JP2006107898A - Separator for flat type polymer electrolyte fuel cell - Google Patents

Separator for flat type polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006107898A
JP2006107898A JP2004292267A JP2004292267A JP2006107898A JP 2006107898 A JP2006107898 A JP 2006107898A JP 2004292267 A JP2004292267 A JP 2004292267A JP 2004292267 A JP2004292267 A JP 2004292267A JP 2006107898 A JP2006107898 A JP 2006107898A
Authority
JP
Japan
Prior art keywords
separator
mea
fuel cell
electrode assembly
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004292267A
Other languages
Japanese (ja)
Other versions
JP4862256B2 (en
Inventor
Toru Serizawa
徹 芹澤
Yasuhiro Uchida
泰弘 内田
Takanori Maeda
高徳 前田
Yutaka Yagi
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004292267A priority Critical patent/JP4862256B2/en
Priority to US10/584,902 priority patent/US8039168B2/en
Priority to DE112005000131T priority patent/DE112005000131T5/en
Priority to PCT/JP2005/018715 priority patent/WO2006038701A1/en
Priority to KR1020067013595A priority patent/KR100755211B1/en
Publication of JP2006107898A publication Critical patent/JP2006107898A/en
Priority to US13/232,605 priority patent/US20120003567A1/en
Application granted granted Critical
Publication of JP4862256B2 publication Critical patent/JP4862256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator with a very small contact resistance for a flat type polymer electrolyte fuel cell having a high effective area rate of unit cells. <P>SOLUTION: The separator for a flat type polymer electrolyte fuel cell is composed of a current collecting part on which not less than two pieces of conductive unit plates having a plurality of through-holes are arranged on a plane through gaps, and an electrically insulated outside frame body and a membrane-electrode complex body (MEA) side frame body integrated so as to pinch the current collecting part. The outside frame body and the membrane-electrode complex body (MEA) side frame body are made so as to have openings corresponding to the arrayed position of the conductive unit plates, and the conductive unit plate is formed into a shape of protruding toward the openings of the MEA side frame body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用のセパレータに関し、特に平面型の高分子電解質型燃料電池用のセパレータに関する。   The present invention relates to a separator for a fuel cell, and more particularly to a separator for a planar type polymer electrolyte fuel cell.

燃料電池は、簡単には、外部より燃料(還元剤)と酸素または空気(酸化剤)を連続的に供給し、電気化学的に反応させて電気エネルギーを取り出す装置で、その作動温度、使用燃料の種類、用途などで分類される。また、最近では、主に使用される電解質の種類によって、大きく、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、りん酸型燃料電池、高分子電解質型燃料電池、アルカリ水溶液型燃料電池の5種類に分類させるのがー般的である。
これらの燃料電池は、メタン等から生成された水素ガスを燃料とするものであるが、最近では、燃料としてメタノール水溶液をダイレクトに用いるダイレクトメタノール型燃料電池(以下、DMFCとも言う)も知られている。
なかでも、固体高分子膜を2種類の電極で挟み込み、更に、これらの部材をセパレータで挟んだ構成の固体高分子型燃料電池(以下、PEFCとも言う)が注目されている。
A fuel cell is simply a device that continuously supplies fuel (reducing agent) and oxygen or air (oxidant) from the outside, and reacts electrochemically to extract electrical energy. It is classified by type, use, etc. In recent years, depending on the type of electrolyte used, it is largely divided into solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, and alkaline aqueous fuel cells. Generally, it is classified into 5 types.
These fuel cells use hydrogen gas generated from methane or the like as a fuel. Recently, a direct methanol fuel cell (hereinafter also referred to as DMFC) that directly uses an aqueous methanol solution as a fuel is also known. Yes.
In particular, a polymer electrolyte fuel cell (hereinafter also referred to as PEFC) having a structure in which a solid polymer membrane is sandwiched between two kinds of electrodes and these members are sandwiched between separators has attracted attention.

このPEFCにおいては、固体高分子膜の両側に、それぞれ、電極を配置した単位セルを複数個積層し、その起電力を目的に応じて大きくした、スタック構造のものが一般的である。単位セル間に配設されるセパレータは、一般に、そのー方の側面に、隣接するー方の単位セルに燃料ガスを供給するための燃料ガス供給用溝が形成されている。このようなセパレータでは、セパレータ面に沿って、燃料ガス、酸化剤ガスが供給される。
PEFCのセパレータとしては、グラファイト板を削り出して溝加工を施したセパレータ、樹脂にカーボンを練り込んだカーボンコンパウンドのモールド製セパレータ、エッチングなどで溝加工を施した金属製セパレータ、金属材料の表面部を耐食性の樹脂で覆ったセパレータ等が知られている。これらのセパレータは、いずれも必要に応じて、燃料ガス供給用溝、及び/または、酸化剤ガス供給用溝が形成されている。
In this PEFC, a stack structure is generally used in which a plurality of unit cells each having an electrode are stacked on both sides of a solid polymer film, and the electromotive force is increased according to the purpose. In general, the separator disposed between the unit cells is provided with a fuel gas supply groove for supplying fuel gas to the adjacent unit cell on the side surface. In such a separator, fuel gas and oxidant gas are supplied along the separator surface.
PEFC separators include a graphite plate cut into a groove, a carbon compound mold separator made by kneading carbon into a resin, a metal separator that has been grooved by etching, etc., and the surface of the metal material A separator or the like in which is covered with a corrosion-resistant resin is known. Each of these separators is formed with a groove for supplying fuel gas and / or a groove for supplying oxidant gas as required.

このスタック構造の燃料電池の他に、例えば、携帯端末用の燃料電池等のように、起電力をそれほど必要としないで、平面型で、できるだけ薄い事が要求される場合もある。しかし、平面状に単位セルを複数配列させ、これらを電気的に直列に接続する平面型の場合には、燃料及び酸素の供給が場所により不均一となるという問題もあった。
そこで、この燃料供給の不均一性を改善するために、膜電極複合体(MEA)に接しているセパレータの面に対して、垂直方向に多数の貫通孔を形成し、この貫通孔から燃料および酸素を供給する構造のセパレータが考えられている(特許文献1)。
尚、本発明では、燃料電池の燃料供給側セパレータと酸素供給側のセパレータとの間に位置する電極部を含む複合体、例えば、順に、ガス拡散層、触媒層からなる燃料極、高分子電解質膜、触媒層からなる酸素極、ガス拡散層が積層されてなる膜等のような複合体を、膜電極複合体(MEA)と言う。
特開2003−203647号公報
In addition to this stack structure fuel cell, there is a case where it is required to be as thin as possible with a flat type without requiring an electromotive force as much as a fuel cell for a portable terminal, for example. However, in the case of a planar type in which a plurality of unit cells are arranged in a plane and these are electrically connected in series, there is a problem that the supply of fuel and oxygen becomes uneven depending on the location.
Therefore, in order to improve the nonuniformity of the fuel supply, a large number of through holes are formed in a direction perpendicular to the surface of the separator in contact with the membrane electrode assembly (MEA), and fuel and A separator having a structure for supplying oxygen has been considered (Patent Document 1).
In the present invention, a composite including an electrode portion positioned between a fuel supply side separator and an oxygen supply side separator of a fuel cell, for example, a gas diffusion layer, a fuel electrode comprising a catalyst layer, and a polymer electrolyte in that order. A composite such as a membrane, an oxygen electrode composed of a catalyst layer, and a membrane formed by laminating a gas diffusion layer is called a membrane electrode assembly (MEA).
JP 2003-203647 A

しかしながら、上述のようなMEAを燃料供給側セパレータと酸素供給側セパレータで挟持した従来の平面型のDMFCでは、発電時のMEAの膨潤に伴って、MEAと燃料供給側セパレータや酸素供給側セパレータとの間の接触が不充分となり、接触抵抗が大きくなってしまうという問題があった。これを防止するために、MEAの両側に位置する燃料供給側セパレータと酸素供給側セパレータをボルトで締め付けることにより、各層の接触を確実にすることが考えられる。しかし、平面状に複数配列された単位セル間に、上記の締め付け作用に必要な幅を設けると、単位セルの有効面積が減少するという問題があった。
本発明は、上記のような実情に鑑みてなされたものであり、接触抵抗が極めて小さく、単位セルの有効面積率が高い薄型の高分子電解質型燃料電池を可能とするセパレータを提供することを目的とする。
However, in the conventional planar type DMFC in which the MEA as described above is sandwiched between the fuel supply side separator and the oxygen supply side separator, the MEA, the fuel supply side separator, the oxygen supply side separator, There is a problem that the contact between the two becomes insufficient and the contact resistance increases. In order to prevent this, it can be considered that the fuel supply side separator and the oxygen supply side separator located on both sides of the MEA are tightened with bolts to ensure the contact of each layer. However, if a width necessary for the above-described tightening action is provided between a plurality of unit cells arranged in a planar shape, there is a problem that the effective area of the unit cell is reduced.
The present invention has been made in view of the above situation, and provides a separator that enables a thin polymer electrolyte fuel cell with extremely low contact resistance and high unit cell effective area ratio. Objective.

このような目的を達成するために、本発明は、単位セルを平面的に配列した平面型の高分子電解質型燃料電池用のセパレータにおいて、複数の貫通孔を有する単位導電性基板が空隙部を介して平面的に2個以上配列された集電部と、該集電部を挟持するように一体化された電気絶縁性の外側枠体と膜電極複合体(MEA)側枠体とを備え、前記外側枠体と前記膜電極複合体(MEA)側枠体は、それぞれ前記単位導電性基板の配列位置に対応した開口部を有し、前記単位導電性基板は、前記膜電極複合体(MEA)側枠体の前記開口部方向に突出した形状であるような構成とした。   In order to achieve such an object, the present invention provides a separator for a planar type polymer electrolyte fuel cell in which unit cells are arranged in a plane, wherein the unit conductive substrate having a plurality of through holes has voids. And two or more current collectors arranged in a plane, an electrically insulating outer frame and a membrane electrode assembly (MEA) side frame integrated so as to sandwich the current collector. The outer frame body and the membrane electrode assembly (MEA) side frame body each have an opening corresponding to the arrangement position of the unit conductive substrate, and the unit conductive substrate includes the membrane electrode assembly ( MEA) The side frame was configured to protrude in the direction of the opening.

本発明の他の態様として、前記単位導電性基板が前記膜電極複合体(MEA)側枠体の開口部の面積よりも小さい範囲でドーム状に突出した形状であるような構成とし、前記ドーム状の突出形状は、懸垂線をなすものであるような構成とした。
本発明の他の態様として、前記単位導電性基板が前記膜電極複合体(MEA)側枠体の開口部の面積よりも小さい面積でオフセットして突出した形状であるような構成とした。
本発明の他の態様として、前記膜電極複合体(MEA)側枠体および前記外側枠体が樹脂、樹脂と無機材料との複合体、絶縁性被膜を備えた金属、および、セラミックのいずれかであるような構成とした。
As another aspect of the present invention, the unit conductive substrate is configured to project in a dome shape within a range smaller than the area of the opening of the membrane electrode assembly (MEA) side frame, and the dome The projecting shape was shaped to form a catenary line.
As another aspect of the present invention, the unit conductive substrate has a configuration in which it protrudes with an offset smaller than the area of the opening of the membrane electrode assembly (MEA) side frame.
As another aspect of the present invention, the membrane electrode assembly (MEA) side frame and the outer frame are either a resin, a composite of a resin and an inorganic material, a metal provided with an insulating coating, or a ceramic. It was set as such a structure.

本発明によれば、セパレータを構成する単位導電性基板が膜電極複合体(MEA)側枠体の開口部方向に突出した形状であるため、平面型の高分子電解質型燃料電池において膜電極複合体(MEA)に膨潤が生じても、その膨潤応力に抗する作用を単位導電性基板がなすのでセパレータは高い強度を具備したものであり、これにより単位導電性基板と膜電極複合体(MEA)との確実な接触が維持され、平面型の高分子電解質型燃料電池は、接触抵抗が極めて少なく発電特性の高いものとなる。   According to the present invention, since the unit conductive substrate constituting the separator has a shape protruding in the direction of the opening of the membrane electrode assembly (MEA) side frame, the membrane electrode composite in the planar polymer electrolyte fuel cell Even if the body (MEA) swells, the separator has a high strength because the unit conductive substrate acts against the swelling stress, and thus the unit conductive substrate and the membrane electrode assembly (MEA) The flat polymer electrolyte fuel cell has extremely low contact resistance and high power generation characteristics.

以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明の平面型の高分子電解質型燃料電池用のセパレータの一実施形態を示す斜視図であり、図2は図1に示されるセパレータを構成する集電部、外側枠体、膜電極複合体(MEA)側枠体を離間させた状態で示す斜視図であり、図3は図1に示されるセパレータのA−A線矢視断面図である。図1〜図3において、本発明のセパレータ1は、集電部2を挟持するように一体化された外側枠体4と膜電極複合体(MEA)側枠体5とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of a separator for a planar polymer electrolyte fuel cell of the present invention, and FIG. 2 is a current collector, an outer frame, and a membrane constituting the separator shown in FIG. FIG. 3 is a perspective view showing the electrode assembly (MEA) side frame in a separated state, and FIG. 3 is a cross-sectional view taken along line AA of the separator shown in FIG. 1 to 3, the separator 1 of the present invention includes an outer frame 4 and a membrane electrode assembly (MEA) side frame 5 that are integrated so as to sandwich the current collector 2.

セパレータ1を構成する集電部2は、突出部3を備えた長方形状の単位導電性基板2A,2B,2Cが空隙部6を介して平面的に3個配列されたものであり、各単位導電性基板2A,2B,2Cは、突出部3に複数の貫通孔2aを有するものである。上記の突出部3は、後述する膜電極複合体(MEA)側枠体5の開口部5A,5B,5C内に入り込むような面積、形状でオフセットしたものであり、突出部3の表面は平坦面である。
このような集電部2(単位導電性基板2A,2B,2C)に使用する導電性の材料としては、電気導電性が良く、所定の強度が得られ、加工性の良いものが好ましく、ステンレス、冷間圧延鋼板、アルミニウム、チタン、銅等が挙げられる。
The current collector 2 constituting the separator 1 is a unit in which three rectangular unit conductive substrates 2A, 2B, and 2C having protrusions 3 are arranged in a plane via gaps 6, and each unit The conductive substrates 2 </ b> A, 2 </ b> B, and 2 </ b> C have a plurality of through holes 2 a in the protruding portion 3. The protrusion 3 is offset by an area and shape so as to enter the openings 5A, 5B, and 5C of the membrane electrode assembly (MEA) side frame 5 described later, and the surface of the protrusion 3 is flat. Surface.
As a conductive material used for such a current collector 2 (unit conductive substrates 2A, 2B, 2C), a material having good electrical conductivity, a predetermined strength, and good workability is preferable. , Cold rolled steel sheet, aluminum, titanium, copper and the like.

また、単位導電性基板2A,2B,2Cは、少なくとも膜電極複合体(MEA)側枠体5と当接する側(突出部3を備える面)に耐食性(耐酸性)、電気導電性の樹脂層からなる保護層を備えていてもよい。このような保護層の形成方法としては、樹脂にカーボン粒子、耐食性の金属等の導電材を混ぜた材料を用いて電着により膜を形成し、加熱硬化する方法、あるいは、導電性高分子からなる樹脂に導電性を高めるドーパントを含んだ状態の膜を電解重合により形成する方法等が挙げられる。
また、単位導電性基板の表面に金めっき等のめっき処理を施して、導電性を損なうことなく、耐食性金属層を設けてもよい。さらに、このような耐食性金属層上に、耐酸性かつ電気導電性を有する保護層を配設してもよい。
The unit conductive substrates 2A, 2B, 2C are at least corrosion-resistant (acid-resistant) and electrically conductive resin layer on the side (surface provided with the protruding portion 3) that contacts the membrane electrode assembly (MEA) side frame 5 You may provide the protective layer which consists of. As a method for forming such a protective layer, a method of forming a film by electrodeposition using a material in which a conductive material such as carbon particles and corrosion-resistant metal is mixed in a resin and then heat-curing, or a conductive polymer is used. The method of forming the film | membrane of the state which contained the dopant which improves electroconductivity in the resin to be formed by electrolytic polymerization etc. is mentioned.
Further, the surface of the unit conductive substrate may be subjected to a plating process such as gold plating, and the corrosion resistant metal layer may be provided without impairing the conductivity. Furthermore, a protective layer having acid resistance and electrical conductivity may be disposed on such a corrosion-resistant metal layer.

突出部3を備えた各単位導電性基板2A,2B,2Cは、押出し加工、プレス加工等の機械加工、フォトリソグラフィー技術を用いたエッチング加工等により、所定の形状に加工したものであり、燃料供給用ないし酸素供給用の貫通孔2aを、これらの方法により形成したものである。貫通孔2aの大きさ(開口径)は特に制限がなく、例えば、0.05〜10mmの範囲で適宜設定することができる。また、突出部3のオフセット量T(図3参照)、平面形状は、単位導電性基板2A,2B,2Cの厚み、材質、突出部3の面積、形状、個数等を考慮して適宜設定することができる。   Each unit conductive substrate 2A, 2B, 2C provided with the protrusion 3 is processed into a predetermined shape by mechanical processing such as extrusion processing, press processing, etching processing using photolithography technology, etc. Through holes 2a for supplying or supplying oxygen are formed by these methods. There is no restriction | limiting in particular in the magnitude | size (opening diameter) of the through-hole 2a, For example, it can set suitably in the range of 0.05-10 mm. Further, the offset amount T (see FIG. 3) and the planar shape of the protruding portion 3 are appropriately set in consideration of the thickness and material of the unit conductive substrates 2A, 2B, and 2C, the area, shape, and number of the protruding portions 3. be able to.

尚、図示例では、各単位導電性基板2A,2B,2Cに9個の貫通孔2aが形成されているが、形成個数、形成位置等には特に制限はない。また、単位導電性基板2A,2B,2Cは、突出部3の外側にも貫通孔2aを備えるものであってよく、突出部3と後述する膜電極複合体(MEA)側枠体5の開口部5A,5B,5Cの大きさ、形状等を考慮して貫通孔2aの形成部位を適宜設定することができる。また、単位導電性基板2A,2B,2Cに対してオフセットしている突出部3の平面形状は、図示例では長方形であるが、これに限定されるものではなく、円形、楕円形等、適宜設定することができる。   In the illustrated example, nine through holes 2a are formed in each unit conductive substrate 2A, 2B, 2C, but there are no particular restrictions on the number, position, etc. of formation. Further, the unit conductive substrates 2A, 2B, 2C may be provided with a through hole 2a on the outside of the protruding portion 3, and the opening of the protruding portion 3 and a membrane electrode assembly (MEA) side frame 5 described later. In consideration of the size, shape, and the like of the portions 5A, 5B, and 5C, the formation site of the through hole 2a can be appropriately set. In addition, the planar shape of the protruding portion 3 that is offset with respect to the unit conductive substrates 2A, 2B, and 2C is a rectangle in the illustrated example, but is not limited thereto, and may be a circle, an ellipse, or the like as appropriate. Can be set.

上述のような集電部2を挟持するように一体化された外側枠体4は、上記の各単位導電性基板2A,2B,2Cの配列位置に対応した3個の開口部4A,4B,4Cを備えたものである。そして、各開口部4A,4B,4Cには、集電部2を構成する各単位導電性基板2A,2B,2Cの貫通孔2aが露出している。外側枠体4を構成する開口部4A,4B,4Cの大きさ、形状は、集電部2の各単位導電性基板2A,2B,2Cの貫通孔2aの形成領域の面積、形状等に応じて適宜設定することができる。   The outer frame 4 integrated so as to sandwich the current collector 2 as described above has three openings 4A, 4B, 4C corresponding to the arrangement positions of the unit conductive substrates 2A, 2B, 2C. 4C is provided. In the openings 4A, 4B, 4C, the through holes 2a of the unit conductive substrates 2A, 2B, 2C constituting the current collector 2 are exposed. The size and shape of the openings 4A, 4B, 4C constituting the outer frame 4 depend on the area, shape, etc. of the through hole 2a of each unit conductive substrate 2A, 2B, 2C of the current collector 2 Can be set as appropriate.

また、集電部2を挟持するように一体化された膜電極複合体(MEA)側枠体5は、上記の各単位導電性基板2A,2B,2Cの配列位置に対応した3個の開口部5A,5B,5Cを備えたものである。そして、各開口部5A,5B,5Cには、集電部2を構成する各単位導電性基板2A,2B,2Cの突出部3が位置するとともに、貫通孔2aが露出している。膜電極複合体(MEA)側枠体5を構成する開口部5A,5B,5Cの大きさ、形状は、集電部2の各単位導電性基板2A,2B,2Cの突出部3の形状、大きさ等に応じて適宜設定することができる。   The membrane electrode assembly (MEA) side frame 5 integrated so as to sandwich the current collector 2 has three openings corresponding to the arrangement positions of the unit conductive substrates 2A, 2B, 2C. This includes parts 5A, 5B, and 5C. And in each opening 5A, 5B, 5C, while the protrusion part 3 of each unit electroconductive board | substrate 2A, 2B, 2C which comprises the current collection part 2 is located, the through-hole 2a is exposed. The size and shape of the openings 5A, 5B, 5C constituting the membrane electrode assembly (MEA) side frame 5 are the shapes of the protrusions 3 of the unit conductive substrates 2A, 2B, 2C of the current collector 2, It can be set as appropriate according to the size and the like.

セパレータ1を構成する外側枠体4と膜電極複合体(MEA)側枠体5の材質は、絶縁性で、加工性が良く、軽く、機械的強度が大きいものが好ましい。このような材料としては、プリント配線基板用の基板材料等が用いられ、例えば、ポリイミド等の樹脂、ガラスエポキシ等の樹脂と無機材料との複合体、絶縁性被膜を備えた金属、セラミック等が挙げられる。上記の絶縁性被膜を備えた金属としては、例えば、熱処理により表面に絶縁性被膜を形成したAl含有SUS材、陽極酸化により表面に絶縁性被膜を形成したAl材等を使用することができる。   The materials of the outer frame body 4 and the membrane electrode assembly (MEA) side frame body 5 constituting the separator 1 are preferably insulative, workable, light, and have high mechanical strength. As such a material, a substrate material for a printed wiring board is used. For example, a resin such as polyimide, a composite of a resin such as glass epoxy and an inorganic material, a metal provided with an insulating film, ceramic, etc. Can be mentioned. As the metal provided with the insulating coating, for example, an Al-containing SUS material having an insulating coating formed on the surface by heat treatment, an Al material having an insulating coating formed on the surface by anodic oxidation, or the like can be used.

上述のような所望の形状を有する外側枠体4と膜電極複合体(MEA)側枠体5の形成は、機械加工、レーザ加工等により行なうことができる。外側枠体4と膜電極複合体(MEA)側枠体5の厚みは同等であってもよく、異なるものでもよい。
また、単位導電性基板2A,2B,2Cは、その間に空隙部6を介して配置され、外側枠体4と膜電極複合体(MEA)側枠体5とで一体化して挟持されているが、空隙部6は、例えば、エポキシ樹脂、フッ素樹脂等の絶縁性材料が接着剤として充填され存在するものであってもよい。
The outer frame 4 and the membrane electrode assembly (MEA) side frame 5 having a desired shape as described above can be formed by machining, laser processing, or the like. The outer frame 4 and the membrane electrode assembly (MEA) side frame 5 may have the same thickness or different thicknesses.
Further, the unit conductive substrates 2A, 2B, 2C are disposed through the gap 6 therebetween, and are sandwiched integrally by the outer frame body 4 and the membrane electrode assembly (MEA) side frame body 5. The gap 6 may be, for example, filled with an insulating material such as an epoxy resin or a fluororesin as an adhesive.

このような本発明のセパレータ1は、上述のような構造の単位導電性基板2A,2B,2Cが膜電極複合体(MEA)側枠体5の開口部5A,5B,5C方向に突出した形状であるため、平面型の高分子電解質型燃料電池において膜電極複合体(MEA)に膨潤が生じても、その膨潤応力に抗する作用を単位導電性基板2A,2B,2Cが発現する。これにより、単位導電性基板2A,2B,2Cと膜電極複合体(MEA)との確実な接触が維持され、各単位導電性基板全面で均一な接触圧力を得ることができ、接触抵抗を小さく、結果として内部抵抗の小さな電池が得られる。   The separator 1 according to the present invention has a shape in which the unit conductive substrates 2A, 2B, 2C having the above-described structure protrude in the direction of the openings 5A, 5B, 5C of the membrane electrode assembly (MEA) side frame 5. Therefore, even if the membrane electrode assembly (MEA) swells in the planar polymer electrolyte fuel cell, the unit conductive substrates 2A, 2B, and 2C exhibit an action against the swelling stress. As a result, reliable contact between the unit conductive substrates 2A, 2B, and 2C and the membrane electrode assembly (MEA) is maintained, and a uniform contact pressure can be obtained over the entire surface of each unit conductive substrate, thereby reducing contact resistance. As a result, a battery having a low internal resistance is obtained.

図4は本発明の平面型の高分子電解質型燃料電池用のセパレータの他の実施形態を示す図3相当の断面図である。図4において、本発明のセパレータ11は、集電部12を挟持するように一体化された外側枠体14と膜電極複合体(MEA)側枠体15とを備えている。
セパレータ11を構成する集電部12は、上述の集電部2と同様に、長方形状の単位導電性基板12A,12B,12Cが空隙部16を介して平面的に3個配列されたものである。各単位導電性基板12A,12B,12Cは、ドーム状の突出部13を備えており、突出部3には複数の貫通孔12aを有している。ドーム状の突出部13は、後述する膜電極複合体(MEA)側枠体15の開口部15A,15B,15C内に入り込むような範囲でドーム状に突出したものである。
FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing another embodiment of a separator for a planar polymer electrolyte fuel cell of the present invention. In FIG. 4, the separator 11 of the present invention includes an outer frame 14 and a membrane electrode assembly (MEA) side frame 15 that are integrated so as to sandwich the current collector 12.
The current collector 12 that constitutes the separator 11 is formed by arranging three rectangular unit conductive substrates 12A, 12B, and 12C in a plane via the gap 16 in the same manner as the current collector 2 described above. is there. Each of the unit conductive substrates 12A, 12B, and 12C includes a dome-shaped protruding portion 13, and the protruding portion 3 has a plurality of through holes 12a. The dome-shaped protrusion 13 protrudes in a dome shape within a range that enters into openings 15A, 15B, and 15C of a membrane electrode assembly (MEA) side frame 15 described later.

このような集電部12(単位導電性基板12A,12B,12C)に使用する導電性の材料としては、上述の単位導電性基板2A,2B,2Cと同様の材料を使用することができる。また、少なくとも膜電極複合体(MEA)側枠体15と当接する側の表面に耐食性(耐酸性)、電気導電性の樹脂層からなる保護層を備えていてもよく、上述の単位導電性基板2A,2B,2Cの場合と同様の形成方法にて保護層を形成することができる。また、単位導電性基板の表面に金めっき等のめっき処理を施して、導電性を損なうことなく、耐食性金属層を設けてもよい。さらに、このような耐食性金属層上に、耐酸性かつ電気導電性を有する保護層を配設してもよい。   As a conductive material used for such a current collector 12 (unit conductive substrates 12A, 12B, 12C), the same material as that of the unit conductive substrates 2A, 2B, 2C described above can be used. Further, at least the surface on the side in contact with the membrane electrode assembly (MEA) side frame 15 may be provided with a protective layer made of a corrosion-resistant (acid-resistant) and electrically conductive resin layer. The protective layer can be formed by the same formation method as in 2A, 2B, and 2C. Further, the surface of the unit conductive substrate may be subjected to a plating process such as gold plating, and the corrosion resistant metal layer may be provided without impairing the conductivity. Furthermore, a protective layer having acid resistance and electrical conductivity may be disposed on such a corrosion-resistant metal layer.

ドーム状の突出部13を備えた各単位導電性基板12A,12B,12Cは、押出し加工、プレス加工等の機械加工、フォトリソグラフィー技術を用いたエッチング加工等により、所定の形状に加工したものであり、燃料供給用ないし酸素供給用の貫通孔12aを、これらの方法により形成したものである。貫通孔12aの大きさ(開口径)は特に制限がなく、例えば、0.05〜10mmの範囲で適宜設定することができる。また、突出部13の突出高さH(図4参照)は、単位導電性基板12A,12B,12Cの厚み、材質、突出部13の面積、形状、個数等を考慮して適宜設定することができる。また、突出部13のドーム形状には特に制限はないが、例えば、突出部13の断面が懸垂線をなすような形状とすることができる。さらに、突出部13の形状として、円弧を掃引してできる円柱面の一部のような、曲線を掃引して得られる掃引面を用いることができ、例えば、上記の円柱面や懸垂曲線の掃引面とすることができる。   Each of the unit conductive substrates 12A, 12B, and 12C provided with the dome-shaped protruding portion 13 is processed into a predetermined shape by mechanical processing such as extrusion and press processing, etching processing using a photolithography technique, and the like. Yes, through holes 12a for fuel supply or oxygen supply are formed by these methods. There is no restriction | limiting in particular in the magnitude | size (opening diameter) of the through-hole 12a, For example, it can set suitably in the range of 0.05-10 mm. Further, the protrusion height H (see FIG. 4) of the protrusion 13 is appropriately set in consideration of the thickness and material of the unit conductive substrates 12A, 12B, and 12C, the area, shape, number of the protrusions 13, and the like. it can. Further, the dome shape of the protruding portion 13 is not particularly limited. For example, the protruding portion 13 may have a cross section that forms a catenary line. Further, as the shape of the protruding portion 13, a sweep surface obtained by sweeping a curve, such as a part of a cylindrical surface formed by sweeping an arc, can be used. It can be a surface.

尚、図示例では、各単位導電性基板12A,12B,12Cに9個の貫通孔12aが形成されているが、形成個数、形成位置等には特に制限はない。また、単位導電性基板12A,12B,12Cは、突出部13の外側(平坦部位)にも貫通孔2aを備えるものであってよく、突出部13と後述する膜電極複合体(MEA)側枠体15の開口部15A,15B,15Cの大きさ、形状等を考慮して貫通孔12aの形成部位を適宜設定することができる。   In the illustrated example, nine through holes 12a are formed in each of the unit conductive substrates 12A, 12B, and 12C. Further, the unit conductive substrates 12A, 12B, and 12C may be provided with through holes 2a on the outside (flat portion) of the protruding portion 13, and the protruding portion 13 and a membrane electrode assembly (MEA) side frame to be described later. In consideration of the size, shape, and the like of the openings 15A, 15B, and 15C of the body 15, the formation site of the through hole 12a can be appropriately set.

上述の集電部12を挟持するように一体化された外側枠体14、膜電極複合体(MEA)側枠体15は、上述の実施形態の外側枠体4、膜電極複合体(MEA)側枠体5と同様であり、それぞれ上記の各単位導電性基板12A,12B,12Cの配列位置に対応した3個の開口部14A,14B,14C、開口部15A,15B,15Cを備えたものである。そして、膜電極複合体(MEA)側枠体15の各開口部15A,15B,15Cには、集電部12を構成する各単位導電性基板12A,12B,12Cの突出部13が位置するとともに、貫通孔12aが露出している。   The outer frame 14 and the membrane electrode assembly (MEA) side frame 15 integrated so as to sandwich the current collector 12 are the outer frame 4 and the membrane electrode assembly (MEA) of the above-described embodiment. Similar to the side frame 5 and having three openings 14A, 14B, 14C and openings 15A, 15B, 15C corresponding to the arrangement positions of the unit conductive substrates 12A, 12B, 12C. It is. And in each opening part 15A, 15B, 15C of the membrane electrode assembly (MEA) side frame 15, the protrusion part 13 of each unit electroconductive board | substrate 12A, 12B, 12C which comprises the current collection part 12 is located. The through hole 12a is exposed.

このような外側枠体14と膜電極複合体(MEA)側枠体15の材質は、上述のセパレータ1を構成する外側枠体4と膜電極複合体(MEA)側枠体5と同様である。また、上述のような所望の形状を有する外側枠体14と膜電極複合体(MEA)側枠体15の形成は、機械加工、レーザ加工等により行なうことができる。外側枠体14と膜電極複合体(MEA)側枠体15の厚みは同等であってもよく、異なるものでもよい。また、空隙部16は、例えば、エポキシ樹脂、フッ素樹脂等の絶縁性材料が接着剤として充填され存在するものであってもよい。   The materials of the outer frame 14 and the membrane electrode assembly (MEA) side frame 15 are the same as those of the outer frame 4 and the membrane electrode assembly (MEA) side frame 5 constituting the separator 1 described above. . Further, the outer frame 14 and the membrane electrode assembly (MEA) side frame 15 having a desired shape as described above can be formed by machining, laser processing, or the like. The outer frame 14 and the membrane electrode assembly (MEA) side frame 15 may have the same thickness or different thicknesses. Further, the gap 16 may be filled with an insulating material such as an epoxy resin or a fluororesin as an adhesive.

このような本発明のセパレータ11は、上述のようなドーム状の突出部13が、平面型の高分子電解質型燃料電池において膜電極複合体(MEA)に膨潤が生じた場合に、その膨潤応力に抗する作用を発現する。これにより、単位導電性基板12A,12B,12Cと膜電極複合体(MEA)との確実な接触が維持され、各単位導電性基板全面で均一な接触圧力を得ることができ、接触抵抗を小さく、結果として内部抵抗の小さな電池が得られる。
上述の本発明のセパレータは例示であり、これらに限定されるものではない。例えば、本発明のセパレータは、上述の突出部3,13の機能を阻害しない場合には、膜電極複合体(MEA)側枠体5,15の開口部5A,5B,5C,15A,15B,15C内に、集電部2,12の単位導電性基板2A,2B,2C,12A,12B,12Cを被覆するようにガス拡散層や触媒層を備えるものであってもよい。
Such a separator 11 of the present invention has a swell stress when the dome-shaped protrusion 13 as described above swells in a membrane electrode assembly (MEA) in a planar polymer electrolyte fuel cell. It exerts an action against As a result, reliable contact between the unit conductive substrates 12A, 12B, and 12C and the membrane electrode assembly (MEA) is maintained, and a uniform contact pressure can be obtained over the entire surface of each unit conductive substrate, thereby reducing contact resistance. As a result, a battery having a low internal resistance is obtained.
The separator of the present invention described above is an example, and the present invention is not limited to these. For example, when the separator of the present invention does not impede the function of the above-described protrusions 3 and 13, the openings 5A, 5B, 5C, 15A, 15B, and the like of the membrane electrode assembly (MEA) side frames 5 and 15 are provided. A gas diffusion layer or a catalyst layer may be provided in 15C so as to cover the unit conductive substrates 2A, 2B, 2C, 12A, 12B, and 12C of the current collectors 2 and 12.

上記のガス拡散層は、多孔質の集電材からなるものであり、例えば、カーボン繊維、アルミナ等を使用することができる。ガス拡散層の厚みは、例えば、20〜500μm程度の範囲で適宜設定することができる。
また、触媒層は、セパレータが燃料供給側セパレータとして使用される場合には燃料極となり、酸素供給側セパレータとして使用される場合には酸素極となる。このような触媒層の材質としては、白金、金、パラジウム、ルテニウム、銅、白金酸化物、タングステン酸化物、鉄、ニッケル、ロジウム等を挙げることができ、これらを単独で、あるいは、2種以上組み合わせて使用することができる。また、触媒層の厚みは、例えば、10〜300μm程度の範囲で適宜設定することができる。
The gas diffusion layer is made of a porous current collector, and for example, carbon fiber, alumina or the like can be used. The thickness of the gas diffusion layer can be appropriately set within a range of about 20 to 500 μm, for example.
The catalyst layer becomes a fuel electrode when the separator is used as a fuel supply side separator, and becomes an oxygen electrode when the separator is used as an oxygen supply side separator. Examples of the material for such a catalyst layer include platinum, gold, palladium, ruthenium, copper, platinum oxide, tungsten oxide, iron, nickel, rhodium, and the like. These may be used alone or in combination of two or more. Can be used in combination. Moreover, the thickness of a catalyst layer can be suitably set, for example in the range of about 10-300 micrometers.

次に、本発明のセパレータを用いた平面型の高分子電解質型燃料電池の一例を説明する。
図5は、上述の本発明のセパレータ1を燃料供給側セパレータおよび酸素供給側セパレータとして組み込んだ平面型の高分子電解質型燃料電池の例を示す構成図である。また、図6は、図5に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。
図5および図6において、高分子電解質型燃料電池41は、膜電極複合体(MEA)54が1組の本発明のセパレータ1Aとセパレータ1Bで挟持された電池本体51と、ケース体52を備えている。
Next, an example of a planar polymer electrolyte fuel cell using the separator of the present invention will be described.
FIG. 5 is a configuration diagram showing an example of a planar type polymer electrolyte fuel cell in which the separator 1 of the present invention described above is incorporated as a fuel supply side separator and an oxygen supply side separator. FIG. 6 is a view showing a state in which the members of the planar polymer electrolyte fuel cell shown in FIG. 5 are separated from each other.
5 and 6, a polymer electrolyte fuel cell 41 includes a battery body 51 in which a membrane electrode assembly (MEA) 54 is sandwiched between a pair of separators 1A and 1B of the present invention, and a case body 52. ing.

電池本体51では、酸素供給側のセパレータ1Aと燃料供給側のセパレータ1Bの各膜電極複合体(MEA)側枠体5が膜電極複合体(MEA)54に対向するように配置され、各セパレータ1A,1Bの集電部2が、カーボンペーパー53を介して膜電極複合体(MEA)54に当接している。また、膜電極複合体(MEA)54は、酸素供給側のセパレータ1A側に酸素極側触媒層55を備え、燃料供給側のセパレータ1B側に燃料極側触媒層56を備えている。
これにより、3個の単位セル51A,51B,51Cが平面的に配列されたものとなっている。尚、3個の単位セル51A,51B,51C間の集電部2(単位導電性基板2A,2B,2C)の電気的接続は特に制限されず、例えば、電池本体51の側面において、ワイヤ等の導電性部材を用いて隣接する単位セルの単位導電性基板を電気的に接続することができる。また、集電部2の各単位導電性基板2A,2B,2Cに接続された接続端子部を、セパレータ1(酸素供給側のセパレータ1Aと燃料供給側のセパレータ1B)の外側に突出させておき、この接続端子部を用いて3個の単位セル51A,51B,51C間を接続してもよい。
In the battery body 51, each membrane electrode assembly (MEA) side frame 5 of the separator 1A on the oxygen supply side and the separator 1B on the fuel supply side is disposed so as to face the membrane electrode assembly (MEA) 54, and each separator The current collecting portions 2 of 1A and 1B are in contact with the membrane electrode assembly (MEA) 54 through the carbon paper 53. The membrane electrode assembly (MEA) 54 includes an oxygen electrode side catalyst layer 55 on the oxygen supply side separator 1A side and a fuel electrode side catalyst layer 56 on the fuel supply side separator 1B side.
Thus, the three unit cells 51A, 51B, 51C are arranged in a plane. Note that the electrical connection of the current collector 2 (unit conductive substrates 2A, 2B, 2C) between the three unit cells 51A, 51B, 51C is not particularly limited. It is possible to electrically connect unit conductive substrates of adjacent unit cells using the conductive member. Further, the connection terminal portions connected to the unit conductive substrates 2A, 2B, 2C of the current collector 2 are projected outside the separator 1 (the separator 1B on the oxygen supply side and the separator 1B on the fuel supply side). The three unit cells 51A, 51B, 51C may be connected using this connection terminal portion.

また、上述の電池本体51は、膜電極複合体(MEA)54の両端部が1組のセパレータ外周枠部材61A,61Bにシール部材65を介して挟持されている。そして、電池本体51を挟持した1組のセパレータ外周枠部材61A,61Bは、固定用ボルト67を用いてケース体52にシール部材65を介して固定されている。
上記のセパレータ外周枠部材61Aは、集電部2の単位導電性基板2Aを外側枠体4と膜電極複合体(MEA)側枠体5とで挟持した構造であり、また、セパレータ外周枠部材61Bは、集電部2の単位導電性基板2Cを外側枠体4と膜電極複合体(MEA)側枠体5とで挟持した構造である。そして、セパレータ外周枠部材61A,61Bの一端(図示の左側)から、集電部2に接続した電極端子62A,62Bが突出している。
Further, in the battery body 51 described above, both ends of the membrane electrode assembly (MEA) 54 are sandwiched between a pair of separator outer peripheral frame members 61A and 61B via a seal member 65. The pair of separator outer peripheral frame members 61 </ b> A and 61 </ b> B sandwiching the battery main body 51 is fixed to the case body 52 via the seal member 65 using fixing bolts 67.
The separator outer peripheral frame member 61A has a structure in which the unit conductive substrate 2A of the current collector 2 is sandwiched between the outer frame body 4 and the membrane electrode assembly (MEA) side frame body 5, and the separator outer peripheral frame member 61B is a structure in which the unit conductive substrate 2C of the current collector 2 is sandwiched between the outer frame body 4 and the membrane electrode assembly (MEA) side frame body 5. And electrode terminal 62A, 62B connected to the current collection part 2 protrudes from the end (left side of illustration) of separator outer periphery frame member 61A, 61B.

これにより、以下のように3個の単位セル51A,51B,51Cが電気的に直列に接続されたものとなる。
電極端子62A → *
*→ 単位セル51A[セパレータ1Aの単位導電性基板2A → 膜電極複合体
(MEA)54 → セパレータ1Bの単位導電性基板2A] → *
*→ 単位セル51B[セパレータ1Aの単位導電性基板2B → 膜電極複合体
(MEA)54 → セパレータ1Bの単位導電性基板2B] → *
*→ 単位セル51C[セパレータ1Aの単位導電性基板2C → 膜電極複合体
(MEA)54 → セパレータ1Bの単位導電性基板2C] → *
*→ 電極端子62B
As a result, the three unit cells 51A, 51B, 51C are electrically connected in series as follows.
Electrode terminal 62A → *
* → Unit cell 51A [Unit conductive substrate 2A of separator 1A → Membrane electrode composite
(MEA) 54 → unit conductive substrate 2A of separator 1B] → *
* → Unit cell 51B [Unit conductive substrate 2B of separator 1A → Membrane electrode composite
(MEA) 54 → unit conductive substrate 2B of separator 1B] → *
* → Unit cell 51C [Unit conductive substrate 2C of separator 1A → Membrane electrode composite
(MEA) 54 → unit conductive substrate 2C of separator 1B] → *
* → Electrode terminal 62B

このような高分子電解質型燃料電池41は、膜電極複合体(MEA)54の膨潤が発生しても、本発明のセパレータである酸素供給側のセパレータ1Aと燃料供給側のセパレータ1Bによって単位導電性基板2A,2B,2Cと膜電極複合体(MEA)54との接触不良が防止されるので、接触抵抗が極めて少なく発電特性の高いものとなる。
また、図7は、上述の本発明のセパレータ1の代わりに、上述の本発明のセパレータ11を燃料供給側セパレータおよび酸素供給側セパレータとして組み込んだ平面型の高分子電解質型燃料電池の例を示す構成図である。また、図8は、図7に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。尚、図7、図8では、セパレータを除く部材は、図5、図6に示す高分子電解質型燃料電池41と共通であり、図5、図6と同様の部材番号を付した。
Even if the membrane electrode assembly (MEA) 54 swells, the polymer electrolyte fuel cell 41 has unit conductivity by the separator 1A on the oxygen supply side and the separator 1B on the fuel supply side which are the separators of the present invention. Since contact failure between the conductive substrates 2A, 2B, and 2C and the membrane electrode assembly (MEA) 54 is prevented, the contact resistance is extremely small and the power generation characteristics are high.
FIG. 7 shows an example of a flat polymer electrolyte fuel cell in which the separator 11 of the present invention is incorporated as a fuel supply side separator and an oxygen supply side separator instead of the separator 1 of the present invention. It is a block diagram. FIG. 8 is a view showing a state in which the respective members of the planar polymer electrolyte fuel cell shown in FIG. 7 are separated from each other. 7 and 8, members other than the separator are the same as those in the polymer electrolyte fuel cell 41 shown in FIGS. 5 and 6, and the same member numbers as those in FIGS.

図7および図8に示される高分子電解質型燃料電池41においても、膜電極複合体(MEA)54の膨潤が発生した場合、本発明のセパレータである酸素供給側のセパレータ11Aと燃料供給側のセパレータ11Bによって単位導電性基板12A,12B,12Cと膜電極複合体(MEA)54との接触不良が防止されるので、接触抵抗が極めて少なく発電特性の高いものとなる。   Also in the polymer electrolyte fuel cell 41 shown in FIGS. 7 and 8, when the membrane electrode assembly (MEA) 54 swells, the separator 11A on the oxygen supply side and the fuel supply side separator 11A of the present invention are used. Since the separator 11B prevents poor contact between the unit conductive substrates 12A, 12B, and 12C and the membrane electrode assembly (MEA) 54, the contact resistance is extremely small and the power generation characteristics are high.

本発明は平面型の高分子電解質型燃料電池の製造に適用することができる。   The present invention can be applied to the manufacture of a planar polymer electrolyte fuel cell.

本発明の平面型の高分子電解質型燃料電池用のセパレータの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the separator for planar type polymer electrolyte fuel cells of this invention. 図1に示されるセパレータを構成する集電部、外側枠体、膜電極複合体(MEA)側枠体を離間させた状態で示す斜視図である。FIG. 2 is a perspective view showing a state in which a current collector, an outer frame, and a membrane electrode assembly (MEA) side frame constituting the separator shown in FIG. 1 are separated from each other. 図1に示されるセパレータのA−A線矢視断面図である。It is AA arrow sectional drawing of the separator shown by FIG. 本発明の平面型の高分子電解質型燃料電池用のセパレータの他の実施形態を示す図3相当の断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing another embodiment of a separator for a planar polymer electrolyte fuel cell of the present invention. 本発明のセパレータを用いた平面型の高分子電解質型燃料電池の一例を示す構成図である。It is a block diagram which shows an example of the planar type polymer electrolyte fuel cell using the separator of this invention. 図5に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。FIG. 6 is a diagram showing a state in which the respective members of the planar polymer electrolyte fuel cell shown in FIG. 5 are separated from each other. 本発明のセパレータを用いた平面型の高分子電解質型燃料電池の他の例を示す構成図である。It is a block diagram which shows the other example of the planar type polymer electrolyte fuel cell using the separator of this invention. 図7に示される平面型の高分子電解質型燃料電池の各部材を離間させた状態を示す図である。It is a figure which shows the state which spaced apart each member of the planar type polymer electrolyte fuel cell shown by FIG.

符号の説明Explanation of symbols

1,1A,1B,11,11A,11B…セパレータ
2,12…集電部
2A,2B,2C,12A,12B,12C…単位導電性基板
2a,12a…貫通孔
3,13…突出部
4,14…外側枠体
4A,4B,4C,14A,14B,14C…開口部
5,15…膜電極複合体(MEA)側枠体
5A,5B,5C,15A,15B,15C…開口部
6,16…空隙部
1, 1A, 1B, 11, 11A, 11B ... separator 2, 12 ... current collector 2A, 2B, 2C, 12A, 12B, 12C ... unit conductive substrate 2a, 12a ... through hole 3, 13 ... projecting part 4, 14 ... Outer frame 4A, 4B, 4C, 14A, 14B, 14C ... Opening 5, 15 ... Membrane electrode assembly (MEA) side frame 5A, 5B, 5C, 15A, 15B, 15C ... Opening 6, 16 ... Cavity

Claims (5)

単位セルを平面的に配列した平面型の高分子電解質型燃料電池用のセパレータにおいて、
複数の貫通孔を有する単位導電性基板が空隙部を介して平面的に2個以上配列された集電部と、
該集電部を挟持するように一体化された電気絶縁性の外側枠体と膜電極複合体(MEA)側枠体とを備え、
前記外側枠体と前記膜電極複合体(MEA)側枠体は、それぞれ前記単位導電性基板の配列位置に対応した開口部を有し、
前記単位導電性基板は、前記膜電極複合体(MEA)側枠体の前記開口部方向に突出した形状であることを特徴とする平面型の高分子電解質型燃料電池用のセパレータ。
In a separator for a planar polymer electrolyte fuel cell in which unit cells are arranged in a plane,
A current collector in which two or more unit conductive substrates having a plurality of through-holes are arranged in a plane via a gap;
An electrically insulating outer frame and a membrane electrode assembly (MEA) side frame integrated so as to sandwich the current collector;
The outer frame body and the membrane electrode assembly (MEA) side frame body each have an opening corresponding to the arrangement position of the unit conductive substrate,
The unit conductive substrate has a shape protruding in the direction of the opening of the membrane electrode assembly (MEA) side frame, and is a separator for a planar polymer electrolyte fuel cell.
前記単位導電性基板は、前記膜電極複合体(MEA)側枠体の開口部の面積よりも小さい範囲でドーム状に突出した形状であることを特徴とする請求項1に記載の平面型の高分子電解質型燃料電池用のセパレータ。   2. The planar type substrate according to claim 1, wherein the unit conductive substrate has a shape protruding in a dome shape in a range smaller than an area of an opening of the membrane electrode assembly (MEA) side frame. Separator for polymer electrolyte fuel cell. 前記ドーム状の突出形状は、懸垂線をなすものであることを特徴とする請求項2に記載の平面型の高分子電解質型燃料電池用のセパレータ。   The separator for a planar type polymer electrolyte fuel cell according to claim 2, wherein the dome-like protruding shape forms a catenary line. 前記単位導電性基板は、前記膜電極複合体(MEA)側枠体の開口部の面積よりも小さい面積でオフセットして突出した形状であることを特徴とする請求項1に記載の平面型の高分子電解質型燃料電池用のセパレータ。   2. The planar type substrate according to claim 1, wherein the unit conductive substrate has a shape protruding offset with an area smaller than an area of the opening of the membrane electrode assembly (MEA) side frame. Separator for polymer electrolyte fuel cell. 前記膜電極複合体(MEA)側枠体および前記外側枠体は、樹脂、樹脂と無機材料との複合体、絶縁性被膜を備えた金属、および、セラミックのいずれかであることを特徴とする請求項1乃至請求項4のいずれかに記載の平面型の高分子電解質型燃料電池用のセパレータ。   The membrane electrode assembly (MEA) side frame body and the outer frame body are any one of resin, a composite of resin and an inorganic material, a metal provided with an insulating film, and ceramic. The separator for a planar polymer electrolyte fuel cell according to any one of claims 1 to 4.
JP2004292267A 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator Expired - Fee Related JP4862256B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004292267A JP4862256B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator
US10/584,902 US8039168B2 (en) 2004-10-05 2005-10-04 Separator for flat-type polymer electrolyte fuel cells
DE112005000131T DE112005000131T5 (en) 2004-10-05 2005-10-04 Separating device for flat polymer electrolyte fuel cells
PCT/JP2005/018715 WO2006038701A1 (en) 2004-10-05 2005-10-04 Flat type polyelectrolytic fuel cell-use separators
KR1020067013595A KR100755211B1 (en) 2004-10-05 2005-10-04 Flat type polyelectrolytic fuel cell-use separators
US13/232,605 US20120003567A1 (en) 2004-10-05 2011-09-14 Separator for flat-type polymer electrolyte fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292267A JP4862256B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2006107898A true JP2006107898A (en) 2006-04-20
JP4862256B2 JP4862256B2 (en) 2012-01-25

Family

ID=36377360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292267A Expired - Fee Related JP4862256B2 (en) 2004-10-05 2004-10-05 Flat type polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP4862256B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300072A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Fuel battery and fuel battery separator
WO2010116893A1 (en) * 2009-04-10 2010-10-14 株式会社 東芝 Fuel cell
JP2011119230A (en) * 2009-12-07 2011-06-16 Ind Technol Res Inst Fuel cell device
JP2011119229A (en) * 2009-12-07 2011-06-16 Ind Technol Res Inst Modularized fuel cell device and flow field plate assembly
US8691473B2 (en) 2009-12-07 2014-04-08 Industrial Technology Research Institute Fuel cell module having non-planar component surface
US8828621B2 (en) 2009-12-07 2014-09-09 Industrial Technology Research Institute Modularized fuel cell devices and fluid flow plate assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096455A2 (en) * 2002-05-09 2003-11-20 The Board Of Trustees Of The Leland Stanford Junior University Improved fuel cell
JP2004047397A (en) * 2002-05-15 2004-02-12 Dainippon Printing Co Ltd Separator member for polymer electrolyte type flat fuel cell, and polymer electrolyte type fuel cell using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096455A2 (en) * 2002-05-09 2003-11-20 The Board Of Trustees Of The Leland Stanford Junior University Improved fuel cell
JP2004047397A (en) * 2002-05-15 2004-02-12 Dainippon Printing Co Ltd Separator member for polymer electrolyte type flat fuel cell, and polymer electrolyte type fuel cell using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300072A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Fuel battery and fuel battery separator
WO2010116893A1 (en) * 2009-04-10 2010-10-14 株式会社 東芝 Fuel cell
JP2011119230A (en) * 2009-12-07 2011-06-16 Ind Technol Res Inst Fuel cell device
JP2011119229A (en) * 2009-12-07 2011-06-16 Ind Technol Res Inst Modularized fuel cell device and flow field plate assembly
US8691473B2 (en) 2009-12-07 2014-04-08 Industrial Technology Research Institute Fuel cell module having non-planar component surface
US8828621B2 (en) 2009-12-07 2014-09-09 Industrial Technology Research Institute Modularized fuel cell devices and fluid flow plate assemblies

Also Published As

Publication number Publication date
JP4862256B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US20120003567A1 (en) Separator for flat-type polymer electrolyte fuel cells
KR100882701B1 (en) Separator for fuel cell and its manufacturing method and fuel cell stack using the separator
US7678486B2 (en) Separator for fuel cell and fuel cell containing the separator
US7951506B2 (en) Bipolar plate and direct liquid feed fuel cell stack
KR20030049805A (en) Gas- distributing plate for compact fuel cell and separator plate using the said gas-distributing plate
WO2008050663A1 (en) Electrochemical device
JP4828841B2 (en) Fuel cell
JP4862256B2 (en) Flat type polymer electrolyte fuel cell separator
US20180090773A1 (en) Fuel cell stack
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
JP4862257B2 (en) Flat type polymer electrolyte fuel cell separator
JP4862258B2 (en) Flat type polymer electrolyte fuel cell separator
US20050191517A1 (en) Separator and direct methanol type fuel cell therewith
JP2006269333A (en) Fuel cell
JP2009277465A (en) Polymer electrolyte type fuel cell stack
JP4445280B2 (en) Separator for planar type polymer electrolyte fuel cell and method for producing the same
JP2002198072A (en) Solid polymer fuel cell
JP2006196328A (en) Method and apparatus for manufacturing battery cell
JP4872287B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP2007317601A (en) Separator for polymer electrolyte fuel cell of flat surface, and polymer electrolyte fuel cell of flat surface
JP2006066339A (en) Cell of fuel cell
JP4872286B2 (en) Separator assembly and planar polymer electrolyte fuel cell for planar polymer electrolyte fuel cell
JP2005100880A (en) Separator for flat polymer electrolyte fuel cell, and polymer electrolyte fuel cell using the separator
JP2006012462A (en) Sealing structure for fuel cell
JP2004296199A (en) Separator for fuel cell, fuel cell using it, fuel cell vehicle with it mounted thereon, and manufacturing method of separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees