JP2005285709A - Film electrode element, manufacturing method thereof, and fuel cell - Google Patents

Film electrode element, manufacturing method thereof, and fuel cell Download PDF

Info

Publication number
JP2005285709A
JP2005285709A JP2004101836A JP2004101836A JP2005285709A JP 2005285709 A JP2005285709 A JP 2005285709A JP 2004101836 A JP2004101836 A JP 2004101836A JP 2004101836 A JP2004101836 A JP 2004101836A JP 2005285709 A JP2005285709 A JP 2005285709A
Authority
JP
Japan
Prior art keywords
electrode
membrane
membrane electrode
manufacturing
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004101836A
Other languages
Japanese (ja)
Other versions
JP4674789B2 (en
Inventor
Minoru Umeda
実 梅田
Jiro Ouchi
二郎 大内
Masatoshi Sato
正寿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP2004101836A priority Critical patent/JP4674789B2/en
Publication of JP2005285709A publication Critical patent/JP2005285709A/en
Application granted granted Critical
Publication of JP4674789B2 publication Critical patent/JP4674789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell improved in electrical insulation properties and proton insulation properties, by realizing mass-producing of a flat type fuel cell at low costs. <P>SOLUTION: A plurality of through holes 6 that are first through holes are formed on an insulating substrate 5 having insulation properties, a fuel electrode 9 is formed in the plurality of through holes 6, an electrolyte film 7 is laminated on it, and further an air electrode 8 is laminated on it, so that a plurality of film electrode assemblies 3 in the insulating substrate 5 is provided. Hence mass-producing of the flat type fuel cell at low costs, is realized, and thus the fuel cell improved in electrical insulation properties and proton insulation properties can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、膜電極素子の製造方法、膜電極素子及び燃料電池に関する。   The present invention relates to a method for manufacturing a membrane electrode element, a membrane electrode element, and a fuel cell.

燃料電池は、環境に問題となる有害な排出物が非常に少ないこと及びエネルギー密度がLiイオン電池(現在、エネルギー密度の最高値を有する)よりも大きいことから、新たなエネルギー源として開発されている。   Fuel cells have been developed as a new energy source because they have very few harmful emissions that cause environmental problems and their energy density is higher than Li-ion batteries (which currently have the highest energy density). Yes.

このような燃料電池としては、燃料として水素ガスを用いる燃料電池や、DMFC(ダイレクトメタノール型燃料電池)に代表されるようなアルコール系溶液を用いる直接アルコール型と呼ばれる燃料電池等がある。携帯機器用の燃料電池としては、現在、DMFCが主として開発されている。このような携帯機器用の燃料電池は、自動車用の燃料電池に比べた場合、出力当たりのコストが少々高くても市場に受け入れられる可能性があることから、自動車用の燃料電池よりも早く市場が開けると予測されている。   As such a fuel cell, there are a fuel cell using hydrogen gas as a fuel, a fuel cell called a direct alcohol type using an alcohol-based solution represented by DMFC (direct methanol fuel cell), and the like. Currently, DMFC is mainly developed as a fuel cell for portable devices. Such a fuel cell for portable devices is likely to be accepted by the market even if the cost per output is slightly higher than the fuel cell for automobiles. Is expected to open.

燃料電池の構造としては、自動車用のような大型の燃料電池に主として採用されている単セルを積層するスタックタイプの構造と、単セルを平面に複数並べこれらを直列接続する平面型の構造とがある。スタックタイプの燃料電池は、各単セル間に燃料及び空気の供給路を設ける必要があることや各単セル間の絶縁のためにセパレータが必要なこと等から、大型でコストが高くなるため、小型化を実現する必要がある携帯機器用の燃料電池として適当ではない。一方、平面型の燃料電池は、スタックタイプに必要な層間のセパレータや、層間の燃料及び空気の供給路等が不要なことから小型化が可能な燃料電池として有望視されており、携帯機器用として適している。   As the structure of the fuel cell, a stack type structure in which single cells mainly used in large fuel cells such as those for automobiles are stacked, and a planar type structure in which a plurality of single cells are arranged in a plane and these are connected in series. There is. Stack type fuel cells are large and costly because it is necessary to provide a fuel and air supply path between each single cell and because a separator is required for insulation between each single cell. It is not suitable as a fuel cell for a portable device that needs to be downsized. On the other hand, planar fuel cells are promising as fuel cells that can be miniaturized because they do not require interlayer separators and interlayer fuel and air supply paths required for the stack type. Suitable as

このような平面型の燃料電池の構成例について図7及び図8を参照して説明する。図7に示すように、燃料電池100は、燃料供給路(図示せず)を有する燃料供給路体101と、その燃料供給路体101の上に設けられ複数の単セルである膜電極接合体102を平面状に並べて有する膜電極素子である電極ユニット103とを備えている。隣接する膜電極接合体102の間には、絶縁性を有する絶縁材等のシール材104が設けられている。また、電極ユニット103には、それを覆う筺体(図示せず)が設けられている。膜電極接合体102は、電解質膜105を電極である空気極106と燃料極107とにより挟み込むことで形成されている。電解質膜105は、複数の膜電極接合体102を通る単一の膜である。複数の膜電極接合体102は、同じ種類の電極が同じ側に位置するように配置されており、燃料極107側が燃料供給路体101に接続され、空気極106側が外側に位置付けられている。このような複数の膜電極接合体102は、図8に示すように、それらの間を金属端子等の電流端子108により接続することで電気的に直列接続されている。この電流端子108は電解質膜105を貫通して設けられている。このような構成で、燃料電池100は、燃料極107に供給されるアルコール溶液と、空気極106に触れる空気中の酸素との化学反応により電気を発生させる。このような燃料電池100はセパレータ等が不要な構成となっており、小型化が図れる燃料電池とされている。   A configuration example of such a planar fuel cell will be described with reference to FIGS. As shown in FIG. 7, the fuel cell 100 includes a fuel supply passage body 101 having a fuel supply passage (not shown), and a membrane electrode assembly that is provided on the fuel supply passage body 101 and is a plurality of single cells. And an electrode unit 103 which is a membrane electrode element having 102 arranged in a plane. Between the adjacent membrane electrode assemblies 102, a sealing material 104 such as an insulating material having an insulating property is provided. The electrode unit 103 is provided with a casing (not shown) that covers it. The membrane electrode assembly 102 is formed by sandwiching an electrolyte membrane 105 between an air electrode 106 and a fuel electrode 107 which are electrodes. The electrolyte membrane 105 is a single membrane that passes through the plurality of membrane electrode assemblies 102. The plurality of membrane electrode assemblies 102 are arranged such that the same type of electrodes are located on the same side, the fuel electrode 107 side is connected to the fuel supply path body 101, and the air electrode 106 side is located outside. As shown in FIG. 8, the plurality of membrane electrode assemblies 102 are electrically connected in series by connecting them with a current terminal 108 such as a metal terminal. The current terminal 108 is provided through the electrolyte membrane 105. With such a configuration, the fuel cell 100 generates electricity by a chemical reaction between the alcohol solution supplied to the fuel electrode 107 and oxygen in the air that touches the air electrode 106. Such a fuel cell 100 does not require a separator or the like, and is a fuel cell that can be miniaturized.

このような構造の燃料電池100においては、複数の膜電極接合体(単セル)102を直列接続する場合、電解質膜105に貫通する穴を形成し、その穴に電流端子108を通す必要がある。このように電解質膜105に穴を形成すると、その穴から液体燃料がしみ込み易いため、電極間のクロスオーバーが発生し、電極間の絶縁を取り難くなる等の問題が生じる。これを解決するため、特許文献1では、電解質膜105の一部のみをプロトン伝導体とし、その他の部分をプロトン絶縁体とする方法が提案されている。   In the fuel cell 100 having such a structure, when a plurality of membrane electrode assemblies (single cells) 102 are connected in series, it is necessary to form a hole penetrating the electrolyte membrane 105 and pass the current terminal 108 through the hole. . When holes are formed in the electrolyte membrane 105 in this way, liquid fuel is likely to penetrate through the holes, causing problems such as crossover between the electrodes and difficulty in insulation between the electrodes. In order to solve this, Patent Document 1 proposes a method in which only a part of the electrolyte membrane 105 is a proton conductor and the other part is a proton insulator.

特許第2894378号公報Japanese Patent No. 2894378

しかしながら、特許文献1のような方法は、電解質膜105の一部を電気化学的に処理する必要があるため大量生産には向いていない。また、平面型の燃料電池100を実現するための低コストの製造方法については、実例が少なく、低コストで平面型の燃料電池100の大量生産を実現する有効な製造方法は提案されていない。   However, the method as disclosed in Patent Document 1 is not suitable for mass production because part of the electrolyte membrane 105 needs to be electrochemically processed. Further, there are few examples of low-cost manufacturing methods for realizing the planar fuel cell 100, and no effective manufacturing method for realizing mass production of the planar fuel cell 100 at low cost has been proposed.

本発明の目的は、低コストで平面型の燃料電池の大量生産を実現し、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することである。   An object of the present invention is to provide a fuel cell that realizes mass production of a planar fuel cell at low cost and has good electrical insulation and proton insulation.

請求項1記載の発明の膜電極素子の製造方法は、絶縁性を有する絶縁性基板に複数の第1貫通孔を形成する工程と、複数の前記第1貫通孔に、電極で電解質膜を挟持する複数の膜電極接合体をそれぞれ設ける工程と、を具備する。   According to a first aspect of the present invention, there is provided a method for manufacturing a membrane electrode element, comprising: forming a plurality of first through holes in an insulating substrate having an insulating property; and sandwiching an electrolyte membrane with the electrodes in the plurality of first through holes. Providing a plurality of membrane electrode assemblies.

請求項2記載の発明は、請求項1記載の膜電極素子の製造方法において、前記膜電極接合体を設ける工程では、前記第1貫通孔内に前記電極、前記電解質膜及び前記電極をその順番で積層するようにした。   According to a second aspect of the present invention, in the method of manufacturing a membrane electrode element according to the first aspect, in the step of providing the membrane electrode assembly, the electrode, the electrolyte membrane, and the electrode are arranged in that order in the first through hole. It was made to laminate with.

請求項3記載の発明は、請求項1記載の膜電極素子の製造方法において、前記膜電極接合体を設ける工程では、前記第1貫通孔内に前記電解質膜を設け、その電解質膜に電極を積層するようにした。   According to a third aspect of the present invention, in the method of manufacturing a membrane electrode element according to the first aspect, in the step of providing the membrane electrode assembly, the electrolyte membrane is provided in the first through hole, and an electrode is provided on the electrolyte membrane. It was made to laminate.

請求項4記載の発明は、請求項1、2又は3記載の膜電極素子の製造方法において、前記膜電極接合体を設ける工程では、印刷により前記電極及び前記電解質膜を形成するようにした。   According to a fourth aspect of the present invention, in the method of manufacturing a membrane electrode element according to the first, second, or third aspect, in the step of providing the membrane electrode assembly, the electrode and the electrolyte membrane are formed by printing.

請求項5記載の発明は、請求項4記載の膜電極素子の製造方法において、前記印刷はエマルジョンインクで前記電極を形成する。   According to a fifth aspect of the present invention, in the method for manufacturing a membrane electrode element according to the fourth aspect, the printing is performed by forming the electrode with an emulsion ink.

請求項6記載の発明は、請求項1、2又は3記載の膜電極素子の製造方法において、前記膜電極接合体を設ける工程では、キャスト製膜により前記電解質膜を形成するようにした。   According to a sixth aspect of the present invention, in the method for manufacturing a membrane electrode element according to the first, second, or third aspect, in the step of providing the membrane electrode assembly, the electrolyte membrane is formed by casting.

請求項7記載の発明の膜電極素子の製造方法は、絶縁性を有する3枚の絶縁性基板にそれぞれ複数の第1貫通孔を形成する工程と、2枚の前記絶縁性基板の複数の前記第1貫通孔内にそれぞれ電極を設け、1枚の前記絶縁性基板の複数の前記第1貫通孔内に電解質膜を設ける工程と、複数の前記電極がそれぞれ設けられた2つの前記絶縁性基板と複数の前記電解質膜が設けられた前記絶縁性基板とを、前記電極で前記電解質膜を挟持する複数の膜電極接合体を形成するように積層する工程と、を具備する。   According to a seventh aspect of the present invention, there is provided a method of manufacturing a membrane electrode element comprising: forming a plurality of first through holes in three insulating substrates each having an insulating property; and a plurality of the two insulating substrates. A step of providing an electrode in each of the first through holes and a step of providing an electrolyte film in the plurality of first through holes of one insulating substrate; and two of the insulating substrates each having a plurality of the electrodes. And a step of laminating the insulating substrate provided with the plurality of electrolyte membranes so as to form a plurality of membrane electrode assemblies that sandwich the electrolyte membrane with the electrodes.

請求項8記載の発明は、請求項7記載の膜電極素子の製造方法において、前記電極及び前記電解質膜を設ける工程では、印刷により前記電極及び前記電解質膜を形成するようにした。   According to an eighth aspect of the present invention, in the method for manufacturing a membrane electrode element according to the seventh aspect, in the step of providing the electrode and the electrolyte membrane, the electrode and the electrolyte membrane are formed by printing.

請求項9記載の発明は、請求項8記載の膜電極素子の製造方法において、前記印刷はエマルジョンインクで前記電極を形成する。   According to a ninth aspect of the present invention, in the method for manufacturing a membrane electrode element according to the eighth aspect, the printing is performed by forming the electrode with an emulsion ink.

請求項10記載の発明は、請求項7記載の膜電極素子の製造方法において、前記電極及び前記電解質膜を設ける工程では、キャスト製膜により前記電解質膜を形成するようにした。   According to a tenth aspect of the present invention, in the method for manufacturing a membrane electrode element according to the seventh aspect, in the step of providing the electrode and the electrolyte membrane, the electrolyte membrane is formed by casting.

請求項11記載の発明は、請求項1ないし10のいずれか一記載の膜電極素子の製造方法において、複数の前記膜電極接合体を電気的に接続する工程をさらに具備する。   An eleventh aspect of the invention further includes a step of electrically connecting a plurality of the membrane electrode assemblies in the method of manufacturing a membrane electrode element according to any one of the first to tenth aspects.

請求項12記載の発明は、請求項11記載の膜電極素子の製造方法において、複数の前記膜電極接合体を電気的に接続する工程では、前記絶縁性基板に複数の第2貫通孔を形成し、その第2貫通孔内を通過して、隣接する前記膜電極接合体を電気的に接続する電極接続部を設けるようにした。   The invention according to claim 12 is the method of manufacturing a membrane electrode element according to claim 11, wherein in the step of electrically connecting the plurality of membrane electrode assemblies, a plurality of second through holes are formed in the insulating substrate. And the electrode connection part which passes the inside of the 2nd through-hole, and electrically connects the said adjacent membrane electrode assembly was provided.

請求項13記載の発明の膜電極素子は、請求項1ないし12のいずれか一記載の膜電極素子の製造方法により形成されている。   A membrane electrode element according to a thirteenth aspect of the present invention is formed by the method for manufacturing a membrane electrode element according to any one of the first to twelfth aspects.

請求項14記載の発明の燃料電池は、請求項13記載の膜電極素子を備え、その膜電極素子が備える前記膜電極接合体に燃料を供給することで発電する。   A fuel cell according to a fourteenth aspect of the present invention includes the membrane electrode element according to the thirteenth aspect, and generates power by supplying fuel to the membrane electrode assembly included in the membrane electrode element.

請求項1記載の発明によれば、電解質膜及び電極を積層することで簡単に複数の膜電極接合体を形成することが可能になるため、低コストで平面型の燃料電池の大量生産を実現することができる。さらに、複数の膜電極接合体毎に電解質膜が設けられており、膜電極接合体間のクロスオーバーの発生を抑えることが可能になるため、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することができる。   According to the first aspect of the present invention, since it is possible to easily form a plurality of membrane electrode assemblies by laminating the electrolyte membrane and the electrode, mass production of a planar fuel cell can be realized at low cost. can do. Furthermore, since an electrolyte membrane is provided for each of the plurality of membrane electrode assemblies, and it becomes possible to suppress the occurrence of crossover between the membrane electrode assemblies, a fuel cell with good electrical insulation and proton insulation Can be provided.

請求項2又は3記載の発明によれば、容易に貫通孔内に膜電極接合体を形成することができる。   According to invention of Claim 2 or 3, a membrane electrode assembly can be easily formed in a through-hole.

請求項4又は8記載の発明によれば、印刷により複数の膜電極接合体が容易に形成されるため、低コストで平面型の燃料電池を大量生産することができる。   According to the invention described in claim 4 or 8, since a plurality of membrane electrode assemblies can be easily formed by printing, it is possible to mass-produce flat fuel cells at low cost.

請求項5又は9記載の発明によれば、エマルジョンインクを用いることから、高価な触媒を広く面積に分散させることが可能になり、高価な触媒の使用量を低減し、低コストを実現することができる。   According to the invention of claim 5 or 9, since the emulsion ink is used, it becomes possible to disperse the expensive catalyst over a wide area, thereby reducing the amount of the expensive catalyst used and realizing low cost. Can do.

請求項6又は10記載の発明によれば、キャスト製膜により複数の電解質膜が容易に形成されるため、低コストで平面型の燃料電池を大量生産することができる。   According to the sixth or tenth aspect of the present invention, a plurality of electrolyte membranes can be easily formed by cast film formation, so that flat fuel cells can be mass-produced at low cost.

請求項7記載の発明によれば、請求項1記載の発明と同様な効果を奏し、さらに、3枚の絶縁性基板毎に電極及び電解質膜を設けることから、絶縁性基板の厚さを変化させるだけで、電極及び電解質膜の各厚さを制御することが可能になるため、精度良く電極及び電解質膜を形成することができる。   According to the invention described in claim 7, since the same effect as that of the invention described in claim 1 is obtained, and the electrode and the electrolyte membrane are provided for each of the three insulating substrates, the thickness of the insulating substrate is changed. It is possible to control the thicknesses of the electrode and the electrolyte membrane simply by making it possible to form the electrode and the electrolyte membrane with high accuracy.

請求項11記載の発明によれば、複数の膜電極接合体を電気的に接続することができる。   According to the eleventh aspect of the present invention, a plurality of membrane electrode assemblies can be electrically connected.

請求項12記載の発明によれば、絶縁性基板に第2貫通孔を形成して使用するため、従来のように電解質膜に貫通する穴を設ける必要はなくなり、その穴を通しての液体燃料の漏れやしみ込みがなく、電気的絶縁性及びイオン絶縁性が良好な燃料電池を得ることができる。   According to the twelfth aspect of the present invention, since the second through hole is formed and used in the insulating substrate, there is no need to provide a hole penetrating the electrolyte membrane as in the prior art, and liquid fuel leaks through the hole. It is possible to obtain a fuel cell that is free from penetration and has good electrical insulation and ionic insulation.

請求項13記載の発明によれば、膜電極素子は、請求項1ないし12のいずれか一記載の膜電極素子の製造方法により形成されていることから、低コストで大量生産が可能な平面型の燃料電池であって、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することができる。   According to the invention described in claim 13, since the membrane electrode element is formed by the method for manufacturing a membrane electrode element according to any one of claims 1 to 12, it is a flat type capable of mass production at low cost. It is possible to provide a fuel cell with good electrical insulation and proton insulation.

請求項14記載の発明によれば、請求項13記載の発明と同様な効果を奏する。   According to the fourteenth aspect of the invention, the same effect as that of the thirteenth aspect of the invention can be attained.

本発明を実施するための第1の実施の形態を図1ないし図5に基づいて説明する。   A first embodiment for carrying out the present invention will be described with reference to FIGS.

本実施の形態の平面型の燃料電池1の構成の一例について図1及び図2を参照して説明する。図1は本実施の形態の燃料電池1の構成を概略的に示す外観斜視図、図2はその縦断側面図である。   An example of the configuration of the planar fuel cell 1 of the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is an external perspective view schematically showing the configuration of the fuel cell 1 of the present embodiment, and FIG. 2 is a longitudinal side view thereof.

図1及び図2に示すように、燃料電池1は、燃料供給路(図示せず)を有する燃料供給路体2と、その燃料供給路体2の上に設けられ複数の単セルである膜電極接合体(MEA)3を平面状に並べて有する膜電極素子である電極ユニット4とを備えている。   As shown in FIGS. 1 and 2, a fuel cell 1 includes a fuel supply passage 2 having a fuel supply passage (not shown), and a membrane that is a plurality of single cells provided on the fuel supply passage 2. And an electrode unit 4 which is a membrane electrode element having electrode assemblies (MEA) 3 arranged in a plane.

電極ユニット4は、平板状に形成され絶縁性を有する絶縁性基板5を有している。この絶縁性基板5には、長方形状に形成された第1貫通孔である複数の貫通孔6が等間隔で設けられている。これらの貫通孔6内には、それぞれ膜電極接合体3が設けられている。このような電極ユニット4には、それを覆う筺体(図示せず)が設けられている。ただし、その筺体と膜電極接合体3の表面との間には、膜電極接合体3の表面に空気を供給するため、スペース(空間)が設けられている。なお、ここでは、貫通孔6は長方形状に形成されているが、これに限るものでなく、例えば円形状や正方形状に形成されても良い。   The electrode unit 4 has an insulating substrate 5 which is formed in a flat plate shape and has insulating properties. The insulating substrate 5 is provided with a plurality of through holes 6 which are first through holes formed in a rectangular shape at equal intervals. Membrane electrode assemblies 3 are respectively provided in these through holes 6. Such an electrode unit 4 is provided with a casing (not shown) for covering it. However, a space is provided between the housing and the surface of the membrane electrode assembly 3 in order to supply air to the surface of the membrane electrode assembly 3. In addition, although the through-hole 6 is formed in the rectangular shape here, it is not restricted to this, For example, you may form in circular shape or square shape.

膜電極接合体3は、イオン伝導体である電解質膜7を電極である空気極8と燃料極9とにより挟み込むことで形成されている。空気極8及び燃料極9は、それぞれ電解質膜7側に触媒層(図示せず)を有している。このような膜電極接合体3は絶縁性基板5に複数設けられている。複数の膜電極接合体3は、同じ種類の電極が同じ側に位置するように配置されており、燃料極9側が燃料供給路体2に接続され、空気極8側が外側(外面)に位置付けられている。   The membrane electrode assembly 3 is formed by sandwiching an electrolyte membrane 7 that is an ionic conductor between an air electrode 8 and a fuel electrode 9 that are electrodes. Each of the air electrode 8 and the fuel electrode 9 has a catalyst layer (not shown) on the electrolyte membrane 7 side. A plurality of such membrane electrode assemblies 3 are provided on the insulating substrate 5. The plurality of membrane electrode assemblies 3 are arranged such that the same type of electrodes are located on the same side, the fuel electrode 9 side is connected to the fuel supply path body 2, and the air electrode 8 side is located on the outer side (outer surface). ing.

複数の膜電極接合体3は、図2に示すように、導電性を有する電極接続部10により電気的に直列接続されている。電極接続部10は、隣接する2つの膜電極接合体3において、互いの燃料極9と空気極8とを接続している。なお、絶縁性基板5には、第2貫通孔であるスルホール11が設けられており、電極接続部10はそのスルホール11内を通過して、隣接する2つの膜電極接合体3を電気的に接続している。このような電極接続部10では、膜電極接合体3に重なる部分は、燃料が通過できる拡散性材料で形成されている。すなわち、空気極8に重なる部分は、空気が通過できる拡散性材料で形成されており、燃料極9に重なる部分は、アルコール溶液等の燃料が通過できる拡散性材料で形成されている。   As shown in FIG. 2, the plurality of membrane electrode assemblies 3 are electrically connected in series by a conductive electrode connection portion 10. The electrode connecting portion 10 connects the fuel electrode 9 and the air electrode 8 to each other in two adjacent membrane electrode assemblies 3. The insulating substrate 5 is provided with a through hole 11 as a second through hole, and the electrode connecting portion 10 passes through the through hole 11 to electrically connect two adjacent membrane electrode assemblies 3 to each other. Connected. In such an electrode connection part 10, the part which overlaps with the membrane electrode assembly 3 is formed with the diffusible material which a fuel can pass. That is, the portion overlapping the air electrode 8 is formed of a diffusible material through which air can pass, and the portion overlapping the fuel electrode 9 is formed of a diffusible material through which fuel such as an alcohol solution can pass.

燃料供給路体2は、燃料容器(図示せず)から供給された燃料であるアルコール溶液を毛細管現象により燃料極9に供給する部材である。これにより、燃料極9には、アルコール溶液が供給される。一方、膜電極接合体3の表面、すなわち空気極8の表面と筺体との間には、スペースが存在するため、空気極8は絶えず空気に接触している。これにより、空気極8には、空気(酸素)が供給される。   The fuel supply path body 2 is a member that supplies an alcohol solution, which is fuel supplied from a fuel container (not shown), to the fuel electrode 9 by capillary action. As a result, the alcohol solution is supplied to the fuel electrode 9. On the other hand, since there is a space between the surface of the membrane electrode assembly 3, that is, the surface of the air electrode 8 and the housing, the air electrode 8 is constantly in contact with air. As a result, air (oxygen) is supplied to the air electrode 8.

ここで、絶縁性基板5としては、例えば、ガラスエポキシ基材、SEM材及びプラスチックフィルム基材等の基板が用いられる。なお、絶縁性基板5としては、イオン絶縁性及び電気絶縁性を有する基材であれば、どのような基板が用いられても良い。このような絶縁性基板5の上には、燃料電池1に必要となる電気配線パターンや電気回路等が形成されても良い。また、電解質膜7は、ナフィオン膜の溶液状の材料で形成されているが、これに限るものではなく、例えば、キャスト製膜が可能な、強酸系あるいはポリマーブレンド材料による溶液で形成されても良い。絶縁性基板5の厚さは数mm程度の厚さに、すなわち電極(空気極8及び燃料極9)を含めた厚さに設定されている。なお、電解質膜7の厚さは例えば20〜100μm程度であるが、その電解質膜7の厚さに絶縁性基板5の厚さを合わせるようにしても良い。これにより、高精度の膜厚で電解質膜7を製造することができる。   Here, as the insulating substrate 5, for example, a substrate such as a glass epoxy base material, an SEM material, and a plastic film base material is used. In addition, as the insulating substrate 5, any substrate may be used as long as it is a base material having ion insulating properties and electrical insulating properties. On such an insulating substrate 5, an electric wiring pattern, an electric circuit, and the like necessary for the fuel cell 1 may be formed. The electrolyte membrane 7 is formed of a Nafion membrane solution-like material, but is not limited to this. For example, the electrolyte membrane 7 may be formed of a strong acid-based or polymer blend material solution that can be cast. good. The thickness of the insulating substrate 5 is set to a thickness of about several mm, that is, the thickness including the electrodes (the air electrode 8 and the fuel electrode 9). The thickness of the electrolyte membrane 7 is, for example, about 20 to 100 μm, but the thickness of the insulating substrate 5 may be matched with the thickness of the electrolyte membrane 7. Thereby, the electrolyte membrane 7 can be manufactured with a highly accurate film thickness.

このような構成において、燃料電池1は、その電極ユニット4の膜電極接合体3に供給される燃料により電気を発生させる。詳しくは、燃料電池1は、膜電極接合体3において燃料極9に供給されるアルコール溶液と、空気極8に取り込まれる空気中の酸素とを化学反応させて電気を発生させ、その電気を負荷に供給する。   In such a configuration, the fuel cell 1 generates electricity by the fuel supplied to the membrane electrode assembly 3 of the electrode unit 4. Specifically, the fuel cell 1 generates electricity by chemically reacting an alcohol solution supplied to the fuel electrode 9 in the membrane electrode assembly 3 and oxygen in the air taken into the air electrode 8, and loads the electricity. To supply.

次に、本実施の形態の電極ユニット4の製造方法について図3及び図4を参照して説明する。図3及び図4は本実施の形態の電極ユニット4の製造工程の一部を概略的に示す斜視図である。   Next, the manufacturing method of the electrode unit 4 of this Embodiment is demonstrated with reference to FIG.3 and FIG.4. 3 and 4 are perspective views schematically showing a part of the manufacturing process of the electrode unit 4 of the present embodiment.

図3に示すように、電極ユニット4の製造方法では、絶縁性を有する絶縁性基板5に第1貫通孔である複数の貫通孔6を形成し(図3(a)参照)、それらの貫通孔6に複数の膜電極接合体3をそれぞれ設ける(図3(b)〜図3(d)参照)。膜電極接合体3は、電極(空気極8及び燃料極9)で電解質膜7を挟持するようにそれらを積層することで形成され、貫通孔6に設けられる。次に、図4に示すように、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。   As shown in FIG. 3, in the manufacturing method of the electrode unit 4, a plurality of through holes 6 as first through holes are formed in an insulating substrate 5 having insulating properties (see FIG. 3A), and the through holes 6 are formed. A plurality of membrane electrode assemblies 3 are respectively provided in the holes 6 (see FIGS. 3B to 3D). The membrane electrode assembly 3 is formed by laminating the electrolyte membrane 7 so as to sandwich the electrode (the air electrode 8 and the fuel electrode 9), and is provided in the through hole 6. Next, as shown in FIG. 4, a plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

複数の貫通孔6を形成する工程では、絶縁性基板5に例えば長方形状の複数の貫通孔6を並べて形成する。これらの長方形状の貫通孔6は、例えばその短手方向に並べて形成されている。貫通孔6の形成方法としては、例えば抜型による切断等が用いられる。なお、ここでは、貫通孔6を長方形状に形成しているが、これに限るものでなく、例えば円形状や正方形状に形成しても良い。   In the step of forming the plurality of through holes 6, for example, a plurality of rectangular through holes 6 are formed side by side on the insulating substrate 5. These rectangular through holes 6 are formed side by side in the short direction, for example. As a method for forming the through-hole 6, for example, cutting by die cutting or the like is used. Here, the through hole 6 is formed in a rectangular shape, but the present invention is not limited to this, and may be formed in, for example, a circular shape or a square shape.

複数の膜電極接合体3を設ける工程では、絶縁性基板5を載置台(図示せず)等に載置し、載置した絶縁性基板5の貫通孔6内に、燃料極9を設け(図3(b)参照)、その燃料極9の上に電解質膜7を積層し(図3(c)参照)、さらに、その電解質膜7の上に空気極8を積層する(図3(d)参照)。なお、空気極8及び燃料極9は、それぞれ電解質膜7側に触媒層(図示せず)を有している。ここでは、印刷によりそれらの燃料極9、電解質膜7及び空気極8を形成する。このとき同時に、燃料電池1の膜電極接合体3に対して必要となる電気配線パターンや電気回路等が形成されても良い。   In the step of providing the plurality of membrane electrode assemblies 3, the insulating substrate 5 is mounted on a mounting table (not shown) or the like, and the fuel electrode 9 is provided in the through hole 6 of the mounting insulating substrate 5 ( 3B), an electrolyte membrane 7 is laminated on the fuel electrode 9 (see FIG. 3C), and an air electrode 8 is laminated on the electrolyte membrane 7 (FIG. 3D). )reference). Each of the air electrode 8 and the fuel electrode 9 has a catalyst layer (not shown) on the electrolyte membrane 7 side. Here, the fuel electrode 9, the electrolyte membrane 7, and the air electrode 8 are formed by printing. At the same time, an electric wiring pattern, an electric circuit, or the like necessary for the membrane electrode assembly 3 of the fuel cell 1 may be formed.

印刷は、例えば、絶縁性基板5の貫通孔6以外の部分にマスクを施し、シルク印刷等により行われる。なお、印刷としては、シルク印刷に限るものではなく、例えばインクジェット方式の印刷が行われても良い。また、ここでは、エマルジョンインク(emulsion ink)で空気極8及び燃料極9を形成する。このエマルジョンインクは、空気極8や燃料極9等の電極作製用のカーボンや触媒をエマルジョン化して分散させることで形成されている。   The printing is performed, for example, by applying a mask to portions other than the through holes 6 of the insulating substrate 5 and performing silk printing or the like. Note that printing is not limited to silk printing, and for example, ink jet printing may be performed. Further, here, the air electrode 8 and the fuel electrode 9 are formed by emulsion ink. This emulsion ink is formed by emulsifying and dispersing carbon and a catalyst for producing electrodes such as the air electrode 8 and the fuel electrode 9.

載置台は燃料極9が接着しない材料で形成されているため、絶縁性基板5は設置台から容易に移動させることができる。また、燃料極9が接着しない載置台を用いず、燃料極9が接着しない材料で形成されたフィルム等を載置台の上に設けるようにしても良い。   Since the mounting table is made of a material to which the fuel electrode 9 does not adhere, the insulating substrate 5 can be easily moved from the mounting table. Further, instead of using a mounting table to which the fuel electrode 9 does not adhere, a film or the like formed of a material to which the fuel electrode 9 does not adhere may be provided on the mounting table.

複数の膜電極接合体3を電気的に接続する工程では、絶縁性基板5に第2貫通孔である複数のスルホール11を形成し(図4(a)参照)、そのスルホール11を通過して隣接する膜電極接合体3を電気的に接続する電極接続部10を設ける(図4(b)参照)。これにより、図2に示すように、隣接する2つの膜電極接合体3では、互いの燃料極9と空気極8とが電極接続部10により接続される。したがって、複数の膜電極接合体3は電気的に直列接続される。これにより、電極ユニット4が完成する。   In the step of electrically connecting the plurality of membrane electrode assemblies 3, a plurality of through holes 11 as second through holes are formed in the insulating substrate 5 (see FIG. 4A), and the through holes 11 are passed through. An electrode connecting portion 10 for electrically connecting adjacent membrane electrode assemblies 3 is provided (see FIG. 4B). Thereby, as shown in FIG. 2, in the two adjacent membrane electrode assemblies 3, the fuel electrode 9 and the air electrode 8 are connected by the electrode connecting portion 10. Therefore, the plurality of membrane electrode assemblies 3 are electrically connected in series. Thereby, the electrode unit 4 is completed.

このように本実施の形態では、絶縁性基板5の貫通孔6に燃料極9、電解質膜7及び空気極8を積層することで、簡単に複数の膜電極接合体3を形成することが可能になるため、低コストで平面型の燃料電池1の大量生産を実現することができる。さらに、複数の膜電極接合体3毎に電解質膜7が設けられており、すなわち、隣接する膜電極接合体3における電解質膜7は分断されており、電極間のクロスオーバーの発生を抑えることが可能になる。これにより、電気的絶縁性及びプロトン絶縁性の良好な燃料電池を提供することができる。さらに、印刷により複数の燃料極9や電解質膜7、空気極8を一括して形成することが可能になり、平面型の燃料電池1を確実に低コストで大量生産することができる。   As described above, in the present embodiment, it is possible to easily form a plurality of membrane electrode assemblies 3 by laminating the fuel electrode 9, the electrolyte membrane 7 and the air electrode 8 in the through hole 6 of the insulating substrate 5. Therefore, mass production of the planar fuel cell 1 can be realized at low cost. Further, the electrolyte membrane 7 is provided for each of the plurality of membrane electrode assemblies 3, that is, the electrolyte membrane 7 in the adjacent membrane electrode assembly 3 is divided, and the occurrence of crossover between the electrodes can be suppressed. It becomes possible. As a result, a fuel cell with good electrical insulation and proton insulation can be provided. Furthermore, a plurality of fuel electrodes 9, electrolyte membranes 7, and air electrodes 8 can be collectively formed by printing, and the flat fuel cell 1 can be reliably mass-produced at low cost.

特に、絶縁性基板5にスルホール11を形成して使用するため、従来のように電解質膜7に貫通する穴を設ける必要はなくなり、その穴を通しての液体燃料の漏れやしみ込みがなく、電気的絶縁性及びイオン絶縁性が良好な燃料電池1を得ることができる。また、従来のように電解質膜7に貫通する穴を設ける場合には、この穴からの液体燃料の漏れを防止するためのシール材が必要であり、シール材を設けるとその分だけ燃料電池1が大型化してしまう。しかし、本実施の形態では、複数の膜電極接合体3毎に電解質膜7が設けられているため、シール材を設ける必要がなく、燃料電池1の小型化を実現することができる。   In particular, since the through hole 11 is formed in the insulating substrate 5 and used, it is not necessary to provide a hole penetrating the electrolyte membrane 7 as in the prior art, and there is no leakage or penetration of liquid fuel through the hole, and electrical A fuel cell 1 having good insulation and ion insulation can be obtained. Further, when a hole penetrating the electrolyte membrane 7 is provided as in the conventional case, a sealing material for preventing leakage of liquid fuel from the hole is necessary, and when the sealing material is provided, the fuel cell 1 correspondingly is provided. Will become larger. However, in the present embodiment, since the electrolyte membrane 7 is provided for each of the plurality of membrane electrode assemblies 3, it is not necessary to provide a sealing material, and the fuel cell 1 can be downsized.

さらに、絶縁性基板5上に電気配線パターンや電気回路等を設けることで、複数の膜電極接合体3間の電気的接続が容易になり、加えて低コストで行うことができる。例えば、膜電極接合体3毎に保護回路や安定化回路を有する燃料電池1を低コストで製造することができる。   Furthermore, by providing an electrical wiring pattern, an electrical circuit, or the like on the insulating substrate 5, electrical connection between the plurality of membrane electrode assemblies 3 is facilitated, and in addition, it can be performed at low cost. For example, the fuel cell 1 having a protection circuit and a stabilization circuit for each membrane electrode assembly 3 can be manufactured at low cost.

なお、本実施の形態では、印刷により電解質膜7を形成しているが、これに限るものではなく、例えばキャスト製膜により電解質膜7を形成しても良い。この場合には、電解質膜7は、キャスト製膜が可能な材料である溶液を貫通孔6内にキャスト(注入)することで形成される。ここで、キャスト製膜に使用する材料として、絶縁性基板5との密着性が高い特性を有する材料を使用することで、より電極間のクロスオーバーが少ない燃料電池1を製造することができる。   In the present embodiment, the electrolyte membrane 7 is formed by printing. However, the present invention is not limited to this. For example, the electrolyte membrane 7 may be formed by casting. In this case, the electrolyte membrane 7 is formed by casting (injecting) a solution, which is a material that can be cast into a film, into the through hole 6. Here, by using a material having high adhesion to the insulating substrate 5 as a material used for casting, the fuel cell 1 with less crossover between the electrodes can be manufactured.

また、本実施の形態では、絶縁性基板5の貫通孔6内に、燃料極9、電解質膜7及び空気極8をその順番で積層して設けるが(図3(b)〜図3(d)参照)、これに限るものではない。ここで、本実施の形態の変形例の電極ユニット4の製造方法について図5を参照して説明する。図5は本実施の形態の変形例の電極ユニット4の製造工程の一部を概略的に示す斜視図である。   Further, in the present embodiment, the fuel electrode 9, the electrolyte membrane 7 and the air electrode 8 are stacked in that order in the through hole 6 of the insulating substrate 5 (FIGS. 3B to 3D). )), But not limited to this. Here, the manufacturing method of the electrode unit 4 of the modification of this Embodiment is demonstrated with reference to FIG. FIG. 5 is a perspective view schematically showing a part of the manufacturing process of the electrode unit 4 of a modification of the present embodiment.

図5に示すように、変形例の電極ユニット4の製造方法では、まず、絶縁性を有する絶縁性基板5aに複数の貫通孔6を形成し(図5(a)参照)、複数の貫通孔6内に電解質膜7を設ける(図5(b)参照)。次に、空気極8と燃料極9とで電解質膜7を挟持するように電解質膜7に空気極8と燃料極9とを積層して設ける(図5(c)参照)。このとき、空気極8と燃料極9とは、例えば印刷により形成される。これにより、複数の膜電極接合体3が形成される。最後に、複数の膜電極接合体3が形成された絶縁性基板5aの表裏面に、絶縁性基板5aと同様な絶縁性を有するシール材20を設ける(図5d参照)。ここで、絶縁性基板5aとシール材20とが絶縁性基板5を構成している。その後、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。   As shown in FIG. 5, in the manufacturing method of the electrode unit 4 of the modified example, first, a plurality of through holes 6 are formed in an insulating substrate 5a having an insulating property (see FIG. 5A), and a plurality of through holes are formed. 6 is provided with an electrolyte membrane 7 (see FIG. 5B). Next, the air electrode 8 and the fuel electrode 9 are stacked on the electrolyte membrane 7 so as to sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 (see FIG. 5C). At this time, the air electrode 8 and the fuel electrode 9 are formed by printing, for example. Thereby, a plurality of membrane electrode assemblies 3 are formed. Finally, a sealing material 20 having insulation similar to that of the insulating substrate 5a is provided on the front and back surfaces of the insulating substrate 5a on which the plurality of membrane electrode assemblies 3 are formed (see FIG. 5d). Here, the insulating substrate 5 a and the sealing material 20 constitute the insulating substrate 5. Thereafter, the plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

このような電極ユニット4の製造方法でも、前述したような効果と同様な効果を奏する。さらに、絶縁性基板5aの貫通孔6に電解質膜7を設けることから、絶縁性基板5aの厚さを変化させるだけで、電解質膜7の厚さを制御することが可能になるため、高い精度で電解質膜7を形成することができる。例えば、所望の電解質膜7の厚さが50μmである場合には、絶縁性基板5aの厚さを50μmに設定することで、高い精度で厚さが50μmの電解質膜7を形成することができる。   Such a manufacturing method of the electrode unit 4 also has the same effect as described above. Further, since the electrolyte membrane 7 is provided in the through hole 6 of the insulating substrate 5a, it is possible to control the thickness of the electrolyte membrane 7 only by changing the thickness of the insulating substrate 5a. Thus, the electrolyte membrane 7 can be formed. For example, when the desired thickness of the electrolyte membrane 7 is 50 μm, the thickness of the insulating substrate 5a is set to 50 μm, whereby the electrolyte membrane 7 having a thickness of 50 μm can be formed with high accuracy. .

本発明を実施するための第2の実施の形態について図6を参照して説明する。   A second embodiment for carrying out the present invention will be described with reference to FIG.

本実施の形態は、第1の実施の形態と基本的に略同じであるが、本実施の形態が第1の実施の形態と異なる点は、本実施の形態の電極ユニット4の製造方法が第1の実施の形態の電極ユニット4の製造方法と異なることである。なお、第1の実施の形態と同一部分は同一符号で示し、その説明も省略する。ここで、図6は本実施の形態の膜電極接合体3の製造工程の一部を概略的に示す斜視図である。   This embodiment is basically substantially the same as the first embodiment, except that the method of manufacturing the electrode unit 4 of the present embodiment is different from the first embodiment. This is different from the manufacturing method of the electrode unit 4 of the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is also omitted. Here, FIG. 6 is a perspective view schematically showing a part of the manufacturing process of the membrane electrode assembly 3 of the present embodiment.

図6に示すように、本実施の形態の電極ユニット4の製造方法では、絶縁性を有する3枚の絶縁性基板5aにそれぞれ第1貫通孔である複数の貫通孔6を形成し(図6(a)参照)、2枚の絶縁性基板5aの複数の貫通孔6内に電極である空気極8及び燃料極9をそれぞれ設け、1枚の絶縁性基板5aの複数の貫通孔6内に電解質膜7を設ける(図6(b)参照)。最後に、複数の空気極8が貫通孔6内に設けられた絶縁性基板5aと、燃料極9が貫通孔6内に設けられた絶縁性基板5aと、複数の電解質膜7が貫通孔6内に設けられた絶縁性基板5aとを、空気極8と燃料極9とで電解質膜7を挟持する複数の膜電極接合体3を形成するように積層する(図6(c)参照)。その後、第1の実施の形態と同様に、絶縁性基板5に設けられた複数の膜電極接合体3を電気的に接続する(図4(a)及び図4(b)参照)。これにより、電極ユニット4が完成する。   As shown in FIG. 6, in the manufacturing method of the electrode unit 4 of the present embodiment, a plurality of through holes 6 as first through holes are formed in three insulating substrates 5a having insulation properties (FIG. 6). (See (a)) The air electrode 8 and the fuel electrode 9 which are electrodes are provided in the plurality of through holes 6 of the two insulating substrates 5a, respectively, and are provided in the plurality of through holes 6 of the one insulating substrate 5a. An electrolyte membrane 7 is provided (see FIG. 6B). Finally, an insulating substrate 5a in which a plurality of air electrodes 8 are provided in the through-hole 6, an insulating substrate 5a in which the fuel electrode 9 is provided in the through-hole 6, and a plurality of electrolyte membranes 7 are provided in the through-hole 6 The insulating substrate 5a provided therein is laminated so as to form a plurality of membrane electrode assemblies 3 that sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 (see FIG. 6C). Thereafter, similarly to the first embodiment, the plurality of membrane electrode assemblies 3 provided on the insulating substrate 5 are electrically connected (see FIGS. 4A and 4B). Thereby, the electrode unit 4 is completed.

複数の貫通孔6を形成する工程では、絶縁性基板5aに例えば長方形状の複数の貫通孔6を並べて形成する。なお、ここでは、3枚の絶縁性基板5aを積層して、それらの絶縁性基板5aに一度に複数の貫通孔6を形成する。これにより、複数の貫通孔6は3枚の絶縁性基板5aにおける同じ位置に形成される。これらの長方形状の貫通孔6は、例えばその短手方向に並べて形成されている。貫通孔6の形成方法としては、例えば抜型による切断等が用いられる。なお、ここでは、貫通孔6を長方形状に形成しているが、これに限るものでなく、例えば円形状や正方形状に形成しても良い。   In the step of forming the plurality of through holes 6, for example, a plurality of rectangular through holes 6 are formed side by side on the insulating substrate 5a. Here, three insulating substrates 5a are stacked, and a plurality of through holes 6 are formed in these insulating substrates 5a at a time. Thereby, the plurality of through holes 6 are formed at the same position in the three insulating substrates 5a. These rectangular through holes 6 are formed side by side in the short direction, for example. As a method for forming the through-hole 6, for example, cutting by die cutting or the like is used. Here, the through hole 6 is formed in a rectangular shape, but the present invention is not limited to this, and may be formed in, for example, a circular shape or a square shape.

貫通孔6内に空気極8、燃料極9又は電解質膜7を設ける工程では、絶縁性基板5aを載置台(図示せず)等に載置し、載置した絶縁性基板5の貫通孔6内に、印刷又はキャスト製膜により燃料極9、電解質膜7又は空気極8を形成する。なお、印刷としては、例えばシルク印刷やインクジェット方式の印刷が行われる。   In the step of providing the air electrode 8, the fuel electrode 9 or the electrolyte membrane 7 in the through hole 6, the insulating substrate 5 a is mounted on a mounting table (not shown) and the through hole 6 of the mounted insulating substrate 5. Inside, the fuel electrode 9, the electrolyte membrane 7, or the air electrode 8 is formed by printing or cast film formation. As printing, for example, silk printing or ink jet printing is performed.

載置台は空気極8、燃料極9又は電解質膜7が接着しない材料で形成されているため、絶縁性基板5は設置台から容易に移動させることができる。また、空気極8、燃料極9又は電解質膜7が接着しない載置台を用いず、空気極8、燃料極9又は電解質膜7が接着しない材料で形成されたフィルム等を載置台の上に設けるようにしても良い。   Since the mounting table is formed of a material to which the air electrode 8, the fuel electrode 9, or the electrolyte membrane 7 does not adhere, the insulating substrate 5 can be easily moved from the installation table. Further, a film or the like formed of a material to which the air electrode 8, the fuel electrode 9 or the electrolyte membrane 7 is not bonded is provided on the mounting table without using the mounting table to which the air electrode 8, the fuel electrode 9 or the electrolyte membrane 7 is not bonded. You may do it.

3枚の絶縁性基板5を積層する工程では、燃料極9が貫通孔6内に設けられた絶縁性基板5a上に、複数の電解質膜7が貫通孔6内に設けられた絶縁性基板5aを積層し、その上に、複数の空気極8が貫通孔6内に設けられた絶縁性基板5aを積層する。このとき、3枚の絶縁性基板5では、それぞれの貫通孔6の位置が合わせられて積層される。これにより、空気極8と燃料極9とで電解質膜7を挟持する複数の膜電極接合体3が形成される。なお、3枚の絶縁性基板5aが一体になり、第1の実施の形態の絶縁性基板5を構成している。   In the step of stacking the three insulating substrates 5, an insulating substrate 5 a in which a plurality of electrolyte membranes 7 are provided in the through hole 6 on the insulating substrate 5 a in which the fuel electrode 9 is provided in the through hole 6. And an insulating substrate 5a in which a plurality of air electrodes 8 are provided in the through hole 6 is laminated thereon. At this time, the three insulating substrates 5 are stacked such that the positions of the respective through holes 6 are aligned. As a result, a plurality of membrane electrode assemblies 3 that sandwich the electrolyte membrane 7 between the air electrode 8 and the fuel electrode 9 are formed. The three insulating substrates 5a are integrated to form the insulating substrate 5 according to the first embodiment.

このような膜電極接合体3の製造方法でも、第1の実施の形態と同様な効果を奏する。さらに、本実施の形態では、3枚の絶縁性基板5a毎に空気極8、電解質膜7及び燃料極9を設けることから、絶縁性基板5aの厚さを変化させるだけで、空気極8、電解質膜7及び燃料極9の各厚さを制御することが可能になるため、精度良く空気極8、電解質膜7及び燃料極9を形成することができる。   Such a manufacturing method of the membrane electrode assembly 3 also has the same effect as that of the first embodiment. Further, in the present embodiment, since the air electrode 8, the electrolyte membrane 7 and the fuel electrode 9 are provided for every three insulating substrates 5a, the air electrode 8, only by changing the thickness of the insulating substrate 5a. Since the thicknesses of the electrolyte membrane 7 and the fuel electrode 9 can be controlled, the air electrode 8, the electrolyte membrane 7 and the fuel electrode 9 can be formed with high accuracy.

本発明の第1の実施の形態の燃料電池の構成を概略的に示す外観斜視図である。1 is an external perspective view schematically showing a configuration of a fuel cell according to a first embodiment of the present invention. 本発明の第1の実施の形態の燃料電池の構成を概略的に示す縦断側面図である。1 is a longitudinal side view schematically showing a configuration of a fuel cell according to a first embodiment of the present invention. 本発明の第1の実施の形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of manufacturing process of the electrode unit of the 1st Embodiment of this invention. 本発明の第1の実施の形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of manufacturing process of the electrode unit of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows schematically a part of manufacturing process of the electrode unit of the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態の電極ユニットの製造工程の一部を概略的に示す斜視図である。It is a perspective view which shows schematically a part of manufacturing process of the electrode unit of the 2nd Embodiment of this invention. 従来の燃料電池の構成を概略的に示す外観斜視図である。It is an external appearance perspective view which shows the structure of the conventional fuel cell roughly. 従来の燃料電池の構成を概略的に示す縦断側面図である。It is a vertical side view which shows the structure of the conventional fuel cell roughly.

符号の説明Explanation of symbols

1 燃料電池
3 膜電極接合体
4 膜電極素子(電極ユニット)
5 絶縁性基板
5a 絶縁性基板
6 第1貫通孔(貫通孔)
7 電解質膜
8 電極(空気極)
9 電極(燃料極)
10 電極接続部
11 第2貫通孔(スルホール)

1 Fuel Cell 3 Membrane Electrode Assembly 4 Membrane Electrode Element (Electrode Unit)
5 Insulating substrate 5a Insulating substrate 6 First through hole (through hole)
7 Electrolyte membrane 8 Electrode (Air electrode)
9 Electrode (fuel electrode)
10 Electrode connection 11 Second through hole (through hole)

Claims (14)

絶縁性を有する絶縁性基板に複数の第1貫通孔を形成する工程と、
複数の前記第1貫通孔に、電極で電解質膜を挟持する複数の膜電極接合体をそれぞれ設ける工程と、
を具備する膜電極素子の製造方法。
Forming a plurality of first through holes in an insulating substrate having insulating properties;
Providing each of the plurality of first through holes with a plurality of membrane electrode assemblies that sandwich the electrolyte membrane with electrodes;
The manufacturing method of the membrane electrode element which comprises this.
前記膜電極接合体を設ける工程では、前記第1貫通孔内に前記電極、前記電解質膜及び前記電極をその順番で積層するようにした請求項1記載の膜電極素子の製造方法。   The method of manufacturing a membrane electrode element according to claim 1, wherein in the step of providing the membrane electrode assembly, the electrode, the electrolyte membrane, and the electrode are laminated in that order in the first through hole. 前記膜電極接合体を設ける工程では、前記第1貫通孔内に前記電解質膜を設け、その電解質膜に電極を積層するようにした請求項1記載の膜電極素子の製造方法。   The method of manufacturing a membrane electrode element according to claim 1, wherein, in the step of providing the membrane electrode assembly, the electrolyte membrane is provided in the first through hole, and an electrode is laminated on the electrolyte membrane. 前記膜電極接合体を設ける工程では、印刷により前記電極及び前記電解質膜を形成するようにした請求項1、2又は3記載の膜電極素子の製造方法。   4. The method for manufacturing a membrane electrode element according to claim 1, wherein the electrode and the electrolyte membrane are formed by printing in the step of providing the membrane electrode assembly. 前記印刷はエマルジョンインクで前記電極を形成する請求項4記載の膜電極素子の製造方法。   The method for producing a membrane electrode element according to claim 4, wherein the printing is performed by forming the electrode with an emulsion ink. 前記膜電極接合体を設ける工程では、キャスト製膜により前記電解質膜を形成するようにした請求項1、2又は3記載の膜電極素子の製造方法。   The method for producing a membrane electrode element according to claim 1, 2 or 3, wherein in the step of providing the membrane electrode assembly, the electrolyte membrane is formed by cast film formation. 絶縁性を有する3枚の絶縁性基板にそれぞれ複数の第1貫通孔を形成する工程と、
2枚の前記絶縁性基板の複数の前記第1貫通孔内にそれぞれ電極を設け、1枚の前記絶縁性基板の複数の前記第1貫通孔内に電解質膜を設ける工程と、
複数の前記電極がそれぞれ設けられた2つの前記絶縁性基板と複数の前記電解質膜が設けられた前記絶縁性基板とを、前記電極で前記電解質膜を挟持する複数の膜電極接合体を形成するように積層する工程と、
を具備する膜電極素子の製造方法。
Forming a plurality of first through holes in three insulating substrates each having an insulating property;
Providing an electrode in each of the plurality of first through holes of the two insulating substrates, and providing an electrolyte film in the plurality of first through holes of the one insulating substrate;
A plurality of membrane electrode assemblies are formed by sandwiching the electrolyte membrane between the two insulating substrates each provided with the plurality of electrodes and the insulating substrate provided with the plurality of electrolyte membranes. And laminating steps,
The manufacturing method of the membrane electrode element which comprises this.
前記電極及び前記電解質膜を設ける工程では、印刷により前記電極及び前記電解質膜を形成するようにした請求項7記載の膜電極素子の製造方法。   8. The method of manufacturing a membrane electrode element according to claim 7, wherein in the step of providing the electrode and the electrolyte membrane, the electrode and the electrolyte membrane are formed by printing. 前記印刷はエマルジョンインクで前記電極を形成する請求項8記載の膜電極素子の製造方法。   The method for producing a membrane electrode element according to claim 8, wherein the printing is performed by forming the electrode with an emulsion ink. 前記電極及び前記電解質膜を設ける工程では、キャスト製膜により前記電解質膜を形成するようにした請求項7記載の膜電極素子の製造方法。   8. The method of manufacturing a membrane electrode element according to claim 7, wherein in the step of providing the electrode and the electrolyte membrane, the electrolyte membrane is formed by casting. 複数の前記膜電極接合体を電気的に接続する工程をさらに具備する請求項1ないし10のいずれか一記載の膜電極素子の製造方法。   The method of manufacturing a membrane electrode element according to any one of claims 1 to 10, further comprising a step of electrically connecting a plurality of the membrane electrode assemblies. 複数の前記膜電極接合体を電気的に接続する工程では、前記絶縁性基板に複数の第2貫通孔を形成し、その第2貫通孔内を通過して、隣接する前記膜電極接合体を電気的に接続する電極接続部を設けるようにした請求項11記載の膜電極素子の製造方法。   In the step of electrically connecting the plurality of membrane electrode assemblies, a plurality of second through holes are formed in the insulating substrate, and the adjacent membrane electrode assemblies are passed through the second through holes. 12. The method for manufacturing a membrane electrode element according to claim 11, wherein an electrode connection part for electrical connection is provided. 請求項1ないし12のいずれか一記載の膜電極素子の製造方法により形成された膜電極素子。   The membrane electrode element formed by the manufacturing method of the membrane electrode element as described in any one of Claims 1 thru | or 12. 請求項13記載の膜電極素子を備え、その膜電極素子が備える前記膜電極接合体に燃料を供給することで発電する燃料電池。

A fuel cell comprising the membrane electrode element according to claim 13 and generating electricity by supplying fuel to the membrane electrode assembly provided in the membrane electrode element.

JP2004101836A 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell Expired - Fee Related JP4674789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101836A JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101836A JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008272397A Division JP5047122B2 (en) 2008-10-22 2008-10-22 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Publications (2)

Publication Number Publication Date
JP2005285709A true JP2005285709A (en) 2005-10-13
JP4674789B2 JP4674789B2 (en) 2011-04-20

Family

ID=35183844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101836A Expired - Fee Related JP4674789B2 (en) 2004-03-31 2004-03-31 Membrane electrode element manufacturing method, membrane electrode element and fuel cell

Country Status (1)

Country Link
JP (1) JP4674789B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123042A (en) * 2005-10-27 2007-05-17 Equos Research Co Ltd Fuel cell system
JP2007323938A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell and fuel cell module
JP2008262909A (en) * 2007-04-10 2008-10-30 Samsung Electro Mech Co Ltd Fuel cell and its manufacturing method
JP2009224330A (en) * 2008-03-17 2009-10-01 Samsung Electro Mech Co Ltd Cell unit for fuel battery and its manufacturing method
JP2010257943A (en) * 2009-03-30 2010-11-11 Sanyo Electric Co Ltd Composite film, fuel cell, and method of manufacturing composite film
JP2012074286A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, membrane-electrode assembly, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly intermediate and membrane-electrode assembly
KR101894385B1 (en) * 2017-10-11 2018-09-04 울산과학기술원 Manufacturing Method of Anode for Secondary Battery and Anode for Secondary Battery Manufactured thereby
KR101909890B1 (en) 2016-09-01 2018-10-19 울산과학기술원 Rechargeable battery module using ion containing solution
WO2022151848A1 (en) * 2021-01-15 2022-07-21 苏州泰仑电子材料有限公司 System for preparing membrane electrode of fuel cell

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06349512A (en) * 1993-06-08 1994-12-22 Murata Mfg Co Ltd Fuel cell
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2003100315A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Fuel cell power generator and unit using its generator
JP2003142111A (en) * 2001-11-02 2003-05-16 Honda Motor Co Ltd Electrode for solid high polymer type fuel cell and its manufacturing method
JP2003168449A (en) * 2001-09-19 2003-06-13 Asahi Glass Co Ltd Manufacturing method of film electrode conjugate for solid polymer-type fuel cell
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
JP2003264003A (en) * 2002-03-11 2003-09-19 Yuasa Corp Direct-type fuel cell
JP2004281067A (en) * 2003-03-12 2004-10-07 Tohoku Ricoh Co Ltd Electrodes for fuel cell, and manufacturing method for both

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06349512A (en) * 1993-06-08 1994-12-22 Murata Mfg Co Ltd Fuel cell
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2003168449A (en) * 2001-09-19 2003-06-13 Asahi Glass Co Ltd Manufacturing method of film electrode conjugate for solid polymer-type fuel cell
JP2003100315A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Fuel cell power generator and unit using its generator
JP2003142111A (en) * 2001-11-02 2003-05-16 Honda Motor Co Ltd Electrode for solid high polymer type fuel cell and its manufacturing method
JP2003203646A (en) * 2001-12-27 2003-07-18 Hyundai Motor Co Ltd Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2003264003A (en) * 2002-03-11 2003-09-19 Yuasa Corp Direct-type fuel cell
JP2004281067A (en) * 2003-03-12 2004-10-07 Tohoku Ricoh Co Ltd Electrodes for fuel cell, and manufacturing method for both

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123042A (en) * 2005-10-27 2007-05-17 Equos Research Co Ltd Fuel cell system
JP2007323938A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell and fuel cell module
JP2008262909A (en) * 2007-04-10 2008-10-30 Samsung Electro Mech Co Ltd Fuel cell and its manufacturing method
JP2009224330A (en) * 2008-03-17 2009-10-01 Samsung Electro Mech Co Ltd Cell unit for fuel battery and its manufacturing method
JP2010257943A (en) * 2009-03-30 2010-11-11 Sanyo Electric Co Ltd Composite film, fuel cell, and method of manufacturing composite film
JP2012074286A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, membrane-electrode assembly, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly intermediate and membrane-electrode assembly
KR101909890B1 (en) 2016-09-01 2018-10-19 울산과학기술원 Rechargeable battery module using ion containing solution
KR101894385B1 (en) * 2017-10-11 2018-09-04 울산과학기술원 Manufacturing Method of Anode for Secondary Battery and Anode for Secondary Battery Manufactured thereby
WO2022151848A1 (en) * 2021-01-15 2022-07-21 苏州泰仑电子材料有限公司 System for preparing membrane electrode of fuel cell

Also Published As

Publication number Publication date
JP4674789B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5646170B2 (en) System and method for stacking fuel cells
US20040048132A1 (en) Fuel cell and electronic device using fuel cell
US20160211543A1 (en) Dummy cell and fuel cell stack
JP2012212678A (en) Fuel cell
JP2011204609A (en) Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer
US9742012B2 (en) Fuel cell and manufacturing method thereof having integrated membrane electrode assembly and gas diffusion layer
US8153285B2 (en) Micro fuel cell
CN108352540A (en) The monocell of fuel cell constructs and is laminated with the heap construction of the fuel cell of the fuel-cell single-cell
JP4674789B2 (en) Membrane electrode element manufacturing method, membrane electrode element and fuel cell
JP2003264003A (en) Direct-type fuel cell
US20090117413A9 (en) Micro fuel cell
US20100009237A1 (en) Fuel cell module and its use
WO2015101773A1 (en) Fuel cell flow plate
JP5047122B2 (en) Membrane electrode element manufacturing method, membrane electrode element and fuel cell
JP2005032607A (en) Fuel cell junction, fuel cell, and method of manufacturing fuel cell
US20040001990A1 (en) Fuel battery, and manufacturing method therefor
CN110534787B (en) Terminal plate for fuel cell
KR101343223B1 (en) Separator for fuel cell and method of manufacturing the same
JP5865346B2 (en) Fuel cell and fuel cell manufacturing method
US9455452B2 (en) Fuel cell and method of manufacture thereof
JP2008159305A (en) Electrolyte membrane-electrode assembly, its manufacturing method, and fuel cell using it
JP2002198072A (en) Solid polymer fuel cell
JP4872287B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP4366906B2 (en) Electronics
JP4083599B2 (en) Fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees