JPS5998473A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPS5998473A
JPS5998473A JP57206215A JP20621582A JPS5998473A JP S5998473 A JPS5998473 A JP S5998473A JP 57206215 A JP57206215 A JP 57206215A JP 20621582 A JP20621582 A JP 20621582A JP S5998473 A JPS5998473 A JP S5998473A
Authority
JP
Japan
Prior art keywords
groove
current
collector plate
plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57206215A
Other languages
Japanese (ja)
Other versions
JPH0151027B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57206215A priority Critical patent/JPS5998473A/en
Publication of JPS5998473A publication Critical patent/JPS5998473A/en
Publication of JPH0151027B2 publication Critical patent/JPH0151027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To offer such a fuel cell as being provided with a current outlet terminal capable of forming a continuous rating current passage, by performing no drilling or perforating, etc., for an insulating material and an adiabatic material. CONSTITUTION:Composed of a good conductive material, each of current outlet terminals 21a and 21b of a fuel cell consists of a current collector plate 31 formed in crosswise size equal to that of an end face of a layer-built body X, a groove 32 installed in this collector plate 31, a current outlet plate 34 installed projectingly in the extension of this groove 32 and an insulating layer 35 of aluminum oxide formed on both surfaces of this current outlet plate 34 and the collector plate 31 as thick as 300mum by means of a plasma spray process, for example. Therefore, since the current outlet plate 34 extends over in a direction of being crossed to the layer direction of the layer-built body X within the range of thickness in the collector plate 31, it can dispense with the necessity of installing any hole to lead the current outlet plate 34 into each of insulating materials 12a and 12b and an adiabatic material 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸塩型燃料電池に係シ、特に、電流取
出し端子構造を改良した燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell, and more particularly to a fuel cell having an improved current extraction terminal structure.

〔発明の背景技術およびその問題点〕[Background technology of the invention and its problems]

従来、水素のように酸化され易いガスと、酸素のように
酸化力のあるガスとを電気化学反応プロセスを経て反応
させることによシ直流電力を得るようにした燃料電池が
広く知られている。
Conventionally, fuel cells have been widely known that generate DC power by reacting a gas that is easily oxidized, such as hydrogen, with a gas that has oxidizing power, such as oxygen, through an electrochemical reaction process. .

この燃料電池は、使用する電解質によってシん酸型、溶
融炭酸塩型、固体電解質型等に大別される。
Fuel cells are broadly classified into cynic acid type, molten carbonate type, solid electrolyte type, etc. depending on the electrolyte used.

ところで、上記のような燃料電池のうち、溶融炭酸塩型
の燃料電池は、650℃近辺の温度で動作させるように
したもので、その主要部は通常、第1図に示すように構
成されている。すなわち、炭酸リチウム、炭酸カリウム
等の炭酸塩の電解質と、リチウムアルミネート等のセラ
ミック系保持材とを平板状に一体化してなる電解質層1
の両面に上記電解質層1の縦横寸法に比較して一方の寸
法だけが狭く形成されたニッケル合金系のガス拡散種2
 a * 2bを互いに直交するように当てがって単位
電池3を構成し、この単位電池を複数個、相互間に双極
性隔離板4を介在させて積層した積層体Xに構成されて
いる。
By the way, among the above-mentioned fuel cells, molten carbonate fuel cells are designed to operate at temperatures around 650°C, and their main parts are usually constructed as shown in Figure 1. There is. That is, an electrolyte layer 1 formed by integrating a carbonate electrolyte such as lithium carbonate or potassium carbonate and a ceramic support material such as lithium aluminate into a flat plate.
A nickel alloy-based gas diffusion species 2 is formed on both sides of the electrolyte layer 1, with only one dimension narrower than the vertical and horizontal dimensions of the electrolyte layer 1.
A * 2b are applied perpendicularly to each other to constitute a unit battery 3, and a laminate X is constructed by laminating a plurality of unit batteries with bipolar separators 4 interposed between them.

各双極性隔離板4は、前記電解質層1の縦横寸法と等し
い縦横寸法にステンレス鋼板等で゛形成された隔離板本
体5と、この隔離板本体5の両面にそれぞれ形成され図
中太矢印Pで示す如く燃料ガスを通流させるだめの通路
Aを構成する複数の溝6および図中太矢印Qで示す如く
酸化剤ガスを通流させるための通路Bを構成する上記溝
6とは直交する複数の溝7とで構成されている。谷溝6
,7は、隔離板本体5の両側部C,Dを除いた中央部分
に平行に形成されており、これら溝6,7が設けられて
いる部分の両側には前述したガス拡散種の両側縁を係止
する係止用段部8 a r 8 bが形成されている。
Each bipolar separator 4 includes a separator main body 5 formed of a stainless steel plate or the like with vertical and horizontal dimensions equal to the vertical and horizontal dimensions of the electrolyte layer 1, and a separator main body 5 formed on both sides of the separator main body 5. The grooves 6 are perpendicular to the plurality of grooves 6 which constitute a passage A through which fuel gas flows, as shown in , and the grooves 6 which constitute a passage B through which oxidizing gas flows, as shown by thick arrows Q in the figure. It is composed of a plurality of grooves 7. Valley groove 6
, 7 are formed parallel to the central part of the separator main body 5 excluding the side parts C and D, and on both sides of the part where these grooves 6 and 7 are provided, the opposite side edges of the gas diffusion species described above are formed. A locking step portion 8 a r 8 b for locking is formed.

すなわち、ガス拡散種2 a + 2bは、第2図に示
すように一方の面が電解質層1に接触し、他方の面が上
述した〜係止用段部8 a r 8 bおよび溝6(7
)を構成する凸部に接触した状態で位置保持される大き
さに形成されている。そして、隔離板本体5の前記溝6
,7の設けられていない両側部C,Dを使ってガスシー
ルするようにシテいる。
That is, the gas diffusion species 2 a + 2 b have one surface in contact with the electrolyte layer 1 as shown in FIG. 7
) is formed in a size that allows it to be held in position while in contact with the convex portion that makes up the part. and the groove 6 of the separator body 5.
, 7 are not provided, so as to seal the gas.

しかして、主要部が上記のように構成される溶融炭酸塩
型燃料電池は、一般に、第3図に示すように積層体Xの
両端面に電流取出し端子11h、llbを当てがった状
態で、その外側に絶縁板12a + 12 bを当てが
い、これら絶縁板12a。
Therefore, in a molten carbonate fuel cell whose main part is constructed as described above, the current extraction terminals 11h and llb are generally applied to both end surfaces of the laminate X, as shown in FIG. , insulating plates 12a + 12b are placed on the outside thereof, and these insulating plates 12a.

12b間を積層体Xのコーナ部外方位置において絶縁性
ボルト13で締付けて一体化し、さらに積層体Xの4つ
の側面に前述した各ガスを通流させるためのマニホール
ド(図示せず。)を圧接接続し、これらマニホールドの
外面および前記絶縁板12aの外面を断熱材14で覆っ
て1つの発電ユニットを構成したものとなっている。
12b are integrated by tightening them with insulating bolts 13 at the outer corners of the laminate X, and furthermore, a manifold (not shown) is provided for flowing each of the aforementioned gases through the four sides of the laminate X. They are press-connected and the outer surfaces of these manifolds and the outer surface of the insulating plate 12a are covered with a heat insulating material 14 to form one power generation unit.

そして、前記電流取出し端子11a、11bは通常、積
層体Xの端面に圧接する良導電材製の集電板15と、こ
の集電板15の背面に上記集電板15に対して直角に接
続された電流取出し板16とで構成され、上記電流取出
し板16が絶縁材と断熱材とに設けられた孔17.18
を通して外部へ導かれるようになっている。なお、図中
19は絶縁材を示している。
The current extraction terminals 11a and 11b are normally connected to a current collector plate 15 made of a highly conductive material that is pressed against the end surface of the laminate X, and to the back surface of the current collector plate 15 at right angles to the current collector plate 15. The current extraction plate 16 has holes 17 and 18 provided in an insulating material and a heat insulating material.
It is designed to be led to the outside through. Note that 19 in the figure indicates an insulating material.

しかしながら、上記のように構成された従来の溶融炭酸
塩型燃料電池にあり′Cは、電流取出し端子11h、l
lbをいわゆる丁字形に形成しているので、電流取出し
板16を外部へ導き出すために必ず絶縁板12a、12
bおよび断熱材14に孔17.Igを設ける必要があシ
、全体の製作に長時間を要する問題があった。特に、溶
融炭酸塩型燃料電池の場合には、650℃と言った高温
領域で運転されるので断熱材14として、断熱性に勝れ
たアルミナ、シリカ系のセラミック材・を用いることが
望まれる。しかし、これらのセラミック材は機械的強度
性に劣るので孔あけ加工は細心の注意を払って行なわな
ければ碌らず、この結果、製作に長時間を要するばか)
か孔あけ後のセラミック材の機械的強度をさらに低下さ
せてしまう問題があった。
However, in the conventional molten carbonate fuel cell configured as described above, 'C' is the current extraction terminal 11h, l
Since lb is formed in a so-called T-shape, insulating plates 12a and 12 must be connected in order to lead out current extraction plate 16 to the outside.
b and holes 17 in the insulation material 14. There was a problem in that it was necessary to provide an Ig, and the entire production required a long time. In particular, in the case of molten carbonate fuel cells, since they operate in a high temperature range of 650°C, it is desirable to use alumina or silica-based ceramic materials with excellent heat insulation properties as the heat insulating material 14. . However, these ceramic materials have poor mechanical strength, so drilling must be done with great care, resulting in long manufacturing times.
However, there is a problem in that the mechanical strength of the ceramic material after drilling is further reduced.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、絶縁材や断熱材に孔あけ加工等
を施さずに、しがも他に悪影響を与えることなしに通電
路を形成できる電流取出し端子を備えた溶融炭酸塩型燃
料電池を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to allow the insulation material to pass through the insulation material without having to drill holes or the like, without having any adverse effects on other materials. An object of the present invention is to provide a molten carbonate fuel cell equipped with a current extraction terminal capable of forming an electric path.

〔発明の概要〕[Summary of the invention]

本発明に係る溶融炭酸塩型燃料電池は、集電板と、この
集電板の厚み範囲内で集電板の集電面と平行に延びるよ
うに設けられた電流取出し板とからなる電流取出し端子
を組込んだことを特徴としている。
The molten carbonate fuel cell according to the present invention has a current extraction plate comprising a current collector plate and a current extraction plate provided to extend parallel to the current collecting surface of the current collector plate within the thickness range of the current collector plate. It is characterized by a built-in terminal.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、電流取出し端子の電流取出し板は、
集電板□の厚み範囲内で、かつ積層体の積層方向と直交
する方向に延出していることになる。したがって、従来
の燃料電池のように締付は用の絶縁板やその外側に配置
される断熱材に電流取出し板を貫通させるための孔を設
ける必要はなく、この結果、断熱材としてセラミック材
の使用を可能化できるはかシか、製作の容易化を実現す
ることができる。また、電流取出し板を、集電板の厚み
の範囲内に位置させているので、集電板を介しての積層
体締付特性に悪影響を与えるようなこともカ<、マた、
マニホールドの圧接装着にも悪影響を与えることがなく
、結局、他に悪影響を与えずに製作の容易化を実現でき
る。
With the above configuration, the current extraction plate of the current extraction terminal is
It extends within the thickness range of the current collector plate □ and in a direction perpendicular to the lamination direction of the laminate. Therefore, unlike conventional fuel cells, there is no need to provide a hole for passing the current extraction plate through the insulating plate used for tightening or the insulating material placed outside the insulating plate, and as a result, ceramic material is used as the insulating material. It is possible to realize the ease of fabrication by making it possible to use it. In addition, since the current extraction plate is located within the thickness range of the current collector plate, there is a possibility that the clamping characteristics of the laminate through the current collector plate may be adversely affected.
This does not adversely affect the press-fitting of the manifold, and after all, it is possible to simplify manufacturing without adversely affecting others.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の要部だけを示すもので第3図と同一部分は同一符号で
示しである。したがって、重複する部分の説明は省略す
る。
FIG. 4 shows only the essential parts of a molten carbonate fuel cell according to an embodiment of the present invention, and the same parts as in FIG. 3 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例に係る燃料電池が従来のものと異なる点は、
積層体Xの両端面に圧接接続される電流取出し端子21
a、21bにある。すなわち、電流取出し端子J 1 
a e J 1 bは第5図に示すように良導電材で積
層体Xの端面の縦横寸法と等しい縦横寸法に形成された
集電板31と、この集電板31の積層体X側に位置する
面とは反対側に位置する面に設けられた溝32と、良導
電材で溝32の深さと等しい厚みで、かつ溝32の幅と
等しい幅に形成され、一部分が上記溝32を埋める関係
に集電板31に皿ビス33あるいは溶接等によって固定
され、残シの部分が上記溝32からこの溝32の延長上
に突出して設けられた電流取出し板34と、この電流取
出し板34および集電板31の積層体X側に位置する面
とは反対側に位置する面上に、たとえばプラズマスプレ
ー法によって厚さ300μm程度に形成された酸化アル
ミニウムの絶縁層35とで構成されている。
The difference between the fuel cell according to this example and the conventional one is that
Current extraction terminals 21 are press-connected to both end faces of the laminate X.
a, 21b. In other words, the current extraction terminal J 1
a e J 1 b, as shown in FIG. A groove 32 is formed on a surface opposite to the surface in which the groove 32 is located, and a highly conductive material is formed with a thickness equal to the depth of the groove 32 and a width equal to the width of the groove 32, with a part of the groove 32 A current extraction plate 34 is fixed to the current collecting plate 31 by countersunk screws 33 or welding in a filling relationship, and the remaining portion is provided to protrude from the groove 32 on an extension of this groove 32, and this current extraction plate 34 and an insulating layer 35 of aluminum oxide formed to a thickness of about 300 μm by, for example, a plasma spray method, on the surface of the current collector plate 31 located on the opposite side to the surface located on the side of the laminate X. .

このような構成であると、電流取出し板34は、集電板
31の厚みの範囲内において積層体Xの積層方向と直交
する方向に延出していることになるので、絶縁材12&
、12bや断熱材14に電流取出し板34を導くための
孔などを設ける必要性をなくすことができる。また、上
記構成でちると電流取出し端子21a(21b)の絶縁
材12a、12bに接触する面を平坦化でき、しかも上
記面の各部を一様に絶縁材12a、12bに接触させる
ことができる。したがって、絶縁性ポルト13を使用し
、ての締付特性も向上させることができる。また、集電
板31の厚み範囲で、かつ溝32の形成されてい々い部
分の端面でマニホールドのガスシールを行なうことがで
きるので、上記構成によってガスシール構成に変更を与
えるようなとともなく、結局前述した効果が得られる。
With such a configuration, the current extraction plate 34 extends in the direction perpendicular to the lamination direction of the laminate X within the thickness range of the current collector plate 31, so that the insulating material 12 &
, 12b and the heat insulating material 14 can eliminate the need to provide holes for guiding the current extraction plate 34. Furthermore, with the above configuration, the surface of the current extraction terminal 21a (21b) that contacts the insulating materials 12a, 12b can be flattened, and each part of the surface can be uniformly brought into contact with the insulating materials 12a, 12b. Therefore, by using the insulating port 13, the tightening characteristics can also be improved. In addition, since the gas seal of the manifold can be performed within the thickness range of the current collector plate 31 and at the end face of the greatest part where the groove 32 is formed, the above configuration does not require any change in the gas seal configuration. , the above-mentioned effect can be obtained.

なお、電流取出し端子は、単に導電性の点に限らず耐食
性の点も備えていなければガらないことは勿論である。
It goes without saying that the current extraction terminal will not fail unless it has not only electrical conductivity but also corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶融炭酸塩型燃料電池の主要部分解斜視図、第
2図は同主要部の局部的側面図、第3図は同電池の要部
縦断面図、第4図は本発明の一実施例に係る溶融炭酸塩
型燃料電池の要部縦断面図、第5図は同要部を構成する
一要寒である電流取出し端子の斜視図である。 X・・・積層体、21a*21b・・・電流取出し端子
、31・・・集電板、32・・・溝、34・・・電流取
出し板、35・・・絶縁層。 出願人 工業技術院長  石板誠− 第1図 第2図 第3囚 第4図 第5図 (21b)
Fig. 1 is an exploded perspective view of the main parts of the molten carbonate fuel cell, Fig. 2 is a local side view of the main parts, Fig. 3 is a vertical cross-sectional view of the main parts of the cell, and Fig. 4 is the main part of the cell. FIG. 5 is a longitudinal cross-sectional view of a main part of a molten carbonate fuel cell according to an embodiment, and a perspective view of a current extraction terminal, which is one of the main parts constituting the main part. X... Laminated body, 21a*21b... Current extraction terminal, 31... Current collector plate, 32... Groove, 34... Current extraction plate, 35... Insulating layer. Applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology - Figure 1 Figure 2 Figure 3 Prisoner Figure 4 Figure 5 (21b)

Claims (1)

【特許請求の範囲】[Claims] 一対のガス拡散極間に炭酸塩電解質層を介在させてなる
複数の単位燃料電池を、これら単位燃料電池相互間に、
両面に燃料ガス通路および酸化剤ガス通路を有した双極
性隔離板を介在させて積層した積層体と、この積層体の
両端面に電気的に接続された一対の電流取出し端子とを
備えてなる溶融炭酸塩型燃料電池において、前記各電流
取出し端子は、前記積層体の端面に圧接して設けられる
良導電材製の集電板と、この集電板の前記積層体側に位
置する面とは反対側に位置する面に設けられた溝と、こ
の溝の深さと等しい厚みで、かつ上記溝の幅と等しい幅
に形成され、一部分が上記溝を埋める関係に前記集電板
に固定されるとともに残シの部分が上記溝からこの溝の
延長上に突出して設けられた電流取出し板と、この電流
取出し板および前記集電板の前記積層体側に位置する面
とは反対側に位置する面上に設けられた電気絶縁層とで
構成されてなることを特徴とする溶融炭酸塩型燃料電池
A plurality of unit fuel cells each having a carbonate electrolyte layer interposed between a pair of gas diffusion electrodes, between these unit fuel cells,
It comprises a laminated body laminated with bipolar separators having fuel gas passages and oxidant gas passages on both sides, and a pair of current extraction terminals electrically connected to both end faces of this laminated body. In the molten carbonate fuel cell, each of the current extraction terminals includes a current collector plate made of a highly conductive material that is provided in pressure contact with an end surface of the laminate, and a surface of the current collector plate located on the laminate side. It is formed to have a thickness equal to the depth of the groove provided on the opposite side and a width equal to the width of the groove, and is fixed to the current collector plate in such a manner that a portion thereof fills the groove. and a current extraction plate provided with a remaining portion protruding from the groove on an extension of the groove, and a surface of the current extraction plate and the current collector plate located on the opposite side to the surface located on the laminate side. A molten carbonate fuel cell comprising: an electrically insulating layer provided thereon;
JP57206215A 1982-11-26 1982-11-26 Molten carbonate type fuel cell Granted JPS5998473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206215A JPS5998473A (en) 1982-11-26 1982-11-26 Molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206215A JPS5998473A (en) 1982-11-26 1982-11-26 Molten carbonate type fuel cell

Publications (2)

Publication Number Publication Date
JPS5998473A true JPS5998473A (en) 1984-06-06
JPH0151027B2 JPH0151027B2 (en) 1989-11-01

Family

ID=16519668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206215A Granted JPS5998473A (en) 1982-11-26 1982-11-26 Molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS5998473A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000862A1 (en) * 1997-06-27 1999-01-07 Plug Power Inc. Current conducting end plate of fuel cell assembly
EP0981175A3 (en) * 1998-08-20 2000-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
JP2001223018A (en) * 1999-11-30 2001-08-17 Mitsubishi Electric Corp Fuel cell and power supply using it
US7713643B2 (en) 2004-03-25 2010-05-11 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
JP6297199B1 (en) * 2017-01-12 2018-03-20 日本碍子株式会社 End current collecting member and cell stack device
JP6309151B1 (en) * 2017-01-12 2018-04-11 日本碍子株式会社 End current collecting member and cell stack device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000862A1 (en) * 1997-06-27 1999-01-07 Plug Power Inc. Current conducting end plate of fuel cell assembly
US6001502A (en) * 1997-06-27 1999-12-14 Plug Power, L.L.C. Current conducting end plate of fuel cell assembly
EP0981175A3 (en) * 1998-08-20 2000-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
US6329093B1 (en) 1998-08-20 2001-12-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
JP2001223018A (en) * 1999-11-30 2001-08-17 Mitsubishi Electric Corp Fuel cell and power supply using it
US7713643B2 (en) 2004-03-25 2010-05-11 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
JP6297199B1 (en) * 2017-01-12 2018-03-20 日本碍子株式会社 End current collecting member and cell stack device
JP6309151B1 (en) * 2017-01-12 2018-04-11 日本碍子株式会社 End current collecting member and cell stack device
JP2018113249A (en) * 2017-01-12 2018-07-19 日本碍子株式会社 End part current collector member and cell stack device

Also Published As

Publication number Publication date
JPH0151027B2 (en) 1989-11-01

Similar Documents

Publication Publication Date Title
US6132895A (en) Fuel cell
US7422819B2 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
KR20170103006A (en) Fuel cell stack
US6649296B1 (en) Unitized cell solid oxide fuel cells
JP2002280049A (en) Integrated type fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
JP2015109225A (en) Sealing structure for fuel cell
JPS5998473A (en) Molten carbonate type fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2013114784A (en) Fuel cell
JP6890040B2 (en) Electrochemical reaction cell stack
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP4984374B2 (en) Fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP6818870B2 (en) Electrochemical cell stack
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
JP6766005B2 (en) Electrochemical reaction cell stack
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
JPH07153472A (en) Current collecting plate for fuel cell
JPH0260063A (en) Stacked fuel cell
CN107431217B (en) Array of electrochemical cells and uses thereof
JP2021022460A (en) Electrochemical reaction cell stack
JPH06196198A (en) Solid electrolyte type fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell