PTPN11
PTPN11Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene.PTPN11은 단백질 티로신인산효소(PTP) Shp2이다.[5][6]
PTPN11은 Tyrosine phosphatase(PTP) 단백질의 일종이다.PTP는 세포 성장, 분화, 미토틱 주기, 종양성 변환 등 다양한 세포 과정을 조절하는 분자를 신호화하는 것으로 알려져 있다.이 PTP는 두 개의 탠덤 Src 호몰로지-2 도메인을 포함하고 있는데, 이 도메인은 인광-티로신 결합 도메인으로 기능하며 이 PTP와 기판의 상호작용을 중재한다.이 PTP는 대부분의 조직에서 광범위하게 표현되며, 체세포 활성, 대사 제어, 전사 조절, 세포 이동과 같은 세포 기능의 다양성에 중요한 다양한 세포 신호 이벤트에서 규제적 역할을 한다.이 유전자의 돌연변이는 급성 골수성 백혈병뿐만 아니라 누난 증후군의 원인이다.[7]
구조 및 기능
이 인광효소는 그것의 파라로그인 Shp1과 함께 그것의 N-terminus에 2개의 탠덤 SH2 도메인과 그 다음에 단백질 Tyrosine phosphatase (PTP) 도메인으로 구성된 도메인 구조를 가지고 있다.비활성 상태에서 N-단자 SH2 도메인은 PTP 도메인을 바인딩하고 활성 사이트에 대한 잠재적 기판의 액세스를 차단한다.따라서, Shp2는 자동 금지된다.
PTP 도메인에서 N-단자형 SH2 도메인을 대상 인광-타이로실 잔류물에 바인딩하면, 이 자동침투를 완화하여 효소를 촉매적으로 활성화시킨다.
PTPN11과 관련된 유전병
PTPN11 로커스의 미센스 돌연변이는 누난 증후군과 레오파드 증후군과 모두 관련이 있다.이 유전자에서 적어도 79개의 질병을 유발하는 돌연변이가 발견되었다.[8]
누난 증후군
누난 증후군의 경우 돌연변이는 유전자의 코딩 영역 전체에 광범위하게 분포하지만 모두 단백질의 과잉활성화 또는 비조절 돌연변이 형태를 초래하는 것으로 보인다.이러한 돌연변이의 대부분은 효소가 자동적 순응을 유지하는 데 필요한 N-SH2 영역과 촉매핵심 사이의 결합 인터페이스를 방해한다.[10]
레오파드 증후군
레오파드 증후군을 일으키는 돌연변이는 촉매적으로 손상된 Shp2 변형을 생성하는 효소의 촉매핵심에 영향을 미치는 제한된 영역이다.[11]생화학적으로 반대되는 특성을 가진 돌연변이 변종인 Shp2를 발생시키는 돌연변이가 어떻게 유사한 인간 유전적 증후군을 일으키는지 현재 불분명하다.
PTPN11과 관련된 암
누난증후군 PTPN11 돌연변이가 있는 환자들 또한 청소년 골수성 백혈병(JMML)의 유병률이 더 높다.Shp2 돌연변이를 활성화시키는 것은 신경블라스토마, 흑색종, 급성 골수성 백혈병, 유방암, 폐암, 대장암에서도 발견되었다.[12]최근 NPM1-muted 급성 골수성 백혈병 환자의 코호트에서 차세대 염기서열 분석 결과 PTPN11 돌연변이의 비교적 높은 유병률(24%)이 검출되었다.[13]이 자료들은 Shp2가 양성자-종양자일 수 있음을 시사한다.그러나 PTPN11/Shp2는 종양 촉진제 또는 억제제 역할을 할 수 있다고 보고되었다.[14]노령화된 마우스 모델에서 PTPN11/Shp2의 간세포 특이 삭제는 STAT3 경로를 통한 염증 신호 전달과 간염증/괴사 등을 촉진하여 재생과다증, 종양의 자발적 발달을 유발한다.인간 간세포암(HCC) 검체의 굴절에서 PTPN11/Shp2 발현 감소가 검출되었다.[14]헬리코박터균은 위암과 연관되어 왔으며, 이것은 부분적으로 그것의 바이러스성 인자 CagA와 SHP2의 상호작용에 의해 매개되는 것으로 생각된다.[15]
상호작용
PTPN11과 상호 작용하는 것으로 확인됨
- 카가,[15]
- Cbl유전자,[16]
- CD117,[17][18]
- CD31,[19][20][21][22]
- CEACAM1,[23]
- 표피 성장 인자 수용체,[24][25]
- 에르크[26][27]
- FRS2,[28][29][30]
- GAB1,[31][32]
- GAB2,[33][34][35][36]
- GAB3,[37]
- 글리코프로틴 130,[38][39][40]
- Grb2,[30][41][42][43][44][45][46][47][48]
- 성장 호르몬 수용체,[49][50]
- HoxA10,[51]
- 인슐린 수용체,[52][53]
- 인슐린 유사 성장 인자 1 수용체,[54][55]
- IRS1,[56][57]
- 야누스 키나세 1,[38][41]
- 야누스 키나세 2,[41][58][59]
- LAIR1,[60][61]
- LRP1,[62]
- PDGFRB,[63][64]
- PI3K → Akt[26]
- PLCG2,[33]
- PTK2B,[65]
- 라스[26][27]
- SLAMF1,[66][67]
- SOCS3,[38]
- SOS1,[30][68]
- 통계분석3,[14]
- STAT5A [69][70]및
- STAT5B.[69]
H Pylori CagA virulence 계수
CagA는 헬리코박터균이 위상피질에 삽입한 단백질과 발열인자다.일단 SRC 인산화 작용에 의해 활성화되면, CagA는 SHP2에 바인딩되며, 위상적으로 활성화된다.이것은 형태학적 변화로 이어지고, 비정상적인 유사성 신호와 지속적인 활동은 숙주세포의 사멸을 초래할 수 있다.역학 연구는 폐위염, 소화성 궤양 질환, 위암 발생에 있어 cagA- 양성 H. pylori의 역할을 밝혀냈다.[71]
참조
- ^ a b c GRCh38: 앙상블 릴리스 89: ENSG00000179295 - 앙상블, 2017년 5월
- ^ a b c GRCm38: 앙상블 릴리스 89: ENSMUSG000043733 - 앙상블, 2017년 5월
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Jamieson CR, van der Burgt I, Brady AF, van Reen M, Elsawi MM, Hol F, Jeffery S, Patton MA, Mariman E (December 1994). "Mapping a gene for Noonan syndrome to the long arm of chromosome 12". Nat. Genet. 8 (4): 357–60. doi:10.1038/ng1294-357. PMID 7894486. S2CID 1582162.
- ^ Freeman RM, Plutzky J, Neel BG (December 1992). "Identification of a human Src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew". Proc. Natl. Acad. Sci. U.S.A. 89 (23): 11239–43. Bibcode:1992PNAS...8911239F. doi:10.1073/pnas.89.23.11239. PMC 50525. PMID 1280823.
- ^ "Entrez Gene: PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)".
- ^ Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. doi:10.1038/s41598-019-54976-4. PMC 6901466. PMID 31819097.
- ^ Sobreira NL, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL, Ge D, Shianna KV, Smith JP, Maia JM, Gumbs CE, Pevsner J, Thomas G, Valle D, Hoover-Fong JE, Goldstein DB (June 2010). "Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene". PLOS Genet. 6 (6): e1000991. doi:10.1371/journal.pgen.1000991. PMC 2887469. PMID 20577567.
- ^ Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS (January 2007). "Germline gain-of-function mutations in SOS1 cause Noonan syndrome". Nat. Genet. 39 (1): 70–4. doi:10.1038/ng1926. PMID 17143285. S2CID 10222262.
- ^ Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG (March 2006). "PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects". J. Biol. Chem. 281 (10): 6785–92. doi:10.1074/jbc.M513068200. PMID 16377799.
