JP2015111012A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2015111012A
JP2015111012A JP2012070016A JP2012070016A JP2015111012A JP 2015111012 A JP2015111012 A JP 2015111012A JP 2012070016 A JP2012070016 A JP 2012070016A JP 2012070016 A JP2012070016 A JP 2012070016A JP 2015111012 A JP2015111012 A JP 2015111012A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
refrigerant
cycle apparatus
hermetic compressor
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070016A
Other languages
Japanese (ja)
Inventor
平山 卓也
Takuya Hirayama
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2012070016A priority Critical patent/JP2015111012A/en
Priority to PCT/JP2013/056599 priority patent/WO2013146208A1/en
Publication of JP2015111012A publication Critical patent/JP2015111012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/002Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device capable of effectively preventing global warming and ensuring safety and low cost.SOLUTION: A refrigeration cycle device includes a refrigeration cycle in which a hermetic compressor, a condenser, an expansion device, and an evaporator are coupled together by a refrigerant tube, and in which R410A refrigerant is filled. The condenser is formed out of a parallel flow heat exchanger, and a filling amount of the R410A refrigerant is set in a range from 80 g to 130 g per refrigeration capacity of 1 kW.

Description

本発明の実施形態は、冷凍サイクル装置に関する。   Embodiments described herein relate generally to a refrigeration cycle apparatus.

従来、冷凍サイクル装置の冷媒として、R410A冷媒が広く使用されている(特許文献1)。R410A冷媒は、その性質としてオゾン破壊係数(ODP)が0(ゼロ)であるとともに、低毒性かつ不燃性である。また、熱搬送能力に優れてサイクル効率も高が、地球温暖化係数(GWP)が2090程度あり若干大きい。   Conventionally, R410A refrigerant has been widely used as a refrigerant in a refrigeration cycle apparatus (Patent Document 1). R410A refrigerant has an ozone depletion potential (ODP) of 0 (zero) as its properties, and is low in toxicity and nonflammable. In addition, it has excellent heat transfer capability and high cycle efficiency, and has a slightly large global warming potential (GWP) of about 2090.

また、GWPがR410A冷媒より小さい冷媒としてR32冷媒(GWPが約650)がある。しかしながら、R32冷媒は低毒性ではあるが微燃性を有している。そのため、機器の防爆対策が必要であり、コストが上昇する。   Further, as a refrigerant whose GWP is smaller than the R410A refrigerant, there is an R32 refrigerant (GWP is about 650). However, R32 refrigerant has low toxicity but slightly flammability. Therefore, it is necessary to take an explosion-proof measure for the equipment, and the cost increases.

さらに、ODPが0、低毒性かつ不燃性で、GWPが極めて低い冷媒として、CO冷媒もある(GWP=1)。しかしながら、CO冷媒を用いる場合は、作動圧力が高圧になるため強度確保のためのシステムコストが高くなる上、サイクル効率が低いので、サイクル効率を上げるためには、膨張機等の補助機が必要になり、さらにコストが上昇するという課題がある。 Further, there is a CO 2 refrigerant (GWP = 1) as a refrigerant having ODP of 0, low toxicity and nonflammability, and extremely low GWP. However, when CO 2 refrigerant is used, the operating pressure is high, so the system cost for securing the strength is high, and the cycle efficiency is low. To increase the cycle efficiency, an auxiliary machine such as an expander is required. There is a problem that it becomes necessary and costs further increase.

特開2001−194016号公報JP 2001-194016 A

本発明が解決しようとする課題は、地球温暖化防止に有効であって、安全かつ低コストの冷凍サイクル装置を提供することにある。   The problem to be solved by the present invention is to provide a safe and low-cost refrigeration cycle apparatus that is effective in preventing global warming.

本実施形態の冷凍サイクル装置によれば、密閉型圧縮機、凝縮器、膨張装置および蒸発器を冷媒配管により連結してなり、R410A冷媒を封入した冷凍サイクルを備えている。   According to the refrigeration cycle apparatus of this embodiment, the hermetic compressor, the condenser, the expansion device, and the evaporator are connected by the refrigerant pipe, and the refrigeration cycle in which the R410A refrigerant is sealed is provided.

また、凝縮器をパラレルフロー型熱交換器で形成すると共に、R410A冷媒の封入量を冷凍能力1kW当り80g〜130gの範囲にした。   In addition, the condenser was formed by a parallel flow heat exchanger, and the amount of R410A refrigerant sealed was in the range of 80 g to 130 g per kW of refrigeration capacity.

本実施形態に係る冷凍サイクル装置の冷凍能力1kW当りのR410A冷媒の充填量と、CO冷媒に対するR410A冷媒のLCCP比(R410A/CO)との相対関係を示す図。Shows the relative relationship between the filling amount of refrigerating capacity 1kW per R410A refrigerant in the refrigeration cycle apparatus according to the present embodiment, LCCP ratio of R410A refrigerant relative to CO 2 refrigerant (R410A / CO 2). 本実施形態に係る冷凍サイクル装置のツインロータリ式密閉型圧縮機とこの圧縮機を具備した冷凍サイクルを示す図。The figure which shows the refrigerating cycle which comprised the twin rotary type sealed compressor of the refrigerating-cycle apparatus which concerns on this embodiment, and this compressor. 図2で示すパラレルフロー型熱交換器で形成された凝縮器の一部切欠正面図。The partially cutaway front view of the condenser formed with the parallel flow type heat exchanger shown in FIG. 図2で示すパラレルフロー型熱交換器で形成された凝縮器の一部拡大斜視図。The partial expansion perspective view of the condenser formed with the parallel flow type heat exchanger shown in FIG. 図2で示すツインロータリ式密閉型圧縮機の運転時間と、ローラ外周部の摩耗量との相対関係を示す図。The figure which shows the relative relationship of the operation time of the twin rotary type hermetic compressor shown in FIG. 2, and the amount of wear of a roller outer peripheral part.

以下、本実施形態の冷凍サイクル装置を、図面を参照して説明する。なお、複数の図面中、同一または相当部分には同一符号を付している。   Hereinafter, the refrigeration cycle apparatus of the present embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawing.

図2は本実施形態に係る冷凍サイクル装置のツインロータリ式の密閉型圧縮機とこの圧縮機を具備した冷凍サイクルを示す図である。この図2に示すように冷凍サイクル装置1は、ツインロータリ式の密閉型圧縮機2、パラレルフロー型熱交換器で形成された凝縮器3、膨張装置4、蒸発器5およびアキュムレータ6を冷媒配管7により順次連結して、R410A冷媒を封入し、図中矢印方向に循環させる冷凍サイクル8を構成している。   FIG. 2 is a view showing a twin rotary type hermetic compressor of the refrigeration cycle apparatus according to the present embodiment and a refrigeration cycle equipped with the compressor. As shown in FIG. 2, the refrigeration cycle apparatus 1 includes a twin rotary type hermetic compressor 2, a condenser 3 formed by a parallel flow type heat exchanger, an expansion device 4, an evaporator 5, and an accumulator 6. 7, a refrigerating cycle 8 in which R410A refrigerant is enclosed and circulated in the direction of the arrow in the figure is configured.

密閉型圧縮機2は、金属製の密閉ケース9内に高圧ガス状の冷媒を吐出し、満たすタイプの圧縮機であり、この密閉ケース9内には、その上部に電動機部10を配設し、下方にツインロータリ式の圧縮機構部11を配設している。密閉ケース9の内底部には潤滑油の溜り部Oが形成されている。   The hermetic compressor 2 is a compressor that discharges and fills a high-pressure gaseous refrigerant into a metal hermetic case 9, and an electric motor unit 10 is disposed in the upper part of the hermetic case 9. A twin rotary type compression mechanism 11 is disposed below. A lubricating oil reservoir O is formed at the inner bottom of the sealed case 9.

電動機部10は、密閉ケース9内に圧入され、外周面が密閉ケース9の内面に密着された状態で固定されたステータ12と、このステータ12の内側に回転可能に配設されたロータ13とから構成されている。また、電動機部10は、ロータ13にネオジウムやサマリウム等を含む希土類磁石により形成された永久磁石を備えた永久磁石型電動機に構成されている。   The electric motor unit 10 is press-fitted into the sealed case 9 and is fixed in a state where the outer peripheral surface is in close contact with the inner surface of the sealed case 9, and a rotor 13 rotatably disposed inside the stator 12. It is composed of Further, the electric motor unit 10 is configured as a permanent magnet type electric motor including a rotor 13 and a permanent magnet formed of a rare earth magnet containing neodymium or samarium.

ステータ12は密閉型圧縮機2電力供給端子14に電気的に接続され、この電力供給端子14はインバータ15に電気的に接続される。このインバータ15は図示省略の制御装置からの制御信号を受けて、電動機部10の運転周波数を適宜制御することにより、圧縮機構部11の圧縮能力を制御する。密閉型圧縮機2は、冷凍サイクル装置1が定格能力を発揮するときの運転周波数が、商用電源周波数(50/60Hz)よりも高い周波数(例えば90Hz)になるようにその排除容積の大きさが設定されている。   The stator 12 is electrically connected to the hermetic compressor 2 power supply terminal 14, and this power supply terminal 14 is electrically connected to the inverter 15. The inverter 15 receives a control signal from a control device (not shown) and controls the compression frequency of the compression mechanism unit 11 by appropriately controlling the operating frequency of the motor unit 10. The hermetic compressor 2 has an excluded volume so that the operating frequency when the refrigeration cycle apparatus 1 exhibits the rated capacity is higher than the commercial power supply frequency (50/60 Hz) (for example, 90 Hz). Is set.

ロータ13は、その中心部に、回転軸16を同心状に挿通し固着している。圧縮機構部11は、回転軸16の下部に、中間仕切り板17を介して上下に配設される図中上の第1のシリンダ18と、図中下の第2のシリンダ19を備えている。第1のシリンダ18の上面部には主軸受20が重ね合され、第1の取付けボルト21aを介して第1のシリンダ18に取付固定される。第2のシリンダ19の下面部には副軸受22が重ね合され、第2の取付けボルト21bを介して第1のシリンダ18に取付固定される。   The rotor 13 has a rotating shaft 16 inserted concentrically and fixed to the center thereof. The compression mechanism unit 11 includes a first cylinder 18 in the figure and a second cylinder 19 in the figure in the lower part of the rotary shaft 16 disposed above and below via an intermediate partition plate 17. . A main bearing 20 is superimposed on the upper surface of the first cylinder 18 and is fixedly attached to the first cylinder 18 via a first mounting bolt 21a. The sub bearing 22 is overlapped on the lower surface portion of the second cylinder 19 and is fixedly attached to the first cylinder 18 via the second mounting bolt 21b.

一方、回転軸16は、中途部と下端部が主軸受20と副軸受22に回転自在に枢支される。さらに回転軸16は第1,第2のシリンダ18,19内部を貫通するとともに、略180°の位相差をもって形成される第1,第2の偏心部16a,16bを一体に備えている。第1,第2の偏心部16a,16bは互いに同一直径をなし、第1,第2のシリンダ18,19内径部にそれぞれ位置するよう組み立てられる。第1,第2の偏心部16a,16bの外周面には、互いに同一直径をなす第1,第2の偏心ローラ23a,23bが嵌合される。   On the other hand, the rotary shaft 16 is pivotally supported by the main bearing 20 and the sub-bearing 22 at its midway portion and lower end portion. Further, the rotary shaft 16 penetrates through the insides of the first and second cylinders 18 and 19, and is integrally provided with first and second eccentric portions 16a and 16b formed with a phase difference of about 180 °. The first and second eccentric portions 16a and 16b have the same diameter, and are assembled so as to be positioned at the inner diameter portions of the first and second cylinders 18 and 19, respectively. First and second eccentric rollers 23a and 23b having the same diameter are fitted to the outer peripheral surfaces of the first and second eccentric portions 16a and 16b.

第1のシリンダ18は、主軸受20と中間仕切り板17で上下面が区画され、内部に第1のシリンダ室18aが形成される。第2のシリンダ19は、中間仕切り板17と副軸受22で上下面が区画され、内部に第2のシリンダ室19aが形成される。各シリンダ室18a,19aは互いに同一直径および高さ寸法に形成され、第1,第2の偏心ローラ23a,23bがそれぞれ偏心回転自在に収容される。   The upper and lower surfaces of the first cylinder 18 are partitioned by the main bearing 20 and the intermediate partition plate 17, and a first cylinder chamber 18a is formed inside. The upper and lower surfaces of the second cylinder 19 are partitioned by the intermediate partition plate 17 and the auxiliary bearing 22, and a second cylinder chamber 19a is formed inside. The cylinder chambers 18a and 19a are formed to have the same diameter and height, and the first and second eccentric rollers 23a and 23b are accommodated so as to be eccentrically rotatable.

各偏心ローラ23a,23bは、例えば硬度HRC53〜55のNi−Cr−Mo系片状黒鉛合金鋳鉄であるモニクロ鋳鉄により形成され、その高さ寸法は、各シリンダ室18a,19aの高さ寸法と略同一に形成される。したがって、各シリンダ室18a,19aは同一の排除容積に設定される。各シリンダ18,19には、シリンダ室18a,19aと連通するブレード室24a,24bが設けられている。各ブレード室24a,24bには、第1,第2のブレード25a,25bが第1,第2のシリンダ室18a,19aに対して突没自在に収容される。   Each eccentric roller 23a, 23b is formed of, for example, Monicro cast iron, which is Ni—Cr—Mo flake graphite alloy cast iron having a hardness of HRC53-55, and the height dimension thereof is the same as the height dimension of each cylinder chamber 18a, 19a. It is formed substantially the same. Therefore, each cylinder chamber 18a, 19a is set to the same excluded volume. Each cylinder 18, 19 is provided with blade chambers 24a, 24b communicating with the cylinder chambers 18a, 19a. In each of the blade chambers 24a and 24b, the first and second blades 25a and 25b are accommodated so as to protrude and retract with respect to the first and second cylinder chambers 18a and 19a.

第1,第2のブレード25a,25bは、例えば基材硬度がHRC60以上の高速度工具鋼の外面にDLC(Diamond Like Carbon)コーディングを施したものから構成され、またはステンレス鋼を窒化処理して硬度を高めたものから構成される。この第1,第2のブレード25a,25bは、先端部を平面視で半円状になるように形成しており、それぞれ対向する第1,第2のシリンダ室18a,19aに突出して第1,第2の偏心ローラ23a,23b周壁に、この回転角度にかかわらず線接触できる。各偏心ローラ23a,23bが偏心回転したとき、各ブレード25a,25b先端は各偏心ローラ23a,23b周壁に摺接する。   The first and second blades 25a and 25b are made of, for example, DLC (Diamond Like Carbon) coding on the outer surface of a high-speed tool steel having a base material hardness of HRC60 or higher, or by nitriding stainless steel Consists of increased hardness. The first and second blades 25a and 25b are formed so that their tip portions are semicircular in plan view, and project into the first and second cylinder chambers 18a and 19a facing each other. The linear contact can be made with the peripheral walls of the second eccentric rollers 23a and 23b regardless of the rotation angle. When the eccentric rollers 23a and 23b rotate eccentrically, the tips of the blades 25a and 25b are in sliding contact with the peripheral walls of the eccentric rollers 23a and 23b.

そして、密閉型圧縮機2は、密閉ケース9の上端部に、吐出管26を配設している。吐出管26は、冷媒配管7の一端に接続され、この冷媒配管7の他端は、アキュムレータ6の上端部に接続される。アキュムレータ6は圧縮機1に、第1,第2の吸込み管27a,27bを介して接続される。これにより、冷凍サイクル8が構成される。   The hermetic compressor 2 is provided with a discharge pipe 26 at the upper end of the hermetic case 9. The discharge pipe 26 is connected to one end of the refrigerant pipe 7, and the other end of the refrigerant pipe 7 is connected to the upper end portion of the accumulator 6. The accumulator 6 is connected to the compressor 1 via first and second suction pipes 27a and 27b. Thereby, the refrigeration cycle 8 is configured.

第1,第2の吸込み管27a,27bは圧縮機2の密閉ケース9を貫通して、第1,第2のシリンダ室18a,19aの吸込口に連通される。   The first and second suction pipes 27a and 27b pass through the sealed case 9 of the compressor 2 and communicate with the suction ports of the first and second cylinder chambers 18a and 19a.

これら第1,第2のシリンダ室18a,19a内で圧縮された冷媒は、その圧力により各吐出弁18b,19bを開弁させて各吐出口を開口させる。これにより、圧縮された冷媒は各吐出口から密閉ケース9内にそれぞれ吐出され、密閉ケース9内に充満される。この密閉ケース9内に充満した冷媒ガスは、吐出管26から冷媒配管7を通してパラレルフロー型熱交換器よりなる凝縮器3側へ吐出される。   The refrigerant compressed in the first and second cylinder chambers 18a, 19a opens the discharge ports by opening the discharge valves 18b, 19b. Thereby, the compressed refrigerant is discharged into the sealed case 9 from each discharge port, and is filled in the sealed case 9. The refrigerant gas filled in the sealed case 9 is discharged from the discharge pipe 26 through the refrigerant pipe 7 to the condenser 3 side composed of a parallel flow type heat exchanger.

また、図3,図4に示すように、パラレルフロー型熱交換器よりなる凝縮器3は、そのほぼ全体がアルミニウムまたはアルミニウム合金からなり、図中左右方向に所要の間隔を置いて対向配置された一対のヘッダーパイプ3a,3bを備えている。また、これらヘッダーパイプ3a,3b間には、水平方向に架設(連結)される扁平状の熱交換チューブの複数本3c,3c,…を図中上下方向に所要の間隔を置いてほぼ平行に並設し、これら複数本の熱交換チューブ3c,3c,…間には複数のコルゲートフィン3d,3d,…が介在され、ろう付けされている。   As shown in FIGS. 3 and 4, the condenser 3 composed of a parallel flow type heat exchanger is almost entirely made of aluminum or an aluminum alloy, and is opposed to each other with a required interval in the left-right direction in the drawings. A pair of header pipes 3a and 3b is provided. Further, between the header pipes 3a and 3b, a plurality of flat heat exchange tubes 3c, 3c,... Installed (connected) in the horizontal direction are arranged substantially parallel to each other with a predetermined interval in the vertical direction in the figure. A plurality of corrugated fins 3d, 3d,... Are interposed between the plurality of heat exchange tubes 3c, 3c,.

図4に示すように各熱交換チューブ3cには複数に区画された熱媒体流路3ca,…が形成されている。また、上下端のコルゲートフィン3dの上部外方側および下部外方側には、それぞれサイドプレート3e,3e,…がろう付けされている。さらに、ヘッダーパイプ3a,3bの軸方向上下両開口端にはエンドキャップ3fがそれぞれろう付けされている。   As shown in FIG. 4, each heat exchange tube 3c is formed with a plurality of divided heat medium flow paths 3ca,. Further, side plates 3e, 3e,... Are brazed to the upper outer side and the lower outer side of the upper and lower corrugated fins 3d, respectively. Further, end caps 3f are brazed to both upper and lower opening ends in the axial direction of the header pipes 3a and 3b.

そして、この冷凍サイクル8には、冷媒として、R410A冷媒が冷凍能力1kW当り80g〜130gの範囲で封入されている。   And in this refrigeration cycle 8, as a refrigerant, R410A refrigerant is enclosed in the range of 80g-130g per 1kW of refrigerating capacity.

次に、このように構成された冷凍サイクル装置1の作用を説明する。   Next, the operation of the refrigeration cycle apparatus 1 configured as described above will be described.

図示省略の制御部はインバータ15に密閉型圧縮機2を運転させるための制御信号を与える。インバータ15は、この制御信号により指令された運転周波数で密閉型圧縮機2を運転する。   A control unit (not shown) gives the inverter 15 a control signal for operating the hermetic compressor 2. The inverter 15 operates the hermetic compressor 2 at the operation frequency commanded by this control signal.

これにより、電動機部10の回転軸16が回転駆動され、第1,第2の偏心ローラ23a,23bが第1,第2の各シリンダ室18a,19a内で偏心回転する。   Thereby, the rotating shaft 16 of the electric motor unit 10 is rotationally driven, and the first and second eccentric rollers 23a and 23b rotate eccentrically in the first and second cylinder chambers 18a and 19a.

第1のシリンダ18では、第1のブレード25aがばね部材によって第1の偏心ローラ23a側へ常に弾性的に押圧付勢されているので、この第1のブレード25aの先端縁が第1の偏心ローラ23aの外周壁に摺接して第1のシリンダ室18a内を、吸込み室と圧縮室に二分する。   In the first cylinder 18, since the first blade 25a is always elastically pressed and biased toward the first eccentric roller 23a by the spring member, the tip edge of the first blade 25a has the first eccentricity. The first cylinder chamber 18a is slid into a suction chamber and a compression chamber in sliding contact with the outer peripheral wall of the roller 23a.

第1の偏心ローラ23aのシリンダ室18a内周面転接位置と第1のブレード25aの収納溝が一致し、第1のブレード25aが最も後退した状態で、第1のシリンダ室18aの空間容量が最大となる。このために、冷媒ガスはアキュムレータ6から第1の吸込管27aを介して第1のシリンダ室18aに吸込まれ充満する。ここで、第1の偏心ローラ23aの偏心回転に伴って、第1のシリンダ室18a内周面に対する転接位置が移動し、この第1のシリンダ室18aの区画された圧縮室の容積が減少する。すなわち、第1のシリンダ室18a内に導入され冷媒ガスが徐々に圧縮される。   The space capacity of the first cylinder chamber 18a in a state where the inner circumferential surface rolling contact position of the first eccentric roller 23a coincides with the storage groove of the first blade 25a and the first blade 25a is most retracted. Is the maximum. For this reason, the refrigerant gas is sucked into the first cylinder chamber 18a from the accumulator 6 through the first suction pipe 27a to be filled. Here, with the eccentric rotation of the first eccentric roller 23a, the rolling contact position with respect to the inner peripheral surface of the first cylinder chamber 18a moves, and the volume of the compression chamber partitioned by the first cylinder chamber 18a decreases. To do. That is, the refrigerant gas introduced into the first cylinder chamber 18a is gradually compressed.

さらに、回転軸16が継続して回転され、第1のシリンダ室18aの圧縮室の容量がさらに減少して冷媒ガスが圧縮され、所定圧まで上昇すると、その圧力により第1の吐出弁18bが開弁し、吐出口が開口する。このために、高圧ガスはバルブカバーを介して密閉ケース9内へ吐出される。   Further, when the rotary shaft 16 is continuously rotated, the capacity of the compression chamber of the first cylinder chamber 18a is further reduced and the refrigerant gas is compressed, and when the pressure rises to a predetermined pressure, the first discharge valve 18b is caused by the pressure. The valve opens and the discharge port opens. For this purpose, the high-pressure gas is discharged into the sealed case 9 via the valve cover.

一方、第2のシリンダ19側も上記第1のシリンダ18とほぼ同様の作用により、第2のシリンダ室19aで圧縮された高圧の冷媒ガスが第2の吐出口から密閉ケース9内へ吐出され充満される。   On the other hand, on the second cylinder 19 side, the high-pressure refrigerant gas compressed in the second cylinder chamber 19a is discharged into the sealed case 9 from the second discharge port by substantially the same action as the first cylinder 18. Charged.

そして、密閉ケース9内に充満した高圧ガスは、吐出管26と冷媒配管7を介してパラレルフロー型の凝縮器3へ導入され、ここで凝縮液化し、さらに、膨張装置4で断熱膨張し、蒸発器5で蒸発して熱交換空気から蒸発潜熱を奪って冷却する。蒸発した後の冷媒はアキュムレータ6に導入されて、ここで気液分離され、再び第1,第2の吸込み管27a,27bから圧縮機構部11に吸込まれて上述の作用が繰り返され、冷媒が冷凍サイクル8を循環する。   Then, the high-pressure gas filled in the sealed case 9 is introduced into the parallel flow type condenser 3 through the discharge pipe 26 and the refrigerant pipe 7, where it is condensed and liquefied, and further adiabatically expanded by the expansion device 4. It evaporates in the evaporator 5 and takes the latent heat of evaporation from the heat exchange air to cool it. The evaporated refrigerant is introduced into the accumulator 6, where it is separated into gas and liquid, and is again sucked into the compression mechanism 11 from the first and second suction pipes 27a and 27b, and the above action is repeated. Circulate the refrigeration cycle 8.

図1は、CO冷媒を使用した冷凍サイクル装置のLCCP(Life Cycle Clmate Performance:製品寿命気候負荷)とR410A冷媒を使用した冷凍サイクル装置のLCCPとの比であるLCCP比と、R410A冷媒の充填量との相対関係を曲線Aにより示しており、LCCP比が1より小さい場合は、R410A冷媒を使用した冷凍サイクル装置のLCCPの方がCO冷媒を使用した冷凍サイクル装置のLCCPよりも小さくなり、地球温暖化防止に有効であることを示している。 FIG. 1 shows the LCCP ratio, which is the ratio between the LCCP (Life Cycle Climate Performance) of the refrigeration cycle apparatus using CO 2 refrigerant and the LCCP of the refrigeration cycle apparatus using R410A refrigerant, and the charging of the R410A refrigerant When the LCCP ratio is smaller than 1, the LCCP of the refrigeration cycle apparatus using the R410A refrigerant is smaller than the LCCP of the refrigeration cycle apparatus using the CO 2 refrigerant. This is effective for preventing global warming.

LCCPは、地球温暖化防止を考えた場合の指数であり、TEWI(Total Equivalent warming Impact:総等価温暖化影響)に、使用温室効果ガス製造時のエネルギ消費(間接影響)と外気への漏洩(直接影響)を追加した数値であって、単位はkg−COである。TEWIは、所要の数式によりそれぞれ算出される直接影響と間接影響とを加算したものである。 LCCP is an index for the prevention of global warming, and includes TEWI (Total Equivalent Warming Impact), energy consumption (indirect impact) during the production of greenhouse gases used, and leakage to outside air ( It is a numerical value to which (direct influence) is added, and the unit is kg-CO 2 . TEWI is the sum of direct and indirect effects calculated respectively by a required mathematical formula.

LCCPは下記の関係式により算出される。
[数1]
LCCP=GWPRM×W+GWP×W×(1−R)+N×Q×A
ここで、GWPRM:冷媒製造に関わる温暖化効果、W:冷媒充填量、R:機器廃棄時の冷媒回収量、N:機器使用期間(年)、Q:CO排出原単位、A:年間消費電力量であり、本実施形態では、(1−R)=0.7、N=12[年]、Q=0.378[kgCO/kWh]、として試算した。
LCCP is calculated by the following relational expression.
[Equation 1]
LCCP = GWP RM × W + GWP × W × (1-R) + N × Q × A
Here, GWP RM : Warming effect related to refrigerant production, W: Refrigerant filling amount, R: Refrigerant recovery amount at the time of equipment disposal, N: Equipment usage period (year), Q: CO 2 emission intensity, A: Annual In this embodiment, (1−R) = 0.7, N = 12 [year], and Q = 0.378 [kgCO 2 / kWh].

この冷凍サイクル装置1では、凝縮器3としてパラレルフロー型熱交換器を用いると共に、冷媒としてR410A冷媒を用い、かつ、その充填量(封入量)を冷凍能力1kW当り80g〜130gの範囲内にしているので、図1に示すようにCO冷媒を使用した冷凍サイクル装置のLCCPに対するLCCP比(R410A/CO)を1よりも小さくできる。すなわち、R410A冷媒を使用した本実施形態の冷凍サイクル装置1の方がCO冷媒を使用した冷凍サイクル装置よりもLCCPを小さくすることができ、地球温暖化防止に有効であることが分かる。 In this refrigeration cycle apparatus 1, a parallel flow type heat exchanger is used as the condenser 3, an R410A refrigerant is used as the refrigerant, and the filling amount (encapsulation amount) is within a range of 80 g to 130 g per kW of the refrigeration capacity. Therefore, the LCCP ratio (R410A / CO 2 ) to LCCP of the refrigeration cycle apparatus using the CO 2 refrigerant can be made smaller than 1 as shown in FIG. That is, it can be seen that the refrigeration cycle apparatus 1 of the present embodiment using the R410A refrigerant can make the LCCP smaller than the refrigeration cycle apparatus using the CO 2 refrigerant and is more effective in preventing global warming.

なお、COを使用した冷凍サイクル装置のLCCPは、膨張機等の補助機を用いた場合であって、現時点で考えられる最も高いシステム効率を用いて試算したときの結果を用いている。 In addition, LCCP of the refrigeration cycle apparatus using CO 2 is a case where an auxiliary machine such as an expander is used, and a result obtained by trial calculation using the highest system efficiency conceivable at the present time is used.

本発明者は、ODP=0、低毒性かつ不燃性で、GWPが極めて低くR410A冷媒の代替の可能性があるCO(GWP=1)を用いてLCCPを改善する研究開発を行った。 The present inventor conducted research and development to improve LCCP using CO 2 (GWP = 1), which has ODP = 0, low toxicity and nonflammability, extremely low GWP, and could be a substitute for R410A refrigerant.

しかし、COを冷媒として用いる場合は、作動圧力が高圧になり、システムコストが高くなる上、サイクル効率が低いので、サイクル効率を上げるためには、膨張機等の補助機が必要になる場合があり、さらなるコストの上昇を招いていた。なお、この補助機としては、例えば冷媒の減圧の際の減圧ロスエネルギによりタービンを回転させ、その回転力を圧縮機2の回転力に追加させるものがある。 However, when CO 2 is used as a refrigerant, the operating pressure becomes high, the system cost becomes high, and the cycle efficiency is low. Therefore, in order to increase the cycle efficiency, an auxiliary machine such as an expander is required. There was a further increase in costs. In addition, as this auxiliary machine, there exists a thing which rotates a turbine with the pressure reduction loss energy at the time of pressure reduction of a refrigerant | coolant, and adds the rotational force to the rotational force of the compressor 2, for example.

一方で、パラレルフロー型熱交換器を凝縮器3として用いる場合、一般的なクロスフィン型熱交換器よりも熱通過率が高く、通風抵抗が低いので、熱交換器内容積をコンパクトにしながら冷凍能力の拡大が可能である。したがって、単位冷凍能力当りの封入冷媒充填量を小さくできる。このため、GWPが若干高いR410A冷媒を用いても、サイクル効率の低いCO冷媒を用いる場合よりも、LCCPを低く抑えることができることが分かった。 On the other hand, when the parallel flow type heat exchanger is used as the condenser 3, the heat passage rate is higher than that of a general cross fin type heat exchanger and the ventilation resistance is low. Capability can be expanded. Therefore, the amount of filled refrigerant per unit refrigeration capacity can be reduced. For this reason, it has been found that even when the R410A refrigerant having a slightly higher GWP is used, the LCCP can be suppressed lower than when the CO 2 refrigerant having low cycle efficiency is used.

また、R410A冷媒を使用した冷凍サイクル装置のLCCPは、充填量が少な過ぎると、冷媒不足に起因するサイクル効率の悪化によりLCCPが大きくなり、さらに、充填量が多過ぎるとGWPの影響が高くなり、LCCPが大きくなる。これに対して、上記80g〜130g/kWの範囲内に収めることにより、R410A冷媒を用いてもCO冷媒を用いる場合よりもLCCPを低く抑えることができ、地球温暖化防止に有効であるうえに、コストが低くかつ安全である冷凍サイクル装置が得られる。 In addition, the LCCP of the refrigeration cycle apparatus using the R410A refrigerant has a large LCCP due to a deterioration in cycle efficiency due to a shortage of refrigerant if the charging amount is too small, and further, the influence of GWP becomes high if the charging amount is too large. , LCCP increases. On the other hand, by being within the range of 80 g to 130 g / kW, the LCCP can be suppressed lower than the case of using the CO 2 refrigerant even when the R410A refrigerant is used, and it is effective in preventing global warming. In addition, a refrigeration cycle apparatus that is low in cost and safe can be obtained.

そして、凝縮器3であるパラレルフロー型熱交換器が、そのほぼ全体がアルミニウムまたはアルミニウム合金からなるオールアルミニウム製であるので、凝縮性能を犠牲にせずに凝縮器3の内容積を減少させて一層の小型軽量化を図ることができる。   And since the parallel flow type heat exchanger which is the condenser 3 is substantially all made of all aluminum made of aluminum or an aluminum alloy, the internal volume of the condenser 3 is reduced without sacrificing the condensation performance. Can be reduced in size and weight.

そして、この冷凍サイクル装置1は、この冷凍サイクル装置1が定格能力を発揮するときの密閉型圧縮機2の運転周波数が商用電源周波数(例えば50/60Hz)よりも高い周波数(例えば約90Hz程度)になるようにされているので、密閉型圧縮機2の電動機部10の回転軸16の1回転当りのモータトルクを小さくできる。このために、電動機部10の小径化による小型軽量化を図ることができる。さらに、そのために密閉ケース9内の内容積の減少を図ることができるので、さらに冷媒充填量を低減できる。   The refrigeration cycle apparatus 1 has a frequency (for example, about 90 Hz) where the operating frequency of the hermetic compressor 2 when the refrigeration cycle apparatus 1 exhibits the rated capacity is higher than the commercial power supply frequency (for example, 50/60 Hz). Therefore, the motor torque per rotation of the rotating shaft 16 of the electric motor unit 10 of the hermetic compressor 2 can be reduced. For this reason, it is possible to reduce the size and weight by reducing the diameter of the electric motor unit 10. Further, for this purpose, the internal volume in the sealed case 9 can be reduced, so that the refrigerant charging amount can be further reduced.

また、この冷凍サイクル装置1によれば、永久磁石型の電動機部10のロータ13の永久磁石として、磁力の強いネオジウムやサマリウム等を含む希土類磁石を用いているので、小型化かつ高出力化が可能である。このために、電動機部10の小型化を図ることが可能であると共に、この電動機部10を収容する密閉ケース9の内容積の減少を図ることができるので、冷媒封入量(充填量)の減少を図ることができる。   Further, according to the refrigeration cycle apparatus 1, since the rare-earth magnet containing neodymium or samarium having a strong magnetic force is used as the permanent magnet of the rotor 13 of the permanent magnet type electric motor unit 10, it is possible to reduce the size and increase the output. Is possible. For this reason, it is possible to reduce the size of the electric motor unit 10 and to reduce the internal volume of the sealed case 9 that accommodates the electric motor unit 10, thereby reducing the amount of refrigerant filling (filling amount). Can be achieved.

そして、一般に、圧縮機構部11がロータリ式の場合、冷凍サイクル装置1が定格能力を発揮するときの密閉型圧縮機2の運転周波数を高くすると、偏心ローラ23a,23bとブレード25a,25bの摺接面において摺動性が悪化し、特に偏心ローラ23a,23bの外周部において摩耗が進行し易くなる。   In general, when the compression mechanism unit 11 is a rotary type, if the operating frequency of the hermetic compressor 2 when the refrigeration cycle apparatus 1 exhibits the rated capacity is increased, the sliding between the eccentric rollers 23a and 23b and the blades 25a and 25b is increased. The slidability deteriorates on the contact surface, and wear tends to proceed particularly at the outer peripheral portions of the eccentric rollers 23a and 23b.

図5は、圧縮機構部11を、商用電源周波数よりも高い90Hz〜120Hzの運転周波数により運転したときの第1,第2の偏心ローラ23a,23bの外周部の摩耗量と運転時間との相対関係について、本実施形態と比較例とを比較して示している。   FIG. 5 shows the relative wear amount of the outer peripheral portions of the first and second eccentric rollers 23a and 23b and the operation time when the compression mechanism unit 11 is operated at an operation frequency of 90 Hz to 120 Hz higher than the commercial power supply frequency. The relationship is shown by comparing the present embodiment with a comparative example.

この図5中、比較例は、第1,第2のブレード25a,25bを、基材のステンレス鋼に窒化処理を施すことにより形成する一方、第1,第2の偏心ローラ23a,23bを硬度HRC50のモニクロ鋳鉄により構成した場合を示す。   In FIG. 5, in the comparative example, the first and second blades 25a and 25b are formed by subjecting stainless steel as a base material to nitriding treatment, while the first and second eccentric rollers 23a and 23b are formed with hardness. The case where it comprises with HRC50 monikuro cast iron is shown.

また、第1の実施形態は、第1,第2のブレード25a,25bを、基材硬度HRC60以上の高速度工具鋼にDLCコーティング処理を施すことにより形成する一方、第1,第2の偏心ローラ23a,23bを硬度HRC50のモニクロ鋳鉄により構成した場合を示す。   In the first embodiment, the first and second blades 25a and 25b are formed by applying DLC coating to a high-speed tool steel having a base material hardness of HRC60 or higher. The case where the rollers 23a and 23b are made of monichro cast iron having a hardness HRC50 is shown.

さらに、第2の実施形態は、第1,第2のブレード25a,25bを上記比較例と同様に形成する一方、第1,第2の偏心ローラ23a,23bを硬度HRC53(54±1)以上のモニクロ鋳鉄により形成した場合を示す。   Furthermore, in the second embodiment, the first and second blades 25a and 25b are formed in the same manner as in the comparative example, while the first and second eccentric rollers 23a and 23b have a hardness of HRC53 (54 ± 1) or more. It shows the case where it is formed from the cast iron cast iron.

なお、図5中、直線Bは、圧縮機構部11としての特性を確保し得る摩耗限界を示しており、第1,第2の偏心ローラ23a,23bの外周部摩耗量がこの摩耗限界Bよりも小さいことが必要である。   In FIG. 5, a straight line B indicates a wear limit that can ensure the characteristics of the compression mechanism unit 11, and the outer wear amount of the first and second eccentric rollers 23 a and 23 b is greater than the wear limit B. It is necessary to be small.

そして、図5に示すように上記比較例では、第1,第2の偏心ローラ23a,23bの外周部摩耗量が大きく、運転時間の経過に伴って摩耗限界Bよりも大きく上回る。   As shown in FIG. 5, in the comparative example, the outer peripheral wear amount of the first and second eccentric rollers 23 a and 23 b is large and greatly exceeds the wear limit B as the operation time elapses.

これに対し、上記第1,第2の実施形態によれば、第1,第2の偏心ローラ23a,23bの外周部摩耗量が摩耗限界Bよりも下回り、その摩耗量が少ない。   On the other hand, according to the first and second embodiments, the outer peripheral wear amount of the first and second eccentric rollers 23a and 23b is lower than the wear limit B, and the wear amount is small.

すなわち、第1,第2の本実施形態によれば、商用電源周波数よりも高い運転周波数(例えば90Hz〜120Hz)により圧縮機構部11を運転した場合でも、第1,第2の偏心ローラ23a,23bの外周部摩耗量を摩耗限界B未満に抑制することができ、冷凍サイクル装置としての信頼性の向上を図ることができる。   That is, according to the first and second embodiments, even when the compression mechanism unit 11 is operated at an operation frequency (for example, 90 Hz to 120 Hz) higher than the commercial power supply frequency, the first and second eccentric rollers 23a, The amount of outer peripheral wear of 23b can be suppressed below the wear limit B, and the reliability as a refrigeration cycle apparatus can be improved.

また、第2の実施形態によれば、第1,第2のブレード25a,25bを、比較例と同様の組成により構成する一方、第1,第2の偏心ローラ23a,23bのモニクロ鋳鉄の硬度を、HRC50からHRC53またはそれ以上にすることにより、第1,第2のブレード25a,25bにDLCコーティング等の高価な表面処理を施すことなく、第1,第2の偏心ローラ23a,23bの外周部の摩耗量の低減を図ることができ、摩耗限界B以下にすることが可能である。   Further, according to the second embodiment, the first and second blades 25a and 25b are composed of the same composition as that of the comparative example, while the hardness of the monichro cast iron of the first and second eccentric rollers 23a and 23b. By making HRC50 to HRC53 or higher, the outer circumferences of the first and second eccentric rollers 23a and 23b can be obtained without subjecting the first and second blades 25a and 25b to expensive surface treatment such as DLC coating. The amount of wear of the part can be reduced, and the wear limit B or less can be achieved.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

1…冷凍サイクル装置、2…密閉型圧縮機、3…凝縮器、4…膨張装置、5…蒸発器、7…冷媒配管、8…冷凍サイクル、9…密閉ケース、10…電動機部、11…圧縮機構部、13…ロータ(回転子)、18…第1のシリンダ、18a…第1のシリンダ室、19…第2のシリンダ、19a…第2のシリンダ室、23a,23b…第1,第2の偏心ローラ、25a,25b…第1,第2のブレード。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Sealed compressor, 3 ... Condenser, 4 ... Expansion apparatus, 5 ... Evaporator, 7 ... Refrigerant piping, 8 ... Refrigeration cycle, 9 ... Sealed case, 10 ... Electric motor part, 11 ... Compression mechanism, 13 ... rotor (rotor), 18 ... first cylinder, 18a ... first cylinder chamber, 19 ... second cylinder, 19a ... second cylinder chamber, 23a, 23b ... first, first Two eccentric rollers, 25a, 25b... First and second blades.

Claims (5)

密閉型圧縮機、凝縮器、膨張装置および蒸発器を冷媒配管により連結してなり、R410A冷媒を封入した冷凍サイクルを備えた冷凍サイクル装置において、
上記凝縮器をパラレルフロー型熱交換器で形成すると共に、上記R410A冷媒の封入量を冷凍能力1kW当り80g〜130gの範囲にしたことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus including a refrigeration cycle in which a hermetic compressor, a condenser, an expansion device, and an evaporator are connected by a refrigerant pipe, and R410A refrigerant is enclosed,
A refrigeration cycle apparatus characterized in that the condenser is formed by a parallel flow heat exchanger and the amount of the R410A refrigerant enclosed is in the range of 80 g to 130 g per kW of refrigeration capacity.
定格能力を発揮するときの密閉型圧縮機の運転周波数を商用電源周波数よりも高くすることを特徴とする請求項1記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the operating frequency of the hermetic compressor when exhibiting the rated capacity is made higher than the commercial power supply frequency. 上記密閉型圧縮機は、その電動機回転子の永久磁石として希土類磁石を用いていることを特徴とする請求項1または2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the hermetic compressor uses a rare earth magnet as a permanent magnet of an electric motor rotor. 上記密閉型圧縮機は、シリンダ室内を回動するローラと、このローラの外周面に摺動可能に当接してシリンダ室内を冷媒吸入室と圧縮室とに仕切るブレードとを有するロータリ式圧縮機であって、
上記ブレードの材質が基材硬度HRC60以上かつDLCコーディングを施したものであることを特徴とする請求項1〜3のいずれか1項記載の冷凍サイクル装置。
The hermetic compressor is a rotary compressor having a roller that rotates in a cylinder chamber, and a blade that slidably contacts the outer peripheral surface of the roller and partitions the cylinder chamber into a refrigerant suction chamber and a compression chamber. There,
The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the blade is made of a material having a substrate hardness of HRC60 or higher and subjected to DLC coding.
上記密閉型圧縮機は、シリンダ室内を回動するローラと、このローラの外周面に摺動可能に当接してシリンダ室内を冷媒吸入室と圧縮室とに仕切るブレードとを有するロータリ式圧縮機であって、
上記ローラの材質が硬度HRC53以上のNi−Cr−Mo系片状黒鉛合金鋳鉄であることを特徴とする請求項4記載の冷凍サイクル装置。
The hermetic compressor is a rotary compressor having a roller that rotates in a cylinder chamber, and a blade that slidably contacts the outer peripheral surface of the roller and partitions the cylinder chamber into a refrigerant suction chamber and a compression chamber. There,
5. The refrigeration cycle apparatus according to claim 4, wherein the roller is made of Ni-Cr-Mo flake graphite alloy cast iron having a hardness of HRC53 or higher.
JP2012070016A 2012-03-26 2012-03-26 Refrigeration cycle device Pending JP2015111012A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012070016A JP2015111012A (en) 2012-03-26 2012-03-26 Refrigeration cycle device
PCT/JP2013/056599 WO2013146208A1 (en) 2012-03-26 2013-03-11 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070016A JP2015111012A (en) 2012-03-26 2012-03-26 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2015111012A true JP2015111012A (en) 2015-06-18

Family

ID=49259476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070016A Pending JP2015111012A (en) 2012-03-26 2012-03-26 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2015111012A (en)
WO (1) WO2013146208A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
JP2022166183A (en) * 2017-05-05 2022-11-01 ハネウェル・インターナショナル・インコーポレーテッド Heat transfer compositions and methods and systems
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123897A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140476A (en) * 1984-07-31 1986-02-26 Toshiba Corp Rotary compressor
JP3612805B2 (en) * 1995-07-18 2005-01-19 ダイキン工業株式会社 refrigerator
JPH10300253A (en) * 1997-05-01 1998-11-13 Matsushita Electric Ind Co Ltd Air conditioner
JP2001248941A (en) * 1999-12-28 2001-09-14 Daikin Ind Ltd Refrigeration unit
JP2001355928A (en) * 2000-06-14 2001-12-26 Hitachi Ltd Refrigerating device
JP2002089978A (en) * 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
JP2004286246A (en) * 2003-03-19 2004-10-14 Matsushita Electric Ind Co Ltd Parallel flow heat exchanger for heat pump
JP2005248843A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Enclosed type compressor
JP4877054B2 (en) * 2007-04-27 2012-02-15 株式会社富士通ゼネラル Rotary compressor
US8496845B2 (en) * 2008-07-01 2013-07-30 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf)
JP5361047B2 (en) * 2008-12-25 2013-12-04 東芝キヤリア株式会社 Rotary fluid machine and refrigeration cycle apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166183A (en) * 2017-05-05 2022-11-01 ハネウェル・インターナショナル・インコーポレーテッド Heat transfer compositions and methods and systems
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
WO2013146208A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2013146208A1 (en) Refrigerating cycle device
WO2013151043A1 (en) Refrigeration cycle device
CN204082544U (en) Coolant compressor
JP4815286B2 (en) Two-way refrigeration cycle equipment
CN102460037A (en) Compressor
JP2009222329A (en) Refrigerating device
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
CN102859200A (en) Rotary compressor
JP6703921B2 (en) Rotary compressor and refrigeration cycle device
CN105518299A (en) Sealed compressor and freezer device or refrigerator equipped with same
JP5564617B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5543973B2 (en) Refrigerant compressor and refrigeration cycle apparatus
JP2010255623A (en) Compressor
JP2011252475A (en) Rotary compressor
JPH08233381A (en) Equipment for low-temperature
KR20100112488A (en) 2-stage rotary compressor
JP5948209B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP2013200061A (en) Rotary compressor and freezing cycle device
JP2003286985A (en) Rotary compressor
WO2010064377A1 (en) Rotary fluid machine
JP2012207181A (en) Working fluid composition for refrigerator and refrigeration cycle equipment
JP2013076325A (en) Hermetic compressor, and refrigerating cycle device
JPH04241793A (en) Rotary compressor and refrigerator using it
JP2005207429A (en) Rotary compressor
JP2005214210A (en) Rotary compressor