US20200333041A1 - Refrigeration cycle apparatus - Google Patents
Refrigeration cycle apparatus Download PDFInfo
- Publication number
- US20200333041A1 US20200333041A1 US16/955,222 US201816955222A US2020333041A1 US 20200333041 A1 US20200333041 A1 US 20200333041A1 US 201816955222 A US201816955222 A US 201816955222A US 2020333041 A1 US2020333041 A1 US 2020333041A1
- Authority
- US
- United States
- Prior art keywords
- point
- hfo
- coordinates
- refrigerant
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 189
- 239000003507 refrigerant Substances 0.000 claims abstract description 728
- 238000002347 injection Methods 0.000 claims abstract description 74
- 239000007924 injection Substances 0.000 claims abstract description 74
- WFLOTYSKFUPZQB-OWOJBTEDSA-N (e)-1,2-difluoroethene Chemical group F\C=C\F WFLOTYSKFUPZQB-OWOJBTEDSA-N 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims description 225
- 238000010586 diagram Methods 0.000 claims description 159
- 238000007906 compression Methods 0.000 claims description 78
- 230000006835 compression Effects 0.000 claims description 78
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 43
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 claims description 20
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 238000004378 air conditioning Methods 0.000 abstract description 45
- 230000000052 comparative effect Effects 0.000 description 80
- 230000014509 gene expression Effects 0.000 description 48
- 238000009833 condensation Methods 0.000 description 43
- 230000005494 condensation Effects 0.000 description 43
- 239000007789 gas Substances 0.000 description 40
- 239000012071 phase Substances 0.000 description 40
- 230000007246 mechanism Effects 0.000 description 34
- 238000000034 method Methods 0.000 description 26
- 239000003570 air Substances 0.000 description 25
- 239000003921 oil Substances 0.000 description 24
- 239000007788 liquid Substances 0.000 description 23
- 238000001816 cooling Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- 239000012530 fluid Substances 0.000 description 18
- 230000002093 peripheral effect Effects 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 14
- 238000006116 polymerization reaction Methods 0.000 description 14
- 239000007791 liquid phase Substances 0.000 description 12
- 239000000700 radioactive tracer Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical class FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 9
- 239000003381 stabilizer Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000007850 fluorescent dye Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 6
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- NEHMKBQYUWJMIP-UHFFFAOYSA-N anhydrous methyl chloride Natural products ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010892 electric spark Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 239000010721 machine oil Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000010257 thawing Methods 0.000 description 5
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- -1 aliphatic nitro compounds Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 description 4
- 102220110933 rs151253274 Human genes 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 3
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 3
- WXGNWUVNYMJENI-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethane Chemical compound FC(F)C(F)F WXGNWUVNYMJENI-UHFFFAOYSA-N 0.000 description 3
- AHFMSNDOYCFEPH-UHFFFAOYSA-N 1,2-difluoroethane Chemical compound FCCF AHFMSNDOYCFEPH-UHFFFAOYSA-N 0.000 description 3
- XWCDCDSDNJVCLO-UHFFFAOYSA-N Chlorofluoromethane Chemical compound FCCl XWCDCDSDNJVCLO-UHFFFAOYSA-N 0.000 description 3
- 229920001774 Perfluoroether Polymers 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- FYIRUPZTYPILDH-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoropropane Chemical compound FC(F)C(F)C(F)(F)F FYIRUPZTYPILDH-UHFFFAOYSA-N 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 2
- WGZYQOSEVSXDNI-UHFFFAOYSA-N 1,1,2-trifluoroethane Chemical compound FCC(F)F WGZYQOSEVSXDNI-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000007059 acute toxicity Effects 0.000 description 2
- 231100000403 acute toxicity Toxicity 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002828 nitro derivatives Chemical class 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- JRHMNRMPVRXNOS-UHFFFAOYSA-N trifluoro(methoxy)methane Chemical compound COC(F)(F)F JRHMNRMPVRXNOS-UHFFFAOYSA-N 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 1
- ORNGPPZBMMHKPM-UHFFFAOYSA-N 1,1,1,2,2-pentafluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethane Chemical compound FC(F)(F)C(F)(F)OC(F)(F)C(F)(F)F ORNGPPZBMMHKPM-UHFFFAOYSA-N 0.000 description 1
- OYAUGTZMGLUNPS-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoro-2-(1,1,1,2,3,3,3-heptafluoropropan-2-yloxy)propane Chemical compound FC(F)(F)C(F)(C(F)(F)F)OC(F)(C(F)(F)F)C(F)(F)F OYAUGTZMGLUNPS-UHFFFAOYSA-N 0.000 description 1
- QZFIQARJCSJGEG-UHFFFAOYSA-N 1,1,1,2-tetrafluoro-2-(1,2,2,2-tetrafluoroethoxy)ethane Chemical compound FC(F)(F)C(F)OC(F)C(F)(F)F QZFIQARJCSJGEG-UHFFFAOYSA-N 0.000 description 1
- CXJWJJZGJZNBRK-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoro-2-(1,1,1,3,3,3-hexafluoropropan-2-yloxy)propane Chemical compound FC(F)(F)C(C(F)(F)F)OC(C(F)(F)F)C(F)(F)F CXJWJJZGJZNBRK-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VWCLQNINSPFHFV-UHFFFAOYSA-N 10-oxapentacyclo[12.8.0.02,11.04,9.015,20]docosa-1(14),2(11),4,6,8,12,15,17,19,21-decaene Chemical compound C1=CC=C2C3=CC=C4OC5=CC=CC=C5CC4=C3C=CC2=C1 VWCLQNINSPFHFV-UHFFFAOYSA-N 0.000 description 1
- DPQNQLKPUVWGHE-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropan-1-amine Chemical compound NCC(F)(F)C(F)(F)F DPQNQLKPUVWGHE-UHFFFAOYSA-N 0.000 description 1
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 1
- PIAOLBVUVDXHHL-UHFFFAOYSA-N 2-nitroethenylbenzene Chemical compound [O-][N+](=O)C=CC1=CC=CC=C1 PIAOLBVUVDXHHL-UHFFFAOYSA-N 0.000 description 1
- WSNAAHWRJMRVCU-UHFFFAOYSA-N 2-tert-butyl-3,4-dimethylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1C WSNAAHWRJMRVCU-UHFFFAOYSA-N 0.000 description 1
- BOTGCZBEERTTDQ-UHFFFAOYSA-N 4-Methoxy-1-naphthol Chemical compound C1=CC=C2C(OC)=CC=C(O)C2=C1 BOTGCZBEERTTDQ-UHFFFAOYSA-N 0.000 description 1
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 1
- FKTCIVHJKSDNRI-UHFFFAOYSA-N 6-butyl-2,3-dimethylphenol Chemical group CCCCC1=CC=C(C)C(C)=C1O FKTCIVHJKSDNRI-UHFFFAOYSA-N 0.000 description 1
- PQJUJGAVDBINPI-UHFFFAOYSA-N 9H-thioxanthene Chemical compound C1=CC=C2CC3=CC=CC=C3SC2=C1 PQJUJGAVDBINPI-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 101100172892 Caenorhabditis elegans sec-8 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229960003505 mequinol Drugs 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 231100000817 safety factor Toxicity 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M131/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
- C10M131/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
- C10M131/04—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/02—Specified values of viscosity or viscosity index
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0067—Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/24—Cooling of electric components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/26—Refrigerant piping
- F24F1/32—Refrigerant piping for connecting the separate outdoor units to indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/26—Refrigerant piping
- F24F1/34—Protection means thereof, e.g. covers for refrigerant pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/38—Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/88—Electrical aspects, e.g. circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/044—Systems in which all treatment is given in the central station, i.e. all-air systems
- F24F3/048—Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
- F24F3/052—Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/001—Compression cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/0018—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/003—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/02—Compressor arrangements of motor-compressor units
- F25B31/026—Compressor arrangements of motor-compressor units with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/16—Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/08—Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/106—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/128—Perfluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/24—Only one single fluoro component present
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
- C09K2205/43—Type R22
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
- F25B2400/121—Inflammable refrigerants using R1234
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/05—Cost reduction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/07—Exceeding a certain pressure value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/05—Refrigerant levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/04—Refrigerant level
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- the present disclosure relates to a refrigeration cycle apparatus.
- R410A is a two-component mixed refrigerant containing (CH 2 F 2 ; HFC-32 or R32) and pentafluoroethane (C 2 HF 5 ; HFC-125 or R125), and is a near-azeotropic composition.
- GWP global warming potential
- Patent Literature 1 International Publication No. 2015/1416778 proposes various low-GWP mixed refrigerants that can replace R410A.
- the content of the present disclosure is based on the point above, and an object is to provide a refrigeration cycle apparatus that can improve operation efficiency when using a refrigerant containing at least 1,2-difluoroethylene.
- a refrigeration cycle apparatus includes a compressor, a condenser, a decompressor, an evaporator, and an injection flow path.
- the compressor sucks a low-pressure refrigerant from a suction flow path, compresses the refrigerant, and discharges a high-pressure refrigerant.
- the condenser condenses the high-pressure refrigerant discharged from the compressor.
- the decompressor decompresses the high-pressure refrigerant that has exited from the condenser.
- the evaporator evaporates the refrigerant decompressed at the decompressor.
- the injection flow path is at least either one of an intermediate injection flow path and a suction injection flow path.
- the intermediate injection flow path allows a part of a refrigerant that flows toward the evaporator from the condenser to merge with an intermediate-pressure refrigerant in the compressor.
- the suction injection flow path allows a part of a refrigerant that flows toward the evaporator from the condenser to merge with the low-pressure refrigerant that is sucked by the compressor.
- the refrigerant contains at least 1,2-difluoroethylene.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using the injection flow path, while sufficiently reducing GWP by using the refrigerant containing 1,2-difluoroethylene.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect and further includes a branching flow path, an opening degree adjusting valve, and an injection heat exchanger.
- the branching flow path branches off from a main refrigerant flow path that connects the condenser and the evaporator to each other.
- the opening degree adjusting valve is provided in the branching flow path.
- the injection heat exchanger causes a refrigerant that flows in the main refrigerant flow path and a refrigerant that flows on a downstream side with respect to the opening degree adjusting valve in the branching flow path to exchange heat.
- a refrigerant that exits from the injection heat exchanger and flows in the branching flow path flows in the injection flow path.
- the refrigeration cycle apparatus can further improve the operation efficiency of a refrigeration cycle.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect or the second aspect and further includes a refrigerant storage tank that is provided in a main refrigerant flow path that connects the condenser and the evaporator to each other.
- a gas component of a refrigerant that accumulates in the refrigerant storage tank flows in the injection flow path.
- the refrigeration cycle apparatus can improve the efficiency of a refrigeration cycle, while accumulating an excess refrigerant in the refrigerant storage tank.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus of any one of the first aspect to the third aspect, in which the compressor includes a fixed scroll and a swinging scroll.
- the fixed scroll includes a end plate and a lap that stands spirally from the end plate.
- the swinging scroll forms a compression chamber by engaging with the fixed scroll.
- a refrigerant that flows in the injection flow path merges at the compression chamber.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle while using a scroll compressor.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- a refrigerant having a sufficiently low GWP and having a refrigeration capacity may be referred to as “cooling capacity” or “capacity”
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line segments BD, CO, and OA);
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments BD, CO, and OA are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments IA, BD, and CG);
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments GI, IA, BD, and CG are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
- the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
- the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments JP, BD, and CG are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43)
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments JP, LM, BD, and CG are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
- the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
- the line segments LM and BF are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
- the line segments LQ and QR are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, wherein
- point S (62.6, 28.3, 9.1)
- point M (60.3, 6.2, 33.5)
- point A′ (30.6, 30.0, 39.4)
- point B (0.0, 58.7, 41.3)
- point F (0.0, 61.8, 38.2)
- point T 35.8, 44.9, 19.3)
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
- the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
- the line segments SM and BF are straight lines.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
- the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- COP coefficient of performance
- capacity may be referred to as “cooling capacity” or “capacity”
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
- the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- COP coefficient of performance
- capacity may be referred to as “cooling capacity” or “capacity”
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
- point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0)
- point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895)
- point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516)
- point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
- point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
- point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
- point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
- point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
- point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
- point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
- point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
- point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
- point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- a refrigerant having a sufficiently low GWP and having a refrigeration capacity may be referred to as “cooling capacity” or “capacity”
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
- point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
- point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
- point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
- point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
- point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0), point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177), point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801), and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W); if 18.2 ⁇ a ⁇ 26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points: point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0), point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05), point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207), point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714), and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and if 36.7 ⁇ a ⁇ 46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points: point J (
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- a refrigerant having a sufficiently low GWP and having a refrigeration capacity may be referred to as “cooling capacity” or “capacity”
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
- the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
- the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- point M (52.6, 0.0, 47.4), point M′(39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
- the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
- the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
- the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
- the line segments NV and GM are straight lines.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
- the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
- the line segment UO is a straight line.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
- the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
- the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
- the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
- the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
- the line segment TL is a straight line.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
- the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
- the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
- the line segment TP is a straight line.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigerant having a sufficiently low GWP having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
- point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
- the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
- the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments KB′ and GI are straight lines.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
- the line segment IJ is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments JR and GI are straight lines.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
- the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
- the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments PB′ and GM are straight lines.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
- the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments JR and GI are straight lines.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
- the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
- the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
- the line segment PS is a straight line.
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
- the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
- the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
- the refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- COP coefficient of performance
- FIG. 1 is a schematic view of an instrument used for a flammability test.
- FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
- FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %.
- FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
- FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
- FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
- FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
- FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
- FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
- FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
- FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
- FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
- FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
- FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
- FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
- FIG. 16 is a schematic structural view of a refrigerant circuit according to a first embodiment.
- FIG. 17 is a schematic control block structural view of a refrigeration cycle apparatus according to the first embodiment.
- FIG. 18 is a schematic structural view of a refrigerant circuit according to Modification B of the first embodiment.
- FIG. 19 is a side sectional view showing a schematic structure of a compressor according to the Modification B of the first embodiment.
- FIG. 20 is a schematic structural view of a refrigerant circuit according to a second embodiment.
- FIG. 21 is a schematic control block structural view of a refrigeration cycle apparatus according to the second embodiment.
- FIG. 22 is a side sectional view showing a schematic structure of a compressor according to the second embodiment.
- FIG. 23 is a plan sectional view showing the vicinity of a cylinder chamber of the compressor according to the second embodiment.
- FIG. 24 is a plan sectional view of a piston of the compressor according to the second embodiment.
- refrigerant includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given.
- Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds.
- Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC).
- Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
- composition comprising a refrigerant at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil.
- the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants).
- the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
- the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment.
- this type of alternative means that the same equipment is operated with an alternative refrigerant.
- Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
- alterative also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
- refrigerating machine refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature.
- refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
- a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013.
- a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
- a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more.
- RCL refers to a concentration limit in the air in consideration of safety factors.
- RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present.
- RCL is determined in accordance with the ASHRAE Standard.
- RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
- ATEL acute toxicity exposure limit
- ODL oxygen deprivation limit
- FCL flammable concentration limit
- temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
- refrigerant A any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
- the refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
- composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
- the refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
- the refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure.
- the refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary.
- the refrigerant composition according to the present disclosure when used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil.
- the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
- the refrigerant composition according to the present disclosure may contain a small amount of water.
- the water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant.
- a small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
- a tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
- the refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
- the tracer is not limited, and can be suitably selected from commonly used tracers.
- a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
- tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N 2 O).
- the tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
- FC-14 (tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (fluoroethane, CH 3 CH 2 F)
- the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
- the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
- the refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
- the ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
- ultraviolet fluorescent dyes examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof.
- the ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
- the refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
- the stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
- stabilizers examples include nitro compounds, ethers, and amines.
- nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
- ethers examples include 1,4-dioxane.
- amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
- stabilizers also include butylhydroxyxylene and benzotriazole.
- the content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
- the refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
- the polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
- polymerization inhibitors examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
- the content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
- the refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine.
- the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition.
- the refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
- the refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils.
- refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
- the base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
- PAG polyalkylene glycols
- POE polyol esters
- PVE polyvinyl ethers
- the refrigeration oil may further contain additives in addition to the base oil.
- the additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
- a refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
- the refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive.
- additives include compatibilizing agents described below.
- the refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
- the compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
- compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes.
- the compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
- each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent.
- the alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E.
- the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
- the refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- the refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
- the refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements.
- This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
- Preferable refrigerant A is as follows:
- point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0),
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3,
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments BD, CO, and OA are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
- the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
- point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0),
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 -0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments GI, IA, BD, and CG are straight lines.
- the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a
- the WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
- the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
- the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
- the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments JP, BD, and CG are straight lines.
- the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
- the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point (32.9, 67.1, 0.0),
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x 2 -0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
- the line segments JP, LM, BD, and CG are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
- the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
- point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3),
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
- the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
- the line segments LM and BF are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
- point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9),
- the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
- the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
- the line segments LQ and QR are straight lines.
- the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
- the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
- the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
- the line segments SM and BF are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
- point d (87.6, 0.0, 12.4), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point o (100.0, 0.0, 0.0), or on the line segments Od, dg, gh, and hO (excluding the points O and h);
- the line segment dg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
- the line segment gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein
- point l (72.5, 10.2, 17.3), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point i (72.5, 27.5, 0.0) or on the line segments lg, gh, and il (excluding the points h and i);
- the line segment lg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
- the line gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
- the line segments hi and il are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein
- point d (87.6, 0.0, 12.4), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Od, de, and ef (excluding the points O and f);
- the line segment de is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
- the line segment ef is represented by coordinates ( ⁇ 0.0064z 2 ⁇ 1.1565z+65.501, 0.0064z 2 +0.1565z+34.499, z), and
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein
- point l (72.5, 10.2, 17.3), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point i (72.5, 27.5, 0.0), or on the line segments le, ef, and il (excluding the points f and i);
- the line segment le is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein
- point a (93.4, 0.0, 6.6), point b (55.6, 26.6, 17.8), point c (77.6, 22.4, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Oa, ab, and bc (excluding the points O and c);
- the line segment ab is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, ⁇ 0.0052y 2 +0.5588y+6.615),
- the line segment bc is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
- the refrigerant A according to the present disclosure is preferably a refrigerant wherein
- point k (72.5, 14.1, 13.4), point b (55.6, 26.6, 17.8), and point j (72.5, 23.2, 4.3), or on the line segments kb, bj, and jk;
- the line segment kb is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, and ⁇ 0.0052y 2 +0.5588y+6.615),
- the line segment bj is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
- the line segment jk is a straight line.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- the refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired.
- the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
- the refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
- Additional refrigerants are not particularly limited and can be widely selected.
- the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
- refrigerant A is not limited to the Examples.
- the GWP of R1234yf and a composition consisting of a mixed refrigerant R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
- the refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
- Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
- Example 21 Item Unit G H I HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 14.0 0.0 R1234yf mass % 0.0 14.0 28.0 GWP — 1 1 2 COP ratio % (relative to 96.6 98.2 99.9 410A) Refrigerating % (relative to 103.1 95.1 86.6 capacity ratio 410A) Condensation glide ° C. 0.46 1.27 1.71 Discharge pressure % (relative to 108.4 98.7 88.6 410A) RCL g/m 3 37.4 37.0 36.6
- Example Example Example Example Example Item Unit 39 40 41 42 43 44 45 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7 to 410A) Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9 capacity ratio to 410A) Condensation ° C.
- Example Example Example Example Example Item Unit 53 54 55 56 57 58 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 COP ratio % (relative 94.3 95.0 95.9 96.8 97.8 98.9 to 410A) Refrigerating % (relative 91.9 91.5 90.8 89.9 88.7 87.3 capacity ratio to 410A) Condensation ° C.
- Example Example Item Unit 226 227 HFO-1132(E) mass % 34.0 36.0 HFO-1123 mass % 28.0 26.0 R1234yf mass % 38.0 38.0 GWP — 2 2 COP ratio % (relative to 97.4 97.6 410A) Refrigerating % (relative to 85.6 85.3 capacity ratio 410A) Condensation glide ° C. 4.18 4.11 Discharge pressure % (relative to 91.0 90.6 410A) RCL g/m 3 50.9 49.8
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3
- the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6)
- the line segment C′C is represented by coordinates (x, 0.00
- the point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
- the point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
- the point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
- the point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
- point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), point T (35.8, 44.9, 19.3), point E (58.0, 42.0, 0.0) and point O (100.0, 0.0, 0.0),
- the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
- the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3)
- the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2)
- the line segment TE is represented by coordinates (x, 0.0067x 2 ⁇ 0.7607x+63.525, ⁇ 0.0067x 2 ⁇ 0.2393x+36.475)
- the line segments BF, FO, and OA are straight lines
- the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.
- the point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
- the point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
- the composition preferably contains R1234yf.
- a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
- reference numeral 901 refers to a sample cell
- 902 refers to a high-speed camera
- 903 refers to a xenon lamp
- 904 refers to a collimating lens
- 905 refers to a collimating lens
- 906 refers to a ring filter.
- the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
- the burning velocity was measured by the closed method.
- the initial temperature was ambient temperature.
- Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
- the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
- the spread of the flame was visualized using schlieren photographs.
- a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
- Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
- Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
- Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
- the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
- the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43)
- the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91).
- the point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
- the point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
- the refrigerant B according to the present disclosure is
- a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
- a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
- the refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
- the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability.
- the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
- the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
- the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
- the refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired.
- the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
- additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
- the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- refrigerant B is not limited to the Examples.
- compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
- the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- composition of each mixture was defined as WCF.
- a leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
- the most flammable fraction was defined as WCFF.
- Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results.
- the COP and refrigerating capacity are ratios relative to R410A.
- the coefficient of performance (COP) was determined by the following formula.
- the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
- a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
- the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
- the burning velocity was measured by the closed method.
- the initial temperature was ambient temperature.
- Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
- the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
- the spread of the flame was visualized using schlieren photographs.
- a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
- Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
- the refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements.
- the refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
- Preferable refrigerant C is as follows:
- point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
- point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
- point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
- point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
- point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
- point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
- point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
- point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
- point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
- point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
- the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
- the refrigerant C according to the present disclosure is preferably a refrigerant wherein
- point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
- point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
- point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
- point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
- point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0)
- point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177)
- point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49.816, 0.0)
- point K′ (0.0196a 2 ⁇ 1.7863a+58.515, ⁇ 0.0079a 2 ⁇ 0.1136a+8.702, ⁇ 0.0117a 2 +0.8999a+32.783)
- point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0)
- point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05)
- point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
- point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714)
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
- coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J ( ⁇ 0.0134a 2 +1.0956a+7.13, 0.0134a 2 ⁇ 2.0956a+92.87, 0.0)
- point K′ ( ⁇ 1.892a+29.443, 0.0, 0.892a+70.557)
- point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
- point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05)
- point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
- the refrigerant according to the present disclosure When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
- the refrigerant C when the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
- point a (0.02a 2 ⁇ 2.46a+93.4, 0, ⁇ 0.02a 2 +2.46a+6.6)
- point b′ ( ⁇ 0.008a 2 ⁇ 1.38a+56, 0.018a 2 ⁇ 0.53a+26.3, ⁇ 0.01a 2 +1.91a+17.7)
- point c ( ⁇ 0.016a 2 +1.02a+77.6, 0.016a 2 ⁇ 1.02a+22.4, 0)
- point o (100.0 ⁇ a, 0.0, 0.0) or on the straight lines oa, ab′, and b′c (excluding point o and point c); if 10.0 ⁇ a ⁇ 16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points: point a (0.0244a 2 ⁇ 2.5695a+94.056, 0, ⁇ 0.0244a 2 +2.5695a+5.944), point b′ (0.1161a 2
- point a (0.0161a 2 ⁇ 2.3535a+92.742, 0, ⁇ 0.0161a 2 +2.3535a+7.258), point b′ ( ⁇ 0.0435a 2 ⁇ 0.0435a+50.406, 0.0304a 2 +1.8991a ⁇ 0.0661, 0.0739a 2 ⁇ 1.8556a+49.6601), point c ( ⁇ 0.0161a 2 +0.9959a+77.851, 0.0161a 2 ⁇ 0.9959a+22.149, 0), and point o (100.0 ⁇ a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c).
- point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved
- point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%.
- the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
- the refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired.
- the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
- the refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
- Additional refrigerants are not particularly limited and can be widely selected.
- the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
- refrigerant C is not limited to the Examples.
- compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
- the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant.
- the COP and refrigerating capacity are ratios relative to R410A.
- the coefficient of performance (COP) was determined by the following formula.
- HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %, a straight line connecting a point (0.0, 100.0 ⁇ a, 0.0) and a point (0.0, 0.0, 100.0 ⁇ a) is the base, and the point (0.0, 100.0 ⁇ a, 0.0) is on the left side, if 0 ⁇ a ⁇ 11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4) and point B (0.0, 0.0144a 2 -1.6377a+58.7, ⁇ 0.0144a 2
- coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695) and point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682);
- coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207) and point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714); and
- coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9) and point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05).
- the COP ratio of 92.5% or more forms a curved line CD.
- D′C a straight line that connects point C and point D′ (0, 75.4, 24.6)
- point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
- composition of each mixture was defined as WCF.
- a leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
- the most flammable fraction was defined as WCFF.
- the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
- a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
- the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
- the burning velocity was measured by the closed method.
- the initial temperature was ambient temperature.
- Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
- the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
- the spread of the flame was visualized using schlieren photographs.
- a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
- Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
- coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0) and point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895); if 18.2 ⁇ a ⁇ 26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0) and point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273); if 26.7 ⁇ a ⁇ 36.7, coordinates (x,y,z)
- FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
- Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
- Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
- Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
- Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
- Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
- the refrigerant D is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- the refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
- the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
- the line segments JN and EI are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
- the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
- the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
- the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
- the line segments NV and GM are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
- the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
- the line segment UO is a straight line.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
- the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
- the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
- the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
- the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
- the line segment TL is a straight line.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
- the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
- the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
- the line segment TP is a straight line.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- point a (71.1, 0.0, 28.9), point c (36.5, 18.2, 45.3), point f (47.6, 18.3, 34.1), and point d (72.0, 0.0, 28.0), or on these line segments;
- the line segment ac is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
- the line segment fd is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
- the line segments cf and da are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- point a (71.1, 0.0, 28.9), point b (42.6, 14.5, 42.9), point e (51.4, 14.6, 34.0), and point d (72.0, 0.0, 28.0), or on these line segments;
- the line segment ab is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
- the line segment ed is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
- the line segments be and da are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- the line segment gi is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
- the line segments ij and jg are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
- the refrigerant D according to the present disclosure is preferably a refrigerant wherein
- the line segment gh is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
- the line segments hk and kg are straight lines.
- the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
- the refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired.
- the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
- additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
- the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- refrigerant D is not limited to the Examples.
- composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF.
- a leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
- the most flammable fraction was defined as WCFF.
- a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
- the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
- the burning velocity was measured by the closed method.
- the initial temperature was ambient temperature.
- Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
- the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
- the spread of the flame was visualized using schlieren photographs.
- a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
- Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
- Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
- Example 1 A B A′ B′ A′′ B′′ HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0 R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5 R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5 GWP — 2088 125 125 250 250 350 350 COP Ratio %(relative to 100 98.7 103.6 98.7 102.3 99.2 102.2 R410A) Refrigerating %(relative to 100 105.3 62.5 109.9 77.5 112.1 87.3 Capacity Ratio R410A)
- Example 21 Example Item Unit M W 20 N 22 HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9 GWP — 2 36 70 100 125 188 COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4 to R410A) Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5 Capacity Ratio to R410A)
- Example Example 23 25 26 Item Unit O
- Example 24 P S HFO-1132(E) Mass % 22.6 21.2 20.5 21.9 R32 Mass % 36.8 44.2 51.7 39.7 R1234yf Mass % 40.6 34.6 27.8 38.4 GWP — 250 300 350 270 COP Ratio % (relative 100.4 100.5 100.6 100.4 to R410A) Refrigerating % (relative 91.0 95.0 99.1 92.5 Capacity to R410A) Ratio
- Example Example Example Example Example Example Example Item Unit 119 120 121 122 123 124 125 126 HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0 R32 Mass % 36.0 36.0 25.0 28.0 31.0 31.0 34.0 R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0 GWP — 245 245 245 170 191 211 211 231 COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9 to R410A) Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0 Capacity Ratio to R410A)
- the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0),
- the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7), and
- the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
- point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM),
- the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4)
- the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02),
- the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4), and
- the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
- the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488),
- the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365), and
- the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
- point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments,
- the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235),
- the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874),
- the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512),
- the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324), and
- the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
- the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9),
- the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874), and
- the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
- the refrigerant E is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
- the refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
- the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
- the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments KB′ and GI are straight lines.
- the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
- the line segment IJ is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments JR and GI are straight lines.
- the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
- the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
- the line segments PB′ and GM are straight lines.
- the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
- the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
- the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z),
- the line segments NR and GM are straight lines.
- the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
- the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
- the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
- the line segment PS is a straight line.
- the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
- the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
- the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
- the line segments QB′′ and B′′D are straight lines.
- the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), point e′ (41.8, 39.8, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
- the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z),
- the line segment d′e′ is represented by coordinates ( ⁇ 0.0535z 2 +0.3229z+53.957, 0.0535z 2 +0.6771z+46.043, z), and
- the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), point e (72.2, 9.4, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments cd, de, and ea′ (excluding the points c and a′);
- the line segment cde is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
- the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments c′d′ and d′a (excluding the points c′ and a);
- the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z), and
- the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
- the refrigerant E according to the present disclosure is preferably a refrigerant wherein
- point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments cd and da (excluding the points c and a);
- the line segment cd is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
- the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
- the refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired.
- the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
- additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
- the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- refrigerant E is not limited to the Examples.
- Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and
- composition of each mixture was defined as WCF.
- a leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013.
- the most flammable fraction was defined as WCFF.
- the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013.
- the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
- a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
- the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
- the burning velocity was measured by the closed method.
- the initial temperature was ambient temperature.
- Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
- the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
- the spread of the flame was visualized using schlieren photographs.
- a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
- Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
- Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
- the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.00, z)
- the line segment KL is represented by coordinates (0.0098z 2 ⁇ 1.238z+67.852, ⁇ 0.0098z 2 +0.238z+32.148, z)
- Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
- the line segment MP is represented by coordinates (0.0083z 2 -0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z)
- the line segment PQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z).
- an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates.
- an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
- compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
- the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- the COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined.
- the conditions for calculation were as described below.
- Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
- Example 11 Item Unit O C 10 U 2 D HFO- mass % 100.0 50.0 41.1 28.7 15.2 0.0 1132(E) HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0 R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0 GWP — 1 125 165 204 217 228 COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 to R410A) Refrig- % (relative 98.3 109.9 111.7 113.5 114.8 115.4 erating to R410A) capacity ratio
- Example 11 Example 12 Item Unit M N P Q HFO-1132(E) mass % 47.1 38.5 31.8 28.6 HFO-1123 mass % 52.9 52.1 49.8 34.4 R32 mass % 0.0 9.5 18.4 37.0 GWP — 1 65 125 250 COP ratio % (relative to 93.9 94.1 94.7 96.9 R410A) Refrigerating capacity % (relative to 106.2 109.7 112.0 114.1 ratio R410A)
- the refrigerant has a GWP of 250 or less.
- the refrigerant has a GWP of 125 or less.
- the refrigerant has a GWP of 65 or less.
- the refrigerant has a COP ratio of 96% or more relative to that of R410A.
- the line segment CU is represented by coordinates ( ⁇ 0.0538z 2 +0.7888z+53.701, 0.0538z 2 ⁇ 1.7888z+46.299, z)
- the line segment UD is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z).
- the points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
- the points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
- the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
- the line segment ET is represented by coordinates ( ⁇ 0.0547z 2 -0.5327z+53.4, 0.0547z 2 ⁇ 0.4673z+46.6, z)
- the line segment TF is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z).
- the points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
- the points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
- the refrigerant has a COP ratio of 93% or more relative to that of R410A.
- the line segment GR is represented by coordinates ( ⁇ 0.0491z 2 -1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z).
- the points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
- the points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.
- FIG. 16 is a schematic structural view of a refrigerant circuit
- FIG. 17 which is a schematic control block structural view.
- the air conditioning apparatus 1 is a apparatus that air-conditions a target space by performing a vapor compression refrigeration cycle.
- the air conditioning apparatus 1 primarily includes an outdoor unit 20 , a first indoor unit 30 , a second indoor unit 35 , a liquid-side refrigerant connection pipe 6 and a gas-side refrigerant connection pipe 5 that connect the first indoor unit 30 and the second indoor unit 35 in parallel with respect to the outdoor unit 20 , a remote controller (not shown) that serves as an input device and an output device, and a controller 7 that controls the operation of the air conditioning apparatus 1 .
- the air conditioning apparatus 1 performs a refrigeration cycle in which the refrigerant sealed in a refrigerant circuit 10 is compressed, cooled or condensed, decompressed, and heated or evaporated, and is then compressed again.
- the refrigerant circuit 10 is filled with a refrigerant for performing the vapor compression refrigeration cycle.
- the refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any one of the refrigerants A to E above may be used.
- the refrigerant circuit 10 is filled with refrigerating-machine oil along with the mixed refrigerant.
- the outdoor unit 20 is connected to the indoor unit 30 via the liquid-side refrigerant connection pipe 6 and the gas-side refrigerant connection pipe 5 , and constitutes a part of the refrigerant circuit 10 .
- the outdoor unit 20 primarily includes a compressor 21 , a four-way switching valve 22 , an outdoor heat exchanger 23 , a subcooling heat exchanger 47 , a suction injection pipe 40 , a subcooling expansion valve 48 , an outdoor expansion valve 24 , an outdoor fan 25 , a low-pressure receiver 41 , a liquid-side shutoff valve 29 , and a gas-side shutoff valve 28 .
- the compressor 21 is equipment that compresses a low-pressure refrigerant in the refrigeration cycle into a high-pressure refrigerant.
- a compressor having a hermetic structure in which a displacement compression element (not shown) of, for example, a rotary type or scroll type is rotationally driven by a compressor motor is used as the compressor 21 .
- the compressor motor is a motor for changing capacity, and an operation frequency can be controlled by an inverter.
- An attachment accumulator (not shown) is provided on a suction side of the compressor 21 (the internal volume of the attachment accumulator is less than, and is desirably less than or equal to half of, the internal volume of refrigerant containers, such as low-pressure receivers, intermediate-pressure receivers, and high-pressure receivers).
- the four-way switching valve 22 can be switched between a cooling operation connection state and a heating operation connection state by switching a connection state, the cooling operation connection state being a state in which the four-way switching valve 22 connects the suction side of the compressor 21 and the gas-side shutoff valve 28 to each other while connecting a discharge side of the compressor 21 and the outdoor heat exchanger 23 , the heating operation connection state being a state in which the four-way switching valve 22 connects the suction side of the compressor 21 and the outdoor heat exchanger 23 to each other while connecting the discharge side of the compressor 21 and the gas-side shutoff valve 28 .
- the outdoor heat exchanger 23 is a heat exchanger that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the cooling operation and that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the heating operation.
- the outdoor expansion valve 24 is provided between a liquid-side outlet of the outdoor heat exchanger 23 and the liquid-side shutoff valve 29 in the refrigerant circuit 10 .
- the outdoor expansion valve 24 is an electric expansion valve whose valve opening degree is adjustable.
- the suction injection pipe 40 branches off from a branching portion between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 in a main circuit of the refrigerant circuit 10 , and is provided so as to merge at a merging portion between the low-pressure receiver 41 and one connection port of the four-way switching valve 22 .
- the subcooling expansion valve 48 is provided at the suction injection pipe 40 .
- the subcooling expansion valve 48 is an electric expansion valve whose valve opening degree is adjustable.
- the subcooling heat exchanger 47 is a heat exchanger that causes heat to be exchanged between a refrigerant that flows along a portion of the refrigerant circuit 10 between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 and a refrigerant that flows on a side of the merging portion of the subcooling expansion valve 48 in the suction injection pipe 40 .
- the subcooling heat exchanger 47 is a portion between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 , and is provided closer than the branching portion of the suction injection pipe 40 to the liquid-side shutoff valve 29 .
- the outdoor fan 25 sucks outdoor air into the outdoor unit 20 and causes heat to be exchanged with a refrigerant in the outdoor heat exchanger 23 , and then causes an air flow for discharge to the outside to be generated.
- the outdoor fan 25 is rotationally driven by an outdoor fan motor.
- the low-pressure receiver 41 is provided between the suction side of the compressor 21 and the one connection port of the four-way switching valve 22 , and is a refrigerant container that is capable of storing an excess refrigerant as a liquid refrigerant in the refrigerant circuit 10 .
- the compressor 21 is provided with the attachment accumulator (not shown), and the low-pressure receiver 41 is connected on a downstream side of the attachment accumulator.
- the liquid-side shutoff valve 29 is a manual valve disposed at a portion of the outdoor unit 20 that is connected to the liquid-side refrigerant connection pipe 6 .
- the gas-side shutoff valve 28 is a manual valve disposed at a portion of the outdoor unit 20 that is connected to the gas-side refrigerant connection pipe 5 .
- the outdoor unit 20 includes an outdoor unit control unit 27 that controls the operation of each portion that constitutes the outdoor unit 20 .
- the outdoor unit control unit 27 includes a microcomputer including, for example, a CPU and a memory.
- the outdoor unit control unit 27 is connected to an indoor unit control units 34 and 39 of each indoor unit 30 and 35 via a communication line, and sends and receives, for example, control signals.
- the discharge pressure sensor 61 detects the pressure of a refrigerant that flows through a discharge tube that connects the discharge side of the compressor 21 and one connection port of the four-way switching valve 22 .
- the discharge temperature sensor 62 detects the temperature of the refrigerant that flows through the discharge tube.
- the suction pressure sensor 63 detects the pressure of a refrigerant that flows through a suction tube that connects the suction side of the compressor 21 and the low-pressure receiver 41 .
- the suction temperature sensor 64 detects the temperature of the refrigerant that flows through the suction tube.
- the outdoor heat-exchange temperature sensor 65 detects the temperature of a refrigerant that flows through the liquid-side outlet of the outdoor heat exchanger 23 on a side opposite to a side where the four-way switching valve 22 is connected.
- the outside air temperature sensor 66 detects the temperature of outdoor air that is air before passing through the outdoor heat exchanger 23 .
- the subcooling temperature sensor 67 detects the temperature of a refrigerant that flows between the subcooling heat exchanger 47 and a second outdoor expansion valve 24 in the main circuit of the refrigerant circuit 10 .
- the first indoor unit 30 and the second indoor unit 35 are installed on, for example, a ceiling or wall surfaces in a room corresponding to the same target space or different target spaces.
- the first indoor unit 30 and the second indoor unit 35 are connected to the outdoor unit 20 via the liquid-side refrigerant connection pipe 6 and the gas-side refrigerant connection pipe 5 , and constitute a part of the refrigerant circuit 10 .
- the first indoor unit 30 includes a first indoor heat exchanger 31 , a first indoor expansion valve 33 , and a first indoor fan 32 .
- a liquid side of the first indoor heat exchanger 31 is connected to the liquid-side refrigerant connection pipe 6 , and a gas side end of the first indoor heat exchanger 31 is connected to the gas-side refrigerant connection pipe 5 .
- the first indoor heat exchanger 31 is a heat exchanger that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the cooling operation, and that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the heating operation.
- the first indoor expansion valve 33 is an electric expansion valve that is provided at a refrigerant pipe on a liquid refrigerant side of the first indoor heat exchanger 31 and whose valve opening degree is adjustable.
- the first indoor fan 32 sucks indoor air into the first indoor unit 30 and causes heat to be exchanged with a refrigerant in the first indoor heat exchanger 31 , and then causes an air flow for discharge to the outside to be generated.
- the first indoor fan 32 is rotationally driven by an indoor fan motor.
- the first indoor unit 30 includes the first indoor unit control unit 34 that controls the operation of each portion that constitutes the first indoor unit 30 .
- the first indoor unit control unit 34 includes a microcomputer including, for example, a CPU and a memory.
- the first indoor unit control unit 34 is connected to a second indoor unit control unit 39 and the outdoor unit control unit 27 via the communication line, and sends and receives, for example, control signals.
- the first indoor unit 30 is provided with, for example, a first indoor liquid-side heat-exchange sensor 71 , a first indoor air temperature sensor 72 , and a first indoor gas-side heat-exchange temperature sensor 73 .
- Each of these sensors is electrically connected to the first indoor unit control unit 34 and sends a detection signal to the indoor unit control unit 34 .
- the first indoor liquid-side heat-exchange sensor 71 detects the temperature of a refrigerant that flows through a liquid-refrigerant-side outlet of the first indoor heat exchanger 31 .
- the first indoor air temperature sensor 72 detects the temperature of indoor air that is air before passing through the first indoor heat exchanger 31 .
- the first indoor gas-side heat-exchange temperature sensor 73 detects the temperature of a refrigerant that flows through a gas-refrigerant-side outlet of the first indoor heat exchanger 31 .
- the second indoor unit 35 is provided with a second indoor heat exchanger 36 , a second indoor expansion valve 38 , and a second indoor fan 37 .
- a liquid side of the second indoor heat exchanger 36 is connected to the liquid-side refrigerant connection pipe 6 , and a gas side end of the second indoor heat exchanger 36 is connected to the gas-side refrigerant connection pipe 5 .
- the second indoor heat exchanger 36 is a heat exchanger that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the cooling operation, and that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the heating operation.
- the second indoor expansion valve 38 is an electric expansion valve that is provided at a refrigerant pipe on a liquid refrigerant side of the second indoor heat exchanger 36 and whose valve opening degree is adjustable.
- the second indoor fan 37 sucks indoor air into the second indoor unit 35 and causes heat to be exchanged with a refrigerant in the second indoor heat exchanger 36 , and then causes an air flow for discharge to the outside to be generated.
- the second indoor fan 37 is rotationally driven by an indoor fan motor.
- the second indoor unit 35 includes the second indoor unit control unit 39 that controls the operation of each portion that constitutes the second indoor unit 35 .
- the second indoor unit control unit 39 includes a microcomputer including, for example, a CPU and a memory.
- the second indoor unit control unit 39 is connected to the first indoor unit control unit 34 and the outdoor unit control unit 27 via a communication line, and sends and receives, for example, control signals.
- the second indoor unit 35 is provided with, for example, a second indoor liquid-side heat-exchange sensor 75 , a second indoor air temperature sensor 76 , and a second indoor gas-side heat-exchange temperature sensor 77 .
- Each of these sensors is electrically connected to the second indoor unit control unit 39 and sends a detection signal to the second indoor unit control unit 39 .
- the second indoor liquid-side heat-exchange sensor 75 detects the temperature of a refrigerant that flows through a liquid-refrigerant-side outlet of the second indoor heat exchanger 36 .
- the second indoor air temperature sensor 76 detects the temperature of indoor air that is air before passing through the second indoor heat exchanger 36 .
- the second indoor gas-side heat-exchange temperature sensor 77 detects the temperature of a refrigerant that flows through a gas-refrigerant-side outlet of the second indoor heat exchanger 36 .
- the controller 7 that controls the operation of the air conditioning apparatus 1 is formed.
- the controller 7 primarily includes a CPU (central processing unit) and a memory, such as ROM or RAM. Various processing operations and control that are performed by the controller 7 are realized as a result of each portion included in the outdoor unit control unit 27 and/or the first indoor unit control unit 34 and/or the second indoor unit control unit 39 functioning together.
- a cooling operation mode and a heating operation mode are provided.
- the controller 7 determines whether or not a mode is the cooling operation mode or the heating operation mode, and executes the mode.
- the compressor 21 in the cooling operation mode, is such that an operation frequency is capacity-controlled to cause the evaporation temperature of a refrigerant in the refrigerant circuit 10 to become a target evaporation temperature.
- the target evaporation temperature be determined in accordance with the indoor unit 30 or 35 whichever has the largest difference between a set temperature and an indoor temperature (the indoor unit having the largest load).
- a gas refrigerant discharged from the compressor 21 is condensed at the outdoor heat exchanger 23 via the four-way switching valve 22 .
- the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the outdoor expansion valve 24 .
- the outdoor expansion valve 24 is controlled so as to be in a fully open state.
- the refrigerant that has flowed through the branching portion of the suction injection pipe 40 is decompressed at the subcooling expansion valve 48 .
- the refrigerant that flows toward the liquid-side shutoff valve 29 from the outdoor expansion valve 24 and the refrigerant that is decompressed at the subcooling expansion valve 48 and that flows in the suction injection pipe 40 exchange heat.
- the refrigerant flows so as to merge at the merging portion between the low-pressure receiver 41 and the one connection port of the four-way switching valve 22 .
- the valve opening degree of the subcooling expansion valve 48 is controlled so as to satisfy predetermined conditions such as the subcooling degree of the refrigerant that has passed though the subcooling heat exchanger 47 in the refrigerant circuit 10 becoming a predetermined target value.
- the refrigerant flows through the liquid-side refrigerant connection pipe 6 via the liquid-side shutoff valve 29 , and is sent to the first indoor unit 30 and the second indoor unit 35 .
- the valve opening degree of the first indoor expansion valve 33 is controlled so as to satisfy predetermined conditions such as the superheating degree of a refrigerant that flows through a gas-side outlet of the first indoor heat exchanger 31 becoming a predetermined target value.
- the valve opening degree of the second indoor expansion valve 38 of the second indoor unit 35 is controlled so as to satisfy predetermined conditions such as the superheating degree of a refrigerant that flows through a gas-side outlet of the second indoor heat exchanger 36 becoming a predetermined target value.
- the valve opening degree of the first indoor expansion valve 33 and the valve opening degree of the second indoor expansion valve 38 may be controlled so as to satisfy predetermined conditions such as the superheating degree of the refrigerant that is obtained by subtracting the saturation temperature of the refrigerant that is equivalent to a detected pressure of the suction pressure sensor 63 from a detected temperature of the suction temperature sensor 64 becoming a target value.
- the method of controlling the valve opening degree of the first indoor expansion valve 33 and the valve opening degree of the second indoor expansion valve 38 are not limited, so that, for example, the valve opening degrees may be controlled to cause the discharge temperature of the refrigerant that is discharged from the compressor 21 to become a predetermined temperature, or the superheating degree of the refrigerant that is discharged from the compressor 21 to satisfy a predetermined condition.
- the refrigerant decompressed at the first indoor expansion valve 33 evaporates at the first indoor heat exchanger 31
- the refrigerant decompressed at the second indoor expansion valve 38 evaporates at the second indoor heat exchanger 36
- the refrigerants merge, after which the refrigerant flows to the gas-side refrigerant connection pipe 5 .
- the refrigerant that has flowed through the gas-side refrigerant connection pipe 5 merges with the refrigerant that has flowed through the suction injection pipe 40 via the gas-side shutoff valve 28 and the four-way switching valve 22 .
- the merged refrigerant is sucked into the compressor 21 again via the low-pressure receiver 41 .
- Liquid refrigerants that could not be evaporated at the first indoor heat exchanger 31 , the second indoor heat exchanger 36 , and the subcooling heat exchanger 47 are stored as excess refrigerants in the low-pressure receiver 41 .
- the compressor 21 in the heating operation mode, is such that an operation frequency is subjected to capacity control to cause the condensation temperature of a refrigerant in the refrigerant circuit 10 to become a target condensation temperature.
- the target condensation temperature be determined in accordance with the indoor unit 30 or 35 whichever has the largest difference between a set temperature and an indoor temperature (the indoor unit having the largest load).
- the valve opening degree of the first indoor expansion valve 33 of the first indoor unit 30 is controlled so as to satisfy predetermined conditions, such as the subcooling degree of a refrigerant that flows along the liquid side of the first indoor heat exchanger 31 becoming a predetermined target value.
- the valve opening degree of the second indoor expansion valve 38 of the second indoor unit 35 is controlled so as to satisfy predetermined conditions, such as the subcooling degree of a refrigerant that flows along the liquid side of the second indoor heat exchanger 36 becoming a predetermined target value.
- the refrigerant flows through the liquid-side refrigerant connection pipe 6 and flows into the outdoor unit 20 .
- the refrigerant After the refrigerant that has passed through the liquid-side shutoff valve 29 of the outdoor unit 20 has flowed through the subcooling heat exchanger 47 , the refrigerant is decompressed at the outdoor expansion valve 24 .
- the valve opening degree of the outdoor expansion valve 24 is controlled so as to satisfy predetermined conditions, such as the superheating degree of a refrigerant that flows along the suction side of the compressor 21 becoming a target value.
- the method of controlling the valve opening degree of the outdoor expansion valve 24 is not limited, so that, for example, the valve opening degrees may be controlled to cause the discharge temperature of the refrigerant that is discharged from the compressor 21 to become a predetermined temperature, or the superheating degree of the refrigerant that is discharged from the compressor 21 to satisfy a predetermined condition.
- the subcooling expansion valve 48 that is provided at the suction injection pipe 40 is controlled so as to be in a fully closed state, the refrigerant does not flow through the suction injection pipe 40 and heat is also not exchanged at the subcooling heat exchanger 47 .
- the refrigerant decompressed at the outdoor expansion valve 24 is evaporated at the outdoor heat exchanger 23 , flows through the four-way switching valve 22 and the low-pressure receiver 41 , and is sucked into the compressor 21 again.
- a liquid refrigerant that could not be evaporated at the outdoor heat exchanger 23 is stored as an excess refrigerant in the low-pressure receiver 41 .
- the air conditioning apparatus 1 can sufficiently reduce GWP.
- the air conditioning apparatus 1 can improve the operation efficiency in the refrigeration cycle.
- the air conditioning apparatus 1 is described by using as an example an air conditioning apparatus including a plurality of indoor units that are connected in parallel, an air conditioning apparatus including one indoor unit that is connected in series may be used as the air conditioning apparatus.
- the air conditioning apparatus 1 including the suction injection pipe 40 that allows a refrigerant to be sent to the suction side of the compressor 21 after the refrigerant has flowed through the subcooling heat exchanger 47 is described as an example.
- an air conditioning apparatus 1 a including an economizer injection pipe 40 a that sends a refrigerant to a region of intermediate pressure of a compressor 21 a after the refrigerant has flowed through an economizer heat exchanger 47 a may be used.
- the economizer injection pipe 40 a is a pipe that branches off from a portion of a main circuit of a refrigerant circuit 10 between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 and extends up to the region of intermediate pressure of the compressor 21 a .
- An economizer expansion valve 48 a whose valve opening degree can be controlled is provided at the economizer injection pipe 40 a.
- the economizer heat exchanger 47 a is a heat exchanger that causes heat to be exchanged between a refrigerant that flows into a portion branching off from the main circuit of the refrigerant circuit 10 , that flows in the economizer injection pipe 40 a , and that has been decompressed at the economizer expansion valve 48 a and a refrigerant that flows between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 in the main circuit of the refrigerant circuit 10 .
- the compressor 21 a is not limited, and, for example, a scroll compressor as that shown in FIG. 19 can be used.
- the compressor 21 a includes a casing 80 , a scroll compression mechanism 81 including a fixed scroll 82 , a driving motor 91 , a crank shaft 94 , and a lower bearing 98 .
- the casing 80 includes a circular cylindrical member 80 a that is substantially circularly cylindrical and that has an open top and an open bottom, and an upper cover 80 b and a lower cover 80 c that are provided on an upper end and a lower end, respectively, of the circular cylindrical member 80 a .
- the circular cylindrical member 80 a and the upper cover 80 b and the lower cover 80 c are fixed to each other by welding so as to be kept air-tight.
- Pieces of structural equipment of the compressor 21 a including the scroll compression mechanism 81 , the driving motor 91 , the crank shaft 94 , and the lower bearing 98 are accommodated in the casing 80 .
- An oil-storage space So is formed in a lower portion of the casing 80 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Signal Processing (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Lubricants (AREA)
- Liquid Crystal Substances (AREA)
- Air-Conditioning For Vehicles (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Compressor (AREA)
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
- Complex Calculations (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Analytical Chemistry (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Geometry (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
A refrigeration cycle apparatus that can improve operation efficiency when a refrigerant that contains at least 1,2-difluoroethylene is used is provided. An air conditioning apparatus 1 includes a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), an indoor heat exchanger (31), and a suction injection pipe (40), and uses a refrigerant that contains at least 1,2-difluoroethylene. The suction injection pipe (40) allows a part of a refrigerant that flows toward the indoor heat exchanger (31) from the outdoor heat exchanger (23) to merge with a low-pressure refrigerant that is sucked into the compressor (21).
Description
- The present disclosure relates to a refrigeration cycle apparatus.
- Hitherto, a refrigeration cycle apparatus such as an air conditioning apparatus has frequently uses R410A as a refrigerant. R410A is a two-component mixed refrigerant containing (CH2F2; HFC-32 or R32) and pentafluoroethane (C2HF5; HFC-125 or R125), and is a near-azeotropic composition.
- However, the global warming potential (GWP) of R410A is 2088, and, in recent years, due to increasing concern about global warming, R32, which is a refrigerant having a lower GWP, is being frequently used.
- Therefore, for example, Patent Literature 1 (International Publication No. 2015/141678) proposes various low-GWP mixed refrigerants that can replace R410A.
- However, the operation efficiency of a refrigeration cycle when a refrigerant containing at least 1,2-difluoroethylene is used as a refrigerant having a sufficiently low GWP has not been considered at all up to this time.
- The content of the present disclosure is based on the point above, and an object is to provide a refrigeration cycle apparatus that can improve operation efficiency when using a refrigerant containing at least 1,2-difluoroethylene.
- A refrigeration cycle apparatus according to a first aspect includes a compressor, a condenser, a decompressor, an evaporator, and an injection flow path. The compressor sucks a low-pressure refrigerant from a suction flow path, compresses the refrigerant, and discharges a high-pressure refrigerant. The condenser condenses the high-pressure refrigerant discharged from the compressor. The decompressor decompresses the high-pressure refrigerant that has exited from the condenser. The evaporator evaporates the refrigerant decompressed at the decompressor. The injection flow path is at least either one of an intermediate injection flow path and a suction injection flow path. The intermediate injection flow path allows a part of a refrigerant that flows toward the evaporator from the condenser to merge with an intermediate-pressure refrigerant in the compressor. The suction injection flow path allows a part of a refrigerant that flows toward the evaporator from the condenser to merge with the low-pressure refrigerant that is sucked by the compressor. The refrigerant contains at least 1,2-difluoroethylene.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using the injection flow path, while sufficiently reducing GWP by using the refrigerant containing 1,2-difluoroethylene.
- A refrigeration cycle apparatus according to a second aspect is the refrigeration cycle apparatus of the first aspect and further includes a branching flow path, an opening degree adjusting valve, and an injection heat exchanger. The branching flow path branches off from a main refrigerant flow path that connects the condenser and the evaporator to each other. The opening degree adjusting valve is provided in the branching flow path. The injection heat exchanger causes a refrigerant that flows in the main refrigerant flow path and a refrigerant that flows on a downstream side with respect to the opening degree adjusting valve in the branching flow path to exchange heat. A refrigerant that exits from the injection heat exchanger and flows in the branching flow path flows in the injection flow path.
- The refrigeration cycle apparatus can further improve the operation efficiency of a refrigeration cycle.
- A refrigeration cycle apparatus according to a third aspect is the refrigeration cycle apparatus of the first aspect or the second aspect and further includes a refrigerant storage tank that is provided in a main refrigerant flow path that connects the condenser and the evaporator to each other. A gas component of a refrigerant that accumulates in the refrigerant storage tank flows in the injection flow path.
- The refrigeration cycle apparatus can improve the efficiency of a refrigeration cycle, while accumulating an excess refrigerant in the refrigerant storage tank.
- A refrigeration cycle apparatus according to a fourth aspect is the refrigeration cycle apparatus of any one of the first aspect to the third aspect, in which the compressor includes a fixed scroll and a swinging scroll. The fixed scroll includes a end plate and a lap that stands spirally from the end plate. The swinging scroll forms a compression chamber by engaging with the fixed scroll. A refrigerant that flows in the injection flow path merges at the compression chamber.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle while using a scroll compressor.
- A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- A refrigeration cycle apparatus according to a sixth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
- point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA); - the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments BD, CO, and OA are straight lines.
- A refrigeration cycle apparatus according to a seventh aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
- point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG); - the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments GI, IA, BD, and CG are straight lines.
- A refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ); - the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
- the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments JP, BD, and CG are straight lines.
- A refrigeration cycle apparatus according to a ninth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ); - the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
- the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments JP, LM, BD, and CG are straight lines.
- A refrigeration cycle apparatus according to a tenth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
- point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF); - the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
- the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
- the line segments LM and BF are straight lines.
- A refrigeration cycle apparatus according to an eleventh aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
- point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments; - the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
- the line segments LQ and QR are straight lines.
- A refrigeration cycle apparatus according to a twelfth aspect is the refrigeration cycle apparatus according to the fifth aspect, wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
- point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3), - or on the above line segments,
- the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
- the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
- the line segments SM and BF are straight lines.
- A refrigeration cycle apparatus according to a thirteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
- the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a fourteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
- the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a coefficient of performance (COP) and a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that are equivalent to those of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a fifteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
- wherein
- when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
- if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
- point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C); - if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); - if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); - if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and - if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). - The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- A refrigeration cycle apparatus according to a sixteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
- wherein
- when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
- if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
- point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C); - if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W); - if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). - The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) and a coefficient of performance (COP) that are equivalent to those of R410A.
- A refrigeration cycle apparatus according to a seventeenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
- wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
- point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI; - the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
- the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
- the line segments JN and EI are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to an eighteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, MN, NV, VG, and GM that connect the following 5 points:
- point M (52.6, 0.0, 47.4),
point M′(39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM); - the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
- the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
- the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
- the line segments NV and GM are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a nineteenth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
- point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments; - the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
- the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
- the line segment UO is a straight line.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a twentieth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
- point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments; - the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
- the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
- the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
- the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
- the line segment TL is a straight line.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a twenty first aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), R32, and R1234yf,
- wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
- point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments; - the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
- the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
- the line segment TP is a straight line.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP, having a refrigeration capacity (may be referred to as “cooling capacity” or “capacity”) that is equivalent to that of R410A, and being classified with lower flammability (class 2L) based on the standard of American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
- A refrigeration cycle apparatus according to a twenty second aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
- point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI); - the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
- the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments KB′ and GI are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- A refrigeration cycle apparatus according to a twenty third aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
- point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI); - the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments JR and GI are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- A refrigeration cycle apparatus according to a twenty fourth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
- point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM); - the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
- the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments PB′ and GM are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- A refrigeration cycle apparatus according to a twenty fifth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
- point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM); - the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments JR and GI are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- A refrigeration cycle apparatus according to a twenty sixth aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
- point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments; - the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
- the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
- the line segment PS is a straight line.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
- A refrigeration cycle apparatus according to a twenty seventh aspect is the refrigeration cycle apparatus according to any of the first through fourth aspects, wherein
- the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
- wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
- point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D); - the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
- the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
- the line segments QB″ and B″D are straight lines.
- The refrigeration cycle apparatus can improve the operation efficiency of a refrigeration cycle by using a refrigerant having a sufficiently low GWP and having a coefficient of performance (COP) that is equivalent to that of R410A.
-
FIG. 1 is a schematic view of an instrument used for a flammability test. -
FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %. -
FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %. -
FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %). -
FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %). -
FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %). -
FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %). -
FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %). -
FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %). -
FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %). -
FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %). -
FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %). -
FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %). -
FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %. -
FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %. -
FIG. 16 is a schematic structural view of a refrigerant circuit according to a first embodiment. -
FIG. 17 is a schematic control block structural view of a refrigeration cycle apparatus according to the first embodiment. -
FIG. 18 is a schematic structural view of a refrigerant circuit according to Modification B of the first embodiment. -
FIG. 19 is a side sectional view showing a schematic structure of a compressor according to the Modification B of the first embodiment. -
FIG. 20 is a schematic structural view of a refrigerant circuit according to a second embodiment. -
FIG. 21 is a schematic control block structural view of a refrigeration cycle apparatus according to the second embodiment. -
FIG. 22 is a side sectional view showing a schematic structure of a compressor according to the second embodiment. -
FIG. 23 is a plan sectional view showing the vicinity of a cylinder chamber of the compressor according to the second embodiment. -
FIG. 24 is a plan sectional view of a piston of the compressor according to the second embodiment. - In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
- In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
- In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
- The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
- In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
- In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
- In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
- In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
- Any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
- The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
- The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
- The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
- The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
- The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
- A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
- The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
- The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
- Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
- The following compounds are preferable as the tracer.
- FC-14 (tetrafluoromethane, CF4)
HCC-40 (chloromethane, CH3Cl)
HFC-23 (trifluoromethane, CHF3)
HFC-41 (fluoromethane, CH3Cl)
HFC-125 (pentafluoroethane, CF3CHF2)
HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
HFC-143a (1,1,1-trifluoroethane, CF3CH3)
HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
HFC-152a (1,1-difluoroethane, CHF2CH3)
HFC-152 (1,2-difluoroethane, CH2FCH2F)
HFC-161 (fluoroethane, CH3CH2F)
HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)
HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)
HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
HCFC-22 (chlorodifluoromethane, CHClF2)
HCFC-31 (chlorofluoromethane, CH2ClF)
CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3) - The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
- The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
- The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
- Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
- The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
- The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
- Examples of stabilizers include nitro compounds, ethers, and amines.
- Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
- Examples of ethers include 1,4-dioxane.
- Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
- Examples of stabilizers also include butylhydroxyxylene and benzotriazole.
- The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
- The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
- The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
- Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
- The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
- The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
- The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
- The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
- The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
- A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
- The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.
- The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
- The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
- Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
- Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.
- In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
- The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
- The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
- Preferable refrigerant A is as follows:
- When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
- point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0), - or on the above line segments (excluding the points on the line CO);
- the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments BD, CO, and OA are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
- When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
- point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0), - or on the above line segments (excluding the points on the line segment CG);
- the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2-0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments GI, IA, BD, and CG are straight lines.
- When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a
- WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
- When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ); - the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
- the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments JP, BD, and CG are straight lines.
- When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
- When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
- point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point (32.9, 67.1, 0.0), - or on the above line segments (excluding the points on the line segment CJ);
- the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
- the line segment C′C is represented by coordinates (x, 0.0067x2-0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
- the line segments JP, LM, BD, and CG are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
- When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
- point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3), - or on the above line segments (excluding the points on the line segment BF);
- the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
- the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
- the line segments LM and BF are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
- point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9), - or on the above line segments;
- the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
- the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
- the line segments LQ and QR are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
- point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′(30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3), or on the above line segments, - the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
- the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
- the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
- the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
- the line segments SM and BF are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
- point d (87.6, 0.0, 12.4),
point g (18.2, 55.1, 26.7),
point h (56.7, 43.3, 0.0), and
point o (100.0, 0.0, 0.0),
or on the line segments Od, dg, gh, and hO (excluding the points O and h); - the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
- the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
- the line segments hO and Od are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and it that connect the following 4 points:
- point l (72.5, 10.2, 17.3),
point g (18.2, 55.1, 26.7),
point h (56.7, 43.3, 0.0), and
point i (72.5, 27.5, 0.0) or on the line segments lg, gh, and il (excluding the points h and i); - the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
- the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
- the line segments hi and il are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:
- point d (87.6, 0.0, 12.4),
point e (31.1, 42.9, 26.0),
point f (65.5, 34.5, 0.0), and
point O (100.0, 0.0, 0.0),
or on the line segments Od, de, and ef (excluding the points O and f); - the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
- the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and
- the line segments fO and Od are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
- coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:
- point l (72.5, 10.2, 17.3),
point e (31.1, 42.9, 26.0),
point f (65.5, 34.5, 0.0), and
point i (72.5, 27.5, 0.0),
or on the line segments le, ef, and il (excluding the points f and i); - the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
- the line segment of is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
- the line segments fi and it are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
- coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:
- point a (93.4, 0.0, 6.6),
point b (55.6, 26.6, 17.8),
point c (77.6, 22.4, 0.0), and
point O (100.0, 0.0, 0.0),
or on the line segments Oa, ab, and bc (excluding the points O and c); - the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),
- the line segment bc is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
- the line segments cO and Oa are straight lines.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
- The refrigerant A according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
- coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:
- point k (72.5, 14.1, 13.4),
point b (55.6, 26.6, 17.8), and
point j (72.5, 23.2, 4.3),
or on the line segments kb, bj, and jk; - the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),
- the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
- the line segment jk is a straight line.
- When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
- The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
- The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
- Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
- The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.
- The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
- Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Degree of superheating: 5 K
Degree of subcooling: 5 K
Compressor efficiency: 70% - Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
-
TABLE 1 Comp. Comp. Example Comp. Comp. Ex. 2 Ex. 3 Example 2 Example Ex. 4 Item Unit Ex. 1 O A 1 A′ 3 B HFO-1132(E) mass % R410A 100.0 68.6 49.0 30.6 14.1 0.0 HFO-1123 mass % 0.0 0.0 14.9 30.0 44.8 58.7 R1234yf mass % 0.0 31.4 36.1 39.4 41.1 41.3 GWP — 2088 1 2 2 2 2 2 COP ratio % (relative to 100 99.7 100.0 98.6 97.3 96.3 95.5 410A) Refrigerating % (relative to 100 98.3 85.0 85.0 85.0 85.0 85.0 capacity ratio 410A) Condensation ° C. 0.1 0.00 1.98 3.36 4.46 5.15 5.35 glide Discharge % (relative to 100.0 99.3 87.1 88.9 90.6 92.1 93.2 pressure 410A) RCL g/m3 — 30.7 37.5 44.0 52.7 64.0 78.6 -
TABLE 2 Comp. Example Comp. Comp. Example Comp. Ex. 5 Example 5 Example Ex. 6 Ex. 7 7 Ex. 8 Item Unit C 4 C′ 6 D E E′ F HFO-1132(E) mass % 32.9 26.6 19.5 10.9 0.0 58.0 23.4 0.0 HFO-1123 mass % 67.1 68.4 70.5 74.1 80.4 42.0 48.5 61.8 R1234yf mass % 0.0 5.0 10.0 15.0 19.6 0.0 28.1 38.2 GWP — 1 1 1 1 2 1 2 2 COP ratio % (relative 92.5 92.5 92.5 92.5 92.5 95.0 95.0 95.0 to 410A) Refrigerating % (relative 107.4 105.2 102.9 100.5 97.9 105.0 92.5 86.9 capacity ratio to 410A) Condensation ° C. 0.16 0.52 0.94 1.42 1.90 0.42 3.16 4.80 glide Discharge % (relative 119.5 117.4 115.3 113.0 115.9 112.7 101.0 95.8 pressure to 410A) RCL g/m3 53.5 57.1 62.0 69.1 81.3 41.9 46.3 79.0 -
TABLE 3 Comp. Example Example Example Example Example Ex. 9 8 9 10 11 12 Item Unit J P L N N′ K HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3 HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4 R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3 GWP — 1 1 1 1 2 2 COP ratio % (relative 93.8 95.0 96.1 97.9 99.1 99.5 to 410A) Refrigerating % (relative 106.2 104.1 101.6 95.0 88.2 85.0 capacity ratio to 410A) Condensation ° C. 0.31 0.57 0.81 1.41 2.11 2.51 glide Discharge % (relative 115.8 111.9 107.8 99.0 91.2 87.7 pressure to 410A) RCL g/m3 46.2 42.6 40.0 38.0 38.7 39.7 -
TABLE 4 Example Example Example Example Example Example Example 13 14 15 16 17 18 19 Item Unit L M Q R S S′ T HFO-1132(E) mass % 63.1 60.3 62.8 49.8 62.6 50.0 35.8 HFO-1123 mass % 31.9 6.2 29.6 42.3 28.3 35.8 44.9 R1234yf mass % 5.0 33.5 7.6 7.9 9.1 14.2 19.3 GWP — 1 2 1 1 1 1 2 COP ratio % (relative 96.1 99.4 96.4 95.0 96.6 95.8 95.0 to 410A) Refrigerating % (relative 101.6 85.0 100.2 101.7 99.4 98.1 96.7 capacity ratio to 410A) Condensation ° C. 0.81 2.58 1.00 1.00 1.10 1.55 2.07 glide Discharge % (relative 107.8 87.9 106.0 109.6 105.0 105.0 105.0 pressure to 410A) RCL g/m3 40.0 40.0 40.0 44.8 40.0 44.4 50.8 -
TABLE 5 Comp. Ex. 10 Example 20 Example 21 Item Unit G H I HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 14.0 0.0 R1234yf mass % 0.0 14.0 28.0 GWP — 1 1 2 COP ratio % (relative to 96.6 98.2 99.9 410A) Refrigerating % (relative to 103.1 95.1 86.6 capacity ratio 410A) Condensation glide ° C. 0.46 1.27 1.71 Discharge pressure % (relative to 108.4 98.7 88.6 410A) RCL g/m3 37.4 37.0 36.6 -
TABLE 6 Comp. Comp. Example Example Example Example Example Comp. Item Unit Ex. 11 Ex. 12 22 23 24 25 26 Ex. 13 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0 R1234yf mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 91.4 92.0 92.8 93.7 94.7 95.8 96.9 98.0 to 410A) Refrigerating % (relative 105.7 105.5 105.0 104.3 103.3 102.0 100.6 99.1 capacity ratio to 410A) Condensation ° C. 0.40 0.46 0.55 0.66 0.75 0.80 0.79 0.67 glide Discharge % (relative 120.1 118.7 116.7 114.3 111.6 108.7 105.6 102.5 pressure to 410A) RCL g/m3 71.0 61.9 54.9 49.3 44.8 41.0 37.8 35.1 -
TABLE 7 Comp. Example Example Example Example Example Example Comp. Item Unit Ex. 14 27 28 29 30 31 32 Ex. 15 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 HFO-1123 mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 91.9 92.5 93.3 94.3 95.3 96.4 97.5 98.6 to 410A) Refrigerating % (relative 103.2 102.9 102.4 101.5 100.5 99.2 97.8 96.2 capacity ratio to 410A) Condensation ° C. 0.87 0.94 1.03 1.12 1.18 1.18 1.09 0.88 glide Discharge % (relative 116.7 115.2 113.2 110.8 108.1 105.2 102.1 99.0 pressure to 410A) RCL g/m3 70.5 61.6 54.6 49.1 44.6 40.8 37.7 35.0 -
TABLE 8 Comp. Example Example Example Example Example Example Comp. Item Unit Ex. 16 33 34 35 36 37 38 Ex. 17 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 HFO-1123 mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0 R1234yf mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 92.4 93.1 93.9 94.8 95.9 97.0 98.1 99.2 to 410A) Refrigerating % (relative 100.5 100.2 99.6 98.7 97.7 96.4 94.9 93.2 capacity ratio to 410A) Condensation ° C. 1.41 1.49 1.56 1.62 1.63 1.55 1.37 1.05 glide Discharge % (relative 113.1 111.6 109.6 107.2 104.5 101.6 98.6 95.5 pressure to 410A) RCL g/m3 70.0 61.2 54.4 48.9 44.4 40.7 37.5 34.8 -
TABLE 9 Example Example Example Example Example Example Example Item Unit 39 40 41 42 43 44 45 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 GWP — 2 2 2 2 2 2 2 COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7 to 410A) Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9 capacity ratio to 410A) Condensation ° C. 2.03 2.09 2.13 2.14 2.07 1.91 1.61 glide Discharge % (relative 109.4 107.9 105.9 103.5 100.8 98.0 95.0 pressure to 410A) RCL g/m3 69.6 60.9 54.1 48.7 44.2 40.5 37.4 -
TABLE 10 Example Example Example Example Example Example Example Item Unit 46 47 48 49 50 51 52 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0 R1234yf mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 GWP — 2 2 2 2 2 2 2 COP ratio % (relative 93.6 94.3 95.2 96.1 97.2 98.2 99.3 to 410A) Refrigerating % (relative 94.8 94.5 93.8 92.9 91.8 90.4 88.8 capacity ratio to 410A) Condensation ° C. 2.71 2.74 2.73 2.66 2.50 2.22 1.78 glide Discharge % (relative 105.5 104.0 102.1 99.7 97.1 94.3 91.4 pressure to 410A) RCL g/m3 69.1 60.5 53.8 48.4 44.0 40.4 37.3 -
TABLE 11 Example Example Example Example Example Example Item Unit 53 54 55 56 57 58 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 COP ratio % (relative 94.3 95.0 95.9 96.8 97.8 98.9 to 410A) Refrigerating % (relative 91.9 91.5 90.8 89.9 88.7 87.3 capacity ratio to 410A) Condensation ° C. 3.46 3.43 3.35 3.18 2.90 2.47 glide Discharge % (relative 101.6 100.1 98.2 95.9 93.3 90.6 pressure to 410A) RCL g/m3 68.7 60.2 53.5 48.2 43.9 40.2 -
TABLE 12 Example Example Example Example Example Comp. Item Unit 59 60 61 62 63 Ex. 18 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 HFO-1123 mass % 55.0 45.0 35.0 25.0 15.0 5.0 R1234yf mass % 35.0 35.0 35.0 35.0 35.0 35.0 GWP — 2 2 2 2 2 2 COP ratio % (relative 95.0 95.8 96.6 97.5 98.5 99.6 to 410A) Refrigerating % (relative 88.9 88.5 87.8 86.8 85.6 84.1 capacity ratio to 410A) Condensation ° C. 4.24 4.15 3.96 3.67 3.24 2.64 glide Discharge % (relative 97.6 96.1 94.2 92.0 89.5 86.8 pressure to 410A) RCL g/m3 68.2 59.8 53.2 48.0 43.7 40.1 -
TABLE 13 Example Example Comp. Comp. Comp. Item Unit 64 65 Ex. 19 Ex. 20 Ex. 21 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 40.0 40.0 40.0 40.0 40.0 GWP — 2 2 2 2 2 COP ratio % (relative 95.9 96.6 97.4 98.3 99.2 to 410A) Refrigerating % (relative 85.8 85.4 84.7 83.6 82.4 capacity ratio to 410A) Condensation ° C. 5.05 4.85 4.55 4.10 3.50 glide Discharge % (relative 93.5 92.1 90.3 88.1 85.6 pressure to 410A) RCL g/m3 67.8 59.5 53.0 47.8 43.5 -
TABLE 14 Example Example Example Example Example Example Example Example Item Unit 66 67 68 69 70 71 72 73 HFO-1132(E) mass % 54.0 56.0 58.0 62.0 52.0 54.0 56.0 58.0 HFO-1123 mass % 41.0 39.0 37.0 33.0 41.0 39.0 37.0 35.0 R1234y1 mass % 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 95.1 95.3 95.6 96.0 95.1 95.4 95.6 95.8 to 410A) Refrigerating % (relative 102.8 102.6 102.3 101.8 101.9 101.7 101.5 101.2 capacity ratio to 410A) Condensation ° C. 0.78 0.79 0.80 0.81 0.93 0.94 0.95 0.95 glide Discharge % (relative 110.5 109.9 109.3 108.1 109.7 109.1 108.5 107.9 pressure to 410A) RCL g/m3 43.2 42.4 41.7 40.3 43.9 43.1 42.4 41.6 -
TABLE 15 Example Example Example Example Example Example Example Example Item Unit 74 75 76 77 78 79 80 81 HFO-1132(E) mass % 60.0 62.0 61.0 58.0 60.0 62.0 52.0 54.0 HFO-1123 mass % 33.0 31.0 29.0 30.0 28.0 26.0 34.0 32.0 R1234yf mass % 7.0 7.0 10.0 12.0 12.0 12.0 14.0 14.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 96.0 96.2 96.5 96.4 96.6 96.8 96.0 96.2 to 410A) Refrigerating % (relative 100.9 100.7 99.1 98.4 98.1 97.8 98.0 97.7 capacity ratio to 410A) Condensation ° C. 0.95 0.95 1.18 1.34 1.33 1.32 1.53 1.53 glide Discharge % (relative 107.3 106.7 104.9 104.4 103.8 103.2 104.7 104.1 pressure to 410A) RCL g/m3 40.9 40.3 40.5 41.5 40.8 40.1 43.6 42.9 -
TABLE 16 Example Example Example Example Example Example Example Example Item Unit 82 83 84 85 86 87 88 89 HFO-1132(E) mass % 56.0 58.0 60.0 48.0 50.0 52.0 54.0 56.0 HFO-1123 mass % 30.0 28.0 26.0 36.0 34.0 32.0 30.0 28.0 R1234yf mass % 14.0 14.0 14.0 16.0 16.0 16.0 16.0 16.0 GWP — 1 1 1 1 1 1 1 1 COP ratio % (relative 96.4 96.6 96.9 95.8 96.0 96.2 96.4 96.7 to 410A) Refrigerating % (relative 97.5 97.2 96.9 97.3 97.1 96.8 96.6 96.3 capacity ratio to 410A) Condensation ° C. 1.51 1.50 1.48 1.72 1.72 1.71 1.69 1.67 glide Discharge % (relative 103.5 102.9 102.3 104.3 103.8 103.2 102.7 102.1 pressure to 410A) RCL g/m3 42.1 41.4 40.7 45.2 44.4 43.6 42.8 42.1 -
TABLE 17 Example Example Example Example Example Example Example Example Item Unit 90 91 92 93 94 95 96 97 HFO-1132(E) mass % 58.0 60.0 42.0 44.0 46.0 48.0 50.0 52.0 HFO-1123 mass % 26.0 24.0 40.0 38.0 36.0 34.0 32.0 30.0 R1234yf mass % 16.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0 GWP — 1 1 2 2 2 2 2 2 COP ratio % (relative 96.9 97.1 95.4 95.6 95.8 96.0 96.3 96.5 to 410A) Refrigerating % (relative 96.1 95.8 96.8 96.6 96.4 96.2 95.9 95.7 capacity ratio to 410A) Condensation ° C. 1.65 1.63 1.93 1.92 1.92 1.91 1.89 1.88 glide Discharge % (relative 101.5 100.9 104.5 103.9 103.4 102.9 102.3 101.8 pressure to 410A) RCL g/m3 41.4 40.7 47.8 46.9 46.0 45.1 44.3 43.5 -
TABLE 18 Example Example Example Example Example Example Example Example Item Unit 98 99 100 101 102 103 104 105 HFO-1132(E) mass % 54.0 56.0 58.0 60.0 36.0 38.0 42.0 44.0 HFO-1123 mass % 28.0 26.0 24.0 22.0 44.0 42.0 38.0 36.0 R1234yf mass % 18.0 18.0 18.0 18.0 20.0 20.0 20.0 20.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.7 96.9 97.1 97.3 95.1 95.3 95.7 95.9 to 410A) Refrigerating % (relative 95.4 95.2 94.9 94.6 96.3 96.1 95.7 95.4 capacity ratio to 410A) Condensation ° C. 1.86 1.83 1.80 1.77 2.14 2.14 2.13 2.12 glide Discharge % (relative 101.2 100.6 100.0 99.5 104.5 104.0 103.0 102.5 pressure to 410A) RCL g/m3 42.7 42.0 41.3 40.6 50.7 49.7 47.7 46.8 -
TABLE 19 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 106 107 108 109 110 111 112 113 HFO-1132(E) mass % 46.0 48.0 52.0 54.0 56.0 58.0 34.0 36.0 HFO-1123 mass % 34.0 32.0 28.0 26.0 24.0 22.0 44.0 42.0 R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 22.0 22.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.1 96.3 96.7 96.9 97.2 97.4 95.1 95.3 to 410A) Refrigerating % (relative 95.2 95.0 94.5 94.2 94.0 93.7 95.3 95.1 capacity ratio to 410A) Condensation ° C. 2.11 2.09 2.05 2.02 1.99 1.95 2.37 2.36 glide Discharge % (relative 101.9 101.4 100.3 99.7 99.2 98.6 103.4 103.0 pressure to 410A) RCL g/m3 45.9 45.0 43.4 42.7 41.9 41.2 51.7 50.6 -
TABLE 20 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 114 115 116 117 118 119 120 121 HFO-1132(E) mass % 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0 HFO-1123 mass % 40.0 38.0 36.0 34.0 32.0 30.0 28.0 26.0 R1234yf mass % 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 95.5 95.7 95.9 96.1 96.4 96.6 96.8 97.0 to 410A) Refrigerating % (relative 94.9 94.7 94.5 94.3 94.0 93.8 93.6 93.3 capacity ratio to 410A) Condensation ° C. 2.36 2.35 2.33 2.32 2.30 2.27 2.25 2.21 glide Discharge % (relative 102.5 102.0 101.5 101.0 100.4 99.9 99.4 98.8 pressure to 410A) RCL g/m3 49.6 48.6 47.6 46.7 45.8 45.0 44.1 43.4 -
TABLE 21 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 122 123 124 125 126 127 128 129 HFO-1132(E) mass % 54.0 56.0 58.0 60.0 32.0 34.0 36.0 38.0 HFO-1123 mass % 24.0 22.0 20.0 18.0 44.0 42.0 40.0 38.0 R1234yf mass % 22.0 22.0 22.0 22.0 24.0 24.0 24.0 24.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.2 97.4 97.6 97.9 95.2 95.4 95.6 95.8 to 410A) Refrigerating % (relative 93.0 92.8 92.5 92.2 94.3 94.1 93.9 93.7 capacity ratio to 410A) Condensation ° C. 2.18 2.14 2.09 2.04 2.61 2.60 2.59 2.58 glide Discharge % (relative 98.2 97.7 97.1 96.5 102.4 101.9 101.5 101.0 pressure to 410A) RCL g/m3 42.6 41.9 41.2 40.5 52.7 51.6 50.5 49.5 -
TABLE 22 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 130 131 132 133 134 135 136 137 HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 R1234yf mass % 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.0 96.2 96.4 96.6 96.8 97.0 97.2 97.5 to 410A) Refrigerating % (relative 93.5 93.3 93.1 92.8 92.6 92.4 92.1 91.8 capacity ratio to 410A) Condensation ° C. 2.56 2.54 2.51 2.49 2.45 2.42 2.38 2.33 glide Discharge % (relative 100.5 100.0 99.5 98.9 98.4 97.9 97.3 96.8 pressure to 410A) RCL g/m3 48.5 47.5 46.6 45.7 44.9 44.1 43.3 42.5 -
TABLE 23 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 138 139 140 141 142 143 144 145 HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0 HFO-1123 mass % 20.0 18.0 16.0 44.0 42.0 40.0 38.0 36.0 R1234yf mass % 24.0 24.0 24.0 26.0 26.0 26.0 26.0 26.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.7 97.9 98.1 95.3 95.5 95.7 95.9 96.1 to 410A) Refrigerating % (relative 91.6 91.3 91.0 93.2 93.1 92.9 92.7 92.5 capacity ratio to 410A) Condensation ° C. 2.28 2.22 2.16 2.86 2.85 2.83 2.81 2.79 glide Discharge % (relative 96.2 95.6 95.1 101.3 100.8 100.4 99.9 99.4 pressure to 410A) RCL g/m3 41.8 41.1 40.4 53.7 52.6 51.5 50.4 49.4 -
TABLE 24 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 146 147 148 149 150 151 152 153 HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 HFO-1123 mass % 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0 R1234yf mass % 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.3 96.5 96.7 96.9 97.1 97.3 97.5 97.7 to 410A) Refrigerating % (relative 92.3 92.1 91.9 91.6 91.4 91.2 90.9 90.6 capacity ratio to 410A) Condensation ° C. 2.77 2.74 2.71 2.67 2.63 2.59 2.53 2.48 glide Discharge % (relative 99.0 98.5 97.9 97.4 96.9 96.4 95.8 95.3 pressure to 410A) RCL g/m3 48.4 47.4 46.5 45.7 44.8 44.0 43.2 42.5 -
TABLE 25 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 154 155 156 157 158 159 160 161 HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0 HFO-1123 mass % 18.0 16.0 14.0 42.0 40.0 38.0 36.0 34.0 R1234yf mass % 26.0 26.0 26.0 28.0 28.0 28.0 28.0 28.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.9 98.2 98.4 95.6 95.8 96.0 96.2 96.3 to 410A) Refrigerating % (relative 90.3 90.1 89.8 92.1 91.9 91.7 91.5 91.3 capacity ratio to 410A) Condensation ° C. 2.42 2.35 2.27 3.10 3.09 3.06 3.04 3.01 glide Discharge % (relative 94.7 94.1 93.6 99.7 99.3 98.8 98.4 97.9 pressure to 410A) RCL g/m3 41.7 41.0 40.3 53.6 52.5 51.4 50.3 49.3 -
TABLE 26 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 162 163 164 165 166 167 168 169 HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 HFO-1123 mass % 32.0 30.0 28.0 26.0 24.0 22.0 20.0 18.0 R1234yf mass % 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.5 96.7 96.9 97.2 97.4 97.6 97.8 98.0 to 410A) Refrigerating % (relative 91.1 90.9 90.7 90.4 90.2 89.9 89.7 89.4 capacity ratio to 410A) Condensation ° C. 2.98 2.94 2.90 2.85 2.80 2.75 2.68 2.62 glide Discharge % (relative 97.4 96.9 96.4 95.9 95.4 94.9 94.3 93.8 pressure to 410A) RCL g/m3 48.3 47.4 46.4 45.6 44.7 43.9 43.1 42.4 -
TABLE 27 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 170 171 172 173 174 175 176 177 HFO-1132(E) mass % 56.0 58.0 60.0 32.0 34.0 36.0 38.0 42.0 HFO-1123 mass % 16.0 14.0 12.0 38.0 36.0 34.0 32.0 28.0 R1234yf mass % 28.0 28.0 28.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 98.2 98.4 98.6 96.1 96.2 96.4 96.6 97.0 to 410A) Refrigerating % (relative 89.1 88.8 88.5 90.7 90.5 90.3 90.1 89.7 capacity ratio to 410A) Condensation ° C. 2.54 2.46 2.38 3.32 3.30 3.26 3.22 3.14 glide Discharge % (relative 93.2 92.6 92.1 97.7 97.3 96.8 96.4 95.4 pressure to 410A) RCL g/m3 41.7 41.0 40.3 52.4 51.3 50.2 49.2 47.3 -
TABLE 28 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 178 179 180 181 182 183 184 185 HFO-1132(E) mass % 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0 HFO-1123 mass % 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.2 97.4 97.6 97.8 98.0 98.3 98.5 98.7 to 410A) Refrigerating % (relative 89.4 89.2 89.0 88.7 88.4 88.2 87.9 87.6 capacity ratio to 410A) Condensation ° C. 3.08 3.03 2.97 2.90 2.83 2.75 2.66 2.57 glide Discharge % (relative 94.9 94.4 93.9 93.3 92.8 92.3 91.7 91.1 pressure to 410A) RCL g/m3 46.4 45.5 44.7 43.9 43.1 42.3 41.6 40.9 -
TABLE 29 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 186 187 188 189 190 191 192 193 HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0 HFO-1123 mass % 38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0 R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.2 96.3 96.5 96.7 96.9 97.1 97.3 97.5 to 410A) Refrigerating % (relative 89.6 89.5 89.3 89.1 88.9 88.7 88.4 88.2 capacity ratio to 410A) Condensation ° C. 3.60 3.56 3.52 3.48 3.43 3.38 3.33 3.26 glide Discharge % (relative 96.6 96.2 95.7 95.3 94.8 94.3 93.9 93.4 pressure to 410A) RCL g/m3 53.4 52.3 51.2 50.1 49.1 48.1 47.2 46.3 -
TABLE 30 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 194 195 196 197 198 199 200 201 HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0 HFO-1123 mass % 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.7 97.9 98.1 98.3 98.5 98.7 98.9 99.2 to 410A) Refrigerating % (relative 88.0 87.7 87.5 87.2 86.9 86.6 86.3 86.0 capacity ratio to 410A) Condensation ° C. 3.20 3.12 3.04 2.96 2.87 2.77 2.66 2.55 glide Discharge % (relative 92.8 92.3 91.8 91.3 90.7 90.2 89.6 89.1 pressure to 410A) RCL g/m3 45.4 44.6 43.8 43.0 42.3 41.5 40.8 40.2 -
TABLE 31 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 202 203 204 205 206 207 208 209 HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0 HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0 R1234yf mass % 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 96.5 96.6 96.8 97.0 97.2 97.4 97.6 97.8 to 410A) Refrigerating % (relative 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0 capacity ratio to 410A) Condensation ° C. 3.84 3.80 3.75 3.70 3.64 3.58 3.51 3.43 glide Discharge % (relative 95.0 94.6 94.2 93.7 93.3 92.8 92.3 91.8 pressure to 410A) RCL g/m3 53.3 52.2 51.1 50.0 49.0 48.0 47.1 46.2 -
TABLE 32 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 210 211 212 213 214 215 216 217 HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 30.0 32.0 34.0 HFO-1123 mass % 20.0 18.0 16.0 14.0 12.0 34.0 32.0 30.0 R1234yf mass % 34.0 34.0 34.0 34.0 34.0 36.0 36.0 36.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 98.0 98.2 98.4 98.6 98.8 96.8 96.9 97.1 to 410A) Refrigerating % (relative 86.7 86.5 86.2 85.9 85.6 87.2 87.0 86.8 capacity ratio to 410A) Condensation ° C. 3.36 3.27 3.18 3.08 2.97 4.08 4.03 3.97 glide Discharge % (relative 91.3 90.8 90.3 89.7 89.2 93.4 93.0 92.6 pressure to 410A) RCL g/m3 45.3 44.5 43.7 42.9 42.2 53.2 52.1 51.0 -
TABLE 33 Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample Item Unit 218 219 220 221 222 223 224 225 HFO-1132(E) mass % 36.0 38.0 40.0 42.0 44.0 46.0 30.0 32.0 HFO-1123 mass % 28.0 26.0 24.0 22.0 20.0 18.0 32.0 30.0 R1234yf mass % 36.0 36.0 36.0 36.0 36.0 36.0 38.0 38.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 97.3 97.5 97.7 97.9 98.1 98.3 97.1 97.2 to 410A) Refrigerating % (relative 86.6 86.4 86.2 85.9 85.7 85.5 85.9 85.7 capacity ratio to 410A) Condensation ° C. 3.91 3.84 3.76 3.68 3.60 3.50 4.32 4.25 glide Discharge % (relative 92.1 91.7 91.2 90.7 90.3 89.8 91.9 91.4 pressure to 410A) RCL g/m3 49.9 48.9 47.9 47.0 46.1 45.3 53.1 52.0 -
TABLE 34 Example Example Item Unit 226 227 HFO-1132(E) mass % 34.0 36.0 HFO-1123 mass % 28.0 26.0 R1234yf mass % 38.0 38.0 GWP — 2 2 COP ratio % (relative to 97.4 97.6 410A) Refrigerating % (relative to 85.6 85.3 capacity ratio 410A) Condensation glide ° C. 4.18 4.11 Discharge pressure % (relative to 91.0 90.6 410A) RCL g/m3 50.9 49.8 - These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
- point A (68.6, 0.0, 31.4),
point A′(30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segment CO);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines,
the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A. - The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
- The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
- The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
- The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
- Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:
- point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2),
point T (35.8, 44.9, 19.3),
point E (58.0, 42.0, 0.0) and
point O (100.0, 0.0, 0.0), - or on the above line segments (excluding the points on the line EO);
- the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and
the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and
the line segments BF, FO, and OA are straight lines,
the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A. - The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
- The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
- The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.
- The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.
- The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.
- In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.
- Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
- A burning velocity test was performed using the apparatus shown in
FIG. 1 in the following manner. InFIG. 1 , reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. - Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
- Tables 35 and 36 show the results.
-
TABLE 35 Item Unit G H I WCF HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 9.6 0.0 R1234yf mass % 0.0 18.4 28.0 Burning velocity (WCF) cm/s 10 10 10 -
TABLE 36 Item Unit J P L N N' K WCF HFO- mass % 47.1 55.8 63.1 68.6 65.0 61.3 1132(E) HFO- mass % 52.9 42.0 31.9 16.3 7.7 5.4 1123 R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3 Leak condition Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ that results in WCFF Shipping Shipping Shipping Shipping Shipping Shipping, −40°C., −40°C., −40°C., −40°C., −40°C., −40°C., 92% 90% 90% 66% 12% 0% release, release, release, release, release, release, liquid liquid gas gas gas gas phase phase phase phase phase phase side side side side side side WCFF HFO- mass % 72.0 72.0 72.0 72.0 72.0 72.0 1132(E) HFO- mass % 28.0 17.8 17.4 13.6 12.3 9.8 1123 R1234yf mass % 0.0 10.2 10.6 14.4 15.7 18.2 Burning cm/ s 8 or 8 or 8 or 9 9 8 or velocity (WCF) less less less less Burning cm/s 10 10 10 10 10 10 velocity (WCFF) - The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.
- The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
- point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1,31.9,5.0)
point N′ (65.0, 7.7, 27.3) and
point K (61.3, 5.4, 33.3),
the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91). - The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
- The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
- The refrigerant B according to the present disclosure is
- a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
- a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
- The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
- When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
- When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
- The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
- Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.
- Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.
- The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Superheating temperature: 5 K
Subcooling temperature: 5 K
Compressor efficiency: 70% - The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
- Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.
- The coefficient of performance (COP) was determined by the following formula.
-
COP=(refrigerating capacity or heating capacity)/power consumption - For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
- A burning velocity test was performed using the apparatus shown in
FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. -
TABLE 37 Com- Com- parative parative Ex- Com- Com- Ex- ample parative parative ample 2 Ex- Ex- Ex- Ex- Ex- Ex- Ex- 1 HFO- ample ample ample ample ample ample ample Item Unit R410A 1132E 3 1 2 3 4 5 4 HFO-1132E mass % — 100 80 72 70 68 65 62 60 (WCF) HFO-1123 mass % 0 20 28 30 32 35 38 40 (WCF) GWP — 2088 1 1 1 1 1 1 1 1 COP ratio % (relative 100 99.7 97.5 96.6 96.3 96.1 95.8 95.4 95.2 to R410A) Refrigerating % (relative 100 98.3 101.9 103.1 103.4 103.8 104.1 104.5 104.8 capacity ratio to R410A) Discharge Mpa 2.73 2.71 2.89 2.96 2.98 3.00 3.02 3.04 3.06 pressure Burning cm/sec Non- 20 13 10 9 9 8 8 or 8 or velocity flam- less less (WCF) mable -
TABLE 38 Com- Com- Com- Com- Com- Com- parative parative parative parative parative parative Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- Ex- ample ample ample ample ample ample ample ample ample 10 Item Unit 5 6 7 8 9 7 8 9 HFO-1123 HFO-1132E mass % 50 48 47.1 46.1 45.1 43 40 25 0 (WCF) HFO-1123 mass % 50 52 52.9 53.9 54.9 57 60 75 100 (WCF) GWP — 1 1 1 1 1 1 1 1 1 COP ratio % (relative 94.1 93.9 93.8 93.7 93.6 93.4 93.1 91.9 90.6 to R410A) Refrigerating % (relative 105.9 106.1 106.2 106.3 106.4 106.6 106.9 107.9 108.0 capacity ratio to R410A) Discharge Mpa 3.14 3.16 3.16 3.17 3.18 3.20 3.21 3.31 3.39 pressure Leakage test Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ — conditions (WCFF) Shipping Shipping Shipping Shipping Shipping Shipping Shipping Shipping −40°C., −40°C., −40°C., −40°C., −40°C., −40°C., −40°C., −40°C., 92% 92% 92% 92% 92% 92% 92% 90% release, release, release, release, release, release, release, release, liquid liquid liquid liquid liquid liquid liquid liquid phase phase phase phase phase phase phase phase side side side side side side side side HFO-1132E mass % 74 73 72 71 70 67 63 38 — (WCFF) HFO-1123 mass % 26 27 28 29 30 33 37 62 (WCFF) Burning cm/sec 8 or 8 or 8 or 8 or 8 or 8 or 8 or 8 or 5 velocity less less less less less less less less (WCF) Burning cm/sec 11 10.5 10.0 9.5 9.5 8.5 8 or 8 or velocity less less (WCFF) ASHRAE flammability 2 2 2L 2L 2L 2L 2L 2L 2L classification - The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.
- The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
- Preferable refrigerant C is as follows:
- When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
- point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C); -
- if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
point W (0.0, 100.0−a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
- if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); - if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and - if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
- point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability. - The refrigerant C according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
- if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
- point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C); - if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W); - if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
- point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W); - if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and - if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
- point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard. - When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
- if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:
- point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),
point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),
point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and
point o (100.0−a, 0.0, 0.0)
or on the straight lines oa, ab′, and b′c (excluding point o and point c);
if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),
point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),
point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and
point o (100.0−a, 0.0, 0.0),
or on the straight lines oa, ab′, and b′c (excluding point o and point c); or - if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
- point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),
point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),
point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and
point o (100.0−a, 0.0, 0.0),
or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A. - The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
- The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
- Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
- The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.
- Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.
- The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.
- Evaporating temperature: 5° C.
- Condensation temperature: 45° C.
- Superheating temperature: 5 K Subcooling temperature: 5 K Compressor efficiency: 70%
- Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.
- The coefficient of performance (COP) was determined by the following formula.
-
COP=(refrigerating capacity or heating capacity)/power consumption -
TABLE 39 Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 1 Item Unit Ex. 1 A B C D′ G I J K′ HFO-1132(E) Mass % R410A 68.6 0.0 32.9 0.0 72.0 72.0 47.1 61.7 HFO-1123 Mass % 0.0 58.7 67.1 75.4 28.0 0.0 52.9 5.9 R1234yf Mass % 31.4 41.3 0.0 24.6 0.0 28.0 0.0 32.4 R32 Mass % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 GWP — 2088 2 2 1 2 1 2 1 2 COP ratio % (relative 100 100.0 95.5 92.5 93.1 96.6 99.9 93.8 99.4 to R410A) Refrigerating % (relative 100 85.0 85.0 107.4 95.0 103.1 86.6 106.2 85.5 capacity ratio to R410A) -
TABLE 40 Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 2 Item Unit A B C D′ G I J K′ HFO-1132 Mass % 55.3 0.0 18.4 0.0 60.9 60.9 40.5 47.0 (E) HFO-1123 Mass % 0.0 47.8 74.5 83.4 32.0 0.0 52.4 7.2 R1234yf Mass % 37.6 45.1 0.0 9.5 0.0 32.0 0.0 38.7 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 49 49 49 50 49 50 COP ratio % (relative 99.8 96.9 92.5 92.5 95.9 99.6 94.0 99.2 to R410A) Refrigerating % (relative 85.0 85.0 110.5 106.0 106.5 87.7 108.9 85.5 capacity ratio to R410A) -
TABLE 41 Comp. Comp. Comp. Comp. Comp. Comp. Ex. 16 Ex. 17 Ex. 18 Ex. 19 Ex. 20 Ex. 21 Ex. 3 Item Unit A B C = D′ G I J K′ NEO-1132(E) Mass % 48.4 0.0 0.0 55.8 55.8 37.0 41.0 HFO-1123 Mass % 0.0 42.3 88.9 33.1 0.0 51.9 6.5 R1234yf Mass % 40.5 46.6 0.0 0.0 33.1 0.0 41.4 R32 Mass % 11.1 11.1 11.1 11.1 11.1 11.1 11.1 GWP — 77 77 76 76 77 76 77 COP ratio % (relative 99.8 97.6 92.5 95.8 99.5 94.2 99.3 to R410A) Refrigerating % (relative 85.0 85.0 112.0 108.0 88.6 110.2 85.4 capacity ratio to R410A) -
TABLE 42 Comp. Comp. Comp. Comp. Comp. Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 Ex. 4 Item Unit A B G I J K′ HFO- Mass % 42.8 0.0 52.1 52.1 34.3 36.5 1132(E) HFO- Mass % 0.0 37.8 33.4 0.0 51.2 5.6 1123 R1234yf Mass % 42.7 47.7 0.0 33.4 0.0 43.4 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 100 100 99 100 99 100 COP % 99.9 98.1 95.8 99.5 94.4 99.5 ratio (relative to R410A) Refrig- % 85.0 85.0 109.1 89.6 111.1 85.3 erating (relative capacity to ratio R410A) -
TABLE 43 Comp. Comp. Comp. Comp. Comp. Ex. 27 Ex. 28 Ex. 29 Ex. 30 Ex. 31 Ex. 5 Item Unit A B G I J K′ HFO- Mass % 37.0 0.0 48.6 48.6 32.0 32.5 1132(E) HFO- Mass % 0.0 33.1 33.2 0.0 49.8 4.0 1123 R1234yf Mass % 44.8 48.7 0.0 33.2 0.0 45.3 R32 Mass % 18.2 18.2 18.2 18.2 18.2 18.2 GWP — 125 125 124 125 124 125 COP % 100.0 98.6 95.9 99.4 94.7 99.8 ratio (relative to R410A) Refrig- % 85.0 85.0 110.1 90.8 111.9 85.2 erating (relative capacity to ratio R410A) -
TABLE 44 Comp. Comp. Comp. Comp. Comp. Ex. 32 Ex. 33 Ex. 34 Ex. 35 Ex. 36 Ex. 6 Item Unit A B G I J K′ HFO- Mass % 31.5 0.0 45.4 45.4 30.3 28.8 1132(E) HFO- Mass % 0.0 28.5 32.7 0.0 47.8 2.4 1123 R1234yf Mass % 46.6 49.6 0.0 32.7 0.0 46.9 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 150 150 149 150 149 150 COP % 100.2 99.1 96.0 99.4 95.1 100.0 ratio (relative to R410A) Refrig- % 85.0 85.0 111.0 92.1 112.6 85.1 erating (relative capacity to ratio R410A) -
TABLE 45 Comp. Comp. Comp. Comp. Comp. Comp. Ex. 37 Ex. 38 Ex. 39 Ex. 40 Ex. 41 Ex. 42 Item Unit A B G I J K′ HFO- Mass % 24.8 0.0 41.8 41.8 29.1 24.8 1132(E) HFO- Mass % 0.0 22.9 31.5 0.0 44.2 0.0 1123 R1234yf Mass % 48.5 50.4 0.0 31.5 0.0 48.5 R32 Mass % 26.7 26.7 26.7 26.7 26.7 26.7 GWP — 182 182 181 182 181 182 COP % 100.4 99.8 96.3 99.4 95.6 100.4 ratio (relative to R410A) Refrig- % 85.0 85.0 111.9 93.8 113.2 85.0 erating (relative capacity to ratio R410A) -
TABLE 46 Comp. Comp. Comp. Comp. Comp. Comp. Ex. 43 Ex. 44 Ex. 45 Ex. 46 Ex. 47 Ex. 48 Item Unit A B G I J K′ HFO- Mass % 21.3 0.0 40.0 40.0 28.8 24.3 1132(E) HFO- Mass % 0.0 19.9 30.7 0.0 41.9 0.0 1123 R1234yf Mass % 49.4 50.8 0.0 30.7 0.0 46.4 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 200 200 198 199 198 200 COP % 100.6 100.1 96.6 99.5 96.1 100.4 ratio (relative to R410A) Refrig- % 85.0 85.0 112.4 94.8 113.6 86.7 erating (relative capacity to ratio R410A) -
TABLE 47 Comp. Comp. Comp. Comp. Comp. Comp. Ex. 49 Ex. 50 Ex. 51 Ex. 52 Ex. 53 Ex. 54 Item Unit A B G I J K′ HFO- Mass % 12.1 0.0 35.7 35.7 29.3 22.5 1132(E) HFO- Mass % 0.0 11.7 27.6 0.0 34.0 0.0 1123 R1234yf Mass % 51.2 51.6 0.0 27.6 0.0 40.8 R32 Mass % 36.7 36.7 36.7 36.7 36.7 36.7 GWP — 250 250 248 249 248 250 COP % 101.2 101.0 96.4 99.6 97.0 100.4 ratio (relative to R410A) Refrig- % 85.0 85.0 113.2 97.6 113.9 90.9 erating (relative capacity to ratio R410A) -
TABLE 48 Comp. Comp. Comp. Comp. Comp. Comp. Ex. 55 Ex. 56 Ex. 57 Ex. 58 Ex. 59 Ex. 60 Item Unit A B G I J K′ HFO- Mass % 3.8 0.0 32.0 32.0 29.4 21.1 1132(E) HFO- Mass % 0.0 3.9 23.9 0.0 26.5 0.0 1123 R1234yf Mass % 52.1 52.0 0.0 23.9 0.0 34.8 R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 GWP — 300 300 298 299 298 299 COP % 101.8 101.8 97.9 99.8 97.8 100.5 ratio (relative to R410A) Refrig- % 85.0 85.0 113.7 100.4 113.9 94.9 erating (relative capacity to ratio R410A) -
TABLE 49 Comp. Comp. Comp. Comp. Comp. Ex. 61 Ex. 62 Ex. 63 Ex. 64 Ex. 65 Item Unit A = B G I J K′ HFO- Mass % 0.0 30.4 30.4 28.9 20.4 1132(E) HFO- Mass % 0.0 21.8 0.0 23.3 0.0 1123 R1234yf Mass % 52.2 0.0 21.8 0.0 31.8 R32 Mass % 47.8 47.8 47.8 47.8 47.8 GWP — 325 323 324 323 324 COP % 102.1 98.2 100.0 98.2 100.6 ratio (relative to R410A) Refrig- % 85.0 113.8 101.8 113.9 96.8 erating (relative capacity to ratio R410A) -
TABLE 50 Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 66 7 8 9 10 11 12 13 HFO-1132(E) Mass % 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 HFO-1123 Mass % 82.9 77.9 72.9 67.9 62.9 57.9 52.9 47.9 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 49 49 49 49 49 49 49 COP ratio % (relative 92.4 92.6 92.8 93.1 93.4 93.7 94.1 94.5 to R410A) Refrigerating % (relative 108.4 108.3 108.2 107.9 107.6 107.2 106.8 106.3 capacity ratio to R410A) -
TABLE 51 Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Item Unit 14 15 16 17 67 18 19 20 HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0 HFO-1123 Mass % 42.9 37.9 32.9 27.9 22.9 72.9 67.9 62.9 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 49 49 49 49 49 49 49 COP ratio % (relative 95.0 95.4 95.9 96.4 96.9 93.0 93.3 93.6 to R410A) Refrigerating % (relative 105.8 105.2 104.5 103.9 103.1 105.7 105.5 105.2 capacity ratio to R410A) -
TABLE 52 Item Unit Ex. 21 Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 Ex. 27 Ex. 28 HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 HFO-1123 Mass % 57.9 52.9 47.9 42.9 37.9 32.9 27.9 22.9 R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 49 49 49 49 49 49 49 COP ratio % (relative 93.9 94.2 94.6 95.0 95.5 96.0 96.4 96.9 to R410A) Refrigerating % (relative 104.9 104.5 104.1 103.6 103.0 102.4 101.7 101.0 capacity ratio to R410A) -
TABLE 53 Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 68 29 30 31 32 33 34 35 HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 HFO-1123 Mass % 17.9 67.9 62.9 57.9 52.9 47.9 42.9 37.9 R1234yf Mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 49 49 49 49 49 49 49 COP ratio % (relative 97.4 93.5 93.8 94.1 94.4 94.8 95.2 95.6 to R410A) Refrigerating % (relative 100.3 102.9 102.7 102.5 102.1 101.7 101.2 100.7 capacity ratio to R410A) -
TABLE 54 Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Item Unit 36 37 38 39 69 40 41 42 HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0 HFO-1123 Mass % 32.9 27.9 22.9 17.9 12.9 62.9 57.9 52.9 R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 49 49 49 49 49 49 49 COP ratio % (relative 96.0 96.5 97.0 97.5 98.0 94.0 94.3 94.6 to R410A) Refrigerating % (relative 100.1 99.5 98.9 98.1 97.4 100.1 99.9 99.6 capacity ratio to R410A) -
TABLE 55 Item Unit Ex. 43 Ex. 44 Ex. 45 Ex. 46 Ex. 47 Ex. 48 Ex. 49 Ex. 50 HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9 R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP 49 49 49 49 49 49 49 49 COP ratio % (relative 95.0 95.3 95.7 96.2 96.6 97.1 97.6 98.1 to R410A) Refrigerating % (relative 99.2 98.8 98.3 97.8 97.2 96.6 95.9 95.2 capacity ratio to R410A) -
TABLE 56 Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 70 51 52 53 54 55 56 57 HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 HFO-1123 Mass % 7.9 57.9 52.9 47.9 42.9 37.9 32.9 27.9 R1234yf Mass % 20.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 49 50 50 50 50 50 50 50 COP ratio % (relative 98.6 94.6 94.9 95.2 95.5 95.9 96.3 96.8 to R410A) Refrigerating % (relative 94.4 97.1 96.9 96.7 96.3 95.9 95.4 94.8 capacity ratio to R410A) -
TABLE 57 Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Item Unit 58 59 60 61 71 62 63 64 HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0 HFO-1123 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 50 50 50 50 50 50 COP ratio % (relative 97.2 97.7 98.2 98.7 99.2 95.2 95.5 95.8 to R410A) Refrigerating % (relative 94.2 93.6 92.9 92.2 91.4 94.2 93.9 93.7 capacity ratio to R410A) -
TABLE 58 Item Unit Ex. 65 Ex. 66 Ex. 67 Ex. 68 Ex. 69 Ex. 70 Ex. 71 Ex. 72 HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 HFO-1123 Mass % 37.9 32.9 27.9 22.9 17.9 12.9 7.9 2.9 R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 50 50 50 50 50 50 COP ratio % (relative 96.2 96.6 97.0 97.4 97.9 98.3 98.8 99.3 to R410A) Refrigerating % (relative 93.3 92.9 92.4 91.8 91.2 90.5 89.8 89.1 capacity ratio to R410A) -
TABLE 59 Item Unit Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79 Ex. 80 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9 R1234yf Mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 50 50 50 50 50 50 COP ratio % (relative 95.9 96.2 96.5 96.9 97.2 97.7 98.1 98.5 to R410A) Refrigerating % (relative 91.1 90.9 90.6 90.2 89.8 89.3 88.7 88.1 capacity ratio to R410A) -
TABLE 60 Item Unit Ex. 81 Ex. 82 Ex. 83 Ex. 84 Ex. 85 Ex. 86 Ex. 87 Ex. 88 HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0 HFO-1123 Mass % 7.9 2.9 42.9 37.9 32.9 27.9 22.9 17.9 R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 40.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 50 50 50 50 50 50 COP ratio % (relative 99.0 99.4 96.6 96.9 97.2 97.6 98.0 98.4 to R410A) Refrigerating % (relative 87.4 86.7 88.0 87.8 87.5 87.1 86.6 86.1 capacity ratio to R410A) -
TABLE 61 Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp. Item Unit Ex. 72 Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79 HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0 HFO-1123 Mass % 12.9 7.9 2.9 37.9 32.9 27.9 22.9 17.9 R1234yf Mass % 40.0 40.0 40.0 45.0 45.0 45.0 45.0 45.0 R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 GWP — 50 50 50 50 50 50 50 50 COP ratio % (relative 98.8 99.2 99.6 97.4 97.7 98.0 98.3 98.7 to R410A) Refrigerating % (relative 85.5 84.9 84.2 84.9 84.6 84.3 83.9 83.5 capacity ratio to R410A) -
TABLE 62 Comp. Comp. Comp. Item Unit Ex. 80 Ex. 81 Ex. 82 HFO-1132(E) Mass % 35.0 40.0 45.0 HFO-1123 Mass % 12.9 7.9 2.9 R1234yf Mass % 45.0 45.0 45.0 R32 Mass % 7.1 7.1 7.1 GWP — 50 50 50 COP ratio % (relative to R410A) 99.1 99.5 99.9 Refrigerating % (relative to R410A) 82.9 82.3 81.7 capacity ratio -
TABLE 63 Item Unit Ex. 89 Ex. 90 Ex. 91 Ex. 92 Ex. 93 Ex. 94 Ex. 95 Ex. 96 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 70.5 65.5 60.5 55.5 50.5 45.5 40.5 35.5 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative 93.7 93.9 94.1 94.4 94.7 95.0 95.4 95.8 to R410A) Refrigerating % (relative 110.2 110.0 109.7 109.3 108.9 108.4 107.9 107.3 capacity ratio to R410A) -
TABLE 64 Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 97 83 98 99 100 101 102 103 HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0 HFO-1123 Mass % 30.5 25.5 65.5 60.5 55.5 50.5 45.5 40.5 R1234yf Mass % 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative 96.2 96.6 94.2 94.4 94.6 94.9 95.2 95.5 to R410A) Refrigerating % (relative 106.6 106.0 107.5 107.3 107.0 106.6 106.1 105.6 capacity ratio to R410A) -
TABLE 65 Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex. Item Unit 104 105 106 84 107 108 109 110 HFO-1132(E) Mass % 40.0 45.0 50.0 55.0 10.0 15.0 20.0 25.0 HFO-1123 Mass % 35.5 30.5 25.5 20.5 60.5 55.5 50.5 45.5 R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative 95.9 96.3 96.7 97.1 94.6 94.8 95.1 95.4 to R410A) Refrigerating % (relative 105.1 104.5 103.8 103.1 104.7 104.5 104.1 103.7 capacity ratio to R410A) -
TABLE 66 Ex. Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Item Unit 111 112 113 114 115 85 116 117 HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 55.0 10.0 15.0 HFO-1123 Mass % 40.5 35.5 30.5 25.5 20.5 15.5 55.5 50.5 R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative 95.7 96.0 96.4 96.8 97.2 97.6 95.1 95.3 to R410A) Refrigerating % (relative 103.3 102.8 102.2 101.6 101.0 100.3 101.8 101.6 capacity ratio to R410A) -
TABLE 67 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 118 119 120 121 122 123 124 86 HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 HFO-1123 Mass % 45.5 40.5 35.5 30.5 25.5 20.5 15.5 10.5 R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative to 95.6 95.9 96.2 96.5 96.9 97.3 97.7 98.2 R410A) Refrigerating capacity % (relative to 101.2 100.8 100.4 99.9 99.3 98.7 98.0 97.3 ratio R410A) -
TABLE 68 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 125 126 127 128 129 130 131 132 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 50.5 45.5 40.5 35.5 30.5 25.5 20.5 15.5 R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 99 99 99 99 99 99 COP ratio % (relative to 95.6 95.9 96.1 96.4 96.7 97.1 97.5 97.9 R410A) Refrigerating capacity % (relative to 98.9 98.6 98.3 97.9 97.4 96.9 96.3 95.7 ratio R410A) -
TABLE 69 Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 133 87 134 135 136 137 138 139 HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0 HFO-1123 Mass % 10.5 5.5 45.5 40.5 35.5 30.5 25.5 20.5 R1234yf Mass % 25.0 25.0 30.0 30.0 30.0 30.0 30.0 30.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 99 99 100 100 100 100 100 100 COP ratio % (relative to 98.3 98.7 96.2 96.4 96.7 97.0 97.3 97.7 R410A) Refrigerating capacity % (relative to 95.0 94.3 95.8 95.6 95.2 94.8 94.4 93.8 ratio R410A) -
TABLE 70 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 140 141 142 143 144 145 146 147 HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0 HFO-1123 Mass % 15.5 10.5 5.5 40.5 35.5 30.5 25.5 20.5 R1234yf Mass % 30.0 30.0 30.0 35.0 35.0 35.0 35.0 35.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 100 100 100 100 100 100 100 100 COP ratio % (relative to 98.1 98.5 98.9 96.8 97.0 97.3 97.6 97.9 R410A) Refrigerating capacity % (relative to 93.3 92.6 92.0 92.8 92.5 92.2 91.8 91.3 ratio R410A) -
TABLE 71 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 148 149 150 151 152 153 154 155 HFO-1132(E) Mass % 35.0 40.0 45.0 10.0 15.0 20.0 25.0 30.0 HFO-1123 Mass % 15.5 10.5 5.5 35.5 30.5 25.5 20.5 15.5 R1234yf Mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 100 100 100 100 100 100 100 100 COP ratio % (relative to 98.3 98.7 99.1 97.4 97.7 98.0 98.3 98.6 R410A) Refrigerating capacity % (relative to 90.8 90.2 89.6 89.6 89.4 89.0 88.6 88.2 ratio R410A) -
TABLE 72 Ex. Ex. Ex. Ex. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Item Unit 156 157 158 159 160 88 89 90 HFO-1132(E) Mass % 35.0 40.0 10.0 15.0 20.0 25.0 30.0 35.0 HFO-1123 Mass % 10.5 5.5 30.5 25.5 20.5 15.5 10.5 5.5 R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 45.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 GWP — 100 100 100 100 100 100 100 100 COP ratio % (relative to 98.9 99.3 98.1 98.4 98.7 98.9 99.3 99.6 R410A) Refrigerating capacity % (relative to 87.6 87.1 86.5 86.2 85.9 85.5 85.0 84.5 ratio R410A) -
TABLE 73 Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Item Unit 91 92 93 94 95 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 HFO-1123 Mass % 25.5 20.5 15.5 10.5 5.5 R1234yf Mass % 50.0 50.0 50.0 50.0 50.0 R32 Mass % 14.5 14.5 14.5 14.5 14.5 GWP — 100 100 100 100 100 COP ratio % (relative to 98.9 99.1 99.4 99.7 100.0 R410A) Refrigerating capacity % (relative to 83.3 83.0 82.7 82.2 81.8 ratio R410A) -
TABLE 74 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 161 162 163 164 165 166 167 168 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 63.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 149 149 149 COP ratio % (relative to 94.8 95.0 95.2 95.4 95.7 95.9 96.2 96.6 R410A) Refrigerating capacity % (relative to 111.5 111.2 110.9 110.5 110.0 109.5 108.9 108.3 ratio R410A) -
TABLE 75 Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 96 169 170 171 172 173 174 175 HFO-1132(E) Mass % 50.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 HFO-1123 Mass % 23.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1 R1234yf Mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 149 149 149 COP ratio % (relative to 96.9 95.3 95.4 95.6 95.8 96.1 96.4 96.7 R410A) Refrigerating capacity % (relative to 107.7 108.7 108.5 108.1 107.7 107.2 106.7 106.1 ratio R410A) -
TABLE 76 Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 176 97 177 178 179 180 181 182 HFO-1132(E) Mass % 45.0 50.0 10.0 15.0 20.0 25.0 30.0 35.0 HFO-1123 Mass % 23.1 18.1 53.1 48.1 43.1 38.1 33.1 28.1 R1234yf Mass % 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 149 149 149 COP ratio % (relative to 97.0 97.4 95.7 95.9 96.1 96.3 96.6 96.9 R410A) Refrigerating capacity % (relative to 105.5 104.9 105.9 105.6 105.3 104.8 104.4 103.8 ratio R410A) -
TABLE 77 Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 183 184 98 185 186 187 188 189 HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0 HFO-1123 Mass % 23.1 18.1 13.1 48.1 43.1 38.1 33.1 28.1 R1234yf Mass % 15.0 15.0 15.0 20.0 20.0 20.0 20.0 20.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 149 149 149 COP ratio % (relative to 97.2 97.5 97.9 96.1 96.3 96.5 96.8 97.1 R410A) Refrigerating capacity % (relative to 103.3 102.6 102.0 103.0 102.7 102.3 101.9 101.4 ratio R410A) -
TABLE 78 Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex. Item Unit 190 191 192 99 193 194 195 196 HFO-1132(E) Mass % 35.0 40.0 45.0 50.0 10.0 15.0 20.0 25.0 HFO-1123 Mass % 23.1 18.1 13.1 8.1 43.1 38.1 33.1 28.1 R1234yf Mass % 20.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 149 149 149 COP ratio % (relative to 97.4 97.7 98.0 98.4 96.6 96.8 97.0 97.3 R410A) Refrigerating capacity % (relative to 100.9 100.3 99.7 99.1 100.0 99.7 99.4 98.9 ratio R410A) -
TABLE 79 Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Item Unit 197 198 199 200 100 201 202 203 HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 10.0 15.0 20.0 HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 38.1 33.1 28.1 R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 149 149 149 149 149 150 150 150 COP ratio % (relative to 97.6 97.9 98.2 98.5 98.9 97.1 97.3 97.6 R410A) Refrigerating capacity % (relative to 98.5 97.9 97.4 96.8 96.1 97.0 96.7 96.3 ratio R410A) -
TABLE 80 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 204 205 206 207 208 209 210 211 HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 10.0 15.0 20.0 HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 33.1 28.1 23.1 R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 150 150 150 150 150 150 150 150 COP ratio % (relative to 97.8 98.1 98.4 98.7 99.1 97.7 97.9 98.1 R410A) Refrigerating capacity % (relative to 95.9 95.4 94.9 94.4 93.8 93.9 93.6 93.3 ratio R410A) -
TABLE 81 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 212 213 214 215 216 217 218 219 HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 10.0 15.0 20.0 25.0 HFO-1123 Mass % 18.1 13.1 8.1 3.1 28.1 23.1 18.1 13.1 R1234yf Mass % 35.0 35.0 35.0 35.0 40.0 40.0 40.0 40.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 150 150 150 150 150 150 150 150 COP ratio % (relative to 98.4 98.7 99.0 99.3 98.3 98.5 98.7 99.0 R410A) Refrigerating capacity % (relative to 92.9 92.4 91.9 91.3 90.8 90.5 90.2 89.7 ratio R410A) -
TABLE 82 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 220 221 222 223 224 225 226 101 HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0 HFO-1123 Mass % 8.1 3.1 23.1 18.1 13.1 8.1 3.1 18.1 R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 50.0 R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 GWP — 150 150 150 150 150 150 150 150 COP ratio % (relative to 99.3 99.6 98.9 99.1 99.3 99.6 99.9 99.6 R410A) Refrigerating capacity % (relative to 89.3 88.8 87.6 87.3 87.0 86.6 86.2 84.4 ratio R410A) -
TABLE 83 Comp. Comp. Comp. Item Unit Ex. 102 Ex. 103 Ex. 104 HFO-1132(E) Mass % 15.0 20.0 25.0 HFO-1123 Mass % 13.1 8.1 3.1 R1234yf Mass % 50.0 50.0 50.0 R32 Mass % 21.9 21.9 21.9 GWP — 150 150 150 COP ratio % (relative to R410A) 99.8 100.0 100.2 Refrigerating % (relative to R410A) 84.1 83.8 83.4 capacity ratio -
TABLE 84 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 227 228 229 230 231 232 233 105 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 55.7 50.7 45.7 40.7 35.7 30.7 25.7 20.7 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 199 199 199 COP ratio % (relative to 95.9 96.0 96.2 96.3 96.6 96.8 97.1 97.3 R410A) Refrigerating capacity % (relative to 112.2 111.9 111.6 111.2 110.7 110.2 109.6 109.0 ratio R410A) -
TABLE 85 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 234 235 236 237 238 239 240 106 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 50.7 45.7 40.7 35.7 30.7 25.7 20.7 15.7 R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 199 199 199 COP ratio % (relative to 96.3 96.4 96.6 96.8 97.0 97.2 97.5 97.8 R410A) Refrigerating capacity % (relative to 109.4 109.2 108.8 108.4 107.9 107.4 106.8 106.2 ratio R410A) -
TABLE 86 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 241 242 243 244 245 246 247 107 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 45.7 40.7 35.7 30.7 25.7 20.7 15.7 10.7 R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 199 199 199 COP ratio % (relative to 96.7 96.8 97.0 97.2 97.4 97.7 97.9 98.2 R410A) Refrigerating capacity % (relative to 106.6 106.3 106.0 105.5 105.1 104.5 104.0 103.4 ratio R410A) -
TABLE 87 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex. Item Unit 248 249 250 251 252 253 254 108 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 HFO-1123 Mass % 40.7 35.7 30.7 25.7 20.7 15.7 10.7 5.7 R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 199 199 199 COP ratio % (relative to 97.1 97.3 97.5 97.7 97.9 98.1 98.4 98.7 R410A) Refrigerating capacity % (relative to 103.7 103.4 103.0 102.6 102.2 101.6 101.1 100.5 ratio R410A) -
TABLE 88 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 255 256 257 258 259 260 261 262 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 10.0 HFO-1123 Mass % 35.7 30.7 25.7 20.7 15.7 10.7 5.7 30.7 R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 199 199 199 COP ratio % (relative to 97.6 97.7 97.9 98.1 98.4 98.6 98.9 98.1 R410A) Refrigerating capacity % (relative to ratio R410A) 100.7 100.4 100.1 99.7 99.2 98.7 98.2 97.7 -
TABLE 89 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 263 264 265 266 267 268 269 270 HFO-1132(E) Mass % 15.0 20.0 25.0 30.0 35.0 10.0 15.0 20.0 HFO-1123 Mass % 25.7 20.7 15.7 10.7 5.7 25.7 20.7 15.7 R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 199 199 199 199 199 200 200 200 COP ratio % (relative to 98.2 98.4 98.6 98.9 99.1 98.6 98.7 98.9 R410A) Refrigerating capacity % (relative to 97.4 97.1 96.7 96.2 95.7 94.7 94.4 94.0 ratio R410A) -
TABLE 90 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 271 272 273 274 275 276 277 278 HFO-1132(E) Mass % 25.0 30.0 10.0 15.0 20.0 25.0 10.0 15.0 HFO-1123 Mass % 10.7 5.7 20.7 15.7 10.7 5.7 15.7 10.7 R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 45.0 45.0 R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3 GWP — 200 200 200 200 200 200 200 200 COP ratio % (relative to 99.2 99.4 99.1 99.3 99.5 99.7 99.7 99.8 R410A) Refrigerating capacity % (relative to 93.6 93.2 91.5 91.3 90.9 90.6 88.4 88.1 ratio R410A) -
TABLE 91 Comp. Comp. Item Unit Ex. 279 Ex. 280 Ex. 109 Ex. 110 HFO-1132(E) Mass % 20.0 10.0 15.0 10.0 HFO-1123 Mass % 5.7 10.7 5.7 5.7 R1234yf Mass % 45.0 50.0 50.0 55.0 R32 Mass % 29.3 29.3 29.3 29.3 GWP — 200 200 200 200 COP ratio % (relative to 100.0 100.3 100.4 100.9 R410A) Refrigerating % (relative to 87.8 85.2 85.0 82.0 capacity ratio R410A) -
TABLE 92 Ex. Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Item Unit 281 282 283 284 285 111 286 287 HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 10.0 15.0 HFO-1123 Mass % 40.9 35.9 30.9 25.9 20.9 15.9 35.9 30.9 R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0 R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 GWP — 298 298 298 298 298 298 299 299 COP ratio % (relative to 97.8 97.9 97.9 98.1 98.2 98.4 98.2 98.2 R410A) Refrigerating capacity % (relative to 112.5 112.3 111.9 111.6 111.2 110.7 109.8 109.5 ratio R410A) -
TABLE 93 Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex. Item Unit 288 289 290 112 291 292 293 294 HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 10.0 15.0 20.0 25.0 HFO-1123 Mass % 25.9 20.9 15.9 10.9 30.9 25.9 20.9 15.9 R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0 R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 GWP — 299 299 299 299 299 299 299 299 COP ratio % (relative to 98.3 98.5 98.6 98.8 98.6 98.6 98.7 98.9 R410A) Refrigerating capacity % (relative to 109.2 108.8 108.4 108.0 107.0 106.7 106.4 106.0 ratio R410A) -
TABLE 94 Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 295 113 296 297 298 299 300 301 HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0 HFO-1123 Mass % 10.9 5.9 25.9 20.9 15.9 10.9 5.9 20.9 R1234yf Mass % 15.0 15.0 20.0 20.0 20.0 20.0 20.0 25.0 R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 GWP 299 299 299 299 299 299 299 299 COP ratio % (relative to 99.0 99.2 99.0 99.0 99.2 99.3 99.4 99.4 R410A) Refrigerating capacity % (relative to 105.6 105.2 104.1 103.9 103.6 103.2 102.8 101.2 ratio R410A) -
TABLE 95 Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Item Unit 302 303 304 305 306 307 308 309 HFO-1132(E) Mass % 15.0 20.0 25.0 10.0 15.0 20.0 10.0 15.0 HFO-1123 Mass % 15.9 10.9 5.9 15.9 10.9 5.9 10.9 5.9 R1234yf Mass % 25.0 25.0 25.0 30.0 30.0 30.0 35.0 35.0 R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 GWP — 299 299 299 299 299 299 299 299 COP ratio % (relative to 99.5 99.6 99.7 99.8 99.9 100.0 100.3 100.4 R410A) Refrigerating capacity % (relative to 101.0 100.7 100.3 98.3 98.0 97.8 95.3 95.1 ratio R410A) -
TABLE 96 Item Unit Ex. 400 HFO-1132(E) Mass % 10.0 HFO-1123 Mass % 5.9 R1234yf Mass % 40.0 R32 Mass % 44.1 GWP — 299 COP ratio % (relative to R410A) 100.7 Refrigerating capacity ratio % (relative to R410A) 92.3 - The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:
- When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %, a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, and the point (0.0, 100.0−a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2-1.6377a+58.7, −0.0144a2+0.6377a+41.3);
-
- if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);
- if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);
- if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and
- if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).
- Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in
FIG. 3 , and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more. - Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.
- In
FIG. 3 , the COP ratio of 92.5% or more forms a curved line CD. InFIG. 3 , an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. InFIG. 4 , point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C. - The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
- For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
- A burning velocity test was performed using the apparatus shown in
FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. - The results are shown in Tables 97 to 104.
-
TABLE 97 Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Item 6 13 19 24 29 34 WCF HFO-1132(E) Mass % 72.0 60.9 55.8 52.1 48.6 45.4 HFO-1123 Mass % 28.0 32.0 33.1 33.4 33.2 32.7 R1234f Mass % 0.0 0.0 0.0 0 0 0 R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9 Burning velocity (WCF) cm/s 10 10 10 10 10 10 -
TABLE 98 Item Comp. Ex. 39 Comp. Ex. 45 Comp. Ex. 51 Comp. Ex. 57 Comp. Ex. 62 WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4 HFO-1123 Mass % 31.5 30.7 23.6 23.9 21.8 R1234yf Mass % 0 0 0 0 0 R32 Mass % 26.7 29.3 36.7 44.1 47.8 Burning velocity (WCF) cm/s 10 10 10 10 10 -
TABLE 99 Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Item 7 14 20 25 30 35 WCF HFO-1132(E) % Mass 72.0 60.9 55.8 52.1 48.6 45.4 HFO-1123 % Mass 0.0 0.0 0.0 0 0 0 R1234yf % Mass 28.0 32.0 33.1 33.4 33.2 32.7 R32 % Mass 0.0 7.1 11.1 14.5 18.2 21.9 Burning velocity (WCF) cm/s 10 10 10 10 10 10 -
TABLE 100 Item Comp. Ex. 40 Comp. Ex. 46 Comp. Ex. 52 Comp. Ex. 58 Comp. Ex. 63 WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4 HFO-1123 Mass % 0 0 0 0 0 R1234yf Mass % 31.5 30.7 23.6 23.9 21.8 R32 Mass % 26.7 29.3 36.7 44.1 47.8 Burning velocity (WCF) cm/s 10 10 10 10 10 -
TABLE 101 Item Comp. Ex. 8 Comp. Ex. 15 Comp. Ex. 21 Comp. Ex. 26 Comp. Ex. 31 Comp. Ex. 36 WCF HFO-1132 Mass % 47.1 40.5 37.0 34.3 32.0 30.3 (E) HFO-1123 Mass % 52.9 52.4 51.9 51.2 49.8 47.8 R1234yf Mass % 0.0 0.0 0.0 0.0 0.0 0.0 R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9 Leak condition that results Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ in WCFF Shipping Shipping Shipping Shipping Shipping Shipping −40° C., −40° C., −40° C., −40° C., −40° C., −40° C., 92% 92% 92% 92% 92% 92% release, release, release, release, release, release, liquid phase liquid phase liquid phase liquid phase liquid phase liquid phase side side side side side side WCFF HFO-1132 Mass % 72.0 62.4 56.2 50.6 45.1 40.0 (E) HFO-1123 Mass % 28.0 31.6 33.0 33.4 32.5 30.5 R1234yf Mass % 0.0 0.0 0.0 20.4 0.0 0.0 R32 Mass % 0.0 50.9 10.8 16.0 22.4 29.5 Burning velocity cm/ s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less (WCF) Burning velocity cm/s 10 10 10 10 10 10 (WCFF) -
TABLE 102 Item Comp. Ex. 41 Comp. Ex. 47 Comp. Ex. 53 Comp. Ex. 59 Comp. Ex. 64 WCF HFO-1132(E) Mass 29.1 28.8 29.3 29.4 28.9 % HFO-1123 Mass 44.2 41.9 34.0 26.5 23.3 % R1234yf Mass 0.0 0.0 0.0 0.0 0.0 % R32 Mass 26.7 29.3 36.7 44.1 47.8 % Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/ WCFF Shipping Shipping Shipping Shipping Shipping −40° C., −40° C., −40° C., −40° C., −40° C., 92% 92% 92% 90% 86% release, release, release, release, release, liquid phase liquid phase liquid phase gas phase side gas phase side side side side WCFF HFO-1132(E) Mass 34.6 32.2 27.7 28.3 27.5 % HFO-1123 Mass 26.5 23.9 17.5 18.2 16.7 % R1234yf Mass 0.0 0.0 0.0 0.0 0.0 % R32 Mass 38.9 43.9 54.8 53.5 55.8 % Burning velocity (WCF) cm/ s 8 or less 8 or less 8.3 9.3 9.6 Burning velocity cm/s 10 10 10 10 10 (WCFF) -
TABLE 103 Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Item 9 16 22 27 32 37 WCF HFO-1132(E) Mass 61.7 47.0 41.0 36.5 32.5 28.8 % HFO-1123 Mass 5.9 7.2 6.5 5.6 4.0 2.4 % R1234yf Mass 32.4 38.7 41.4 43.4 45.3 46.9 % R32 Mass 0.0 7.1 11.1 14.5 18.2 21.9 % Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ WCFF Shipping Shipping Shipping Shipping Shipping Shipping −40° C., −40° C., −40° C., −40° C., −40° C., −40° C., 0% 0% 0% 92% 0% 0% release, release, release, release, release, release, gas phase gas phase gas phase liquid phase gas phase gas phase side side side side side side WCFF HFO-1132(E) Mass 72.0 56.2 50.4 46.0 42.4 39.1 % HFO-1123 Mass 10.5 12.6 11.4 10.1 7.4 4.4 % R1234yf Mass 17.5 20.4 21.8 22.9 24.3 25.7 % R32 Mass 0.0 10.8 16.3 21.0 25.9 30.8 % Burning velocity (WCF) cm/ s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less Burning velocity (WCFF) cm/s 10 10 10 10 10 10 -
TABLE 104 Item Comp. Ex. 42 Comp. Ex. 48 Comp. Ex. 54 Comp. Ex. 60 Comp. Ex. 65 WCF HFO-1132(E) Mass 24.8 24.3 22.5 21.1 20.4 % HFO-1123 Mass 0.0 0.0 0.0 0.0 0.0 % R1234yf Mass 48.5 46.4 40.8 34.8 31.8 % R32 Mass 26.7 29.3 36.7 44.1 47.8 % Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/ WCFF Shipping Shipping Shipping Shipping Shipping −40° C., −40° C., −40° C., −40° C., −40° C., 0% 0% 0% 0% 0% release, release, release, release, release, gas phase side gas phase side gas phase side gas phase side gas phase side WCFF HFO-1132(E) Mass 35.3 34.3 31.3 29.1 28.1 % HFO-1123 Mass 0.0 0.0 0.0 0.0 0.0 % R1234yf Mass 27.4 26.2 23.1 19.8 18.2 % R32 Mass 37.3 39.6 45.6 51.1 53.7 % Burning velocity (WCF) cm/ s 8 or less 8 or less 8 or less 8 or less 8 or less Burning velocity cm/s 10 10 10 10 10 (WCFF) - The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:
- When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);
- if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2-1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098,0.0) and point I (0.0061a2-0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).
- Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
-
TABLE 105 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8 HFO-1123 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5 R1234yf 0 0 0 0 0 0 0 0 0 R32 a a a HFO-1132(E) 0.026a2 − 1.7478a + 72.0 0.02a2 − 1.6013a + 71.105 0.0135a2 − 1.4068a + 69.727 Approximate expression HFO-1123 −0.026a2 + 0..7478a + 28.0 −0.02a2 + 0..6013a + 28.895 −0.0135a2 + 0.4068a + 30.273 Approximate expression R1234yf 0 0 0 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4 HFO-1123 31.5 30.7 27.6 27.6 23.9 21.8 R1234yf 0 0 0 0 0 0 R32 a a HFO-1132(E) 0.0111a2 − 1.3152a + 68.986 0.0061a2 − 0.9918a + 63.902 Approximate expression HFO-1123 −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098 Approximate expression R1234yf 0 0 Approximate expression -
TABLE 106 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8 HFO-1123 0 0 0 0 0 0 0 0 0 R1234yf 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5 R32 a a a HFO-1132(E) 0.026a2 − 1.7478a + 72.0 0.02a2 − 1.6013a + 71.105 0.0135a2 − 1.4068a + 69.727 Approximate expression HFO-1123 0 0 0 Approximate expression R1234yf −0.026a2 + 0.7478a + 28.0 −0.02a2 + 0.6013a + 28.895 −0.0135a2 + 0.4068a + 30.273 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4 HFO-1123 0 0 0 0 0 0 R1234yf 31.5 30.7 23.6 23.6 23.5 21.8 R32 x x HFO-1132(E) 0.0111a2 − 1.3152a + 68.986 0.0061a2 − 0.9918a + 63.902 Approximate expression HFO-1123 0 0 Approximate expression R1234yf −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098 Approximate expression - The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:
- When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2-2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2-0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).
- Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in
FIG. 3 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved. - Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
-
TABLE 107 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 47.1 40.5 37 37.0 34.3 32.0 32.0 30.3 29.1 HFO-1123 52.9 52.4 51.9 51.9 51.2 49.8 49.8 47.8 44.2 R1234yf 0 0 0 0 0 0 0 0 0 R32 a a a HFO-1132(E) 0.0049a2 − 0.9645a + 47.1 0.0243a2 − 1.4161a + 49.725 0.0246a2 − 1.4476a + 50.184 Approximate expression HFO-1123 −0.0049a2 − 0.0355a + 52.9 −0.0243a2 + 0.4161a + 50.275 −0.0246a2 + 0.4476a + 49.816 Approximate expression R1234yf 0 0 0 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 47.8 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 29.1 28.8 29.3 29.3 29.4 28.9 HFO-1123 44.2 41.9 34.0 34.0 26.5 23.3 R1234yf 0 0 0 0 0 0 R32 a a HFO-1132(E) 0.0183a2 − 1.1399a + 46.493 −0.0134a2 + 1.0956a + 7.13 Approximate expression HFO-1123 −0.0183a2 + 0.1399a + 53.507 0.0134a2 − 2.0956a + 92.87 Approximate expression R1234yf 0 0 Approximate expression -
TABLE 108 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 61.7 47.0 41.0 41.0 36.5 32.5 32.5 28.8 24.8 HFO-1123 5.9 7.2 6.5 6.5 5.6 4.0 4.0 2.4 0 R1234yf 32.4 38.7 41.4 41.4 43.4 45.3 45.3 46.9 48.5 R32 x x x HFO-1132(E) 0.0514a2 − 2.4353a + 61.7 0.0341a2 − 2.1977a + 61.187 0.0196a2 − 1.7863a + 58.515 Approximate expression HFO-1123 −0.0323a2 + 0.4122a + 5.9 −0.0236a2 + 0.34a + 5.636 −0.0079a2 − 0.1136a + 8.702 Approximate expression R1234yf −0.0191a2 + 1.0231a + 32.4 −0.0105a2 + 0.8577a + 33.177 −0.0117a2 + 0.8999a + 32.783 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 24.8 24.3 22.5 22.5 21.1 20.4 HFO-1123 0 0 0 0 0 0 R1234yf 48.5 46.4 40.8 40.8 34.8 31.8 R32 x x HFO-1132(E) −0.0051a2 + 0.0929a + 25.95 −1.892a + 29.443 Approximate expression HFO-1123 0 0 Approximate expression R1234yf 0.0051a2 − 1.0929a + 74.05 0.892a + 70.557 Approximate expression -
FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively. - Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
- Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
-
TABLE 109 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 68.6 55.3 48.4 48.4 42.8 37 37 31.5 24.8 HFO-1123 0 0 0 0 0 0 0 0 0 R1234yf 31.4 37.6 40.5 40.5 42.7 44.8 44.8 46.6 48.5 R32 a a a HFO-1132(E) 0.0134a2 − 1.9681a + 68.6 0.0112a2 − 1.9337a + 68.484 0.0107a2 − 1.9142a + 68.305 Approximate expression HFO-1123 0 0 0 Approximate expression R1234yf −0.0134a2 + 0.9681a + 31.4 −0.0112a2 + 0.9337a + 31.516 −0.0107a2 + 0.9142a + 31.695 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 24.8 21.3 12.1 12.1 3.8 0 HFO-1123 0 0 0 0 0 0 R1234yf 48.5 49.4 51.2 51.2 52.1 52.2 R32 a a HFO-1132(E) 0.0103a2 − 1.9225a + 68.793 0.0085a2 − 1.8102a + 67.1 Approximate expression HFO-1123 0 0 Approximate expression R1234yf −0.0103a2 + 0.9225a + 31..207 −0.0085a2 + 0.8102a + 32.9 Approximate expression - Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
- Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).
-
TABLE 110 Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2 R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7 HFO-1132(E) 0 0 0 0 0 0 0 0 0 HFO-1123 58.7 47.8 42.3 42.3 37.8 33.1 33.1 28.5 22.9 R1234yf 41.3 45.1 46.6 46.6 47.7 48.7 48.7 49.6 50.4 R32 a a a HFO-1132(E) 0 0 0 Approximate expression HFO-1123 0.0144a2 − 1.6377a + 58.7 0.0075a2 −1.5156a + 58.199 0.009a2 − 1.6045a + 59.318 Approximate expression R1234yf −0.0144a2 + 0.6377a + 41.3 −0.0075a2 + 0.5156a + 41.801 −0.009a2 + 0.6045a + 40.682 Approximate expression Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7 R32 26.7 29.3 36.7 36.7 44.1 47.8 HFO-1132(E) 0 0 0 0 0 0 HFO-1123 22.9 19.9 11.7 11.8 3.9 0 R1234yf 50.4 50.8 51.6 51.5 52.0 52.2 R32 a a HFO-1132(E) 0 0 Approximate expression HFO-1123 0.0046a2 − 1.41a + 57.286 0.0012a2 − 1.1659a + 52.95 Approximate expression R1234yf −0.0046a2 + 0.41a + 42.714 −0.0012a2 + 0.1659a + 47.05 Approximate expression - Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
- Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).
-
TABLE 111 Item 11.1 ≥ R32 > 0 R32 0 7.1 11.1 HFO-1132(E) 0 0 0 HFO-1123 75.4 83.4 88.9 R1234yf 24.6 9.5 0 R32 a HFO-1132(E) 0 Approximate expression HFO-1123 0.0224a2 + 0.968a + 75.4 Approximate expression R1234yf −0.0224a2 − 1.968a + 24.6 Approximate expression - Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
- Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).
-
TABLE 112 Item 11.1 ≥ R32 > 0 R32 0 7.1 11.1 HFO-1132(E) 32.9 18.4 0 HFO-1123 67.1 74.5 88.9 R1234yf 0 0 0 R32 a HFO-1132(E) −0.2304a2 − 0.4062a + 32.9 Approximate expression HFO-1123 0.2304a2 − 0.5938a + 67.1 Approximate expression R1234yf 0 Approximate expression - The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
- The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
- point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI); - the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
- the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
- the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
- point M (52.6, 0.0, 47.4),
point M′ (39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM); - the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
- the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
- the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
- the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
- point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments; - the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
- the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
- the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
- point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments; - the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
- the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
- the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
- the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
- the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
- point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments; - the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
- the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
- the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:
- point a (71.1, 0.0, 28.9),
point c (36.5, 18.2, 45.3),
point f (47.6, 18.3, 34.1), and
point d (72.0, 0.0, 28.0),
or on these line segments; - the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
- the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
- the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:
- point a (71.1, 0.0, 28.9),
point b (42.6, 14.5, 42.9),
point e (51.4, 14.6, 34.0), and
point d (72.0, 0.0, 28.0),
or on these line segments; - the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
- the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
- the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:
- point g (77.5, 6.9, 15.6),
point i (55.1, 18.3, 26.6), and
point j (77.5. 18.4, 4.1),
or on these line segments; - the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
- the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
- The refrigerant D according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:
- point g (77.5, 6.9, 15.6),
point h (61.8, 14.6, 23.6), and
point k (77.5, 14.6, 7.9),
or on these line segments; - the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
- the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
- The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
- Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.
- The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
- A burning velocity test was performed using the apparatus shown in
FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results. -
TABLE 113 Comparative Example Example Example Example 13 Example 12 Example 14 Example 16 Item Unit I 11 J 13 K 15 L WCF HFO- Mass % 72 57.2 48.5 41.2 35.6 32 28.9 1132 (E) R32 Mass % 0 10 18.3 27.6 36.8 44.2 51.7 R1234yf Mass % 28 32.8 33.2 31.2 27.6 23.8 19.4 Burning Velocity cm/s 10 10 10 10 10 10 10 (WCF) -
TABLE 114 Comparative Example Example Example 14 Example 19 Example 21 Example Item Unit M 18 W 20 N 22 WCF HFO-1132 Mass % 52.6 39.2 32.4 29.3 27.7 24.6 (E) R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8 Leak condition that results in Storage, Storage, Storage, Storage, Storage, Storage, WCFF Shipping, Shipping, Shipping, Shipping, Shipping, Shipping, −40° C., −40° C., −40° C., −40° C., −40° C., −40° C., 0% release, 0% 0% 0% 0% 0% on the gas release, on release, on release, on release, on release, on phase side the gas the gas the gas the gas the gas phase side phase side phase side phase side phase side WCF HFO-1132 Mass % 72.0 57.8 48.7 43.6 40.6 34.9 (E) R32 Mass % 0.0 9.5 17.9 24.2 28.7 38.1 R1234yf Mass % 28.0 32.7 33.4 32.2 30.7 27.0 Burning Velocity cm/ s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less (WCF) Burning Velocity cm/s 10 10 10 10 10 10 (WCFF) -
TABLE 115 Example 23 Example 25 Item Unit O Example 24 P WCF HFO-1132 (E) Mass % 22.6 21.2 20.5 HFO-1123 Mass % 36.8 44.2 51.7 R1234yf Mass % 40.6 34.6 27.8 Leak condition that results in WCFF Storage, Storage, Storage, Shipping, Shipping, Shipping, −40° C., −40° C., −40° C., 0% release, on 0% release, on 0% release, on the gas phase the gas phase the gas phase side side side WCFF HFO-1132 (E) Mass % 31.4 29.2 27.1 HFO-1123 Mass % 45.7 51.1 56.4 R1234yf Mass % 23.0 19.7 16.5 Burning Velocity (WCF) cm/ s 8 or less 8 or less 8 or less Burning Velocity (WCFF) cm/s 10 10 10 - The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in
FIG. 14 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability. - The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in
FIG. 14 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability. - Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.
- Evaporating temperature: 5° C.
- Condensation temperature: 45° C.
- Degree of superheating: 5 K
- Degree of subcooling: 5 K
- Compressor efficiency: 70%
- Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
-
TABLE 116 Comparative Comparative Comparative Comparative Comparative Comparative Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Item Unit Example 1 A B A′ B′ A″ B″ HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0 R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5 R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5 GWP — 2088 125 125 250 250 350 350 COP Ratio %(relative to 100 98.7 103.6 98.7 102.3 99.2 102.2 R410A) Refrigerating %(relative to 100 105.3 62.5 109.9 77.5 112.1 87.3 Capacity Ratio R410A) -
TABLE 117 Comparative Comparative Example 8 Comparative Example 10 Example 2 Example 4 Item Unit C Example 9 C′ Example 1 R Example 3 T HFO-1132(E) Mass % 85.5 66.1 52.1 37.8 25.5 16.6 8.6 R32 Mass % 0.0 10.0 18.2 27.6 36.8 44.2 51.6 R1234yf Mass % 14.5 23.9 29.7 34.6 37.7 39.2 39.8 GWP — 1 69 125 188 250 300 350 COP Ratio % (relative to 99.8 99.3 99.3 99.6 100.2 100.8 101.4 R410A) Refrigerating Capacity % (relative to 92.5 92.5 92.5 92.5 92.5 92.5 92.5 Ratio R410A) -
TABLE 118 Com- Com- parative Ex- Ex- parative Ex- Example Ex- ample Ex- ample Example Ex- ample 11 ample 6 ample 8 12 ample 10 Item Unit E 5 N 7 U G 9 V HFO-1132(E) Mass % 58.3 40.5 27.7 14.9 3.9 39.6 22.8 11.0 R32 Mass % 0.0 10.0 18.2 27.6 36.7 0.0 10.0 18.1 R1234yf Mass % 41.7 49.5 54.1 57.5 59.4 60.4 67.2 70.9 GWP — 2 70 125 189 250 3 70 125 COP Ratio % (relative 100.3 100.3 100.7 101.2 101.9 101.4 101.8 102.3 to R410A) Refrigerating % (relative 80.0 80.0 80.0 80.0 80.0 70.0 70.0 70.0 Capacity Ratio to R410A) -
TABLE 119 Com- parative Ex- Ex - Ex- Ex- Example Ex- ample Ex- ample Ex- ample ample 13 ample 12 ample 14 ample 16 17 Item Unit I 11 J 13 K 15 L Q HFO-1132(E) Mass % 72.0 57.2 48.5 41.2 35.6 32.0 28.9 44.6 R32 Mass % 0.0 10.0 18.3 27.6 36.8 44.2 51.7 23.0 R1234yf Mass % 28.0 32.8 33.2 31.2 27.6 23.8 19.4 32.4 GWP — 2 69 125 188 250 300 350 157 COP Ratio % (relative 99.9 99.5 99.4 99.5 99.6 99.8 100.1 99.4 to R410A) Refrigerating % (relative 86.6 88.4 90.9 94.2 97.7 100.5 103.3 92.5 Capacity Ratio to R410A) -
TABLE 120 Comparative Example Example Example Example 14 18 19 Example 21 Example Item Unit M W 20 N 22 HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9 GWP — 2 36 70 100 125 188 COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4 to R410A) Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5 Capacity Ratio to R410A) -
TABLE 121 Example Example Example 23 25 26 Item Unit O Example 24 P S HFO-1132(E) Mass % 22.6 21.2 20.5 21.9 R32 Mass % 36.8 44.2 51.7 39.7 R1234yf Mass % 40.6 34.6 27.8 38.4 GWP — 250 300 350 270 COP Ratio % (relative 100.4 100.5 100.6 100.4 to R410A) Refrigerating % (relative 91.0 95.0 99.1 92.5 Capacity to R410A) Ratio -
TABLE 122 Com- Com- Com- Com- Com- Com- parative parative parative parative Ex- parative parative Example Example Example Example ample Ex- Example Example Item Unit 15 16 17 18 27 ample 28 19 20 HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 R32 Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 R1234yf Mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0 GWP — 37 37 37 36 36 36 35 35 COP Ratio % (relative 103.4 102.6 101.6 100.8 100.2 99.8 99.6 99.4 to R410A) Refrigerating % (relative 56.4 63.3 69.5 75.2 80.5 85.4 90.1 94.4 Capacity Ratio to R410A) -
TABLE 123 Com- Com- Com- Com- Com- Com- parative parative Ex- parative Ex- parative parative parative Example Example ample Example ample Example Example Example Item Unit 21 22 29 23 30 24 25 26 HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 R32 Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 R1234yf Mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 GWP — 71 71 70 70 70 69 69 69 COP Ratio % (relative 103.1 102.1 101.1 100.4 99.8 99.5 99.2 99.1 to R410A) Refrigerating % (relative 61.8 68.3 74.3 79.7 84.9 89.7 94.2 98.4 Capacity Ratio to R410A) -
TABLE 124 Com- Ex- Com- Ex- Ex- Com- Com- Com- parative ample parative ample ample parative parative parative Item Unit Example 27 31 Example 28 32 33 Example 29 Example 30 Example 31 HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 R32 Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 R1234yf Mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0 GWP — 104 104 104 103 103 103 103 102 COP Ratio % (relative 102.7 101.6 100.7 100.0 99.5 99.2 99.0 98.9 to R410A) Refrigerating % (relative 66.6 72.9 78.6 84.0 89.0 93.7 98.1 102.2 Capacity Ratio to R410A) -
TABLE 125 Com- Com- Com- Com- Com- Com- Com- Com- parative parative parative parative parative parative parative parative Item Unit Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Example 39 HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0 R32 Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0 R1234yf Mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 65.0 GWP — 138 138 137 137 137 136 136 171 COP Ratio % (relative 102.3 101.2 100.4 99.7 99.3 99.0 98.8 101.9 to R410A) Refrigerating % (relative 71.0 77.1 82.7 88.0 92.9 97.5 101.7 75.0 Capacity Ratio to R410A) -
TABLE 126 Ex- Com- Com- Com- Com- Com- Com- Ex- ample parative parative parative parative parative parative ample Item Unit 34 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 35 HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 60.0 70.0 10.0 20.0 R32 Mass % 25.0 25.0 25.0 25.0 25.0 25.0 30.0 30.0 R1234yf Mass % 55.0 45.0 35.0 25.0 15.0 5.0 60.0 50.0 GWP — 171 171 171 170 170 170 205 205 COP Ratio % (relative 100.9 100.1 99.6 99.2 98.9 98.7 101.6 100.7 to R410A) Refrigerating % (relative 81.0 86.6 91.7 96.5 101.0 105.2 78.9 84.8 Capacity Ratio to R410A) -
TABLE 127 Com- Com- Com- Com- Ex- Ex- Ex- Com- parative parative parative parative ample ample ample parative Item Unit Example 46 Example 47 Example 48 Example 49 36 37 38 Example 50 HFO-1132(E) Mass % 30.0 40.0 50.0 60.0 10.0 20.0 30.0 40.0 R32 Mass % 30.0 30.0 30.0 30.0 35.0 35.0 35.0 35.0 R1234yf Mass % 40.0 30.0 20.0 10.0 55.0 45.0 35.0 25.0 GWP — 204 204 204 204 239 238 238 238 COP Ratio % (relative 100.0 99.5 99.1 98.8 101.4 100.6 99.9 99.4 to R410A) Refrigerating % (relative 90.2 95.3 100.0 104.4 82.5 88.3 93.7 98.6 Capacity Ratio to R410A) -
TABLE 128 Com- Com- Com- Com- Ex- Com- Com- Com- parative parative parative parative ample parative parative parative Item Unit Example 51 Example 52 Example 53 Example 54 39 Example 55 Example 56 Example 57 HFO-1132(E) Mass % 50.0 60.0 10.0 20.0 30.0 40.0 50.0 10.0 R32 Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 45.0 R1234yf Mass % 15.0 5.0 50.0 40.0 30.0 20.0 10.0 45.0 GWP — 237 237 272 272 272 271 271 306 COP Ratio % (relative 99.0 98.8 101.3 100.6 99.9 99.4 99.0 101.3 to R410A) Refrigerating % (relative 103.2 107.5 86.0 91.7 96.9 101.8 106.3 89.3 Capacity Ratio to R410A) -
TABLE 129 Ex- Ex- Com- Com- Com- Ex- Com- Com- ample ample parative parative parative ample parative parative Item Unit 40 41 Example 58 Example 59 Example 60 42 Example 61 Example 62 HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 10.0 20.0 30.0 40.0 R32 Mass % 45.0 45.0 45.0 45.0 50.0 50.0 50.0 50.0 R1234yf Mass % 35.0 25.0 15.0 5.0 40.0 30.0 20.0 10.0 GWP — 305 305 305 304 339 339 339 338 COP Ratio % (relative 100.6 100.0 99.5 99.1 101.3 100.6 100.0 99.5 to R410A) Refrigerating % (relative 94.9 100.0 104.7 109.2 92.4 97.8 102.9 107.5 Capacity Ratio to R410A) -
TABLE 130 Com- Com- Com- Com- Ex- Ex- Ex- Ex- parative parative parative parative ample ample ample ample Item Unit Example 63 Example 64 Example 65 Example 66 43 44 45 46 HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 56.0 59.0 62.0 65.0 R32 Mass % 55.0 55.0 55.0 55.0 3.0 3.0 3.0 3.0 R1234yf Mass % 35.0 25.0 15.0 5.0 41.0 38.0 35.0 32.0 GWP — 373 372 372 372 22 22 22 22 COP Ratio % (relative 101.4 100.7 100.1 99.6 100.1 100.0 99.9 99.8 to R410A) Refrigerating % (relative 95.3 100.6 105.6 110.2 81.7 83.2 84.6 86.0 Capacity Ratio to R410A) -
TABLE 131 Example Example Example Example Example Example Example Example Item Unit 47 48 49 50 51 52 53 54 HFO-1132(E) Mass % 49.0 52.0 55.0 58.0 61.0 43.0 46.0 49.0 R32 Mass % 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0 R1234yf Mass % 45.0 42.0 39.0 36.0 33.0 48.0 45.0 42.0 GWP — 43 43 43 43 42 63 63 63 COP Ratio % (relative 100.2 100.0 99.9 99.8 99.7 100.3 100.1 99.9 to R410A) Refrigerating % (relative 80.9 82.4 83.9 85.4 86.8 80.4 82.0 83.5 Capacity Ratio to R410A) -
TABLE 132 Example Example Example Example Example Example Example Example Item Unit 55 56 57 58 59 60 61 62 HFO-1132(E) Mass % 52.0 55.0 58.0 38.0 41.0 44.0 47.0 50.0 R32 Mass % 9.0 9.0 9.0 12.0 12.0 12.0 12.0 12.0 R1234yf Mass % 39.0 36.0 33.0 50.0 47.0 44.0 41.0 38.0 GWP — 63 63 63 83 83 83 83 83 COP Ratio % (relative to R410A) 99.8 99.7 99.6 100.3 100.1 100.0 99.8 99.7 Refrigerating % (relative Capacity Ratio to R410A) 85.0 86.5 87.9 80.4 82.0 83.5 85.1 86.6 -
TABLE 133 Example Example Example Example Example Example Example Example Item Unit 63 64 65 66 67 68 69 70 HFO-1132(E) Mass % 53.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0 R32 Mass % 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 R1234yf Mass % 35.0 52.0 49.0 46.0 43.0 40.0 37.0 34.0 GWP — 83 104 104 103 103 103 103 103 COP Ratio % (relative 99.6 100.5 100.3 100.1 99.9 99.7 99.6 99.5 to R410A) Refrigerating % (relative 88.0 80.3 81.9 83.5 85.0 86.5 88.0 89.5 Capacity Ratio to R410A) -
TABLE 134 Example Example Example Example Example Example Example Example Item Unit 71 72 73 74 75 76 77 78 HFO-1132(E) Mass % 29.0 32.0 35.0 38.0 41.0 44.0 47.0 36.0 R32 Mass % 18.0 18.0 18.0 18.0 18.0 18.0 18.0 3.0 R1234yf Mass % 53.0 50.0 47.0 44.0 41.0 38.0 35.0 61.0 GWP — 124 124 124 124 124 123 123 123 COP Ratio % (relative 100.6 100.3 100.1 99.9 99.8 99.6 99.5 101.3 to R410A) Refrigerating % (relative 80.6 82.2 83.8 85.4 86.9 88.4 89.9 71.0 Capacity Ratio to R410A) -
TABLE 135 Example Example Example Example Example Example Example Example Item Unit 79 80 81 82 83 84 85 86 HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0 R32 Mass % 3.0 3.0 6.0 6.0 6.0 9.0 9.0 9.0 R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0 GWP — 23 23 43 43 43 64 64 63 COP Ratio % (relative 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1 to R410A) Refrigerating % (relative 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5 Capacity Ratio to R410A) -
TABLE 136 Example Example Example Example Example Example Example Example Item Unit 87 88 89 90 91 92 93 94 HFO-1132(E) Mass % 21.0 24.0 27.0 30.0 16.0 19.0 22.0 25.0 R32 Mass % 12.0 12.0 12.0 12.0 15.0 15.0 15.0 15.0 R1234yf Mass % 67.0 64.0 61.0 58.0 69.0 66.0 63.0 60.0 GWP — 84 84 84 84 104 104 104 104 COP Ratio % (relative 101.8 101.5 101.2 101.0 102.1 101.8 101.4 101.2 to R410A) Refrigerating % (relative 70.8 72.6 74.3 76.0 70.4 72.3 74.0 75.8 Capacity Ratio to R410A) -
TABLE 137 Example Example Example Example Example Example Example Example Item Unit 95 96 97 98 99 100 101 102 HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0 R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 18.0 21.0 R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0 GWP — 104 124 124 124 124 124 124 144 COP Ratio % (relative 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7 to R410A) Refrigerating % (relative 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7 Capacity Ratio to R410A) -
TABLE 138 Example Example Example Example Example Example Example Example Item Unit 103 104 105 106 107 108 109 110 HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0 R32 Mass % 24.0 24.0 27.0 27.0 27.0 30.0 30.0 30.0 R1234yf Mass % 55.0 52.0 56.0 53.0 50.0 57.0 54.0 51.0 GWP — 164 164 185 185 184 205 205 205 COP Ratio % (relative 100.9 100.6 101.1 100.8 100.6 101.3 101.0 100.8 to R410A) Refrigerating % (relative 80.8 82.5 80.8 82.5 84.2 80.7 82.5 84.2 Capacity Ratio to R410A) -
TABLE 139 Example Example Example Example Example Example Example Example Item Unit 111 112 113 114 115 116 117 118 HFO-1132(E) Mass % 22.0 9.0 12.0 15.0 18.0 21.0 8.0 12.0 R32 Mass % 30.0 33.0 33.0 33.0 33.0 33.0 36.0 36.0 R1234yf Mass % 48.0 58.0 55.0 52.0 49.0 46.0 56.0 52.0 GWP — 205 225 225 225 225 225 245 245 COP Ratio % (relative 100.5 101.6 101.3 101.0 100.8 100.5 101.6 101.2 to R410A) Refrigerating % (relative 85.9 80.5 82.3 84.1 85.8 87.5 82.0 84.4 Capacity Ratio to R410A) -
TABLE 140 Example Example Example Example Example Example Example Example Item Unit 119 120 121 122 123 124 125 126 HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0 R32 Mass % 36.0 36.0 36.0 25.0 28.0 31.0 31.0 34.0 R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0 GWP — 245 245 245 170 191 211 211 231 COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9 to R410A) Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0 Capacity Ratio to R410A) -
TABLE 141 Example Example Example Example Example Example Example Example Item Unit 127 128 129 130 131 132 133 134 HFO-1132(E) Mass % 33.0 36.0 24.0 27.0 30.0 33.0 23.0 26.0 R32 Mass % 34.0 34.0 37.0 37.0 37.0 37.0 40.0 40.0 R1234yf Mass % 33.0 30.0 39.0 36.0 33.0 30.0 37.0 34.0 GWP — 231 231 252 251 251 251 272 272 COP Ratio % (relative 99.8 99.6 100.3 100.1 99.9 99.8 100.4 100.2 to R410A) Refrigerating % (relative 94.5 96.0 91.9 93.4 95.0 96.5 93.3 94.9 Capacity Ratio to R410A) -
TABLE 142 Example Example Example Example Example Example Example Example Item Unit 135 136 137 138 139 140 141 142 HFO-1132(E) Mass % 29.0 32.0 19.0 22.0 25.0 28.0 31.0 18.0 R32 Mass % 40.0 40.0 43.0 43.0 43.0 43.0 43.0 46.0 R1234yf Mass % 31.0 28.0 38.0 35.0 32.0 29.0 26.0 36.0 GWP — 272 271 292 292 292 292 292 312 COP Ratio % (relative 100.0 99.8 100.6 100.4 100.2 100.1 99.9 100.7 to R410A) Refrigerating % (relative 96.4 97.9 93.1 94.7 96.2 97.8 99.3 94.4 Capacity Ratio to R410A) -
TABLE 143 Example Example Example Example Example Example Example Example Item Unit 143 144 145 146 147 148 149 150 HFO-1132(E) Mass % 21.0 23.0 26.0 29.0 13.0 16.0 19.0 22.0 R32 Mass % 46.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 R1234yf Mass % 33.0 31.0 28.0 25.0 38.0 35.0 32.0 29.0 GWP — 312 312 312 312 332 332 332 332 COP Ratio % (relative 100.5 100.4 100.2 100.0 101.1 100.9 100.7 100.5 to R410A) Refrigerating % (relative 96.0 97.0 98.6 100.1 93.5 95.1 96.7 98.3 Capacity Ratio to R410A) -
TABLE 144 Item Unit Example 151 Example 152 HFO-1132(E) Mass % 25.0 28.0 R32 Mass % 49.0 49.0 R1234yf Mass % 26.0 23.0 GWP — 332 332 COP Ratio % (relative to 100.3 100.1 R410A) Refrigerating Capacity % (relative to 99.8 101.3 Ratio R410A) - The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
- point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI), - the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),
- the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and
- the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
- The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
- point M (52.6, 0.0, 47.4),
point M′ (39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM), - the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),
- the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),
- the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and
- the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
- The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
- point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments, - the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),
- the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and
- the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
- The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
- point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments, - the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),
- the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),
- the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),
- the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and
- the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
- The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
- point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments, - the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),
- the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and
- the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
- The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
- The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
- point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI); - the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
- the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
- point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI); - the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
- point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM); the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), - the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
- the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
- point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM); - the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
- the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),
- the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
- point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments; - the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
- the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
- the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
- point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D); - the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
- the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
- the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′0 that connect the following 5 points:
- point O (100.0, 0.0, 0.0),
point c′ (56.7, 43.3, 0.0),
point d′ (52.2, 38.3, 9.5),
point e′ (41.8, 39.8, 18.4), and
point a′ (81.6, 0.0, 18.4),
or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′); - the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),
- the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and
- the line segments Oc′, e′a′, and a′0 are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′0 that connect the following 5 points:
- point O (100.0, 0.0, 0.0),
point c (77.7, 22.3, 0.0),
point d (76.3, 14.2, 9.5),
point e (72.2, 9.4, 18.4), and
point a′ (81.6, 0.0, 18.4),
or on the line segments cd, de, and ea′ (excluding the points c and a′); - the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
- the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:
- point O (100.0, 0.0, 0.0),
point c′ (56.7, 43.3, 0.0),
point d′ (52.2, 38.3, 9.5), and
point a (90.5, 0.0, 9.5),
or on the line segments c′d′ and d′a (excluding the points c′ and a); - the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and
- the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
- The refrigerant E according to the present disclosure is preferably a refrigerant wherein
- when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:
- point O (100.0, 0.0, 0.0),
point c (77.7, 22.3, 0.0),
point d (76.3, 14.2, 9.5), and
point a (90.5, 0.0, 9.5),
or on the line segments cd and da (excluding the points c and a); - the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
- the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
- The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
- Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
- The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples. Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and
- R32 at mass % based on their sum shown in Tables 145 and 146.
- The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
- For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
- A burning velocity test was performed using the apparatus shown in
FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. - Tables 145 and 146 show the results.
-
TABLE 145 Item Unit I J K L WCF HFO-1132(E) mass % 72.0 57.7 48.4 35.5 HFO-1123 mass % 28.0 32.8 33.2 27.5 R32 mass % 0.0 9.5 18.4 37.0 Burning velocity (WCF) cm/s 10 10 10 10 -
TABLE 146 Item Unit M N T P U Q WCF HFO- mass 47.1 38.5 34.8 31.8 28.7 28.6 1132(E) % HFO- mass 52.9 52.1 51.0 49.8 41.2 34.4 1123 % R32 mass 0.0 9.5 14.2 18.4 30.1 37.0 % Leak condition that Storage, Storage, Storage, Storage, Storage, Storage, results in WCFF Shipping, Shipping, Shipping, Shipping, Shipping, Shipping, −40° C., −40° C., −40° C., −40° C., −40° C., −40° C., 92%, 92%, 92%, 92%, 92%, 92%, release, release, release, release, release, release, on the on the on the on the on the on the liquid liquid liquid liquid liquid liquid phase phase phase phase phase phase side side side side side side WCFF HFO- mass 72.0 58.9 51.5 44.6 31.4 27.1 1132(E) % HFO- mass 28.0 32.4 33.1 32.6 23.2 18.3 1123 % R32 mass 0.0 8.7 15.4 22.8 45.4 54.6 % Burning cm/ s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less velocity (WCF) Burning cm/s 10 10 10 10 10 10 velocity (WCFF) - The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
- point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4), and
point L (35.5, 27.5, 37.0);
the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and
the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),
it can be determined that the refrigerant has WCF lower flammability. - For the points on the line segment 1K, an approximate curve (x=0.025z2-1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).
- Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.
- The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
- point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4), and
point Q (28.6, 34.4, 37.0),
it can be determined that the refrigerant has ASHRAE lower flammability. - In the above, the line segment MP is represented by coordinates (0.0083z2-0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).
- For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
- The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
- The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.
- Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Degree of superheating: 5K
Degree of subcooling: 5K
Compressor efficiency: 70% - Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
-
TABLE 147 Com- Com- Com- Com- Com- Com- Com- parative parative parative parative parative parative parative Example Example Example Example Example Example Example 2 3 4 5 6 7 Item Unit 1 A B A′ B′ A″ B″ HFO-1132(E) mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0 HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0 R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0 GWP — 2088 65 65 125 125 250 250 COP ratio % 100 99.1 92.0 98.7 93.4 98.7 96.1 (relative to R410A) Refrigerating % 100 102.2 111.6 105.3 113.7 110.0 115.4 capacity (relative ratio to R410A) -
TABLE 148 Comparative Comparative Comparative Example Example Comparative Example Example 8 9 Example 1 Example 11 Item Unit O C 10 U 2 D HFO- mass % 100.0 50.0 41.1 28.7 15.2 0.0 1132(E) HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0 R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0 GWP — 1 125 165 204 217 228 COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 96.0 to R410A) Refrig- % (relative 98.3 109.9 111.7 113.5 114.8 115.4 erating to R410A) capacity ratio -
TABLE 149 Com- Com- parative Com- Ex- Ex- parative Example parative ample ample Example 12 Example 3 4 14 Item Unit E 13 T S F HFO-1132(E) mass % 53.4 43.4 34.8 25.4 0.0 HFO-1123 mass % 46.6 47.1 51.0 56.2 74.1 R32 mass % 0.0 9.5 14.2 18.4 25.9 GWP — 1 65 97 125 176 COP ratio % (relative to R410A) 94.5 94.5 94.5 94.5 94.5 Refrigerating % (relative 105.6 109.2 110.8 112.3 114.8 capacity ratio to R410A) -
TABLE 150 Com- Com- parative Ex- parative Example Ex- ample Ex- Example 15 ample 6 ample 16 Item Unit G 5 R 7 H HFO-1132(E) mass % 38.5 31.5 23.1 16.9 0.0 HFO-1123 mass % 61.5 63.5 67.4 71.1 84.2 R32 mass % 0.0 5.0 9.5 12.0 15.8 GWP — 1 35 65 82 107 COP ratio % (relative 93.0 93.0 93.0 93.0 93.0 to R410A) Refrigerating % (relative 107.0 109.1 110.9 111.9 113.2 capacity ratio to R410A) -
TABLE 151 Comparative Example Example Comparative Comparative Example 17 8 9 Example 18 Example 19 Item Unit I J K L HFO-1132(E) mass % 72.0 57.7 48.4 41.1 35.5 HFO-1123 mass % 28.0 32.8 33.2 31.2 27.5 R32 mass % 0.0 9.5 18.4 27.7 37.0 GWP — 1 65 125 188 250 COP ratio % (relative to 96.6 95.8 95.9 96.4 97.1 R410A) Refrigerating % (relative to 103.1 107.4 110.1 112.1 113.2 capacity ratio R410A) -
TABLE 152 Comparative Example 20 Example 10 Example 11 Example 12 Item Unit M N P Q HFO-1132(E) mass % 47.1 38.5 31.8 28.6 HFO-1123 mass % 52.9 52.1 49.8 34.4 R32 mass % 0.0 9.5 18.4 37.0 GWP — 1 65 125 250 COP ratio % (relative to 93.9 94.1 94.7 96.9 R410A) Refrigerating capacity % (relative to 106.2 109.7 112.0 114.1 ratio R410A) -
TABLE 153 Comparative Comparative Comparative Example Example Example Comparative Comparative Item Unit Example 22 Example 23 Example 24 14 15 16 Example 25 Example 26 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0 R32 mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 GWP — 35 35 35 35 35 35 35 35 COP ratio % (relative to 91.7 92.2 92.9 93.7 94.6 95.6 96.7 97.7 R410A) Refrigerating % (relative to 110.1 109.8 109.2 108.4 107.4 106.1 104.7 103.1 capacity ratio R410A) -
TABLE 154 Comparative Comparative Comparative Example Example Example Comparative Comparative Item Unit Example 27 Example 28 Example 29 17 18 19 Example 30 Example 31 HFO-1132(E) mass % 90.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 5.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 R32 mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 GWP — 35 68 68 68 68 68 68 68 COP ratio % (relative to 98.8 92.4 92.9 93.5 94.3 95.1 96.1 97.0 R410A) Refrigerating % (relative to 101.4 111.7 111.3 110.6 109.6 108.5 107.2 105.7 capacity ratio R410A) -
TABLE 155 Comparative Example Example Example Example Example Comparative Comparative Item Unit Example 32 20 21 22 23 24 Example 33 Example 34 HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 10.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0 R32 mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 GWP — 68 102 102 102 102 102 102 102 COP ratio % (relative to 98.0 93.1 93.6 94.2 94.9 95.6 96.5 97.4 R410A) Refrigerating % (relative to 104.1 112.9 112.4 111.6 110.6 109.4 108.1 106.6 capacity ratio R410A) -
TABLE 156 Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative Item Unit Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42 HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 5.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R32 mass % 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 GWP — 102 136 136 136 136 136 136 136 COP ratio % (relative to 98.3 93.9 94.3 94.8 95.4 96.2 97.0 97.8 R410A) Refrigerating % (relative to 105.0 113.8 113.2 112.4 111.4 110.2 108.8 107.3 capacity ratio R410A) -
TABLE 157 Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative Item Unit Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0 HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0 60.0 R32 mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0 GWP — 170 170 170 170 170 170 170 203 COP ratio % (relative to 94.6 94.9 95.4 96.0 96.7 97.4 98.2 95.3 R410A) Refrigerating % (relative to 114.4 113.8 113.0 111.9 110.7 109.4 107.9 114.8 capacity ratio R410A) -
TABLE 158 Comparative Comparative Comparative Comparative Comparative Example Example Comparative Item Unit Example 51 Example 52 Example 53 Example 54 Example 55 25 26 Example 56 HFO-1132(E) mass % 20.0 30.0 40.0 50.0 60.0 10.0 20.0 30.0 HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0 55.0 45.0 35.0 R32 mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0 GWP — 203 203 203 203 203 237 237 237 COP ratio % (relative to 95.6 96.0 96.6 97.2 97.9 96.0 96.3 96.6 R410A) Refrigerating % (relative to 114.2 113.4 112.4 111.2 109.8 115.1 114.5 113.6 capacity ratio R410A) -
TABLE 159 Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative Item Unit Example 57 Example 58 Example 59 Example 60 Example 61 Example 62 Example 63 Example 64 HFO-1132(E) mass % 40.0 50.0 60.0 10.0 20.0 30.0 40.0 50.0 HFO-1123 mass % 25.0 15.0 5.0 50.0 40.0 30.0 20.0 10.0 R32 mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0 GWP — 237 237 237 271 271 271 271 271 COP ratio % (relative to 97.1 97.7 98.3 96.6 96.9 97.2 97.7 98.2 R410A) Refrigerating % (relative to 112.6 111.5 110.2 115.1 114.6 113.8 112.8 111.7 capacity ratio R410A) -
TABLE 160 Example Example Example Example Example Example Example Example Item Unit 27 28 29 30 31 32 33 34 HFO-1132(E) mass % 38.0 40.0 42.0 44.0 35.0 37.0 39.0 41.0 HFO-1123 mass % 60.0 58.0 56.0 54.0 61.0 59.0 57.0 55.0 R32 mass % 2.0 2.0 2.0 2.0 4.0 4.0 4.0 4.0 GWP — 14 14 14 14 28 28 28 28 COP ratio % (relative to 93.2 93.4 93.6 93.7 93.2 93.3 93.5 93.7 R410A) Refrigerating % (relative to 107.7 107.5 107.3 107.2 108.6 108.4 108.2 108.0 capacity ratio R410A) -
TABLE 161 Example Example Example Example Example Example Example Example Item Unit 35 36 37 38 39 40 41 42 HFO-1132(E) mass % 43.0 31.0 33.0 35.0 37.0 39.0 41.0 27.0 HFO-1123 mass % 53.0 63.0 61.0 59.0 57.0 55.0 53.0 65.0 R32 mass % 4.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 GWP — 28 41 41 41 41 41 41 55 COP ratio % (relative to 93.9 93.1 93.2 93.4 93.6 93.7 93.9 93.0 R410A) Refrigerating % (relative to 107.8 109.5 109.3 109.1 109.0 108.8 108.6 110.3 capacity ratio R410A) -
TABLE 162 Example Example Example Example Example Example Example Example Item Unit 43 44 45 46 47 48 49 50 HFO-1132(E) mass % 29.0 31.0 33.0 35.0 37.0 39.0 32.0 32.0 HFO-1123 mass % 63.0 61.0 59.0 57.0 55.0 53.0 51.0 50.0 R32 mass % 8.0 8.0 8.0 8.0 8.0 8.0 17.0 18.0 GWP — 55 55 55 55 55 55 116 122 COP ratio % (relative to 93.2 93.3 93.5 93.6 93.8 94.0 94.5 94.7 R410A) Refrigerating % (relative to 110.1 110.0 109.8 109.6 109.5 109.3 111.8 111.9 capacity ratio R410A) -
TABLE 163 Example Example Example Example Example Example Example Example Item Unit 51 52 53 54 55 56 57 58 HFO-1132(E) mass % 30.0 27.0 21.0 23.0 25.0 27.0 11.0 13.0 HFO-1123 mass % 52.0 42.0 46.0 44.0 42.0 40.0 54.0 52.0 R32 mass % 18.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0 GWP — 122 210 223 223 223 223 237 237 COP ratio % (relative to 94.5 96.0 96.0 96.1 96.2 96.3 96.0 96.0 R410A) Refrigerating % (relative to 112.1 113.7 114.3 114.2 114.0 113.8 115.0 114.9 capacity ratio R410A) -
TABLE 164 Example Example Example Example Example Example Example Example Item Unit 59 60 61 62 63 64 65 66 HFO-1132(E) mass % 15.0 17.0 19.0 21.0 23.0 25.0 27.0 11.0 HFO-1123 mass % 50.0 48.0 46.0 44.0 42.0 40.0 38.0 52.0 R32 mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 37.0 GWP — 237 237 237 237 237 237 237 250 COP ratio % (relative to 96.1 96.2 96.2 96.3 96.4 96.4 96.5 96.2 R410A) Refrigerating % (relative to 114.8 114.7 114.5 114.4 114.2 114.1 113.9 115.1 capacity ratio R410A) -
TABLE 165 Example Example Example Example Example Example Example Example Item Unit 67 68 69 70 71 72 73 74 HFO-1132(E) mass % 13.0 15.0 17.0 15.0 17.0 19.0 21.0 23.0 HFO-1123 mass % 50.0 48.0 46.0 50.0 48.0 46.0 44.0 42.0 R32 mass % 37.0 37.0 37.0 0.0 0.0 0.0 0.0 0.0 GWP — 250 250 250 237 237 237 237 237 COP ratio % (relative to 96.3 96.4 96.4 96.1 96.2 96.2 96.3 96.4 R410A) Refrigerating % (relative to 115.0 114.9 114.7 114.8 114.7 114.5 114.4 114.2 capacity ratio R410A) -
TABLE 166 Example Example Example Example Example Example Example Example Item Unit 75 76 77 78 79 80 81 82 HFO-1132(E) mass % 25.0 27.0 11.0 19.0 21.0 23.0 25.0 27.0 HFO-1123 mass % 40.0 38.0 52.0 44.0 42.0 40.0 38.0 36.0 R32 mass % 0.0 0.0 0.0 37.0 37.0 37.0 37.0 37.0 GWP — 237 237 250 250 250 250 250 250 COP ratio % (relative to 96.4 96.5 96.2 96.5 96.5 96.6 96.7 96.8 R410A) Refrigerating % (relative to 114.1 113.9 115.1 114.6 114.5 114.3 114.1 114.0 capacity ratio R410A) - The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:
- point O (100.0, 0.0, 0.0),
point A″ (63.0, 0.0, 37.0),
point B″ (0.0, 63.0, 37.0), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 250 or less. - The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
- point O (100.0, 0.0, 0.0),
point A′ (81.6, 0.0, 18.4),
point B′ (0.0, 81.6, 18.4), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 125 or less. - The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
- point O (100.0, 0.0, 0.0),
point A (90.5, 0.0, 9.5),
point B (0.0, 90.5, 9.5), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 65 or less. - The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
- point C (50.0, 31.6, 18.4),
point U (28.7, 41.2, 30.1), and
point D (52.2, 38.3, 9.5),
or on these line segments,
the refrigerant has a COP ratio of 96% or more relative to that of R410A. - In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).
- The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
- The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
- The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
- point E (55.2, 44.8, 0.0),
point T (34.8, 51.0, 14.2), and
point F (0.0, 76.7, 23.3),
or on these line segments,
the refrigerant has a COP ratio of 94.5% or more relative to that of R410A. - In the above, the line segment ET is represented by coordinates (−0.0547z2-0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).
- The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
- The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
- The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
- point G (0.0, 76.7, 23.3),
point R (21.0, 69.5, 9.5), and
point H (0.0, 85.9, 14.1),
or on these line segments,
the refrigerant has a COP ratio of 93% or more relative to that of R410A. - In the above, the line segment GR is represented by coordinates (−0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).
- The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
- The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.
- In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.
- An
air conditioning apparatus 1 serving as a refrigeration cycle apparatus according to a first embodiment, is described with reference toFIG. 16 , which is a schematic structural view of a refrigerant circuit, andFIG. 17 , which is a schematic control block structural view. - The
air conditioning apparatus 1 is a apparatus that air-conditions a target space by performing a vapor compression refrigeration cycle. - The
air conditioning apparatus 1 primarily includes anoutdoor unit 20, a firstindoor unit 30, a secondindoor unit 35, a liquid-siderefrigerant connection pipe 6 and a gas-siderefrigerant connection pipe 5 that connect the firstindoor unit 30 and the secondindoor unit 35 in parallel with respect to theoutdoor unit 20, a remote controller (not shown) that serves as an input device and an output device, and acontroller 7 that controls the operation of theair conditioning apparatus 1. - The
air conditioning apparatus 1 performs a refrigeration cycle in which the refrigerant sealed in arefrigerant circuit 10 is compressed, cooled or condensed, decompressed, and heated or evaporated, and is then compressed again. In the present embodiment, therefrigerant circuit 10 is filled with a refrigerant for performing the vapor compression refrigeration cycle. The refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any one of the refrigerants A to E above may be used. Therefrigerant circuit 10 is filled with refrigerating-machine oil along with the mixed refrigerant. - The
outdoor unit 20 is connected to theindoor unit 30 via the liquid-siderefrigerant connection pipe 6 and the gas-siderefrigerant connection pipe 5, and constitutes a part of therefrigerant circuit 10. Theoutdoor unit 20 primarily includes acompressor 21, a four-way switching valve 22, anoutdoor heat exchanger 23, asubcooling heat exchanger 47, asuction injection pipe 40, asubcooling expansion valve 48, anoutdoor expansion valve 24, anoutdoor fan 25, a low-pressure receiver 41, a liquid-side shutoff valve 29, and a gas-side shutoff valve 28. - The
compressor 21 is equipment that compresses a low-pressure refrigerant in the refrigeration cycle into a high-pressure refrigerant. Here, as thecompressor 21, a compressor having a hermetic structure in which a displacement compression element (not shown) of, for example, a rotary type or scroll type is rotationally driven by a compressor motor is used. The compressor motor is a motor for changing capacity, and an operation frequency can be controlled by an inverter. An attachment accumulator (not shown) is provided on a suction side of the compressor 21 (the internal volume of the attachment accumulator is less than, and is desirably less than or equal to half of, the internal volume of refrigerant containers, such as low-pressure receivers, intermediate-pressure receivers, and high-pressure receivers). - The four-
way switching valve 22 can be switched between a cooling operation connection state and a heating operation connection state by switching a connection state, the cooling operation connection state being a state in which the four-way switching valve 22 connects the suction side of thecompressor 21 and the gas-side shutoff valve 28 to each other while connecting a discharge side of thecompressor 21 and theoutdoor heat exchanger 23, the heating operation connection state being a state in which the four-way switching valve 22 connects the suction side of thecompressor 21 and theoutdoor heat exchanger 23 to each other while connecting the discharge side of thecompressor 21 and the gas-side shutoff valve 28. - The
outdoor heat exchanger 23 is a heat exchanger that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the cooling operation and that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the heating operation. - The
outdoor expansion valve 24 is provided between a liquid-side outlet of theoutdoor heat exchanger 23 and the liquid-side shutoff valve 29 in therefrigerant circuit 10. Theoutdoor expansion valve 24 is an electric expansion valve whose valve opening degree is adjustable. - The
suction injection pipe 40 branches off from a branching portion between theoutdoor expansion valve 24 and the liquid-side shutoff valve 29 in a main circuit of therefrigerant circuit 10, and is provided so as to merge at a merging portion between the low-pressure receiver 41 and one connection port of the four-way switching valve 22. Thesubcooling expansion valve 48 is provided at thesuction injection pipe 40. Thesubcooling expansion valve 48 is an electric expansion valve whose valve opening degree is adjustable. - The
subcooling heat exchanger 47 is a heat exchanger that causes heat to be exchanged between a refrigerant that flows along a portion of therefrigerant circuit 10 between theoutdoor expansion valve 24 and the liquid-side shutoff valve 29 and a refrigerant that flows on a side of the merging portion of thesubcooling expansion valve 48 in thesuction injection pipe 40. In the present embodiment, thesubcooling heat exchanger 47 is a portion between theoutdoor expansion valve 24 and the liquid-side shutoff valve 29, and is provided closer than the branching portion of thesuction injection pipe 40 to the liquid-side shutoff valve 29. Theoutdoor fan 25 sucks outdoor air into theoutdoor unit 20 and causes heat to be exchanged with a refrigerant in theoutdoor heat exchanger 23, and then causes an air flow for discharge to the outside to be generated. Theoutdoor fan 25 is rotationally driven by an outdoor fan motor. - The low-
pressure receiver 41 is provided between the suction side of thecompressor 21 and the one connection port of the four-way switching valve 22, and is a refrigerant container that is capable of storing an excess refrigerant as a liquid refrigerant in therefrigerant circuit 10. Thecompressor 21 is provided with the attachment accumulator (not shown), and the low-pressure receiver 41 is connected on a downstream side of the attachment accumulator. - The liquid-
side shutoff valve 29 is a manual valve disposed at a portion of theoutdoor unit 20 that is connected to the liquid-siderefrigerant connection pipe 6. - The gas-
side shutoff valve 28 is a manual valve disposed at a portion of theoutdoor unit 20 that is connected to the gas-siderefrigerant connection pipe 5. - The
outdoor unit 20 includes an outdoorunit control unit 27 that controls the operation of each portion that constitutes theoutdoor unit 20. The outdoorunit control unit 27 includes a microcomputer including, for example, a CPU and a memory. The outdoorunit control unit 27 is connected to an indoorunit control units indoor unit - The
outdoor unit 20 is provided with, for example, adischarge pressure sensor 61, adischarge temperature sensor 62, asuction pressure sensor 63, asuction temperature sensor 64, an outdoor heat-exchange temperature sensor 65, an outsideair temperature sensor 66, and asubcooling temperature sensor 67. Each of these sensors is electrically connected to the outdoorunit control unit 27 and sends a detection signal to the outdoorunit control unit 27. - The
discharge pressure sensor 61 detects the pressure of a refrigerant that flows through a discharge tube that connects the discharge side of thecompressor 21 and one connection port of the four-way switching valve 22. Thedischarge temperature sensor 62 detects the temperature of the refrigerant that flows through the discharge tube. Thesuction pressure sensor 63 detects the pressure of a refrigerant that flows through a suction tube that connects the suction side of thecompressor 21 and the low-pressure receiver 41. Thesuction temperature sensor 64 detects the temperature of the refrigerant that flows through the suction tube. The outdoor heat-exchange temperature sensor 65 detects the temperature of a refrigerant that flows through the liquid-side outlet of theoutdoor heat exchanger 23 on a side opposite to a side where the four-way switching valve 22 is connected. The outsideair temperature sensor 66 detects the temperature of outdoor air that is air before passing through theoutdoor heat exchanger 23. Thesubcooling temperature sensor 67 detects the temperature of a refrigerant that flows between thesubcooling heat exchanger 47 and a secondoutdoor expansion valve 24 in the main circuit of therefrigerant circuit 10. - The first
indoor unit 30 and the secondindoor unit 35 are installed on, for example, a ceiling or wall surfaces in a room corresponding to the same target space or different target spaces. The firstindoor unit 30 and the secondindoor unit 35 are connected to theoutdoor unit 20 via the liquid-siderefrigerant connection pipe 6 and the gas-siderefrigerant connection pipe 5, and constitute a part of therefrigerant circuit 10. - The first
indoor unit 30 includes a firstindoor heat exchanger 31, a firstindoor expansion valve 33, and a firstindoor fan 32. - A liquid side of the first
indoor heat exchanger 31 is connected to the liquid-siderefrigerant connection pipe 6, and a gas side end of the firstindoor heat exchanger 31 is connected to the gas-siderefrigerant connection pipe 5. The firstindoor heat exchanger 31 is a heat exchanger that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the cooling operation, and that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the heating operation. - The first
indoor expansion valve 33 is an electric expansion valve that is provided at a refrigerant pipe on a liquid refrigerant side of the firstindoor heat exchanger 31 and whose valve opening degree is adjustable. - The first
indoor fan 32 sucks indoor air into the firstindoor unit 30 and causes heat to be exchanged with a refrigerant in the firstindoor heat exchanger 31, and then causes an air flow for discharge to the outside to be generated. The firstindoor fan 32 is rotationally driven by an indoor fan motor. - The first
indoor unit 30 includes the first indoorunit control unit 34 that controls the operation of each portion that constitutes the firstindoor unit 30. The first indoorunit control unit 34 includes a microcomputer including, for example, a CPU and a memory. The first indoorunit control unit 34 is connected to a second indoorunit control unit 39 and the outdoorunit control unit 27 via the communication line, and sends and receives, for example, control signals. - The first
indoor unit 30 is provided with, for example, a first indoor liquid-side heat-exchange sensor 71, a first indoorair temperature sensor 72, and a first indoor gas-side heat-exchange temperature sensor 73. Each of these sensors is electrically connected to the first indoorunit control unit 34 and sends a detection signal to the indoorunit control unit 34. The first indoor liquid-side heat-exchange sensor 71 detects the temperature of a refrigerant that flows through a liquid-refrigerant-side outlet of the firstindoor heat exchanger 31. The first indoorair temperature sensor 72 detects the temperature of indoor air that is air before passing through the firstindoor heat exchanger 31. The first indoor gas-side heat-exchange temperature sensor 73 detects the temperature of a refrigerant that flows through a gas-refrigerant-side outlet of the firstindoor heat exchanger 31. - The second
indoor unit 35 is provided with a secondindoor heat exchanger 36, a secondindoor expansion valve 38, and a secondindoor fan 37. - A liquid side of the second
indoor heat exchanger 36 is connected to the liquid-siderefrigerant connection pipe 6, and a gas side end of the secondindoor heat exchanger 36 is connected to the gas-siderefrigerant connection pipe 5. The secondindoor heat exchanger 36 is a heat exchanger that functions as an evaporator for a low-pressure refrigerant in the refrigeration cycle during the cooling operation, and that functions as a condenser for a high-pressure refrigerant in the refrigeration cycle during the heating operation. - The second
indoor expansion valve 38 is an electric expansion valve that is provided at a refrigerant pipe on a liquid refrigerant side of the secondindoor heat exchanger 36 and whose valve opening degree is adjustable. - The second
indoor fan 37 sucks indoor air into the secondindoor unit 35 and causes heat to be exchanged with a refrigerant in the secondindoor heat exchanger 36, and then causes an air flow for discharge to the outside to be generated. The secondindoor fan 37 is rotationally driven by an indoor fan motor. - The second
indoor unit 35 includes the second indoorunit control unit 39 that controls the operation of each portion that constitutes the secondindoor unit 35. The second indoorunit control unit 39 includes a microcomputer including, for example, a CPU and a memory. The second indoorunit control unit 39 is connected to the first indoorunit control unit 34 and the outdoorunit control unit 27 via a communication line, and sends and receives, for example, control signals. - The second
indoor unit 35 is provided with, for example, a second indoor liquid-side heat-exchange sensor 75, a second indoorair temperature sensor 76, and a second indoor gas-side heat-exchange temperature sensor 77. Each of these sensors is electrically connected to the second indoorunit control unit 39 and sends a detection signal to the second indoorunit control unit 39. The second indoor liquid-side heat-exchange sensor 75 detects the temperature of a refrigerant that flows through a liquid-refrigerant-side outlet of the secondindoor heat exchanger 36. The second indoorair temperature sensor 76 detects the temperature of indoor air that is air before passing through the secondindoor heat exchanger 36. The second indoor gas-side heat-exchange temperature sensor 77 detects the temperature of a refrigerant that flows through a gas-refrigerant-side outlet of the secondindoor heat exchanger 36. - In the
air conditioning apparatus 1, by connecting the outdoorunit control unit 27, the first indoorunit control unit 34, and the second indoorunit control unit 39 to each other via the communication lines, thecontroller 7 that controls the operation of theair conditioning apparatus 1 is formed. - The
controller 7 primarily includes a CPU (central processing unit) and a memory, such as ROM or RAM. Various processing operations and control that are performed by thecontroller 7 are realized as a result of each portion included in the outdoorunit control unit 27 and/or the first indoorunit control unit 34 and/or the second indoorunit control unit 39 functioning together. - (6-4) Operation Modes Operation modes are described below.
- As the operation modes, a cooling operation mode and a heating operation mode are provided.
- On the basis of an instruction received from, for example, a remote controller, the
controller 7 determines whether or not a mode is the cooling operation mode or the heating operation mode, and executes the mode. - In the
air conditioning apparatus 1, in the cooling operation mode, thecompressor 21 is such that an operation frequency is capacity-controlled to cause the evaporation temperature of a refrigerant in therefrigerant circuit 10 to become a target evaporation temperature. Here, it is desirable that the target evaporation temperature be determined in accordance with theindoor unit - A gas refrigerant discharged from the
compressor 21 is condensed at theoutdoor heat exchanger 23 via the four-way switching valve 22. The refrigerant that has flowed through theoutdoor heat exchanger 23 passes through theoutdoor expansion valve 24. In this case, theoutdoor expansion valve 24 is controlled so as to be in a fully open state. - A portion of the refrigerant that has passed through the
outdoor expansion valve 24 flows toward the liquid-side shutoff valve 29 and the other portion thereof flows into the branching portion of thesuction injection pipe 40. The refrigerant that has flowed through the branching portion of thesuction injection pipe 40 is decompressed at thesubcooling expansion valve 48. At thesubcooling heat exchanger 47, the refrigerant that flows toward the liquid-side shutoff valve 29 from theoutdoor expansion valve 24 and the refrigerant that is decompressed at thesubcooling expansion valve 48 and that flows in thesuction injection pipe 40 exchange heat. After the refrigerant that flows in thesuction injection pipe 40 has finished exchanging heat at thesubcooling heat exchanger 47, the refrigerant flows so as to merge at the merging portion between the low-pressure receiver 41 and the one connection port of the four-way switching valve 22. The valve opening degree of thesubcooling expansion valve 48 is controlled so as to satisfy predetermined conditions such as the subcooling degree of the refrigerant that has passed though thesubcooling heat exchanger 47 in therefrigerant circuit 10 becoming a predetermined target value. - After the refrigerant that flows toward the liquid-
side shutoff valve 29 from theoutdoor expansion valve 24 has finished exchanging heat at thesubcooling heat exchanger 47, the refrigerant flows through the liquid-siderefrigerant connection pipe 6 via the liquid-side shutoff valve 29, and is sent to the firstindoor unit 30 and the secondindoor unit 35. - Here, in the first
indoor unit 30, the valve opening degree of the firstindoor expansion valve 33 is controlled so as to satisfy predetermined conditions such as the superheating degree of a refrigerant that flows through a gas-side outlet of the firstindoor heat exchanger 31 becoming a predetermined target value. Similarly to the firstindoor expansion valve 33, the valve opening degree of the secondindoor expansion valve 38 of the secondindoor unit 35 is controlled so as to satisfy predetermined conditions such as the superheating degree of a refrigerant that flows through a gas-side outlet of the secondindoor heat exchanger 36 becoming a predetermined target value. The valve opening degree of the firstindoor expansion valve 33 and the valve opening degree of the secondindoor expansion valve 38 may be controlled so as to satisfy predetermined conditions such as the superheating degree of the refrigerant that is obtained by subtracting the saturation temperature of the refrigerant that is equivalent to a detected pressure of thesuction pressure sensor 63 from a detected temperature of thesuction temperature sensor 64 becoming a target value. Further, the method of controlling the valve opening degree of the firstindoor expansion valve 33 and the valve opening degree of the secondindoor expansion valve 38 are not limited, so that, for example, the valve opening degrees may be controlled to cause the discharge temperature of the refrigerant that is discharged from thecompressor 21 to become a predetermined temperature, or the superheating degree of the refrigerant that is discharged from thecompressor 21 to satisfy a predetermined condition. The refrigerant decompressed at the firstindoor expansion valve 33 evaporates at the firstindoor heat exchanger 31, the refrigerant decompressed at the secondindoor expansion valve 38 evaporates at the secondindoor heat exchanger 36, and the refrigerants merge, after which the refrigerant flows to the gas-siderefrigerant connection pipe 5. The refrigerant that has flowed through the gas-siderefrigerant connection pipe 5 merges with the refrigerant that has flowed through thesuction injection pipe 40 via the gas-side shutoff valve 28 and the four-way switching valve 22. The merged refrigerant is sucked into thecompressor 21 again via the low-pressure receiver 41. Liquid refrigerants that could not be evaporated at the firstindoor heat exchanger 31, the secondindoor heat exchanger 36, and thesubcooling heat exchanger 47 are stored as excess refrigerants in the low-pressure receiver 41. - In the
air conditioning apparatus 1, in the heating operation mode, thecompressor 21 is such that an operation frequency is subjected to capacity control to cause the condensation temperature of a refrigerant in therefrigerant circuit 10 to become a target condensation temperature. Here, it is desirable that the target condensation temperature be determined in accordance with theindoor unit - After a gas refrigerant discharged from the
compressor 21 has flowed through the four-way switching valve 22 and the gas-siderefrigerant connection pipe 5, a portion of the refrigerant flows into a gas-side end of the firstindoor heat exchanger 31 of the firstindoor unit 30 and is condensed at the firstindoor heat exchanger 31, and the other portion of the refrigerant flows into a gas-side end of the secondindoor heat exchanger 36 of the secondindoor unit 35 and is condensed at the secondindoor heat exchanger 36. - The valve opening degree of the first
indoor expansion valve 33 of the firstindoor unit 30 is controlled so as to satisfy predetermined conditions, such as the subcooling degree of a refrigerant that flows along the liquid side of the firstindoor heat exchanger 31 becoming a predetermined target value. Similarly, the valve opening degree of the secondindoor expansion valve 38 of the secondindoor unit 35 is controlled so as to satisfy predetermined conditions, such as the subcooling degree of a refrigerant that flows along the liquid side of the secondindoor heat exchanger 36 becoming a predetermined target value. - After the refrigerant decompressed at the first
indoor expansion valve 33 and the refrigerant decompressed at the secondindoor expansion valve 38 have merged, the refrigerant flows through the liquid-siderefrigerant connection pipe 6 and flows into theoutdoor unit 20. - After the refrigerant that has passed through the liquid-
side shutoff valve 29 of theoutdoor unit 20 has flowed through thesubcooling heat exchanger 47, the refrigerant is decompressed at theoutdoor expansion valve 24. Here, the valve opening degree of theoutdoor expansion valve 24 is controlled so as to satisfy predetermined conditions, such as the superheating degree of a refrigerant that flows along the suction side of thecompressor 21 becoming a target value. The method of controlling the valve opening degree of theoutdoor expansion valve 24 is not limited, so that, for example, the valve opening degrees may be controlled to cause the discharge temperature of the refrigerant that is discharged from thecompressor 21 to become a predetermined temperature, or the superheating degree of the refrigerant that is discharged from thecompressor 21 to satisfy a predetermined condition. - In the heating operation mode, since the
subcooling expansion valve 48 that is provided at thesuction injection pipe 40 is controlled so as to be in a fully closed state, the refrigerant does not flow through thesuction injection pipe 40 and heat is also not exchanged at thesubcooling heat exchanger 47. - The refrigerant decompressed at the
outdoor expansion valve 24 is evaporated at theoutdoor heat exchanger 23, flows through the four-way switching valve 22 and the low-pressure receiver 41, and is sucked into thecompressor 21 again. A liquid refrigerant that could not be evaporated at theoutdoor heat exchanger 23 is stored as an excess refrigerant in the low-pressure receiver 41. - Since the
air conditioning apparatus 1 above uses a refrigerant containing 1,2-difluoroethylene, theair conditioning apparatus 1 can sufficiently reduce GWP. - Since the temperature of the refrigerant that is sucked into the
compressor 21 can be reduced by thesuction injection pipe 40, theair conditioning apparatus 1 can improve the operation efficiency in the refrigeration cycle. - Although, in the first embodiment, the
air conditioning apparatus 1 is described by using as an example an air conditioning apparatus including a plurality of indoor units that are connected in parallel, an air conditioning apparatus including one indoor unit that is connected in series may be used as the air conditioning apparatus. - In the first embodiment, the
air conditioning apparatus 1 including thesuction injection pipe 40 that allows a refrigerant to be sent to the suction side of thecompressor 21 after the refrigerant has flowed through thesubcooling heat exchanger 47 is described as an example. - In contrast, as an air conditioning apparatus, for example, as shown in
FIG. 18 , anair conditioning apparatus 1 a including aneconomizer injection pipe 40 a that sends a refrigerant to a region of intermediate pressure of acompressor 21 a after the refrigerant has flowed through aneconomizer heat exchanger 47 a may be used. - The
economizer injection pipe 40 a is a pipe that branches off from a portion of a main circuit of arefrigerant circuit 10 between theoutdoor expansion valve 24 and the liquid-side shutoff valve 29 and extends up to the region of intermediate pressure of thecompressor 21 a. Aneconomizer expansion valve 48 a whose valve opening degree can be controlled is provided at theeconomizer injection pipe 40 a. - The
economizer heat exchanger 47 a is a heat exchanger that causes heat to be exchanged between a refrigerant that flows into a portion branching off from the main circuit of therefrigerant circuit 10, that flows in theeconomizer injection pipe 40 a, and that has been decompressed at theeconomizer expansion valve 48 a and a refrigerant that flows between theoutdoor expansion valve 24 and the liquid-side shutoff valve 29 in the main circuit of therefrigerant circuit 10. - The
compressor 21 a is not limited, and, for example, a scroll compressor as that shown inFIG. 19 can be used. - The
compressor 21 a includes acasing 80, ascroll compression mechanism 81 including a fixedscroll 82, a drivingmotor 91, acrank shaft 94, and alower bearing 98. - The
casing 80 includes a circularcylindrical member 80 a that is substantially circularly cylindrical and that has an open top and an open bottom, and anupper cover 80 b and alower cover 80 c that are provided on an upper end and a lower end, respectively, of the circularcylindrical member 80 a. The circularcylindrical member 80 a and theupper cover 80 b and thelower cover 80 c are fixed to each other by welding so as to be kept air-tight. Pieces of structural equipment of thecompressor 21 a including thescroll compression mechanism 81, the drivingmotor 91, thecrank shaft 94, and thelower bearing 98 are accommodated in thecasing 80. An oil-storage space So is formed in a lower portion of thecasing 80. A refrigerating-machine oil 0 for lubricating, for example, thescroll compression mechanism 81 can be stored in the oil-storage space So. Asuction tube 19 that allows a low-pressure gas refrigerant in a refrigeration cycle of therefrigerant circuit 10 to be sucked and that allows a gas refrigerant to be supplied to thescroll compression mechanism 81 is provided at an upper portion of thecasing 80 so as to extend through theupper cover 80 b. A lower end of thesuction tube 19 is connected to the fixedscroll 82 of thescroll compression mechanism 81. Thesuction tube 19 communicates with a compression chamber Sc of thescroll compression mechanism 81 described below. An intermediate portion of the circularcylindrical member 80 a of thecasing 80 is provided with adischarge tube 18 through which a refrigerant that is discharged to the outside of thecasing 80 passes. Thedischarge tube 18 is disposed so that an end portion of thedischarge tube 18 inside thecasing 80 protrudes into a high-pressure space Sh formed below ahousing 88 of thescroll compression mechanism 81. A high-pressure refrigerant in the refrigeration cycle that has been compressed by thescroll compression mechanism 81 flows through thedischarge tube 18. A side surface of theupper cover 80 b of thecasing 80 has an injection connection port, and theeconomizer injection pipe 40 a is connected in the injection connection port. - The
scroll compression mechanism 81 primarily includes thehousing 88, the fixedscroll 82 that is disposed above thehousing 88, and amovable scroll 84 that forms the compression chamber Sc by being assembled to the fixedscroll 82. - The fixed
scroll 82 includes a plate-shaped fixed-side end plate 82 a, a spiral fixed-side lap 82 b that protrudes from a front surface of the fixed-side end plate 82 a, and anouter edge portion 82 c that surrounds the fixed-side lap 82 b. Anon-circular discharge port 82 d that communicates with the compression chamber Sc of thescroll compression mechanism 81 is formed in a central portion of the fixed-side end plate 82 a so as to extend through the fixed-side end plate 82 a in a thickness direction thereof. A refrigerant compressed in the compression chamber Sc is discharged from thedischarge port 82 d, passes through a refrigerant passage (not shown) formed in the fixedscroll 82 and thehousing 88, and flows into the high-pressure space Sh. The fixed-side end plate 82 a has asupply passage 82 e that opens in a side of the fixed-side end plate 82 a and that communicates with the compression chamber Sc. Thesupply passage 82 e allows an intermediate-pressure refrigerant that has flowed through theeconomizer injection pipe 40 a to be supplied to the compression chamber Sc. Thesupply passage 82 e has ahorizontal passage portion 82 f that extends in a horizontal direction from the opening in the side of the fixed-side end plate 82 a toward the center of the fixed-side end plate 82 a. Thesupply passage 82 e has aninjection port 82 g that extends toward the compression chamber Sc from a portion of thehorizontal passage portion 82 f on a center side of the fixed-side end plate 82 a (near an end portion of thehorizontal passage portion 82 f on the center side of the fixed-side end plate 82 a) and that directly communicates with the compression chamber Sc. Theinjection port 82 g is a circular hole. - The
movable scroll 84 includes a plate-shaped movable-side end plate 84 a, a spiral movable-side lap 84 b that protrudes from a front surface of the movable-side end plate 84 a, and a circularcylindrical boss portion 84 c that protrudes from a rear surface of the movable-side end plate 84 a. The fixed-side lap 82 b of the fixedscroll 82 and the movable-side lap 84 b of themovable scroll 84 are assembled to each other in a state in which a lower surface of the fixed-side end plate 82 a and an upper surface of the movable-side end plate 84 a face each other. The compression chamber Sc is formed between the fixed-side lap 82 b and the movable-side lap 84 b that are adjacent to each other. Due to themovable scroll 84 revolving with respect to the fixedscroll 82 as described below, the volume of the compression chamber Sc changes periodically, and a refrigerant is sucked, compressed, and discharged in thescroll compression mechanism 81. Theboss portion 84 c is a circular cylindrical portion whose upper end is closed. Due to a decenteredportion 95 of the crank shaft 94 (described below) being inserted into a hollow portion of theboss portion 84 c, themovable scroll 84 and thecrank shaft 94 are coupled to each other. Theboss portion 84 c is disposed in a decentered-portion space 89 that is formed between themovable scroll 84 and thehousing 88. The decentered-portion space 89 communicates with the high-pressure space Sh via, for example, an oil-supply path 97 of the crank shaft 94 (described below), and a high pressure acts in the decentered-portion space 89. This pressure causes a lower surface of the movable-side end plate 84 a in the decentered-portion space 89 to be pushed upward toward the fixedscroll 82. This force causes themovable scroll 84 to closely contact the fixedscroll 82. Themovable scroll 84 is supported by thehousing 88 via an Oldham ring disposed in an “Oldham ring space Sr”. The Oldham ring is a member that prevents themovable scroll 84 from rotating and that causes themovable scroll 84 to revolve. By using the Oldham ring, when thecrank shaft 94 rotates, themovable scroll 84 connected to thecrank shaft 94 at theboss portion 84 c revolves without rotating with respect to the fixedscroll 82, and a refrigerant in the compression chamber Sc is compressed. - The
housing 88 is press-fitted to the circularcylindrical member 80 a, and an outer peripheral surface of thehousing 88 is fixed to the circularcylindrical member 80 a in its entirety in a peripheral direction. Thehousing 88 and the fixedscroll 82 are fixed to each other with, for example, a bolt (not shown) so that an upper end surface of thehousing 88 is in close contact with a lower surface of theouter edge portion 82 c of the fixedscroll 82. Thehousing 88 includes aconcave portion 88 a disposed so as to be recessed in a central portion of an upper surface of thehousing 88 and a bearingportion 88 b disposed below theconcave portion 88 a. Theconcave portion 88 a surrounds a side surface forming the decentered-portion space 89 where theboss portion 84 c of themovable scroll 84 is disposed. A bearing 90 that supports amain shaft 96 of thecrank shaft 94 is disposed in the bearingportion 88 b. The bearing 90 rotatably supports themain shaft 96 inserted in thebearing 90. Thehousing 88 has the Oldham ring space Sr where the Oldham ring is disposed. - The driving
motor 91 includes a ring-shapedstator 92 fixed to an inner wall surface of the circularcylindrical member 80 a and arotor 93 rotatably accommodated on an inner side of thestator 92 with a slight gap (air gap passage) therebetween. Therotor 93 is connected to themovable scroll 84 via thecrank shaft 94 disposed so as to extend in an up-down direction along an axial center of the circularcylindrical member 80 a. Due to the rotation of therotor 93, themovable scroll 84 revolves with respect to the fixedscroll 82. - The
crank shaft 94 transmits driving force of the drivingmotor 91 to themovable scroll 84. Thecrank shaft 94 is disposed so as to extend in the up-down direction along the axial center of the circularcylindrical member 80 a, and connects therotor 93 of the drivingmotor 91 and themovable scroll 84 of thescroll compression mechanism 81 to each other. Thecrank shaft 94 includes themain shaft 96 whose center axis coincides with the axial center of the circularcylindrical member 80 a and the decenteredportion 95 that is decentered with respect to the axial center of the circularcylindrical member 80 a. The decenteredportion 95 is inserted into theboss portion 84 c of themovable scroll 84 as described above. Themain shaft 96 is rotatably supported by the bearing 90 at the bearingportion 88 b of thehousing 88 and thelower bearing 98 described below. Themain shaft 96 is connected to therotor 93 of the drivingmotor 91 at a location between the bearingportion 88 b and thelower bearing 98. The oil-supply path 97 for supplying the refrigerating-machine oil 0 to, for example, thescroll compression mechanism 81 is formed in thecrank shaft 94. A lower end of themain shaft 96 is positioned in the oil-storage space So formed in the lower portion of thecasing 80, and the refrigerating-machine oil 0 in the oil-storage space So is supplied to, for example, thescroll compression mechanism 81 via the oil-supply path 97. - The
lower bearing 98 is disposed below the drivingmotor 91. Thelower bearing 98 is fixed to the circularcylindrical member 80 a. Thelower bearing 98 constitutes a bearing on a lower end side of thecrank shaft 94, and rotatably supports themain shaft 96 of thecrank shaft 94. - Next, an operation of the
compressor 21 a is described. - When the driving
motor 91 starts up, therotor 93 rotates with respect to thestator 92, and thecrank shaft 94 fixed to therotor 93 rotates. When thecrank shaft 94 rotates, themovable scroll 84 connected to thecrank shaft 94 revolves with respect to the fixedscroll 82. A low-pressure gas refrigerant in a refrigeration cycle passes through thesuction tube 19 and is sucked into the compression chamber Sc from a peripheral edge side of the compression chamber Sc. As themovable scroll 84 revolves, thesuction tube 19 and the compression chamber Sc no longer communicate with each other. As the volume of the compression chamber Sc is reduced, the pressure in the compression chamber Sc starts to increase. - An intermediate-pressure refrigerant that has flowed through the
economizer injection pipe 40 a is supplied to the compression chamber Sc during compression via thehorizontal passage portion 82 f and theinjection port 82 g. - As the compression of the refrigerant progresses, the compression chamber Sc no longer communicates with the
injection port 82 g. The refrigerant in the compression chamber Sc is compressed as the volume of the compression chamber Sc is reduced, and finally becomes a high-pressure gas refrigerant. The high-pressure gas refrigerant is discharged from thedischarge port 82 d that is positioned near the center of the fixed-side end plate 82 a. Thereafter, the high-pressure gas refrigerant passes through the refrigerant passage (not shown) formed in the fixedscroll 82 and thehousing 88, and flows into the high-pressure space Sh. The high-pressure gas refrigerant in the refrigeration cycle that has flowed into the high-pressure space Sh and that has been compressed by thescroll compression mechanism 81 is discharged from thedischarge tube 18. - In the
air conditioning apparatus 1 a, due to the refrigerant that has flowed through theeconomizer injection pipe 40 a merging in the region of intermediate pressure of thecompressor 21 a, the temperature of the refrigerant having intermediate pressure in thecompressor 21 a can be reduced, so that it is possible to increase the operation efficiency in the refrigeration cycle. - In the Modification B of the first embodiment, a scroll compressor is used as an example of the compressor to describe the compressor.
- In contrast, as the compressor that is used in the first embodiment, a
compressor 21 b, which is a rotary compressor in a second embodiment described below, may be used. - With reference to
FIG. 20 , which is a schematic structural view of a refrigerant circuit, andFIG. 21 , which is schematic control block structural view, anair conditioning apparatus 1 b serving as a refrigeration cycle apparatus according to the second embodiment is described below. - The
air conditioning apparatus 1 b of the second embodiment is described below primarily by focusing on portions that differ from those of theair conditioning apparatus 1 of the first embodiment. - Even in the
air conditioning apparatus 1 b, arefrigerant circuit 10 is filled with a refrigerant that is a mixed refrigerant containing 1,2-difluoroethylene as a refrigerant for performing a vapor compression refrigeration cycle, and is filled with any one of the refrigerants A to E above. Therefrigerant circuit 10 is filled with refrigerating-machine oil along with the refrigerant. - An
outdoor unit 20 of theair conditioning apparatus 1 b of the second embodiment includes thecompressor 21 b, a high-pressure receiver 42, anintermediate injection pipe 46, and an intermediateinjection expansion valve 49 instead of thecompressor 21, the low-pressure receiver 41, thesuction injection pipe 40, thesubcooling expansion valve 48, thesubcooling heat exchanger 47, and thesubcooling temperature sensor 67 of theoutdoor unit 20 in the first embodiment. - The high-
pressure receiver 42 is provided between anoutdoor expansion valve 24 and a liquid-side shutoff valve 29 in a main flow path of therefrigerant circuit 10. The high-pressure receiver 42 has an internal space having positioned therein both an end portion of a pipe that extends from a side of theoutdoor expansion valve 24 and an end portion of a pipe that extends from a side of the liquid-side shutoff valve 29, and is a container that is capable of storing a refrigerant. - The
intermediate injection pipe 46 extends from a gas region of the internal space of the high-pressure receiver 42, and is a pipe that is connected to a region of intermediate pressure of thecompressor 21 b. The intermediateinjection expansion valve 49 is provided in theintermediate injection pipe 46, and has a controllable valve opening degree. - Since a first
indoor unit 30 and a secondindoor unit 35 of the second embodiment are the same as those of the first embodiment, they are not described. - In the
air conditioning apparatus 1 b above, in a cooling operation mode, theoutdoor expansion valve 24 is controlled so that, for example, the subcooling degree of a refrigerant that passes through a liquid-side outlet of anoutdoor heat exchanger 23 satisfies a predetermined condition. The intermediateinjection expansion valve 49 is controlled so that a refrigerant that flows from the high-pressure receiver 42 is reduced up to an intermediate pressure in thecompressor 21 b. - In a heating operation mode, the
outdoor expansion valve 24 is controlled so that, for example, the superheating degree of a refrigerant that is sucked by thecompressor 21 b satisfies a predetermined condition. The intermediateinjection expansion valve 49 is controlled so that the refrigerant that flows from the high-pressure receiver 42 is reduced up to the intermediate pressure in thecompressor 21 b. - (7-4)
Compressor 21 b As shown inFIG. 22 , thecompressor 21 b is a 1-cylinder rotary compressor including acasing 111 and adriving mechanism 120 and acompression mechanism 130 that are disposed in thecasing 111. In thecompressor 21 b, thecompression mechanism 130 is disposed on a lower side of thedriving mechanism 120 in thecasing 111. - The
driving mechanism 120 is accommodated in an upper portion of an internal space of thecasing 111 and drives thecompression mechanism 130. Thedriving mechanism 120 includes amotor 121 that is a drive source and acrank shaft 122 that is a drive shaft mounted on themotor 121. - The
motor 121 is a motor for rotationally driving thecrank shaft 122 and primarily includes arotor 123 and astator 124. Therotor 123 has thecrank shaft 122 fitted into its internal space and rotates together with thecrank shaft 122. Therotor 123 is constituted by electromagnetic steel plates that are stacked, and a magnet that is embedded in a rotor main body. Thestator 124 is disposed on an outer side of therotor 123 in a radial direction with a predetermined space from therotor 123. Thestator 124 is constituted by electromagnetic steel plates that are stacked, and a coil wound around a stator main body. Themotor 121 causes therotor 123 to rotate together with thecrank shaft 122 by electromagnetic force that is generated at thestator 124 by causing an electric current to flow through the coil. Thecrank shaft 122 is fitted into therotor 123 and rotates around a rotation axis as a center. As shown inFIG. 23 , acrank pin 122 a, which is a decentered portion of thecrank shaft 122, is inserted into a roller 180 (described below) of apiston 131 of thecompression mechanism 130, and is fitted to theroller 180 with rotation force from therotor 123 being in a transmittable state. Thecrank shaft 122 rotates in accordance with rotation of therotor 123, causes thecrank pin 122 a to rotate in a decentered manner, and causes theroller 180 of thepiston 131 of thecompression mechanism 130 to revolve. That is, thecrank shaft 122 has the function of transmitting driving force of themotor 121 to thecompression mechanism 130. - The
compression mechanism 130 is accommodated on a lower portion side in thecasing 111. Thecompression mechanism 130 compresses a refrigerant sucked via asuction tube 196. Thecompression mechanism 130 is a rotary compression mechanism and primarily includes afront head 140, acylinder 150, thepiston 131, and arear head 160. A refrigerant compressed in a compression chamber S1 of thecompression mechanism 130 flows from a front-head discharge hole 141 a that is formed in thefront head 140 to a muffler space S2 surrounded by thefront head 140 and amuffler 170, and is discharged to a space where themotor 121 is disposed and a lower end of thedischarge tube 125 is positioned. - The
cylinder 150 is a metallic cast member. Thecylinder 150 includes a circular cylindricalcentral portion 150 a, a first extendingportion 150 b that extends toward a side of anattachment accumulator 195 from thecentral portion 150 a, and a second extendingportion 150 c that extends to a side opposite to the first extendingportion 150 b from thecentral portion 150 a. The first extendingportion 150 b has asuction hole 151 into which a lower-pressure refrigerant in a refrigeration cycle is sucked. A columnar space on an inner side of an innerperipheral surface 150 a 1 of thecentral portion 150 a is acylinder chamber 152 into which the refrigerant that is sucked from thesuction hole 151 flows. Thesuction hole 151 extends toward an outer peripheral surface of the first extendingportion 150 b from thecylinder chamber 152 and is open at the outer peripheral surface of the first extendingportion 150 b. An end portion of thesuction tube 196 extending from theaccumulator 195 is inserted into thesuction hole 151. For example, thepiston 131 for compressing the refrigerant that has flowed into thecylinder chamber 152 is accommodated in thecylinder chamber 152. - The
cylinder chamber 152 that is formed by the circular cylindricalcentral portion 150 a of thecylinder 150 is open at a first end, which is a lower end of thecylinder chamber 152, and is also open at a second end, which is an upper end of thecylinder chamber 152. A first end, which is a lower end, of thecentral portion 150 a is closed by therear head 160 described below. A second end, which is an upper end, of thecentral portion 150 a is closed by thefront head 140 described below. - The
cylinder 150 has ablade swing space 153 where abush 135 and a blade 190 (described below) are disposed. Theblade swing space 153 is formed in both thecentral portion 150 a and the first extendingportion 150 b, and theblade 190 of thepiston 131 is swingably supported by thecylinder 150 via thebush 135. Theblade swing space 153 is formed so as to, in a plane, extend toward an outer peripheral side from thecylinder chamber 152 in the vicinity of thesuction hole 151. - As shown in
FIG. 22 , thefront head 140 includes a front-head disk portion 141 that closes an opening at a second end, which is an upper end, of thecylinder 150, and a front-head boss portion 142 that extends upward from a peripheral edge of a front-head opening in the center of the front-head disk portion 141. The front-head boss portion 142 has a circular cylindrical shape, and functions as a bearing of thecrank shaft 122. - In a planar position shown in
FIG. 23 , the front-head disk portion 141 has the front-head discharge hole 141 a. A refrigerant compressed in the compression chamber S1 whose volume changes in thecylinder chamber 152 of thecylinder 150 is intermittently discharged from the front-head discharge hole 141 a. The front-head disk portion 141 is provided with a discharge valve that opens and closes an outlet of the front-head discharge hole 141 a. The discharge valve opens due to a pressure difference when the pressure of the compression chamber S1 becomes higher than the pressure of the muffler space S2, and discharges the refrigerant to the muffler space S2 from the front-head discharge hole 141 a. - As shown in
FIG. 22 , themuffler 170 is mounted on an upper surface of a peripheral edge portion of the front-head disk portion 141 of thefront head 140. Themuffler 170 forms, along with an upper surface of the front-head disk portion 141 and an outer peripheral surface of the front-head boss portion 142, the muffler space S2 to reduce noise generated by the discharge of a refrigerant. As described above, the muffler space S2 and the compression chamber S1 communicate with each other via the front-head discharge hole 141 a when the discharge valve is open. - The
muffler 170 has a center muffler opening that allows the front-head boss portion 142 to extend therethrough and a muffler discharge hole in which a refrigerant flows toward an accommodation space of themotor 121, disposed above, from the muffler space S2. - For example, the muffler space S2, the accommodation space of the
motor 121, a space above themotor 121 where thedischarge tube 125 is positioned, and a space below thecompression mechanism 130 where a lubricant is accumulated are all connected to each other, and form a high-pressure space having equal pressure. - The
rear head 160 includes a rear-head disk portion 161 that closes an opening at a first end, which is a lower end, of thecylinder 150, and a rear-head boss portion 162 that extends downward from a peripheral edge portion of a central opening of the rear-head disk portion 161 and serves as a bearing. As shown inFIG. 23 , the front-head disk portion 141, the rear-head disk portion 161, and thecentral portion 150 a of thecylinder 150 form thecylinder chamber 152. The front-head boss portion 142 and the rear-head boss portion 162 are each a circular cylindrical boss portion, and support thecrank shaft 122. - A
supply flow path 161 a is formed in the rear-head disk portion 161. Thesupply flow path 161 a is connected to an injection hole (not shown) that opens in thecasing 111, and is connected to theintermediate injection pipe 46. Thesupply flow path 161 a extends horizontally toward a rotation axis CA of thecrank shaft 122 from the injection hole of thecasing 111, bends upward, and opens in an upper surface of the rear-head disk portion 161. An outlet opening 161 a 1 of thesupply flow path 161 a opens at a planar position shown by an alternate long and two short dashed line inFIG. 23 . That is, the outlet opening 161 a 1 of thesupply flow path 161 a opens into thecylinder chamber 152 on an inner side of the innerperipheral surface 150 a 1 of thecentral portion 150 a of thecylinder 150. Thesupply flow path 161 a has the role of, when the angle of revolution of theroller 180 of thepiston 131 is in a certain range, allowing an intermediate-pressure refrigerant introduced from the outside of thecompressor 21 b to flow to the compression chamber S1 whose volume changes in thecylinder chamber 152. Therefore, when the angle of revolution of theroller 180 of thepiston 131 is in a predetermined range other than the certain range above, the supply flow path is closed by a part of a lower end surface of theroller 180. - The
piston 131 is disposed in thecylinder chamber 152 and is mounted on thecrank pin 122 a, which is the decentered portion of thecrank shaft 122. Thepiston 131 is a member including theroller 180 and theblade 190 that are integrated with each other. Theblade 190 of thepiston 131 is disposed in theblade swing space 153 that is formed in thecylinder 150 and, as described above, is swingably supported by thecylinder 150 via thebush 135. Theblade 190 is slidable with respect to thebush 135, and, during operation, swings and repeatedly moves away from thecrank shaft 122 and moves toward thecrank shaft 122. - The
roller 180 includes a first end portion 181, where afirst end surface 181 a that is a roller lower end surface is formed, a second end portion 182, where a second end surface 182 a that is a roller upper end surface is formed, and a central portion 183 that is positioned between the first end portion 181 and the second end portion 182. As shown inFIG. 24 , the central portion 183 is a circular cylindrical portion having an inside diameter D2 and an outside diameter D1. The first end portion 181 includes a circular cylindrical firstmain body portion 181 b that has an inside diameter D3 and an outside diameter D1, and a first protrudingportion 181 c that protrudes inward from the firstmain body portion 181 b. The outside diameter D1 of the firstmain body portion 181 b is equal to the outside diameter D1 of the central portion 183. The inside diameter D3 of the firstmain body portion 181 b is larger than the inside diameter D2 of the central portion 183. The second end portion 182 includes a circular cylindrical second main body portion 182 b having an inside diameter D3 and an outside diameter D1 and a second protruding portion 182 c that protrudes inward from the second main body portion 182 b. Similarly to the outside diameter D1 of the firstmain body portion 181 b, the outside diameter D1 of the second main body portion 182 b is equal to the outside diameter D1 of the central portion 183. The inside diameter D3 of the second main body portion 182 b is equal to the inside diameter D3 of the firstmain body portion 181 b, and is larger than the inside diameter D2 of the central portion 183. Aninner surface 181 c 1 of the first protrudingportion 181 c and an inner surface 182 c 1 of the second protruding portion 182 c substantially overlap an inner peripheral surface 183 a 1 of the central portion 183 when viewed in a direction of the rotation axis of thecrank shaft 122. In detail, in plan view, theinner surface 181 c 1 of the first protrudingportion 181 c and the inner surface 182 c 1 of the second protruding portion 182 c are positioned slightly outward with respect to the inner peripheral surface 183 a 1 of the central portion 183. In this way, when the first protrudingportion 181 c and the second protruding portion 182 c are excluded, the inside diameters D3 of the firstmain body portion 181 b and the second main body portion 182 b are larger than the inside diameter D2 of the central portion 183. Therefore, a first stepped surface 183 a 2 is formed at a height position of a boundary between the first end portion 181 and the central portion 183, and a second stepped surface 183 a 3 is formed at a height position of a boundary between the second end portion 182 and the central portion 183 (seeFIG. 24 ). - The ring-shaped
first end surface 181 a of the first end portion 181 of theroller 180 is in contact with the upper surface of the rear-head disk portion 161, and slides along the upper surface of the rear-head disk portion 161. Thefirst end surface 181 a of theroller 180 includes a firstwide surface 181 a 1 whose width in a radial direction is partly large. The first protrudingportion 181 c of the first end portion 181 and a part of the firstmain body portion 181 b of the first end portion 181 positioned outward with respect to the first protrudingportion 181 c form the firstwide surface 181 a 1 (seeFIG. 24 ). - The ring-shaped second end surface 182 a of the second end portion 182 of the
roller 180 is in contact with a lower surface of the front-head disk portion 141, and slides along the lower surface of the front-head disk portion 141. The second end surface 182 a of theroller 180 includes a second wide surface 182 a 1 whose width in a radial direction is partly large. The second wide surface 182 a 1 is positioned in correspondence with the position of the firstwide surface 181 a 1 when viewed in the direction of the rotation axis of thecrank shaft 122. The second protruding portion 182 c of the second end portion 182 and a part of the second main body portion 182 b of the second end portion 182 positioned outward with respect to the second protruding portion 182 c form the second wide surface 182 a 1. - As shown in
FIG. 23 , theroller 180 and theblade 190 of thepiston 131 form the compression chamber S1 whose volume changes due to the revolution of thepiston 131 while partitioning thecylinder chamber 152. The compression chamber S1 is a space that is surrounded by the innerperipheral surface 150 a 1 of thecentral portion 150 a of thecylinder 150, the upper surface of the rear-head disk portion 161, the lower surface of the front-head disk portion 141, and thepiston 131. The volume of the compression chamber S1 changes in accordance with the revolution of thepiston 131, a low-pressure refrigerant sucked from thesuction hole 151 is compressed and becomes a high-pressure refrigerant, and the refrigerant is discharged to the muffler space S2 from the front-head discharge hole 141 a. - In the
compressor 21 b above, movement of thepiston 131 of thecompression mechanism 130 that revolves due to rotation of thecrank pin 122 a in a decentered manner causes the volume of the compression chamber S1 to change. Specifically, first, a low-pressure refrigerant from thesuction hole 151 is sucked into the compression chamber S1 while thepiston 131 revolves. When the compression chamber S1 facing thesuction hole 151 is sucking the refrigerant, the volume of the compression chamber S1 gradually increases. When thepiston 131 revolves further, the state of communication between the compression chamber S1 and thesuction hole 151 is stopped, and compression of the refrigerant is started in the compression chamber S1. Thereafter, after an intermediate-pressure refrigerant has been injected into the compression chamber S1 from the outlet opening 161 a 1 of thesupply flow path 161 a, the volume of the compression chamber S1 in a state of communication with the front-head discharge hole 141 a becomes considerably small, and the pressure of the refrigerant is increased. Here, the firstwide surface 181 a 1 of thefirst end surface 181 a of theroller 180 of thepiston 131 closes the outlet opening 161 a 1 of thesupply flow path 161 a of the rear-head disk portion 161, and the intermediate-pressure refrigerant is no longer in a state of being injected to the compression chamber S1. Thereafter, due to further revolution of thepiston 131, the refrigerant whose pressure has become high pushes and opens the discharge valve from the front-head discharge hole 141 a, and is discharged to the muffler space S2. The refrigerant introduced into the muffler space S2 is discharged to a space above the muffler space S2 from the muffler discharge hole of themuffler 170. The refrigerant discharged to the outside of the muffler space S2 passes through a space between therotor 123 and thestator 124 of themotor 121, cools themotor 121, and is then discharged from thedischarge tube 125. - Similarly to the
air conditioning apparatus 1 according to the first embodiment, since even theair conditioning apparatus 1 b according to the second embodiment uses a refrigerant containing 1,2-difluoroethylene, theair conditioning apparatus 1 b can sufficiently reduce GWP. - Since the
air conditioning apparatus 1 b can reduce the temperature of an intermediate-pressure refrigerant in thecompressor 21 b by causing a refrigerant that has flowed through theintermediate injection pipe 46 to merge at the region of intermediate pressure of thecompressor 21 b, theair conditioning apparatus 1 b can improve an operation efficiency in a refrigeration cycle. - (7-6) Modification A of the Second Embodiment Although, in the second embodiment, the
air conditioning apparatus 1 b is described by using as an example an air conditioning apparatus including a plurality of indoor units that are connected in parallel, an air conditioning apparatus including one indoor unit that is connected in series may be used as the air conditioning apparatus. - In the second embodiment, the
compressor 21 b is described by using a rotary compressor as an example. - In contrast, as the compressor that is used in the second embodiment, the
compressor 21 a, which is the scroll compressor that is described in the Modification B of the first embodiment, may be used. - The second embodiment is described by using as an example a case in which a gas refrigerant in the high-
pressure receiver 42 is caused to merge at the region of intermediate pressure of thecompressor 21 b by theintermediate injection pipe 46. - In contrast, the gas refrigerant in the high-
pressure receiver 42 in the second embodiment may be caused to merge on a suction side instead of at the region of intermediate pressure of the compressor. In this case, by reducing the temperature of the refrigerant that is sucked into the compressor, it is possible to increase the operation efficiency in a refrigeration cycle. - Although the embodiments of the present disclosure are described above, it is to be understood that various changes may be made in the forms and details without departing from the spirit and the scope of the present disclosure described in the claims.
-
-
- 1, 1 a, 1 b air conditioning apparatus (refrigeration cycle apparatus)
- 10 refrigerant circuit
- 19 suction tube (suction flow path)
- 20 outdoor unit
- 21, 21 a, 21 b compressor
- 23 outdoor heat exchanger (condenser, evaporator)
- 24 outdoor expansion valve (decompressor)
- 30 indoor unit, first indoor unit
- 31 indoor heat exchanger, first indoor heat exchanger (evaporator, condenser)
- 35 second indoor unit
- 36 second indoor heat exchanger (evaporator, condenser)
- 40 suction injection pipe (suction injection flow path, branching flow path)
- 40 a economizer injection pipe (intermediate injection flow path, branching flow path)
- 42 high-pressure receiver (refrigerant storage tank)
- 46 intermediate injection pipe (intermediate injection flow path)
- 47 subcooling heat exchanger (injection heat exchanger)
- 47 a economizer heat exchanger (injection heat exchanger)
- 48 subcooling expansion valve (opening degree adjusting valve)
- 48 a economizer expansion valve (opening degree adjusting valve)
- 82 fixed scroll
- 84 movable scroll (swinging scroll)
- 196 suction tube (suction flow path)
- Sc compression chamber
- [Patent Literature 1] International Publication No. 2015/141678
Claims (27)
1. A refrigeration cycle apparatus comprising:
a compressor that sucks a low-pressure refrigerant from a suction flow path compresses the refrigerant, and discharges a high-pressure refrigerant;
a condenser that condenses the high-pressure refrigerant discharged from the compressor;
a decompressor that decompresses the high-pressure refrigerant that has exited from the condenser;
an evaporator that evaporates the refrigerant decompressed at the decompressor; and
an injection flow path that is at least either one of an intermediate injection flow path and a suction injection flow path, the intermediate injection flow path allowing a part of a refrigerant that flows toward the evaporator from the condenser to merge with an intermediate-pressure refrigerant in the compressor, the suction injection flow path allowing a part of a refrigerant that flows toward the evaporator from the condenser to merge with the low-pressure refrigerant that is sucked by the compressor,
wherein the refrigerant contains at least 1,2-difluoroethylene.
2. The refrigeration cycle apparatus according to claim 1 , further comprising:
a branching flow path that branches off from a main refrigerant flow path that connects the condenser and the evaporator to each other;
an opening degree adjusting valve that is provided in the branching flow path; and
an injection heat exchanger that causes a refrigerant that flows in the main refrigerant flow path and a refrigerant that flows on a downstream side with respect to the opening degree adjusting valve in the branching flow path to exchange heat,
wherein a refrigerant that exits from the injection heat exchanger and flows in the branching flow path flows in the injection flow path.
3. The refrigeration cycle apparatus according to claim 1 , further comprising:
a refrigerant storage tank that is provided in a main refrigerant flow path that connects the condenser and the evaporator to each other,
wherein a gas component of a refrigerant that accumulates in the refrigerant storage tank flows in the injection flow path.
4. The refrigeration cycle apparatus according to claim 1 , wherein
the compressor includes a fixed scroll and a swinging scroll, the fixed scroll including a end plate and a lap that stands spirally from the end plate, the swinging scroll forming a compression chamber (Sc) by engaging with the fixed scroll, and
a refrigerant that flows in the injection flow path merges at the compression chamber.
5. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
6. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
7. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
8. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
9. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43) the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
10. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LM and BF are straight lines.
11. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
12. The refrigeration cycle apparatus according to claim 5 ,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0078x2−0.2499x+38.2),
the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
the line segments SM and BF are straight lines.
13. The refrigeration cycle apparatus according claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
14. The refrigeration cycle apparatus according claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
15. The refrigeration cycle apparatus according claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
16. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
17. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI;
the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
the line segments JN and EI are straight lines.
18. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG; and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′(39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
the line segments NV and GM are straight lines.
19. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
the line segment UO is a straight line.
20. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
the line segment TL is a straight line.
21. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
the line segment ST is represented by coordinates 0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
the line segment TP is a straight line.
22. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RQ and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines.
23. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RQ and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
24. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RQ and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines.
25. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RQ and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
26. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
the line segment PS is a straight line.
27. The refrigeration cycle apparatus according to claim 1 ,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines.
Applications Claiming Priority (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017242187 | 2017-12-18 | ||
JP2017-242186 | 2017-12-18 | ||
JP2017242185 | 2017-12-18 | ||
JP2017-242185 | 2017-12-18 | ||
JP2017242186 | 2017-12-18 | ||
JP2017-242187 | 2017-12-18 | ||
JP2017242183 | 2017-12-18 | ||
JP2017-242183 | 2017-12-18 | ||
JPPCT/JP2018/037483 | 2018-10-05 | ||
PCT/JP2018/037483 WO2019123782A1 (en) | 2017-12-18 | 2018-10-05 | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
JPPCT/JP2018/038748 | 2018-10-17 | ||
JPPCT/JP2018/038749 | 2018-10-17 | ||
PCT/JP2018/038747 WO2019123805A1 (en) | 2017-12-18 | 2018-10-17 | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
JPPCT/JP2018/038746 | 2018-10-17 | ||
PCT/JP2018/038746 WO2019123804A1 (en) | 2017-12-18 | 2018-10-17 | Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
PCT/JP2018/038749 WO2019123807A1 (en) | 2017-12-18 | 2018-10-17 | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
PCT/JP2018/038748 WO2019123806A1 (en) | 2017-12-18 | 2018-10-17 | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
JPPCT/JP2018/038747 | 2018-10-17 | ||
PCT/JP2018/046427 WO2019124327A1 (en) | 2017-12-18 | 2018-12-17 | Refrigeration cycle device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046427 A-371-Of-International WO2019124327A1 (en) | 2017-12-18 | 2018-12-17 | Refrigeration cycle device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/912,055 Continuation-In-Part US11441819B2 (en) | 2017-12-18 | 2020-06-25 | Refrigeration cycle apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200333041A1 true US20200333041A1 (en) | 2020-10-22 |
Family
ID=66992715
Family Applications (22)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/954,631 Abandoned US20200392389A1 (en) | 2017-12-18 | 2018-11-13 | Refrigeration cycle apparatus |
US16/954,651 Abandoned US20200339856A1 (en) | 2017-12-18 | 2018-11-13 | Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil |
US16/954,669 Abandoned US20210164703A1 (en) | 2017-12-18 | 2018-12-10 | Air-conditioning unit |
US16/954,973 Abandoned US20200333051A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle |
US16/954,613 Abandoned US20200309437A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus |
US16/955,465 Abandoned US20210003323A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle apparatus |
US16/954,956 Abandoned US20200378662A1 (en) | 2017-12-18 | 2018-12-11 | Air conditioning apparatus |
US16/955,218 Abandoned US20200333049A1 (en) | 2017-12-18 | 2018-12-13 | Refrigeration apparatus |
US16/954,967 Abandoned US20200309411A1 (en) | 2017-12-18 | 2018-12-13 | Warm-water generating apparatus |
US16/772,927 Abandoned US20210163804A1 (en) | 2017-12-18 | 2018-12-17 | Refrigeration cycle apparatus |
US16/954,745 Abandoned US20210095897A1 (en) | 2017-12-18 | 2018-12-17 | Heat source unit and refrigeration cycle apparatus |
US16/954,718 Abandoned US20200386459A1 (en) | 2017-12-18 | 2018-12-17 | Heat exchange unit |
US16/955,222 Abandoned US20200333041A1 (en) | 2017-12-18 | 2018-12-17 | Refrigeration cycle apparatus |
US16/954,679 Abandoned US20200309419A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/772,976 Abandoned US20200393175A1 (en) | 2017-12-18 | 2018-12-18 | Compressor |
US16/772,961 Abandoned US20210164701A1 (en) | 2017-12-18 | 2018-12-18 | Air conditioner |
US16/772,986 Abandoned US20200393176A1 (en) | 2017-12-18 | 2018-12-18 | Compressor |
US16/955,207 Abandoned US20200340714A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/772,953 Abandoned US20210164698A1 (en) | 2017-12-18 | 2018-12-18 | Air conditioner |
US16/955,565 Active US11535781B2 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/954,702 Abandoned US20200362215A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US17/991,204 Abandoned US20230097829A1 (en) | 2017-12-18 | 2022-11-21 | Refrigeration cycle apparatus |
Family Applications Before (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/954,631 Abandoned US20200392389A1 (en) | 2017-12-18 | 2018-11-13 | Refrigeration cycle apparatus |
US16/954,651 Abandoned US20200339856A1 (en) | 2017-12-18 | 2018-11-13 | Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil |
US16/954,669 Abandoned US20210164703A1 (en) | 2017-12-18 | 2018-12-10 | Air-conditioning unit |
US16/954,973 Abandoned US20200333051A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle |
US16/954,613 Abandoned US20200309437A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus |
US16/955,465 Abandoned US20210003323A1 (en) | 2017-12-18 | 2018-12-10 | Refrigeration cycle apparatus |
US16/954,956 Abandoned US20200378662A1 (en) | 2017-12-18 | 2018-12-11 | Air conditioning apparatus |
US16/955,218 Abandoned US20200333049A1 (en) | 2017-12-18 | 2018-12-13 | Refrigeration apparatus |
US16/954,967 Abandoned US20200309411A1 (en) | 2017-12-18 | 2018-12-13 | Warm-water generating apparatus |
US16/772,927 Abandoned US20210163804A1 (en) | 2017-12-18 | 2018-12-17 | Refrigeration cycle apparatus |
US16/954,745 Abandoned US20210095897A1 (en) | 2017-12-18 | 2018-12-17 | Heat source unit and refrigeration cycle apparatus |
US16/954,718 Abandoned US20200386459A1 (en) | 2017-12-18 | 2018-12-17 | Heat exchange unit |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/954,679 Abandoned US20200309419A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/772,976 Abandoned US20200393175A1 (en) | 2017-12-18 | 2018-12-18 | Compressor |
US16/772,961 Abandoned US20210164701A1 (en) | 2017-12-18 | 2018-12-18 | Air conditioner |
US16/772,986 Abandoned US20200393176A1 (en) | 2017-12-18 | 2018-12-18 | Compressor |
US16/955,207 Abandoned US20200340714A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/772,953 Abandoned US20210164698A1 (en) | 2017-12-18 | 2018-12-18 | Air conditioner |
US16/955,565 Active US11535781B2 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US16/954,702 Abandoned US20200362215A1 (en) | 2017-12-18 | 2018-12-18 | Refrigeration cycle apparatus |
US17/991,204 Abandoned US20230097829A1 (en) | 2017-12-18 | 2022-11-21 | Refrigeration cycle apparatus |
Country Status (9)
Country | Link |
---|---|
US (22) | US20200392389A1 (en) |
EP (19) | EP3730593A4 (en) |
JP (22) | JP7269499B2 (en) |
KR (11) | KR102655619B1 (en) |
CN (21) | CN111511874A (en) |
AU (11) | AU2018390660B2 (en) |
BR (10) | BR112020011145A2 (en) |
PH (10) | PH12020550899A1 (en) |
WO (1) | WO2019124409A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11492527B2 (en) * | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11535781B2 (en) | 2017-12-18 | 2022-12-27 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
US12031758B2 (en) | 2020-04-20 | 2024-07-09 | Mitsubishi Electric Corporation | Relay unit and air-conditioning apparatus including the same |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10119738B2 (en) | 2014-09-26 | 2018-11-06 | Waterfurnace International Inc. | Air conditioning system with vapor injection compressor |
US11839062B2 (en) | 2016-08-02 | 2023-12-05 | Munters Corporation | Active/passive cooling system |
US20220389299A1 (en) * | 2017-12-18 | 2022-12-08 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
KR20200098592A (en) * | 2017-12-18 | 2020-08-20 | 다이킨 고교 가부시키가이샤 | Composition containing a refrigerant, its use, and a refrigerator having the same, and a method of operating the refrigerator |
KR20240007721A (en) * | 2018-06-25 | 2024-01-16 | 미쓰비시덴키 가부시키가이샤 | Rotor, electric motor, fan, and air conditioner |
US11592215B2 (en) | 2018-08-29 | 2023-02-28 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
US12031760B2 (en) * | 2019-06-17 | 2024-07-09 | Mitsubishi Electric Corporation | Freezing device |
JP6777260B1 (en) * | 2019-06-19 | 2020-10-28 | ダイキン工業株式会社 | A composition containing a refrigerant, its use, a refrigerator having it, a method of operating the refrigerator, and a refrigerating cycle device having it. |
US20210003322A1 (en) * | 2019-07-02 | 2021-01-07 | Heatcraft Refrigeration Products Llc | Cooling System |
DK3879207T3 (en) * | 2020-03-10 | 2023-11-20 | Trane Int Inc | REFRIGERATING APPARATUS AND METHOD OF OPERATING THEREOF |
CN111555480B (en) * | 2020-05-26 | 2021-04-30 | 安徽美芝精密制造有限公司 | Motor, compressor and refrigeration plant |
DE102020115275A1 (en) * | 2020-06-09 | 2021-12-09 | Stiebel Eltron Gmbh & Co. Kg | Method for operating a compression refrigeration system and compression refrigeration system |
CN112290783A (en) * | 2020-08-31 | 2021-01-29 | 海信(山东)空调有限公司 | Air conditioner and IPM module bootstrap circuit pre-charging control method |
JP7108208B2 (en) * | 2020-10-09 | 2022-07-28 | ダイキン工業株式会社 | Compositions containing refrigerants and methods of stabilizing compositions containing refrigerants |
CN112396818B (en) * | 2020-11-12 | 2021-09-24 | 贵州电网有限责任公司 | Portable mobile detection terminal |
US11913672B2 (en) * | 2020-12-21 | 2024-02-27 | Goodman Global Group, Inc. | Heating, ventilation, and air-conditioning system with dehumidification |
JP7174278B2 (en) * | 2021-01-13 | 2022-11-17 | ダイキン工業株式会社 | Air conditioner and method for replacing functional parts |
JP2022157501A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | Refrigeration cycle device for automobile |
US11754316B2 (en) * | 2021-04-26 | 2023-09-12 | Villara Corporation | Providing domestic hot water from conventional residential split system heat pumps |
CN113294884B (en) * | 2021-06-21 | 2022-04-19 | 宁波奥克斯电气股份有限公司 | Heating control method and device and air conditioner |
CN113432196B (en) * | 2021-06-21 | 2022-10-18 | 深圳市科信通信技术股份有限公司 | Air conditioning system |
US11984838B2 (en) * | 2021-07-16 | 2024-05-14 | Haier Us Appliance Solutions, Inc. | Direct current load identification system |
CN113864984B (en) * | 2021-10-19 | 2022-11-18 | 宁波奥克斯电气股份有限公司 | APF automatic debugging method and device for air conditioner, computer equipment and storage medium |
CN114061143B (en) * | 2021-11-18 | 2023-05-30 | 深圳职业技术学院 | Direct heating type multifunctional heat pump water heater |
CN118510865A (en) * | 2022-02-25 | 2024-08-16 | 科慕埃弗西有限公司 | Compositions of HFO-1234YF, HFO-1132E and HFC-152A and systems using the same |
KR102548607B1 (en) * | 2022-10-13 | 2023-06-28 | 지에스칼텍스 주식회사 | Base oil comprising polyol ester and refrigerating machine oil composition comprising the same |
CN115888163B (en) * | 2022-11-22 | 2024-03-01 | 常州东立冷冻科技有限公司 | Assembled full liquid evaporation cold all-in-one |
CN117111533B (en) * | 2023-10-09 | 2024-05-14 | 佛山市芯耀环保科技有限公司 | Control circuit of ice machine, PCB and ice machine |
Family Cites Families (275)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5190115A (en) | 1975-02-05 | 1976-08-07 | ||
FR2314456A1 (en) * | 1975-06-09 | 1977-01-07 | Inst Francais Du Petrole | COLD PRODUCTION PROCESS |
JPS5213025A (en) | 1975-07-18 | 1977-02-01 | Nissan Motor Co Ltd | Torch ignition engine |
JPS57198968A (en) | 1981-05-29 | 1982-12-06 | Hitachi Ltd | Heat pump type refrigerator |
JPS5939790A (en) | 1982-08-27 | 1984-03-05 | Agency Of Ind Science & Technol | Production of single crystal |
JPS6269066A (en) | 1985-09-24 | 1987-03-30 | 株式会社東芝 | Refrigeration cycle device |
JPS6369066A (en) | 1986-09-09 | 1988-03-29 | Nec Corp | Data correcting system on unrewritable medium |
JPH024163A (en) | 1988-03-08 | 1990-01-09 | Mitsubishi Electric Corp | Cooling device for semiconductor element for power |
EP0629687A1 (en) | 1990-01-31 | 1994-12-21 | Tonen Corporation | Esters as lubricants for a haloalkane refrigerant |
JP2803451B2 (en) | 1991-07-12 | 1998-09-24 | 三菱電機株式会社 | Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor |
JPH05149605A (en) | 1991-11-30 | 1993-06-15 | Toshiba Corp | Air conditioner |
JPH05264070A (en) | 1992-03-17 | 1993-10-12 | Mitsubishi Electric Corp | Outdoor apparatus of air conditioner |
JP3021947B2 (en) | 1992-03-24 | 2000-03-15 | ダイキン工業株式会社 | Control method of variable capacity air conditioner |
JPH0719627A (en) * | 1993-06-30 | 1995-01-20 | Daikin Ind Ltd | Heat exchanger for non-azeotrope refrigerant |
JPH07190571A (en) * | 1993-12-24 | 1995-07-28 | Matsushita Electric Ind Co Ltd | Refrigerator using non-azeotropic mixture refrigerant |
CA2191108C (en) | 1994-05-23 | 1999-09-28 | Nicholas E. Schnur | Method for increasing the electrical resistivity of hindered polyol ester refrigerant lubricants |
JPH08200273A (en) | 1995-01-30 | 1996-08-06 | Sanyo Electric Co Ltd | Scroll compressor |
CN1083474C (en) * | 1995-10-24 | 2002-04-24 | 顾雏军 | Improved non-azeotropic operating medium using in thermal circulation |
JPH10309050A (en) | 1996-05-16 | 1998-11-17 | Matsushita Electric Ind Co Ltd | Compressor |
JPH1046170A (en) * | 1996-08-06 | 1998-02-17 | Kao Corp | Working fluid composition for refrigerator |
JP3104642B2 (en) | 1997-04-25 | 2000-10-30 | ダイキン工業株式会社 | Refrigeration equipment |
JPH10318564A (en) | 1997-05-20 | 1998-12-04 | Fujitsu General Ltd | Outdoor unit for air conditioner |
JP3936027B2 (en) * | 1997-06-23 | 2007-06-27 | 松下電器産業株式会社 | Air conditioner |
JPH11206001A (en) | 1998-01-07 | 1999-07-30 | Meidensha Corp | Protector for motor |
JPH11256358A (en) | 1998-03-09 | 1999-09-21 | Sanyo Electric Co Ltd | Corrosion resistance copper pipe for heat exchanger |
JP2000161805A (en) * | 1998-11-27 | 2000-06-16 | Daikin Ind Ltd | Refrigerating apparatus |
JP2000220877A (en) | 1999-01-29 | 2000-08-08 | Daikin Ind Ltd | Ventilating air conditioner |
JP2000234767A (en) | 1999-02-10 | 2000-08-29 | Mitsubishi Electric Corp | Cooling device and cooling device of air-conditioner |
JP2000304302A (en) | 1999-04-19 | 2000-11-02 | Daikin Ind Ltd | Air conditioner |
CN1238442A (en) * | 1999-05-08 | 1999-12-15 | 三菱电机株式会社 | Compressor for closed-lorp refrigenation device and assembling method thereof |
US6667285B1 (en) | 1999-05-10 | 2003-12-23 | New Japan Chemical Co., Ltd. | Lubricating oil for refrigerator, hydraulic fluid composition for refrigerator and method for lubricating of refrigerator |
JP4312894B2 (en) * | 1999-09-09 | 2009-08-12 | 東芝キヤリア株式会社 | Air conditioner indoor unit |
JP2001194016A (en) | 1999-10-18 | 2001-07-17 | Daikin Ind Ltd | Freezing apparatus |
JP3860942B2 (en) * | 1999-11-18 | 2006-12-20 | 株式会社ジャパンエナジー | Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment |
KR100327551B1 (en) * | 1999-12-27 | 2002-03-15 | 황한규 | Airconditioner for vehicle with dual evaporator ASS'Y |
JP3763120B2 (en) | 2000-08-09 | 2006-04-05 | 三菱電機株式会社 | Air conditioner |
JP2002089978A (en) | 2000-09-11 | 2002-03-27 | Daikin Ind Ltd | Paired refrigerating device and multiple refrigerating device |
JP3952769B2 (en) | 2001-02-19 | 2007-08-01 | 株式会社デンソー | Heat pump chiller |
JP2002257366A (en) * | 2001-03-02 | 2002-09-11 | Sekisui Chem Co Ltd | Hot water supplying/heating system |
JP2002272043A (en) | 2001-03-05 | 2002-09-20 | Daikin Ind Ltd | Rotary compressor and air-conditioner provided with the compressor |
JP3518518B2 (en) * | 2001-03-05 | 2004-04-12 | 松下電器産業株式会社 | Banknote recognition device |
JP4410957B2 (en) * | 2001-03-26 | 2010-02-10 | 株式会社ラブアース・テクノロジー | Hybrid water heater and method |
JP2003018776A (en) | 2001-03-30 | 2003-01-17 | Sanyo Electric Co Ltd | Synchronous induction motor |
EP1750348A3 (en) | 2001-03-30 | 2007-05-02 | Sanyo Electric Co., Ltd. | Hermetic electric compressor |
JP3885535B2 (en) | 2001-09-07 | 2007-02-21 | 株式会社デンソー | Water heater |
JP3690341B2 (en) | 2001-12-04 | 2005-08-31 | ダイキン工業株式会社 | Brushless DC motor driving method and apparatus |
TWI288519B (en) | 2002-03-27 | 2007-10-11 | Sanyo Electric Co | Synchronous induction motor |
JP2004028035A (en) | 2002-06-28 | 2004-01-29 | Fujitsu General Ltd | Enclosed compressor |
JP3925383B2 (en) * | 2002-10-11 | 2007-06-06 | ダイキン工業株式会社 | Hot water supply device, air conditioning hot water supply system, and hot water supply system |
JP2004215406A (en) | 2002-12-28 | 2004-07-29 | Daikin Ind Ltd | Motor driver for air conditioner |
JP2004251535A (en) | 2003-02-20 | 2004-09-09 | Aisin Seiki Co Ltd | Air conditioner |
JP2004361036A (en) | 2003-06-06 | 2004-12-24 | Daikin Ind Ltd | Air conditioning system |
JP2005061711A (en) * | 2003-08-12 | 2005-03-10 | Osaka Gas Co Ltd | Exhaust heat recovering water heater |
JP2005241045A (en) | 2004-02-24 | 2005-09-08 | Sanyo Electric Co Ltd | Air conditioner |
JP4759226B2 (en) | 2004-03-31 | 2011-08-31 | 株式会社コベルコ マテリアル銅管 | Tube expansion tool and tube expansion method using the same |
AU2005233844A1 (en) | 2004-04-15 | 2005-10-27 | Daikin Industries, Ltd. | Air conditioner |
JP4222273B2 (en) * | 2004-08-03 | 2009-02-12 | パナソニック株式会社 | Heat pump water heater |
JP4555671B2 (en) | 2004-12-09 | 2010-10-06 | 東芝キヤリア株式会社 | Air conditioner |
JP2006211824A (en) | 2005-01-28 | 2006-08-10 | Mitsubishi Electric Corp | Compressor |
JP4591112B2 (en) | 2005-02-25 | 2010-12-01 | 株式会社日立製作所 | Permanent magnet rotating machine |
EP1872068B1 (en) | 2005-03-18 | 2016-06-22 | Carrier Commercial Refrigeration, Inc. | Multi-part heat exchanger |
JP2006313027A (en) | 2005-05-06 | 2006-11-16 | Mitsubishi Electric Corp | Ventilation air conditioner |
JP2007084481A (en) * | 2005-09-22 | 2007-04-05 | Daikin Ind Ltd | Preparation method of pentafluoroethane |
JP3985834B2 (en) | 2005-11-07 | 2007-10-03 | ダイキン工業株式会社 | Electrical component assembly, outdoor unit of air conditioner including the same, and air conditioner |
CN1987264A (en) * | 2005-12-22 | 2007-06-27 | 乐金电子(天津)电器有限公司 | Air conditioner |
JP4893251B2 (en) | 2006-07-28 | 2012-03-07 | パナソニック株式会社 | Matrix converter and device equipped with the same |
JP2008039305A (en) * | 2006-08-07 | 2008-02-21 | Daikin Ind Ltd | Hot water circulation heating system performing heating by circulating hot water in building and water spraying device for evaporator |
RU2466979C2 (en) * | 2006-08-24 | 2012-11-20 | Е.И.Дюпон Де Немур Энд Компани | Method of separating fluorolefins from fluorohydrogen by azeotropic distillation |
JP4859694B2 (en) | 2007-02-02 | 2012-01-25 | 三菱重工業株式会社 | Multistage compressor |
US8672733B2 (en) | 2007-02-06 | 2014-03-18 | Nordyne Llc | Ventilation airflow rate control |
JP4840215B2 (en) | 2007-03-27 | 2011-12-21 | 株式会社日立製作所 | Permanent magnet type rotating electric machine and compressor using the same |
JP2008286422A (en) * | 2007-05-15 | 2008-11-27 | Panasonic Corp | Refrigerator |
JP2008295161A (en) * | 2007-05-23 | 2008-12-04 | Daikin Ind Ltd | Power conversion device |
JP2009063216A (en) | 2007-09-06 | 2009-03-26 | Hitachi Appliances Inc | Heat exchanger and air conditioner using the same |
JP2009092274A (en) * | 2007-10-05 | 2009-04-30 | Hitachi Appliances Inc | Air conditioner |
JP5050763B2 (en) * | 2007-10-05 | 2012-10-17 | パナソニック株式会社 | Water heater |
JP5038105B2 (en) * | 2007-11-19 | 2012-10-03 | パナソニック株式会社 | Valve device and air conditioner having the same |
JP4738401B2 (en) | 2007-11-28 | 2011-08-03 | 三菱電機株式会社 | Air conditioner |
JP2009150620A (en) | 2007-12-21 | 2009-07-09 | Toshiba Carrier Corp | Dual heat pump type air conditioning system |
JP5130910B2 (en) * | 2007-12-28 | 2013-01-30 | ダイキン工業株式会社 | Air conditioner and refrigerant quantity determination method |
EP2237399B1 (en) | 2008-01-25 | 2017-09-27 | Mitsubishi Electric Corporation | Induction electric motor and hermetic compressor |
WO2009105517A2 (en) * | 2008-02-21 | 2009-08-27 | E. I. Du Pont De Nemours And Company | Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and processes for separation thereof |
JP2009219268A (en) * | 2008-03-11 | 2009-09-24 | Daikin Ind Ltd | Power conversion apparatus |
JP5407157B2 (en) * | 2008-03-18 | 2014-02-05 | ダイキン工業株式会社 | Refrigeration equipment |
JP4931848B2 (en) * | 2008-03-31 | 2012-05-16 | 三菱電機株式会社 | Heat pump type outdoor unit for hot water supply |
JP4471023B2 (en) | 2008-06-12 | 2010-06-02 | ダイキン工業株式会社 | Air conditioner |
US8496845B2 (en) | 2008-07-01 | 2013-07-30 | Daikin Industries, Ltd. | Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf) |
JP4654423B2 (en) | 2008-07-22 | 2011-03-23 | 独立行政法人産業技術総合研究所 | Power converter |
JP5128424B2 (en) * | 2008-09-10 | 2013-01-23 | パナソニックヘルスケア株式会社 | Refrigeration equipment |
JP2010071530A (en) | 2008-09-17 | 2010-04-02 | Daikin Ind Ltd | Air conditioner |
US20100082162A1 (en) | 2008-09-29 | 2010-04-01 | Actron Air Pty Limited | Air conditioning system and method of control |
JP2010121927A (en) * | 2008-10-22 | 2010-06-03 | Panasonic Corp | Cooling cycle device |
JP2010103346A (en) * | 2008-10-24 | 2010-05-06 | Daido Steel Co Ltd | Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet |
JP2010119190A (en) * | 2008-11-12 | 2010-05-27 | Toyota Motor Corp | Rotor for magnet-embedded motors and magnet-embedded motor |
US20100122545A1 (en) | 2008-11-19 | 2010-05-20 | E. I. Du Pont De Nemours And Company | Tetrafluoropropene compositions and uses thereof |
JP2010164222A (en) * | 2009-01-14 | 2010-07-29 | Panasonic Corp | Finned heat exchanger |
JP5136495B2 (en) | 2009-03-27 | 2013-02-06 | パナソニック株式会社 | Heat exchanger |
EP2420765B1 (en) * | 2009-04-17 | 2018-10-24 | Daikin Industries, Ltd. | Heat source unit |
JP2011004449A (en) | 2009-06-16 | 2011-01-06 | Panasonic Corp | Matrix converter circuit |
US9250001B2 (en) | 2009-06-17 | 2016-02-02 | Emerson Electric Co. | Control of an expansion valve regulating refrigerant to an evaporator of a climate control system |
JP2011043304A (en) * | 2009-08-24 | 2011-03-03 | Hitachi Appliances Inc | Air conditioner |
JP5452138B2 (en) * | 2009-09-01 | 2014-03-26 | 三菱電機株式会社 | Refrigeration air conditioner |
CN101649189B (en) * | 2009-09-04 | 2012-05-23 | 西安交通大学 | Environmental mixed refrigerant with trifluoroiodomethane |
JP2011094841A (en) | 2009-10-28 | 2011-05-12 | Daikin Industries Ltd | Refrigerating device |
JP5542423B2 (en) | 2009-12-22 | 2014-07-09 | 東芝産業機器システム株式会社 | Rotating electric machine rotor and rotating electric machine |
JP2011202738A (en) | 2010-03-25 | 2011-10-13 | Toshiba Carrier Corp | Air conditioner |
JP2011252636A (en) | 2010-06-01 | 2011-12-15 | Panasonic Corp | Hot-water heating hot-water supply apparatus |
JP5388969B2 (en) | 2010-08-23 | 2014-01-15 | 三菱電機株式会社 | Heat exchanger and air conditioner equipped with this heat exchanger |
CN102401519B (en) * | 2010-09-16 | 2016-08-10 | 乐金电子(天津)电器有限公司 | The off-premises station of air-conditioner |
FR2964976B1 (en) * | 2010-09-20 | 2012-08-24 | Arkema France | COMPOSITION BASED ON 1,3,3,3-TETRAFLUOROPROPENE |
JP5595245B2 (en) * | 2010-11-26 | 2014-09-24 | 三菱電機株式会社 | Refrigeration equipment |
JP2012132637A (en) * | 2010-12-22 | 2012-07-12 | Daikin Industries Ltd | Outdoor unit for air conditioner |
JP5716408B2 (en) | 2011-01-18 | 2015-05-13 | ダイキン工業株式会社 | Power converter |
JP5721480B2 (en) * | 2011-03-10 | 2015-05-20 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP5821756B2 (en) * | 2011-04-21 | 2015-11-24 | 株式会社デンソー | Refrigeration cycle equipment |
DE112012002154B4 (en) | 2011-05-19 | 2022-06-30 | AGC Inc. | Working medium and its use in a heat cycle process system |
DE112012002162T5 (en) | 2011-05-19 | 2014-02-27 | Asahi Glass Company, Limited | Working medium and heat cycle process system |
EP2789933B1 (en) | 2011-12-06 | 2016-11-23 | Mitsubishi Electric Corporation | Heat pump type heating/hot-water supply system |
JP6065429B2 (en) | 2011-12-08 | 2017-01-25 | パナソニック株式会社 | Air conditioner |
JP2013126281A (en) | 2011-12-14 | 2013-06-24 | Daikin Ind Ltd | Method for manufacturing field element, and end plate for field element |
JP5506770B2 (en) | 2011-12-16 | 2014-05-28 | 三菱電機株式会社 | Air conditioner |
JP5881435B2 (en) | 2012-01-27 | 2016-03-09 | 三菱電機株式会社 | Heat exchanger and air conditioner equipped with the same |
JP5867116B2 (en) | 2012-01-30 | 2016-02-24 | ダイキン工業株式会社 | Refrigeration unit outdoor unit |
JP6111520B2 (en) | 2012-02-22 | 2017-04-12 | ダイキン工業株式会社 | Power converter |
DE112013001644T8 (en) | 2012-03-23 | 2015-02-19 | Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. | Engine and electric compressor using it |
JP2015111012A (en) * | 2012-03-26 | 2015-06-18 | 東芝キヤリア株式会社 | Refrigeration cycle device |
JP5536817B2 (en) | 2012-03-26 | 2014-07-02 | 日立アプライアンス株式会社 | Refrigeration cycle equipment |
KR20130111186A (en) * | 2012-03-31 | 2013-10-10 | (주)코스모테크놀로지 | Hybrid heating apparatus and method thereof |
JPWO2013151043A1 (en) * | 2012-04-02 | 2015-12-17 | 東芝キヤリア株式会社 | Refrigeration cycle equipment |
JP5533926B2 (en) | 2012-04-16 | 2014-06-25 | ダイキン工業株式会社 | Air conditioner |
JP2015127593A (en) * | 2012-04-27 | 2015-07-09 | 東芝キヤリア株式会社 | Outdoor unit of air conditioner |
US20130283832A1 (en) * | 2012-04-30 | 2013-10-31 | Trane International Inc. | Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant |
JP5500240B2 (en) | 2012-05-23 | 2014-05-21 | ダイキン工業株式会社 | Refrigeration equipment |
JP5516712B2 (en) * | 2012-05-28 | 2014-06-11 | ダイキン工業株式会社 | Refrigeration equipment |
JP5673612B2 (en) * | 2012-06-27 | 2015-02-18 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP5805598B2 (en) * | 2012-09-12 | 2015-11-04 | 三菱電機株式会社 | Refrigeration cycle equipment |
EP2910870B1 (en) | 2012-09-21 | 2020-01-01 | Mitsubishi Electric Corporation | Refrigeration device and method for controlling same |
JP6044238B2 (en) * | 2012-09-28 | 2016-12-14 | ダイキン工業株式会社 | Air conditioner |
WO2014068655A1 (en) | 2012-10-30 | 2014-05-08 | 三菱電機株式会社 | Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same |
JP5516695B2 (en) | 2012-10-31 | 2014-06-11 | ダイキン工業株式会社 | Air conditioner |
CN103032996B (en) * | 2012-12-12 | 2015-03-11 | 宁波奥克斯电气有限公司 | Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down |
JP5776746B2 (en) | 2013-01-29 | 2015-09-09 | ダイキン工業株式会社 | Air conditioner |
CN108469126A (en) | 2013-01-31 | 2018-08-31 | 日立江森自控空调有限公司 | Outdoor unit and the freezing cycle device for using the outdoor unit |
JP2014152999A (en) | 2013-02-08 | 2014-08-25 | Daikin Ind Ltd | Air conditioner |
WO2014128831A1 (en) * | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Air conditioning device |
WO2014156190A1 (en) | 2013-03-29 | 2014-10-02 | パナソニックヘルスケア株式会社 | Dual refrigeration device |
CZ2014196A3 (en) * | 2013-04-17 | 2015-08-19 | Mitsubishi Electric Corporation | Refrigerant compressor |
EP2993213B1 (en) * | 2013-04-30 | 2020-07-15 | AGC Inc. | Composition containing trifluoroethylene |
JP6384475B2 (en) | 2013-04-30 | 2018-09-05 | Agc株式会社 | Working medium for heat cycle |
CN103363705B (en) * | 2013-05-28 | 2015-05-13 | 广东美的制冷设备有限公司 | Refrigeration system, refrigeration equipment comprising refrigeration system and control method of refrigeration equipment |
JPWO2014203355A1 (en) * | 2013-06-19 | 2017-02-23 | 三菱電機株式会社 | Refrigeration cycle equipment |
EP3012557A4 (en) * | 2013-06-19 | 2017-02-22 | Mitsubishi Electric Corporation | Refrigeration cycle device |
JP6157616B2 (en) * | 2013-06-19 | 2017-07-05 | 三菱電機株式会社 | Refrigeration cycle equipment |
GB2530915C (en) * | 2013-06-19 | 2019-10-30 | Mitsubishi Electric Corp | Air-conditioning apparatus |
JP5850204B2 (en) * | 2013-07-12 | 2016-02-03 | 旭硝子株式会社 | Working medium for heat cycle, composition for heat cycle system, and heat cycle system |
KR101525849B1 (en) * | 2013-07-16 | 2015-06-05 | 삼성전자 주식회사 | Compressor and air conditioning apparatus using the same |
JP2015023721A (en) * | 2013-07-22 | 2015-02-02 | ダイキン工業株式会社 | Rotor, motor and compressor |
AU2014297674B2 (en) * | 2013-07-29 | 2016-06-16 | Mitsubishi Electric Corporation | Heat pump apparatus |
GB2535383B (en) * | 2013-07-30 | 2016-10-19 | Mexichem Amanco Holding Sa | Heat transfer compositions |
JP6225548B2 (en) * | 2013-08-08 | 2017-11-08 | 株式会社富士通ゼネラル | Air conditioner |
JP2015055455A (en) | 2013-09-13 | 2015-03-23 | 三菱電機株式会社 | Outdoor unit and air conditioner |
CN105579790B (en) * | 2013-09-27 | 2017-04-05 | 松下健康医疗控股株式会社 | Refrigerating plant |
JP2015078789A (en) | 2013-10-16 | 2015-04-23 | 三菱電機株式会社 | Heat exchanger and air conditioning device including heat exchanger |
JP6118227B2 (en) | 2013-10-22 | 2017-04-19 | 株式会社日立産機システム | Permanent magnet rotating electric machine and compressor using the same |
WO2015071967A1 (en) * | 2013-11-12 | 2015-05-21 | 三菱電機株式会社 | Refrigeration system |
JP5661903B2 (en) | 2013-12-04 | 2015-01-28 | 三菱電機株式会社 | Compressor |
US10103588B2 (en) | 2013-12-05 | 2018-10-16 | Mitsubishi Electric Corporation | Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device |
KR102135086B1 (en) * | 2013-12-10 | 2020-07-17 | 엘지전자 주식회사 | Motor driving device and air conditioner including the same |
JP2015114082A (en) | 2013-12-13 | 2015-06-22 | ダイキン工業株式会社 | Refrigerant pipeline connection body and manufacturing method thereof |
CN109665936A (en) * | 2014-01-30 | 2019-04-23 | Agc株式会社 | The manufacturing method of trifluoro-ethylene |
CN106029821B (en) | 2014-01-31 | 2020-06-02 | Agc株式会社 | Working medium for heat cycle, composition for heat cycle system, and heat cycle system |
JP6252211B2 (en) * | 2014-02-03 | 2017-12-27 | ダイキン工業株式会社 | Air conditioning system |
JP6354616B2 (en) * | 2014-02-20 | 2018-07-11 | 旭硝子株式会社 | Composition for thermal cycle system and thermal cycle system |
WO2015125884A1 (en) | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | Composition for heat cycle system, and heat cycle system |
JP6481680B2 (en) | 2014-02-20 | 2019-03-13 | Agc株式会社 | Working medium for heat cycle |
CN106029853B (en) * | 2014-02-20 | 2019-04-09 | Agc株式会社 | Heat circulating system composition and heat circulating system |
JP6614128B2 (en) * | 2014-02-20 | 2019-12-04 | Agc株式会社 | Composition for thermal cycle system and thermal cycle system |
JP6375639B2 (en) | 2014-02-21 | 2018-08-22 | ダイキン工業株式会社 | Air conditioner |
WO2015136981A1 (en) | 2014-03-14 | 2015-09-17 | 三菱電機株式会社 | Compressor and refrigeration cycle system |
CN106104174B (en) * | 2014-03-14 | 2019-05-03 | 三菱电机株式会社 | Freezing cycle device |
WO2015140874A1 (en) * | 2014-03-17 | 2015-09-24 | 三菱電機株式会社 | Air conditioning device |
WO2015140884A1 (en) * | 2014-03-17 | 2015-09-24 | 三菱電機株式会社 | Refrigeration cycle apparatus |
US20170121581A1 (en) | 2014-03-17 | 2017-05-04 | Asahi Glass Company, Limited | Heat pump apparatus |
JP6524995B2 (en) * | 2014-03-18 | 2019-06-05 | Agc株式会社 | Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system |
JP6105511B2 (en) * | 2014-04-10 | 2017-03-29 | 三菱電機株式会社 | Heat pump equipment |
CN103940018A (en) * | 2014-05-06 | 2014-07-23 | 北京德能恒信科技有限公司 | Heat pipe air conditioner all-in-one machine with evaporative condenser |
JP5897062B2 (en) * | 2014-05-08 | 2016-03-30 | 三菱電機株式会社 | Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method |
JP2015218912A (en) * | 2014-05-14 | 2015-12-07 | パナソニックIpマネジメント株式会社 | Air conditioner and load adjustment device used for the same |
JP2015218909A (en) | 2014-05-14 | 2015-12-07 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water generation device including the same |
JP2016011423A (en) | 2014-06-06 | 2016-01-21 | 旭硝子株式会社 | Working medium for heat cycle, composition for heat cycle system and heat cycle system |
EP3153560A4 (en) * | 2014-06-06 | 2018-01-10 | Asahi Glass Company, Limited | Working medium for heat cycle, composition for heat cycle system, and heat cycle system |
JPWO2015186671A1 (en) | 2014-06-06 | 2017-04-20 | 旭硝子株式会社 | Composition for thermal cycle system and thermal cycle system |
JP2015229767A (en) * | 2014-06-06 | 2015-12-21 | 旭硝子株式会社 | Actuation medium for heat cycle |
JPWO2015186670A1 (en) | 2014-06-06 | 2017-04-20 | 旭硝子株式会社 | Composition for thermal cycle system and thermal cycle system |
CN106414654A (en) * | 2014-06-06 | 2017-02-15 | 旭硝子株式会社 | Working medium for heat cycle, composition for heat cycle system, and heat cycle system |
JP2016001062A (en) | 2014-06-11 | 2016-01-07 | パナソニックIpマネジメント株式会社 | Inverter control device |
JP6519909B2 (en) | 2014-07-18 | 2019-05-29 | 出光興産株式会社 | Refrigerating machine oil composition and refrigerating apparatus |
JP6188951B2 (en) * | 2014-07-31 | 2017-08-30 | 三菱電機株式会社 | Refrigerant distributor, heat exchanger and refrigeration cycle apparatus |
JP2016033426A (en) * | 2014-07-31 | 2016-03-10 | 日立アプライアンス株式会社 | Air conditioner |
JP6504172B2 (en) * | 2014-08-12 | 2019-04-24 | Agc株式会社 | Thermal cycle system |
US10295236B2 (en) | 2014-08-13 | 2019-05-21 | Trane International Inc. | Compressor heating system |
JP6543450B2 (en) * | 2014-09-29 | 2019-07-10 | Phcホールディングス株式会社 | Refrigeration system |
KR101892880B1 (en) | 2014-10-16 | 2018-08-28 | 미쓰비시덴키 가부시키가이샤 | Refrigeration cycle device |
US9982904B2 (en) | 2014-11-07 | 2018-05-29 | Daikin Industries, Ltd. | Air conditioning system |
US20170338707A1 (en) | 2014-12-22 | 2017-11-23 | Mitsubishi Electric Corporation | Rotor for rotary electrical machine |
US10539335B2 (en) | 2014-12-26 | 2020-01-21 | Daikin Industries, Ltd. | Regenerative air conditioner |
JP6028815B2 (en) | 2015-01-19 | 2016-11-24 | ダイキン工業株式会社 | Heat exchange unit of air conditioner |
JP6634393B2 (en) * | 2015-02-09 | 2020-01-22 | Agc株式会社 | Working medium for air conditioner for electric vehicle and working medium composition for air conditioner for electric vehicle |
WO2016132818A1 (en) * | 2015-02-19 | 2016-08-25 | ダイキン工業株式会社 | Composition containing mixture of fluorinated hydrocarbons, and method for producing same |
CN106032955B (en) * | 2015-03-09 | 2020-06-16 | 大金工业株式会社 | Refrigerant recovery unit and outdoor unit connected to the same |
JP2016174461A (en) * | 2015-03-17 | 2016-09-29 | ダイキン工業株式会社 | Rotor |
JP6552851B2 (en) * | 2015-03-19 | 2019-07-31 | 三菱重工サーマルシステムズ株式会社 | Compressor driving motor and cooling method thereof |
CN204648544U (en) * | 2015-03-27 | 2015-09-16 | 中国建筑科学研究院 | Indoor environmental condition control unit and system and building system and passive type building |
JPWO2016157538A1 (en) | 2015-04-03 | 2017-04-27 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP6796831B2 (en) * | 2015-05-14 | 2020-12-09 | Agc株式会社 | Method for manufacturing fluid composition, method for manufacturing refrigerant composition, and method for manufacturing air conditioner |
WO2016190232A1 (en) * | 2015-05-22 | 2016-12-01 | ダイキン工業株式会社 | Fluid supplying device for temperature adjustment |
JP6582236B2 (en) | 2015-06-11 | 2019-10-02 | パナソニックIpマネジメント株式会社 | Refrigeration cycle equipment |
JP6604082B2 (en) * | 2015-08-07 | 2019-11-13 | ダイキン工業株式会社 | Refrigeration equipment |
KR20180019687A (en) | 2015-08-21 | 2018-02-26 | 미쓰비시덴키 가부시키가이샤 | Rotary electric machines and air-conditioners |
JP2017046430A (en) | 2015-08-26 | 2017-03-02 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | Motor controller, fluid machinery, air conditioner, and program |
CN204943959U (en) * | 2015-09-01 | 2016-01-06 | 河北纳森空调有限公司 | Environmental protection refrigerant R410A low-temperature air energy heat pump water chiller-heater unit |
JP6584513B2 (en) | 2015-09-01 | 2019-10-02 | 三菱電機株式会社 | Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner |
JP2017053285A (en) | 2015-09-10 | 2017-03-16 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | Compressor |
JP6274277B2 (en) | 2015-09-30 | 2018-02-07 | ダイキン工業株式会社 | Refrigeration equipment |
JP6733145B2 (en) | 2015-09-30 | 2020-07-29 | ダイキン工業株式会社 | Water heat exchanger housing unit |
CN205261858U (en) * | 2015-11-12 | 2016-05-25 | 珠海丽日帐篷有限公司 | Medium -and -large -sized integral covering or awning on a car, boat, etc. air conditioner for room |
JPWO2017115636A1 (en) | 2015-12-28 | 2018-10-18 | Agc株式会社 | Refrigeration cycle equipment |
JP6169286B1 (en) | 2016-01-07 | 2017-07-26 | 三菱電機株式会社 | Permanent magnet embedded electric motor, compressor and refrigeration air conditioner |
JP6762719B2 (en) * | 2016-01-08 | 2020-09-30 | 株式会社デンソーエアクール | How to make a heat exchanger |
CN109073295A (en) | 2016-01-12 | 2018-12-21 | Agc株式会社 | Refrigerating circulatory device and heat circulating system |
WO2017131013A1 (en) | 2016-01-29 | 2017-08-03 | 旭硝子株式会社 | Refrigeration cycle device |
JP2017145975A (en) * | 2016-02-15 | 2017-08-24 | 三菱電機株式会社 | Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device |
EP3421798B1 (en) | 2016-02-22 | 2020-11-11 | Agc Inc. | Compressor and heat cycle system |
WO2017145826A1 (en) * | 2016-02-24 | 2017-08-31 | 旭硝子株式会社 | Refrigeration cycle device |
US9976759B2 (en) | 2016-02-29 | 2018-05-22 | Johnson Controls Technology Company | Rain shield for a heat exchanger component |
JP2017192190A (en) | 2016-04-12 | 2017-10-19 | 日立ジョンソンコントロールズ空調株式会社 | Permanent magnet motor, compressor and air conditioner using the same |
US11131490B2 (en) * | 2016-05-09 | 2021-09-28 | Mitsubishi Electric Corporation | Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit |
ES2811851T3 (en) | 2016-06-27 | 2021-03-15 | Mitsubishi Electric Corp | Refrigeration cycle device |
EP3492830B1 (en) | 2016-07-28 | 2022-01-19 | Daikin Industries, Ltd. | Multi air conditioner |
JP6731865B2 (en) | 2017-02-06 | 2020-07-29 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner outdoor unit, air conditioner, and air conditioning management method |
US11437877B2 (en) | 2017-05-01 | 2022-09-06 | Mitsubishi Electric Corporation | Rotor, motor, compressor, and air conditioner |
JP6551571B2 (en) | 2017-07-24 | 2019-07-31 | ダイキン工業株式会社 | Refrigerant composition |
CN111033948B (en) | 2017-09-05 | 2022-08-05 | 三菱电机株式会社 | Alternating pole rotor, motor, compressor, blower, and air conditioner |
EP3689591B1 (en) * | 2017-09-29 | 2023-01-25 | UBE Corporation | Layered tube |
US20200318023A1 (en) * | 2017-11-30 | 2020-10-08 | The Lubrizol Corporation | Aromatic Ester Lubricant for use with Low Global Warming Potential Refrigerants |
US20200363106A1 (en) | 2017-12-18 | 2020-11-19 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US20200326103A1 (en) | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Refrigeration cycle |
US20200333054A1 (en) | 2017-12-18 | 2020-10-22 | Daikin Industries, Ltd. | Compressor |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US20200332164A1 (en) | 2017-12-18 | 2020-10-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
WO2019123805A1 (en) | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
KR20200098592A (en) | 2017-12-18 | 2020-08-20 | 다이킨 고교 가부시키가이샤 | Composition containing a refrigerant, its use, and a refrigerator having the same, and a method of operating the refrigerator |
US20200392387A1 (en) | 2017-12-18 | 2020-12-17 | Daikin Industries, Ltd. | Air conditioner |
US20200325376A1 (en) | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US20200326110A1 (en) | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Compressor |
US20200392388A1 (en) | 2017-12-18 | 2020-12-17 | Daikin Industries, Ltd. | Refrigerant-containing composition, use thereof and refrigerator comprising same, and method for operating said refrigerator |
US20200393178A1 (en) | 2017-12-18 | 2020-12-17 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
EP3730578B1 (en) | 2017-12-18 | 2023-08-23 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US20200326100A1 (en) | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Warm-water generating apparatus |
US20200385622A1 (en) | 2017-12-18 | 2020-12-10 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US20200363112A1 (en) | 2017-12-18 | 2020-11-19 | Daikin Industries, Ltd. | Air conditioner |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US20200325375A1 (en) | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US20200347283A1 (en) | 2017-12-18 | 2020-11-05 | Daikin Industries, Ltd. | Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil |
JP7269499B2 (en) | 2017-12-18 | 2023-05-09 | ダイキン工業株式会社 | refrigeration cycle equipment |
US10982863B2 (en) | 2018-04-10 | 2021-04-20 | Carrier Corporation | HVAC fan inlet |
CN112805352A (en) | 2018-10-01 | 2021-05-14 | Agc株式会社 | Composition for heat cycle system and heat cycle system |
CN113366268A (en) | 2019-02-05 | 2021-09-07 | 大金工业株式会社 | Refrigerant-containing composition, and freezing method, operation method for freezing device, and freezing device using same |
-
2018
- 2018-11-13 JP JP2019560868A patent/JP7269499B2/en active Active
- 2018-11-13 BR BR112020011145-7A patent/BR112020011145A2/en not_active Application Discontinuation
- 2018-11-13 EP EP18890613.5A patent/EP3730593A4/en not_active Withdrawn
- 2018-11-13 EP EP18889979.3A patent/EP3730569A4/en active Pending
- 2018-11-13 KR KR1020207020540A patent/KR102655619B1/en active IP Right Grant
- 2018-11-13 US US16/954,631 patent/US20200392389A1/en not_active Abandoned
- 2018-11-13 CN CN201880081097.XA patent/CN111511874A/en active Pending
- 2018-11-13 JP JP2019560869A patent/JPWO2019123898A1/en active Pending
- 2018-11-13 AU AU2018390660A patent/AU2018390660B2/en active Active
- 2018-11-13 CN CN201880081165.2A patent/CN111479910A/en not_active Withdrawn
- 2018-11-13 US US16/954,651 patent/US20200339856A1/en not_active Abandoned
- 2018-12-10 JP JP2019560980A patent/JPWO2019124138A1/en not_active Withdrawn
- 2018-12-10 EP EP18892942.6A patent/EP3730870A4/en active Pending
- 2018-12-10 JP JP2019560984A patent/JPWO2019124145A1/en active Pending
- 2018-12-10 BR BR112020010676-3A patent/BR112020010676A2/en active Search and Examination
- 2018-12-10 US US16/954,669 patent/US20210164703A1/en not_active Abandoned
- 2018-12-10 US US16/954,973 patent/US20200333051A1/en not_active Abandoned
- 2018-12-10 EP EP18892500.2A patent/EP3730868A4/en not_active Withdrawn
- 2018-12-10 CN CN201880081267.4A patent/CN111480039A/en not_active Withdrawn
- 2018-12-10 AU AU2018387884A patent/AU2018387884B2/en active Active
- 2018-12-10 JP JP2019560981A patent/JPWO2019124139A1/en active Pending
- 2018-12-10 JP JP2019560985A patent/JPWO2019124146A1/en not_active Withdrawn
- 2018-12-10 CN CN201880081190.0A patent/CN111492188B/en active Active
- 2018-12-10 CN CN201880081124.3A patent/CN111479896A/en active Pending
- 2018-12-10 KR KR1020207019793A patent/KR20200100681A/en active Search and Examination
- 2018-12-10 JP JP2019560982A patent/JP7212265B2/en active Active
- 2018-12-10 AU AU2018387883A patent/AU2018387883A1/en not_active Withdrawn
- 2018-12-10 KR KR1020207020709A patent/KR102655073B1/en active IP Right Grant
- 2018-12-10 BR BR112020009389-0A patent/BR112020009389A2/en not_active Application Discontinuation
- 2018-12-10 US US16/954,613 patent/US20200309437A1/en not_active Abandoned
- 2018-12-10 US US16/955,465 patent/US20210003323A1/en not_active Abandoned
- 2018-12-10 EP EP18892854.3A patent/EP3730584A4/en not_active Withdrawn
- 2018-12-10 CN CN201880081269.3A patent/CN111480040B/en active Active
- 2018-12-10 EP EP18892525.9A patent/EP3730869A4/en not_active Withdrawn
- 2018-12-11 CN CN201880081099.9A patent/CN111480038B/en active Active
- 2018-12-11 AU AU2018387900A patent/AU2018387900A1/en not_active Abandoned
- 2018-12-11 US US16/954,956 patent/US20200378662A1/en not_active Abandoned
- 2018-12-13 EP EP18891586.2A patent/EP3730865A4/en active Pending
- 2018-12-13 JP JP2019561029A patent/JP7231834B2/en active Active
- 2018-12-13 US US16/955,218 patent/US20200333049A1/en not_active Abandoned
- 2018-12-13 CN CN201880081268.9A patent/CN111527353B/en active Active
- 2018-12-13 CN CN201880081324.9A patent/CN111492183A/en active Pending
- 2018-12-13 US US16/954,967 patent/US20200309411A1/en not_active Abandoned
- 2018-12-13 KR KR1020207020086A patent/KR102601018B1/en active IP Right Grant
- 2018-12-13 AU AU2018388034A patent/AU2018388034B2/en active Active
- 2018-12-13 EP EP18890331.4A patent/EP3730861A4/en active Pending
- 2018-12-13 JP JP2019561028A patent/JP7244763B2/en active Active
- 2018-12-17 BR BR112020010607-0A patent/BR112020010607A2/en not_active Application Discontinuation
- 2018-12-17 EP EP18893145.5A patent/EP3730871A4/en not_active Withdrawn
- 2018-12-17 AU AU2018391876A patent/AU2018391876B2/en active Active
- 2018-12-17 US US16/772,927 patent/US20210163804A1/en not_active Abandoned
- 2018-12-17 EP EP18891798.3A patent/EP3730577A4/en not_active Withdrawn
- 2018-12-17 KR KR1020207020196A patent/KR102706207B1/en active IP Right Grant
- 2018-12-17 US US16/954,745 patent/US20210095897A1/en not_active Abandoned
- 2018-12-17 EP EP18890623.4A patent/EP3730570A4/en active Pending
- 2018-12-17 KR KR1020207019794A patent/KR20200100682A/en active Search and Examination
- 2018-12-17 KR KR1020207020539A patent/KR20200100718A/en unknown
- 2018-12-17 CN CN201880081270.6A patent/CN111479899B/en active Active
- 2018-12-17 US US16/954,718 patent/US20200386459A1/en not_active Abandoned
- 2018-12-17 BR BR112020010318-7A patent/BR112020010318A2/en not_active Application Discontinuation
- 2018-12-17 CN CN201880081250.9A patent/CN111542580A/en active Pending
- 2018-12-17 EP EP18892861.8A patent/EP3730585A4/en not_active Withdrawn
- 2018-12-17 JP JP2019561087A patent/JPWO2019124330A1/en active Pending
- 2018-12-17 AU AU2018387985A patent/AU2018387985A1/en not_active Abandoned
- 2018-12-17 BR BR112020010468-0A patent/BR112020010468A2/en not_active Application Discontinuation
- 2018-12-17 AU AU2018387983A patent/AU2018387983A1/en not_active Withdrawn
- 2018-12-17 JP JP2019561084A patent/JPWO2019124327A1/en active Pending
- 2018-12-17 JP JP2019561085A patent/JPWO2019124328A1/en active Pending
- 2018-12-17 JP JP2019561083A patent/JPWO2019124326A1/en not_active Withdrawn
- 2018-12-17 US US16/955,222 patent/US20200333041A1/en not_active Abandoned
- 2018-12-17 CN CN201880081109.9A patent/CN111492186A/en active Pending
- 2018-12-17 CN CN201880081123.9A patent/CN111492031A/en active Pending
- 2018-12-17 JP JP2019561086A patent/JP7284405B2/en active Active
- 2018-12-18 US US16/954,679 patent/US20200309419A1/en not_active Abandoned
- 2018-12-18 AU AU2018391894A patent/AU2018391894A1/en not_active Withdrawn
- 2018-12-18 WO PCT/JP2018/046666 patent/WO2019124409A1/en unknown
- 2018-12-18 AU AU2018391186A patent/AU2018391186B2/en active Active
- 2018-12-18 JP JP2019561107A patent/JPWO2019124360A1/en active Pending
- 2018-12-18 JP JP2019561114A patent/JPWO2019124380A1/en active Pending
- 2018-12-18 US US16/772,976 patent/US20200393175A1/en not_active Abandoned
- 2018-12-18 BR BR112020011168-6A patent/BR112020011168A2/en not_active Application Discontinuation
- 2018-12-18 JP JP2019560513A patent/JPWO2019124409A1/en active Pending
- 2018-12-18 KR KR1020207020085A patent/KR102601975B1/en active IP Right Grant
- 2018-12-18 EP EP18890850.3A patent/EP3730572A4/en not_active Withdrawn
- 2018-12-18 US US16/772,961 patent/US20210164701A1/en not_active Abandoned
- 2018-12-18 BR BR112020010413-2A patent/BR112020010413A2/en unknown
- 2018-12-18 CN CN201880081382.1A patent/CN111480041B/en active Active
- 2018-12-18 JP JP2019561124A patent/JP7303445B2/en active Active
- 2018-12-18 JP JP2019561127A patent/JPWO2019124398A1/en active Pending
- 2018-12-18 EP EP18890744.8A patent/EP3730571A4/en not_active Withdrawn
- 2018-12-18 CN CN201880081186.4A patent/CN111527178A/en not_active Withdrawn
- 2018-12-18 CN CN202210502712.8A patent/CN114838515A/en not_active Withdrawn
- 2018-12-18 KR KR1020207020921A patent/KR20200100143A/en unknown
- 2018-12-18 US US16/772,986 patent/US20200393176A1/en not_active Abandoned
- 2018-12-18 US US16/955,207 patent/US20200340714A1/en not_active Abandoned
- 2018-12-18 JP JP2019561108A patent/JPWO2019124361A1/en active Pending
- 2018-12-18 EP EP18890338.9A patent/EP3730864A4/en not_active Withdrawn
- 2018-12-18 CN CN201880081255.1A patent/CN111479898A/en active Pending
- 2018-12-18 CN CN201880081271.0A patent/CN111492189B/en active Active
- 2018-12-18 CN CN201880081108.4A patent/CN111492185B/en active Active
- 2018-12-18 AU AU2018388050A patent/AU2018388050A1/en not_active Withdrawn
- 2018-12-18 KR KR1020207020535A patent/KR20200100716A/en unknown
- 2018-12-18 US US16/772,953 patent/US20210164698A1/en not_active Abandoned
- 2018-12-18 US US16/955,565 patent/US11535781B2/en active Active
- 2018-12-18 EP EP18892119.1A patent/EP3730867A4/en not_active Withdrawn
- 2018-12-18 CN CN201880081361.XA patent/CN111492033A/en active Pending
- 2018-12-18 KR KR1020207020197A patent/KR20200100694A/en active Search and Examination
- 2018-12-18 JP JP2019561109A patent/JPWO2019124362A1/en active Pending
- 2018-12-18 EP EP18891707.4A patent/EP3730576A4/en not_active Withdrawn
- 2018-12-18 BR BR112020010388-8A patent/BR112020010388A2/en not_active Application Discontinuation
- 2018-12-18 JP JP2019561113A patent/JPWO2019124379A1/en active Pending
- 2018-12-18 EP EP18891899.9A patent/EP3730580A4/en not_active Withdrawn
- 2018-12-18 BR BR112020009626-1A patent/BR112020009626A2/en unknown
- 2018-12-18 US US16/954,702 patent/US20200362215A1/en not_active Abandoned
- 2018-12-18 CN CN201880081129.6A patent/CN111479897A/en not_active Withdrawn
- 2018-12-18 EP EP18892000.3A patent/EP3730866A4/en active Pending
-
2020
- 2020-06-15 PH PH12020550899A patent/PH12020550899A1/en unknown
- 2020-06-16 PH PH12020550920A patent/PH12020550920A1/en unknown
- 2020-06-16 PH PH12020550914A patent/PH12020550914A1/en unknown
- 2020-06-16 PH PH12020550917A patent/PH12020550917A1/en unknown
- 2020-06-16 PH PH12020550915A patent/PH12020550915A1/en unknown
- 2020-06-16 PH PH12020550919A patent/PH12020550919A1/en unknown
- 2020-06-16 PH PH12020550913A patent/PH12020550913A1/en unknown
- 2020-06-16 PH PH12020550912A patent/PH12020550912A1/en unknown
- 2020-06-16 PH PH12020550911A patent/PH12020550911A1/en unknown
- 2020-06-16 PH PH12020550918A patent/PH12020550918A1/en unknown
-
2022
- 2022-11-21 US US17/991,204 patent/US20230097829A1/en not_active Abandoned
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11492527B2 (en) * | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11535781B2 (en) | 2017-12-18 | 2022-12-27 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
US12031758B2 (en) | 2020-04-20 | 2024-07-09 | Mitsubishi Electric Corporation | Relay unit and air-conditioning apparatus including the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11441819B2 (en) | Refrigeration cycle apparatus | |
US20200333041A1 (en) | Refrigeration cycle apparatus | |
US20200393178A1 (en) | Refrigeration cycle apparatus | |
US11435118B2 (en) | Heat source unit and refrigeration cycle apparatus | |
US11820933B2 (en) | Refrigeration cycle apparatus | |
WO2019124327A1 (en) | Refrigeration cycle device | |
US11506425B2 (en) | Refrigeration cycle apparatus | |
US20200325375A1 (en) | Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus | |
US11352535B2 (en) | Composition containing coolant, heat transfer medium and heat cycle system | |
US20200333054A1 (en) | Compressor | |
US20200325376A1 (en) | Refrigeration cycle apparatus | |
US11248152B2 (en) | Composition containing coolant, heat transfer medium and heat cycle system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIKIN INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ITANO, MITSUSHI;KARUBE, DAISUKE;YOTSUMOTO, YUUKI;AND OTHERS;SIGNING DATES FROM 20190206 TO 20190227;REEL/FRAME:052977/0685 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |