WO1990002603A1 - Vorrichtung zur durchführung katalysierter reaktionen - Google Patents

Vorrichtung zur durchführung katalysierter reaktionen Download PDF

Info

Publication number
WO1990002603A1
WO1990002603A1 PCT/CH1989/000150 CH8900150W WO9002603A1 WO 1990002603 A1 WO1990002603 A1 WO 1990002603A1 CH 8900150 W CH8900150 W CH 8900150W WO 9002603 A1 WO9002603 A1 WO 9002603A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
walls
consist
guide elements
catalyst materials
Prior art date
Application number
PCT/CH1989/000150
Other languages
English (en)
French (fr)
Inventor
Ronald Shelden
Jean-Paul Stringaro
Original Assignee
Gebrüder Sulzer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25685010&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1990002603(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gebrüder Sulzer Aktiengesellschaft filed Critical Gebrüder Sulzer Aktiengesellschaft
Priority to US07/499,367 priority Critical patent/US5417938A/en
Priority to EP89909146A priority patent/EP0396650B2/de
Priority to DE8989909146T priority patent/DE58902465D1/de
Priority to AT89909146T priority patent/ATE81477T1/de
Publication of WO1990002603A1 publication Critical patent/WO1990002603A1/de
Priority to US08/092,504 priority patent/US5473082A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32279Tubes or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a device for carrying out catalyzed reactions and to the use of such devices.
  • An essential field of application of the invention is fixed bed catalytic reactors, for example for oxidation or hydrogenation reactions.
  • beds of solid catalyst particles e.g. spherical or pellet-shaped are accommodated, which are flowed around by the reactants.
  • the layers of the devices themselves are formed from catalyst material, this presupposes that the material can be brought into the desired shape in a simple manner. In addition, such materials may be very expensive.
  • the invention has set itself the task of creating a device which enables advantageous utilization of the catalyst materials and a long service life when carrying out catalyzed reactions, and also permits the use of a broad spectrum of catalyst materials.
  • the invention is intended to be used both for catalyst materials which are in solid form, such as platinum, metal oxides, zeolites or ion exchange resins, and for catalytic solutions, for example aqueous palladium oxide and copper chloride solutions, or liquid catalyst materials, such as sulfur or hydrochloric acid. Even the application of Gaseous catalyst materials such as hydrogen chloride or hydrogen fluoride are intended to enable the invention.
  • Another significant advantage of the invention is that it also uses the properties known per se for pure mixing processes, such as, for example, homogeneous temperature distribution and concentration equalization over the cross section, narrow residence time distribution and very little to no backmixing.
  • the homogeneous temperature compensation and the inexpensive Heat transfer on the reactor walls is particularly important for a long service life of the catalyst materials and for high product yield and selectivity. This effect is particularly important in the case of exothermic reactions, since the heat generated in this way can be quickly conducted away to the reactor walls at overheated points. This leads to increased operational safety (no runawa).
  • the desired reaction product can be obtained in large quantity and quality and the unreacted starting materials are only produced in a relatively small amount.
  • the fixed bed reactors equipped with devices according to the invention can, compared to known fixed bed reactors, be constructed with a substantially smaller number of individual tubes, with the same throughput. If necessary, a single device according to the invention is sufficient for a fixed bed reactor, i.e. in this case the cross section of the device is the same as that of the reactor housing.
  • catalytic distillation processes which are essentially in a combination of a catalyzed - z> -
  • the known rectification columns have at least one fixed bed reactor and mass transfer zones, in which the products formed during the reaction are separated from the unreacted starting materials and undesirable by-products formed.
  • the rectification proceeds continuously and therefore also in the catalytic zone in addition to the catalyzed reaction, preferably at the boiling point of the product to be obtained, the boiling point being regulated by appropriate adjustment of the column pressure. Details of the implementation of such a combined process can be found in the article cited.
  • winding bodies are arranged in the catalytic reaction zone.
  • These winding bodies which serve to hold a solid catalyst material, consist of a wound band of wire mesh made of stainless steel, to which a layer consisting of glass fibers is connected, in which corrosive catalyst particles are introduced.
  • the advantage for this embodiment is seen in the fact that the column wall can be made of a corrosive material, such as carbon steel, which does not come into contact with the catalyst material.
  • a major disadvantage of these winding bodies, in contrast to the static mixer structures arranged according to the invention, is that there is no radial temperature and concentration compensation over the column cross-section and, moreover, due to the disordered flow form of the reactants or of the products formed during the reaction along with the by-products relatively high pressure drop in contrast to the ordered structure of the static mixer structures used according to the invention.
  • Fig..l an example of a device designed according to the invention
  • FIGS. 1b and 1c each show a pocket-like position in a perspective representation
  • 3 shows a catalytic fixed bed reactor
  • 4 shows a rectification column for carrying out a combined process
  • FIG. 5 shows a perspective view of a further embodiment of a device designed according to the invention.
  • the device 41 shown in FIG. 1 or in FIG. 1 a consists of pocket-like layers 42 which are arranged parallel to one another and are each connected to guide elements 44 on a side wall 43.
  • these guide elements consist of corrugated sheet metal plates, the wave crests or -täJer forming side walls of the flow channels 45 for the reactants.
  • Adjacent layers are then joined together when assembling a reactor 41 in such a way that the flow channels 45 of adjacent pockets 42 intersect. This results in an excellent radial cross-mixing of the partial streams of the reactants in the manner of a static mixer, in particular in the case of one of several devices 41 arranged one behind the other, preferably offset by approximately 90 from one another.
  • the guide elements 44 also serve to reinforce the pocket 42 connected to them, for example by spot welding. Their wave crests touch the side wall of the adjacent pocket 44 without guide elements and thus serve at the same time to keep distance. It should be mentioned that the term "corrugated" is also intended to include a zigzag profile of the plate.
  • the guide elements 44 can, for example, as in the exemplary embodiment, consist of sheet metal, also perforated sheet metal, but also of plastic or a wire mesh and the like, as specified in the subclaims, for example.
  • the side walls 43 of the pockets 42 which are firmly connected to one another at their lateral edges, e.g. through riveted, welded or soldered connections, according to the invention consist of a material which is permeable to the reactants and impermeable to the catalyst material. Examples of such materials are given in the subclaims.
  • a catalyst material 46 is introduced in solid, liquid or gaseous form, selected according to the intended use.
  • Another possibility is to pour free-flowing catalyst material into the interspaces and then to form a porous ceramic or sintered structure from it by appropriate treatment.
  • the device has a circular cross section.
  • the shape of the cross section is adapted to the shape of the reactor housing chosen in each case, ie it can, for example, also be square, rectangular or polygonal.
  • the guide elements of the pockets 42 ' are designed as rod elements 47 and with the pocket walls 43' e.g. connected by spot welding.
  • the pocket walls 43' e.g. connected by spot welding.
  • FIG. 3 shows a schematic representation of a catalytic fixed bed reactor 6 with a cylindrical housing 7. Tubes 8 are arranged in the housing 7, the open ends of which are fastened in tube sheets 9.
  • Devices 10 designed according to the invention are arranged one above the other in the tubes 8, wherein adjacent devices, if they are designed like the embodiments shown in FIG. 1, la-lc or FIGS. 2a and 2b, are each at an angle of 90 degrees ⁇ are mutually offset with respect to the pipe axis.
  • Pipe connections 12 and 13 are connected to the heat exchange space 11 for the supply and removal of a heat-carrying or heat-carrying medium flowing around the pipes 8, e.g. a molten salt.
  • a mixture of air and n-butane is introduced at a temperature of, for example, 200-300 ° C., it being possible for the reaction to be carried out at about 1 bar.
  • phosphorus and vanadium oxide can be used as the catalyst.
  • the reaction is exothermic and the heat generated is absorbed, for example, by a molten salt which flows through the reaction tubes 8.
  • the heated melt is removed through the outlet 13, cooled again to the required temperature and recirculated into the heat exchange chamber 11 through the inlet 12.
  • maleic anhydride is obtained in gaseous form as a product and is fed from the reactor 6 through the outlet 17 for further processing, since the product is not obtained in pure form, but rather it also contains educts, in the present case n-butane or in the formation of By-products formed such as oxygen, water, maleic acid, carbon onoxide and carbon dioxide are mixed in.
  • Embodiments of such a catalytic fixed-bed reactor are also possible, wherein this only consists of a tube in which at least one device according to the invention is arranged.
  • FIG. 4 shows a schematic representation of a catalytic rectification column 20, in which a catalytic fixed bed reactor section 21 equipped with devices designed according to the invention (see e.g. FIG. 1) is arranged.
  • Mass transfer sections 22 and 23 are arranged above and below this fixed bed reactor section 21. In the latter, the separation of the products created in section 21 takes place. These sections can e.g. be formed as sieve or bell bottoms.
  • the packing bodies can be traversed by liquid and gaseous or vaporous phases in countercurrent.
  • the individual folded layers can also have a single layer, i.e. that they then have no double walls with gaps.
  • reaction mixture is also rectified in this section.
  • a discharge line 26 for the liquid bottom product is connected to the bottom of the column. Part of this product is in a manner known per se by a Line 27 is recirculated into column 20 after evaporation in an evaporator 28.
  • a line 29 for the removal of the gaseous or vaporous top product is also connected in a known manner at the top of the column 20. After this top product has been liquefied in a condenser 30, a portion is returned to the column as a return line 31, while the remaining amount of liquid is removed from the rectification process via a line 32.
  • the solid catalyst section 11 is arranged in the middle, lower or upper part of the column.
  • methyl alcohol and a mixture of saturated and Unsaturated 4-carbon hydrocarbons methyl tertiary butyl ether can be obtained.
  • the catalyst material in section 21 can e.g. acidic ion exchange resins can be used.
  • the reactant consisting of methyl alcohol is introduced through line 24 above section 21 and the reactant consisting of a mixture of saturated and unsaturated 4-carbon hydrocarbons is introduced through line 25 below section 21 into column 20.
  • Unreacted 4-carbon hydrocarbons are separated from the reaction products in the mass transfer section 22 in countercurrent to the liquid phase, which are taken off in vapor form at the top of the column 20, liquefied in the condenser 30 and partly returned to the column 20 as reflux.
  • the remaining amount can, for example, be returned to column 20 as a reactant through line 25.
  • the end product obtained in liquid form which consists of methyl tertiary butyl ether, is led out of the column 20 at the bottom thereof. A partial amount is evaporated in the evaporator 28 and recirculated into the column 20. The liquid end product is removed from the system for further processing through line 33.
  • the device 51 shown in FIG. 5 consists of folded layers 52 arranged parallel to one another, each having a double jacket 52a and 52b, the walls consisting of a material which is permeable to the reactants and impermeable to the catalyst material.
  • a catalyst material 54 selected in solid, liquid or gaseous form is introduced in accordance with the intended use.
  • Another possibility is to fill the interstices with free-flowing catalyst material and then to form a porous ceramic or sintered structure therefrom by appropriate treatment.
  • the device has a circular cross section.
  • the shape of the cross section is adapted to the shape of the reactor housing chosen, i.e. for example, it can also be square, rectangular or polygonal.
  • the individual layers 52 are folded, the folds 55 being at an angle to the longitudinal axis of the device and the folds of adjacent layers 52 crossing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Die Vorrichtung (41) zur Durchführung katalysierter Reaktionen besteht aus einer Mehrzahl von parallelen, taschenartigen Lagen (42), die mindestens an einer Wand (43) mit Leitelementen (44) verstärkt sind, welche gleichzeitig Wände der Strömungskanäle (45) bilden. In die taschenartigen Lagen (42) ist ein Katalysatormaterial eingebracht. Die Wände (43) der taschenartigen Lagen (42) sind durchlässig für die Reaktanden und undurchlässig für das Katalysatormaterial. Die Vorrichtung (41) kann in einem Katalysatorfestbettreaktor einzeln oder in einer Vielzahl eingesetzt werden.

Description

Vorrichtung zur Durchführung katalysierter Reaktionen
Die Erfindung betrifft eine Vorrichtung zur Durchführung katalysierter Reaktionen, sowie auf die Verwendung derartiger Vorrichtungen.
Ein wesentliches Anwendungsgebiet der Erfindung sind katalytische Festbettreaktoren, beispielsweise für Oxydations- oder Hydrierungsreaktionen.
Bei bekannten Ausführungsformen derartiger Reaktoren werden im Reaktionsraum Schüttungen von festen Kataly¬ satorpartikelchen, die z.B. kugel- oder pelletförraig ausgebildet sind, untergebracht, welche von den Reak- tanden umströmt werden.
Bei den so ausgebildeten Reaktoren entstehen einerseits hohe Druckabfälle, andererseits findet über dem Reakti¬ onsquerschnitt keine hom gen-- T(=*mperaturτ''erteilung statt. Ein weiterer Nachteil besteht darin, dass keine einheit¬ liche Konzentrationsverteilung über den Reaktorquerschnitt erfolgt, so dass die Ausbeute der gewünschten Endprodukte nicht optimal ist. _ _
Schlieεslich verläuft eine grosse Anzahl der üblichen chemischen Reaktionen exotherm, so dass im Reaktorbett örtliche Ueberhitzungen (sog. Hot Spots) entstehen, welche die Lebensdauer der Katalysatormaterialien be¬ grenzen und insbesondere bei Oxidationsreaktionen die Selektivität herabsetzen.
Um die Auswirkungen der hierbei entstehenden örtlichen ueberhitzungen in Grenzen zu halten, d.h. um eine verbes¬ serte Abführung der Wärme an die Reaktorwandungen zu erreichen, ist es üblich, im Reaktionsraum eine Anzahl von Rohren mit Katalysatorschüttungen anzuordnen, welche von einem wärmeaufnehmenden Mittel umströmt werden. Jedoch ist eine solche Ausführungsweise äusserst kosten¬ intensiv im Betrieb und herstellungsmässig aufwendig.
Bildet man die Lagen der Vorrichtungen selbst aus Kataly¬ satormaterial aus, so setzt dieses voraus, dass das Material auf einfache Weise in die gewünschte Form gebracht werden kann. Ausserdem sind solche Materialien unter Umständen sehr kostenaufwendig.
Die Erfindung hat es sich zur Aufgabe gemacht, eine Vorrichtung zu schaffen, die eine vorteilhafte Ausnutzung der Katalysatormaterialien und lange Lebensdauer bei der Durchführung von katalysierten Reaktionen ermöglicht, sowie die Verwendung eines breiten Spektrums von Kataly¬ satormaterialien gestattet. So soll die Erfindung sowohl für Katalysatormaterialien, die in fester Form vorliegen, wie z.B. Platin, Metalloxide, Zeolithe oder lonenaus- tauschharze verwendet werden können, als auch für Katalytlösunge , z.B. wässrige Palladiumoxid- und Kupfer¬ chloridlösungen oder flüssige Katalysatormaterialien, wie z.B. Schwefel- oder Salzsäure. Auch die Anwendung von gasförmigen Katalysatormaterialien, wie z.B. Chlor- oder Fluorwasserstoff soll die Erfindung ermöglichen.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale von Anspruch 1 gelöst. Die abhängigen Ansprüche beziehen sich auf besonders vorteilhafte Ausführungsformen der Erfinά'üng.
Wesentliche Vorteile der Erfindung sind homogene Tempera¬ turverteilung, Konzentrationsausgleich über den Quer¬ schnitt, enge Verweilzeitverteilung und sehr wenig bis keine Rückvermischung. Der homogene Temperaturausgleich und der günstige Wärmeübergang an den Reaktorwandungen sind insbesondere massgebend für eine lange Lebensdauer der Katalysatormaterialien sowie für hohe Produktausbeute und Selektivität. Insbesondere ist dieser Effekt wesent¬ lich bei exotherm verlaufenden Reaktionen, da die hierbei entstehende Wärme an überhitzten Stellen rascher an die Reaktorwandungen weggeführt werden kann. Dies führt auch zu erhöhter Betriebssicherheit (kein runawa ) .
Von wesentlicher Bedeutung ist auch, dass aufgrund der gleichmässigen Temperaturverteilung und des über den Reaktorquerschnitt erfolgenden Konzentrationsausgleichs, das gewünschte Reaktionsprodukt in grosser Menge und Güte gewonnen werden kann und die unreagierten Edukte nur in relativ kleiner Menge entstehen.
Von weiterem wesentlichen Vorteil bei der Erfindung ist es, dass bei ihr ebenfalls die an sich für reine Misch¬ verfahren bekannten Eigenschaften, wie z.B. homogene Temperaturverteilung und Konzentrationsauεgleich über den Querschnitt, enge Verweilzeitverteilung und sehr wenig bis keine Rückvermischung ausgenutzt werden. Der homogene Temperaturausgleich und der günstige Wärmeübergang an den Reaktorwandungen ist insbesondere assgebend für eine lange Lebensdauer der Katalysator¬ materialien und für hohe Produktausbeute und Selektivität. Insbesondere ist dieser Effekt wesentlich bei exotherm verlaufenden Reaktionen, da die hierbei entstehende Wärme an überhitzten Stellen rasch an die Reaktorwandungen weggeführt werden kann. Dies führt zu erhöhter Betriebs¬ sicherheit (kein runawa ) .
Von wesentlicher Bedeutung ist es auch, dass aufgrund dieser gleichmässigen Temperaturverteilung und des über den Reaktorquerschnitt erfolgenden Konzentrationsausglei¬ ches das gewünschte Reaktionsprodukt in grosser Menge und Güte gewonnen werden kann und die unreagierten Edukte nur in relativ kleiner Menge entstehen.
Die mit erfindungsgemässen Vorrichtungen ausgerüsteten Festbettreaktoren, können im Vergleich zu bekannten Festbettreaktoren, bei gleichem Durchsatz, mit einer wesentlich geringeren Anzahl von Einzelrohren ausgebildet werden. Gegebenenfalls reicht eine einzige erfindungsge- mässe Vorrichtung für einen Festbettreaktor aus, d.h. in diesem Fall stimmt der Querschnitt der Vorrichtung mit demjenigen des Reaktorgehäuses überein.
Es kann auch vorteilhaft sein, mehrere solcher Vorrich¬ tungen im Reaktorgehäuse übereinander anzuordnen, wobei vorteilhaft die übereinanderliegenden Vorrichtungen gegenseitig in bezug auf die Längsachse des Reaktors um ca. 90 gegeneinander versetzt angeordnet sind.
Ein vorteilhaftes Anwendungsgebiet der Erfindung sind sogenannte katalytische Destillationsprozesse, die im wesentlichen in einer Kombination einer katalysierten - z> -
Reaktion mit einem Destillations- bzw. Rektifikations- prozess bestehen.
Derartige Prozesse und etliche Anwendungen sind bei¬ spielsweise in einem Artikel "CATALYTIC DISTILLATION, Combining chemical reaction with product Separation" von William P. Stadig, Houston Regional Editor der Zeit¬ schrift "Chemical Processing" Februar 1987 im einzelnen beschrieben.
Die bekannten Rektifikationskolonnen weisen mindestens einen Festbettreaktor und Stoffaustauschzonen auf, in welchen die bei der Reaktion entstandene Produkte von den unreagierten Edukten und entstandenen unerwünschten Nebenprodukten getrennt werden. Die Rektifikation verläuft kontinuierlich und daher auch in der katalytischen Zone neben der katalysierten Reaktion und zwar vorzugsweise bei Siedetemperatur des zu gewinnenden Produktes, wobei die Siedetemperatur durch eine entsprechende Einstellung des Kolonnendruckes einreguliert wird. Einzelheiten über die Durchführung eines derartigen kombinierten Prozesses finden sich im zitierten Artikel.
In der katalytischen Reaktionszone sind bei dem bekannten Prozess sogenannte Wickelkörper angeordnet. Diese Wickel¬ körper, die zur Aufnahme eines festen Katalysatormateri¬ als dienen, bestehen aus einem aufgewickelten Band aus Drahtgewebe aus rostfreiem Stahl, mit welchem eine, aus Glasfasern bestehende Schicht verbunden ist, in welcher korrosive Katalysatorpartikel eingebracht sind. Der Vorteil für diese Ausführungsweise wird darin gesehen, dass die Kolonnenwand aus einem korrodierenden Material, wie z.B. kohlehaltigem Stahl ausgeführt sein kann, der nicht mit dem Katalysatormaterial in Berührung kommt. Ein wesentlicher Nachteil dieser Wickelkörper besteht im Gegensatz zu den erfindungsgemäss angeordneten statischen Mischerstrukturen darin, dass kein radialer Temperatur- und Konzentrationsausgleich über den Kolonnenquerschnitt erfolgt und ausserdem aufgrund der ungeordneten Strö¬ mungsform der Reaktanden bzw. der bei der Reaktion -entstehenden Produkte nebst der Nebenprodukte ein relativ hoher Druckabfall im Gegensatz zu der geordneten Struktur der erfindungsgemäss eingesetzten statischen Mischer¬ strukturen entsteht.
Setzt man anstelle der bekannten Wickelkörper die erfin- dungsgemässen Strukturen in der katalytischen Reaktions¬ zone ein, so werden alle für den vorstehend beschriebenen katalytischen Festbettreaktor erzielten Vorteile erreicht.
Die Erfindung wird im folgenden anhand von in den Zeich¬ nungen schematisch dargestellten Ausführungsformen erläu¬ tert.
Es zeigen:
Fig..l ein Beispiel einer erfindungsgemäss ausgebildeten Vorrichtung;
Fig. la das Beispiel von Fig.l in zerlegter
Anordnung dargestellt;
Fig. lb und lc je eine taschenartige Lage in perspekti¬ vischer Darstellungsweise;
Fig. 2a und 2b Details einer Varianten Ausführungsform in einer Seitenansicht und in einer Aufsicht;
Fig. 3 einen katalytischen Festbettreaktor; Fig. 4 eine Rektifikationskolonne zum Durchfüh¬ ren eines kombinierten Prozesses;
Fig. 5 in perspektivischer Darstellung eine weitere Ausführungsform einer erfindungs- gemäss ausgebildeten Vorrichtung.
Die in Fig. 1 bzw. in Fig. la dargestellte Vorrichtung 41 besteht aus parallel zueinander angeordneten taschenartig ausgebildeten Lagen 42, die jeweils an einer Seitenwand 43 mit Leitelementen 44 verbunden sind.
Diese Leitelemente bestehen im Ausführungsbeispiel aus gewellten Blechplatten, wobei die Wellenberge bzw. -täJer Seitenwände der Strömungskanäle 45 für die Reaktanden bilden.
Es ist vorteilhaft, diese gewellten Blechplatten derart auszubilden, dass die von ihnen geformten Strömungskanäle gegen die Längsachse der Taschen 42 einen Winkel ein- schliessen (vgl. Fig. lb und lc ) .
Benachbarte Lagen werden sodann derart beim Zusammenbau eines Reaktors 41 zusammengefügt, dass sich die Strö¬ mungskanäle 45 von benachbarten Taschen 42 kreuzen. Hierdurch wird, insbesondere bei einem, aus mehreren, hintereinander angeordneten, vorzugsweise um ca. 90 gegeneinander versetzten Vorrichtungen 41 eine ausge¬ zeichnete radiale Quervermischung der Teilströme der Reaktanden in Art eines statischen Mischers bewirkt.
Die Leitelemente 44 dienen gleichzeitig zur Verstärkung der mit ihnen z.B. durch Punktschweissung verbundenen Tasche 42. Ihre Wellenberge berühren die Seitenwand der benachbarten Tasche 44 ohne Leitelemente und dienen somit gleichzeitig zur Distanzhaltung. Es sei erwähnt, dass der Begriff "gewellt" auch eine zickzackförmige Profilierung der Platte umfassen soll.
Die Leitelemente 44 können beispielsweise wie im Ausfüh¬ rungsbeispiel aus Blech, auch gelochtem Blech, aber auch aus Kunststoff oder einem Drahtgewebe und dergleichen bestehen, wie beispielsweise in den Unteranεprüchen angegeben ist.
Die Seitenwände 43 der Taschen 42, die an ihren seitli¬ chen Rändern miteinander fest verbunden sind, z.B. durch Niet-, Schweiss- oder Lötverbindungen, bestehen erfin¬ dungsgemäss aus einem für die Reaktanden durchlässigen und für das Katalysatormaterial undurchlässigen Material . Beispiele für derartige Materialien sind in den Unteran¬ sprüchen angegeben.
In die Taschen 42 wird ein entsprechend dem Verwendungs¬ zweck gewähltes Katalysatormaterial 46 in fester, flüssi¬ ger oder gasförmiger Form eingebracht.
Es ist auch möglich, rieselfähiges, mit Kunststoffbasis versetztes Katalysatormaterial in die Zwischenräume einzufüllen und es anschliessend zu polymerisieren, derart, dass eine für die Reaktanden durchlässige, poröse Masse entsteht.
Eine andere Möglichkeit besteht darin, rieselfähiges Katalysatormaterial in die Zwischenräume einzufüllen und anschliessend durch entsprechende Behandlung hieraus eine poröse Keramik- bzw. Sinterstruktur zu bilden.
Im Ausführungsbeispiel weist die Vorrichtung einen kreisförmigen Querschnitt auf. Die Form des Querschnittes wird der jeweils gewählten Formgebung des Reaktorgehäuses angepasst, d.h. sie kann beispielsweise auch quadratisch, rechteckig oder polygonzugartig ausgeführt sein.
Bei der in den Fig. 2a und 2b dargestellten Ausführungs¬ form sind die Leitelemente der Taschen 42' als Stabele¬ mente 47 ausgebildet und mit den Taschenwänden 43' z.B. durch Punktschweissung verbunden. Im übrigen gelten alle vorstehenden Angaben zu dem in den Fig. 1, la, lb und lc dargestellten Beispiel der Erfindung.
Fig. 3 zeigt in schematischer Darstellungsweise einen katalytischen Festbettreaktor 6 mit einem zylindrischen Gehäuse 7. Im Gehäuse 7 sind Rohre 8 angeordnet, deren offene Enden in Rohrböden 9 befestigt sind.
In den Rohren 8 sind erfindungsgemäss ausgebildete Vorrichtungen 10 übereinander angeordnet, wobei benach¬ barte 'Vorrichtungen, wenn sie wie die in Fig. 1 , la - lc bzw. Fig. 2a und 2b dargestellten Ausführungsformen ausgebildet sind, jeweils um einen Winkel von 90 gegen¬ einander bezüglich der Rohrachse versetzt sind.
An den Wärmeaustauschraum 11 sind Rohranschlüsse 12 und 13 angeschlossen für die Zu- und Wegführung eines die Rohre 8 umströmenden wärmeauf- bzw. wärmewegführendes Medium, z.B. eine Salzschmelze.
Unterhalb der Reaktionsrohre 8 ist ein Einlassraum 14 für die durch einen Rohrstutzen 15 zugeführten Reaktanden und oberhalb ein Auslassraum 16 für die Wegführung des Produktes und der Nebenprodukte angeordnet.
Bei einem Beispiel für eine katalysierte Reaktion wird durch den Rohrstutzen 15 und Einlassraum 14 in die Rohre - Kl ¬
ein Gemisch aus Luft und n-Butan bei einer Temperatur von beispielsweise 200 - 300°C eingeleitet, wobei die Re¬ aktion bei ca. 1 bar durchgeführt werden kann.
Als Katalysator kann in diesem Fall Phosphor- und Vanadi¬ umoxid verwendet werden.
Die Reaktion verläuft exotherm und die hierbei entstehen¬ de Wärme wird beispielsweise von einer Salzschmelze, die die Reaktionsrohre 8 durchströmt, aufgenommen. In nicht dargestellter Weise wird die erwärmte Schmelze durch den Auslass 13 entnommen, wieder auf die erforderliche Temperatur gekühlt und durch den Einlass 12 in den Wärmeaustauschraum 11 rezirkuliert.
Als Produkt wird im vorliegenden Fall Maleinsäureanhydrid gasförmig gewonnen und aus dem Reaktor 6 durch den Auslass 17 einer weiteren Aufbereitung zugeführt, da das Produkt nicht in reiner Form gewonnen wird, sondern ihm noch Edukte, im vorliegenden Fall n-Butan bzw. bei der Bildung von Maleinsäurehydrid entstandene Nebenprodukte, wie Sauerstoff, Wasser, Maleinsäure, Kohlen onoxid und Kohlendioxid beigemischt sind.
Die weitere Aufbereitung kann in an sich bekannter Weise, beispielsweise in Destillationsprozessen erfolgen.
Aufgrund der Anwendung der erfindungsgemäss ausgebildeten Vorrichtungen und ihrer an vorstehender Stelle beschrie¬ benen Vorteile werden wesentlich weniger Rohre benötigt als bei dem in der Einleitung beschriebenen bekannten Reaktor. Ueberhitzungen werden mindestens weitgehend aufgrund des guten Wärmeübergangs durch die Rohrwandungen vermieden, so dass gegenüber der bekannten Ausführungs¬ form nur relativ geringe Mengen von Kohlenmonoxid, Kohlendioxid und Wasser, welche die Selektivität und Aktivität des Katalysators herabsetzen, gebildet.
Es sind auch Ausführungsformen eines solchen katalyti¬ schen Festbettreaktors möglich, wobei dieser nur aus einem Rohr besteht, in dem mindestens eine erfindungs- gemässe Vorrichtung angeordnet ist.
Fig. 4 zeigt in schematischer Darstellungsweise eine katalvtische Rektifikationskolonne 20, in welcher ein mit erfindungsgemäss ausgebildeten Vorrichtungen (siehe z.B. Fig. 1) bestückter katalytischer Festbettreaktorabschnitt 21 angeordnet ist.
Ober- und unterhalb dieses Festbettreaktorabschnittes 21 sind Stoffaustauschabschnitte 22 und 23 angeordnet. In letzteren findet die Stofftrennung der im Abschnitt 21 entstandenen Produkte statt. Diese Abschnitte können in bekannter Weise z.B. als Sieb- oder Glockenböden ausge¬ bildet sein. Die Packungskörper können von flüssigen und gas- bzw. dampfförmigen Phasen im Gegenstrom durchsetzt werden. Die einzelnen gefalteten Lagen können auch einschichtig ausgebildet sein, d.h., dass sie dann keine Doppelwände mit Zwischenräumen auf aufweisen.
Ausser der im Katalysatorfeststo fbett 21 stattfindenden Reaktion der im Ausführungsbeispiel durch die Leitungen 24 und 25 eingeleiteten Reaktanden findet in diesem Abschnitt auch eine Rektifikation des Reaktionsgemisches statt.
An den Boden der Kolonne ist eine Ableitung 26 für das flüssige Sumpfprodukt angeschlossen. Ein Teil dieses Produktes wird in an sich bekannter Weise durch eine Leitung 27 in die Kolonne 20 nach Verdampfung in einem Verdampfer 28 rezirkuliert.
Ebenfalls ist in bekannter Weise am Kopf der Kolonne 20 eine Leitung 29 für die Entnahme des gas- bzw. dampfför¬ migen Kopfproduktes angeschlossen. Nach Verflüssigung dieses Kopfproduktes in einem Kondensator 30 wird eine Teilmenge als Rücklauf durch eine Leitung 31 in die Kolonne zurückgeführt, während die übrige Flüεsigkeits- menge über eine Leitung 32 aus dem Rektifikationsprozess weggeführt wird.
Die Vorteile des erfindungsgemäsε ausgebildeten Festbett- abεchnitteε 21 εind die gleichen wie diejenigen des in Fig. 3 dargestellten Ausführungsbeispieles.
Da die Rektifikationskolonne 20 bei Siedetemperatur des bei der Reaktion entstehenden Produktes betrieben wird, entstehen allerdings keine Ueberhitzungssstellen, da bei einer exothermen Reaktion die entstehende Wärme eine Verdampfung der flüsεigen Phase bewirkt. Letzteres ist jedoch in diesem Fall in energetischer Hinsicht infolge der geringeren erforderlichen Verdampferleistung des Verdampfers 28 von wesentlichem Vorteil.
Die Anwendung der Erfindung ermöglicht ausεerdem die Maεsstabsvergrösserung derartiger Anlagen aufgrund der vorstehend genannten Vorteile.
Je nach Prozess wird der Feststoffkatalysatorabschnitt 11 im mittleren, unteren oder oberen Teil der Kolonne angeordnet.
Bei dem vorliegenden Ausführungsbeispiel soll aus Methyl¬ alkohol und einer Mischung aus gesättigten und ungesättigten 4-Karbon Kohlenwasserstoffen Methyl-tertiär-Butyl- Aether gewonnen werden.
Als Katalysatormaterial im Abschnitt 21 können z.B. saure Ionenaustauschharze verwendet werden.
Der aus Methylalkohol bestehende Reaktand wird durch die Leitung 24 oberhalb des Abschnitts 21 und der aus einer Mischung aus gesättigten und ungesättigten 4-Karbon Kohlenwasserstoffen bestehende Reaktand wird durch die Leitung 25 unterhalb des Abschnittε 21 in die Kolonne 20 eingeleitet.
Aus den Reaktionsprodukten werden im Stoffaustauschab¬ schnitt 22 im Gegenstrom zur flüssigen Phase unreagierte 4-Karbon Kohlenwasserstoffe abgetrennt, die dampfförmig am Kopf der Kolonne 20 entnommen, im Kondensator 30 verflüssigt und zum Teil als Rücklauf wieder in die Kolonne 20 zurückgeführt werden. Die verbleibende Rest¬ menge kann beispielsweise wieder durch Leitung 25 als Reaktand in die Kolonne 20 zurückgeführt werden.
Das in flüssiger Form gewonnene Endprodukt, das aus Methyl-tertiär-Butyl-Aether besteht, wird am Boden der Kolonne 20 aus dieser herausgeführt. Eine Teiltmenge wird im Verdampfer 28 verdampft und in die Kolonne 20 rezir¬ kuliert. Durch Leitung 33 wird das flüssige Endprodukt aus der Anlage zur weiteren Aufbereitung entnommen.
Die in Fig. 5 dargestellte Vorrichtung 51 besteht aus parallel zueinander angeordneten, gefalteten Lagen 52, die jeweils einen Doppelmantel 52a und 52b aufweisen, wobei die Wände aus einem für die Reaktanden durchlässi¬ gen und für das Katalysatorroaterial undurchlässigen Material bestehen. In den von den Doppeiwänden 52a und 52b gebildeten Zwi¬ schenräumen ist ein entsprechend dem Verwendungszweck gewähltes Katalysatormaterial 54 in fester, flüssiger oder gasförmiger Form eingebracht.
Es ist auch möglich, rieselfähigeε, mit Kunεtstoffbasis versetztes Katalysatormaterial in die Zwischenräume einzufüllen und es anεchliessend zu polymerisieren, derart, dass eine für die Reaktanden durchläsεige, poröse Masse entsteht.
Eine andere Möglichkeit beεteht darin, rieεelfähigeε Katalysatormaterial in die Zwischenräume einzufüllen und anschliessend durch entsprechende Behandlung hieraus eine poröse Keramik- bzw. SinterStruktur zu bilden.
Im Ausführungsbeispiel weist die Vorrichtung einen kreisförmigen Querschnitt auf. Die Form des Querschnittes wird der jeweils gewählten Formgebung des Reaktorgehäüses angepasst, d.h. sie kann beispielsweise auch quadratisch, rechteckig oder polygonzugartig ausgeführt sein.
Die einzelnen Lagen 52 sind gefaltet, wobei die Faltungen 55 einen Winkel zur Längsachse der Vorrichtung aufweisen und sich die Faltungen von benachbarten Lagen 52 kreuzen.

Claims

Patentansprüche
1. Vorrichtung (41) zur Durchführung katalysierter Reaktionen, die vorzugsweise aus einer Mehrzahl von Lagen (42) besteht, wobei zwischen den benachbarten Lagen (42) Strömungskanäle (45) vorhanden sind, dass die die Lagen (42) bildenden Wände (43) unter Freilas¬ sung von Zwischenräumen (45) ausgeführt sind, in welche Katalysatormaterialien eingebracht sind, wobei die Wände (43) der Lagen (42) für die Reaktanden durchlässig und für die Katalysatormaterialien undurch¬ lässig sind.
2. Vorrichtung (41) nach Anspruch 1, dadurch gekennzeich¬ net, dass die Lagen (42) taschenartig ausgebildet sind, wobei in die Zwischenräume (45) der Taschen Katalysatormaterialien eingebracht sind, und dass die einzelnen Taschen mindestens an einer Wand (43) mit Leiteleraenten (44) verstärkt sind, welche gleichzeitig Wände der Strömungkanäle (43) bilden.
3. Vorrichtung (51) nach Anpruch 1 oder 2, dadurch gekennzeichnet, dass die die Struktur bildenden Lagen (52) unter Freilassung von Zwischenräumen doppelwandig (52a, 52b) ausgeführt sind.
4. Vorrichtung (41) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich jeweils zwei benach¬ barte Lagen (42) an ihren Auflagestellen berühren
5. Vorrichtung (41) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leitelemente (44) aus gewellten Platten bestehen.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leitelemente aus Stabelemen¬ ten (47) bestehen.
7. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leitelemente aus senkrecht zur Taschenebene angebrachten Platten bestehen.
8. Vorrichtung (41) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die die Wände (43) der Strömungskanäle (45) bildenden Leitelemente (44) einen Winkel gegen die Längsachεe der Vorrichtung (41) einschliesεen.
9. Vorrichtung (51) nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass benachbarte Taschen derart zusammengefügt sind, dass sich ihre Leitelemen¬ te (5) im Abstand einer Tasche kreuzen.
10. Vorrichtung nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass die Wände der Lagen aus Drahtge¬ webe oder Drahtgewirk bestehen.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Drähte mindestens zum Teil aus Metall beste¬ hen.
12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dasε die Drähte aus Glas- oder Kunststoff bestehen.
13. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wände der Lagen aus einem Vlies aus Kunststoff- und/oder Glasfasern bestehen.
14. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wände der Lagen aus einem porösen Material bestehen, derart, dass die Poren von einer solchen Grosse sind, dass sie für die Reaktanden durchlässig und für die Katalysatormaterialien undurch¬ lässig sind.
15. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wände der Lagen als semiper- meable Membrane ausgebildet sind.
16. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wände der Lagen aus einem Sintermaterial bestehen.
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dasε die Katalysatormaterialien aus Festεtoffpartikeln beεtehen.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Festεtoffpartikel nach Einfüllung in die Zwiεchenräume ihren Aggregatzustand z.B. durch Poly¬ merisation ändern, wobei die hierbei entstandene poröse Masse durchlässig für die Reaktanden ist.
19. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dasε auε den Feεtεtoffpartikeln nach dem Einfüllen in die Zwischenräume eine poröse Keramik- bzw. Sinter¬ struktur gebildet ist, welche durchläsεig für die Reaktanden ist.
20. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dasε die Katalyεatormaterialien in flüssiger Form vorliegen bzw. in einer Flüssigkeit gelöst sind.
21. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Katalysatormateriallen gasförmig sind.
22. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 21 in katalytischen Reaktoren (6) oder in katalysierten Rektifikationskolonnen (20).
PCT/CH1989/000150 1988-09-02 1989-08-22 Vorrichtung zur durchführung katalysierter reaktionen WO1990002603A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/499,367 US5417938A (en) 1988-09-02 1989-08-22 Device for carrying out catalyzed reactions
EP89909146A EP0396650B2 (de) 1988-09-02 1989-08-22 Vorrichtung zur durchführung katalysierter reaktionen
DE8989909146T DE58902465D1 (de) 1988-09-02 1989-08-22 Vorrichtung zur durchfuehrung katalysierter reaktionen.
AT89909146T ATE81477T1 (de) 1988-09-02 1989-08-22 Vorrichtung zur durchfuehrung katalysierter reaktionen.
US08/092,504 US5473082A (en) 1988-09-02 1993-07-15 Device for carrying out catalyzed reactions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH329588 1988-09-02
CH3295/88-0 1988-09-02
CH57789 1989-02-17
CH577/89-2 1989-02-17

Publications (1)

Publication Number Publication Date
WO1990002603A1 true WO1990002603A1 (de) 1990-03-22

Family

ID=25685010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1989/000150 WO1990002603A1 (de) 1988-09-02 1989-08-22 Vorrichtung zur durchführung katalysierter reaktionen

Country Status (3)

Country Link
US (1) US5417938A (de)
EP (1) EP0396650B2 (de)
WO (1) WO1990002603A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH678632A5 (en) * 1990-07-16 1991-10-15 Sulzer Ag Bio-reactor for catalysed reactions - comprises biological catalyst inside hollow semi-permeable plates in reaction vessel
US5204067A (en) * 1991-07-11 1993-04-20 Schwaebische Huettenwerke Gmbh Filter
EP0631813A1 (de) * 1993-06-30 1995-01-04 Sulzer Chemtech AG Katalysierender Festbettreaktor
EP0640385A1 (de) * 1993-08-26 1995-03-01 Sulzer Chemtech AG Packung mit katalytischen oder adsorbierenden Mitteln
US5425236A (en) * 1991-11-12 1995-06-20 Schwaebische Huettenwerke Gmbh Catalyzer arrangement for the exhaust gases of an internal combustion engine
EP0781829A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren und Vorrichtung zur selektiven Hydrierung durch katalytische Distillation
EP0781831A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren zur Erniedrigung des Gehaltes von Benzol und von leichten ungesättigten Verbindungen in Kohlenwasserstofffraktionen
EP0781830A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren zur Erniedrigung des Gehaltes von Benzol und von leichten ungesättigten Verbindungen in Kohlenwasserstofffraktionen
EP0787786A1 (de) 1996-02-05 1997-08-06 Institut Français du Pétrole Verfahren zur Isomerisierung von Paraffinen durch reaktive Distillation
DE29807007U1 (de) * 1998-04-18 1998-07-30 Górak, Andrzej, Prof. Dr.-Ing., 58454 Witten Packung für Stoffaustauschkolonnen
EP1013325A1 (de) * 1998-12-22 2000-06-28 Sulzer Chemtech AG Reaktivdestillation
US6657090B2 (en) 2000-10-19 2003-12-02 Oxeno Olefinchemie Gmbh Process for preparing highly pure raffinate II and Methyl tert-butyl ether
EP1424115A1 (de) * 2002-11-28 2004-06-02 Sulzer Chemtech AG Verfahren zum Verestern einer Fettsäure
DE102007059170A1 (de) 2007-12-06 2009-06-10 Evonik Degussa Gmbh Katalysator und Verfahren zur Dismutierung von Wasserstoff enthaltenden Halogensilanen
EP2208719A1 (de) 2009-01-15 2010-07-21 Sasol Solvents Germany GmbH Verfahren zur Herstellung niederer Alkohole durch Olefinhydratisierung
EP2277980A1 (de) 2009-07-21 2011-01-26 IFP Energies nouvelles Verfahren zur selektiven Reduzierung des Benzolgehalts und des Gehalts an leichten ungesättigten Verbindungen von verschiedenen Kohlenwasserstoffverschnitten
CN102218293A (zh) * 2010-04-14 2011-10-19 中国科学院金属研究所 碳化硅泡沫陶瓷波纹规整填料及其制备方法和应用
US11591214B2 (en) 2017-12-08 2023-02-28 Haldor Topsøe A/S Process and system for producing synthesis gas
US11649164B2 (en) 2017-12-08 2023-05-16 Haldor Topsøe A/S Plant and process for producing synthesis gas

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348710A (en) * 1993-06-11 1994-09-20 Johnson Kenneth H Catalytic distillation structure
US5321163A (en) * 1993-09-09 1994-06-14 Chemical Research & Licensing Company Multi-purpose catalytic distillation column and eterification process using same
US5431890A (en) * 1994-01-31 1995-07-11 Chemical Research & Licensing Company Catalytic distillation structure
FR2724390B1 (fr) * 1994-09-08 1996-12-13 Inst Francais Du Petrole Hydrogenation selective de coupes hydrocarbonees renfermant des hydrocarbures monoinsatures et polyinsatures
US5730843A (en) * 1995-12-29 1998-03-24 Chemical Research & Licensing Company Catalytic distillation structure
DZ2288A1 (fr) * 1996-08-08 2002-12-25 Shell Int Research Procédé et réacteur pour réaliser une réaction exothermique.
US6565816B1 (en) 1997-06-25 2003-05-20 Koch-Glitsch, Inc. Saddle structure for reactive distillation
DE19728732A1 (de) 1997-07-04 1999-01-07 Basf Ag Verfahren zur Gewinnung von Isobuten aus solches enthaltenden C¶4¶-Kohlenwasserstoffgemischen
US6299845B1 (en) 1997-08-08 2001-10-09 Uop Llc Catalytic distillation with in situ catalyst replacement
US5877331A (en) * 1997-11-12 1999-03-02 Huntsman Petrochemical Corporation Prevention of catalyst attrition and tar formation in manufacture of maleic anhydride
US6616909B1 (en) * 1998-07-27 2003-09-09 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US6440895B1 (en) * 1998-07-27 2002-08-27 Battelle Memorial Institute Catalyst, method of making, and reactions using the catalyst
DE19850141A1 (de) * 1998-10-30 2000-05-04 Basf Ag Formkörper
DE19860146A1 (de) 1998-12-24 2000-06-29 Bayer Ag Verfahren und Anlage zur Herstellung von Silan
US7150994B2 (en) * 1999-03-03 2006-12-19 Symyx Technologies, Inc. Parallel flow process optimization reactor
US6488838B1 (en) * 1999-08-17 2002-12-03 Battelle Memorial Institute Chemical reactor and method for gas phase reactant catalytic reactions
AU2001240104A1 (en) 2000-03-07 2001-09-17 Symyx Technologies, Inc. Parallel flow process optimization reactor
JP4648515B2 (ja) * 2000-05-02 2011-03-09 株式会社日本触媒 反応器のスタートアップ方法
US7125540B1 (en) * 2000-06-06 2006-10-24 Battelle Memorial Institute Microsystem process networks
EP1163952A1 (de) * 2000-06-14 2001-12-19 Sulzer Chemtech AG Mikrokanäle enthaltendes Festbett angeordnet in einem rohrförmigen Reaktorteil
DE10050625A1 (de) * 2000-10-12 2002-04-18 Erdoelchemie Gmbh Strukturierte Mehrzweckpackungen und deren Verwendung
DE10050627A1 (de) 2000-10-12 2002-04-18 Bayer Ag Verfahren zur Herstellung von tertiären Alkoholen durch Hydration von tertiären Olefinen in einer Reaktivrektifikation unter Einsatz einer strukturierten Mehrzweckpackung
US7118917B2 (en) * 2001-03-07 2006-10-10 Symyx Technologies, Inc. Parallel flow reactor having improved thermal control
US20030068259A1 (en) * 2001-09-15 2003-04-10 Shahrokh Etemad Stacked catalytic reactor
US7476367B2 (en) * 2001-09-15 2009-01-13 Precision Combustion, Inc. Stacked catalytic reactor
DE10224759A1 (de) * 2002-06-04 2003-12-18 Basf Ag Packung für eine Kolonne
WO2004002605A1 (en) * 2002-06-26 2004-01-08 Den Kongelige Veterinær-Og Landbohøjskole Dual porosity filter
US7014835B2 (en) 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
US7250151B2 (en) * 2002-08-15 2007-07-31 Velocys Methods of conducting simultaneous endothermic and exothermic reactions
EP1413547A1 (de) * 2002-09-26 2004-04-28 Haldor Topsoe A/S Verfahren zur Herstellung von Synthesegas
US7718569B2 (en) * 2003-12-12 2010-05-18 University Of Waterloo Composite catalyst for the selective oligomerization of lower alkenes and the production of high octane products
DE102004023249A1 (de) * 2004-05-07 2005-03-10 Basf Ag Verfahren zur strukturierten Befüllung von Kontaktrohren eines Kontaktrohrbündels
US20060117743A1 (en) * 2004-12-03 2006-06-08 Helmut Swars Regeneratable particle filter
EP1690849B1 (de) 2005-02-10 2009-08-26 Sulzer Chemtech AG Verfahren zur Herstellung von Carbonsäureester mittels einer Reaktivdestillation
EP1820569A1 (de) * 2006-01-20 2007-08-22 Ineos Europe Limited Verfahren zum Kontaktieren von Kohlenwasserstoffen und einem sauerstoffhaltigen Gas mit einem Katalysatorbett
KR100669032B1 (ko) 2006-08-21 2007-01-16 금호환경 주식회사 대기오염물질 제거용 유체 혼합 장치
DE102006040430B4 (de) 2006-08-29 2022-06-15 Evonik Operations Gmbh Verfahren zur Spaltung von MTBE
WO2008052168A2 (en) * 2006-10-26 2008-05-02 Symyx Technologies, Inc. High pressure parallel fixed bed reactor and method
TW200842132A (en) * 2007-04-20 2008-11-01 Chi Mei Corp Apparatus for hydrogenation and method for hydrogenating conjugated diene polymer by employing the apparatus
ITMI20071675A1 (it) * 2007-08-14 2009-02-15 Snam Progetti Reattore tubolare modificato e procedimento per effettuare reazioni catalitiche coinvolgenti scambi termici in cui viene utilizzato
DE102008007081B4 (de) 2008-01-31 2018-12-06 Evonik Degussa Gmbh Verfahren zur Herstellung von n-Buten-Oligomeren und 1-Buten aus technischen Mischungen I von C4-Kohlenwasserstoffen
US20120076696A1 (en) * 2008-04-17 2012-03-29 Chi-Mei Corporation Apparatus for hydrogenation and method for hydrogenating conjugated diene polymer by employing the apparatus
US20100081577A1 (en) * 2008-09-30 2010-04-01 Symyx Technologies, Inc. Reactor systems and methods
DE102009027404A1 (de) 2009-07-01 2011-01-05 Evonik Oxeno Gmbh Herstellung von Isobuten durch Spaltung von MTBE
EP2336083A1 (de) 2009-12-17 2011-06-22 Topsøe Fuel Cell A/S Gasgenerator und Verfahren zur Umwandlung eines Brennstoffs in ein sauerstoffarmen Gases und/oder wasserstoffangereicherten Gases
WO2012102876A1 (en) * 2011-01-27 2012-08-02 Praxair Technology, Inc. Distillation method and cross - corrugated structured foam- like packing
EP2502655B1 (de) 2011-03-25 2014-05-14 Sulzer Chemtech AG Reaktives Destillationsverfahren und Anlage zur Gewinnung von Essigsäure und Alkohol aus der Hydrolyse von Methylacetat
WO2015042950A1 (zh) * 2013-09-30 2015-04-02 钟琦 一种气泡导向组件、高密度微生物培养装置及其应用
US9943819B2 (en) 2014-11-03 2018-04-17 Singh Instrument LLC Small-scale reactor having improved mixing
CN104383872B (zh) * 2014-12-09 2016-03-30 中建安装工程有限公司 一种规整填料塔嵌入式壁流再分布器
WO2016113185A1 (en) 2015-01-14 2016-07-21 Evonik Degussa Gmbh Integrated process for making propene oxide and an alkyl tert-butyl ether
US10053440B2 (en) 2015-01-14 2018-08-21 Evonik Degussa Gmbh Integrated process for making propene oxide and an alkyl tert-butyl ether
DK201700031A1 (en) * 2016-09-27 2017-11-13 Haldor Topsoe As Short Gasket Reactor
EP3720810A1 (de) 2017-12-08 2020-10-14 Haldor Topsøe A/S Verfahren und system zur reformierung eines kohlenwasserstoffgases

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2037194A1 (de) * 1969-07-29 1971-02-11 Shell Internationale Research Maat schappij N V , Den Haag (Niederlande) Verfahren zur Herstellung von als Kata Iysatoren oder Akzeptoren geeigneten Form hngen, ihre Verwendung zum Behandeln von Gas gemischen, insbesondere Schwefeldioxid enthal tenden Gasgemischen, mittels solcher Akzeptoren u Vorrichtung zur Durchfuhrung eines ent sprechenden Verfahrens
US3727384A (en) * 1972-04-24 1973-04-17 E Feidman Contact element
BE815237A (fr) * 1974-05-17 1974-09-16 Appareil de mise en contact
US3926851A (en) * 1970-10-22 1975-12-16 Grace W R & Co Porous ceramics-exhaust oxidation catalyst
US4443559A (en) * 1981-09-30 1984-04-17 Chemical Research & Licensing Company Catalytic distillation structure
EP0008860B1 (de) * 1978-07-27 1985-10-16 CHEMICAL RESEARCH & LICENSING COMPANY Katalysatorsystem

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1116345A (en) * 1964-06-16 1968-06-06 Marston Excelsior Ltd Improvements in or relating to chemical catalytic reactors and like process vessels in which fluids are contacted with solid materials
GB1154008A (en) * 1966-11-28 1969-06-04 Shell Int Research Process for the Removal of Suplhur Oxides from Gas Mixtures and an apparatus therefor
GB1210867A (en) * 1968-02-14 1970-11-04 Shell Int Research Process for the catalytic conversion of components in gas mixtures and an apparatus therefor
US3755204A (en) * 1970-10-22 1973-08-28 Grace W R & Co Porous ceramic-exhaust oxidation catalyst
US3755535A (en) * 1971-09-16 1973-08-28 Shell Oil Co Process for the removal of sulfur trioxide from industrial off gases
JPS5275657A (en) * 1975-12-20 1977-06-24 Mitsubishi Heavy Ind Ltd Sold/gas catalytic reactor
CH618006A5 (de) * 1977-05-12 1980-06-30 Sulzer Ag
US4232177A (en) * 1979-02-21 1980-11-04 Chemical Research & Licensing Company Catalytic distillation process
US4242530A (en) * 1978-07-27 1980-12-30 Chemical Research & Licensing Company Process for separating isobutene from C4 streams
US4215011A (en) * 1979-02-21 1980-07-29 Chemical Research And Licensing Company Catalyst system for separating isobutene from C4 streams
US4302356A (en) * 1978-07-27 1981-11-24 Chemical Research & Licensing Co. Process for separating isobutene from C4 streams
US4307254A (en) * 1979-02-21 1981-12-22 Chemical Research & Licensing Company Catalytic distillation process
FR2536676B1 (fr) * 1982-11-26 1993-01-22 Inst Francais Du Petrole Reacteurs a plaques pour syntheses chimiques effectuees sous haute pression en phase gazeuse et en catalyse heterogene
US4725411A (en) * 1985-11-12 1988-02-16 W. R. Grace & Co. Device for physical and/or chemical treatment of fluids
JP2506909Y2 (ja) * 1987-12-28 1996-08-14 臼井国際産業 株式会社 排気ガス浄化用触媒の金属製担持母体
US4882130A (en) * 1988-06-07 1989-11-21 Ngk Insulators, Ltd. Porous structure of fluid contact
US4942020A (en) * 1988-06-27 1990-07-17 W.R. Grace & Co.-Conn. Converter for removing pollutants from a gas stream
US5051294A (en) * 1989-05-15 1991-09-24 General Motors Corporation Catalytic converter substrate and assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2037194A1 (de) * 1969-07-29 1971-02-11 Shell Internationale Research Maat schappij N V , Den Haag (Niederlande) Verfahren zur Herstellung von als Kata Iysatoren oder Akzeptoren geeigneten Form hngen, ihre Verwendung zum Behandeln von Gas gemischen, insbesondere Schwefeldioxid enthal tenden Gasgemischen, mittels solcher Akzeptoren u Vorrichtung zur Durchfuhrung eines ent sprechenden Verfahrens
US3926851A (en) * 1970-10-22 1975-12-16 Grace W R & Co Porous ceramics-exhaust oxidation catalyst
US3727384A (en) * 1972-04-24 1973-04-17 E Feidman Contact element
BE815237A (fr) * 1974-05-17 1974-09-16 Appareil de mise en contact
EP0008860B1 (de) * 1978-07-27 1985-10-16 CHEMICAL RESEARCH & LICENSING COMPANY Katalysatorsystem
US4443559A (en) * 1981-09-30 1984-04-17 Chemical Research & Licensing Company Catalytic distillation structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 1, Nr. 111 (C-027), 26. September 1977; & JP-A-5275657 (Mitsubishi Heavy Ind.) 24. Juni 1977 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH678632A5 (en) * 1990-07-16 1991-10-15 Sulzer Ag Bio-reactor for catalysed reactions - comprises biological catalyst inside hollow semi-permeable plates in reaction vessel
US5204067A (en) * 1991-07-11 1993-04-20 Schwaebische Huettenwerke Gmbh Filter
US5425236A (en) * 1991-11-12 1995-06-20 Schwaebische Huettenwerke Gmbh Catalyzer arrangement for the exhaust gases of an internal combustion engine
EP0631813A1 (de) * 1993-06-30 1995-01-04 Sulzer Chemtech AG Katalysierender Festbettreaktor
US5470542A (en) * 1993-06-30 1995-11-28 Sulzer Chemtech Ag Catalyzing fixed bed reactor
EP0640385A1 (de) * 1993-08-26 1995-03-01 Sulzer Chemtech AG Packung mit katalytischen oder adsorbierenden Mitteln
US5536699A (en) * 1993-08-26 1996-07-16 Sulzer Chemtech Ag Packing having catalytic or absorbent agents
EP0781829A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren und Vorrichtung zur selektiven Hydrierung durch katalytische Distillation
EP0781831A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren zur Erniedrigung des Gehaltes von Benzol und von leichten ungesättigten Verbindungen in Kohlenwasserstofffraktionen
EP0781830A1 (de) 1995-12-27 1997-07-02 Institut Francais Du Petrole Verfahren zur Erniedrigung des Gehaltes von Benzol und von leichten ungesättigten Verbindungen in Kohlenwasserstofffraktionen
EP0787786A1 (de) 1996-02-05 1997-08-06 Institut Français du Pétrole Verfahren zur Isomerisierung von Paraffinen durch reaktive Distillation
DE29807007U1 (de) * 1998-04-18 1998-07-30 Górak, Andrzej, Prof. Dr.-Ing., 58454 Witten Packung für Stoffaustauschkolonnen
EP0950433A1 (de) * 1998-04-18 1999-10-20 Gorak, Andrzej, Prof. Dr.-Ing. Packung für Stoffaustausch-Kolonnen
EP1013325A1 (de) * 1998-12-22 2000-06-28 Sulzer Chemtech AG Reaktivdestillation
US6657090B2 (en) 2000-10-19 2003-12-02 Oxeno Olefinchemie Gmbh Process for preparing highly pure raffinate II and Methyl tert-butyl ether
EP1424115A1 (de) * 2002-11-28 2004-06-02 Sulzer Chemtech AG Verfahren zum Verestern einer Fettsäure
DE102007059170A1 (de) 2007-12-06 2009-06-10 Evonik Degussa Gmbh Katalysator und Verfahren zur Dismutierung von Wasserstoff enthaltenden Halogensilanen
EP2591856A1 (de) 2007-12-06 2013-05-15 Evonik Degussa GmbH Anlage mit Katalysator zur Dismutierung von Wasserstoff enthaltenden Halogensilanen
EP2208719A1 (de) 2009-01-15 2010-07-21 Sasol Solvents Germany GmbH Verfahren zur Herstellung niederer Alkohole durch Olefinhydratisierung
EP2277980A1 (de) 2009-07-21 2011-01-26 IFP Energies nouvelles Verfahren zur selektiven Reduzierung des Benzolgehalts und des Gehalts an leichten ungesättigten Verbindungen von verschiedenen Kohlenwasserstoffverschnitten
CN102218293A (zh) * 2010-04-14 2011-10-19 中国科学院金属研究所 碳化硅泡沫陶瓷波纹规整填料及其制备方法和应用
US11591214B2 (en) 2017-12-08 2023-02-28 Haldor Topsøe A/S Process and system for producing synthesis gas
US11649164B2 (en) 2017-12-08 2023-05-16 Haldor Topsøe A/S Plant and process for producing synthesis gas

Also Published As

Publication number Publication date
EP0396650B1 (de) 1992-10-14
EP0396650A1 (de) 1990-11-14
EP0396650B2 (de) 1995-04-12
US5417938A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
EP0396650B1 (de) Vorrichtung zur durchführung katalysierter reaktionen
EP1232004B1 (de) Verfahren zur katalytischen gasphasenoxidation zu (meth)acrolein und/oder (meth)acrylsäure
DE3885545T2 (de) Heterogenes katalytisches chemisches Reaktionsverfahren.
EP1169119B1 (de) Rohrbündelreaktor, insbesondere für katalytische gasphasenreaktionen
EP1185494B1 (de) Verfahren zur katalytischen gasphasenoxidation zu maleinsäureanhydrid
EP1261404B1 (de) Verfahren zum Betreiben eines Flüssigkeitsverteilers
EP2101900A1 (de) Reaktor zur durchführung einer kontinuierlichen oxidehydrierung sowie verfahren
DE10031347A1 (de) Reaktor mit Wärmetauscherplatten
DE2929300A1 (de) Reaktor zur durchfuehrung katalytischer endothermer oder exothermer reaktionen
DE112011104476B4 (de) Verfahren zur Erzeugung eines tertiären Amins
DE102020007214A1 (de) Verfahren und Reaktor für exotherme Reaktionen in der Gasphase
EP2192975A1 (de) Reaktor und verfahren zu dessen herstellung
WO2008074737A1 (de) Reaktor zur durchführung einer reaktion zwischen zwei fluiden edukten an einem katalysatorbett mit vorvermischen der fluiden edukte in einer einmischvorrichtung
US5473082A (en) Device for carrying out catalyzed reactions
EP1060014A1 (de) Verfahren zur durchführung chemischer umsetzungen in einem mikroreaktor und solch ein mikroreaktor
DE60224068T2 (de) Verfahren und reaktor zur durchführung chemischer reaktionen unter pseudoisothermen bedingungen
DE3042090A1 (de) Reaktor fuer katalytische reaktionen
DE3026954A1 (de) Waerme- und stoff-austauschapparat
EP3802060B1 (de) Reaktor zur durchführung einer chemischen gleichgewichtsreaktion
EP1234612A2 (de) Reaktor zur Durchführung von katalysierten Reaktionen
DE60107951T2 (de) Gerät und verfahren zur herstellung von formaldehyd
DE60106212T2 (de) Chemischer reaktor mit wärmetauscher
WO2009149809A1 (de) Verfahren zur herstellung von formaldehyd
DE2511358A1 (de) Fuellkoerper hoher porositaet fuer gas-fluessigkeits-kontakte und anwendungen solcher fuellkoerper
DE10159824A1 (de) Geordnete Packung für einen Reaktor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989909146

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989909146

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989909146

Country of ref document: EP