whereby formation of one connection needs only one interface and only one contact hole.
  • an area occupied by the protective circuit is reduced so that reduction in size of the display device can be achieved.
  • the number of non-linear elements included in the protective circuit is increased to three or four, effect of reducing the numbers of interfaces and contact holes is increased.
  • FIGS. 4A and 4B and FIG. 5 illustrate the example of a protective circuit provided at the scan line 13
  • a similar protective circuit can be provided for a signal line, a capacitor bus line, or the like.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • FIGS. 6A to 6C and FIGS. 7A to 7C are cross-sectional views taken along line Q1-Q2 of FIG. 4A .
  • a glass substrate of barium borosilicate glass, aluminoborosilicate glass, aluminosilicate glass, or the like available in the market can be used as a substrate 100 having a light-transmitting property.
  • a glass substrate which includes more barium oxide (BaO) than boric acid (B 2 O 3 ) in composition ratio and whose strain point is 730 °C or higher is preferable. This is because such a glass substrate is not strained even in the case where the oxide semiconductor layer is thermally processed at high temperatures of about 700 °C.
  • a conductive film which is to be a gate wiring including the gate electrode 111 and the scan line 13, a capacitor wiring, and a terminal of a terminal portion is formed entirely over the substrate 100.
  • the conductive film is desirably formed from a low-resistance conductive material such as aluminum (A1) or copper (Cu); however, since A1 itself has disadvantages such as low heat resistance and a tendency to be corroded, it is used in combination with a conductive material having heat resistance.
  • an element selected from titanium (Ti), tantalum (Ta), tungsten (W), molybdenum (Mo), chromium (Cr), neodymium (Nd), or scandium (Sc), or an alloy including any of the elements, an alloy film including a combination of such elements, or a nitride film including any of the elements can be used.
  • the conductive film to be a wiring layer including the gate electrode 111 is formed to a thickness of from 50 nm to 300 nm inclusive.
  • the conductive film to be the wiring layer including the gate electrode 111 has a thickness of 300 nm or less, disconnection of a semiconductor film or a wiring which is formed later can be prevented.
  • the conductive film to be the wiring layer including the gate electrode 111 has a thickness of 150 nm or more, resistance of the gate electrode can be reduced, and increase in size becomes possible.
  • a film containing aluminum as its main component and a titanium film are stacked as the conductive film over an entire surface of the substrate 100 by a sputtering method.
  • FIG. 6A illustrates a cross-sectional view at this step.
  • the gate insulating film 102 is formed.
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicon nitride oxide film, an aluminum oxide film, a magnesium oxide film, an aluminum nitride film, an yttrium oxide film, a hafnium oxide film, or a tantalum oxide film can be given as an example.
  • a silicon oxynitride film means a film that contains more oxygen than nitrogen and includes oxygen, nitrogen, silicon, and hydrogen at concentrations ranging from 55 at.% to 65 at.%, 1 at.% to 20 at.%, 25 at.% to 35 at.%, and 0.1 at.% to 10 at.%, respectively.
  • a silicon nitride oxide film means a film that contains more nitrogen than oxygen and includes oxygen, nitrogen, silicon, and hydrogen at concentrations ranging from 15 at.% to 30 at.%, 20 at.% to 35 at.%, 25 at.% to 35 at.%, and 15 at.% to 25 at.%, respectively.
  • the gate insulating film may have a single-layer structure or a layered structure in which two or three insulating films are stacked.
  • the gate insulating film in contact with the substrate is formed using a silicon nitride film or a silicon nitride oxide film
  • adhesion between the substrate and the gate insulating film is increased, and in the case of using a glass substrate as the substrate, impurities from the substrate can be prevented from diffusing into the oxide semiconductor layer and further, oxidation of the wiring layer including the gate electrode 111 can be prevented. That is, film peeling can be prevented, and electric characteristics of the resulting thin film transistor can be improved.
  • the thickness of the gate insulating film 102 is 50 nm to 250 nm.
  • the gate insulating film with a thickness of 50 nm or more can cover projections and depressions of the wiring layer including the gate electrode 111, which is preferable.
  • a 100-nm-thick silicon oxide film is formed as the gate insulating film 102 by a plasma CVD method or a sputtering method.
  • the gate insulating film 102 is etched with use of a resist mask formed using second photomask in this embodiment, so that the contact hole 128 reaching the scan line 13 is formed.
  • plasma treatment is performed on the gate insulating film 102 prior to formation of a first oxide semiconductor film.
  • the plasma treatment of the gate insulating film 102, and formation of the first oxide semiconductor film and the second oxide semiconductor film by a sputtering method can be performed successively without exposure to air.
  • Successive film formation can be performed by changing the gas introduced to the chamber or the target set in the chamber as appropriate.
  • the successive film formation without exposure to air can prevent impurity mixture.
  • a manufacturing apparatus of a multichamber type is preferably used.
  • the gate insulating film 102 in contact with the first oxide semiconductor film and formation of the first oxide semiconductor film.
  • the successive film formation like this, an interface between stacked layers can be formed without being contaminated by an atmospheric constituent such as moisture or contaminant elements or dust existing in the atmosphere.
  • variations in characteristics of the non-linear elements and thin film transistors can be reduced.
  • successive film formation in this specification means that during a series of steps from a first treatment step by sputtering to a second treatment step by sputtering, an atmosphere in which a substrate to be processed is disposed is not contaminated by a contaminant atmosphere such as air, and is constantly controlled to be vacuum or an inert gas atmosphere (a nitrogen atmosphere or a rare gas atmosphere).
  • a contaminant atmosphere such as air
  • inert gas atmosphere a nitrogen atmosphere or a rare gas atmosphere
  • the first oxide semiconductor film is formed in such a manner that the gate insulating film 102 which has been subjected to plasma treatment is not exposed to air. Formation of the first oxide semiconductor film in such a manner can avoid the trouble that dust or moisture adheres to the interface between the gate insulating film 102 and the first oxide semiconductor film.
  • the first oxide semiconductor film may be formed in the chamber where the reverse sputtering is performed previously, or may be formed in a different chamber from the chamber where the reverse sputtering is performed previously as long as the film formation can be performed without exposure to air.
  • the thickness of the first oxide semiconductor film is set to 5 nm to 200 nm.
  • the thickness of the first oxide semiconductor film in this embodiment is 100 nm.
  • the first oxide semiconductor film is formed under the different condition from the second oxide semiconductor film, the first oxide semiconductor layer has different composition from the second oxide semiconductor layer; for example, the first oxide semiconductor layer includes more oxygen than the second oxide semiconductor layer.
  • the ratio of the oxygen gas flow rate to the argon gas flow rate in the deposition condition of the first oxide semiconductor film is set higher than that of the second oxide semiconductor film.
  • the second oxide semiconductor film is formed in a rare gas (such as argon or helium) atmosphere (or a gas including oxygen at 10 % or less and argon at 90 % or more), while the first oxide semiconductor film is formed in an oxygen atmosphere (or an atmosphere in which a flow rate of an oxygen gas is equal to or more than a flow rate of an argon gas).
  • the first oxide semiconductor film When the first oxide semiconductor film contains a large amount of oxygen, the first oxide semiconductor film can have lower electrical conductivity than the second oxide semiconductor layer. Moreover, when the first oxide semiconductor film contains a large amount of oxygen, the amount of off current can be reduced; therefore, a thin film transistor with a high on/off ratio can be provided.
  • the second oxide semiconductor film is formed over the first oxide semiconductor film by a sputtering method.
  • sputtering deposition is performed under the condition where a 8-inch-diameter target of an oxide semiconductor including In, Ga, and Zn (the ratio of In 2 O 3 :Ga 2 O 3 :ZnO is 1:1:1) is used, the distance between the target and the substrate is 170 mm, the pressure in a deposition chamber is set at 0.4 Pa, the DC electric power is set at 0.5 kW, the deposition temperature is set to room temperature, and the argon gas flow rate is set at 40 sccm.
  • a semiconductor film including In, Ga, Zn, and oxygen as components is formed as the second oxide semiconductor film.
  • the thickness of the second oxide semiconductor film is set to 5 nm to 20 nm. Needless to say, in the case where the film includes crystal grains, the size of the crystal grain does not exceed the film thickness. In this embodiment, the second oxide semiconductor film has a thickness of 5 nm.
  • FIG 6B illustrates a cross-sectional view at this step.
  • a conductive film 105 is formed from a metal material over the second oxide semiconductor layer 114 and the gate insulating film 102 by a sputtering method or a vacuum evaporation method.
  • the material of the conductive film 105 there are an element selected from Al, Cr, Ta, Ti, Mo, or W, an alloy including any of the elements, an alloy film including a combination of such elements, and the like.
  • the conductive film When thermal treatment is conducted at 200 °C to 600 °C, the conductive film preferably has heat resistant property so as to endure this thermal treatment. Since aluminum itself has disadvantages such as low heat resistance and a tendency to be corroded, it is used in combination with a conductive material having heat resistance.
  • a conductive material having heat resistance which is to be used in combination with Al, an element selected from titanium (Ti), tantalum (Ta), tungsten (W), molybdenum (Mo), chromium (Cr), neodymium (Nd), or scandium (Sc), or an alloy including any of the elements, an alloy film including a combination of such elements, or a nitride film including any of the elements can be used.
  • the conductive film 105 has a three-layer structure in which a Ti film is formed, an aluminum film including Nd, an Al-Nd film, is stacked over the Ti film, and another Ti film is stacked thereover.
  • the conductive film 105 may have a two-layer structure in which a titanium film is stacked over an aluminum film.
  • the conductive film 105 may have a single-layer structure of an aluminum film including silicon or a titanium film.
  • FIG. 6C illustrates a cross-sectional view at this step.
  • the contact hole 128 is formed in the gate insulating film 102, the conductive film which is to be source and drain electrodes is connected to the scan line 13 through the contact hole 128 at the same time as the formation.
  • a fourth photolithography process is performed.
  • a resist mask 131 is formed, and an unnecessary portion of the conductive film 105 is removed by etching.
  • conductive layers 115a and 115b are formed (see FIG. 7A ).
  • dry etching or wet etching can be used as the etching.
  • dry etching is employed using a mixed gas of SiCl 4 , Cl 2 , and BCl 3 to etch the conductive film in which the Al-Nd film and the Ti films are stacked, so that the conductive layers 115a and 115b are formed.
  • the second oxide semiconductor layer is etched using the resist mask 131, which is used for etching the conductive film 105.
  • wet etching is performed using IT007N (product of Kanto Chemical Co., Inc.) to remove an unnecessary portion; thus, second oxide semiconductor layers 114a and 114b are formed.
  • the etching at this time is not limited to wet etching and may be dry etching.
  • a part of an exposed region of the first oxide semiconductor layer 113 is also etched in this etching step of the second oxide semiconductor film.
  • a channel formation region of the first oxide semiconductor layer 113 between the second oxide semiconductor layers 114a and 114b is a region with a small thickness as illustrated in FIG. 7A .
  • the plasma treatment is preferably performed in an atmosphere of O 2 or N 2 O, or preferably an atmosphere containing oxygen.
  • the atmosphere containing oxygen refers to, for example, an atmosphere of N 2 , He, or Ar to which oxygen is added. Alternatively, Cl 2 or CF 4 may be added to the above atmosphere. Note that the plasma treatment is preferably performed without bias.
  • FIG. 7B illustrates a cross-sectional view at this step.
  • thermal treatment at 200 °C to 600 °C, typically 300 °C to 500 °C is preferably performed.
  • thermal treatment is performed in a furnace at 350 °C for an hour in a nitrogen atmosphere or an air atmosphere.
  • This thermal treatment allows atoms of the In-Ga-Zn-O based non-single-crystal film to be rearranged. Since the distortion that interrupts carrier movement is released by this thermal treatment, the thermal treatment at this time (including photo-annealing) is important.
  • There is no particular limitation on when to perform the thermal treatment as long as it is performed after the formation of the oxide semiconductor film; for example, it may be performed after the formation of the pixel electrode.
  • an interlayer insulating film 107 covering the non-linear element 170a is formed.
  • the interlayer insulating film 107 can be formed using a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a tantalum oxide film, or the like by a sputtering method or the like.
  • a protective circuit including a plurality of non-linear elements two non-linear elements 170a and 170b in this embodiment
  • FIG 7C illustrates a cross-sectional view at this step.
  • a pixel electrode is formed with respect to a thin film transistor which is formed by the same process as the non-linear element and disposed in a pixel portion of a display device, following the formation of the protective circuit.
  • the resist mask is removed, and after that, a transparent conductive film is formed.
  • a transparent conductive film indium oxide (In 2 O 3 ), indium oxide-tin oxide alloy (In 2 O 3 -SnO 2 , abbreviated to ITO), or the like can be given, and the transparent conductive film can be formed by a sputtering method, a vacuum evaporation method, or the like. Etching treatment of such materials is performed using a chlorinated acid based solution.
  • an alloy of indium oxide-zinc oxide In 2 O 3 -ZnO
  • a sixth photolithography process is performed.
  • a resist mask is formed, and an unnecessary portion of the transparent conductive film is removed by etching, so that the pixel electrode is formed.
  • a capacitor wiring and the pixel electrode form a storage capacitor by using the gate insulating film 102 and the protective insulating film 107 in a capacitor portion as dielectrics.
  • the transparent conductive film is left in the terminal portion to form an electrode or a wiring used for connection with an FPC or to form a terminal electrode for connection which serves as an input terminal of a source wiring.
  • the pixel electrodes are formed with respect to a plurality of thin film transistors which are formed by the same process as the non-linear element.
  • the pixel portion including n-channel TFTs and the protective circuit can be manufactured at the same time.
  • a provision of a region which has contact with the second oxide semiconductor layer having higher electrical conductivity than the first oxide semiconductor layer allows stable operation.
  • the function of the protective circuit is enhanced and operation can be stabilized.
  • the scan line 13 formed with the same layer as the gate electrode 111 is directly connected to the third terminal (drain) of the non-linear element 170a through the contact hole 128 provided in the gate insulating film 102, whereby formation of one connection needs only one interface and only one contact hole.
  • an area occupied by the protective circuit is reduced, so that reduction in size of the display device can be achieved.
  • a board for an active-matrix display device, on which a protective circuit with small occupied area is mounted can be manufactured.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • This embodiment describes an example of an electronic paper in which a protective circuit and a thin film transistor in a pixel portion are provided over one substrate, as a display device to which an embodiment of the present invention is applied.
  • FIG. 10 illustrates an active matrix electronic paper as an example of a display device to which an embodiment of the present invention is applied.
  • a thin film transistor 581 used for a semiconductor device can be manufactured in a manner similar to the non-linear element described in Embodiment 2.
  • the thin film transistor 581 has excellent electrical characteristics and includes a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn.
  • the electronic paper of FIG. 10 is an example of a display device in which a twisting ball display system is employed.
  • the twisting ball display system refers to a method in which spherical particles each colored in black and white are arranged between a first electrode layer and a second electrode layer which are electrode layers used for a display element, and a potential difference is generated between the first electrode layer and the second electrode layer to control orientation of the spherical particles, so that display is performed.
  • the thin film transistor 581 has a bottom-gate structure in which the source electrode layer or the drain electrode layer is electrically connected to a first electrode layer 587 in an opening formed in an insulating layer 585. Between the first electrode layer 587 and a second electrode layer 588, spherical particles 589 are provided. Each spherical particle 589 includes a black region 590a and a white region 590b, and a cavity 594 filled with liquid around the black region 590a and the white region 590b. The circumference of the spherical particle 589 is filled with filler 595 such as a resin or the like (see FIG. 10 ). Note that reference numerals 580, 583, 584 and 596 in FIG. 10 denote a substrate, interlayer insulating layer, protective film and a substrate, respectively.
  • an electrophoretic element can be used instead of the twisting ball.
  • the white microparticles and the black microparticles move to opposite sides to each other, so that white or black can be displayed.
  • a display element using this principle is an electrophoretic display element and is called an electronic paper in general.
  • the electrophoretic display element has higher reflectance than a liquid crystal display element, and thus, an assistant light is unnecessary.
  • a display portion can be recognized in a dusky place. Furthermore, an image which is displayed once can be retained even when power is not supplied to the display portion. Accordingly, a displayed image can be stored even when a semiconductor device having a display function (which is also referred to simply as a display device or a semiconductor device provided with a display device) is distanced from an electric wave source which serves as a power supply.
  • a semiconductor device having a display function which is also referred to simply as a display device or a semiconductor device provided with a display device
  • the protective circuit mounted in thus manufactured electronic paper has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the electronic paper of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • This embodiment describes, with reference to FIGS. 11A and 11B , FIG, 12 , FIG. 13 , FIG. 14 , FIG. 15 , and FIG. 16 , a display device which is an example of a semiconductor device according to an embodiment of the present invention.
  • a display device which is an example of a semiconductor device according to an embodiment of the present invention.
  • at least a protective circuit, part of a driver circuit, and a thin film transistor in a pixel portion are formed over one substrate.
  • the thin film transistor in the pixel portion which is over the same substrate as the protective circuit is formed similarly to the non-linear element described in Embodiment 2.
  • the thin film transistor is formed to be an n-channel TFT; therefore, part of a driver circuit which can be formed using n-channel TFTs is formed over the same substrate as the thin film transistor in the pixel portion.
  • FIG. 11A illustrates an example of a block diagram of an active matrix liquid crystal display device which is an example of a semiconductor device according to an embodiment of the present invention.
  • the display device illustrated in FIG. 11A includes, over a substrate 5300, a pixel portion 5301 including a plurality of pixels each provided with a display element; a scan line driver circuit 5302 that selects a pixel; and a signal line driver circuit 5303 that controls a video signal input to the selected pixel.
  • the pixel portion 5301 is connected to the signal line driver circuit 5303 with a plurality of signal lines S1 to Sm (not shown) extending in a column direction from the signal line driver circuit 5303 and connected to the scan line driver circuit 5302 with a plurality of scan lines G1 to Gn (not shown) extending in a row direction from the scan line driver circuit 5302.
  • the pixel portion 5301 includes a plurality of pixels (not shown) arranged in matrix corresponding to the signal lines S1 to Sm and the scan lines G1 to Gn.
  • each of the pixels is connected to a signal line Sj (any one of the signal lines S1 to Sm) and a scan line Gi (any one of the scan lines G1 to Gn).
  • n-channel TFTs can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2.
  • a signal line driver circuit including n-channel TFTs is described with reference to FIG. 12 .
  • the signal line driver circuit of FIG. 12 includes a driver IC 5601, switch groups 5602_1 to 5602_M, a first wiring 5611, a second wiring 5612, a third wiring 5613, and wirings 5621_1 to 5621_M.
  • Each of the switch groups 5602_1 to 5602_M includes a first thin film transistor 5603a, a second thin film transistor 5603b, and a third thin film transistor 5603c.
  • the driver IC 5601 is connected to the first wiring 5611, the second wiring 5612, the third wiring 5613, and the wirings 5621_1 to 5621_M.
  • Each of the switch groups 5602_1 to 5602_M is connected to the first wiring 5611, the second wiring 5612, and the third wiring 5613.
  • the switch groups 5602_1 to 5602_M are connected to the wirings 5621_1 to 5621_M, respectively.
  • Each of the wirings 5621_1 to 5621_M is connected to three signal lines through the first thin film transistor 5603a, the second thin film transistor 5603b, and the third thin film transistor 5603c.
  • the wiring 5621_J of the J-th column (one of the wirings 5621_1 to 5621_M) is connected to a signal line Sj-1, a signal line Sj, and a signal line Sj+1 through the first thin film transistor 5603a, the second thin film transistor 5603b, and the third thin film transistor 5603c of the switch group 5602_J.
  • the driver IC 5601 is preferably formed on a single-crystal substrate.
  • the switch groups 5602_1 to 5602_M are preferably formed over the same substrate as the pixel portion. Therefore, the driver IC 5601 is preferably connected to the switch groups 5602_1 to 5602_M through an FPC or the like.
  • FIG. 13 illustrates the timing chart where a scan line Gi in the i-th row is selected.
  • a selection period of the scan line Gi in the i-th row is divided into a first sub-selection period T1, a second sub-selection period T2, and a third sub-selection period T3.
  • the signal line driver circuit of FIG. 12 operates similarly to FIG. 13 when a scan line in another row is selected.
  • timing chart of FIG. 13 shows the case where the wiring 5621_J in the J-th column is connected to the signal line Sj-1, the signal line Sj, and the signal line Sj+1 through the first thin film transistor 5603a, the second thin film transistor 5603b, and the third thin film transistor 5603c.
  • the timing chart of FIG. 13 shows timing when the scan line Gi in the i-th row is selected, timing 5703a when the first thin film transistor 5603a is turned on/off, timing 5703b when the second thin film transistor 5603b is turned on/off, timing 5703c when the third thin film transistor 5603c is turned on/off, and a signal 5721 input to the wiring 5621_J in the J-th column.
  • the first sub-selection period T1 the second sub-selection period T2, and the third sub-selection period T3, different video signals are input to the wirings 5621_1 to 5621_M.
  • a video signal input to the wiring 5621_J in the first sub-selection period T1 is input to the signal line Sj-1
  • a video signal input to the wiring 5621_J in the second sub-selection period T2 is input to the signal line Sj
  • a video signal input to the wiring 5621_J in the third sub-selection period T3 is input to the signal line Sj+1.
  • the video signals input to the wiring 5621_J in the first sub-selection period T1, the second sub-selection period T2, and the third sub-selection period T3 are denoted by Data_j-1, Data_j, and Data_j+1, respectively.
  • the first thin film transistor 5603a is on, and the second thin film transistor 5603b and the third thin film transistor 5603c are off.
  • Data_j-1 input to the wiring 5621_J is input to the signal line Sj-1 through the first thin film transistor 5603a.
  • the second thin film transistor 5603b is on, and the first thin film transistor 5603a and the third thin film transistor 5603c are off.
  • Data_j input to the wiring 5621_J is input the signal line Sj through the second thin film transistor 5603b.
  • the third thin film transistor 5603c is on, and the first thin film transistor 5603a and the second thin film transistor 5603b are off.
  • Data_j+1 input to the wiring 5621_J is input to the signal line Sj+1 through the third thin film transistor 5603c.
  • one gate selection period is divided into three; thus, video signals can be input to three signal lines from one wiring 5621 in one gate selection period. Therefore, in the signal line driver circuit of FIG. 12 , the number of connections between the substrate provided with the driver IC 5601 and the substrate provided with the pixel portion can be reduced to approximately one third the number of signal lines. When the number of connections is reduced to approximately one third the number of signal lines, the reliability, yield, and the like of the signal line driver circuit of FIG. 12 can be improved.
  • one gate selection period is divided into four or more sub-selection periods, one sub-selection period becomes short. Therefore, one gate selection period is preferably divided into two or three sub-selection periods.
  • one selection period may be divided into a precharge period Tp, the first sub-selection period T1, the second sub-selection period T2, and the third sub-selection period T3.
  • the timing chart of FIG. 14 shows timing when the scan line Gi in the i-th row is selected, timing 5803a when the first thin film transistor 5603a is turned on/off, timing 5803b when the second thin film transistor 5603b is turned on/off, timing 5803c when the third thin film transistor 5603c is turned on/off, and a signal 5821_J input to the wiring 5621_J in the J-th column.
  • Tp precharge period
  • T1 the first sub-selection period
  • T2 the second sub-selection period
  • T3 the third sub-selection period
  • the first thin film transistor 5603a, the second thin film transistor 5603b, and the third thin film transistor 5603c are on in the precharge period Tp.
  • a precharge voltage Vp input to the wiring 5621_J is input to the signal line Sj-1, the signal line Sj, and the signal line Sj+1 through the first thin film transistor 5603a, the second thin film transistor 5603b, and the third thin film transistor 5603c, respectively.
  • the first thin film transistor 5603a is on, and the second thin film transistor 5603b and the third thin film transistor 5603c are off
  • Data_j-1 input to the wiring 5621_J is input to the signal line Sj-1 through the first thin film transistor 5603a.
  • the second thin film transistor 5603b is on, and the first thin film transistor 5603a and the third thin film transistor 5603c are off.
  • Data_j input to the wiring 5621_J is input to the signal line Sj through the second thin film transistor 5603b.
  • the third thin film transistor 5603c is on, and the first thin film transistor 5603a and the second thin film transistor 5603b are off.
  • Data_j+1 input to the wiring 5621_J is input to the signal line Sj+1 through the third thin film transistor 5603c.
  • the signal line driver circuit of FIG. 12 to which the timing chart of FIG. 14 is applied, the signal line can be precharged by providing the precharge period before the sub-selection periods.
  • a video signal can be written to a pixel with high speed.
  • the scan line driver circuit includes a shift register and a buffer. Also, the scan line driver circuit may include a level shifter in some cases.
  • CLK clock signal
  • SP start pulse signal
  • a selection signal is produced.
  • the generated selection signal is buffered and amplified by the buffer, and the resulting signal is supplied to a corresponding scan line.
  • Gate electrodes of transistors in pixels in one line are connected to the scan line. Further, since the transistors in the pixels in one line have to be turned on at the same time, a buffer which can feed a large amount of current is used.
  • FIG. 15 illustrates a circuit configuration of the shift register.
  • the shift register shown in FIG. 15 includes a plurality of flip-flops, flip-flops 5701_1 to 5701_n. Further, the shift register operates by input of a first clock signal, a second clock signal, a start pulse signal, and a reset signal.
  • a first wiring 5501 shown in FIG. 16 is connected to a seventh wiring 5717_i-1; a second wiring 5502 shown in FIG. 16 is connected to a seventh wiring 5717_i+1; a third wiring 5503 shown in FIG. 16 is connected to a seventh wiring 5717_i; and a sixth wiring 5506 shown in FIG. 16 is connected to a fifth wiring 5715.
  • a fourth wiring 5504 shown in FIG. 16 is connected to a second wiring 5712 in flip-flops of odd-numbered stages, and is connected to a third wiring 5713 in flip-flops of even-numbered stages.
  • a fifth wiring 5505 shown in FIG. 16 is connected to a fourth wiring 5714.
  • first wiring 5501 shown in FIG. 16 of the flip-flop 5701_1 of a first stage is connected to a first wiring 5711
  • second wiring 5502 shown in FIG. 16 of the flip-flop 5701_n of an n-th stage is connected to a sixth wiring 5716.
  • the first wiring 5711, the second wiring 5712, the third wiring 5713, and the sixth wiring 5716 may be referred to as a first signal line, a second signal line, a third signal line, and a fourth signal line, respectively.
  • the fourth wiring 5714 and the fifth wiring 5715 may be referred to as a first power supply line and a second power supply line, respectively.
  • FIG. 16 illustrates the detail of the flip-flop shown in FIG. 15 .
  • a flip-flog shown in FIG. 16 includes a first thin film transistor 5571, a second thin film transistor 5572, a third thin film transistor 5573, a fourth thin film transistor 5574, a fifth thin film transistor 5575, a sixth thin film transistor 5576, a seventh thin film transistor 5577, and an eighth thin film transistor 5578.
  • first thin film transistor 5571, the second thin film transistor 5572, the third thin film transistor 5573, the fourth thin film transistor 5574, the fifth thin film transistor 5575, the sixth thin film transistor 5576, the seventh thin film transistor 5577, and the eighth thin film transistor 5578 are n-channel transistors, and are turned on when the gate-source voltage (V gs ) exceeds the threshold voltage (V th ).
  • a first electrode (one of a source electrode or a drain electrode) of the first thin film transistor 5571 is connected to the fourth wiring 5504, and a second electrode (the other of the source electrode or the drain electrode) of the first thin film transistor 5571 is connected to the third wiring 5503.
  • a first electrode of the second thin film transistor 5572 is connected to the sixth wiring 5506.
  • a second electrode of the second thin film transistor 5572 is connected to the third wiring 5503.
  • a first electrode of the third thin film transistor 5573 is connected to the fifth wiring 5505.
  • a second electrode of the third thin film transistor 5573 is connected to a gate electrode of the second thin film transistor 5572.
  • a gate electrode of the third thin film transistor 5573 is connected to the fifth wiring 5505.
  • a first electrode of the fourth thin film transistor 5574 is connected to the sixth wiring 5506.
  • a second electrode of the fourth thin film transistor 5574 is connected to the gate electrode of the second thin film transistor 5572.
  • a gate electrode of the fourth thin film transistor 5574 is connected to a gate electrode of the first thin film transistor 5571.
  • a first electrode of the fifth thin film transistor 5575 is connected to the fifth wiring 5505.
  • a second electrode of the fifth thin film transistor 5575 is connected to the gate electrode of the first thin film transistor 5571.
  • a gate electrode of the fifth thin film transistor 5575 is connected to the first wiring 5501.
  • a first electrode of the sixth thin film transistor 5576 is connected to the sixth wiring 5506.
  • a second electrode of the sixth thin film transistor 5576 is connected to the gate electrode of the first thin film transistor 5571.
  • a gate electrode of the sixth thin film transistor 5576 is connected to the gate electrode of the second thin film transistor 5572.
  • a first electrode of the seventh thin film transistor 5577 is connected to the sixth wiring 5506.
  • a second electrode of the seventh thin film transistor 5577 is connected to the gate electrode of the first thin film transistor 5571.
  • a gate electrode of the seventh thin film transistor 5577 is connected to the second wiring 5502.
  • a first electrode of the eighth thin film transistor 5578 is connected to the sixth wiring 5506.
  • a second electrode of the eighth thin film transistor 5578 is connected to the gate electrode of the second thin film transistor 5572.
  • a gate electrode of the eighth thin film transistor 5578 is connected to the first wiring 5501.
  • the point at which the gate electrode of the first thin film transistor 5571, the gate electrode of the fourth thin film transistor 5574, the second electrode of the fifth thin film transistor 5575, the second electrode of the sixth thin film transistor 5576, and the second electrode of the seventh thin film transistor 5577 are connected is referred to as a node 5543.
  • the point at which the gate electrode of the second thin film transistor 5572, the second electrode of the third thin film transistor 5573, the second electrode of the fourth thin film transistor 5574, the gate electrode of the sixth thin film transistor 5576, and the second electrode of the eighth thin film transistor 5578 are connected is referred to as a node 5544.
  • the first wiring 5501, the second wiring 5502, the third wiring 5503, and the fourth wiring 5504 may be referred to as a first signal line, a second signal line, a third signal line, and a fourth signal line, respectively.
  • the fifth wiring 5505 and the sixth wiring 5506 may be referred to as a first power supply line and a second power supply line, respectively.
  • the signal line driver circuit and the scan line driver circuit can be manufactured using only n-channel TFTs which can be manufactured by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2. Since the n-channel TFTs which can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2 have high mobility, the driving frequency of the driver circuits can be increased.
  • the scan line driver circuit including the n-channel TFTs which can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2 can operate at high speed; therefore, it is possible to increase the frame frequency or to achieve insertion of a black screen, for example.
  • the channel width of the transistor in the scan line driver circuit is increased or a plurality of scan line driver circuits are provided, for example, higher frame frequency can be realized.
  • a scan line driver circuit for driving even-numbered scan lines is provided on one side and a scan line driver circuit for deriving odd-numbered scan lines is provided on the opposite side; thus, increase in frame frequency can be realized.
  • the use of the plurality of scan line driver circuits for output of signals to the same scan line is advantageous in increasing the size of a display device.
  • a plurality of scan line driver circuits are preferably arranged because a plurality of thin film transistors are arranged in at least one pixel.
  • FIG. 11B An example of a block diagram of an active matrix light-emitting display device is illustrated in FIG. 11B .
  • the light-emitting display device illustrated in FIG. 11B includes, over a substrate 5400, a pixel portion 5401 including a plurality of pixels each provided with a display element, a first scan line driver circuit 5402 and a second scan line driver circuit 5404 that select a pixel, and a signal line driver circuit 5403 that controls a video signal input to the selected pixel.
  • grayscale can be displayed using an area ratio grayscale method or a time ratio grayscale method.
  • An area ratio grayscale method refers to a driving method by which one pixel is divided into a plurality of subpixels and the respective subpixels are driven separately based on video signals so that grayscale is displayed.
  • a time ratio grayscale method refers to a driving method by which a period during which a pixel is in a light-emitting state is controlled so that grayscale is displayed.
  • the light-emitting elements are suitable for a time ratio grayscale method. Specifically, in the case of displaying by a time grayscale method, one frame period is divided into a plurality of subframe periods. Then, in accordance with video signals, the light-emitting element in the pixel is put in a light-emitting state or a non-light-emitting state in each subframe period. By dividing a frame into a plurality of subframes, the total length of time in which pixels actually emit light in one frame period can be controlled with video signals to display grayscales.
  • a signal which is input to a first scan line which is a gate wiring of one of the switching TFTs is generated in the first scan line driver circuit 5402 and a signal which is input to a second scan line which is a gate wiring of the other switching TFT is generated in the second scan line driver circuit 5404.
  • both of the signals which are input to the first scan line and the second scan line may be generated in one scan line driver circuit.
  • a plurality of scan lines used for controlling the operation of the switching elements be provided in each pixel depending on the number of switching TFTs included in one pixel.
  • the signals which are input to the scan lines may all be generated in one scan line driver circuit or may be generated in a plurality of scan line driver circuits.
  • part of the driver circuit which can be formed using the n-channel TFTs can be provided over one substrate together with the thin film transistors of the pixel portion.
  • the signal line driver circuit and the scan line driver circuit can be manufactured using only the n-channel TFTs which can be formed by a method similar to the method for forming the non-linear element described in Embodiment 2
  • the above driver circuit may be used for not only a liquid crystal display device or a light-emitting display device but also an electronic paper in which electronic ink is driven by utilizing an element electrically connected to a switching element.
  • the electronic paper is also called an electrophoretic display device (electrophoretic display) and has advantages in that it has the same level of readability as regular paper, it has less power consumption than other display devices, and it can be made thin and lightweight.
  • the electrophoretic display is a device in which a plurality of microcapsules each including first particles having positive charge and second particles having negative charge are dispersed in a solvent or a solute, and an electrical field is applied to the microcapsules so that the particles in the microcapsules move in opposite directions from each other, and only a color of the particles gathered on one side is displayed.
  • the first particles or the second particles include a colorant, and does not move when there is not electric field.
  • a color of the first particles is different from a color of the second particles (the particles may also be colorless).
  • the electrophoretic display utilizes a so-called dielectrophoretic effect, in which a substance with high dielectric constant moves to a region with high electric field.
  • the electrophoretic display does not require a polarizing plate and a counter substrate, which are necessary for a liquid crystal display device, so that the thickness and weight thereof are about half.
  • the microcapsules are dispersed in a solvent, and this electronic ink can be printed on a surface of glass, plastic, fabric, paper, or the like.
  • Color display is also possible with the use of a color filter or particles including a coloring matter.
  • an active matrix display device can be completed by providing as appropriate, a plurality of the microcapsules over an active matrix substrate so as to be interposed between two electrodes, and can perform display by application of electric field to the microcapsules.
  • the active matrix substrate obtained using the thin film transistors which can be formed by a method similar to the method for forming the non-linear element described in Embodiment 2 can be used.
  • first particles and the second particles in the microcapsules may be formed from one of a conductive material, an insulating material, a semiconductor material, a magnetic material, a liquid crystal material, a ferroelectric material, an electroluminescent material, an electrochromic material, and a magnetophoretic material or a composite material thereof.
  • the protective circuit mounted in thus manufactured display device has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the display device of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • a thin film transistor can be manufactured together with a non-linear element according to an embodiment of the present invention, and the thin film transistor can be used for a pixel portion and further for a driver circuit, so that a semiconductor device having a display function (also called a display device) can be manufactured.
  • a thin film transistor and a non-linear element according to an embodiment of the present invention can be used for part of a driver circuit or an entire driver circuit formed over one substrate together with a pixel portion, so that a system-on-panel can be formed.
  • the display device includes a display element.
  • a liquid crystal element also referred to as a liquid crystal display element
  • a light-emitting element also referred to as a light-emitting display element
  • a light-emitting element includes, in its category, an element whose luminance is controlled by current or voltage, and specifically includes an inorganic electroluminescent (EL) element, an organic EL element, and the like. Further, a display medium whose contrast is changed by an electric effect, such as electronic ink, can be used.
  • EL inorganic electroluminescent
  • the display device includes a panel in which a display element is sealed, and a module in which an IC and the like including a controller are mounted on the panel.
  • An embodiment of the present invention further relates to one mode of an element substrate before the display element is completed in a process for manufacturing the display device, and the element substrate is provided with a plurality of pixels each having a means for supplying current to the display element.
  • the element substrate may be in a state after only a pixel electrode of the display element is formed, a state after a conductive film to be a pixel electrode is formed but before the conductive film is etched to be the pixel electrode, or any other states.
  • a display device in this specification refers to an image display device, a display device, or a light source (including a lighting device). Further, the display device also includes any of the following modules in its category: a module to which a connector such as a flexible printed circuit (FPC), a tape automated bonding (TAB) tape, or a tape carrier package (TCP) is attached; a module having a TAB tape or a TCP at the end of which a printed wiring board is provided; and a module in which an integrated circuit (IC) is directly mounted on a display element by a chip-on-glass (COG) method.
  • a connector such as a flexible printed circuit (FPC), a tape automated bonding (TAB) tape, or a tape carrier package (TCP) is attached
  • TAB tape automated bonding
  • TCP tape carrier package
  • COG chip-on-glass
  • FIGS. 17A1 and 17A2 are top views of panels in which thin film transistors 4010 and 4011 and a liquid crystal element 4013 which are formed over a first substrate 4001 are sealed with a sealant 4005 between the first substrate 4001 and a second substrate 4006.
  • the thin film transistors 4010 and 4011 can be formed similarly to the non-linear element and each include a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn and have excellent electrical characteristics.
  • FIG. 17B is a cross-sectional view taken along M-N of FIGS. 17A1 and 17A2 .
  • the sealant 4005 is provided so as to surround a pixel portion 4002 and a scan line driver circuit 4004 which are provided over the first substrate 4001.
  • the second substrate 4006 is provided over the pixel portion 4002 and the scan line driver circuit 4004.
  • the pixel portion 4002 and the scan line driver circuit 4004 as well as a liquid crystal layer 4008 are sealed with the sealant 4005 between the first substrate 4001 and the second substrate 4006.
  • a signal line driver circuit 4003 that is formed using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared is mounted in a region that is different from the region surrounded by the sealant 4005 over the first substrate 4001.
  • FIG. 17A1 illustrates an example in which the signal line driver circuit 4003 is mounted by a COG method
  • FIG. 17A2 illustrates an example in which the signal line driver circuit 4003 is mounted by a TAB method.
  • Each of the pixel portion 4002 and the scan line driver circuit 4004 which are provided over the first substrate 4001 includes a plurality of thin film transistors.
  • FIG. 17B illustrates the thin film transistor 4010 included in the pixel portion 4002 and the thin film transistor 4011 included in the scan line driver circuit 4004. Insulating layers 4020 and 4021 are provided over the thin film transistors 4010 and 4011.
  • Each of the thin film transistors 4010 and 4011 has excellent electrical characteristics and includes a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn. Additionally, the thin film transistors 4010 and 4011 can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2. In this embodiment, the thin film transistors 4010 and 4011 are n-channel thin film transistors.
  • a pixel electrode layer 4030 included in the liquid crystal element 4013 is electrically connected to the thin film transistor 4010.
  • a counter electrode layer 4031 of the liquid crystal element 4013 is formed on the second substrate 4006.
  • a portion where the pixel electrode layer 4030, the counter electrode layer 4031, and the liquid crystal layer 4008 overlap with each other corresponds to the liquid crystal element 4013.
  • the pixel electrode layer 4030 and the counter electrode layer 4031 are provided with an insulating layer 4032 and an insulating layer 4033 serving as alignment films, respectively, and hold the liquid crystal layer 4008 with the insulating layers 4032 and 4033 interposed therebetween.
  • first substrate 4001 and the second substrate 4006 can be formed from glass, metal (typically, stainless steel), ceramic, or plastic.
  • plastic a fiberglass-reinforced plastics (FRP) plate, a polyvinyl fluoride (PVF) film, a polyester film, or an acrylic resin film can be used.
  • FRP fiberglass-reinforced plastics
  • PVF polyvinyl fluoride
  • polyester film a polyester film
  • acrylic resin film acrylic resin film
  • Reference numeral 4035 denotes a columnar spacer obtained by selectively etching an insulating film and is provided to control the distance (a cell gap) between the pixel electrode layer 4030 and the counter electrode layer 4031.
  • a spherical spacer may be used.
  • a blue phase liquid crystal for which an alignment film is unnecessary may be used.
  • a blue phase is a type of liquid crystal phase, which appears just before a cholesteric liquid crystal changes into an isotropic phase when the temperature of the cholesteric liquid crystal is increased.
  • a blue phase appears only within a narrow temperature range; therefore, the liquid crystal layer 4008 is formed using a liquid crystal composition containing a chiral agent at 5 wt.% or more in order to expand the temperature range.
  • the liquid crystal composition including a blue phase liquid crystal and a chiral agent has a short response time of 10 ⁇ s to 100 ⁇ s, and is optically isotropic; therefore, alignment treatment is not necessary and viewing angle dependence is small.
  • this embodiment describes an example of a transmissive liquid crystal display device; however, an embodiment of the present invention can be applied to a reflective liquid crystal display device or a transflective liquid crystal display device.
  • a liquid crystal display device of this embodiment has a polarizing plate provided outer than the substrate (the viewer side) and a coloring layer and an electrode layer of a display element provided inner than the substrate, which are arranged in that order, the polarizing plate may be inner than the substrate.
  • the stacked structure of the polarizing plate and the coloring layer is not limited to that shown in this embodiment and may be set as appropriate in accordance with the materials of the polarizing plate and the coloring layer and the condition of the manufacturing process. Further, a light-blocking film serving as a black matrix may be provided.
  • the non-linear element described in Embodiment 2 and the thin film transistors which can be formed by a method similar to the method for forming the non-linear element and can be formed together with the non-linear element are covered with protective films or insulating layers (the insulating layers 4020 and 4021) serving as planarizing insulating films.
  • the protective film is provided to prevent entry of impurities floating in air, such as an organic substance, a metal substance, or moisture, and is preferably a dense film.
  • the protective film may be formed by a sputtering method using a single layer or a stack of layers of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicon nitride oxide film, an aluminum oxide film, an aluminum nitride film, an aluminum oxynitride film, or an aluminum nitride oxide film.
  • a sputtering method using a single layer or a stack of layers of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicon nitride oxide film, an aluminum oxide film, an aluminum nitride film, an aluminum oxynitride film, or an aluminum nitride oxide film.
  • the insulating layer 4020 is formed to have a stacked structure as the protective film.
  • a silicon oxide film is formed by a sputtering method as a first layer of the insulating layer 4020.
  • the use of a silicon oxide film for the protective film provides an advantageous effect of preventing hillock of an aluminum film used for a source electrode layer and a drain electrode layer.
  • an insulating layer is formed as a second layer of the protective films.
  • a silicon nitride film is formed by a sputtering method as a second layer of the insulating layer 4020.
  • a silicon nitride film is used for the protective film, it is possible to prevent movable ions such as sodium from entering a semiconductor region to change the electrical characteristics of the TFT.
  • the oxide semiconductor layer may be annealed (at 300 °C to 400 °C).
  • the insulating layer 4021 is formed as the planarizing insulating film.
  • the insulating layer 4021 can be formed from an organic material having heat resistance, such as polyimide, acrylic, benzocyclobutene, polyamide, or epoxy.
  • organic materials it is possible to use a low-dielectric constant material (a low-k material), a siloxane-based resin, phosphosilicate glass (PSG ), borophosphosilicate glass (BPSG), or the like.
  • a siloxane-based resin may include as a substituent at least one of fluorine, an alkyl group, and an aryl group, as well as hydrogen.
  • the insulating layer 4021 may be formed by stacking a plurality of insulating films formed from these materials.
  • a siloxane-based resin is a resin formed from a siloxane-based material as a starting material and having the bond of Si-O-Si.
  • the siloxane-based resin may include as a substituent at least one of fluorine, an alkyl group, and aromatic hydrocarbon, as well as hydrogen.
  • the method for the formation of the insulating layer 4021 is not limited to a particular method and the following method can be used depending on the material of the insulating layer 4021: a sputtering method, an SOG method, spin coating, drip coating, spray coating, a droplet discharge method (e.g., an inkjet method, screen printing, or offset printing), a doctor knife, a roll coater, a curtain coater, a knife coaler, or the like.
  • annealing at 300 °C to 400 °C
  • a semiconductor device can be manufactured efficiently.
  • the pixel electrode layer 4030 and the counter electrode layer 4031 can be formed from a light-transmitting conductive material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium tin oxide (hereinafter referred to as ITO), indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • a light-transmitting conductive material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium tin oxide (hereinafter referred to as ITO), indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • a conductive composition including a conductive high molecule can be used for the pixel electrode layer 4030 and the counter electrode layer 4031.
  • the pixel electrode formed of the conductive composition has preferably a sheet resistance of 10000 ⁇ /square or less and a transmittance of 70 % or more at a wavelength of 550 nm. Further, the resistivity of the conductive high molecule included in the conductive composition is preferably 0.1 ⁇ cm or less.
  • a so-called ⁇ -electron conjugated conductive polymer can be used.
  • polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, a copolymer of two or more of them can be given.
  • a connecting terminal electrode 4015 is formed using the same conductive film as the pixel electrode layer 4030 included in the liquid crystal element 4013, and a terminal electrode 4016 is formed using the same conductive film as the source and drain electrode layers of the thin film transistors 4010 and 4011.
  • the connecting terminal electrode 4015 is electrically connected to a terminal of the FPC 4018 through an anisotropic conductive film 4019.
  • FIGS. 17A1, 17A2, and 17B show an example in which the signal line driver circuit 4003 is formed separately and mounted on the first substrate 4001, this embodiment is not limited to this structure.
  • the scan line driver circuit may be separately formed and then mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted.
  • FIG. 18 illustrates an example in which a liquid crystal display module is formed as a semiconductor device using a TFT substrate 2600 manufactured according to an embodiment of the present invention.
  • FIG. 18 illustrates an example of a liquid crystal display module, in which the TFT substrate 2600 and a counter substrate 2601 are fixed to each other with a sealant 2602, and a pixel portion 2603 including a TFT and the like, a display element 2604 including a liquid crystal layer, and a coloring layer 2605 are provided between the substrates to form a display region.
  • the coloring layer 2605 is necessary to perform color display. In the case of the RGB system, coloring layers corresponding to colors of red, green, and blue are provided for pixels.
  • Polarizing plates 2606 and 2607 and a diffuser plate 2613 are provided outside the TFT substrate 2600 and the counter substrate 2601.
  • a light source includes a cold cathode tube 2610 and a reflective plate 2611, and a circuit board 2612 is connected to a wiring circuit portion 2608 of the TFT substrate 2600 through a flexible wiring board 2609 and includes an external circuit such as a control circuit and a power source circuit.
  • the polarizing plate and the liquid crystal layer may be stacked with a retardation plate interposed therebetween.
  • a TN (twisted nematic) mode, an IPS (in-plane-switching) mode, an FFS (fringe field switching) mode, an MVA (multi-domain vertical alignment) mode, a PVA (patterned vertical alignment) mode, an ASM (axially symmetric aligned micro-cell) mode, an OCB (optically compensates birefringence) mode, an FLC (ferroelectric liquid crystal) mode, an AFLC (antiferroelectric liquid crystal) mode, or the like can be employed.
  • the protective circuit mounted in thus manufactured liquid crystal panel has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the liquid crystal panel of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • a thin film transistor can be manufactured together with a non-linear element and the thin film transistor can be used for a pixel portion and further for a driver circuit, so that a semiconductor device having a display function (also called a display device) can be manufactured.
  • a display function also called a display device
  • This embodiment describes an example of a light-emitting display device as a display device according to an embodiment of the present invention.
  • a display element of the display device here, a light-emitting element utilizing electroluminescence is described.
  • Light-emitting elements utilizing electroluminescence are classified according to whether a light emitting material is an organic compound or an inorganic compound. In general, the former is referred to as an organic EL element and the latter is referred to as an inorganic EL element.
  • an organic EL element by application of a voltage to a light-emitting element, electrons and holes are separately injected from a pair of electrodes into a layer containing a light-emitting organic compound, and thus current flows. Then, those carriers (i.e., electrons and holes) are recombined, and thus, the light-emitting organic compound is excited. When the light-emitting organic compound returns to a ground state from the excited state, light is emitted. Owing to such a mechanism, this light emitting element is referred to as a current-excitation light emitting element.
  • the inorganic EL elements are classified according to their element structures into a dispersion type inorganic EL element and a thin-film type inorganic EL element.
  • a dispersion type inorganic EL element has a light-emitting layer where particles of a light-emitting material are dispersed in a binder, and its light emission mechanism is donor-acceptor recombination type light emission that utilizes a donor level and an acceptor level.
  • a thin-film type inorganic EL element has a structure where a light-emitting layer is sandwiched between dielectric layers, which are further sandwiched between electrodes, and its light emission mechanism is localized type light emission that utilizes inner-shell electron transition of metal ions. Note that an organic EL element is used as a light-emitting element in this example.
  • FIG. 19 illustrates an example of a pixel structure to which digital time grayscale driving can be applied, as an example of a semiconductor device to which an embodiment of the present invention is applied.
  • one pixel includes two n-channel transistors in each of which a channel formation region includes an oxide semiconductor layer and which can be formed by a method similar to the method for forming the non-linear element described in Embodiment 2.
  • a pixel 6400 includes a switching transistor 6401, a driver transistor 6402, a light-emitting element 6404, and a capacitor 6403.
  • a gate of the switching transistor 6401 is connected to a scan line 6406
  • a first electrode (one of a source electrode and a drain electrode) of the switching transistor 6401 is connected to a signal line 6405
  • a second electrode (the other of the source electrode and the drain electrode) of the switching transistor 6401 is connected to a gate of the driver transistor 6402.
  • the gate of the driver transistor 6402 is connected to a power supply line 6407 through the capacitor 6403, a first electrode of the driver transistor 6402 is connected to the power supply line 6407, and a second electrode of the driver transistor 6402 is connected to a first electrode (pixel electrode) of the light-emitting element 6404.
  • a second electrode of the light-emitting element 6404 corresponds to a common electrode 6408.
  • the second electrode (common electrode 6408) of the light-emitting element 6404 is set to a low power supply potential.
  • the low power supply potential is a potential smaller than a high power supply potential when the high power supply potential set to the power supply line 6407 is a reference.
  • As the low power supply potential GND, 0 V, or the like may be employed, for example.
  • a potential difference between the high power supply potential and the low power supply potential is applied to the light-emitting element 6404 and current is supplied to the light-emitting element 6404, so that the light-emitting element 6404 emits light.
  • potentials are set so that the potential difference between the high power supply potential and the low power supply potential is greater than or equal to the forward threshold voltage of the light-emitting element 6404.
  • Gate capacitance of the driver transistor 6402 may be used as a substitute for the capacitor 6403, so that the capacitor 6403 can be omitted.
  • the gate capacitance of the driver transistor 6402 may be formed between the channel region and the gate electrode.
  • a video signal is input to the gate of the driver transistor 6402 so that the driver transistor 6402 is either substantially turned on or substantially turned off. That is, the driver transistor 6402 operates in a linear region. Since the driver transistor 6402 operates in a linear region, a voltage higher than the voltage of the power supply line 6407 is applied to the gate of the driver transistor 6402. Note that a voltage higher than or equal to the sum of the voltage of the power supply line and the Vth of the driver transistor 6402 is applied to the signal line 6405.
  • the same pixel structure as that in FIG. 19 can be used by changing signal input.
  • a voltage higher than or equal to the sum of the forward voltage of the light-emitting element 6404 and the Vth of the driver transistor 6402 is applied to the gate of the driver transistor 6402.
  • the forward voltage of the light-emitting element 6404 indicates a voltage at which a desired luminance is obtained, and includes at least a forward threshold voltage.
  • the video signal by which the driver transistor 6402 operates in a saturation region is input, so that current can be supplied to the light-emitting element 6404.
  • the potential of the power supply line 6407 is set higher than the gate potential of the driver transistor 6402.
  • the pixel structure shown in FIG 19 is not limited thereto.
  • a switch, a resistor, a capacitor, a transistor, a logic circuit, or the like may be added to the pixel shown in FIG. 19 .
  • TFTs 7001, 7011, and 7021 serving as driver TFTs used for a semiconductor device which are illustrated in FIGS. 20A, 20B, and 20C , can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2.
  • the TFTs 7001, 7011, and 7021 have excellent electrical characteristics and each include a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn.
  • At least one of an anode and a cathode is required to transmit light.
  • a thin film transistor and a light-emitting element are formed over a substrate.
  • a light-emitting element can have a top-emission structure in which light is extracted through the surface opposite to the substrate; a bottom-emission structure in which light is extracted through the surface on the substrate side; or a dual-emission structure in which light is extracted through the surface opposite to the substrate and the surface on the substrate side.
  • the pixel structure according to an embodiment of the present invention can be applied to a light-emitting element having any of these emission structures.
  • a light-emitting element with a top-emission structure is described with reference to FIG. 20A .
  • FIG 20A is a cross-sectional view of a pixel in a case where the TFT 7001 serving as a driver TFT is an n-channel TFT and light generated in a light-emitting element 7002 is emitted to an anode 7005 side.
  • a cathode 7003 of the light-emitting element 7002 is electrically connected to the TFT 7001 serving as a driver TFT, and a light-emitting layer 7004 and the anode 7005 are stacked in this order over the cathode 7003.
  • the cathode 7003 can be formed using any of conductive materials which have a low work function and reflect light.
  • the light-emitting layer 7004 may be formed using a single layer or by stacking a plurality of layers. When the light-emitting layer 7004 is formed using a plurality of layers, the light-emitting layer 7004 is formed by stacking an electron-injecting layer, an electron-transporting layer, a light-emitting layer, a hole-transporting layer, and a hole-injecting layer in this order over the cathode 7003. It is not necessary to form all of these layers.
  • the anode 7005 is formed using a light-transmitting conductive film formed from a light-transmitting conductive material such as indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium tin oxide (hereinafter, referred to as ITO), indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • a light-transmitting conductive film formed from a light-transmitting conductive material such as indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium tin oxide (hereinafter, referred to as ITO), indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • the light-emitting element 7002 corresponds to a region where the cathode 7003 and the anode 7005 sandwich the light-emitting layer 7004. In the case of the pixel illustrated in FIG. 20A , light is emitted from the light-emitting element 7002 to the anode 7005 side as indicated by an arrow.
  • FIG. 20B is a cross-sectional view of a pixel in the case where a driver TFT 7011 is an n-channel TFT, and light is emitted from a light-emitting element 7012 to a cathode 7013 side.
  • the cathode 7013 of the light-emitting element 7012 is formed over a light-transmitting conductive film 7017 which is electrically connected to the driver TFT 7011, and a light-emitting layer 7014 and an anode 7015 are stacked in this order over the cathode 7013.
  • a light-blocking film 7016 for reflecting or blocking light may be formed so as to cover the anode 7015 when the anode 7015 has a light-transmitting property.
  • the cathode 7013 any of conductive materials which have a low work function can be used as in the case of FIG. 20A .
  • the cathode 7013 is formed to have a thickness with which the cathode 7013 can transmit light (preferably, approximately from 5 nm to 30 nm).
  • an aluminum film with a thickness of 20 nm can be used as the cathode 7013.
  • the light-emitting layer 7014 may be formed of a single layer or by stacking a plurality of layers as in the case of FIG. 20A .
  • the anode 7015 is not required to transmit light, but can be formed using a light-transmitting conductive material as in the case of FIG. 20A .
  • a light-blocking film 7016 metal or the like that reflects light can be used; however, it is not limited to a metal film.
  • a resin or the like to which black pigment is added can be used.
  • the light-emitting element 7012 corresponds to a region where the cathode 7013 and the anode 7015 sandwich the light-emitting layer 7014. In the case of the pixel illustrated in FIG. 20B , light is emitted from the light-emitting element 7012 to the cathode 7013 side as indicated by an arrow.
  • a light-emitting element having a dual-emission structure is described with reference to FIG. 20C .
  • a cathode 7023 of a light-emitting element 7022 is formed over a light-transmitting conductive film 7027 which is electrically connected to the driver TFT 7021, and a light-emitting layer 7024 and an anode 7025 are stacked in this order over the cathode 7023.
  • the cathode 7023 can be formed of any of conductive materials which have a low work function. Note that the cathode 7023 is formed to have a thickness with which the cathode 7023 can transmit light.
  • an Al film having a thickness of 20 nm can be used as the cathode 7023.
  • the light-emitting layer 7024 may be formed using a single layer or by stacking a plurality of layers as in the case of FIG. 20A .
  • the anode 7025 can be formed using a light-transmitting conductive material.
  • the light-emitting element 7022 corresponds to a region where the cathode 7023, the light-emitting layer 7024, and the anode 7025 overlap with each other.
  • the pixel illustrated in FIG. 20C light is emitted from the light-emitting element 7022 to both the anode 7025 side and the cathode 7023 side as indicated by arrows.
  • an organic EL element is described here as a light-emitting element, an inorganic EL element can be alternatively provided as a light-emitting element.
  • this embodiment describes the example in which a thin film transistor (driver TFT) which controls the driving of a light-emitting element is electrically connected to the light-emitting element, but a structure may be employed in which a current control TFT is connected between the driver TFT and the light-emitting element.
  • driver TFT thin film transistor
  • the semiconductor device described in this embodiment is not limited to the structures illustrated in FIGS. 20A to 20C , and can be modified in various ways based on the spirit of techniques according to an embodiment of the present invention.
  • FIG. 21A is a top view of a panel in which a light-emitting element and a thin film transistor are sealed with a sealant between a first substrate and a second substrate.
  • the thin film transistor includes, a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn, and thus has excellent electrical characteristics, as the non-linear element.
  • FIG. 21B is a cross-sectional view along H-I of FIG. 21A .
  • a sealant 4505 is provided so as to surround a pixel portion 4502, signal line driver circuits 4503a and 4503b, and scan line driver circuits 4504a and 4504b, which are provided over a first substrate 4501.
  • a second substrate 4506 is formed over the pixel portion 4502, the signal line driver circuits 4503a and 4503b, and the scan line driver circuits 4504a and 4504b. Accordingly, the pixel portion 4502, the signal line driver circuits 4503a and 4503b, and the scan line driver circuits 4504a and 4504b are sealed, together with filler 4507, with the first substrate 4501, the sealant 4505, and the second substrate 4506.
  • the light-emitting display panel be packaged (sealed) with a protective film (such as an attachment film or an ultraviolet curable resin film) or a cover material with high air-tightness and little degasification so as not to be exposed to external air.
  • a protective film such as an attachment film or an ultraviolet curable resin film
  • a cover material with high air-tightness and little degasification so as not to be exposed to external air.
  • the pixel portion 4502, the signal line driver circuits 4503a and 4503b, and the scan line driver circuits 4504a and 4504b formed over the first substrate 4501 each include a plurality of thin film transistors.
  • a thin film transistor 4510 included in the pixel portion 4502 and the thin film transistor 4509 included in the signal line driver circuit 4503a are illustrated as an example in FIG. 21B .
  • Each of the thin film transistors 4509 and 4510 has excellent electrical characteristics and includes a semiconductor layer including a semiconductor oxide containing In, Ga, and Zn.
  • Thin film transistors which can be formed by a method similar to the method for forming the non-linear element and together with the non-linear element described in Embodiment 2 can be used as the thin film transistors 4509 and 4510.
  • the thin film transistors 4509 and 4510 are n-channel thin film transistors.
  • reference numeral 4511 denotes a light-emitting element.
  • a first electrode layer 4517 which is a pixel electrode included in the light-emitting element 4511 is electrically connected to a source or drain electrode layer of the thin film transistor 4510.
  • the structure of the light-emitting element 4511 is not limited thereto.
  • the structure of the light-emitting element 4511 can be changed as appropriate depending on a direction in which light is extracted from the light-emitting element 4511, or the like.
  • a partition wall 4520 is formed using an organic resin film, an inorganic insulating film, or organic polysiloxane. It is particularly preferable that the partition wall 4520 be formed using a photosensitive material to have an opening portion on the first electrode layer 4517 so that a sidewall of the opening portion is formed as an inclined surface with a continuous curvature.
  • the electroluminescent layer 4512 may be formed using a single layer or a plurality of layers stacked.
  • a protective film may be formed over the second electrode layer 4513 and the partition wall 4520.
  • a silicon nitride film, a silicon nitride oxide film, a DLC film, or the like can be formed.
  • FPCs 4518a and 4518b are supplied from FPCs 4518a and 4518b to the signal line driver circuits 4503a and 4503b, the scan line driver circuits 4504a and 4504b, or the pixel portion 4502.
  • a connecting terminal electrode 4515 is formed using the same conductive film as the first electrode layer 4517 included in the light-emitting element 4511.
  • a terminal electrode 4516 is formed using the same conductive film as the source and drain electrode layers included in the thin film transistors 4509 and 4510.
  • the connecting terminal electrode 4515 is electrically connected to a terminal included in the FPC 4518a through an anisotropic conductive film 4519.
  • the second substrate located in the direction in which light is extracted from the light-emitting element 4511 needs to have a light-transmitting property.
  • a light-transmitting material such as a glass plate, a plastic plate, a polyester film, or an acrylic film is used.
  • an ultraviolet curable resin or a thermosetting resin can be used as well as inert gas such as nitrogen or argon.
  • inert gas such as nitrogen or argon.
  • PVC polyvinyl chloride
  • acrylic acrylic
  • polyimide an epoxy resin
  • silicone resin polyvinyl butyral
  • EVA ethylene vinyl acetate
  • nitrogen is used for the filler 4507.
  • an optical film such as a polarizing plate, a circularly polarizing plate (including an elliptically polarizing plate), a retardation plate (a quarter-wave plate or a half-wave plate), and a color filter may be provided as appropriate on an emission surface of the light-emitting element.
  • the polarizing plate or the circularly polarizing plate may be provided with an anti-reflection film.
  • anti-glare treatment can be performed by which reflected light is diffused by depressions and projections of the surface and glare can be reduced.
  • driver circuits formed by using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared may be mounted.
  • only the signal line driver circuits or only part thereof, or only the scan line driver circuits or only part thereof may be separately formed and then mounted. This embodiment is not limited to the structure shown in FIGS. 21A and 21B .
  • the protective circuit mounted in thus manufactured a light-emitting display device (display panel) liquid crystal panel has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the light-emitting display device (display panel) of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • a display device can be applied as an electronic paper.
  • An electronic paper can be used for electronic appliances of a variety of fields for displaying information.
  • an electronic paper can be used for electronic book reader (an e-book reader), posters, advertisement in vehicles such as trains, displays of various cards such as credit cards, and the like. Examples of such electronic appliances are illustrated in FIGS. 22A and 22B and FIG. 23 .
  • FIG. 22A illustrates a poster 2631 formed using an electronic paper. If the advertising medium is printed paper, the advertisement is replaced by hands; however, when an electronic paper to which an embodiment of the present invention is applied is used, the advertisement display can be changed in a short time. Moreover, a stable image can be obtained without defects. Further, the poster may send and receive information wirelessly.
  • FIG. 22B illustrates an advertisement 2632 in a vehicle such as a train.
  • the advertising medium is printed paper
  • the advertisement is replaced by hands; however, when an electronic paper to which an embodiment of the present invention is applied is used, the advertisement display can be changed in a short time without much manpower. Moreover, a stable image can be obtained without defects. Further, the advertisement in vehicles may send and receive information wirelessly.
  • FIG. 23 illustrates an example of an electronic book reader 2700.
  • the electronic book reader 2700 includes two housings 2701 and 2703.
  • the housings 2701 and 2703 are bonded with a hinge 2711 so that the electronic book reader 2700 can be opened and closed along the hinge 2711.
  • the electronic book reader 2700 can be handled like a paper book.
  • a display portion 2705 is incorporated in the housing 2701 and a display portion 2707 is incorporated in the housing 2703.
  • the display portion 2705 and the display portion 2707 may display one image, or may display different images.
  • the right display portion can display text
  • the left display portion can display images.
  • FIG 23 illustrates an example in which the housing 2701 is provided with an operation portion and the like.
  • the housing 2701 is provided with a power supply switch 2721, an operation key 2723, a speaker 2725, and the like.
  • the page can be turned with the operation key 2723.
  • a keyboard, a pointing device, and the like may be provided on the same plane as the display portion of the housing.
  • a rear surface or a side surface of the housing may be provided with an external connection terminal (an earphone terminal, a USB terminal, a terminal which can be connected with a variety of cables such as an AC adopter or a USB cable, and the like), a storage medium inserting portion, or the like.
  • the electronic book reader 2700 may have a function of an electronic dictionary.
  • the electronic book reader 2700 may send and receive information wirelessly. Desired book data or the like can be purchased and downloaded from an electronic book server wirelessly.
  • the protective circuit mounted in the display device of this embodiment has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the display device of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.
  • a semiconductor device can be applied to a variety of electronic appliances (including game machines).
  • the electronic appliances for example, there are a television device (also called a television or a television receiver), a monitor for a computer or the like, a camera such as a digital camera or a digital video camera, a digital photo frame, a cellular phone (also called a mobile phone or a mobile telephone device), a portable game console, a portable information terminal, an audio playback device, and a large game machine such as a pachinko machine.
  • FIG. 24A illustrates an example of a television device 9600.
  • a display portion 9603 is incorporated in a housing 9601 of the television device 9600.
  • the display portion 9603 can display images.
  • the housing 9601 is supported on a strand 9605.
  • the television device 9600 can be operated by an operation switch of the housing 9601 or a separate remote controller 9610.
  • the channel and volume can be controlled with operation keys 9609 of the remote controller 9610 and the images displayed on the display portion 9603 can be controlled.
  • the remote controller 9610 may have a display portion 9607 on which the information outgoing from the remote controller 9610 is displayed.
  • the television device 9600 is provided with a receiver, a modem, and the like. With the receiver, general television broadcasting can be received. Moreover, when the display device is connected to a communication network with or without wires via the modem, one-way (from a sender to a receiver) or two-way (e.g., between a sender and a receiver or between receivers) information communication can be performed.
  • FIG. 24B illustrates an example of a digital photo frame 9700.
  • a display portion 9703 is incorporated in a housing 9701 of the digital photo frame 9700.
  • the display portion 9703 can display a variety of images, for example, displays image data taken with a digital camera or the like, so that the digital photo frame can function in a manner similar to a general picture frame.
  • the digital photo frame 9700 is provided with an operation portion, an external connection terminal (such as a USB terminal or a terminal which can be connected to a variety of cables including a USB cable), a storage medium inserting portion, and the like. They may be incorporated on the same plane as the display portion; however, they are preferably provided on a side surface or the rear surface of the display portion because the design is improved.
  • an external connection terminal such as a USB terminal or a terminal which can be connected to a variety of cables including a USB cable
  • a storage medium inserting portion and the like.
  • a memory including image data taken with a digital camera is inserted into the storage medium inserting portion of the digital photo frame and the image data is imported. Then, the imported image data can be displayed on the display portion 9703.
  • the digital photo frame 9700 may send and receive information wirelessly. Via wireless communication, desired image data can be wirelessly imported into the digital photo frame 9700 and displayed.
  • FIG. 25A illustrates a portable game console including a housing 9881 and a housing 9891 which are jointed with a connector 9893 so as to be opened and closed.
  • a display portion 9882 and a display portion 9883 are incorporated in the housing 9881 and the housing 9891, respectively.
  • 25A additionally includes a speaker portion 9884, a storage medium inserting portion 9886, an LED lamp 9890, an input means (operation keys 9885, a connection terminal 9887, a sensor 9888 (having a function of measuring force, displacement, position, speed, acceleration, angular speed, rotational frequency, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared ray), and a microphone 9889), and the like.
  • the structure of the portable game console is not limited to the above, and may be any structure which is provided with at least a semiconductor device according to an embodiment of the present invention.
  • the portable game console illustrated in FIG. 25A has a function of reading a program or data stored in a storage medium to display it on the display portion, and a function of sharing information with another portable game console via wireless communication.
  • the portable game console of FIG. 25A can have a variety of functions other than those above.
  • FIG. 25B illustrates an example of a slot machine 9900, which is a large game machine.
  • a display portion 9903 is incorporated in a housing 9901 of the slot machine 9900.
  • the slot machine 9900 additionally includes an operation means such as a start lever or a stop switch, a coin slot, a speaker, and the like.
  • the structure of the slot machine 9900 is not limited to the above and may be any structure which is provided with at least a semiconductor device according to an embodiment of the present invention. Moreover, another accessory may be provided as appropriate.
  • FIG. 26 illustrates an example of a cellular phone 1000.
  • the cellular phone 1000 includes a housing 1001 in which a display portion 1002 is incorporated, and moreover includes an operation button 1003, an external connection port 1004, a speaker 1005, a microphone 1006, and the like.
  • Information can be input to the cellular phone 1000 illustrated in FIG 26 by touching the display portion 1002 with a finger or the like. Moreover, calling or text messaging can be performed by touching the display portion 1002 with a finger or the like.
  • the first mode is a display mode mainly for displaying images.
  • the second mode is an input mode mainly for inputting information such as text.
  • the third mode is a display-and-input mode in which two modes of the display mode and the input mode are mixed.
  • the display portion 1002 is set to a text input mode mainly for inputting text, and text input operation can be performed on a screen.
  • text input operation can be performed on a screen.
  • a detection device including a sensor for detecting inclination, such as a gyroscope or an acceleration sensor, is provided inside the cellular phone 1000
  • display on the screen of the display portion 1002 can be automatically switched by judging the direction of the cellular phone 1000 (whether the cellular phone 1000 is placed horizontally or vertically for a landscape mode or a portrait mode).
  • the screen modes are switched by touching the display portion 1002 or operating the operation button 1003 of the housing 1001.
  • the screen modes can be switched depending on kinds of images displayed on the display portion 1002. For example, when a signal for an image displayed on the display portion is data of moving images, the screen mode is switched to the display mode. When the signal is text data, the screen mode is switched to the input mode.
  • the screen mode may be controlled so as to be switched from the input mode to the display mode.
  • the display portion 1002 can also function as an image sensor. For example, an image of a palm print, a fingerprint, or the like is taken by touching the display portion 1002 with the palm or the finger, whereby personal authentication can be performed. Moreover, when a backlight or sensing light source which emits near-infrared light is provided in the display portion, an image of finger veins, palm veins, or the like can be taken.
  • the protective circuit mounted in the electronic appliance of this embodiment has less contact holes for connection, and therefore, occupies a smaller area. Additionally, in the protective circuit, a second oxide semiconductor layer which has higher electrical conductivity than a first oxide semiconductor layer is provided between the first oxide semiconductor layer and a wiring layer, which realizes enhancement of function and stable operation of the protective circuit. Therefore, the electronic appliance of this embodiment which includes such a protective circuit is highly reliable.
  • This embodiment can be implemented in combination with a structure described in another embodiment as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
EP09171106.9A 2008-10-03 2009-09-23 Display device Active EP2172804B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259060 2008-10-03

Publications (3)

Publication Number Publication Date
EP2172804A2 EP2172804A2 (en) 2010-04-07
EP2172804A3 EP2172804A3 (en) 2010-11-10
EP2172804B1 true EP2172804B1 (en) 2016-05-11

Family

ID=41467140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09171106.9A Active EP2172804B1 (en) 2008-10-03 2009-09-23 Display device

Country Status (6)

Country Link
US (4) US8368066B2 (zh)
EP (1) EP2172804B1 (zh)
JP (8) JP5534769B2 (zh)
KR (4) KR101533222B1 (zh)
CN (2) CN101713897B (zh)
TW (5) TWI655781B (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762112B1 (ko) * 2008-09-19 2017-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정표시장치
CN102160103B (zh) 2008-09-19 2013-09-11 株式会社半导体能源研究所 显示装置
KR101761108B1 (ko) 2008-10-03 2017-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2172804B1 (en) * 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
CN101719493B (zh) 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
JP2010153802A (ja) * 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
KR101643835B1 (ko) 2009-07-10 2016-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
CN102549638B (zh) 2009-10-09 2015-04-01 株式会社半导体能源研究所 发光显示器件以及包括该发光显示器件的电子设备
KR101847656B1 (ko) * 2009-10-21 2018-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
EP2510541A4 (en) 2009-12-11 2016-04-13 Semiconductor Energy Lab NONVOLATILE LATCH CIRCUIT, LOGIC CIRCUIT, AND SEMICONDUCTOR DEVICE USING THE SAME
KR102459005B1 (ko) * 2009-12-25 2022-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 메모리 장치, 반도체 장치, 및 전자 장치
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8766253B2 (en) * 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8835917B2 (en) * 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8558960B2 (en) * 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
JP5899220B2 (ja) * 2010-09-29 2016-04-06 ポスコ ロール状の母基板を利用したフレキシブル電子素子の製造方法、フレキシブル電子素子及びフレキシブル基板
WO2012073862A1 (ja) 2010-12-01 2012-06-07 シャープ株式会社 半導体装置、tft基板、ならびに半導体装置およびtft基板の製造方法
US9443984B2 (en) * 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI562142B (en) 2011-01-05 2016-12-11 Semiconductor Energy Lab Co Ltd Storage element, storage device, and signal processing circuit
TWI535032B (zh) 2011-01-12 2016-05-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP5859839B2 (ja) 2011-01-14 2016-02-16 株式会社半導体エネルギー研究所 記憶素子の駆動方法、及び、記憶素子
TWI567735B (zh) 2011-03-31 2017-01-21 半導體能源研究所股份有限公司 記憶體電路,記憶體單元,及訊號處理電路
KR102546888B1 (ko) 2011-06-17 2023-06-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치
TWI457885B (zh) * 2012-04-02 2014-10-21 Au Optronics Corp 顯示裝置
US9153699B2 (en) * 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
CN104508549B (zh) 2012-08-03 2018-02-06 株式会社半导体能源研究所 半导体装置
DE102013216824B4 (de) 2012-08-28 2024-10-17 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
TWI657539B (zh) 2012-08-31 2019-04-21 日商半導體能源研究所股份有限公司 半導體裝置
KR102679509B1 (ko) 2012-09-13 2024-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101942489B1 (ko) * 2012-10-17 2019-01-28 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이를 포함하는 유기 발광 표시 장치
WO2014073374A1 (en) 2012-11-06 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TWI613759B (zh) 2012-11-28 2018-02-01 半導體能源研究所股份有限公司 顯示裝置
TWI627483B (zh) 2012-11-28 2018-06-21 半導體能源研究所股份有限公司 顯示裝置及電視接收機
KR102241249B1 (ko) 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 저항 소자, 표시 장치, 및 전자기기
CN104885230B (zh) 2012-12-25 2018-02-23 株式会社半导体能源研究所 半导体装置
US9905585B2 (en) 2012-12-25 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising capacitor
KR102112367B1 (ko) 2013-02-12 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI611566B (zh) 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 顯示裝置和電子裝置
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6151070B2 (ja) 2013-04-11 2017-06-21 株式会社ジャパンディスプレイ 薄膜トランジスタ及びそれを用いた表示装置
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9231002B2 (en) 2013-05-03 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
TWI639235B (zh) 2013-05-16 2018-10-21 半導體能源研究所股份有限公司 半導體裝置
TWI687748B (zh) 2013-06-05 2020-03-11 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
KR102294507B1 (ko) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6442321B2 (ja) 2014-03-07 2018-12-19 株式会社半導体エネルギー研究所 半導体装置及びその駆動方法、並びに電子機器
TWI538177B (zh) * 2014-04-15 2016-06-11 友達光電股份有限公司 光感應裝置及其製作方法
CN103969874B (zh) * 2014-04-28 2017-02-15 京东方科技集团股份有限公司 液晶面板及制作方法、半透半反显示装置及显示控制方法
WO2016063169A1 (en) 2014-10-23 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
CN104716145B (zh) * 2015-03-27 2018-03-20 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置
WO2017025835A1 (en) * 2015-08-07 2017-02-16 Semiconductor Energy Laboratory Co., Ltd. Display panel, information processing device, and driving method of display panel
TWI745515B (zh) * 2017-12-22 2021-11-11 啟耀光電股份有限公司 電子裝置與其製造方法
KR102029188B1 (ko) * 2018-05-06 2019-10-07 주식회사 스포컴 광 투과율 조절 아이웨어
CN112334606A (zh) * 2018-06-26 2021-02-05 株式会社Flosfia 结晶性氧化物膜
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体
JP2020109449A (ja) * 2019-01-07 2020-07-16 三菱電機株式会社 液晶表示パネルおよび液晶表示装置
TWI798491B (zh) * 2019-07-07 2023-04-11 奕力科技股份有限公司 具有像素結構的顯示裝置與指紋辨識晶片
US20210302358A1 (en) 2020-03-30 2021-09-30 Ngk Insulators, Ltd. Sensor element and gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010045996A1 (en) * 1996-07-02 2001-11-29 Katsuhiro Kawai Active matrix substrate and producing method of the same

Family Cites Families (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819952A (en) * 1973-01-29 1974-06-25 Mitsubishi Electric Corp Semiconductor device
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63220289A (ja) * 1987-03-10 1988-09-13 日本電気株式会社 薄膜トランジスタアレイ
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
EP0445535B1 (en) 1990-02-06 1995-02-01 Sel Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
JP2585118B2 (ja) 1990-02-06 1997-02-26 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
JP3071851B2 (ja) 1991-03-25 2000-07-31 株式会社半導体エネルギー研究所 電気光学装置
JP3375659B2 (ja) 1991-03-28 2003-02-10 テキサス インスツルメンツ インコーポレイテツド 静電放電保護回路の形成方法
JPH0563167A (ja) * 1991-09-04 1993-03-12 Seiko Epson Corp 半導体装置
JPH0588198A (ja) 1991-09-27 1993-04-09 Nec Corp 液晶表示装置
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
US5233448A (en) 1992-05-04 1993-08-03 Industrial Technology Research Institute Method of manufacturing a liquid crystal display panel including photoconductive electrostatic protection
US5464990A (en) 1992-09-25 1995-11-07 Fuji Xerox Co., Ltd. Voltage non-linear device and liquid crystal display device incorporating same
JP3290772B2 (ja) 1993-08-18 2002-06-10 株式会社東芝 表示装置
JPH08179358A (ja) 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネル
JPH08179262A (ja) 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネルの製造方法
JPH08179360A (ja) * 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネル
JPH08179359A (ja) 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネル
JPH08254693A (ja) 1995-03-16 1996-10-01 Hitachi Ltd 液晶表示基板およびその製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3007025B2 (ja) 1995-08-25 2000-02-07 シャープ株式会社 アクティブマトリクス型液晶表示装置及びその製造方法
CN100414411C (zh) 1995-10-03 2008-08-27 精工爱普生株式会社 有源矩阵基板的制造方法和薄膜元件的制造方法
JPH09127545A (ja) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd 液晶表示装置
US5847410A (en) 1995-11-24 1998-12-08 Semiconductor Energy Laboratory Co. Semiconductor electro-optical device
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH09281525A (ja) * 1996-02-15 1997-10-31 Hitachi Ltd 液晶表示基板およびその製造方法
JP3629798B2 (ja) 1996-02-20 2005-03-16 カシオ計算機株式会社 配線パターン
JPH09270514A (ja) * 1996-03-29 1997-10-14 Sanyo Electric Co Ltd 半導体装置及び液晶表示装置
KR100252308B1 (ko) * 1997-01-10 2000-04-15 구본준, 론 위라하디락사 박막트랜지스터 어레이
JP3111944B2 (ja) * 1997-10-20 2000-11-27 日本電気株式会社 アクティブマトリクス液晶表示装置
JPH11183876A (ja) * 1997-12-24 1999-07-09 Casio Comput Co Ltd 液晶表示装置及びその駆動方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
US6043971A (en) 1998-11-04 2000-03-28 L.G. Philips Lcd Co., Ltd. Electrostatic discharge protection device for liquid crystal display using a COG package
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
US7379039B2 (en) * 1999-07-14 2008-05-27 Sony Corporation Current drive circuit and display device using same pixel circuit, and drive method
JP2001053283A (ja) * 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
TW457690B (en) * 1999-08-31 2001-10-01 Fujitsu Ltd Liquid crystal display
JP4390991B2 (ja) * 1999-08-31 2009-12-24 シャープ株式会社 液晶表示装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP2001324725A (ja) 2000-05-12 2001-11-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP2001345452A (ja) * 2000-06-02 2001-12-14 Nec Kagoshima Ltd 薄膜トランジスタ及びその製造方法
JP2002026333A (ja) 2000-07-11 2002-01-25 Nec Corp アクティブマトリクス基板の製造方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
KR100386849B1 (ko) 2001-07-10 2003-06-09 엘지.필립스 엘시디 주식회사 박막 트랜지스터 표시장치의 정전방전 방지회로
GB0119299D0 (en) * 2001-08-08 2001-10-03 Koninkl Philips Electronics Nv Electrostatic discharge protection for pixellated electronic device
TW550529B (en) 2001-08-17 2003-09-01 Sipix Imaging Inc An improved electrophoretic display with dual-mode switching
US7038670B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US7492505B2 (en) 2001-08-17 2009-02-17 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
JP2003069028A (ja) 2001-08-27 2003-03-07 Casio Comput Co Ltd 薄膜トランジスタパネル
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP3810725B2 (ja) 2001-09-21 2006-08-16 株式会社半導体エネルギー研究所 発光装置及び電子機器
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
EP1443130B1 (en) * 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) * 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP3989763B2 (ja) * 2002-04-15 2007-10-10 株式会社半導体エネルギー研究所 半導体表示装置
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
US7002176B2 (en) * 2002-05-31 2006-02-21 Ricoh Company, Ltd. Vertical organic transistor
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7038656B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual-mode switching
US7271947B2 (en) 2002-08-16 2007-09-18 Sipix Imaging, Inc. Electrophoretic display with dual-mode switching
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
TW200410034A (en) 2002-11-28 2004-06-16 Matsushita Electric Ind Co Ltd Display device and manufacturing method thereof
KR100951840B1 (ko) * 2002-12-26 2010-04-12 엘지디스플레이 주식회사 액정표시장치
JP2004246202A (ja) 2003-02-14 2004-09-02 Koninkl Philips Electronics Nv 静電放電保護回路を有する電子装置
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
KR100951351B1 (ko) 2003-04-22 2010-04-08 삼성전자주식회사 박막 트랜지스터 표시판 및 이를 포함하는 전기 영동 표시장치
JP4239873B2 (ja) * 2003-05-19 2009-03-18 セイコーエプソン株式会社 電気光学装置および電子機器
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP2005108912A (ja) 2003-09-29 2005-04-21 Quanta Display Japan Inc 液晶表示装置とその製造方法
JP4574158B2 (ja) 2003-10-28 2010-11-04 株式会社半導体エネルギー研究所 半導体表示装置及びその作製方法
KR101030056B1 (ko) * 2003-11-14 2011-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정표시장치 제조방법
US7372513B2 (en) * 2003-12-30 2008-05-13 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for fabricating the same
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
US7259110B2 (en) 2004-04-28 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device and semiconductor device
JP2005340802A (ja) * 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd 半導体装置及び表示装置の作製方法
JP5089027B2 (ja) * 2004-05-28 2012-12-05 株式会社半導体エネルギー研究所 半導体装置
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
TWI229933B (en) 2004-06-25 2005-03-21 Novatek Microelectronics Corp High voltage device for electrostatic discharge protective circuit and high voltage device
JP2006065284A (ja) * 2004-07-26 2006-03-09 Seiko Epson Corp 発光装置及び電子機器
EP1624333B1 (en) 2004-08-03 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device, manufacturing method thereof, and television set
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4610285B2 (ja) 2004-09-30 2011-01-12 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
JP4754918B2 (ja) * 2004-09-30 2011-08-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4698998B2 (ja) 2004-09-30 2011-06-08 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
JP4801406B2 (ja) * 2004-09-30 2011-10-26 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
JP2006108249A (ja) * 2004-10-01 2006-04-20 Sharp Corp 半導体装置及びその製造方法
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
WO2006051995A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
JP5118811B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 発光装置及び表示装置
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP4308153B2 (ja) * 2005-01-12 2009-08-05 勝華科技股▲ふん▼有限公司 セルテスト機能を具えた静電放電防護整合回路装置
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2006245093A (ja) 2005-03-01 2006-09-14 Renei Kagi Kofun Yugenkoshi 高電圧デバイス並びに静電気保護回路用高電圧デバイス
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) * 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
CN100538794C (zh) 2005-05-02 2009-09-09 株式会社半导体能源研究所 发光器件及其驱动方法、显示模块以及电子器具
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
TWI260094B (en) 2005-06-13 2006-08-11 Au Optronics Corp Active device matrix substrate
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
US7732330B2 (en) * 2005-06-30 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method using an ink-jet method of the same
JP4306654B2 (ja) * 2005-07-26 2009-08-05 カシオ計算機株式会社 トランジスタアレイパネル
US7655566B2 (en) * 2005-07-27 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
CN100533238C (zh) * 2005-08-02 2009-08-26 爱普生映像元器件有限公司 电光装置及电子设备
JP4039446B2 (ja) * 2005-08-02 2008-01-30 エプソンイメージングデバイス株式会社 電気光学装置及び電子機器
TWI304146B (en) * 2005-08-08 2008-12-11 Au Optronics Corp Active matrix substrate and method of repairing thereof
US7923091B2 (en) * 2005-08-11 2011-04-12 Adeka Corporation Indole compound, optical filter and optical recording material
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
KR100786498B1 (ko) 2005-09-27 2007-12-17 삼성에스디아이 주식회사 투명박막 트랜지스터 및 그 제조방법
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
EP1933293A4 (en) 2005-10-05 2009-12-23 Idemitsu Kosan Co TFT SUBSTRATE AND METHOD FOR MANUFACTURING A TFT SUBSTRATE
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR20090115222A (ko) 2005-11-15 2009-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 제조방법
JP4846348B2 (ja) * 2005-11-18 2011-12-28 株式会社 日立ディスプレイズ 表示装置
KR100754126B1 (ko) * 2005-11-23 2007-08-30 삼성에스디아이 주식회사 액정표시장치 어레이 기판 및 그 제조방법
JP5478000B2 (ja) * 2005-11-30 2014-04-23 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
US7692610B2 (en) 2005-11-30 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5250929B2 (ja) 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
JP5171258B2 (ja) 2005-12-02 2013-03-27 出光興産株式会社 Tft基板及びtft基板の製造方法
TWI404227B (zh) 2005-12-20 2013-08-01 Semiconductor Energy Lab 半導體裝置及其製造方法、以及顯示裝置和電子設備
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP2007212699A (ja) 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd 反射型tft基板及び反射型tft基板の製造方法
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP2007272203A (ja) 2006-03-06 2007-10-18 Nec Corp 表示装置
JP4930704B2 (ja) 2006-03-14 2012-05-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
US7435633B2 (en) 2006-03-14 2008-10-14 Seiko Epson Corporation Electroluminescence device, manufacturing method thereof, and electronic apparatus
JP2007250982A (ja) * 2006-03-17 2007-09-27 Canon Inc 酸化物半導体を用いた薄膜トランジスタ及び表示装置
JP5110803B2 (ja) 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070246778A1 (en) 2006-04-21 2007-10-25 Meng-Chi Liou Electrostatic discharge panel protection structure
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP2007310131A (ja) * 2006-05-18 2007-11-29 Mitsubishi Electric Corp アクティブマトリクス基板及びアクティブマトリクス表示装置
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP2008020772A (ja) 2006-07-14 2008-01-31 Epson Imaging Devices Corp 液晶表示パネル
KR101478810B1 (ko) * 2006-07-28 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
JP4404881B2 (ja) * 2006-08-09 2010-01-27 日本電気株式会社 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5216276B2 (ja) * 2006-08-30 2013-06-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5468196B2 (ja) * 2006-09-29 2014-04-09 株式会社半導体エネルギー研究所 半導体装置、表示装置及び液晶表示装置
JP4932415B2 (ja) 2006-09-29 2012-05-16 株式会社半導体エネルギー研究所 半導体装置
TWI444951B (zh) 2006-09-29 2014-07-11 Semiconductor Energy Lab 顯示裝置和電子裝置
JP5116277B2 (ja) * 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5210594B2 (ja) * 2006-10-31 2013-06-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101363714B1 (ko) * 2006-12-11 2014-02-14 엘지디스플레이 주식회사 유기 박막트랜지스터, 그 제조 방법, 이를 이용한 정전기방지 소자, 액정표시장치 및 그 제조 방법
KR101420992B1 (ko) 2006-12-13 2014-07-17 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟
JP5325415B2 (ja) * 2006-12-18 2013-10-23 株式会社半導体エネルギー研究所 半導体装置
US8058675B2 (en) * 2006-12-27 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device using the same
KR100993420B1 (ko) 2006-12-29 2010-11-09 엘지디스플레이 주식회사 액정표시장치
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101312259B1 (ko) * 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
US8129714B2 (en) 2007-02-16 2012-03-06 Idemitsu Kosan Co., Ltd. Semiconductor, semiconductor device, complementary transistor circuit device
KR100858088B1 (ko) 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
CN101256332A (zh) * 2007-03-02 2008-09-03 元太科技工业股份有限公司 电子墨水显示装置及主动组件阵列基板
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP4727684B2 (ja) * 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP2008259060A (ja) 2007-04-06 2008-10-23 Sharp Corp デジタル放送受信装置
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) * 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) * 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
WO2009069674A1 (en) * 2007-11-29 2009-06-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR101555496B1 (ko) 2008-01-15 2015-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
TWI570937B (zh) * 2008-07-31 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
WO2010029865A1 (en) * 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20110056542A (ko) * 2008-09-12 2011-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP4623179B2 (ja) * 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
KR101762112B1 (ko) * 2008-09-19 2017-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정표시장치
CN102160103B (zh) 2008-09-19 2013-09-11 株式会社半导体能源研究所 显示装置
KR101761108B1 (ko) * 2008-10-03 2017-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2172804B1 (en) * 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
CN101719493B (zh) * 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
JP5451280B2 (ja) * 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010045996A1 (en) * 1996-07-02 2001-11-29 Katsuhiro Kawai Active matrix substrate and producing method of the same

Also Published As

Publication number Publication date
TW201530783A (zh) 2015-08-01
CN104332472B (zh) 2017-06-09
TWI655781B (zh) 2019-04-01
JP2014197681A (ja) 2014-10-16
TW201624734A (zh) 2016-07-01
TWI655779B (zh) 2019-04-01
JP7532599B2 (ja) 2024-08-13
JP2017010052A (ja) 2017-01-12
JP2022023881A (ja) 2022-02-08
JP2023111926A (ja) 2023-08-10
JP6258765B2 (ja) 2018-01-10
TW201721878A (zh) 2017-06-16
US20150311235A1 (en) 2015-10-29
TWI492387B (zh) 2015-07-11
KR20170125307A (ko) 2017-11-14
EP2172804A3 (en) 2010-11-10
US10367006B2 (en) 2019-07-30
JP2018186297A (ja) 2018-11-22
KR101533222B1 (ko) 2015-07-02
US9082688B2 (en) 2015-07-14
JP6637554B2 (ja) 2020-01-29
US9570470B2 (en) 2017-02-14
US20170243897A1 (en) 2017-08-24
TW201030980A (en) 2010-08-16
US20100084652A1 (en) 2010-04-08
TWI545778B (zh) 2016-08-11
EP2172804A2 (en) 2010-04-07
KR101794754B1 (ko) 2017-11-07
JP5534769B2 (ja) 2014-07-02
US20130134417A1 (en) 2013-05-30
KR20100038155A (ko) 2010-04-13
KR20140062007A (ko) 2014-05-22
TW201814909A (zh) 2018-04-16
JP2024149586A (ja) 2024-10-18
CN101713897B (zh) 2014-10-01
CN101713897A (zh) 2010-05-26
JP2010107977A (ja) 2010-05-13
CN104332472A (zh) 2015-02-04
US8368066B2 (en) 2013-02-05
TWI583002B (zh) 2017-05-11
JP2020060782A (ja) 2020-04-16
KR20160130197A (ko) 2016-11-10

Similar Documents

Publication Publication Date Title
US11646321B2 (en) Display device
US20230170345A1 (en) Display device
US20240363639A1 (en) Display device
US10254607B2 (en) Display device
US10367006B2 (en) Display Device
WO2010038819A1 (en) Display device
EP2327069A1 (en) Display device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110510

17Q First examination report despatched

Effective date: 20120118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 29/786 20060101AFI20150917BHEP

Ipc: H01L 27/12 20060101ALI20150917BHEP

Ipc: H01L 29/20 20060101ALI20150917BHEP

INTG Intention to grant announced

Effective date: 20151008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009038563

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G02F0001136200

Ipc: H01L0029240000

INTG Intention to grant announced

Effective date: 20160223

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 29/786 20060101ALI20160215BHEP

Ipc: H01L 27/12 20060101ALI20160215BHEP

Ipc: H01L 29/24 20060101AFI20160215BHEP

Ipc: H01L 29/20 20060101ALI20160215BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 799268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009038563

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160913

Year of fee payment: 8

Ref country code: GB

Payment date: 20160921

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 799268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160816

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009038563

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240702

Year of fee payment: 16