JP5321150B2 - 複合センサー - Google Patents

複合センサー Download PDF

Info

Publication number
JP5321150B2
JP5321150B2 JP2009051616A JP2009051616A JP5321150B2 JP 5321150 B2 JP5321150 B2 JP 5321150B2 JP 2009051616 A JP2009051616 A JP 2009051616A JP 2009051616 A JP2009051616 A JP 2009051616A JP 5321150 B2 JP5321150 B2 JP 5321150B2
Authority
JP
Japan
Prior art keywords
sensor element
electrode
movable
acceleration sensor
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051616A
Other languages
English (en)
Other versions
JP2010203990A5 (ja
JP2010203990A (ja
Inventor
政宏 押尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009051616A priority Critical patent/JP5321150B2/ja
Publication of JP2010203990A publication Critical patent/JP2010203990A/ja
Publication of JP2010203990A5 publication Critical patent/JP2010203990A5/ja
Application granted granted Critical
Publication of JP5321150B2 publication Critical patent/JP5321150B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、加速度センサー素子、振動型角速度センサー素子等の複数のセンサー素子を同一パッケージに収めた複合センサーに関する。
複合センサーに用いられるセンサー素子は、種類によってその大きさや、最適な使用環境が異なる。例えば、可動部の動きを検知する加速度センサー素子では、過渡応答や耐衝撃性の観点から、低いQ値が要求される。一方、振動型角速度センサー素子では、加速度センサー素子と比較して高いQ値が要求される。いずれのセンサー素子も可動部を備えており、Q値の設計は、センサー素子の可動部を取り巻く気体の粘性を利用して行うので、センサー素子ごとに取り巻く気体の圧力を変える必要がある。
具体的には、加速度センサー素子は、気体によるダンピング効果を利用するため、大気圧付近で封止する必要があり、振動型角速度センサー素子は、気体による影響を少なくするため、減圧封止が必要である。
センサー収容空間部を加速度センサー用空間部と角速度センサー用空間部とに区分し、加速度センサーと角速度センサーとをそれぞれ別個独立に収容配置されたものが知られている(例えば、特許文献1参照)。
また、加速度センサーチップ(素子)と角速度センサーチップ(素子)とを同一基板に設けたものが知られている(例えば、特許文献2参照)。
特開2002−5950号公報(6頁、図2) 特開平10−10148号公報(3頁、図1)
しかしながら、複合センサーの小型化および低コスト化を実現するために、同一基板に加速度センサー素子および角速度センサー素子を設け、加速度センサー素子または角速度センサー素子それぞれに適した圧力の空間を別々に形成するには、空間を区分する壁を基板を介して設ける必要がある。基板と壁との間から各空間間のリークが発生して、長期的に特性の変動を抑えることが困難である。また、空間を区分する壁の存在により、小型化、低コスト化が困難になる。
本発明は、上述の課題を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]
基板に形成され、ダンピング用構造体を有する加速度センサー素子と、前記基板に形成された振動型角速度センサー素子と前記基板が減圧封止されたパッケージとを備えたことを特徴とする複合センサー。
この適用例によれば、振動型角速度センサー素子が減圧封止されているため、振動型角速度センサー素子のQ値が大きくなり、バイアスドリフト特性の優れた角速度が検出される。また、加速度センサー素子は、ダンピング用構造体によるダンピング効果により、低いQ値となり、過渡応答性に優れた加速度が検出される。また、パッケージ内を複数の空間に区分する必要がない。したがって、各センサーの特性を発揮でき、長期的に特性の変動を抑え、小型化および低コスト化を実現する複合センサーが得られる。
[適用例2]
上記複合センサーであって、前記加速度センサー素子は、支持体と、前記支持体に形成されている固定電極と、可動部と、前記可動部に設けられ、前記固定電極に対向配置されて容量を形成する可動電極と、前記固定電極および前記可動電極のうち少なくとも一方の対向面に、面内の一方向に向かって延びるように形成された凸部とを備えたことを特徴とする複合センサー。また、他の態様では、加速度センサー素子と、振動型角速度センサー素子と、前記加速度センサー素子および前記振動型角速度センサー素子を収納して減圧封止されたパッケージと、を備え、前記加速度センサー素子は、支持体と、前記支持体から突出して設けられている固定電極と、可動部と、前記可動部から突出して設けられ、且つ、前記固定電極に対向している可動電極と、前記固定電極および前記可動電極の少なくとも一方に、前記突出する方向に沿って設けられている凸部と、を備えていることを特徴とする複合センサー。
この適用例では、固定電極と可動電極との間の距離が変化する方向の加速度印加時において、固定電極と可動電極との間隙に存在する気体の流れは、対向面に形成された一方向に向かって延びる凸部によって一方向への流れが発生する。この気体の流れによるスクイーズフィルムダンピングにより、大きな減衰定数cが得られる。したがって、可動部と支持体との間隔を狭くすることなく、固定電極と可動電極との間隙の構造によって減衰定数cの調節が可能であり、可動部と支持体との衝突破壊が低減した耐衝撃性の優れた加速度センサー素子が得られる。
[適用例3]
上記複合センサーであって、前記凸部は、前記対向面のいずれかの縁に平行な線に沿って延びていることを特徴とする複合センサー。また、他の態様では、上記複合センサーであって、前記凸部は、電極断面の上端および下端の少なくとも一方に設けられていることを特徴とする複合センサー。
この適用例では、縁に平行に凸部が設けられているので、固定電極と可動電極との間隙に存在する気体の流れがより一定方向に揃い、スクイーズフィルムダンピングにより、より大きな減衰定数cが得られる。したがって、可動部と支持体との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子が得られる。
[適用例4]
上記複合センサーであって、前記凸部は、前記対向面の対向する領域の縁部に設けられていることを特徴とする複合センサー。また、他の態様では、上記複合センサーであって、前記凸部は、前記固定電極および前記可動電極の一方の電極断面の上端に設けられ、かつ、前記固定電極および前記可動電極の他方の電極断面の下端に設けられていることを特徴とする複合センサー。
この適用例では、凸部が縁部にあることにより、固定電極と可動電極との間隙に存在する気体の多くが、スクイーズフィルムダンピングに寄与し、より大きな減衰定数cが得られる。したがって、可動部と支持体との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子が得られる。
[適用例5]
上記複合センサーであって、前記凸部は、平行に複数形成されていることを特徴とする複合センサー。
この適用例では、凸部が平行に複数存在するので、気体の流れがより一定方向に揃い、より大きな減衰定数cが得られる。したがって、可動部と支持体との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子が得られる。
[適用例6]
上記複合センサーであって、前記加速度センサー素子は、支持体と、前記支持体に形成されている固定電極と、前記支持体に形成されている第1ダンピング用構造体と、可動部と、前記可動部に設けられた可動電極と、前記可動部に設けられた第2ダンピング用構造体とを備え、前記固定電極と前記可動電極とは、第1間隙を隔てて対向配置されて容量を形成し、前記第1ダンピング用構造体と前記第2ダンピング用構造体とは、第2間隙を隔てて対向配置されていることを特徴とする複合センサー。また、他の態様では、加速度センサー素子と、振動型角速度センサー素子と、前記加速度センサー素子および前記振動型角速度センサー素子を収納して減圧封止されたパッケージと、を備え、前記加速度センサー素子は、支持体と、前記支持体に設けられた固定電極および第1ダンピング用構造体と、可動部と、前記可動部に設けられた可動電極および第2ダンピング用構造体と、を備え、前記固定電極と前記可動電極とは、第1間隙を隔てて対向配置され、前記第1ダンピング用構造体と前記第2ダンピング用構造体とは、第2間隙を隔てて対向配置され、且つ、前記固定電極と前記可動電極の並びに沿って配置されていることを特徴とする複合センサー。
この適用例では、固定電極および可動電極以外にダンピング用構造体を設けるので、固定電極と可動電極との電極間間隙を狭くすることなく、ダンピング用構造体によってダンピングの調整ができる。したがって、可動部と支持体との衝突破壊が低減して耐衝撃性に優れ、固定電極と可動電極との衝突を避けながら加速度の検出が可能な、加速度の検出特性の低下の少ない加速度センサー素子が得られる。
[適用例7]
上記複合センサーであって、前記第2間隙は、前記第1間隙より狭いことを特徴とする複合センサー。
この適用例では、第2間隙を、第1間隙より狭くして、ダンピングをより大きくできる。
[適用例8]
上記複合センサーであって、前記可動電極の変動方向と前記第2ダンピング用構造体の変動方向とが略一致していることを特徴とする複合センサー。
この適用例では、可動電極の変動方向と第2ダンピング用構造体の変動方向が略一致しているので、減衰力が固定電極と可動電極との間の第2間隙の変動に効率よく働く。
[適用例9]
上記複合センサーであって、前記第1ダンピング用構造体および前記第2ダンピング用構造体は、それぞれ複数設けられて、前記可動電極の変動方向または前記可動部の重心に対して対称な位置に配置されていることを特徴とする複合センサー。
この適用例では、第1ダンピング用構造体および第2ダンピング用構造体が、可動電極の変動方向または可動部の重心に対して対称に配置されているので、可動電極の変動方向に対して均等に減衰力が働き、他方向への感度が押さえられる。
[適用例10]
上記複合センサーであって、前記固定電極、前記可動電極、前記可動部および前記第1ダンピング用構造体および前記第2ダンピング用構造体が、集積回路で用いられる積層構造を有していることを特徴とする複合センサー。
この適用例では、固定電極、可動電極、可動部、第1ダンピング用構造体および第2ダンピング用構造体が積層構造であるので、集積回路が形成された基板上に加速度センサー素子が形成できる。
[適用例11]
上記複合センサーであって、前記固定電極、前記可動電極、前記可動部および前記第1ダンピング用構造体および前記第2ダンピング用構造体が、単結晶シリコンから形成されていることを特徴とする複合センサー。また、他の態様では、上記複合センサーが形成されている前記基板が単結晶シリコンであることを特徴とする複合センサー。
この適用例では、固定電極、可動電極、可動部、第1ダンピング用構造体および第2ダンピング用構造体が、単結晶シリコンから形成されているので、熱応力による変形が少なく、厚い構造体の形成も容易になる。
第1実施形態における複合センサーの概略図。 (a)は加速度センサー素子の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図。 CMOS集積回路および加速度センサー素子を基板に形成する場合の製造工程の簡略断面図。 第2実施形態における(a)は加速度センサー素子の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図。 CMOS集積回路および加速度センサー素子を基板に形成する場合の製造工程の簡略断面図。 第3実施形態における(a)は加速度センサー素子の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図。 第4実施形態における(a)は加速度センサー素子の概略平面図、(b)は(a)におけるA−A概略断面図。 第5実施形態における(a)は加速度センサー素子の概略平面図、(b)は(a)におけるA−A概略断面図。 変形例における加速度センサー素子の概略平面図。
以下、実施形態を図面に基づいて詳しく説明する。
(第1実施形態)
図1に、本実施形態における複合センサー1000の概略図を示した。(a)は概略平面図で、(b)は(a)におけるA−A概略断面図である。
図1において、複合センサー1000は、収容器1100と蓋体1200とからなる直方体のパッケージ1300を備えている。パッケージ1300には、1つの加速度センサー素子100とCMOS(Complementary Metal Oxide Semiconductor)集積回路400と3つの振動型角速度センサー素子700,800,900が形成された基板30が収められている。
基板30も直方体の板であり、収容器1100の底面1110に、配置されている。基板30は、底面1110との間に、スペーサー等を介して配置されていてもよい。
図中には、直方体のパッケージ1300および基板30の各辺に平行な方向をX,Y,Z軸方向で示した。
CMOS集積回路400は、Y軸方向の略中心に配置されている。CMOS集積回路400を挟むようにして、振動型角速度センサー素子700,800と加速度センサー素子100および振動型角速度センサー素子900とがそれぞれ配置されている。
例えば、振動型角速度センサー素子700はX軸検出用であり、振動型角速度センサー素子800はY軸検出用であり、振動型角速度センサー素子900はZ軸検出用である。
加速度センサー素子100および振動型角速度センサー素子700,800,900の配置は、図に示した配置に限らず、互いに入れ替わった配置であってもよい。
また、振動型角速度センサー素子700,800,900は3個に限らず、1個または2個で、1軸または2軸を検出するものであってもよい。
収容器1100は、凹部1120を有し、凹部1120の開口部の周囲には段差1121が形成されている。蓋体1200は、収容器1100の段差1121に組み合わされて接合されている。
収容器1100および蓋体1200は、セラミック、ガラス等の絶縁体または金属で形成することができる。また、樹脂を成形して形成してもよい。樹脂を用いる場合、透湿率の低い液晶ポリマーを用いるとよい。
また、蓋体1200の材質は、収容器1100の材質と同じにすると、熱膨張係数の違いによる応力による蓋体1200と収容器1100との剥がれ等が発生せず好ましい。加えて、素子への熱応力の影響を小さくし、温度特性に優れたセンサーを実現できる収容器1100と蓋体1200とを接合するには、はんだ、低融点ガラス、接着剤等を用いることができる。
収容器1100の底面1110には、孔1122が設けられている。孔1122からパッケージ1300内を減圧した後、孔1122は封止部材1130によって封止され、パッケージ1300は減圧封止されている。
図2に、本実施形態における加速度センサー素子100の部分を基板30から矩形状に抜き出した概略図を示した。(a)は加速度センサー素子100の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図である。図中には、X,Y,Z軸方向を示している。また、図中の両矢印は、加速度検出方向を示し、本実施形態では、X軸方向が加速度検出方向である。X,Y,Z軸方向は、図1に示したX,Y,Z軸方向と一致している。
図2において、加速度センサー素子100は、支持体10と可動部20とを備えている。
支持体10は、基板30と基板30上に形成された支持部40とを備えている。また、可動部20も基板30上に形成されている。
基板30は、シリコン基板からなり、可動部20との間に間隔を持たせるために、基板30の可動部20に対向する面には、凹部31が形成されている。凹部31の深さは、可動部20のZ軸方向に衝撃が加わって、可動部20が基板30側に撓んでも衝突しない深さになっている。
可動部20および支持部40は、例えば、基板30上の他の領域に形成されたCMOS集積回路400を構成する配線層50、層間絶縁膜60等からなる積層構造を利用して形成されている。
配線層50としては、例えば、Al、Cu、Al合金、Mo、Ti、W、Pt等を用いることができる。配線層50には、CMOS集積回路400を形成する際に用いられるTiN、Ti、TiW、TaN、WN、VN、ZrN、NbN等からなるバリア膜、TiN、Ti等からなる反射防止膜も含まれる。また、配線層50には、CMOSのゲート電極も含む。ゲート電極は、不純物を含んだ多結晶シリコン、シリサイド、W等からなる。
層間絶縁膜60としては、SiO2、TEOS(Tetraethoxysilane)、BPSG(Borophosphosilicate Glass)、NSG(Non-doped silicon glass)、SOG(Spin on glass)等を用いることができる。また、積層構造には、CMOS集積回路400の最表面に形成されるSiN、SiO2等からなる保護膜を含んでいてもよい。
Al等の配線層50は、スパッタ、真空蒸着、CVD(Chemical Vapor Deposition)等で形成でき、SiO2等の層間絶縁膜60は、CVD、熱酸化、スピンコートおよび焼成等で形成することができる。
なお、可動部20および支持部40は、CMOS集積回路400の積層構造を利用して形成されるものに限らず、独自に積層構造を形成したものであってもよい。
支持部40は、基板30上に略矩形の枠体として形成されている。支持部40は、固定電極41を備えている。固定電極41は、支持部40の対向する一対の内面の略中央に、枠体の内側に向かって形成されている。固定電極41の形状は、板状の直方体である。
可動部20は、可動電極21と錘部22とばね部23,24とを備えている。錘部22の形状は、略直方体に形成されている。可動部20は、固定電極41が形成されていない残りの一対の支持部40の内面と2つのばね部23,24を介して、略矩形の枠体である支持部40で囲まれた略中心に2ヵ所で保持されている。
ばね部23,24は、対向する2つの板ばねを向かい合わせて、両端で固定した構造となっている。2つの板ばねのうち、一方の板ばねは支持部40と接続され、他方の板ばねは錘部22に接続されている。
可動電極21は、錘部22の固定電極41に対向する位置に形成されている。可動電極21も固定電極41と同様に板状の直方体である。
可動電極21と固定電極41との対は、錘部22を挟んで対向する2ヵ所に設けられており、片方の間隔が広がれば、他方の間隔が狭まる差動検出タイプとなっている。
可動電極21と固定電極41とは、電極間で容量が得られるように、電極間間隙70を介して対向している。電極間間隙70の縁部71には、狭窄部72が設けられている。狭窄部72は、固定電極41の基板30とは反対側の1辺にあたる縁部42に、可動電極21に向かって凸部43を形成することによって設けられている。
図2では、凸部43は、配線層50を利用して形成されているが、層間絶縁膜60が縁部42にある場合には層間絶縁膜60を利用して、凸部43を形成してもよい。
図2(c)において、凸部43は、固定電極41のY軸方向に延びる縁部42に設けられている。この場合、図2(b)に示すように、固定電極41の断面形状は、L字型になる。
狭窄部72は、縁部42の基板30側の縁部44に設けられていてもよい。また、両側の縁部42,44に設けられていてもよい。この場合、固定電極41の断面形状は、凹型の溝になる。さらに、凸部43を、可動電極21に形成して狭窄部72を設けてもよい。
本実施形態では、可動電極21と固定電極41とでダンピング用構造体76を構成している。
CMOS集積回路400とともに、基板30上に加速度センサー素子100を形成する場合の各構成要素の大きさは特に限定されないが、例えば、以下の通りである。
可動部20および支持部40の積層構造の厚さは、数μm程度で、支持部40は、数mm角程度の枠体である。積層構造の各層は、1μm程度である。可動電極21と固定電極41との電極間距離である電極間間隙70の間隔は数μm程度である。また、錘部22の質量は、数×10-6g程度である。
可動部20と支持部40は、配線層50および層間絶縁膜60からなる積層構造の表面側からの異方性エッチングと等方性エッチングを組み合わせることで形成できる。
図3(a)〜(c)に、例として、CMOS集積回路400と加速度センサー素子100とを基板30に形成する場合の製造工程の簡略断面図を示した。図では、加速度センサー素子100の可動部20付近の断面図を簡略化して示している。
図3(a)は、CMOS集積回路400とエッチング前の加速度センサー部110を形成する工程を、(b)は層間絶縁膜60等の異方性エッチング工程を、(c)は基板30の等方性エッチング工程を示している。
図3(a)において、基板30にトランジスター410を構成する不純物拡散層411、ソース412、ドレイン413、LOCOS(Local Oxidation of Silicon)414、ゲート酸化膜415、ゲート416等を形成後、トランジスター410上にプラグ420、配線層50、層間絶縁膜60、保護膜430等を積層、エッチングを繰り返しCMOS集積回路400をよく知られた方法で形成する。
このとき、加速度センサー部110には、加速度センサー素子100の形状に応じて、ゲート416、配線層50をフォトリソ工程によって残し、これらの間に層間絶縁膜60および絶縁膜である保護膜430を形成する。
図3(b)において、保護膜430側から層間絶縁膜60等の異方性エッチングを行う。異方性エッチングは、例えば、ICP(Inductively Coupled Plasma)エッチングによって行う。エッチングガスとしては、CF4、CH3、He等の混合ガスを用い、圧力を10〜20Pa、RFパワーを600〜800Wで行う。エッチング時間は、保護膜430と層間絶縁膜60の合計膜厚が4〜6μmの場合、10〜20分である。
図3(c)において、保護膜430側からシリコンの基板30の等方性エッチングを行い、凹部31を形成する。等方性エッチングは、例えば、ICP(Inductively Coupled Plasma)エッチングによって行う。エッチングガスとしては、SF6、O2の混合ガスを用い、圧力を1〜100Pa、RFパワーを100W程度で行う。エッチング時間は、凹部31の深さが2〜3μmの場合、数分である。このエッチングにより、可動部20等が基板30から切り離される。
振動型角速度センサー素子700,800,900では、振動体を一定の周波数で振動させる。振動体に角速度が加わるとコリオリ力が発生し、コリオリ力によって振動体が異なる方向に振動する。このコリオリ力による変位を検知することで角速度を検出する。振動型角速度センサーとしては、周知のものを用いることができる。
また、振動型角速度センサー素子700,800,900も加速度センサー素子100と同様の方法で製造することができる。
このような本実施形態によれば、以下の効果がある。
(1)振動型角速度センサー素子700,800,900が減圧封止されているため、振動型角速度センサー素子700,800,900のQ値を大きくでき、バイアスドリフト特性の優れた角速度を検出できる。また、加速度センサー素子100は、ダンピング用構造体76によるダンピング効果により、低いQ値にでき、過渡応答性に優れた加速度を検出できる。また、パッケージ1300内を複数の空間に区分する必要がない。したがって、各センサーの特性を発揮でき、長期的に特性の変動が抑えられた、小型化および低コスト化を実現する複合センサー1000を得ることができる。
(2)固定電極41と可動電極21との間の距離が変化するX軸方向の加速度印加時において、固定電極41と可動電極21との電極間間隙70に存在する気体の流れは、対向面に形成された一方向に向かって延びる凸部43によって一方向への流れが発生する。この気体の流れによるスクイーズフィルムダンピングにより、大きな減衰定数cを得ることができる。したがって、可動部20と支持体10との間隔を狭くすることなく、固定電極41と可動電極21との電極間間隙70の構造によって減衰定数cの調節が可能でき、可動部20と支持体10との衝突破壊が低減した耐衝撃性の優れた加速度センサー素子100を得ることができる。
(3)縁に平行に凸部43が設けられているので、固定電極41と可動電極21との電極間間隙70に存在する気体の流れがより一定方向に揃い、スクイーズフィルムダンピングにより、より大きな減衰定数cを得ることができる。したがって、可動部20と支持体10との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子100を得ることができる。
(4)凸部43が縁部42にあることにより、固定電極41と可動電極21との電極間間隙70に存在する気体の多くが、スクイーズフィルムダンピングに寄与でき、より大きな減衰定数cを得ることができる。したがって、可動部20と支持体10との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子100を得ることができる。
(5)基板30に形成された凹部31によって、可動部20と支持体10との間に十分な間隔が得られ、可動部20と支持体10との衝突破壊が低減した耐衝撃性の優れた加速度センサー素子100を得ることができる。
(6)固定電極41および可動電極21が積層構造であるので、層ごとの加工が可能であり、層に応じて固定電極41と可動電極21との間に狭窄部72を形成することを容易にできる。また、CMOS集積回路400が形成された基板30上に加速度センサー素子100を形成可能にできる。
(第2実施形態)
本実施形態では、第1実施形態における加速度センサー素子100を加速度センサー素子200に置き換えた。
図4に本実施形態における加速度センサー素子200の部分を基板30から矩形状に抜き出した概略図を示した。(a)は加速度センサー素子200の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図である。図中には、X、Y、Z軸方向を示している。図中の両矢印は、加速度検出方向を示し、本実施形態においても、X軸方向が加速度検出方向である。
第1実施形態と同じ構成要素には同じ符号を付した。以下には、第1実施形態と異なる点を中心に説明する。
図4において、加速度センサー素子200の構造は、第1実施形態で示した加速度センサー素子100と略同様である。
構造で異なる点は、可動電極21の縁部25にも凸部26を設け、可動電極21の断面形状をL字型として、電極間間隙70のZ軸方向の両縁部71および73に狭窄部72および74を設けている点である。その他に、基板30に貫通部32が形成されている点が異なる。
図4(c)において、凸部43,26は、固定電極41のY軸方向に延びる縁部42と可動電極21のY軸方向に延びる縁部25に設けられている。
第1実施形態と第2実施形態とでは、以下の点で大きく異なる。
第1実施形態では、基板30は、シリコン基板からなり、支持部40と可動部20とは、基板30上の他の領域に形成されたCMOS集積回路400を構成する配線層50および層間絶縁膜60を利用した積層構造となっている。一方、第2実施形態では、SOI(Silicon On Insulator)構造の半導体基板35を利用する。SOI構造は、酸化シリコンからなる埋め込み酸化膜80を挟んで、埋め込み酸化膜上に形成された単結晶シリコン層90を備えている。
可動部20および支持部40は、単結晶シリコン層90をエッチングすることによって得られる。また、基板30の貫通部32は、単結晶シリコン層90が形成された面に対向する面からエッチングすることによって形成できる。
図5(a)〜(c)に、例として、CMOS集積回路400と加速度センサー素子200とをSOI構造の半導体基板35に形成する場合の製造工程を簡略化して示した。また、CMOS集積回路400の符号は、図3と同様なので省略した。
図5(a)は、CMOS集積回路400を形成する工程を、(b)は単結晶シリコン層90のCMOS集積回路400形成面側からの異方性エッチング工程を、(c)は基板30の基板30側からの異方性エッチング工程を示している。
図5(a)において、第1実施形態と同様に、単結晶シリコン層90にCMOS集積回路400をよく知られた方法で形成する。このとき、加速度センサー部110には、何も形成しない。
図5(b)において、単結晶シリコン層90のCMOS集積回路400形成面側から異方性エッチングを行う。異方性エッチングは、SiO2等で加速度センサー素子200の形状に応じてマスクを施し、KOHによるウェットエッチングで行うことができる。
図5(c)において、基板30側から基板30および埋め込み酸化膜80を異方性エッチングし、貫通部32を形成し、可動部20を分離する。異方性エッチングは、単結晶シリコン層90のCMOS集積回路400形成面側から行った方法と同様の方法で行うことができる。
このような本実施形態によれば、以下の効果がある。
(7)凸部43,26が平行に複数存在するので、気体の流れがより一定方向に揃い、より大きな減衰定数cを得ることができる。したがって、可動部20と支持体10との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子200を得ることができる。
(8)固定電極41、可動電極21および可動部20が単結晶シリコンから形成されているので、熱応力による変形を少なくでき、厚い構造体の形成を容易にできる。
(第3実施形態)
本実施形態では、第1実施形態における加速度センサー素子100を加速度センサー素子300に置き換えた。
図6に本実施形態における加速度センサー素子300の部分を矩形状に抜き出した概略図を示した。(a)は加速度センサー素子300の概略平面図、(b)は(a)におけるA−A概略断面図、(c)は(a)におけるB−B概略断面図である。図中には、X、Y、Z軸方向を示している。図中の両矢印は、加速度検出方向を示し、本実施形態では、X軸方向が加速度検出方向である。
第1実施形態と同じ構成要素には同じ符号を付した。以下には、第1実施形態と異なる点を中心に説明する。
本実施形態では、可動電極21は凹型の断面形状を有し、固定電極41は、凸型の断面形状を有している。
可動電極21には、縁部25,27に凸部26,28が形成され、狭窄部72,74が電極間間隙70に設けられている。また、固定電極41には、縁部42と縁部44との間に凸部45が形成され、狭窄部75が設けられている。
したがって、可動電極21の凸部26,28によって形成された凹型の溝に固定電極41の凸部45が位置する配置となっている。
図6(c)において、凸部45は、固定電極41のY軸方向に延びるように設けられている。
このような本実施形態によれば、以下の効果がある。
(9)凸部26,28,45が平行に多く存在するので、気体の流れがより一定方向に揃い、より大きな減衰定数cを得ることができる。したがって、可動部20と支持体10との衝突破壊がより低減した耐衝撃性の優れた加速度センサー素子300を得ることができる。
(第4実施形態)
本実施形態では、第1実施形態における加速度センサー素子100を加速度センサー素子500に置き換えた。
図7に、本実施形態における加速度センサー素子500の部分を基板30から矩形状に抜き出した概略図を示した。(a)は加速度センサー素子500の概略平面図、(b)は(a)におけるA−A概略断面図である。図中には、X,Y,Z軸方向を示している。また、図中の両矢印は、加速度検出方向を示し、本実施形態では、X軸方向が加速度検出方向である。
第1実施形態と同じ構成要素には同じ符号を付した。以下には、第1実施形態と異なる点を中心に説明する。可動電極21と固定電極41とは、間隔aの第1間隙としての電極間間隙70を介して対向している。
加速度センサー素子500は、ダンピング用構造体510を備えている。本実施形態では、対向する可動電極21と固定電極41とを挟むように、両側にダンピング用構造体510が設けられ、計4ヵ所にダンピング用構造体510が設けられている。ダンピング用構造体510は、電極間間隙70の変動方向に対して対称な位置に配置されている。
ダンピング用構造体510は、第1ダンピング用構造体としての固定体512と第2ダンピング用構造体としての可動体511とを備えている。
可動体511は、錘部22の可動電極21の両側で、支持部40に向かって形成されている。一方、固定体512は、支持部40の固定電極41の両側で、可動体511に対向する位置に、間隔bの第2間隙としての間隙520を隔てて形成されている。ここで、間隔aは間隔bより大きく設定されている。
加速度センサー素子500は、第1実施形態と同様の製造方法で得ることができる。
このような本実施形態によれば、以下の効果がある。
(10)固定電極41および可動電極21以外にダンピング用構造体510を設けるので、固定電極41と可動電極21との電極間間隙70を狭くすることなく、ダンピング用構造体510によってダンピングの調整ができる。したがって、可動部20と支持体10との衝突破壊が低減して耐衝撃性に優れ、固定電極41と可動電極21との衝突を避けながら加速度の検出が可能な、加速度の検出特性の低下の少ない加速度センサー素子500を得ることができる。
(11)ダンピング用構造体510の可動体511と固定体512との間の間隙520の間隔bを、固定電極41と可動電極21との電極間間隙70の間隔aより狭くして、ダンピングをより大きくできる。
(12)間隙520の変動方向と電極間間隙70の変動方向が略一致しているので、減衰力が固定電極41と可動電極21との間の電極間間隙70の変動に効率よく働くようにできる。
(13)ダンピング用構造体510が、電極間間隙70の変動方向または可動部20の重心に対して対称に配置されているので、電極間間隙70の変動方向に対して均等に減衰力が働き、他方向への感度を押さえることができる。
(14)固定電極41、可動電極21、可動部20およびダンピング用構造体510が積層構造であるので、CMOS集積回路400が形成された基板30上に加速度センサー素子500を形成できる。
(第5実施形態)
本実施形態では、第1実施形態における加速度センサー素子100を加速度センサー素子600に置き換えた。
図8に本実施形態における加速度センサー素子600の部分を基板30から矩形状に抜き出した概略図を示した。(a)は加速度センサー素子600の概略平面図、(b)は(a)におけるA−A概略断面図である。図中には、X,Y,Z軸方向を示している。図中の両矢印は、加速度検出方向を示し、本実施形態では、X軸方向が加速度検出方向である。
第4実施形態と同じ構成要素には同じ符号を付した。以下には、第4実施形態と異なる点を中心に説明する。
図8において、加速度センサー素子600の構造は、第4実施形態で示した加速度センサー素子500と略同様である。構造で異なる点は、ダンピング用構造体610を対向する可動電極21と固定電極41との両側でなく片側にだけ設けた点である。
ダンピング用構造体610は、可動部20の重心221に対して点対称の位置に2ヶ所配置されている。
ダンピング用構造体610は、可動体611と固定体612とを備えている。
固定体612は、可動体611に対向する位置に、間隔bの間隙620を隔てて形成されている。
本実施形態と第4実施形態とでは、以下の点で大きく異なる。
第4実施形態では、基板30は、シリコン基板からなり、支持部40と可動部20とは、基板30上の他の領域に形成されたCMOS集積回路400を構成する配線層50および層間絶縁膜60を利用した積層構造となっている。一方、第5実施形態では、第2実施形態と同様に、SOI(Silicon On Insulator)構造の半導体基板35を利用する。
加速度センサー素子600は、第2実施形態と同様の製造方法によって得ることができる。
このような本実施形態によれば、以下の効果がある。
(15)固定電極41、可動電極21、可動部20およびダンピング用構造体610が、単結晶シリコンから形成されているので、熱応力による変形を少なくでき、厚い構造体の形成を容易にできる。
(変形例)
変形例では、第1実施形態における加速度センサー素子100を加速度センサー素子550に置き換えた。
図9に変形例における加速度センサー素子550の部分を基板30から矩形状に抜き出した概略平面図を示した。
図9において、第4実施形態および第5実施形態と異なる点は、X軸方向への加速度を検出する可動電極21および固定電極41の他に、Y軸方向への加速度を検出する可動電極29および固定電極46を設け、これらの電極の両側にもダンピング用構造体510を設けた点が異なる。また、可動電極21および固定電極41と、可動電極29および固定電極46とは、差動検出タイプとはなっていない。
上記以外の構造および製造方法については、第1実施形態と同様の積層構造、第2実施形態と同様の構造および第1,第2実施形態と同様の製造方法を用いることができる。
変形例では、2方向の加速度の測定が可能になる。
上述した実施形態以外にも、種々の変更を行うことが可能である。
ばね部23,24の構造は、どのようなものであってもよい。例えば、一つの板ばねの両端が支持部40に接続され、中央部が錘部22に接続された構造であってもよい。
実施形態では、固定電極41と可動電極21とは2対しか示されていないが、3対以上でくし歯が入り込んだ状態の構成としてもよい。また、固定電極41および可動電極21は、矩形状の電極が向かい合う構造になっていたが、矩形状以外の形状であってもよい。
また、加速度の印加によって電極同士が衝突しなければ、平行平板でなくてもよい。
加速度センサー素子は、±Y軸方向も検出できるように、X軸方向に延びる電極を形成してもよく、2次元方向の加速度センサー素子であってもよい。
さらに、気体は空気以外のHe、Ne等の希ガス、窒素ガス等であってもよい。空気よりも粘性係数の大きな媒体を用いることで、より大きな減衰係数cが得られる。
10…支持体、20…可動部、21…可動電極、30…基板、41…固定電極、70…電極間間隙、71,73…縁部、72,74,75…狭窄部、76,510,610…ダンピング用構造体、90…単結晶シリコンとしての単結晶シリコン層、100,200,300,500,550,600…加速度センサー素子、221…重心、400…CMOS集積回路、520,620…間隙、700,800,900…振動型角速度センサー素子、1000…複合センサー、1300…パッケージ。

Claims (9)

  1. 加速度センサー素子と、
    振動型角速度センサー素子と、
    前記加速度センサー素子および前記振動型角速度センサー素子を収納して減圧封止されたパッケージと、を備え、
    前記加速度センサー素子は、
    支持体と、
    前記支持体から突出して設けられている固定電極と、
    可動部と、
    前記可動部から突出して設けられ、且つ、前記固定電極に対向している可動電極と、
    前記固定電極および前記可動電極の少なくとも一方に、前記突出する方向に沿って設けられている凸部と、を備えていることを特徴とする複合センサー。
  2. 請求項1に記載の複合センサーにおいて、
    前記凸部は、電極断面の上端および下端の少なくとも一方に設けられていることを特徴とする複合センサー。
  3. 請求項2に記載の複合センサーにおいて、
    前記凸部は、前記固定電極および前記可動電極の一方の電極断面の上端に設けられ、かつ、前記固定電極および前記可動電極の他方の電極断面の下端に設けられていることを特徴とする複合センサー。
  4. 加速度センサー素子と、
    振動型角速度センサー素子と、
    前記加速度センサー素子および前記振動型角速度センサー素子を収納して減圧封止されたパッケージと、を備え、
    前記加速度センサー素子は、
    支持体と、
    前記支持体に設けられた固定電極および第1ダンピング用構造体と、
    可動部と、
    前記可動部に設けられた可動電極および第2ダンピング用構造体と、を備え、
    前記固定電極と前記可動電極とは、第1間隙を隔てて対向配置され、
    前記第1ダンピング用構造体と前記第2ダンピング用構造体とは、第2間隙を隔てて対向配置され、且つ、前記固定電極と前記可動電極の並びに沿って配置されていることを特徴とする複合センサー。
  5. 請求項4に記載の複合センサーにおいて、
    前記第2間隙は、前記第1間隙より狭いことを特徴とする複合センサー。
  6. 請求項4または5に記載の複合センサーにおいて、
    前記可動電極の変動方向と前記第2ダンピング用構造体の変動方向とが略一致していることを特徴とする複合センサー。
  7. 請求項4〜請求項6のいずれか一項に記載の複合センサーにおいて、
    前記第1ダンピング用構造体および前記第2ダンピング用構造体は、それぞれ複数設けられて、前記可動電極の変動方向または平面視で前記可動部の重心に対して対称な位置に配置されていることを特徴とする複合センサー。
  8. 請求項1〜請求項7のいずれか一項に記載の複合センサーにおいて、
    前記加速度センサー素子および前記振動型角速度センサー素子は、同一基板上に設けられていることを特徴とする複合センサー。
  9. 請求項8に記載の複合センサーにおいて、
    前記基板が単結晶シリコンであることを特徴とする複合センサー。
JP2009051616A 2009-03-05 2009-03-05 複合センサー Expired - Fee Related JP5321150B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051616A JP5321150B2 (ja) 2009-03-05 2009-03-05 複合センサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051616A JP5321150B2 (ja) 2009-03-05 2009-03-05 複合センサー

Publications (3)

Publication Number Publication Date
JP2010203990A JP2010203990A (ja) 2010-09-16
JP2010203990A5 JP2010203990A5 (ja) 2012-03-22
JP5321150B2 true JP5321150B2 (ja) 2013-10-23

Family

ID=42965609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051616A Expired - Fee Related JP5321150B2 (ja) 2009-03-05 2009-03-05 複合センサー

Country Status (1)

Country Link
JP (1) JP5321150B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393523B2 (en) 2014-06-12 2019-08-27 Denso Corporation Physical quantity sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772873B2 (ja) * 2012-06-13 2015-09-02 株式会社デンソー 静電容量式物理量センサ
JP6149910B2 (ja) * 2015-10-08 2017-06-21 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP6693214B2 (ja) * 2016-03-25 2020-05-13 セイコーエプソン株式会社 物理量検出装置、電子機器及び移動体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163936A (ja) * 1992-11-19 1994-06-10 Hitachi Ltd 半導体式力学量センサ
JPH10239064A (ja) * 1997-02-27 1998-09-11 Matsushita Electric Ind Co Ltd 角速度と加速度の複合センサ
GB0000619D0 (en) * 2000-01-13 2000-03-01 British Aerospace Accelerometer
JP3435665B2 (ja) * 2000-06-23 2003-08-11 株式会社村田製作所 複合センサ素子およびその製造方法
JP3346379B2 (ja) * 2000-09-21 2002-11-18 三菱電機株式会社 角速度センサおよびその製造方法
JP2003344445A (ja) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp 慣性力センサ
JP5319122B2 (ja) * 2008-01-21 2013-10-16 日立オートモティブシステムズ株式会社 慣性センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393523B2 (en) 2014-06-12 2019-08-27 Denso Corporation Physical quantity sensor

Also Published As

Publication number Publication date
JP2010203990A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
US8342021B2 (en) Composite sensor and electronic device
US8497557B2 (en) Semiconductor device
US9344808B2 (en) Differential sensing acoustic sensor
EP3076146B1 (en) Pressure sensor
JP5206726B2 (ja) 力学量検出装置およびその製造方法
JP2015180521A (ja) 単結晶シリコン電極を備えた容量性微小電気機械式センサー
US9194882B2 (en) Inertial and pressure sensors on single chip
TWI590411B (zh) 在經主動電路系統所封裝之微電子機械系統元件中進行屏蔽與偏壓之設備與方法
WO2010032818A1 (ja) Memsセンサ及び検出装置
JP2010223952A (ja) 加速度センサー、電子機器
TW201604121A (zh) 微電機構件以及製造微電機構件的方法
WO2017077869A1 (ja) 力学量センサ
JP5321150B2 (ja) 複合センサー
JP5790003B2 (ja) 加速度センサー
US20190219469A1 (en) Capacitive pressure sensor and method for its manufacture
JP2012156896A (ja) 静電容量型memsセンサ
JP6123613B2 (ja) 物理量センサおよびその製造方法
JPWO2008143191A1 (ja) Memsセンサおよびその製造方法
JP2010190636A (ja) 加速度センサー
JP5775281B2 (ja) Memsセンサおよびその製造方法
US10509051B2 (en) Physical quantity sensor and manufacturing method therefor
JP2014057125A (ja) 電子装置およびその製造方法、並びに発振器
JP2011095010A (ja) 静電容量型センサ
WO2014208043A1 (ja) 物理量センサ
JP6237440B2 (ja) 物理量センサおよびその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees