JP2015218909A - Refrigeration cycle device and hot water generation device including the same - Google Patents

Refrigeration cycle device and hot water generation device including the same Download PDF

Info

Publication number
JP2015218909A
JP2015218909A JP2014100089A JP2014100089A JP2015218909A JP 2015218909 A JP2015218909 A JP 2015218909A JP 2014100089 A JP2014100089 A JP 2014100089A JP 2014100089 A JP2014100089 A JP 2014100089A JP 2015218909 A JP2015218909 A JP 2015218909A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temperature
pressure
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014100089A
Other languages
Japanese (ja)
Inventor
繁男 青山
Shigeo Aoyama
繁男 青山
俊二 森脇
Shunji Moriwaki
俊二 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014100089A priority Critical patent/JP2015218909A/en
Publication of JP2015218909A publication Critical patent/JP2015218909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device which is more suitable for using a working fluid including R1123.SOLUTION: A refrigeration cycle device includes: a refrigerant circuit 2 in which a compressor 21, a radiator 22, main expansion means 24, and an evaporator 25 are connected in an annular manner by refrigerant piping; and a control device 4 for controlling the main expansion means 24 and the compressor 21. It uses a working fluid which includes equal to or greater than 40 wt.% and less than 75 wt.% of a R1123 refrigerant as a refrigerant circulating in the refrigerant circuit 2. The control device 4 controls the compressor 21 and the main expansion means 24 so that a discharge pressure of the refrigerant discharged from the compressor 21 becomes equal to or less than a predetermined pressure, or a discharge temperature of the refrigerant discharged from the compressor 21 becomes equal to or less than a predetermined temperature. Thus, an operation is performed under a condition where it becomes equal to or less than a lower limit temperature or a lower limit pressure in which disproportionation reaction of the refrigerant occurs, so that disproportionation reaction of the refrigerant does not occur, and low GWP can be achieved while securing reliability.

Description

本発明は、R1123を含む作動流体を用いる冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus using a working fluid containing R1123.

一般に、冷凍サイクル装置は、圧縮機、必要に応じて四方弁、放熱器(または凝縮器)、キャピラリーチューブや膨張弁等の減圧器、蒸発器、等を配管接続して冷凍サイクルを構成し、その内部に冷媒を循環させることにより、冷却または加熱作用を行っている。   In general, the refrigeration cycle apparatus comprises a compressor, a four-way valve if necessary, a radiator (or a condenser), a decompressor such as a capillary tube or an expansion valve, an evaporator, etc., and constitutes a refrigeration cycle. Cooling or heating action is performed by circulating a refrigerant inside.

これらの冷凍サイクル装置における冷媒としては、フロン類(フロン類はR○○またはR○○○と記すことが、米国ASHRAE34規格により規定されている。以下、R○○またはR○○○と示す)と呼ばれるメタンまたはエタンから誘導されたハロゲン化炭化水素が知られている。   As refrigerants in these refrigeration cycle apparatuses, chlorofluorocarbons (fluorocarbons are described as ROO or ROOXX are defined by the US ASHRAE 34 standard. Hereinafter, they are indicated as ROO or RXX. ) Or halogenated hydrocarbons derived from methane or ethane are known.

上記のような冷凍サイクル装置用冷媒としては、R410Aが多く用いられているが、R410A冷媒の地球温暖化係数(GWP)は2090と大きく、地球温暖化防止の観点から問題がある。   R410A is often used as the refrigerant for the refrigeration cycle apparatus as described above, but the global warming potential (GWP) of the R410A refrigerant is as large as 2090, which is problematic from the viewpoint of preventing global warming.

そこで、地球温暖化防止の観点からは、GWPの小さな冷媒として、例えば、R1123(1,1,2−トリフルオロエチレン)や、R1132(1,2−ジフルオロエチレン)が提案されている(例えば特許文献1または特許文献2)。   Thus, from the viewpoint of preventing global warming, for example, R1123 (1,1,2-trifluoroethylene) and R1132 (1,2-difluoroethylene) have been proposed as refrigerants having a small GWP (for example, patents). Document 1 or Patent document 2).

また、従来より、この種の温水生成装置として、冷媒回路の放熱器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に主流冷媒の一部を膨張させて流入させ、放熱器から流出した主流冷媒を過冷却するものがある(例えば、特許文献3参照)。   Conventionally, as this type of hot water generator, a supercooling heat exchanger is provided downstream of the radiator of the refrigerant circuit, and a part of the mainstream refrigerant is caused to expand and flow into the supercooling heat exchanger, There is one that supercools the mainstream refrigerant that has flowed out of the radiator (see, for example, Patent Document 3).

これにより、蒸発器でのエンタルピー差が増大する。また、主流冷媒の一部をバイパスさせることにより蒸発器内および圧縮機の吸入側配管での圧力損失を減少する。このようにして、温水生成装置としての加熱/冷却能力の向上、冷凍サイクル装置の成績係数の向上を図っている。   This increases the enthalpy difference in the evaporator. Further, by bypassing a part of the mainstream refrigerant, the pressure loss in the evaporator and the suction side piping of the compressor is reduced. Thus, the improvement of the heating / cooling capability as a warm water production | generation apparatus and the improvement of the coefficient of performance of a refrigeration cycle apparatus are aimed at.

国際公開第2012/157764号International Publication No. 2012/157774 国際公開第2012/157765号International Publication No. 2012/157765 特許第3440910号公報Japanese Patent No. 3440910

しかしながら、R1123(1,1,2−トリフルオロエチレン)や、R1132(1,2−ジフルオロエチレン)は、R410Aなどの従来の冷媒に比べて安定性が低く、ラジカルを生成した場合、不均化反応により別の化合物に変化する恐れがある。不均化反応は大きな熱放出を伴うため、圧縮機や冷凍サイクル装置の信頼性を低下させる恐れがある。このため、R1123やR1132を圧縮機や冷凍サイクル装置に用いる場合には、この不均化反応を抑制する必要がある。   However, R1123 (1,1,2-trifluoroethylene) and R1132 (1,2-difluoroethylene) are less stable than conventional refrigerants such as R410A and disproportionate when they generate radicals. There is a possibility of changing to another compound by the reaction. Since the disproportionation reaction involves a large heat release, the reliability of the compressor and the refrigeration cycle apparatus may be reduced. For this reason, when using R1123 and R1132 for a compressor and a refrigerating cycle device, it is necessary to suppress this disproportionation reaction.

本発明は、上記従来のこのような課題を考慮し、R1123を含む作動流体を用いるのにより適した冷凍サイクル装置を提供するものである。   In consideration of the above-described conventional problems, the present invention provides a refrigeration cycle apparatus that is more suitable for using a working fluid containing R1123.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、主膨張手段、蒸発器が冷媒配管によって環状に接続された冷媒回路と、少なくとも、前記主膨張手段、及び、前記圧縮機を制御する制御装置と、を備え、前記冷媒回路を循環する冷媒としてR1123冷媒を40重量%以上75重量%未満含む作動流体を用い、前記制御装置は、前記圧縮機から吐出される冷媒の吐出圧力が所定圧力以下となるように、又は、前記圧縮機から吐出される冷媒の吐出温度が所定温度以下となるように、前記圧縮機及び前記主膨張手段を制御することを特徴とするものである。   In order to solve the conventional problems, a refrigeration cycle apparatus according to the present invention includes a compressor, a radiator, a main expansion unit, a refrigerant circuit in which an evaporator is annularly connected by a refrigerant pipe, at least the main expansion unit, And a control device for controlling the compressor, wherein a working fluid containing 40 wt% or more and less than 75 wt% of R1123 refrigerant is used as the refrigerant circulating in the refrigerant circuit, and the control device discharges from the compressor Controlling the compressor and the main expansion means so that the discharge pressure of the refrigerant to be discharged is equal to or lower than a predetermined pressure or the discharge temperature of the refrigerant discharged from the compressor is equal to or lower than a predetermined temperature. It is a feature.

これによって、吐出圧力及び吐出温度が所定値以下となるように圧縮機、主膨張手段が制御されるので、作動流体の吐出温度及び吐出圧力が過度に上昇し、作動流体内のR1123の分子運動が活発化した結果生じる不均化反応を抑制することが可能となり、信頼性を高めることができる。   As a result, the compressor and the main expansion means are controlled so that the discharge pressure and the discharge temperature are not more than predetermined values, so that the discharge temperature and discharge pressure of the working fluid rise excessively, and the molecular motion of R1123 in the working fluid. It becomes possible to suppress the disproportionation reaction that occurs as a result of the activation of, and to improve the reliability.

本発明は、R1123を含む作動流体を用いるのにより適した冷凍サイクル装置を得ることができる。   The present invention can provide a refrigeration cycle apparatus that is more suitable for using a working fluid containing R1123.

本発明の実施の形態1における冷凍サイクル装置及びそれを備えた温水生成装置の概略構成図1 is a schematic configuration diagram of a refrigeration cycle apparatus and a hot water generation apparatus including the refrigeration cycle apparatus according to Embodiment 1 of the present invention. R1123を含む作動流体を用いた場合において組成比率と圧力との関係から不均化反応が起こる領域と不均化反応が起こらない領域とを示すグラフThe graph which shows the area | region where disproportionation reaction arises from the relationship between a composition ratio and a pressure, and the area | region where disproportionation reaction does not occur when the working fluid containing R1123 is used. R1123を75重量%含む作動流体を用いた場合において圧力と温度との関係から不均化反応が起こる領域と不均化反応が起こらない領域とを示すグラフThe graph which shows the area | region where disproportionation reaction arises from the relationship between a pressure and temperature, and the area | region where disproportionation reaction does not take place when the working fluid which contains R1123 75weight% is used 本発明の実施の形態1における冷凍サイクル装置において凝縮温度と蒸発温度とに応じて定まる熱交換比率の目標値を示すグラフThe graph which shows the target value of the heat exchange ratio which becomes settled according to a condensation temperature and evaporation temperature in the refrigerating-cycle apparatus in Embodiment 1 of this invention. 同冷凍サイクル装置の通常運転時の制御のフローチャートFlow chart of control during normal operation of the refrigeration cycle apparatus

第1の発明は、圧縮機、放熱器、主膨張手段、蒸発器が冷媒配管によって環状に接続された冷媒回路と、少なくとも、前記主膨張手段、及び、前記圧縮機を制御する制御装置と、を備え、前記冷媒回路を循環する冷媒としてR1123冷媒を40重量%以上75重量%未満含む作動流体を用い、前記制御装置は、前記圧縮機から吐出される冷媒の吐出圧力が所定圧力以下となるように、又は、前記圧縮機から吐出される冷媒の吐出温度が所定温度以下となるように、前記圧縮機及び前記主膨張手段を制御することを特徴とする冷凍サイクル装置である。   A first invention includes a compressor, a radiator, a main expansion unit, a refrigerant circuit in which an evaporator is connected in an annular shape by a refrigerant pipe, at least the main expansion unit, and a control device that controls the compressor, And the control device uses a working fluid containing 40 wt% or more and less than 75 wt% of the R1123 refrigerant as the refrigerant circulating in the refrigerant circuit, and the control device has a discharge pressure of the refrigerant discharged from the compressor equal to or lower than a predetermined pressure. Alternatively, the compressor and the main expansion unit are controlled such that the discharge temperature of the refrigerant discharged from the compressor is equal to or lower than a predetermined temperature.

これにより、R1123を40重量%以上75重量%未満含む作動流体の吐出圧力が所定圧力(冷媒の不均化反応が発生する下限圧力)以下となるように、または、作動流体の吐出温度が所定温度(冷媒の不均化反応が発生する下限温度)以下となるように、主膨張手段、圧縮機が制御されるため、吐出圧力及び吐出温度が低下する。   As a result, the discharge pressure of the working fluid containing R1123 of 40 wt% or more and less than 75 wt% is equal to or lower than a predetermined pressure (lower limit pressure at which refrigerant disproportionation occurs), or the discharge temperature of the working fluid is predetermined. Since the main expansion means and the compressor are controlled so as to be equal to or lower than the temperature (the lower limit temperature at which the refrigerant disproportionation reaction occurs), the discharge pressure and the discharge temperature are reduced.

ここで、不均化反応は、圧力及び温度が高いほど生じやすい。したがって、吐出圧力及び吐出温度が過度に上昇し、作動流体内のR1123の分子運動が活発化した結果生じる不均化反応を抑制することが可能となり、信頼性を高めることができる。   Here, the disproportionation reaction is more likely to occur as the pressure and temperature are higher. Therefore, it becomes possible to suppress the disproportionation reaction that occurs as a result of excessive increase in the discharge pressure and discharge temperature and the activation of the molecular motion of R1123 in the working fluid, thereby improving the reliability.

第2の発明は、特に第1の発明において、前記放熱器と前記主膨張手段との間に設けられた過冷却熱交換器と、前記放熱器と前記主膨張手段との間で前記冷媒回路から分岐して
、前記過冷却熱交換器を介して、前記圧縮機の圧縮室、又は、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続するバイパス路と、前記過冷却熱交換器の上流側の前記バイパス路に設けられたバイパス膨張手段と、を備え、前記制御装置は、前記蒸発器から流出する冷媒の乾き度が0.8以上1.0未満となるように、前記圧縮機、前記主膨張手段、前記バイパス膨張手段を制御することを特徴とするものである。
The second invention is the supercooling heat exchanger provided between the radiator and the main expansion means, and the refrigerant circuit between the radiator and the main expansion means, particularly in the first invention. And a bypass passage connected to the compressor chamber of the compressor or the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger, and the supercooling heat exchange Bypass expansion means provided in the bypass path upstream of the evaporator, and the control device is configured so that the dryness of the refrigerant flowing out of the evaporator is 0.8 or more and less than 1.0. The compressor, the main expansion means, and the bypass expansion means are controlled.

これにより、蒸発器出口の冷媒乾き度が、水平管内における局所の蒸発熱伝達率が最大となる0.8以上1.0未満の間となるので、蒸発器の伝熱効率が高くなる。さらに、蒸発に寄与しない冷媒がバイパス路側に流れるため、蒸発器での冷媒圧力損失が低下し、圧縮機吸入側での圧力低下が抑制される。   Thereby, the refrigerant dryness at the outlet of the evaporator is between 0.8 and less than 1.0 at which the local evaporation heat transfer coefficient in the horizontal pipe is maximized, so that the heat transfer efficiency of the evaporator is increased. Furthermore, since the refrigerant that does not contribute to evaporation flows to the bypass path side, the refrigerant pressure loss in the evaporator is reduced, and the pressure drop on the compressor suction side is suppressed.

その結果、過冷却熱交換器とバイパス路を有する冷凍サイクル装置において、R1123を含む混合冷媒の使用により、R410AやR32に対して、GWPが1/6〜1/2に低減でき、かつ、冷媒の不均化反応が生じない吐出圧力、吐出温度での運転が可能となるため、地球温暖化の抑制、および、機器の信頼性の確保を両立できる。   As a result, in a refrigeration cycle apparatus having a supercooling heat exchanger and a bypass, GWP can be reduced to 1/6 to 1/2 with respect to R410A and R32 by using a mixed refrigerant including R1123, and the refrigerant Therefore, since it is possible to operate at a discharge pressure and a discharge temperature at which no disproportionation reaction occurs, it is possible to simultaneously suppress global warming and ensure the reliability of the device.

第3の発明は、特に第1または第2の発明の冷凍サイクル装置を備え、前記放熱器において熱媒体としての液体を加熱して、前記熱媒体を、給湯と暖房との少なくとも一方に利用することを特徴とする温水生成装置である。   The third invention particularly includes the refrigeration cycle apparatus according to the first or second invention, and heats the liquid as a heat medium in the radiator to use the heat medium for at least one of hot water supply and heating. This is a hot water generator.

これにより、放熱器は、水−空気熱交換器や、不凍液−水熱交換器など、種類を限定する必要がない。   Thereby, there is no need to limit types of radiators such as a water-air heat exchanger and an antifreeze-water heat exchanger.

したがって、放熱器により加温された熱媒体を、暖房機器(温風機、ラジエータ、床暖房パネル等)や給湯機器(カラン、シャワー)へと送り、暖房及び給湯を行うことができる。   Therefore, the heat medium heated by the radiator can be sent to a heating device (a warm air machine, a radiator, a floor heating panel, etc.) or a hot water supply device (a currant, a shower) to perform heating and hot water supply.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態における冷凍サイクル装置および温水生成装置の概略構成図を示すものである。図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus and a hot water generator in the present embodiment. In FIG. 1, the refrigeration cycle apparatus 1 </ b> A includes a refrigerant circuit 2 that circulates refrigerant, a bypass 3, and a control device 4.

冷媒回路2を循環する冷媒としては、低GWPであるR1123冷媒を40重量%以上75重量%未満含んだ作動流体が用いられている。この作動流体には、後述するR1123の不均化反応を抑制するため、R32冷媒が25重量%以上60重量%未満含まれている。低いGWPと不均化反応の抑制との両立を図る観点からは、R1123は40重量%以上60重量%未満含まれ、R32は40重量%以上60重量%未満含まれていることが好ましい。   As the refrigerant circulating in the refrigerant circuit 2, a working fluid containing 40 wt% or more and less than 75 wt% of the R1123 refrigerant having a low GWP is used. This working fluid contains 25 wt% or more and less than 60 wt% of R32 refrigerant in order to suppress the disproportionation reaction of R1123 described later. From the viewpoint of achieving both low GWP and suppression of the disproportionation reaction, R1123 is preferably contained in an amount of 40% by weight or more and less than 60% by weight, and R32 is preferably contained in an amount of 40% by weight or more and less than 60% by weight.

冷媒回路2は、圧縮機21、放熱器22、過冷却熱交換器23、主膨張弁(主膨張手段)24および蒸発器25が配管により環状に接続されて構成されている。本実施の形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。   The refrigerant circuit 2 includes a compressor 21, a radiator 22, a supercooling heat exchanger 23, a main expansion valve (main expansion means) 24, and an evaporator 25 that are annularly connected by piping. In the present embodiment, a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21.

制御装置4は、複数の運転を実行することができる。複数の運転には、放熱器22にて熱媒体を加熱する通常運転と、蒸発器25に付着した霜を融解させるデフロスト運転とを含む。通常運転とデフロスト運転とでは、冷媒回路2を流れる冷媒の循環方向が異なる。
冷媒回路2には、冷媒の循環方向を切り換えるための四方弁28が設けられている。
The control device 4 can perform a plurality of operations. The plurality of operations include a normal operation in which the heat medium is heated by the radiator 22 and a defrost operation in which the frost attached to the evaporator 25 is melted. The circulation direction of the refrigerant flowing through the refrigerant circuit 2 is different between the normal operation and the defrost operation.
The refrigerant circuit 2 is provided with a four-way valve 28 for switching the refrigerant circulation direction.

本実施の形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房に利用する温水生成装置の加熱手段を構成しており、放熱器22が、冷媒と熱媒体(水、又は、不凍液)との間で熱交換を行わせて水を加熱する熱交換器となっている。   In the present embodiment, the refrigeration cycle apparatus 1A constitutes the heating means of the hot water generating apparatus that uses the hot water generated by the heating means for heating, and the radiator 22 includes the refrigerant and the heat medium (water or antifreeze liquid). ) And heat exchanger to heat water.

具体的には、放熱器22に供給管71と回収管72が接続されて熱媒体経路70が構成されている。熱媒体は、供給管71を通じて放熱器22に水が供給され、放熱器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。回収管72により回収された水(温水)は、例えばラジエータ等の暖房機器やカラン等の給湯端末に、直接的または貯湯タンクを介して間接的に送られ、これにより暖房や給湯が行われる。   Specifically, the supply pipe 71 and the recovery pipe 72 are connected to the radiator 22 to configure the heat medium path 70. As for the heat medium, water is supplied to the radiator 22 through the supply pipe 71, and water (hot water) heated by the radiator 22 is collected through the collection pipe 72. The water (hot water) recovered by the recovery pipe 72 is sent, for example, to a heating device such as a radiator or a hot water supply terminal such as a curan directly or indirectly via a hot water storage tank, thereby heating or hot water is performed.

本実施の形態では、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間で冷媒回路2につながっている。本実施の形態では、サブアキュムレータ26と主アキュムレータ27の間でバイパス路3が冷媒回路2につながっている。また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁(バイパス膨張手段)31が設けられている。なお、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐して、圧縮機21の圧縮室に接続されていてもよい。   In the present embodiment, the bypass passage 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the evaporator 25 and the compressor 21 are connected via the supercooling heat exchanger 23. It is connected to the refrigerant circuit 2 between. In the present embodiment, the bypass path 3 is connected to the refrigerant circuit 2 between the sub accumulator 26 and the main accumulator 27. The bypass passage 3 is provided with a bypass expansion valve (bypass expansion means) 31 on the upstream side of the supercooling heat exchanger 23. The bypass path 3 may be branched from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24 and connected to the compression chamber of the compressor 21.

通常運転では、圧縮機21から吐出された冷媒が四方弁28を介して放熱器22に送られ、デフロスト運転では、圧縮機21から吐出された冷媒が四方弁28を介して蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。以下、通常運転における冷媒の状態変化を説明する。   In the normal operation, the refrigerant discharged from the compressor 21 is sent to the radiator 22 via the four-way valve 28, and in the defrost operation, the refrigerant discharged from the compressor 21 is sent to the evaporator 25 via the four-way valve 28. It is done. In FIG. 1, the direction of refrigerant flow during normal operation is indicated by arrows. Hereinafter, the state change of the refrigerant in the normal operation will be described.

圧縮機21から吐出された高圧冷媒は、放熱器22に流入し、放熱器22を通過する水に放熱する。放熱器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分流する。   The high-pressure refrigerant discharged from the compressor 21 flows into the radiator 22 and radiates heat to the water passing through the radiator 22. The high-pressure refrigerant flowing out of the radiator 22 flows into the supercooling heat exchanger 23 and is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31. The high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is divided into the main expansion valve 24 side and the bypass expansion valve 31 side.

主膨張弁24側に分流した高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。一方、バイパス膨張弁31側に分流した高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度、圧縮機21に吸入される。   The high-pressure refrigerant branched to the main expansion valve 24 side is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25. Here, the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air. On the other hand, the high-pressure refrigerant branched to the bypass expansion valve 31 side is decompressed and expanded by the bypass expansion valve 31 and then flows into the supercooling heat exchanger 23. The low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the radiator 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.

本実施の形態における冷凍サイクル装置1Aの構成は、外気温度の低下に伴い圧縮機21の圧縮比が増大して吐出冷媒温度が過度に上昇することを、運転効率の低下を抑制しながら防止するためものである。   The configuration of the refrigeration cycle apparatus 1A in the present embodiment prevents an increase in the compression ratio of the compressor 21 due to a decrease in the outside air temperature and an excessive increase in the discharged refrigerant temperature while suppressing a decrease in operating efficiency. For.

次に、R1123を含む作動流体について説明する。R1123を含む作動流体は、地球温暖化係数であるGWP値を大きく減じる利点がある反面、不均化反応が生じる恐れがある。不均化反応とは、冷凍サイクル中でラジカルを生成した場合、化合物に変化する反応である。不均化反応は大きな熱放出を伴うため、圧縮機21や冷凍サイクル装置1Aの信頼性を低下させる恐れがある。   Next, the working fluid containing R1123 will be described. The working fluid containing R1123 has the advantage of greatly reducing the GWP value, which is a global warming potential, but may cause a disproportionation reaction. The disproportionation reaction is a reaction that changes to a compound when a radical is generated in the refrigeration cycle. Since the disproportionation reaction involves a large heat release, the reliability of the compressor 21 and the refrigeration cycle apparatus 1A may be reduced.

不均化反応が生じる条件は、微視的な視点では、分子間距離の近接や、分子挙動が活発に運動する状態であり、これを巨視的な視点で言い換えると、過度な高圧条件、高温度条
件下であるから、実際の冷凍サイクル装置でR1123を含む作動流体を用いるためには、圧力条件、温度条件を適正な水準に抑え、確実に安全な条件下で使用しなければならない。一方で、安全性を担保しつつ、冷凍サイクル装置としての機能も最大限発揮できるようにする必要がある。
The conditions causing the disproportionation reaction are the close proximity of the intermolecular distance and the state in which the molecular behavior is actively moving from a microscopic viewpoint. In order to use the working fluid containing R1123 in an actual refrigeration cycle apparatus, it is necessary to suppress pressure conditions and temperature conditions to appropriate levels and use them under safe conditions. On the other hand, it is necessary to maximize the functions of the refrigeration cycle apparatus while ensuring safety.

本実施の形態では、R1123冷媒を40重量%以上75重量%未満、R32冷媒を25重量%以上60重量%未満含む作動流体を用いる。   In the present embodiment, a working fluid containing 40 wt% or more and less than 75 wt% of R1123 refrigerant and 25 wt% or more and less than 60 wt% of R32 refrigerant is used.

ここで、R1123にR32を25重量%以上混合すると、R1123の不均化反応を抑制できる。また、R32の濃度が高いほど不均化反応をより抑制できる。これは、R32のフッ素原子への分極が小さいことによる不均化反応を緩和する作用と、R1123とR32は物理特性が似ていることから凝縮・蒸発など相変化時の挙動が一体となることによる不均化の反応機会を減少させる作用とにより、R1123の不均化反応を抑制することができる。   Here, when R32 is mixed with R1123 in an amount of 25% by weight or more, the disproportionation reaction of R1123 can be suppressed. Further, the higher the concentration of R32, the more the disproportionation reaction can be suppressed. This is because the action of mitigating the disproportionation reaction due to the small polarization of R32 to the fluorine atom and the behavior at the time of phase change such as condensation and evaporation are integrated because R1123 and R32 have similar physical characteristics. The disproportionation reaction of R1123 can be suppressed by the action of reducing the disproportionation reaction opportunity due to.

R1123冷媒を含む作動流体を用いる場合に、不均化反応が生じるのは、作動流体に含まれるR1123の重量比率を横軸とし、圧力を縦軸とすると、作動流体の温度に応じて図2及び図3に示すように定まる。すなわち、作動流体の温度に応じて引かれた線分の左側の領域では不均化反応が起こらず、線分の右側の領域では不均化反応が起こることを意味する。   When the working fluid containing the R1123 refrigerant is used, the disproportionation reaction occurs because the weight ratio of R1123 contained in the working fluid is on the horizontal axis and the pressure is on the vertical axis, depending on the temperature of the working fluid. And as shown in FIG. That is, it means that the disproportionation reaction does not occur in the left region of the line segment drawn according to the temperature of the working fluid, and the disproportionation reaction occurs in the right region of the line segment.

ここで、通常の冷凍サイクル装置、例えばR410A、R32冷媒を用いた従来の冷凍サイクル装置では、圧縮機の吐出圧力(高圧)は4MPa程度である。ここで、吐出圧力の運転領域は、R1123冷媒を含む作動流体を用いた場合とR410Aを用いた場合とでほとんど変わらない。また、通常の温水生成装置、例えばR410A、R407C、R32冷媒を用いた従来の温水生成装置では、放熱器22で生成する熱媒体の最高温度が70℃程度であることから、圧縮機の吐出温度は最大で90℃程度である。これを踏まえて、冷媒の不均化反応が生じない範囲を規定すると、図2からR1123冷媒の組成比率は最大75重量%となる。また、R1123の組成比率が40重量%未満の領域では、不均化反応は生じないから、低GWP化を図る観点から、R1123の組成比率は40〜75重量%とする必要がある。   Here, in a conventional refrigeration cycle apparatus, for example, a conventional refrigeration cycle apparatus using R410A and R32 refrigerants, the discharge pressure (high pressure) of the compressor is about 4 MPa. Here, the operating range of the discharge pressure is almost the same between when the working fluid containing the R1123 refrigerant is used and when the R410A is used. Further, in a conventional hot water generator using ordinary hot water generators, for example, R410A, R407C, and R32 refrigerants, the maximum temperature of the heat medium generated by the radiator 22 is about 70 ° C., so the discharge temperature of the compressor Is about 90 ° C. at the maximum. Based on this, if the range in which the disproportionation reaction of the refrigerant does not occur is defined, the composition ratio of the R1123 refrigerant is 75% by weight at maximum from FIG. Further, since the disproportionation reaction does not occur in the region where the composition ratio of R1123 is less than 40% by weight, the composition ratio of R1123 needs to be 40 to 75% by weight from the viewpoint of achieving a low GWP.

また、R1123とR32の混合冷媒は、R32が30重量%、R1123が70%で共沸点を持ち、温度すべりがなくなる為、単一冷媒と同様な取り扱いが可能である。一方、R32を60重量%以上混合すると、温度すべりが大きくなり、単一冷媒と同様な取り扱いが困難となる可能性があるため、R32を60重量%以下で混合することが望ましい。特に、不均化を防止するとともに、共沸点に近づくため温度すべりをより小さくし、機器の設計が容易とするために、R32を40重量%以上50重量%未満で混合することがより望ましい。   Further, the mixed refrigerant of R1123 and R32 has an azeotropic boiling point with R32 being 30% by weight and R1123 being 70%, and there is no temperature slip, so that it can be handled in the same manner as a single refrigerant. On the other hand, when R32 is mixed in an amount of 60% by weight or more, temperature slip increases, and handling similar to that of a single refrigerant may be difficult. Therefore, it is desirable to mix R32 in an amount of 60% by weight or less. In particular, it is more desirable to mix R32 in an amount of 40 wt% or more and less than 50 wt% in order to prevent disproportionation and to make the temperature slip smaller because it approaches the azeotropic point and to facilitate device design.

表1、表2は、R1123とR32の混合作動流体のうち、R32が30重量%以上60重量%以下となる混合割合での、冷凍サイクルの圧力、温度、圧縮機の押しのけ容積が同じ場合の冷凍能力およびサイクル効率(COP)を計算し、R410AとR1123と比較したものである。   Tables 1 and 2 show that in the mixed working fluid of R1123 and R32, the pressure, temperature, and compressor displacement of the refrigeration cycle are the same when R32 is 30 wt% to 60 wt%. Refrigeration capacity and cycle efficiency (COP) are calculated and compared with R410A and R1123.

まず、表1、表2の計算条件について説明する。近年、機器のサイクル効率を向上するため、熱交換器の高性能化が進み、実際の運転状態では、凝縮温度は低下し、蒸発温度は上昇する傾向にあり、吐出温度も低下する傾向にある。このため、実際の運転条件を考慮し、表1の冷房計算条件は、空気調和機器の冷房運転時(室内乾球温度:27℃、湿球温度:19℃、室外乾球温度:35℃)に対応し、蒸発温度は15℃、凝縮温度は45℃、
圧縮機の吸入冷媒の過熱度は5℃、凝縮器出口の過冷却度は8℃としている。
First, calculation conditions in Tables 1 and 2 will be described. In recent years, in order to improve the cycle efficiency of equipment, the performance of heat exchangers has increased, and in actual operating conditions, the condensation temperature tends to decrease, the evaporation temperature tends to increase, and the discharge temperature also tends to decrease . For this reason, considering the actual operating conditions, the cooling calculation conditions in Table 1 are the cooling operation of the air conditioner (indoor dry bulb temperature: 27 ° C., wet bulb temperature: 19 ° C., outdoor dry bulb temperature: 35 ° C.) The evaporation temperature is 15 ° C, the condensation temperature is 45 ° C,
The superheat degree of the refrigerant sucked in the compressor is 5 ° C., and the supercool degree of the condenser outlet is 8 ° C.

また、表2の暖房計算条件は、空気調和機器の暖房運転時(室内乾球温度:20℃、室外乾球温度:7℃、湿球温度:6℃)に対応した計算条件で、蒸発温度は2℃、凝縮温度は38℃、圧縮機の吸入冷媒の過熱度は2℃、凝縮器出口の過冷却度は12℃としている。   The heating calculation conditions in Table 2 are the calculation conditions corresponding to the heating operation of the air conditioner (indoor dry bulb temperature: 20 ° C., outdoor dry bulb temperature: 7 ° C., wet bulb temperature: 6 ° C.), and the evaporation temperature. Is 2 ° C., the condensation temperature is 38 ° C., the superheat degree of the refrigerant sucked into the compressor is 2 ° C., and the supercool degree at the condenser outlet is 12 ° C.


表1、表2より、R32を30重量%以上60重量%以下で混合することにより、冷房および暖房運転時に、冷凍能力およびサイクル効率(COP)はR410Aと同等であり、温暖化係数はR410Aの10〜20%に低減できる。

From Tables 1 and 2, by mixing R32 at 30 wt% or more and 60 wt% or less, refrigeration capacity and cycle efficiency (COP) are equivalent to R410A during cooling and heating operation, and the warming coefficient is R410A. It can be reduced to 10 to 20%.

以上説明したように、R1123とR32の2成分系において、不均化の防止、温度すべりの大きさ、冷房運転時・暖房運転時の能力、COPを総合的に鑑みると(すなわち、後述する圧縮機を用いた空気調和機器に適した混合割合を特定すると)、30重量%以上60重量%以下のR32を含む混合物が望ましく、さらに望ましくは、40重量%以上50重量%以下のR32を含む混合物が望ましい。   As described above, in the two-component system of R1123 and R32, taking into consideration the prevention of disproportionation, the magnitude of temperature slip, the capacity during cooling operation / heating operation, and COP (that is, compression described later) When a mixing ratio suitable for an air-conditioning apparatus using an air conditioner is specified, a mixture containing 30% by weight or more and 60% by weight or less R32 is desirable, and a mixture containing 40% by weight or more and 50% by weight or less R32 is more desirable. Is desirable.

このような制約条件が存在する中、冷媒の不均化反応の発生を回避するためには、R1123を所定の組成比率で含む作動流体を用いて、特に通常運転中の圧縮機21の吐出圧力、および吐出温度の組み合わせ条件のうち、不均化反応が起こらない運転条件とする必要がある。   In order to avoid the occurrence of the disproportionation reaction of the refrigerant in the presence of such constraint conditions, the discharge pressure of the compressor 21 during normal operation, in particular, using a working fluid containing R1123 at a predetermined composition ratio. Among the combined conditions of the discharge temperature and the discharge temperature, it is necessary to set the operation conditions in which the disproportionation reaction does not occur.

また、冷凍サイクル装置1Aとしての高効率化を図るためには、過冷却により蒸発器25でのエンタルピ差を増大させるとともに、バイパス路3から湿り冷媒をバイパスさせる必要がある。これにより、圧縮機21の吸入冷媒エンタルピを低下させながら冷媒回路2
の低圧側での圧力損失を低減させることができる。
In order to increase the efficiency of the refrigeration cycle apparatus 1A, it is necessary to increase the enthalpy difference in the evaporator 25 by supercooling and to bypass the wet refrigerant from the bypass passage 3. Thereby, the refrigerant circuit 2 while reducing the suction refrigerant enthalpy of the compressor 21.
The pressure loss on the low pressure side can be reduced.

したがって、本発明では、機器の信頼性と高効率化との両立を図るため、過冷却熱交換器23の出口側における冷媒の過冷却度と、バイパス路3を流れる冷媒量を適正に調整することにより、冷凍サイクル装置1Aの運転効率低下を抑制する。   Therefore, in the present invention, in order to achieve both the reliability and high efficiency of the device, the degree of refrigerant subcooling on the outlet side of the supercooling heat exchanger 23 and the amount of refrigerant flowing through the bypass passage 3 are adjusted appropriately. This suppresses a decrease in operating efficiency of the refrigeration cycle apparatus 1A.

本発明では、図3に示すように、所定のR1123組成比率(図3では75%の場合)において、不均化反応が生じない冷媒圧力Pxと冷媒温度Txの関係を、予め相関近似式として求めておく。制御装置4は、検出された冷媒の吐出圧力に応じて、冷媒の吐出温度Tdが、不均化反応が生じない所定の冷媒温度Tx以下となるように、圧縮機21の回転数、主膨張弁24の弁開度を制御し、バイパス膨張弁31を有する場合には合わせてバイパス膨張弁31を制御する。また、制御装置4は、検出された冷媒の吐出温度に応じて、冷媒の吐出圧力Pdが、不均化反応が生じない所定の冷媒圧力Px以下となるように、圧縮機21の回転数、主膨張弁24の弁開度を制御し、バイパス膨張弁31を有する場合には合わせてバイパス膨張弁31を制御する。   In the present invention, as shown in FIG. 3, at a predetermined R1123 composition ratio (in the case of 75% in FIG. 3), the relationship between the refrigerant pressure Px at which disproportionation reaction does not occur and the refrigerant temperature Tx is preliminarily expressed as a correlation approximation expression. I ask for it. The control device 4 determines the rotational speed of the compressor 21 and the main expansion so that the refrigerant discharge temperature Td is equal to or lower than a predetermined refrigerant temperature Tx that does not cause a disproportionation reaction in accordance with the detected refrigerant discharge pressure. The valve opening degree of the valve 24 is controlled, and when the bypass expansion valve 31 is provided, the bypass expansion valve 31 is also controlled. Further, the control device 4 determines the rotational speed of the compressor 21 so that the refrigerant discharge pressure Pd is equal to or lower than a predetermined refrigerant pressure Px at which disproportionation reaction does not occur, according to the detected refrigerant discharge temperature. The valve opening degree of the main expansion valve 24 is controlled, and when the bypass expansion valve 31 is provided, the bypass expansion valve 31 is also controlled.

次に制御装置4が行う制御動作について説明する。   Next, a control operation performed by the control device 4 will be described.

図1に示すように、冷媒回路2には、蒸発器25に流入する冷媒の温度(蒸発温度)Teを検出する第1温度センサ61と、蒸発器25から流出する冷媒の温度(蒸発器出口温度)Teoを検出する第2温度センサ62と、圧縮機21から吐出される冷媒の吐出温度を検出する第3温度センサ63、放熱器22に流入する冷媒の圧力(凝縮圧力)Pcを検出する圧力センサ51とが設けられている。   As shown in FIG. 1, the refrigerant circuit 2 includes a first temperature sensor 61 that detects the temperature (evaporation temperature) Te of the refrigerant flowing into the evaporator 25, and the temperature of the refrigerant that flows out of the evaporator 25 (evaporator outlet). A second temperature sensor 62 for detecting the temperature) Teo; a third temperature sensor 63 for detecting the discharge temperature of the refrigerant discharged from the compressor 21; and a pressure (condensation pressure) Pc of the refrigerant flowing into the radiator 22; A pressure sensor 51 is provided.

制御装置4は、各種のセンサ51、61、62、63で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を制御する。   Based on the detection values detected by the various sensors 51, 61, 62, 63, the control device 4 switches the rotation speed of the compressor 21, the four-way valve 28, and the main expansion valve 24 and the bypass expansion valve 31. Control the opening.

本実施形態では、制御装置4は、通常運転時に、冷媒回路2において蒸発器25から流出する冷媒の乾き度が0.8以上1.0未満になるように、主膨張弁24とバイパス膨張弁31とを制御する。   In the present embodiment, the control device 4 controls the main expansion valve 24 and the bypass expansion valve so that the dryness of the refrigerant flowing out from the evaporator 25 in the refrigerant circuit 2 is 0.8 or more and less than 1.0 in the normal operation. 31.

具体的には、第1温度センサ61で検出される蒸発温度Teと第2温度センサ62で検出される蒸発器出口温度Teoの温度差ΔTeが予め定められた所定の温度差ΔTtとなるように主膨張弁24の開度を調整する。温度差ΔTeが大きければ主膨張弁24の開度を開き、温度差ΔTeが小さければ主膨張弁24の開度を閉じる。   Specifically, the temperature difference ΔTe between the evaporation temperature Te detected by the first temperature sensor 61 and the evaporator outlet temperature Teo detected by the second temperature sensor 62 is set to a predetermined temperature difference ΔTt. The opening degree of the main expansion valve 24 is adjusted. If the temperature difference ΔTe is large, the opening of the main expansion valve 24 is opened, and if the temperature difference ΔTe is small, the opening of the main expansion valve 24 is closed.

なお、蒸発器25から流出する冷媒の乾き度を所定値にするためには、第2温度センサ62を四方弁28の下流側に取り付けて、蒸発器25から流出した冷媒が四方弁28内部で圧縮機21の吐出冷媒から吸熱した後の温度を検出し、乾き度が所望の値となる温度差をΔTtに設定すればよい。   In order to set the dryness of the refrigerant flowing out of the evaporator 25 to a predetermined value, the second temperature sensor 62 is attached to the downstream side of the four-way valve 28 so that the refrigerant flowing out of the evaporator 25 is inside the four-way valve 28. The temperature after absorbing heat from the refrigerant discharged from the compressor 21 is detected, and the temperature difference at which the dryness becomes a desired value may be set to ΔTt.

また、制御装置4は、バイパス膨張弁31の開度を、圧力センサ51で検出される凝縮圧力Pcに基づいて算出される飽和温度(凝縮温度)Tcと、第1温度センサ61で検出される蒸発温度Teにより決定される予め定められた設定開度Sbに設定する。この所定開度Sbは、蒸発温度Teが低いほど、また、凝縮温度Tcが高いほど、熱交換比率Qsc/Qcが大きくなるように設定されている。   Further, the control device 4 detects the opening degree of the bypass expansion valve 31 by the saturation temperature (condensation temperature) Tc calculated based on the condensation pressure Pc detected by the pressure sensor 51 and the first temperature sensor 61. A predetermined opening degree Sb determined by the evaporation temperature Te is set. The predetermined opening degree Sb is set such that the heat exchange ratio Qsc / Qc increases as the evaporation temperature Te decreases and as the condensation temperature Tc increases.

一般的に、外気温度の低下などによる蒸発器25における蒸発温度Teの低下や、水温の上昇による放熱器22における凝縮温度Tcの上昇により、過冷却熱交換器23におけ
る過冷却度が同一の場合、蒸発器25に流入する冷媒の乾き度が大きくなり、蒸発に寄与しない冷媒ガス成分が多くなるため、蒸発器25の吸熱能力が低下してしまう。
Generally, when the degree of supercooling in the supercooling heat exchanger 23 is the same due to a decrease in the evaporation temperature Te in the evaporator 25 due to a decrease in the outside air temperature or the like, and an increase in the condensation temperature Tc in the radiator 22 due to an increase in the water temperature. Since the dryness of the refrigerant flowing into the evaporator 25 increases and the refrigerant gas components that do not contribute to evaporation increase, the heat absorption capability of the evaporator 25 decreases.

そのような場合、制御装置4により、図4に示すとおり、蒸発温度Teが低いほど、また凝縮温度Tcが高いほど、熱交換比率Qsc/Qcが大きくなるように主膨張弁24およびバイパス膨張弁31を制御することが好ましい。   In such a case, as shown in FIG. 4, the control device 4 causes the main expansion valve 24 and the bypass expansion valve so that the heat exchange ratio Qsc / Qc increases as the evaporation temperature Te decreases and the condensation temperature Tc increases. 31 is preferably controlled.

このようにすれば、過冷却熱交換器23出口における過冷却度を大きくでき、蒸発器25に流入する冷媒のエンタルピを低下させることにより、熱交換比率Qsc/Qcが小さい場合に比べて、蒸発器25における冷媒のエンタルピ変化量の拡大、すなわち吸熱能力の増大が図れる。   In this way, the degree of supercooling at the outlet of the supercooling heat exchanger 23 can be increased, and by reducing the enthalpy of the refrigerant flowing into the evaporator 25, evaporation can be performed compared to the case where the heat exchange ratio Qsc / Qc is small. The amount of change in the enthalpy of the refrigerant in the vessel 25 can be increased, that is, the heat absorption capacity can be increased.

その結果、外気温度の低下や水温の上昇時において、蒸発器25に流入する冷媒のエンタルピ上昇に伴う蒸発器25での冷媒の吸熱量の減少分を補完することができる。   As a result, when the outside air temperature is lowered or the water temperature is raised, the decrease in the amount of heat absorbed by the evaporator 25 due to the increase in the enthalpy of the refrigerant flowing into the evaporator 25 can be compensated.

また、制御装置4は、予め求められた冷媒の不均化反応が生じる冷媒圧力Pxと冷媒温度Txの相関近似式より、冷媒の不均化反応が発生する下限圧力、または、冷媒の不均化反応が発生する下限温度を求める。   Further, the control device 4 obtains the lower limit pressure at which the disproportionation reaction of the refrigerant occurs or the disproportionation of the refrigerant from the correlation approximation equation of the refrigerant pressure Px and the refrigerant temperature Tx at which the refrigerant disproportionation reaction is obtained in advance. The lower limit temperature at which the chemical reaction occurs is determined.

制御装置4は、第3温度センサ63で検出された吐出温度が下限温度以下となるように、または、圧力センサ51で検出された吐出圧力が下限圧力以下となるように、圧縮機21の回転数、主膨張弁24の開度、バイパス膨張弁31の開度を制御する。これにより、不均化反応の発生を防止することができる。   The control device 4 rotates the compressor 21 so that the discharge temperature detected by the third temperature sensor 63 is equal to or lower than the lower limit temperature, or the discharge pressure detected by the pressure sensor 51 is equal to or lower than the lower limit pressure. The number, the opening of the main expansion valve 24, and the opening of the bypass expansion valve 31 are controlled. Thereby, generation | occurrence | production of disproportionation reaction can be prevented.

次に、通常運転時の制御装置4の制御を図5に示すフローチャートを参照して説明する。まず、制御装置4は、第1温度センサ61で蒸発温度Teを、第2温度センサ62で蒸発器出口温度Teoを検出する(ステップS1)。その後、制御装置4は、Teo=Te、により温度差ΔTeを算出する(ステップS2)。そして、制御装置4は、温度差ΔTeが、予め蒸発器25出口の冷媒乾き度が適正となるように設定された目標温度差ΔTtとなるように主膨張弁24の開度を調整する(ステップS3)。   Next, control of the control device 4 during normal operation will be described with reference to a flowchart shown in FIG. First, the control device 4 detects the evaporation temperature Te with the first temperature sensor 61 and the evaporator outlet temperature Teo with the second temperature sensor 62 (step S1). Thereafter, the control device 4 calculates the temperature difference ΔTe by Teo = Te (step S2). Then, the control device 4 adjusts the opening of the main expansion valve 24 so that the temperature difference ΔTe becomes a target temperature difference ΔTt that is set in advance so that the refrigerant dryness at the outlet of the evaporator 25 becomes appropriate (step). S3).

ついで、制御装置4は、圧力センサ51で凝縮圧力Pcを検出する(ステップS4)とともに、検出した凝縮圧力Pcから放熱器22に流入する冷媒の圧力での飽和温度(凝縮温度)Tcを算出する(ステップS5)。この凝縮温度Tcの算出は、冷媒物性式を用いて行われる。その後、制御装置4は、予め定められた蒸発温度Teと凝縮温度Tcの値によって決定される設定開度テーブルから、現在の蒸発温度Teと凝縮温度Tcに対応する設定開度Sbを決定し(ステップS6)、バイパス膨張弁31の開度を設定開度Sbに調整する(ステップS7)。このとき、制御装置4は、第3温度センサ63で検出された吐出温度が下限温度以下となるように、または、圧力センサ51で検出された吐出圧力が下限圧力以下となるように、圧縮機21の回転数、主膨張弁24の開度、バイパス膨張弁31の開度を制御する。   Next, the control device 4 detects the condensation pressure Pc with the pressure sensor 51 (step S4), and calculates a saturation temperature (condensation temperature) Tc at the pressure of the refrigerant flowing into the radiator 22 from the detected condensation pressure Pc. (Step S5). The calculation of the condensation temperature Tc is performed using a refrigerant physical property formula. Thereafter, the control device 4 determines a set opening degree Sb corresponding to the current evaporation temperature Te and the condensation temperature Tc from a set opening degree table determined by the predetermined values of the evaporation temperature Te and the condensation temperature Tc ( Step S6), the opening degree of the bypass expansion valve 31 is adjusted to the set opening degree Sb (Step S7). At this time, the control device 4 causes the compressor so that the discharge temperature detected by the third temperature sensor 63 is lower than the lower limit temperature or the discharge pressure detected by the pressure sensor 51 is lower than the lower limit pressure. 21, the opening degree of the main expansion valve 24, and the opening degree of the bypass expansion valve 31 are controlled.

以上のように、本実施の形態においては、圧縮機21、放熱器22、過冷却熱交換器23、主膨張手段24および蒸発器25が環状に接続された冷媒回路2と、放熱器22と主膨張手段24の間で冷媒回路2から分岐し、バイパス膨張手段31、過冷却熱交換器23を経由して、蒸発器25と圧縮機21との間の冷媒回路に接続したバイパス路3と、制御装置4と、圧縮機21から吐出される冷媒の吐出圧力を検出する圧力センサ51、および/または、圧縮機21から吐出される冷媒の吐出温度を検出する第3温度センサ63とを備え、作動流体として、R1123冷媒を40重量%以上75重量%未満含む作動流体を循環させるものである。   As described above, in the present embodiment, the compressor 21, the radiator 22, the supercooling heat exchanger 23, the main expansion means 24, and the evaporator 25 are connected in a ring shape, and the radiator 22 A bypass path 3 branched from the refrigerant circuit 2 between the main expansion means 24 and connected to the refrigerant circuit between the evaporator 25 and the compressor 21 via the bypass expansion means 31 and the supercooling heat exchanger 23; The control device 4 includes a pressure sensor 51 that detects the discharge pressure of the refrigerant discharged from the compressor 21 and / or a third temperature sensor 63 that detects the discharge temperature of the refrigerant discharged from the compressor 21. As a working fluid, a working fluid containing 40 wt% or more and less than 75 wt% of R1123 refrigerant is circulated.

また、このような冷凍サイクル装置1Aにおいて、蒸発器25から流出する冷媒の乾き度が0.8以上1.0未満となるように主膨張手段24およびバイパス膨張手段31の開度が調整される。また、圧縮機21から吐出される冷媒の吐出圧力Pdが所定圧力(冷媒の不均化反応が発生する下限圧力)Px以下となるように、または、圧縮機21から吐出される冷媒の吐出温度Tdが所定温度(冷媒の不均化反応が発生する下限温度)Tx以下となるように冷媒流量を制御することを特徴とするものである。   In such a refrigeration cycle apparatus 1A, the opening degree of the main expansion means 24 and the bypass expansion means 31 is adjusted so that the dryness of the refrigerant flowing out of the evaporator 25 is 0.8 or more and less than 1.0. . Further, the discharge pressure Pd of the refrigerant discharged from the compressor 21 is equal to or lower than a predetermined pressure (lower limit pressure at which the disproportionation reaction of the refrigerant occurs) Px, or the discharge temperature of the refrigerant discharged from the compressor 21 The refrigerant flow rate is controlled such that Td is equal to or lower than a predetermined temperature (a lower limit temperature at which a refrigerant disproportionation reaction occurs) Tx.

これにより、R1123を40重量%以上75重量%未満含む作動流体の吐出圧力Pd及び吐出温度Tdが過度に上昇することが抑制される。したがって、冷媒の不均化反応が生じる温度条件が相対的に高くなるため、不均化反応が生じる領域から外れることになる。その結果、R1123を含む冷媒の使用により、R410AやR32に対して、GWPが1/6〜1/2に低減でき、かつ、冷媒の不均化現象が生じない吐出圧力、温度での運転が可能となるため、地球温暖化の抑制、および、機器の信頼性の確保を両立できる。   As a result, the discharge pressure Pd and the discharge temperature Td of the working fluid containing R1123 of 40 wt% or more and less than 75 wt% are suppressed from excessively rising. Therefore, since the temperature condition in which the disproportionation reaction of the refrigerant occurs is relatively high, the temperature is out of the region in which the disproportionation reaction occurs. As a result, the use of a refrigerant including R1123 can reduce the GWP to 1/6 to 1/2 with respect to R410A and R32, and operation at a discharge pressure and temperature that does not cause the refrigerant disproportionation phenomenon. Therefore, it is possible to both suppress global warming and ensure the reliability of the equipment.

また、本実施の形態では、制御装置4が、通常運転時に蒸発器25から流出する冷媒の乾き度が0.8以上1.0未満になるように、主膨張弁24を制御しているので、蒸発側および凝縮側の負荷が変化しても、負荷に応じて蒸発器25出口の冷媒乾き度が適正になるので、冷凍サイクルの信頼性と省エネルギー性が向上する。   In the present embodiment, the control device 4 controls the main expansion valve 24 so that the dryness of the refrigerant flowing out of the evaporator 25 during normal operation is 0.8 or more and less than 1.0. Even if the loads on the evaporation side and the condensation side change, the refrigerant dryness at the outlet of the evaporator 25 becomes appropriate according to the load, so that the reliability and energy saving of the refrigeration cycle are improved.

さらに、本実施の形態では、蒸発器25での蒸発温度Teが低くなるほど、放熱器22での凝縮温度Tcが高くなるほど熱交換比率が大きくなるようにバイパス膨張弁31を制御している。   Further, in the present embodiment, the bypass expansion valve 31 is controlled such that the heat exchange ratio increases as the evaporation temperature Te in the evaporator 25 decreases and the condensation temperature Tc in the radiator 22 increases.

これにより、蒸発温度Teの低下や凝縮温度Tcの上昇に伴う蒸発器25入口部の冷媒エンタルピ上昇が抑制され、蒸発器25入口部での気相冷媒が、バイパス路によって確実にバイパスされるので、低圧側の圧力損失が低減される。   As a result, an increase in the refrigerant enthalpy at the inlet of the evaporator 25 due to a decrease in the evaporation temperature Te or an increase in the condensation temperature Tc is suppressed, and the gas-phase refrigerant at the inlet of the evaporator 25 is reliably bypassed by the bypass path. The pressure loss on the low pressure side is reduced.

したがって、外気温度の低下や循環水温度が上昇熱するような場合でも、高効率な運転を維持することができる。   Therefore, even when the outside air temperature decreases or the circulating water temperature rises, highly efficient operation can be maintained.

なお、図1では、圧力センサ51が冷媒回路2における四方弁28と放熱器22の間に設けられているが、圧力センサ51は、圧縮機21の吐出部から主膨張弁24の入口部の間であれば冷媒回路2のどの位置に設けられていてもよく、放熱器22から圧力センサ51までの圧力損失分の補正をすればよい。   In FIG. 1, the pressure sensor 51 is provided between the four-way valve 28 and the radiator 22 in the refrigerant circuit 2, but the pressure sensor 51 extends from the discharge portion of the compressor 21 to the inlet portion of the main expansion valve 24. As long as it is between, it may be provided at any position in the refrigerant circuit 2, and the pressure loss from the radiator 22 to the pressure sensor 51 may be corrected.

また、圧力センサ51の代わりに、放熱器22における凝縮冷媒が2相状態となる部位に温度センサを設置し、この温度センサの検知温度を凝縮温度Tcとしてもよい。   Further, instead of the pressure sensor 51, a temperature sensor may be installed at a portion where the condensed refrigerant in the radiator 22 is in a two-phase state, and the temperature detected by the temperature sensor may be set as the condensation temperature Tc.

また、第1温度センサ61の代わりに、圧力センサを主膨張弁24の出口部から圧縮機21の吸入部の間に設置し、この圧力センサで検出される圧力に基づいて飽和温度を算出して蒸発温度Teとしてもよい。   Further, instead of the first temperature sensor 61, a pressure sensor is installed between the outlet of the main expansion valve 24 and the suction part of the compressor 21, and the saturation temperature is calculated based on the pressure detected by this pressure sensor. The evaporation temperature Te may be used.

また、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、放熱器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。   Further, the bypass passage 3 is not necessarily branched from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 is interposed between the radiator 22 and the supercooling heat exchanger 23. You may branch from.

さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すれ
ばよい。
Furthermore, the main expansion means and bypass expansion means of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant. In this case, for example, the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.

また、放熱器22で加熱される被加熱流体は、必ずしも水である必要はなく、空気であってもよい。すなわち、本発明は空調装置にも適用可能である。   Further, the fluid to be heated that is heated by the radiator 22 is not necessarily water, and may be air. That is, the present invention can also be applied to an air conditioner.

本発明は、冷凍サイクル装置によって水を加熱し、その水を給湯や暖房に利用する温水生成装置に特に有用である。   INDUSTRIAL APPLICABILITY The present invention is particularly useful for a hot water generating device that heats water with a refrigeration cycle device and uses the water for hot water supply or heating.

1A 冷凍サイクル装置
2 冷媒回路
3 バイパス路
4 制御装置
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
31 バイパス膨張弁(バイパス膨張手段)
51 圧力センサ
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
DESCRIPTION OF SYMBOLS 1A Refrigeration cycle apparatus 2 Refrigerant circuit 3 Bypass path 4 Control apparatus 21 Compressor 22 Radiator 23 Supercooling heat exchanger 24 Main expansion valve (main expansion means)
25 Evaporator 31 Bypass expansion valve (Bypass expansion means)
51 Pressure Sensor 61 First Temperature Sensor 62 Second Temperature Sensor 63 Third Temperature Sensor

Claims (3)

圧縮機、放熱器、主膨張手段、蒸発器が冷媒配管によって環状に接続された冷媒回路と、少なくとも、前記主膨張手段、及び、前記圧縮機を制御する制御装置と、を備え、
前記冷媒回路を循環する冷媒としてR1123冷媒を40重量%以上75重量%未満含む作動流体を用い、
前記制御装置は、前記圧縮機から吐出される冷媒の吐出圧力が所定圧力以下となるように、又は、前記圧縮機から吐出される冷媒の吐出温度が所定温度以下となるように、前記圧縮機及び前記主膨張手段を制御することを特徴とする冷凍サイクル装置。
A compressor, a radiator, main expansion means, a refrigerant circuit in which an evaporator is annularly connected by a refrigerant pipe, and at least the main expansion means, and a control device for controlling the compressor,
Using a working fluid containing 40 wt% or more and less than 75 wt% of R1123 refrigerant as the refrigerant circulating in the refrigerant circuit,
The control device is configured so that the discharge pressure of the refrigerant discharged from the compressor is equal to or lower than a predetermined pressure, or the discharge temperature of the refrigerant discharged from the compressor is equal to or lower than a predetermined temperature. And a refrigeration cycle apparatus for controlling the main expansion means.
前記放熱器と前記主膨張手段との間に設けられた過冷却熱交換器と、
前記放熱器と前記主膨張手段との間で前記冷媒回路から分岐して、前記過冷却熱交換器を介して、前記圧縮機の圧縮室、又は、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続するバイパス路と、
前記過冷却熱交換器の上流側の前記バイパス路に設けられたバイパス膨張手段と、を備え、
前記制御装置は、前記蒸発器から流出する冷媒の乾き度が0.8以上1.0未満となるように、前記圧縮機、前記主膨張手段、前記バイパス膨張手段を制御することを特徴とする、請求項1に記載の冷凍サイクル装置。
A supercooling heat exchanger provided between the radiator and the main expansion means;
Branching from the refrigerant circuit between the radiator and the main expansion means, via the supercooling heat exchanger, between the compressor chamber of the compressor or between the evaporator and the compressor A bypass connected to the refrigerant circuit;
A bypass expansion means provided in the bypass path upstream of the supercooling heat exchanger,
The control device controls the compressor, the main expansion unit, and the bypass expansion unit so that the dryness of the refrigerant flowing out of the evaporator is 0.8 or more and less than 1.0. The refrigeration cycle apparatus according to claim 1.
前記請求項1または2に記載の冷凍サイクル装置を備え、
前記放熱器において熱媒体としての液体を加熱して、
前記熱媒体を、給湯と暖房との少なくとも一方に利用することを特徴とする温水生成装置。
Comprising the refrigeration cycle apparatus according to claim 1 or 2,
Heat the liquid as a heat medium in the radiator,
A hot water generation apparatus using the heat medium for at least one of hot water supply and heating.
JP2014100089A 2014-05-14 2014-05-14 Refrigeration cycle device and hot water generation device including the same Pending JP2015218909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100089A JP2015218909A (en) 2014-05-14 2014-05-14 Refrigeration cycle device and hot water generation device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100089A JP2015218909A (en) 2014-05-14 2014-05-14 Refrigeration cycle device and hot water generation device including the same

Publications (1)

Publication Number Publication Date
JP2015218909A true JP2015218909A (en) 2015-12-07

Family

ID=54778441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100089A Pending JP2015218909A (en) 2014-05-14 2014-05-14 Refrigeration cycle device and hot water generation device including the same

Country Status (1)

Country Link
JP (1) JP2015218909A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139316A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
WO2018139315A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
JP2018123971A (en) * 2017-01-30 2018-08-09 ダイキン工業株式会社 Freezer
JP2019019984A (en) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル Rotary compressor and air-conditioner
WO2019124230A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Hot water production device
CN111492183A (en) * 2017-12-18 2020-08-04 大金工业株式会社 Hot water producing device
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798159A (en) * 1993-09-29 1995-04-11 Mitsubishi Electric Corp Discrete air-conditioner
JP2001263831A (en) * 2000-03-24 2001-09-26 Mitsubishi Electric Corp Refrigerating cycle system
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
JP2011080633A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and hot-water heating device
JP2011080632A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and warm water heating device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
JP2013133966A (en) * 2011-12-26 2013-07-08 Panasonic Corp Refrigerating cycle device
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798159A (en) * 1993-09-29 1995-04-11 Mitsubishi Electric Corp Discrete air-conditioner
JP2001263831A (en) * 2000-03-24 2001-09-26 Mitsubishi Electric Corp Refrigerating cycle system
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
JP2011080633A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and hot-water heating device
JP2011080632A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and warm water heating device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
JP2013133966A (en) * 2011-12-26 2013-07-08 Panasonic Corp Refrigerating cycle device
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001346B2 (en) 2017-01-30 2022-01-19 ダイキン工業株式会社 Refrigeration equipment
WO2018139315A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
JP2018123975A (en) * 2017-01-30 2018-08-09 ダイキン工業株式会社 Refrigeration device
JP2018123971A (en) * 2017-01-30 2018-08-09 ダイキン工業株式会社 Freezer
EP3575713B1 (en) * 2017-01-30 2023-08-09 Daikin Industries, Ltd. Refrigeration device
WO2018139316A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
US11326819B2 (en) 2017-01-30 2022-05-10 Daikin Industries, Ltd. Refrigeration apparatus
US11143446B2 (en) 2017-01-30 2021-10-12 Daikin Industries, Ltd. Refrigeration device controlling a temperature of compressor-discharged refrigerant
JP2019019984A (en) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル Rotary compressor and air-conditioner
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
CN111492183A (en) * 2017-12-18 2020-08-04 大金工业株式会社 Hot water producing device
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
JPWO2019124230A1 (en) * 2017-12-18 2021-01-07 ダイキン工業株式会社 Hot water production equipment
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JP7231834B2 (en) 2017-12-18 2023-03-02 ダイキン工業株式会社 Hot water production equipment
WO2019124230A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Hot water production device
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
AU2018388034B2 (en) * 2017-12-18 2024-05-23 Daikin Industries, Ltd. Warm-water generating apparatus

Similar Documents

Publication Publication Date Title
JP2015218909A (en) Refrigeration cycle device and hot water generation device including the same
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5627713B2 (en) Air conditioner
EP2813784B1 (en) Air conditioner
JP5409715B2 (en) Air conditioner
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
EP3236174B1 (en) Combined air conditioning and hot-water supply system
JP2010175163A (en) Liquid circulation heating system
JP5908183B1 (en) Air conditioner
US9816736B2 (en) Air-conditioning apparatus
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JPWO2011089652A1 (en) Air conditioning and hot water supply complex system
JPWO2015140887A1 (en) Refrigeration cycle equipment
JP6080939B2 (en) Air conditioner
US10852007B2 (en) Heat pump device
WO2016121068A1 (en) Refrigeration cycle device
EP2808625B1 (en) A refrigerant charging method for an air-conditioning apparatus
JPWO2015140885A1 (en) Refrigeration cycle equipment
EP3220078A1 (en) Refrigeration cycle device and hot water heating device provided with the same
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP2020094698A (en) Refrigerating device
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP5245510B2 (en) Air conditioning system and outdoor unit of air conditioning system
JP2020115068A (en) Refrigeration cycle device and liquid heating device including the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703