- ^ Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (December 2004). "Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia". Cancer Res. 64 (24): 8816–20. doi:10.1158/0008-5472.CAN-04-1923. PMID 15604238.
- ^ Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP, Chen YA, Fathi AT, Graubert TA, Brunner AM, Wadleigh M, Stone RM, DeAngelo DJ, Nardi V, Hasserjian RP, Weinberg OK (May 2018). "High NPM1 mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML". Blood. 131 (25): 2816–2825. doi:10.1182/blood-2018-01-828467. PMC 6265642. PMID 29724895.
- ^ a b c Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS (May 2011). "Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis". Cancer Cell. 19 (5): 629–39. doi:10.1016/j.ccr.2011.03.023. PMC 3098128. PMID 21575863.
- ^ a b Hatakeyama M, Higashi H (2005). "Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis". Cancer Science. 96 (12): 835–843. doi:10.1111/j.1349-7006.2005.00130.x. PMID 16367902. S2CID 5721063.
- ^ Tanaka Y, Tanaka N, Saeki Y, Tanaka K, Murakami M, Hirano T, Ishii N, Sugamura K (August 2008). "c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130". Mol. Cell. Biol. 28 (15): 4805–18. doi:10.1128/MCB.01784-07. PMC 2493370. PMID 18519587.
- ^ Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T, Broxmeyer HE (October 1994). "The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells". J. Biol. Chem. 269 (40): 25206–11. doi:10.1016/S0021-9258(17)31518-1. PMID 7523381.
- ^ Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (April 1998). "SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain". Mol. Cell. Biol. 18 (4): 2089–99. doi:10.1128/MCB.18.4.2089. PMC 121439. PMID 9528781.
- ^ Ilan N, Cheung L, Pinter E, Madri JA (July 2000). "Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation". J. Biol. Chem. 275 (28): 21435–43. doi:10.1074/jbc.M001857200. PMID 10801826.
- ^ Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, Lord JM, Wakelam MJ, Bird IN, Salmon M, Buckley CD (April 1999). "Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31". FEBS Lett. 450 (1–2): 77–83. doi:10.1016/S0014-5793(99)00446-9. PMID 10350061. S2CID 31471121.
- ^ Hua CT, Gamble JR, Vadas MA, Jackson DE (October 1998). "Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates". J. Biol. Chem. 273 (43): 28332–40. doi:10.1074/jbc.273.43.28332. PMID 9774457.
- ^ Jackson DE, Ward CM, Wang R, Newman PJ (March 1997). "The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling". J. Biol. Chem. 272 (11): 6986–93. doi:10.1074/jbc.272.11.6986. PMID 9054388.
- ^ Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, Beauchemin N (January 1999). "The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells". J. Biol. Chem. 274 (1): 335–44. doi:10.1074/jbc.274.1.335. PMID 9867848.
- ^ Schulze WX, Deng L, Mann M (2005). "Phosphotyrosine interactome of the ErbB-receptor kinase family". Mol. Syst. Biol. 1 (1): E1–E13. doi:10.1038/msb4100012. PMC 1681463. PMID 16729043.
- ^ Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (September 1995). "Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C". J. Biol. Chem. 270 (36): 21277–84. doi:10.1074/jbc.270.36.21277. PMID 7673163.
- ^ a b c L.A. Lai; C. Zhao; E.E. Zhang; G.S. Feng (2004). "14 The Shp-2 tyrosine phosphatase". In Joaquín Ariño; Denis Alexander (eds.). Protein phosphatases. Springer. pp. 275–299. ISBN 978-3-540-20560-9.
- ^ a b Neel BG, Gu H, Pao L (June 2003). "The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling". Trends in Biochemical Sciences. 28 (6): 284–293. doi:10.1016/S0968-0004(03)00091-4. ISSN 0968-0004. PMID 12826400.
- ^ Delahaye L, Rocchi S, Van Obberghen E (February 2000). "Potential involvement of FRS2 in insulin signaling". Endocrinology. 141 (2): 621–8. doi:10.1210/endo.141.2.7298. PMID 10650943.
- ^ Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M (April 2001). "Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction". Oncogene. 20 (16): 1929–38. doi:10.1038/sj.onc.1204290. PMID 11360177.
- ^ a b c Hadari YR, Kouhara H, Lax I, Schlessinger J (July 1998). "Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation". Mol. Cell. Biol. 18 (7): 3966–73. doi:10.1128/MCB.18.7.3966. PMC 108981. PMID 9632781.
- ^ Saito Y, Hojo Y, Tanimoto T, Abe J, Berk BC (June 2002). "Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor". J. Biol. Chem. 277 (26): 23216–22. doi:10.1074/jbc.M200605200. PMID 11940581.
- ^ Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (July 1998). "Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules". Mol. Endocrinol. 12 (7): 914–23. doi:10.1210/mend.12.7.0141. PMID 9658397.
- ^ a b Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C (October 2002). "Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells". Cell. Signal. 14 (10): 869–78. doi:10.1016/S0898-6568(02)00036-0. PMID 12135708.
- ^ Lynch DK, Daly RJ (January 2002). "PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2". EMBO J. 21 (1–2): 72–82. doi:10.1093/emboj/21.1.72. PMC 125816. PMID 11782427.
- ^ Zhao C, Yu DH, Shen R, Feng GS (July 1999). "Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1". J. Biol. Chem. 274 (28): 19649–54. doi:10.1074/jbc.274.28.19649. PMID 10391903.
- ^ Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J (April 2001). "A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners". FEBS Lett. 495 (3): 148–53. doi:10.1016/S0014-5793(01)02373-0. PMID 11334882. S2CID 24499468.
- ^ Wolf, I.; Jenkins, B. J.; Liu, Y.; Seiffert, M.; Custodio, J. M.; Young, P.; Rohrschneider, L. R. (2002). "Gab3, a New DOS/Gab Family Member, Facilitates Macrophage Differentiation". Molecular and Cellular Biology. 22 (1): 231–244. doi:10.1128/MCB.22.1.231-244.2002. ISSN 0270-7306. PMC 134230. PMID 11739737.
and associates transiently with the SH2 domain-containing proteins p85 and SHP2
- ^ a b c Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F (January 2003). "SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130". J. Biol. Chem. 278 (1): 661–71. doi:10.1074/jbc.M210552200. PMID 12403768.
- ^ Anhuf D, Weissenbach M, Schmitz J, Sobota R, Hermanns HM, Radtke S, Linnemann S, Behrmann I, Heinrich PC, Schaper F (September 2000). "Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation". Journal of Immunology. 165 (5): 2535–43. doi:10.4049/jimmunol.165.5.2535. PMID 10946280.
- ^ Kim H, Baumann H (December 1997). "Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells". J. Biol. Chem. 272 (49): 30741–7. doi:10.1074/jbc.272.49.30741. PMID 9388212.
- ^ a b c Yin T, Shen R, Feng GS, Yang YC (January 1997). "Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases". J. Biol. Chem. 272 (2): 1032–7. doi:10.1074/jbc.272.2.1032. PMID 8995399.
- ^ Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE (June 2000). "Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk". J. Biol. Chem. 275 (23): 17263–8. doi:10.1074/jbc.M000689200. PMID 10747947.
- ^ Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (July 1994). "Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras". Proc. Natl. Acad. Sci. U.S.A. 91 (15): 7335–9. Bibcode:1994PNAS...91.7335B. doi:10.1073/pnas.91.15.7335. PMC 44394. PMID 8041791.
- ^ Ward AC, Monkhouse JL, Hamilton JA, Csar XF (November 1998). "Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor". Biochim. Biophys. Acta. 1448 (1): 70–6. doi:10.1016/S0167-4889(98)00120-7. PMID 9824671.
- ^ Tang J, Feng GS, Li W (October 1997). "Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor". Oncogene. 15 (15): 1823–32. doi:10.1038/sj.onc.1201351. PMID 9362449.
- ^ Tang H, Zhao ZJ, Huang XY, Landon EJ, Inagami T (April 1999). "Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells". J. Biol. Chem. 274 (18): 12401–7. doi:10.1074/jbc.274.18.12401. PMID 10212213.
- ^ Zhang S, Mantel C, Broxmeyer HE (March 1999). "Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells". J. Leukoc. Biol. 65 (3): 372–80. doi:10.1002/jlb.65.3.372. PMID 10080542. S2CID 38211235.
- ^ Wong L, Johnson GR (August 1996). "Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2". J. Biol. Chem. 271 (35): 20981–4. doi:10.1074/jbc.271.35.20981. PMID 8702859.
- ^ Stofega MR, Herrington J, Billestrup N, Carter-Su C (September 2000). "Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B". Mol. Endocrinol. 14 (9): 1338–50. doi:10.1210/me.14.9.1338. PMID 10976913.
- ^ Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (June 1998). "Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins". J. Biol. Chem. 273 (26): 15906–12. doi:10.1074/jbc.273.26.15906. PMID 9632636.
- ^ Wang H, Lindsey S, Konieczna I, Bei L, Horvath E, Huang W, Saberwal G, Eklund EA (January 2009). "Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia". J Biol Chem. 284 (4): 2549–67. doi:10.1074/jbc.M804704200. PMC 2629090. PMID 19022774.
- ^ Maegawa H, Ugi S, Adachi M, Hinoda Y, Kikkawa R, Yachi A, Shigeta Y, Kashiwagi A (March 1994). "Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro". Biochem. Biophys. Res. Commun. 199 (2): 780–5. doi:10.1006/bbrc.1994.1297. PMID 8135823.
- ^ Kharitonenkov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E, White M, Ullrich A (December 1995). "Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction". J. Biol. Chem. 270 (49): 29189–93. doi:10.1074/jbc.270.49.29189. PMID 7493946.
- ^ Mañes S, Mira E, Gómez-Mouton C, Zhao ZJ, Lacalle RA, Martínez-A C (April 1999). "Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility". Mol. Cell. Biol. 19 (4): 3125–35. doi:10.1128/mcb.19.4.3125. PMC 84106. PMID 10082579.
- ^ Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, Milarski KL, Saltiel AR, Olefsky JM (August 1995). "Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein". J. Biol. Chem. 270 (32): 19151–7. doi:10.1074/jbc.270.32.19151. PMID 7642582.
- ^ Kuhné MR, Pawson T, Lienhard GE, Feng GS (June 1993). "The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp". J. Biol. Chem. 268 (16): 11479–81. doi:10.1016/S0021-9258(19)50220-4. PMID 8505282.
- ^ Myers MG, Mendez R, Shi P, Pierce JH, Rhoads R, White MF (October 1998). "The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling". J. Biol. Chem. 273 (41): 26908–14. doi:10.1074/jbc.273.41.26908. PMID 9756938.
- ^ Tauchi T, Damen JE, Toyama K, Feng GS, Broxmeyer HE, Krystal G (June 1996). "Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis". Blood. 87 (11): 4495–501. doi:10.1182/blood.V87.11.4495.bloodjournal87114495. PMID 8639815.
- ^ Maegawa H, Kashiwagi A, Fujita T, Ugi S, Hasegawa M, Obata T, Nishio Y, Kojima H, Hidaka H, Kikkawa R (November 1996). "SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates". Biochem. Biophys. Res. Commun. 228 (1): 122–7. doi:10.1006/bbrc.1996.1626. PMID 8912646.
- ^ Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, Patel S, Zlot C, Gorman D, Zurawski S, Abrams J, Bates EE, Garrone P (August 2000). "FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells". Journal of Immunology. 165 (3): 1197–209. doi:10.4049/jimmunol.165.3.1197. PMID 10903717.
- ^ Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (August 1997). "LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes". Immunity. 7 (2): 283–90. doi:10.1016/S1074-7613(00)80530-0. PMID 9285412.
- ^ Betts GN, van der Geer P, Komives EA (June 2008). "Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain". J. Biol. Chem. 283 (23): 15656–64. doi:10.1074/jbc.M709514200. PMC 2414285. PMID 18381291.
- ^ Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (January 2001). "Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1". J. Cell Biol. 152 (2): 325–34. doi:10.1083/jcb.152.2.325. PMC 2199605. PMID 11266449.
- ^ Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, Walsh CT, Neel BG (October 1993). "Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor". J. Biol. Chem. 268 (29): 21478–81. doi:10.1016/S0021-9258(20)80562-6. PMID 7691811.
- ^ Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, Shima Y, Tai YT, Rosen S, Avraham S, Kharbanda S, Anderson KC (September 2000). "SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells". J. Biol. Chem. 275 (36): 27845–50. doi:10.1074/jbc.M003428200. PMID 10880513.
- ^ Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C (February 2000). "Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation". Blood. 99 (3): 957–65. doi:10.1182/blood.V99.3.957. PMID 11806999.
- ^ Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C (November 2001). "Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells". EMBO J. 20 (21): 5840–52. doi:10.1093/emboj/20.21.5840. PMC 125701. PMID 11689425.
- ^ Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (October 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochem. Biophys. Res. Commun. 239 (2): 412–7. doi:10.1006/bbrc.1997.7480. PMID 9344843.
- ^ a b Yu CL, Jin YJ, Burakoff SJ (January 2000). "Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation". J. Biol. Chem. 275 (1): 599–604. doi:10.1074/jbc.275.1.599. PMID 10617656.
- ^ Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S (August 2002). "Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells". J. Biol. Chem. 277 (34): 31107–14. doi:10.1074/jbc.M200156200. PMID 12060651.
- ^ Hatakeyama M (September 2004). "Oncogenic mechanisms of the Helicobacter pylori CagA protein". Nature Reviews Cancer. 4 (9): 688–94. doi:10.1038/nrc1433. PMID 15343275. S2CID 1218835.
추가 읽기
- Marron MB, Hughes DP, McCarthy MJ, Beaumont ER, Brindle NP (2000). "Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: potential signalling mechanisms and roles in angiogenesis". Angiogenesis. Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. Vol. 476. pp. 35–46. doi:10.1007/978-1-4615-4221-6_3. ISBN 978-1-4613-6895-3. PMID 10949653.
- Carter-Su C, Rui L, Stofega MR (2000). "SH2-B and SIRP: JAK2 binding proteins that modulate the actions of growth hormone". Recent Prog. Horm. Res. 55: 293–311. PMID 11036942.
- Ion A, Tartaglia M, Song X, Kalidas K, van der Burgt I, Shaw AC, Ming JE, Zampino G, Zackai EH, Dean JC, Somer M, Parenti G, Crosby AH, Patton MA, Gelb BD, Jeffery S (2002). "Absence of PTPN11 mutations in 28 cases of cardiofaciocutaneous (CFC) syndrome". Hum. Genet. 111 (4–5): 421–7. doi:10.1007/s00439-002-0803-6. PMID 12384786. S2CID 27085702.
- Hugues L, Cavé H, Philippe N, Pereira S, Fenaux P, Preudhomme C (2006). "Mutations of PTPN11 are rare in adult myeloid malignancies". Haematologica. 90 (6): 853–4. PMID 15951301.
- Tartaglia M, Gelb BD (2005). "Germ-line and somatic PTPN11 mutations in human disease". European Journal of Medical Genetics. 48 (2): 81–96. doi:10.1016/j.ejmg.2005.03.001. PMID 16053901.
- Ogata T, Yoshida R (2006). "PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes". Pediatric Endocrinology Reviews. 2 (4): 669–74. PMID 16208280.
- Feng GS (2007). "Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation". Cell Res. 17 (1): 37–41. doi:10.1038/sj.cr.7310140. PMID 17211446.
- Edouard T, Montagner A, Dance M, Conte F, Yart A, Parfait B, Tauber M, Salles JP, Raynal P (2007). "How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms?". Cell. Mol. Life Sci. 64 (13): 1585–90. doi:10.1007/s00018-007-6509-0. PMID 17453145. S2CID 25934330.