JP2002280049A - Integrated type fuel cell - Google Patents
Integrated type fuel cellInfo
- Publication number
- JP2002280049A JP2002280049A JP2001079499A JP2001079499A JP2002280049A JP 2002280049 A JP2002280049 A JP 2002280049A JP 2001079499 A JP2001079499 A JP 2001079499A JP 2001079499 A JP2001079499 A JP 2001079499A JP 2002280049 A JP2002280049 A JP 2002280049A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- divided
- fuel cell
- catalyst
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体高分子型燃料
電池セルに係り、特に高度の集積化が可能で、低電圧か
ら高電圧を得ることが可能な集積タイプ燃料電池セルに
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to an integrated fuel cell which can be highly integrated and can obtain a high voltage from a low voltage. .
【0002】[0002]
【従来の技術】水素ガスを燃料とし、酸素ガスを酸化剤
とする固体高分子型燃料電池は、図7に示すようなセル
構造となっている。2. Description of the Related Art A polymer electrolyte fuel cell using hydrogen gas as fuel and oxygen gas as oxidant has a cell structure as shown in FIG.
【0003】図7の燃料電池セル100は、高分子電解
質膜101の両側には、触媒が付与された負極(水素
極)102及び正極(酸素極)103が設けられ、更に
それらを挟むように、セパレータ104,105が設け
られる。In a fuel cell 100 shown in FIG. 7, a negative electrode (hydrogen electrode) 102 and a positive electrode (oxygen electrode) 103 provided with a catalyst are provided on both sides of a polymer electrolyte membrane 101, and are further sandwiched therebetween. , Separators 104 and 105 are provided.
【0004】セパレータ104,105は、それぞれ、
水素供給用通路(溝)106及び酸素供給用通路(溝)
107を有する。The separators 104 and 105 are respectively
Hydrogen supply passage (groove) 106 and oxygen supply passage (groove)
107.
【0005】水素ガス、及び酸素ガスは、それぞれ外か
ら供給孔(図示せず)を介して通路106,107に導
かれ、それぞれ負極102と正極103に供給される。[0005] Hydrogen gas and oxygen gas are respectively guided from outside to the passages 106 and 107 via supply holes (not shown) and supplied to the negative electrode 102 and the positive electrode 103, respectively.
【0006】触媒が付与された負極(水素極)102で
は、負極側のセパレータ104の水素供給通路(溝)1
06から供給された水素ガスが、触媒が付与された負極
7水素極)102を通過させて反応帯域近くに達し、触
媒に吸収されて活性な水素イオンと電子に分かれる。そ
の水素イオンは、電解質100中の水分と共に電解質1
00中を移動して触媒が付与された正極(酸素極)10
3に移動する。In the negative electrode (hydrogen electrode) 102 to which the catalyst has been applied, the hydrogen supply passage (groove) 1 of the separator 104 on the negative electrode side is formed.
The hydrogen gas supplied from 06 passes through the anode 7 (hydrogen electrode 7 provided with a catalyst) 102 and reaches near the reaction zone, where it is absorbed by the catalyst and split into active hydrogen ions and electrons. The hydrogen ions, together with the water in the electrolyte 100,
Positive electrode (oxygen electrode) 10 which has moved through 00 and has been provided with a catalyst
Go to 3.
【0007】一方、触媒が付与された正極(酸素極)1
03では、触媒の存在の下で、触媒が付与された正極
(酸素極)103から2個の電子を受け取り、正極側の
セパレータ105の酸素供給通路(溝)107から供給
された酸素分子が、高分子電解質膜101からの水と反
応して、水酸イオンを生成する。On the other hand, a positive electrode (oxygen electrode) 1 provided with a catalyst
In 03, in the presence of the catalyst, two electrons are received from the positive electrode (oxygen electrode) 103 provided with the catalyst, and oxygen molecules supplied from the oxygen supply passage (groove) 107 of the separator 105 on the positive electrode side are It reacts with water from the polymer electrolyte membrane 101 to generate hydroxyl ions.
【0008】1/2O2 + H2 O → 2OH- この正極(酸素極)103で生成した水酸イオンは、高
分子電解質膜101中を移動してきた水素イオンと反応
して水を生成し、全体の回路を構成する。[0008] 1/2 O 2 + H 2 O → 2OH - The hydroxyl ions generated at the positive electrode (oxygen electrode) 103 react with the hydrogen ions moving through the polymer electrolyte membrane 101 to generate water, Configure the entire circuit.
【0009】従って、電池全体の反応は、 H2 + 1/2O2 → 2H2 O となり、燃料ガス中の水素塗空気中の酸素が反応し、水
が生成する反応となる。Therefore, the reaction of the whole battery is H 2 + 1 / 2O 2 → 2H 2 O, and the oxygen in the hydrogen-coated air in the fuel gas reacts to generate water.
【0010】この反応による理論電圧は、1.23Vで
あるが、実際には、各種損失があり、その発生電圧は、
良くても0.7V程度が現状である。すなわちセパレー
タ104,105間の1層ユニットの発生電圧は、0.
7Vであり、このタイプの燃料電池セルは、一般に所定
数だけ積層されることによって燃料電池セルスタックと
して使用される。[0010] The theoretical voltage due to this reaction is 1.23 V, but there are actually various losses, and the generated voltage is
At present, it is about 0.7 V at best. That is, the generated voltage of the single-layer unit between the separators 104 and 105 is 0.1.
7 V, and this type of fuel cell is generally used as a fuel cell stack by stacking a predetermined number.
【0011】[0011]
【発明が解決しようとする課題】このように、従来のス
タックタイプの固体高分子燃料電池の場合、1セル当た
りの発生電圧は、0.7V程度と低く、電圧を上げるた
めには多層にする必要があり、スタックできる点では、
この構造のメリットが圧分けであるが、大きなスペース
のセパレータ、冷却板を組み込む必要があり、それ自体
無駄が多いと同時に、立方体に近いものとなってしま
い、嵩張った形状になってしまう。As described above, in the case of the conventional stack-type solid polymer fuel cell, the generated voltage per cell is as low as about 0.7 V, and in order to increase the voltage, a multilayer structure is used. Need to be able to stack,
The merit of this structure is pressure division. However, it is necessary to incorporate a separator and a cooling plate in a large space, and the structure itself is wasteful, and at the same time, the shape becomes close to a cube, resulting in a bulky shape.
【0012】更に、発生電圧と電流との関係では、低電
圧で大電流には向いているが、小電流で、電圧の高い用
途には向いていない問題がある。また、電力量の小さい
半導体関係には不向きであり、車、家庭用電源、更には
携帯電話等の電源には不向きである。Further, the relationship between the generated voltage and the current has a problem that it is suitable for a low voltage and a large current, but is not suitable for a small current and a high voltage. Further, it is not suitable for semiconductors having a small amount of power, and is not suitable for power sources of cars, home power supplies, and mobile phones.
【0013】すなわち、従来のセル構造の欠点は、ユニ
ットセルで発生する電圧、単位面積当たりの電力量は一
定であるにもかかわらず、1層ユニットセルが大きく、
そのために嵩張った構造となる点である。That is, the disadvantage of the conventional cell structure is that, although the voltage generated in the unit cell and the amount of power per unit area are constant, the one-layer unit cell is large.
This is a point that results in a bulky structure.
【0014】そこで、本発明の目的は、上記課題を解決
し、1層セルで発生する電圧を高くできる集積タイプ燃
料電池セルを提供することにある。An object of the present invention is to solve the above-mentioned problems and to provide an integrated fuel cell which can increase the voltage generated in a single-layer cell.
【0015】[0015]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、1層の固体高分子型燃料電池セ
ルを、多数平面上に分割して分割ユニットセルを形成
し、その分割ユニットセルの正負極を、交互に直列に接
続した集積タイプ燃料電池セルである。In order to achieve the above object, according to the first aspect of the present invention, a single-layer polymer electrolyte fuel cell is divided into a large number of planes to form divided unit cells. This is an integrated fuel cell in which the positive and negative electrodes of the divided unit cells are alternately connected in series.
【0016】請求項2の発明は、絶縁質基板を処理し
て、多数の電解質部分となる分割電解質ユニットと、そ
のユニット同士を絶縁する枠状絶縁部を形成し、その各
分割電解質ユニットの両面に、カソード極側触媒付き電
極膜とアノード極側触媒付き電極膜を設け、さらにカソ
ード極用セパレータとアノード極用セパレータで挟み付
けて分割ユニットセルを形成し、これら分割ユニットセ
ルの正極と負極を、交互に直列に接続した集積タイプ燃
料電池セルである。According to a second aspect of the present invention, an insulating substrate is processed to form a divided electrolyte unit serving as a large number of electrolyte portions and a frame-shaped insulating portion for insulating the units from each other. In addition, an electrode film with a catalyst on the cathode side and an electrode film with a catalyst on the anode side are provided, and further divided between the cathode electrode separator and the anode electrode separator to form a divided unit cell. , Are integrated type fuel cells alternately connected in series.
【0017】請求項3の発明は、絶縁質基板を処理し
て、多数の電解質部分となる分割電解質ユニットと、そ
のユニット同士を絶縁する枠状絶縁部を形成し、その各
分割電解質ユニットの両面に、カソード極側触媒付き電
極膜とアノード極側触媒付き電極膜を設け、さらにカソ
ード極用セパレータとアノード極用セパレータで挟み付
けて分割ユニットセルを形成し、かつ隣接する分割ユニ
ットセルのカソード極側触媒付き電極膜とアノード極側
触媒付き電極膜35をずらして設け、その上下でオーバ
ラップした電極膜を電気的に接続して各分割ユニットセ
ルを直列に接続した集積タイプ燃料電池セルである。According to a third aspect of the present invention, an insulating substrate is processed to form a divided electrolyte unit serving as a large number of electrolyte portions and a frame-shaped insulating portion for insulating the units from each other. A cathode electrode side catalyst-equipped electrode film and an anode electrode side catalyst-equipped electrode film, further sandwiched between a cathode electrode separator and an anode electrode separator to form a divided unit cell, and the cathode electrodes of adjacent divided unit cells This is an integrated fuel cell in which the electrode film with the catalyst on the side and the electrode film with the catalyst on the anode electrode side 35 are shifted from each other, and the divided electrode cells are connected in series by electrically connecting the electrode films overlapping one above the other. .
【0018】請求項4の発明は、請求項2の集積タイプ
燃料電池セルを多層に積層し、その上下層の集積タイプ
燃料電池セルを直列に接続した集積タイプ燃料電池であ
る。According to a fourth aspect of the present invention, there is provided an integrated fuel cell in which the integrated fuel cells of the second aspect are stacked in multiple layers, and the upper and lower integrated fuel cells are connected in series.
【0019】請求項5の発明は、請求項3の集積タイプ
燃料電池セルを多層に積層し、その上下層の集積タイプ
燃料電池セルを直列に接続した集積タイプ燃料電池であ
る。According to a fifth aspect of the present invention, there is provided an integrated fuel cell in which the integrated fuel cells of the third aspect are stacked in multiple layers, and the upper and lower integrated fuel cells are connected in series.
【0020】請求項6の発明は、絶縁質基板を処理し
て、多数の電解質部分となる分割電解質ユニットと、そ
のユニット同士を絶縁する枠状絶縁部を形成し、その各
分割電解質ユニットの両面に、カソード極側触媒付き電
極膜とアノード極側触媒付き電極膜を設けて膜電極接合
体を形成し、他方、略筒状に形成したアノード極用セパ
レータに、膜電極接合体のアノード極側触媒付き電極膜
が接するように、かつカソード極側触媒付き電極膜が、
カソード流路側に開放するよう膜電極接合体を貼り付
け、これら膜電極接合体の分割ユニットセルを直列に接
続した集積タイプ燃料電池セルである。According to a sixth aspect of the present invention, an insulating substrate is processed to form a divided electrolyte unit serving as a large number of electrolyte portions, and a frame-shaped insulating portion for insulating the units from each other. The cathode electrode side catalyst-equipped electrode film and the anode electrode side catalyst-equipped electrode film are provided to form a membrane electrode assembly. On the other hand, the anode electrode side of the membrane electrode assembly is The electrode film with a catalyst is in contact with the electrode film with a catalyst, and the electrode film with a catalyst on the cathode electrode side is
This is an integrated fuel cell in which a membrane electrode assembly is adhered so as to open to the cathode channel side, and divided unit cells of these membrane electrode assemblies are connected in series.
【0021】請求項7の発明は、請求項6の集積タイプ
燃料電池セルをカソード流路に臨むよう多数配置し、そ
の各集積タイプ燃料電池セルのアノード極用セパレータ
にアノードガスを流し、更に、各集積タイプ燃料電池セ
ルを直列に接続した集積タイプ燃料電池である。According to a seventh aspect of the present invention, a large number of the integrated fuel cells of the sixth aspect are arranged so as to face the cathode flow path, and an anode gas is passed through the anode separator of each of the integrated fuel cells. This is an integrated fuel cell in which each integrated fuel cell is connected in series.
【0022】以上において、絶縁質基板を処理して、多
数の電解質部分となる分割電解質ユニットと、そのユニ
ット同士を絶縁する枠状絶縁部を形成することで、1層
の燃料電池セル自体を集積構造化でき、この分割ユニッ
トセルを正極と負極が交互に直列になるように接続する
ことで、1層でも発生電圧の高い燃料電池セルとするこ
とが可能となる。In the above, a single-layer fuel cell unit itself is integrated by processing an insulating substrate to form a divided electrolyte unit serving as a large number of electrolyte portions and a frame-shaped insulating portion for insulating the units. By constructing the divided unit cells and connecting the positive electrode and the negative electrode alternately in series, it becomes possible to provide a single-layer fuel cell having a high generated voltage.
【0023】この集積タイプ燃料電池セルは、積層化が
可能であり、更に発生電圧の高い燃料電池とすることが
できる。This integrated type fuel cell can be laminated and can be a fuel cell having a higher generated voltage.
【0024】また、層内を、集積構造とすることで、種
々自由度の増した構造とすることができ、電流の割に電
圧を高く採ることができ、高効率の燃料電池を製作する
ことができると共に部品点数を減らすことができ、製造
コストを大きく低減できる。Further, by forming an integrated structure in the layer, a structure having various degrees of freedom can be obtained, and a high voltage can be taken for a current, thereby producing a highly efficient fuel cell. And the number of parts can be reduced, and the manufacturing cost can be greatly reduced.
【0025】[0025]
【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面に基づいて詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0026】図1(b)はカソード側からみた本発明の
集積タイプ燃料電池セルの平面図を示し、図1(a)は
図1(b)のA−A線断面図を、図1(c)はB−B線
断面図を示す。FIG. 1B is a plan view of the integrated fuel cell of the present invention viewed from the cathode side, FIG. 1A is a sectional view taken along the line AA of FIG. 1B, and FIG. c) shows a sectional view taken along the line BB.
【0027】先ず、図1(a)に示すように、絶縁質基
板を処理して、縦縞状乃至短冊状の分割電解質ユニット
12と、この分割電解質ユニット12の周りに枠状絶縁
部13を形成した。First, as shown in FIG. 1A, an insulating substrate is processed to form a vertically striped or strip-shaped divided electrolyte unit 12 and a frame-shaped insulating portion 13 around the divided electrolyte unit 12. did.
【0028】ここでは、絶縁質基板として、50μm厚
のフッ素樹脂膜を用いた。フッ素樹脂膜自体は絶縁性が
あり、これをスルフォン酸基処理することで、イオン交
換体となるため、フッ素樹脂膜中、枠状絶縁部13を除
いた部分をスルフォン酸基処理することで、多数の分割
電解質ユニット12を形成できる。Here, a 50 μm thick fluororesin film was used as the insulating substrate. Since the fluororesin film itself has an insulating property and is treated with a sulfonic acid group to become an ion exchanger, a portion of the fluororesin film excluding the frame-shaped insulating portion 13 is subjected to a sulfonic acid group treatment. A number of split electrolyte units 12 can be formed.
【0029】この各分割電解質ユニット12の上下に、
カーボンペーパからなるカソード極側触媒付き電極膜1
4、カーボンペーパからなるアノード極側触媒付き電極
膜15をそれぞれ貼り付け、更に、黒鉛の焼結体等で形
成したカソード極用セパレータ16とアノード極用セパ
レータ17で上下から挟み付けて分割ユニットセル18
を形成する。Above and below each divided electrolyte unit 12,
Electrode film 1 with catalyst on cathode side made of carbon paper
4. An anode-side catalyst-coated electrode film 15 made of carbon paper is attached to each, and further sandwiched from above and below by a cathode separator 16 and an anode separator 17 formed of graphite sintered body or the like to form a divided unit cell. 18
To form
【0030】隣接するセパレータ16,16及び17,
17間には、絶縁シール層19をそれぞれ介在させて各
セパレータ16,17を、それぞれ絶縁し、さらに外周
部を周囲絶縁シール層20でシールする。The adjacent separators 16, 16, and 17,
The separators 16 and 17 are insulated from each other with an insulating seal layer 19 interposed therebetween, and the outer peripheral portion is further sealed with a peripheral insulating seal layer 20.
【0031】上面の各カソード極用セパレータ16に
は、酸素又は空気が流れる酸素供給用通路(溝)21が
形成され、下面のアノード極用セパレータ17には、水
素が流れる水素供給用通路(溝)22が形成され、その
上下のセパレータ16,17より対応する分割ユニット
セル18に酸素と水素が供給される。この場合、酸素と
水素は、分割電解質ユニット12を通るが、隣接する分
割電解質ユニット12間の枠状絶縁部13は、共に酸素
と水素のガス隔離層の役割を果たす。An oxygen supply passage (groove) 21 through which oxygen or air flows is formed in each of the cathode electrode separators 16 on the upper surface, and a hydrogen supply passage (groove) through which hydrogen flows through the anode separator 17 on the lower surface. ) 22 are formed, and oxygen and hydrogen are supplied to the corresponding divided unit cells 18 from the upper and lower separators 16 and 17. In this case, oxygen and hydrogen pass through the divided electrolyte unit 12, but the frame-shaped insulating portions 13 between the adjacent divided electrolyte units 12 both serve as gas separation layers for oxygen and hydrogen.
【0032】これら、分割ユニットセル18は、例えば
図示のように4個並んで形成した場合、図で見て左側の
セル18−1から右側のセル18−4を電気的に直列に
なるように、すなわち、セル18−1のアノード極とセ
ル18−2のカソード極を、セル18−2のアノード極
とセル18−3のカソード極を、セル18−3のアノー
ド極とセル18−4のカソード極を、というように、隣
り同士を配線することで、実質的にスタックした状態の
集積タイプ燃料電池1層セル28とすることができる。When these four divided unit cells 18 are formed, for example, as shown in the figure, the left unit cell 18-1 to the right cell 18-4 are electrically connected in series. That is, the anode of the cell 18-1 and the cathode of the cell 18-2, the anode of the cell 18-2 and the cathode of the cell 18-3, the anode of the cell 18-3 and the cathode of the cell 18-4. By arranging the cathode electrodes next to each other, it is possible to form the integrated fuel cell single-layer cell 28 in a substantially stacked state.
【0033】図1(b)、図1(c)は、リード23,
24と上下貫通導電部25で各セル18−1〜18−4
を直列に連結した状態を示したもので、先ず、上面のカ
ソード極用セパレータ16には、各セル18毎にカソー
ド極につながるカソード側リード23が設けられ、下面
のアノード極用セパレータ17には、各セル18毎にア
ノードつながるアノード側リード24が設けられ、これ
らリード23,24が隣接するセル18間の上下でオー
バラップし、そのリード23,24同士を上下貫通導電
部25が電気的に連結することで各セル18が直列に接
続された集積タイプ燃料電池1層セル28となるもので
ある。FIGS. 1B and 1C show the case where the leads 23,
24 and the upper and lower penetrating conductive parts 25 each cell 18-1 to 18-4
Are connected in series. First, the cathode separator 16 on the upper surface is provided with a cathode lead 23 connected to the cathode electrode for each cell 18, and the anode separator 17 on the lower surface is provided on the cathode separator 16. An anode-side lead 24 connected to the anode of each cell 18 is provided. These leads 23 and 24 overlap vertically between adjacent cells 18, and the upper and lower penetrating conductive portions 25 electrically connect the leads 23 and 24 to each other. By connecting, each cell 18 becomes an integrated type fuel cell single-layer cell 28 connected in series.
【0034】この各セル18の発生電圧は、0.7Vで
あるが、4セル直列に接続することで、2.8Vの起電
力が得られる。The voltage generated in each of the cells 18 is 0.7 V. An electromotive force of 2.8 V can be obtained by connecting four cells in series.
【0035】図2は、本発明の他の実施の形態を示し、
4×3のセル38を製作した例を示す。FIG. 2 shows another embodiment of the present invention.
An example in which a 4 × 3 cell 38 is manufactured is shown.
【0036】先ず、図2(a)に示すように、絶縁ベー
ス31の中に枠状絶縁部33を形成し、その枠状絶縁部
33に、島状の4×3の分割電解質ユニット32を配置
した。First, as shown in FIG. 2A, a frame-shaped insulating portion 33 is formed in an insulating base 31, and an island-shaped 4 × 3 divided electrolyte unit 32 is formed on the frame-shaped insulating portion 33. Placed.
【0037】この各分割電解質ユニット32に、カソー
ド極側触媒付き電極膜34、アノード極側触媒付き電極
膜35をそれぞれ貼り付け、更に、カソード極用セパレ
ータ36とアノード極用セパレータ37で上下から挟み
付けて分割ユニットセル38を形成する。この分割ユニ
ットセル38を形成する際に、図2(a)に示すよう
に、カソード極側触媒付き電極膜34とアノード極側触
媒付き電極膜35をずらして貼り付け、上部のカソード
極側触媒付き電極膜34と隣接する分割ユニットセル3
8の下部のアノード極側触媒付き電極膜35が、枠状絶
縁部33を介してオーバラップするようになし、この電
極膜34,35を上下貫通導電部45で電気的に連結す
るようにして集積タイプ燃料電池1層セル48を形成す
る。An electrode film 34 with a catalyst on the cathode electrode side and an electrode film 35 with a catalyst on the anode electrode side are attached to each of the divided electrolyte units 32, and further sandwiched between the cathode electrode separator 36 and the anode electrode separator 37 from above and below. Then, a divided unit cell 38 is formed. When forming the divided unit cells 38, as shown in FIG. 2 (a), the cathode-side catalyst electrode film 34 and the anode-side catalyst electrode film 35 are staggered and adhered to each other. Unit cell 3 adjacent to electrode film 34
The electrode film 35 with a catalyst on the anode side on the lower side of 8 is overlapped via the frame-shaped insulating portion 33, and the electrode films 34, 35 are electrically connected by the upper and lower penetrating conductive portions 45. An integrated fuel cell single-layer cell 48 is formed.
【0038】図2(b)は、4×3の分割電解質ユニッ
ト32におけるカソード極側触媒付き電極膜34とアノ
ード極側触媒付き電極膜35のずらしの概要を示したも
ので、図示のように各セル38を、図で見て己字状に直
列に接続して集積タイプ燃料電池1層セル48を形成す
る。FIG. 2 (b) shows the outline of the displacement of the electrode film 34 with the catalyst on the cathode side and the electrode film 35 with the catalyst on the anode side in the 4.times.3 divided electrolyte unit 32. Each cell 38 is connected in series in a self-shape as seen in the figure to form an integrated fuel cell single-layer cell 48.
【0039】この場合、カソード極側触媒付き電極膜3
4、カーボアノード極側触媒付き電極膜35は、上下貫
通導電部45との電気的接合を良好にするために、カー
ボンペーパと導電性の良いカーボンフェルトとを複合し
たものを使用する。この際、枠状絶縁部33とセパレー
タ36,37には貫通用の微少ホールを空け、金メッキ
で導通を取り、その後貫通孔を樹脂で埋めるなどして接
続する。またセパレータ36,37は、図1で説明した
ように黒鉛の焼結体で形成してもよいが、隣接するセパ
レータ36,36及び37,37同士を絶縁する必要が
あるため、例えばポリカーボネイトの射出成型品からな
る絶縁物にて形成することで、絶縁の必要が無く、セパ
レータ36,37を一体品で形成することができ、構造
を単純化できる。In this case, the cathode-side electrode film with catalyst 3
4. In order to improve the electrical connection with the upper and lower penetrating conductive portions 45, a composite of carbon paper and carbon felt having good conductivity is used for the electrode film 35 with catalyst on the side of the carbo-anode electrode. At this time, minute holes for penetration are made in the frame-shaped insulating portion 33 and the separators 36 and 37, conduction is established by gold plating, and then connection is made by filling the through holes with resin or the like. The separators 36 and 37 may be formed of a sintered body of graphite as described with reference to FIG. 1. However, since it is necessary to insulate the adjacent separators 36, 36 and 37 and 37, for example, injection of polycarbonate is performed. Since the separators 36 and 37 can be formed as an integral product without the need for insulation, the structure can be simplified by using an insulator made of a molded product.
【0040】上面のカソード極用セパレータ36の酸素
供給用通路(溝)41に、酸素又は空気を流し、下方の
アノード極用セパレータ37の水素供給用通路(溝)4
2には水素を流す。図では、外部からの流入溝は示して
いないが、これら通路41,42に流れるように構成す
る。Oxygen or air is passed through the oxygen supply passage (groove) 41 of the cathode separator 36 on the upper surface, and the hydrogen supply passage (groove) 4 of the anode separator 37 below.
Flow hydrogen through 2. In the figure, an inflow groove from outside is not shown, but it is configured to flow into these passages 41 and 42.
【0041】この集積タイプ燃料電池1層セル48は、
1層内で4×3=12の分割ユニットセル38のスタッ
クが可能となり、0.7×12=8.4Vの起電力を発
生できる。This one-layer cell 48 of the integrated type fuel cell comprises:
Stacking of 4 × 3 = 12 divided unit cells 38 in one layer is possible, and an electromotive force of 0.7 × 12 = 8.4 V can be generated.
【0042】図3は、図1で説明した集積タイプ燃料電
池1層セル28を、絶縁層59を介して4層積層して燃
料電池を構成した例を示したものである。この場合、上
下の集積タイプ燃料電池1層セル28の端部を交互に層
間短絡リード55で電気的に接続することで、0.7×
4×4=11.2Vの起電力を得ることができる。FIG. 3 shows an example in which four layers of the integrated fuel cell single-layer cell 28 described in FIG. 1 are laminated via an insulating layer 59 to form a fuel cell. In this case, by alternately electrically connecting the upper and lower ends of the integrated type fuel cell single-layer cells 28 with the interlayer short-circuit leads 55, 0.7 ×
An electromotive force of 4 × 4 = 11.2 V can be obtained.
【0043】図4は、図2で説明した、集積タイプ燃料
電池1層セル48を、3層積層して燃料電池を構成した
例を示したものである。この場合上下の集積タイプ燃料
電池1層セル48の最終段と最初段の分割ユニットセル
38を層間短絡リード56で順次電気的に直列になるよ
う接続することで、0.7×3×4×3=25.5Vの
起電力が得られる。FIG. 4 shows an example in which a fuel cell is constructed by stacking three layers of the single-layer cell 48 of the integrated type fuel cell described in FIG. In this case, by connecting the last unit and the first unit unit cells 38 of the upper and lower integrated type fuel cell single-layer cells 48 sequentially in series with the interlayer short-circuit lead 56, 0.7 × 3 × 4 × An electromotive force of 3 = 25.5V is obtained.
【0044】図5は、本発明の更に他の実施の形態を示
したものである。FIG. 5 shows still another embodiment of the present invention.
【0045】図5は、3集積のセルを製作した例を示し
たもので、先ず、図5(a)に示すように、絶縁質基板
を処理して、多数の電解質部分となる分割電解質ユニッ
ト72と、そのユニット72同士を絶縁する枠状絶縁部
73を形成し、各分割電解質ユニット72の両面に、カ
ソード極側触媒付き電極膜74とアノード極側触媒付き
電極膜75を設けて膜電極接合体80を形成する。FIG. 5 shows an example in which a three-integrated cell is manufactured. First, as shown in FIG. 5 (a), an insulating substrate is processed to form a divided electrolyte unit which becomes a large number of electrolyte portions. 72, and a frame-shaped insulating portion 73 for insulating the units 72 from each other. An electrode film 74 with a catalyst on the cathode side and an electrode film 75 with a catalyst on the anode side are provided on both surfaces of each divided electrolyte unit 72. The joined body 80 is formed.
【0046】他方、図5(c)に示すように、水素供給
用通路(溝)82が外側になるように折り曲げて略筒状
のアノード極用セパレータ77を形成すると共に、この
アノード極用セパレータ77を、図5(a)に示すよう
に、絶縁層79を介して接続すると共に両端にガイド絶
縁板90を設け、そのガイド絶縁板90間に、アノード
極側触媒付き電極膜75が接するように、膜電極接合体
80をアノード極用セパレータ77に貼り付けて分割ユ
ニットセル78を形成すると共にその膜電極接合体80
とアノード極用セパレータ77の下端部をカプトン製の
端末シールカバー84で閉じ、更にその各セル78を直
列に接続して筒型の集積タイプ燃料電池1層セル88を
形成する。On the other hand, as shown in FIG. 5 (c), a substantially cylindrical anode electrode separator 77 is formed by bending the hydrogen supply passage (groove) 82 so as to be on the outside, and the anode electrode separator 77 is formed. As shown in FIG. 5 (a), 77 is connected via an insulating layer 79, and guide insulating plates 90 are provided at both ends so that the anode-side catalytic electrode film 75 contacts between the guide insulating plates 90. Then, the membrane electrode assembly 80 is attached to the anode electrode separator 77 to form the divided unit cells 78, and the membrane electrode assembly 80
The lower end of the anode electrode separator 77 is closed with a terminal seal cover 84 made of Kapton, and the cells 78 are connected in series to form a cylindrical integrated fuel cell single-layer cell 88.
【0047】各分割ユニットセル78の接続は、端末シ
ールカバー84が位置したアノード極用セパレータ77
の一方にカソード極側触媒付き電極膜74と繋がるカソ
ード極側リード83を形成し、その反対側にアノード極
側触媒付き電極膜75と繋がるアノード極側リード84
を形成すると共に隣接するリード83,84がオーバー
ラップするようになし、そのリード83、84を、貫通
導電部85で電気的に接続して各セル78を直列に接続
する。The connection of each divided unit cell 78 is performed by connecting the separator 77 for the anode where the terminal seal cover 84 is located.
On one side, a cathode-side lead 83 connected to the cathode-side electrode film with catalyst 74 is formed, and on the other side, an anode-side lead 84 connected to the electrode film with anode electrode 75 with catalyst.
And the adjacent leads 83 and 84 are made to overlap, and the leads 83 and 84 are electrically connected by the through conductive portion 85 to connect the cells 78 in series.
【0048】この筒型の集積タイプ燃料電池1層セル8
8は、筒状のアノード極用セパレータ77内に水素ガス
を流し、カソード側は、カソード流路81に開放された
構造となる。The cylindrical integrated fuel cell single-layer cell 8
Reference numeral 8 denotes a structure in which hydrogen gas flows into the cylindrical anode electrode separator 77, and the cathode side is open to the cathode channel 81.
【0049】この場合、カソード流路81には、酸素が
約20%の空気を流すため、アノード側よりも接触面積
が少なくなるが、カソード極側触媒付き電極膜74がカ
ソード流路81に略全面開放されており、実質的に接す
る面積は、アノード極側触媒付き電極膜75が、水素供
給用通路(溝)82と接する面積より大きく、発電効率
が高まると共に、発生する水の排出も順調に行える。In this case, oxygen flows about 20% in the cathode flow path 81, so that the contact area is smaller than that of the anode side. The entire surface is open, and the substantially contacting area is larger than the area in which the anode-side catalyst electrode film 75 contacts the hydrogen supply passage (groove) 82, so that the power generation efficiency is increased and the generated water is discharged smoothly. Can be done.
【0050】この筒型の集積タイプ燃料電池1層セル8
8の発生起電力は、0.7×3=2.1が得られる。The cylindrical integrated fuel cell single-layer cell 8
As for the generated electromotive force of No. 8, 0.7 × 3 = 2.1 is obtained.
【0051】図6は、図5の集積タイプ燃料電池1層セ
ル88を用いて、打段筒型の燃料電池を構成した例を示
したものである。FIG. 6 shows an example in which a cylinder type fuel cell is constructed using the integrated type fuel cell single-layer cell 88 of FIG.
【0052】この場合、集積タイプ燃料電池1層セル8
8をカソード流路81に臨ませ、各集積タイプ燃料電池
1層セル88を層間短絡リード93により直列に接続す
ることで、0.7×3×4=8.4Vの起電力が得られ
た。In this case, the integrated fuel cell single-layer cell 8
The electromotive force of 0.7 × 3 × 4 = 8.4 V was obtained by connecting each of the integrated type fuel cell single-layer cells 88 in series with the interlayer short-circuit lead 93 while facing the cathode channel 8 to the cathode flow channel 81. .
【0053】以上、本実施の形態を説明したが、本発明
においては、種々の変形が可能である。例えば、高分子
電解質膜として、50μm厚のフッ素樹脂膜を基板に用
い、それ自体絶縁性であり、それをスルフォン酸基処理
することで、イオン交換体となり、高分子電解質膜とし
ていると説明したが、この材質に限定するものでなく、
電解質部を絶縁部と一体に形成できるものであればいか
なるものでも良い。Although the present embodiment has been described above, various modifications are possible in the present invention. For example, as a polymer electrolyte membrane, a 50 μm-thick fluororesin film was used for a substrate, which itself was insulative, and was treated with a sulfonic acid group to form an ion exchanger, which was described as a polymer electrolyte membrane. However, it is not limited to this material,
Any material may be used as long as the electrolyte portion can be formed integrally with the insulating portion.
【0054】高分子膜としては、Nafion,Gore,Flemion,
Aciplex等が知られているが、スルフォン基を付ける前
は、絶縁材であり、何れも使用できる。本発明は、電解
質膜内に、特定配置の高分子電解質部と絶縁部を形成
し、1層膜内に多数の部分電池セルを形成したことにあ
り、その材質を特定するものではない。また、厚さにつ
いても、50μmと説明したが、燃料ガスのセパレータ
としての機能を果たすオーダーであれば、薄い方が望ま
しく、その方が特性は向上する。As the polymer membrane, Nafion, Gore, Flemion,
Aciplex and the like are known, but before adding a sulfone group, they are insulating materials, and any of them can be used. The present invention resides in that a polymer electrolyte portion and an insulating portion having a specific arrangement are formed in an electrolyte membrane, and a number of partial battery cells are formed in a single-layer film, and the material is not specified. The thickness is also described as 50 μm, but as long as it functions as a fuel gas separator, the thinner is preferable, and the characteristics are improved.
【0055】セパレータの材質としては、黒鉛、銅、ポ
リカーボネイトを上げたが、導電性のものであれば、カ
ソード極かアノード極かにより変わるが、耐食性の用金
属材も使用でき、金属材上に導電性の導電性の防食剤を
塗布するといった材料も使用できる。また絶縁性のもの
であれば、セラミック或いは表面に絶縁性を施した材料
も使用できる。As the material of the separator, graphite, copper, and polycarbonate are used. If the material is conductive, it depends on whether it is a cathode electrode or an anode electrode, but a metal material for corrosion resistance can also be used. A material such as applying a conductive anticorrosive can also be used. In addition, any insulating material may be used, such as ceramic or a material having an insulating surface.
【0056】触媒付電極膜について、本実施の形態で
は、触媒付カーボンペーパ(電解質膜に接する面にPt
触媒を塗布したもの)、または、それに導電性の良いカ
ーボンフェルトを複合成形したものを使用する例で説明
したが、さらに導電性を向上するために、ポーラスある
いは網状の耐食性金属を使用することでも良い。Regarding the electrode film with catalyst, in this embodiment, the carbon paper with catalyst (Pt on the surface in contact with the electrolyte membrane) is used.
It is explained by using an example in which a catalyst is applied), or a composite formed of carbon felt having good conductivity is used. However, in order to further improve conductivity, it is also possible to use a porous or net-like corrosion-resistant metal. good.
【0057】本発明の実施の形態では、1層当たりの集
積個数は、3〜12の例で説明したが、当然、集積個数
を増やすことは可能であり、100〜200でも可能で
あり、本発明は、広範囲の設計条件に対応できる点がメ
リットである。In the embodiment of the present invention, the example in which the number of accumulations per layer is 3 to 12 has been described. However, it is naturally possible to increase the number of accumulations, and it is also possible to increase the number of accumulations to 100 to 200. The invention is advantageous in that it can support a wide range of design conditions.
【0058】1層で、集積型の燃料電池セルとすること
で、平面型の構造体で、高電圧のものとすることができ
る。設置スペースの兼ね合いで、家庭用電源にするので
あれば、壁に埋め込むタイプ、車用であればシート下、
車体下に収容するタイプに応用できる。また半導体機器
関連、ノートパソコン、携帯電話などにも使用できる。By forming an integrated fuel cell in one layer, a flat structure and a high voltage can be obtained. Depending on the installation space, if you want to use a household power supply, type it into the wall, if it is for cars, under the seat,
It can be applied to the type that is stored under the body. It can also be used for semiconductor devices, notebook computers, mobile phones, etc.
【0059】集積型の微電流電圧電池となり、結果的に
発生電流は小さいが、高電圧の電池とすることができ
る。An integrated type microcurrent voltage battery is obtained, and as a result, a high voltage battery can be obtained although the generated current is small.
【0060】セパレータを筒型にした場合、冷却機能を
有する燃料電池となり、筒内を水素、筒外を空気とし、
熱交換器のチラー構造とすることができ、発熱分を冷却
する効果が期待でき冷却機能を有する燃料電池セル構造
とすることができる。When the separator is cylindrical, the fuel cell has a cooling function. The inside of the cylinder is hydrogen and the outside is air,
The chiller structure of the heat exchanger can be used, the effect of cooling the heat generation can be expected, and the fuel cell structure having a cooling function can be obtained.
【0061】[0061]
【発明の効果】以上要するに本発明によれば、次の如き
効果を奏する。In summary, according to the present invention, the following effects can be obtained.
【0062】(1)電圧使用、形状、構成で、多様な対
応ができる高電圧の燃料電池セル構造とすることがで
き、条件適用性の高いものとすることができる。(1) A high-voltage fuel cell structure that can be used in a variety of ways in terms of voltage use, shape, and configuration can be used, and the condition can be applied to a high degree.
【0063】(2)筒型の場合、冷却機能のある電池セ
ル構造とすることができると共に、燃料電池で問題とな
る生成水の排出性が良い構造とすることができる。(2) In the case of a cylindrical type, a battery cell structure having a cooling function can be provided, and a structure capable of discharging generated water which is a problem in a fuel cell can be provided.
【0064】(3)セルの集積化ができるため、部品点
数の現象、集約した製造法を採ることができ、コスト低
減、信頼性の向上が図れる。(3) Since the cells can be integrated, the phenomenon of the number of parts and an integrated manufacturing method can be adopted, so that the cost can be reduced and the reliability can be improved.
【図1】本発明の一実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.
【図2】本発明の他の実施の形態を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.
【図3】図1の集積タイプ燃料電池セルを多段に積層し
た燃料電池の形態を示す図である。FIG. 3 is a view showing a form of a fuel cell in which the integrated type fuel cells of FIG. 1 are stacked in multiple stages.
【図4】図2の集積タイプ燃料電池セルを多段に積層し
た燃料電池の形態を示す図である。FIG. 4 is a diagram showing a form of a fuel cell in which the integrated type fuel cells of FIG. 2 are stacked in multiple stages.
【図5】本発明の他の実施の形態を示す図である。FIG. 5 is a diagram showing another embodiment of the present invention.
【図6】図5の筒状の集積タイプ燃料電池セルを多数配
置した燃料電池の形態を示す図である。6 is a view showing a form of a fuel cell in which a large number of cylindrical integrated fuel cells of FIG. 5 are arranged.
【図7】従来の燃料電池セルを示す斜視図である。FIG. 7 is a perspective view showing a conventional fuel cell unit.
12 分割電解質ユニット 14 カソード極側触媒付き電極膜 15 アノード極側触媒付き電極膜 16 カソード極用セパレータ 17 アノード極用セパレータ 18 分割ユニットセル 12 Split Electrolyte Unit 14 Cathode Electrode with Catalyst 15 Electrode with Cathode 16 Cathode Separator 17 Anode Separator 18 Split Unit Cell
Claims (7)
数平面上に分割して分割ユニットセルを形成し、その分
割ユニットセルの正負極を、交互に直列に接続したこと
を特徴とする集積タイプ燃料電池セル。1. A solid polymer fuel cell of one layer is divided on a large number of planes to form divided unit cells, and the positive and negative electrodes of the divided unit cells are connected alternately in series. Integrated fuel cell.
分となる分割電解質ユニットと、そのユニット同士を絶
縁する枠状絶縁部を形成し、その各分割電解質ユニット
の両面に、カソード極側触媒付き電極膜とアノード極側
触媒付き電極膜を設け、さらにカソード極用セパレータ
とアノード極用セパレータで挟み付けて分割ユニットセ
ルを形成し、これら分割ユニットセルの正極と負極を、
交互に直列に接続したことを特徴とする集積タイプ燃料
電池セル。2. An insulative substrate is processed to form a divided electrolyte unit serving as a large number of electrolyte portions and a frame-shaped insulating portion for insulating the units, and a cathode electrode side is provided on both surfaces of each divided electrolyte unit. Providing an electrode film with a catalyst and an electrode film with a catalyst on the anode electrode side, and further sandwiching the separator for the cathode electrode and the separator for the anode electrode to form divided unit cells, the positive electrode and the negative electrode of these divided unit cells are
An integrated fuel cell unit, which is connected alternately in series.
分となる分割電解質ユニットと、そのユニット同士を絶
縁する枠状絶縁部を形成し、その各分割電解質ユニット
の両面に、カソード極側触媒付き電極膜とアノード極側
触媒付き電極膜を設け、さらにカソード極用セパレータ
とアノード極用セパレータで挟み付けて分割ユニットセ
ルを形成し、かつ隣接する分割ユニットセルのカソード
極側触媒付き電極膜とアノード極側触媒付き電極膜をず
らして設け、その上下でオーバラップした電極膜を電気
的に接続して各分割ユニットセルを直列に接続したこと
を特徴とする集積タイプ燃料電池セル。3. An insulative substrate is processed to form a plurality of divided electrolyte units serving as electrolyte portions and a frame-shaped insulating portion for insulating the units, and a cathode electrode side is provided on both sides of each divided electrolyte unit. An electrode membrane with a catalyst and an electrode membrane with a catalyst on the anode side are provided, and further sandwiched between a separator for the cathode electrode and a separator for the anode to form a divided unit cell. And an electrode membrane provided with a catalyst on the anode side shifted from each other, and electrically connected electrode membranes which are overlapped on the upper and lower sides thereof, and the divided unit cells are connected in series.
層に積層し、その上下層の集積タイプ燃料電池セルを直
列に接続したことを特徴とする集積タイプ燃料電池。4. An integrated fuel cell according to claim 2, wherein the integrated fuel cells according to claim 2 are stacked in multiple layers, and the upper and lower integrated fuel cells are connected in series.
層に積層し、その上下層の集積タイプ燃料電池セルを直
列に接続したことを特徴とする集積タイプ燃料電池。5. An integrated fuel cell according to claim 3, wherein the integrated fuel cells according to claim 3 are stacked in multiple layers, and the upper and lower integrated fuel cells are connected in series.
分となる分割電解質ユニットと、そのユニット同士を絶
縁する枠状絶縁部を形成し、その各分割電解質ユニット
の両面に、カソード極側触媒付き電極膜とアノード極側
触媒付き電極膜を設けて膜電極接合体を形成し、他方、
略筒状に形成したアノード極用セパレータに、膜電極接
合体のアノード極側触媒付き電極膜が接するように、か
つカソード極側触媒付き電極膜が、カソード流路側に開
放するよう膜電極接合体を貼り付け、これら膜電極接合
体の分割ユニットセルを直列に接続したことを特徴とす
る集積タイプ燃料電池セル。6. An insulative substrate is processed to form a divided electrolyte unit serving as a large number of electrolyte portions and a frame-shaped insulating portion for insulating the units from each other. A catalyst electrode membrane and an anode electrode catalyst membrane are provided to form a membrane electrode assembly,
The membrane electrode assembly such that the anode-side catalyst electrode film of the membrane electrode assembly contacts the substantially cylindrical anode electrode separator, and the cathode-side catalyst electrode film opens to the cathode channel side. Characterized in that the divided unit cells of the membrane electrode assembly are connected in series.
ソード流路に臨むよう多数配置し、その各集積タイプ燃
料電池セルのアノード極用セパレータにアノードガスを
流し、更に、各集積タイプ燃料電池セルを直列に接続し
たことを特徴とする集積タイプ燃料電池。7. An integrated fuel cell according to claim 6, wherein a plurality of the integrated fuel cells are arranged so as to face the cathode flow path, and an anode gas flows through the anode electrode separator of each of the integrated fuel cells. An integrated fuel cell comprising cells connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001079499A JP2002280049A (en) | 2001-03-19 | 2001-03-19 | Integrated type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001079499A JP2002280049A (en) | 2001-03-19 | 2001-03-19 | Integrated type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002280049A true JP2002280049A (en) | 2002-09-27 |
Family
ID=18935938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001079499A Pending JP2002280049A (en) | 2001-03-19 | 2001-03-19 | Integrated type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002280049A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055296A (en) * | 2002-07-18 | 2004-02-19 | Sony Corp | Separator for fuel cell, power generation cell, and fuel cell |
JP2004319455A (en) * | 2003-03-31 | 2004-11-11 | Honda Motor Co Ltd | Flat laminated fuel cell |
JP2005044792A (en) * | 2003-07-04 | 2005-02-17 | Dainippon Printing Co Ltd | Solid oxide fuel cell |
JP2005056839A (en) * | 2003-07-23 | 2005-03-03 | Dainippon Printing Co Ltd | Solid oxide fuel cell |
JP2005093275A (en) * | 2003-09-18 | 2005-04-07 | Mitsubishi Materials Corp | Gas diffusion layer member and cell member of solid polymer type fuel cell, and solid polymer type fuel cell |
JP2005285709A (en) * | 2004-03-31 | 2005-10-13 | Minoru Umeda | Film electrode element, manufacturing method thereof, and fuel cell |
JP2005317311A (en) * | 2004-04-28 | 2005-11-10 | Honda Motor Co Ltd | Fuel cell stack |
JP2006086045A (en) * | 2004-09-16 | 2006-03-30 | Seiko Instruments Inc | Flat fuel cell |
JP2006093119A (en) * | 2004-08-26 | 2006-04-06 | Hitachi Ltd | Fuel cell, and information terminal mounting fuel cell |
JP2007324012A (en) * | 2006-06-02 | 2007-12-13 | Sony Corp | Electrochemical device |
JP2009016364A (en) * | 2008-10-22 | 2009-01-22 | Minoru Umeda | Membrane electrode element manufacturing method, membrane electrode element, and fuel cell |
US7638219B2 (en) | 2003-03-07 | 2009-12-29 | Honda Motor Co., Ltd. | Fuel cell without Z-like connection plates and the method producing the same |
JP2010231892A (en) * | 2009-03-25 | 2010-10-14 | Sanyo Electric Co Ltd | Fuel cell |
JP2011216310A (en) * | 2010-03-31 | 2011-10-27 | Eneos Celltech Co Ltd | Fuel cell, separator, and fuel cell system |
US8101316B2 (en) | 2003-06-26 | 2012-01-24 | Dai Nippon Printing Co., Ltd. | Solid oxide fuel cell |
WO2013073271A1 (en) * | 2011-11-14 | 2013-05-23 | シャープ株式会社 | Electricity generating device |
JP2014060132A (en) * | 2012-08-28 | 2014-04-03 | Sanyo Electric Co Ltd | Flat fuel cell assembly and manufacturing method thereof |
JP2021061199A (en) * | 2019-10-08 | 2021-04-15 | 株式会社豊田中央研究所 | Fuel cell stack |
-
2001
- 2001-03-19 JP JP2001079499A patent/JP2002280049A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055296A (en) * | 2002-07-18 | 2004-02-19 | Sony Corp | Separator for fuel cell, power generation cell, and fuel cell |
US7638219B2 (en) | 2003-03-07 | 2009-12-29 | Honda Motor Co., Ltd. | Fuel cell without Z-like connection plates and the method producing the same |
JP2004319455A (en) * | 2003-03-31 | 2004-11-11 | Honda Motor Co Ltd | Flat laminated fuel cell |
JP4498792B2 (en) * | 2003-03-31 | 2010-07-07 | 本田技研工業株式会社 | Flat stacked fuel cell |
US8101316B2 (en) | 2003-06-26 | 2012-01-24 | Dai Nippon Printing Co., Ltd. | Solid oxide fuel cell |
US8741499B2 (en) | 2003-06-26 | 2014-06-03 | Dai Nippon Printing Co., Ltd. | Solid oxide fuel cell |
US8252479B2 (en) | 2003-06-26 | 2012-08-28 | Dai Nippon Printing Co., Ltd. | Solid oxide fuel cell |
JP4606076B2 (en) * | 2003-07-04 | 2011-01-05 | 大日本印刷株式会社 | Solid oxide fuel cell |
JP2005044792A (en) * | 2003-07-04 | 2005-02-17 | Dainippon Printing Co Ltd | Solid oxide fuel cell |
JP4606081B2 (en) * | 2003-07-23 | 2011-01-05 | 大日本印刷株式会社 | Solid oxide fuel cell |
JP2005056839A (en) * | 2003-07-23 | 2005-03-03 | Dainippon Printing Co Ltd | Solid oxide fuel cell |
JP2005093275A (en) * | 2003-09-18 | 2005-04-07 | Mitsubishi Materials Corp | Gas diffusion layer member and cell member of solid polymer type fuel cell, and solid polymer type fuel cell |
JP4501385B2 (en) * | 2003-09-18 | 2010-07-14 | 三菱マテリアル株式会社 | Gas diffusion layer member and cell member for polymer electrolyte fuel cell, polymer electrolyte fuel cell |
JP4674789B2 (en) * | 2004-03-31 | 2011-04-20 | 実 梅田 | Membrane electrode element manufacturing method, membrane electrode element and fuel cell |
JP2005285709A (en) * | 2004-03-31 | 2005-10-13 | Minoru Umeda | Film electrode element, manufacturing method thereof, and fuel cell |
JP2005317311A (en) * | 2004-04-28 | 2005-11-10 | Honda Motor Co Ltd | Fuel cell stack |
JP4634737B2 (en) * | 2004-04-28 | 2011-02-16 | 本田技研工業株式会社 | Fuel cell stack |
JP2006093119A (en) * | 2004-08-26 | 2006-04-06 | Hitachi Ltd | Fuel cell, and information terminal mounting fuel cell |
JP2006086045A (en) * | 2004-09-16 | 2006-03-30 | Seiko Instruments Inc | Flat fuel cell |
JP2007324012A (en) * | 2006-06-02 | 2007-12-13 | Sony Corp | Electrochemical device |
JP2009016364A (en) * | 2008-10-22 | 2009-01-22 | Minoru Umeda | Membrane electrode element manufacturing method, membrane electrode element, and fuel cell |
JP2010231892A (en) * | 2009-03-25 | 2010-10-14 | Sanyo Electric Co Ltd | Fuel cell |
JP2011216310A (en) * | 2010-03-31 | 2011-10-27 | Eneos Celltech Co Ltd | Fuel cell, separator, and fuel cell system |
WO2013073271A1 (en) * | 2011-11-14 | 2013-05-23 | シャープ株式会社 | Electricity generating device |
JP2014060132A (en) * | 2012-08-28 | 2014-04-03 | Sanyo Electric Co Ltd | Flat fuel cell assembly and manufacturing method thereof |
JP2021061199A (en) * | 2019-10-08 | 2021-04-15 | 株式会社豊田中央研究所 | Fuel cell stack |
JP7088154B2 (en) | 2019-10-08 | 2022-06-21 | 株式会社豊田中央研究所 | Fuel cell stack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002280049A (en) | Integrated type fuel cell | |
JP2002280016A (en) | Single electrode type cell pack for direct methanol fuel cell | |
US7169496B2 (en) | Fuel Cell | |
KR100673754B1 (en) | Stack and fuel cell system having the same | |
US20040018415A1 (en) | Flat fuel cell assembly and connection structure thereof | |
JP2008293757A (en) | Fuel cell | |
JP2004087311A (en) | Fuel cell stack and metallic separator for for fuel cell stack | |
JP2008108677A (en) | Electrochemical device | |
US8691471B2 (en) | Polymer electrolyte fuel cell and fuel cell stack comprising the same | |
US7638219B2 (en) | Fuel cell without Z-like connection plates and the method producing the same | |
JP4828841B2 (en) | Fuel cell | |
JP5255849B2 (en) | Fuel cell and separator / seal structure | |
EP2736108B1 (en) | Gasket for fuel cell | |
US7662499B2 (en) | Plate elements for fuel cell stacks | |
WO2005050766A1 (en) | Fuel cell | |
JP4134615B2 (en) | Fuel cell | |
JP2000012053A (en) | Solid high-polymer electrolyte-type fuel cell | |
JPS5998473A (en) | Molten carbonate type fuel cell | |
WO2006090464A1 (en) | Solid polymer fuel cell and method for producing same | |
JP4083600B2 (en) | Fuel cell | |
JP2009277465A (en) | Polymer electrolyte type fuel cell stack | |
JP2006107898A (en) | Separator for flat type polymer electrolyte fuel cell | |
JP4083599B2 (en) | Fuel cell and manufacturing method thereof | |
JP2002198072A (en) | Solid polymer fuel cell | |
JPH06333582A (en) | Solid polyelectrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060411 |