WO2011093490A1 - 鋼板及び鋼板製造方法 - Google Patents

鋼板及び鋼板製造方法 Download PDF

Info

Publication number
WO2011093490A1
WO2011093490A1 PCT/JP2011/051896 JP2011051896W WO2011093490A1 WO 2011093490 A1 WO2011093490 A1 WO 2011093490A1 JP 2011051896 W JP2011051896 W JP 2011051896W WO 2011093490 A1 WO2011093490 A1 WO 2011093490A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
crystal grains
phase
steel
Prior art date
Application number
PCT/JP2011/051896
Other languages
English (en)
French (fr)
Inventor
力 岡本
杉浦 夏子
幸一 佐野
千智 若林
吉永 直樹
川崎 薫
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020127020375A priority Critical patent/KR101477877B1/ko
Priority to EP11737199.7A priority patent/EP2530180B1/en
Priority to US13/575,252 priority patent/US9410231B2/en
Priority to CN201180007358.1A priority patent/CN102770571B/zh
Priority to JP2011525765A priority patent/JP4902026B2/ja
Priority to ES11737199T priority patent/ES2705232T3/es
Priority to BR112012018697-3A priority patent/BR112012018697B1/pt
Priority to MX2012008690A priority patent/MX2012008690A/es
Priority to PL11737199T priority patent/PL2530180T3/pl
Priority to CA2788095A priority patent/CA2788095C/en
Publication of WO2011093490A1 publication Critical patent/WO2011093490A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a steel plate and a steel plate manufacturing method.
  • This steel plate is a high-strength steel plate excellent in elongation and V-bendability, and further in press molding stability, which is suitable for structural materials such as automobiles that are mainly pressed and used.
  • This application claims priority based on Japanese Patent Application No. 2010-011993 filed in Japan on January 29, 2010 and Japanese Patent Application No. 2010-032667 filed on February 17, 2010 in Japan. And the contents thereof are incorporated herein.
  • Steel sheets used in automobile body structures are required to have excellent elongation and V bendability in addition to high strength.
  • TRIP Transformation Induced Plasticity
  • Patent Document 1 discloses a technique for ensuring a high fraction of retained austenite phase and controlling two types of ferrite phases (bainitic ferrite phase and polygonal ferrite phase) for the purpose of further increasing the elongation of retained austenitic steel. Has been.
  • Patent Document 2 discloses a technique for defining the shape of an austenite phase by an aspect ratio for the purpose of securing elongation and shape freezing property.
  • Patent Document 3 discloses a technique for optimizing the austenite phase distribution for the purpose of increasing elongation.
  • Patent Document 4 and Patent Document 5 disclose a technique for improving local ductility by homogenizing the structure.
  • the retained austenitic steel is a steel in which the retained austenite phase is contained in the steel structure by increasing the C concentration of austenite by controlling the ferrite transformation and bainite transformation during annealing, but the retained austenitic steel is a mixed structure.
  • High V bendability local bendability
  • the TRIP effect is temperature dependent, but in actual press molding, the temperature of the mold changes during press molding. For this reason, when the TRIP steel sheet is press-molded, defects such as cracks may occur in the early stage of press molding at, for example, about 25 ° C. and in the later stage of press molding at, for example, about 150 ° C., and there is a problem in press molding stability. Therefore, in addition to high elongation and V bendability, it has been a practical problem to realize excellent press molding stability independent of temperature changes during press molding.
  • An object of the present invention is to provide a steel plate having a higher elongation and V-bendability than those of the prior art and having excellent press molding stability and a method for producing the same.
  • the chemical component is in mass%: C: 0.05% to 0.35%; Si: 0.05% to 2.0%; Mn: 0.8% Al: 0.01% to 2.0%; P: 0.1% or less; S: 0.05% or less; N: 0.01% or less;
  • the balance consists of iron and inevitable impurities, and contains a ferrite phase, a bainite phase, and a tempered martensite phase in a total area of 50% or more, a residual austenite phase in an area ratio of 3% or more, and a number ratio of 50 % Or more of the residual austenite phase crystal grains satisfy the formula 1 where Cgc is the carbon concentration at the center of gravity and Cgb is the carbon concentration at the grain boundary position.
  • the average grain size of the crystal grains is 10 ⁇ m or less, and the average carbon concentration in the residual austenite phase is 0.7% or more and 1.5% or less. Also good.
  • the crystal grains having a number ratio of 40% or more are small-diameter crystal grains having an average grain size of 1 ⁇ m or more and less than 2 ⁇ m, and the number ratio is 20% or more.
  • the crystal grains may be large crystal grains having an average grain size of 2 ⁇ m or more.
  • the small-diameter crystal grains having a number ratio of 50% or more satisfy Formula 2 where the carbon concentration at the center of gravity is CgcS and the carbon concentration at the grain boundary is CgbS.
  • the large-diameter crystal grains having a number ratio of 50% or more may satisfy Equation 3 with the carbon concentration at the center of gravity as CgcL and the carbon concentration at the grain boundary position as CgbL.
  • the steel sheet according to any one of (1) to (5) may have a galvanized film applied to at least one side.
  • the steel sheet described in any one of (1) to (5) above may have a zinc alloy plating film applied to at least one side.
  • the slab having the chemical component described in (1) or (2) above is hot-rolled by hot rolling at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower.
  • a cold rolling process for producing a cold rolled steel sheet by cold rolling an annealing process for annealing the cold rolled steel sheet at a maximum temperature of 700 ° C. or higher and 900 ° C. or lower; and the annealed cold rolled steel sheet 350 ° C. or more and 480 ° C. or less at an average cooling rate of 0.1 ° C./second or more and 200 ° C./second or less
  • the steel plate manufacturing method according to (8) may use a slab that is cooled to 1100 ° C.
  • the steel plate manufacturing method according to (8) may further include a dipping step of dipping the steel plate in a hot dip galvanizing bath after the holding step.
  • the steel sheet manufacturing method according to (11) may further include an alloying treatment step of performing an alloying treatment in a range of 500 ° C. or higher and 580 ° C. or lower after the dipping step.
  • the C concentration gradient in the retained austenite phase is appropriately controlled, an extremely stable retained austenite phase can be obtained.
  • the TRIP effect of retained austenite can exhibit extremely high elongation and high V bendability despite its high strength.
  • the TRIP functional stability of retained austenite can be dispersed and excellent press molding stability independent of temperature changes during press molding can be achieved. It can be demonstrated.
  • the C concentration gradient of the small crystal grains and the C concentration gradient of the large crystal grains are appropriately controlled, more excellent press forming stability can be exhibited.
  • the chemical composition of steel contains C, Si, Mn, and Al as basic elements.
  • C (C: 0.05-0.35%) C is an extremely important element for increasing the strength of the steel and securing the retained austenite phase. If the C content is less than 0.05%, sufficient strength cannot be secured, and a sufficient retained austenite phase cannot be obtained. On the other hand, if the C content exceeds 0.35%, ductility and spot weldability are significantly deteriorated.
  • the C content may be defined in a narrower range. Therefore, for the C content, the lower limit is defined as 0.05%, preferably 0.08%, more preferably 0.15%, and the upper limit is 0.35%, preferably 0.26%. Preferably it is specified to 0.22%.
  • Si 0.05-2.0%
  • Si is an important element from the viewpoint of securing strength.
  • the Si content is 0.05% or more, an effect of contributing to the formation of a retained austenite phase and ensuring ductility is obtained.
  • the Si content exceeds 2.0%, these effects are saturated, and the steel is likely to be embrittled.
  • the upper limit value may be defined as 1.8%.
  • the Si content may be defined in a narrower range. Therefore, for the Si content, the lower limit is defined as 0.05%, preferably 0.1%, more preferably 0.5%, and the upper limit is 2.0%, preferably 1.8%. Preferably it is specified to 1.6%.
  • Mn is an important element from the viewpoint of securing strength.
  • Mn content 0.8% or more, an effect of contributing to generation of a retained austenite phase and ensuring ductility can be obtained.
  • Mn content exceeds 3.0%, the hardenability is enhanced, so that the martensite phase is generated instead of the retained austenite phase, and an excessive increase in strength tends to be caused. As a result, product variation increases and ductility is insufficient.
  • the Mn content may be defined in a narrower range. Therefore, for the Mn content, the lower limit is defined as 0.8%, preferably 0.9%, more preferably 1.2%, and the upper limit is 3.0%, preferably 2.8%. Preferably it is specified to 2.6%.
  • the Al content is 0.01% or more, the effect of ensuring ductility by contributing to the formation of the retained austenite phase is obtained as in the case of Si.
  • the Al content exceeds 2.0%, the effect is saturated and the steel is embrittled.
  • the Al content may be defined in a narrower range. Therefore, for the Al content, the lower limit is 0.01%. Preferably, it is defined as 0.015%, more preferably more than 0.04%, and the upper limit is defined as 2.0%, preferably 1.8%, more preferably less than 1.4%.
  • the upper limit is desirably set to 1.8%.
  • the Si + Al content is defined as a lower limit of 0.8%, preferably 0.9%, more preferably 1.0%, and an upper limit of 4.0%, preferably 3.0%. Preferably it is specified to 2.0%.
  • P content is restrict
  • S is an element that degrades local ductility and weldability by generating MnS. For this reason, the S content is limited to 0.05% or less. Since S is inevitably contained in steel, the lower limit is more than 0%. However, since it takes a great deal of cost to limit the S content to a very low level, the lower limit is set to 0.0005% or 0.001. % May be specified. Further, in consideration of the above-described characteristics, the S content may be defined in a narrower range. Accordingly, the S content is limited to 0.05% or less, preferably 0.01% or less, more preferably less than 0.004%. Further, the lower limit value may be specified to be more than 0%, 0.0005%, or more than 0.001%.
  • N 0.01% or less
  • the lower limit is specified to be more than 0%.
  • the lower limit is set to 0.001% or 0%. It may be specified to exceed .002.
  • the N content may be defined in a narrower range. Therefore, the N content is limited to 0.01% or less, preferably 0.008% or less, and more preferably less than 0.005%.
  • the above steel contains iron and inevitable impurities as the balance. Inevitable impurities include Sn, As and the like mixed from scrap. Moreover, you may contain another element in the range which does not impair the characteristic of this invention.
  • the steel described above may contain at least one of Mo, Nb, Ti, V, Cr, W, Ca, Mg, Zr, REM, Cu, Ni, and B as a selective element.
  • Mo 0.01-0.5%
  • Mo content is 0.01% or more, the effect which suppresses the production
  • the content is preferably 0.3% or less.
  • the Mo content may be defined in a narrower range. Therefore, when Mo is contained in the steel, the lower limit may be specified as 0.01%, preferably 0.02%, and the upper limit is 0.5%, preferably 0.3%, more preferably You may prescribe
  • Nb, Ti, V, Cr, and W are elements that generate fine carbide, nitride, or carbonitride, and are effective in securing strength.
  • the lower limit value of Nb is 0.005%
  • the lower limit value of Ti is 0.005%
  • the lower limit value of V is 0.005%
  • the lower limit value of Cr is 0.05%
  • the lower limit value of W May be specified as 0.05%.
  • the upper limit of Nb is 0.1%
  • the upper limit of Ti is 0.2%
  • the upper limit of V is 0.5%
  • the upper limit of Cr is 5.0%
  • the upper limit of W May be specified as 5.0%.
  • the content of each element may be defined in a narrower range. Therefore, when Nb is contained in the steel, the lower limit may be specified to 0.005%, preferably 0.01%, and the upper limit is 0.1%, preferably 0.05%, more preferably You may prescribe
  • the lower limit When Ti is contained in the steel, the lower limit may be specified to 0.005%, preferably 0.01%, and the upper limit is 0.2%, preferably 0.1%, more preferably You may prescribe
  • the lower limit When V is contained in the steel, the lower limit may be specified to 0.005%, preferably 0.01%, and the upper limit is 0.5%, preferably 0.3%, more preferably You may prescribe
  • Cr contained in the steel, the lower limit may be specified to 0.05%, preferably 0.1%, and the upper limit is 5.0%, preferably 3.0%, more preferably You may prescribe
  • W When W is contained in the steel, the lower limit may be specified to 0.05%, preferably 0.1%, and the upper limit is 5.0%, preferably 3.0%, more preferably You may prescribe
  • Ca, Mg, Zr, and REM (rare earth elements) improve the local ductility and hole expansibility by controlling the shapes of sulfides and oxides. For this reason, you may prescribe
  • the lower limit when Ca is contained in steel, the lower limit may be specified to 0.0005%, preferably 0.001%, and the upper limit is 0.05%, preferably 0.01%, more preferably. You may prescribe
  • Mg is contained in the steel
  • the lower limit may be specified to 0.0005%, preferably 0.001%, and the upper limit is 0.05%, preferably 0.01%, more preferably You may prescribe
  • Zr is contained in steel
  • the lower limit when Zr is contained in steel, the lower limit may be specified to 0.0005%, preferably 0.001%, and the upper limit is 0.05%, preferably 0.01%, more preferably You may prescribe
  • REM when REM is contained in steel, the lower limit may be specified to 0.0005%, preferably 0.001%, and the upper limit is 0.05%, preferably 0.01%, more preferably. You may prescribe
  • Cu 0.02 to 2.0%) (Ni: 0.02 to 1.0%) (B: 0.0003 to 0.007%)
  • Cu, Ni, and B can delay the transformation and increase the strength of the steel.
  • the lower limit value of Cu may be specified as 0.02%, the lower limit value of Ni as 0.02%, and the lower limit value of B as 0.0003%.
  • the upper limit of Cu 2.0%
  • the upper limit of Ni 1.0%
  • the upper limit of B as 0.007%.
  • the content of each element may be defined in a narrower range. Therefore, when Cu is contained in steel, the lower limit may be specified to 0.02%, preferably 0.04%, and the upper limit is 2.0%, preferably 1.5%, more preferably You may prescribe
  • the steel structure of the steel sheet according to the present embodiment is an area ratio and contains a ferrite phase, a bainite phase, and a tempered martensite phase in total of 50% or more, preferably 60%, more preferably 70% or more with respect to the entire structure. To do. Further, this steel structure contains a residual austenite phase of 3% or more, preferably more than 5%, more preferably more than 10% with respect to the entire structure.
  • the tempered martensite phase may be contained according to the required steel plate strength, and may be 0%. If the pearlite phase is 5% or less, even if it is contained in the steel structure, the material is not significantly deteriorated. Therefore, the pearlite phase may be contained in a range of 5% or less.
  • the C concentration in the retained austenite phase cannot be increased. Therefore, even if the retained austenite phase has a concentration gradient, the phase stability It becomes difficult to ensure the properties, and the V bendability deteriorates. On the other hand, if the ferrite phase, bainite phase, and tempered martensite phase exceed 95% in total, it becomes difficult to secure 3% or more of the retained austenite phase and causes a decrease in elongation. preferable.
  • the C concentration distribution of the residual austenite phase crystal grains is appropriately controlled. That is, the C concentration (Cgb) at the phase interface in contact with the ferrite phase, bainite phase, or tempered martensite phase of the crystal grains of the residual austenite phase is compared with the C concentration (Cgc) at the center of gravity of the crystal grains. Controlled to be higher. Thereby, the stability of the retained austenite phase at the phase interface can be improved, and excellent elongation and V bendability can be exhibited.
  • Cgb and Cgc may be measured by any measurement method as long as accuracy is guaranteed. For example, it can be obtained by measuring C concentration at a pitch of 0.5 ⁇ m or less using EPMA attached to FE-SEM.
  • the C concentration (Cgb) at the phase interface means the C concentration at the measurement point on the crystal grain side closest to the grain boundary.
  • Cgb may be measured low due to the influence of the outside of the crystal grains.
  • the highest C concentration in the vicinity of the grain boundary is defined as Cgb.
  • the average grain size of the residual austenite phase crystal grains may be 10 ⁇ m or less, preferably 4 ⁇ m, more preferably 2 ⁇ m or less.
  • particle diameter means an average equivalent circle diameter
  • average particle diameter means the number average thereof.
  • the average carbon concentration in the retained austenite phase contributes greatly to the stability of retained austenite, as does the C concentration gradient. If the average C concentration is less than 0.7%, the stability of retained austenite becomes extremely low, so that the TRIP effect cannot be obtained effectively, and the elongation decreases. On the other hand, even if the average C concentration exceeds 1.5%, the effect of improving the elongation is saturated and the manufacturing cost increases. For this reason, the average carbon concentration in the retained austenite phase may be defined with an upper limit of 0.7%, preferably 0.8%, more preferably 0.9%, and a lower limit of 1.5%, preferably May be defined as 1.4%, more preferably 1.3%.
  • the grain sizes of the residual austenite phase grains may be appropriately distributed, and the residual austenite phases having different stability may be uniformly dispersed.
  • the highly stable residual austenite phase contributes to the press formability at the initial stage of press molding at, for example, about 25 ° C.
  • the low stable austenite phase contributes to the press formability at the later stage of, for example, about 150 ° C. Contribute. For this reason, in addition to high elongation and V bendability, excellent press molding stability can also be exhibited.
  • the crystal grains having a number ratio of 40% or more are small-diameter crystal grains having a grain size of 1 ⁇ m or more and less than 2 ⁇ m, and the number ratio of 20% or more is 2 ⁇ m or more. Large-diameter crystal grains having a diameter are preferable.
  • austenite grains having different stability are uniformly dispersed, excellent press molding stability can be realized.
  • Grains smaller than 0.5 ⁇ m (very small crystal grains) are extremely difficult to give a C concentration gradient, and become extremely unstable residual austenite phase grains, and thus contribute to the press formability.
  • Grains small-diameter grains of 0.5 ⁇ m or more and less than 2 ⁇ m have a large concentration of carbon flowing in from adjacent grains, making it possible to maintain a large concentration gradient in the product, and relatively stable residual austenite phase grains It becomes. This effect can be exhibited by the presence of 40% or more of the small-diameter crystal grains in the number ratio.
  • Grains (large diameter grains) of 2 ⁇ m or more become residual austenite phase grains having a relatively low stability with a small amount of carbon inflow from adjacent grains and a small concentration gradient. This residual austenite phase tends to cause the TRIP effect in the low press range. This effect can be exhibited by the presence of 20% or more of the large crystal grains in the number ratio.
  • an appropriate C concentration gradient may be given for each crystal size of the retained austenite phase.
  • a small-diameter crystal grain having a number ratio of 50%, preferably 55%, more preferably 60% or more has a carbon concentration at the center of gravity as CgcS and a carbon concentration at the grain boundary position as CgbS. 2 and a number ratio of 50% or more, preferably 55%, more preferably 60% or more large-diameter crystal grains, the carbon concentration at the center of gravity is CgcL, and the carbon concentration at the grain boundary is CgbL.
  • the small-diameter crystal grains having a value of CgbS / CgcS exceeding 1.3 are 50% or more in terms of the number ratio with respect to all the small-diameter crystal grains, the small-diameter crystal grains have high stability, so that Elongation can be increased.
  • such stable retained austenite decreases in elongation at a high temperature in the latter half of press molding.
  • the large-diameter crystal grains having a value of CgbL / CgcL of more than 1.1 and less than 1.3 are 50% or more in terms of the number ratio to the total large-diameter grains, the large-diameter grains are low.
  • the value of CgbL / CgcL is less than 1.1, it will affect the elongation at a higher temperature, so that the elongation at 150 ° C. or less deteriorates.
  • the large-diameter crystal grains satisfying Equation 3 are 50% or more, preferably 55% More preferably, 60% is necessary.
  • the steel sheet according to the present embodiment may have a galvanized film or a zinc alloy plated film on at least one side.
  • One embodiment of the present invention includes at least a hot rolling process, an air cooling process, a winding process, a cold rolling process, an annealing process, a holding process, and a final cooling process.
  • a hot rolling process includes at least a hot rolling process, an air cooling process, a winding process, a cold rolling process, an annealing process, a holding process, and a final cooling process.
  • Hot rolling process In the hot rolling process, hot rolling is performed on a cast slab (slab) immediately after continuous casting or a cast slab cooled to 1100 ° C. or lower and then reheated to 1100 ° C. or higher. Manufacture steel sheets. When the reheated cast slab is used, if the reheat temperature is less than 1100 ° C., the homogenous treatment becomes insufficient, and the strength and the V bendability are lowered.
  • the finishing temperature in this hot rolling step is preferably 850 ° C. or higher and 970 ° C. or lower because higher temperature is desirable from the viewpoint of recrystallization and growth of austenite grains.
  • finishing temperature of hot rolling When the finishing temperature of hot rolling is less than 850 ° C., it becomes (ferrite + austenite) two-phase region rolling, resulting in a decrease in ductility. On the other hand, when the finishing temperature of hot rolling exceeds 970 ° C., the austenite grain size becomes coarse, the ferrite phase fraction decreases, and the ductility decreases.
  • the amount of reduction in the final two passes (final pre-stage and final stage) in hot rolling is preferably small. Good. Further, the rolling reduction rate in the final one pass (final stage) may be set to 15% or less, or 10% or less. Thereby, the size of the crystal grain of a retained austenite phase can be disperse
  • the hot-rolled steel sheet obtained as described above is cooled (air cooling) for 1 second or more and 10 seconds or less. If the air cooling time is less than 1 second, recrystallization / growth of austenite grains becomes insufficient, and the crystal grains of the retained austenite phase in the final structure become small. On the other hand, if the air cooling time exceeds 10 seconds, the austenite grains become coarse, so that the uniformity is lost and the elongation deteriorates.
  • the air cooling time is preferably set to 5 seconds or less, more preferably 3 seconds or less.
  • Winding process In the winding process, after the air-cooled hot-rolled steel sheet is cooled to a temperature range of 650 ° C. or less at an average cooling rate of 10 ° C./second or more and 200 ° C./second or less, it is 650 ° C. or less, preferably 600 ° C. or less. Preferably it winds in the temperature range of 400 degrees C or less.
  • the average cooling rate is less than 10 ° C./second or the coiling temperature exceeds 650 ° C., a pearlite phase that significantly deteriorates the V bendability is generated.
  • the lower limit is set to 10 ° C./second, preferably 30 ° C./second, more preferably 40 ° C./second
  • the upper limit is 200 ° C./second, preferably 150 ° C./second, more preferably. Is set to 120 ° C./sec.
  • a minimum is set to 200 degreeC, Preferably it is 400 degreeC, More preferably, it is set to 650 degreeC, and an upper limit is set to 600 degreeC or 550 degreeC.
  • Cold rolling process In the cold rolling step, the rolled hot-rolled steel sheet is pickled and then cold-rolled at a rolling reduction of 40% or more to produce a cold-rolled steel sheet.
  • the rolling reduction is less than 40%, recrystallization and reverse transformation during annealing are suppressed, and elongation decreases.
  • the upper limit of the rolling reduction here is not particularly specified, but may be 90% or 70%.
  • the cold-rolled steel sheet is annealed at a maximum temperature of 700 ° C. or higher and 900 ° C. or lower. If the maximum temperature is less than 700 ° C., the recrystallization of the ferrite phase during annealing is delayed, causing a decrease in elongation. If it exceeds 900 ° C., the martensite fraction increases and the elongation decreases.
  • a minimum is set to 700 degreeC, Preferably it is 720 degreeC, More preferably, it exceeds 750 degreeC, and an upper limit is set to 900 degreeC, Preferably it is 880 degreeC, More preferably, it is set to less than 850 degreeC.
  • about 1% skin pass rolling may be performed for the purpose of suppressing the yield point elongation.
  • the annealed cold rolled steel sheet is 350 ° C. or higher and 480 ° C. or lower at an average cooling rate of 0.1 ° C./second or more and 200 ° C./second or less. And is held in this temperature range for 1 second or more and 1000 seconds or less.
  • the average cooling rate is set to 0.1 ° C./second or more and 200 ° C./second or less. If the average cooling rate is less than 0.1 ° C./second, the transformation cannot be controlled.
  • the lower limit is set to 0.1 ° C./second, preferably 2 ° C./second, more preferably 3 ° C./second
  • the upper limit is 200 ° C./second, preferably 150 ° C./second, more Preferably, it is set to 120 ° C./second.
  • the cooling end point temperature and the subsequent holding are important in controlling the bainite formation and determining the C concentration of retained austenite.
  • the cooling end point temperature is less than 350 ° C., a large amount of martensite is generated, the steel strength becomes excessively high, and furthermore, it becomes difficult to leave austenite.
  • the cooling end point temperature exceeds 480 ° C., the bainite transformation is delayed, and further, cementite is generated during the holding, and the concentration of C in the retained austenite is lowered.
  • the lower limit of the cooling end point temperature and the holding temperature is set to 350 ° C., preferably 380 ° C., more preferably 390 ° C.
  • the upper limit is set to 480 ° C., preferably 470 ° C., more preferably 460 ° C.
  • Holding time shall be 1 second or more and 1000 seconds or less. If the holding time is less than 1 second, the bainite transformation does not occur sufficiently, and C concentration to residual austenite becomes insufficient. When it exceeds 1000 seconds, cementite is generated in the austenite phase, and the concentration of C tends to decrease. For this reason, the lower limit of the holding time is set to 1 second, preferably 10 seconds, more preferably 40 seconds, and the upper limit is set to 1000 seconds, preferably 600 seconds, more preferably 400 seconds.
  • the cold-rolled steel sheet after holding is primarily cooled at an average cooling rate of 5 ° C./second to 25 ° C./second in a temperature range from 350 ° C. to 220 ° C., and further from 120 ° C. to near room temperature.
  • the slight transformation that occurs during cooling after OA plays an important role in increasing the C concentration near the grain boundary in austenite. For this reason, in the primary cooling, the steel sheet is cooled in the temperature range from 350 ° C. to 220 ° C.
  • the lower limit is set to 5 ° C./second, preferably 6 ° C./second, more preferably more than 7 ° C./second, and the upper limit is 20 ° C./second, preferably 19 ° C./second. More preferably, it is set to less than 18 ° C./second.
  • the diffusion of C is further limited, and transformation is less likely to occur.
  • the steel sheet is cooled at an average cooling rate of 100 ° C./second or more in the temperature range from 120 ° C. to near room temperature, and the C concentration gradient in the austenite phase is achieved at 350 ° C.
  • the steel sheet is cooled at an average cooling rate of 5 ° C./second or less in the temperature range from 120 ° C. to near room temperature, and the C concentration gradient in the austenite phase becomes more remarkable.
  • the average cooling rate in the secondary cooling is more than 5 ° C./second and less than 100 ° C./second, not only the transformation does not occur but also the C concentration at the grain boundary decreases.
  • the average cooling rate of the secondary cooling is set to 5 ° C./second or less, preferably 4 ° C./second or less, more preferably 3 ° C./second or less, or 100 ° C./second or more, preferably 120 ° C./second. It is set to 150 ° C./second or more, more preferably 150 ° C./second or more.
  • the C concentration gradient in the retained austenite phase is controlled by controlling the cooling conditions after the C in the retained austenite phase is concentrated by bainite transformation. It is possible to control the concentration to be high. Moreover, it is possible to increase the stability of the retained austenite phase by combining with C enrichment in the austenite phase during cooling after annealing. Moreover, when the size of the crystal grains of the retained austenite phase is dispersed to uniformly disperse the C concentration gradient of the retained austenite phase, the press molding stability of the steel sheet can be improved.
  • This technology can also be applied to the manufacture of hot-dip galvanized steel sheets.
  • the steel plate is immersed in a hot dip galvanizing bath after the holding step and before the final cooling step. Furthermore, it is possible to perform an alloying treatment after the immersion.
  • the alloying treatment is performed in the range of 500 ° C. or higher and 580 ° C. If it is less than 500 ° C., alloying becomes insufficient, and if it exceeds 580 ° C., it becomes an overalloy and the corrosion resistance is remarkably deteriorated.
  • the present invention is not affected by casting conditions.
  • a special casting method such as a thin slab or a hot rolling method may be used without being affected by a casting method (continuous casting or ingot casting) or a difference in slab thickness.
  • the present invention will be further described based on examples, but the conditions in the examples are condition examples adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to these condition examples.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • cast slabs A to V (steel components of examples) having the chemical components shown in Table 1 and cast slabs a to g (steel components of comparative examples) were produced.
  • Table 2 shows the reduction ratios and finishing temperatures in the sixth and seventh stages corresponding to the final two passes in hot rolling. Thereafter, the hot-rolled steel sheet that had been air-cooled for a predetermined time was cooled to about 550 ° C. at an average cooling rate of 60 ° C./second, and then wound at about 540 ° C. The wound hot-rolled steel sheet was pickled and then cold-rolled at a reduction rate of 50% to produce a cold-rolled steel sheet.
  • annealing treatment was performed at the maximum annealing temperature shown in Table 2. After annealing, 1% skin pass rolling was performed for the purpose of suppressing yield point elongation.
  • the steel sheet after annealing was cooled and held in order to perform an overaging treatment.
  • the cooling rate, holding temperature, and holding time here are shown in Table 2.
  • some steel plates were subjected to alloying treatment at a predetermined alloying temperature after the retained steel plate was immersed in a hot dip galvanizing bath.
  • primary cooling cooling in the range of 350 to 220 ° C.
  • secondary cooling cooling in the range of 120 to 20 ° C.
  • Table 3 and Table 4 show the steel structure and steel plate characteristics of the steel plates thus obtained.
  • the ratio of ferrite + bainite + tempered martensite “the ratio of retained austenite phase”, “the ratio of crystal grains satisfying formula 1”, “the ratio of small-diameter grains”, “large-diameter grains” “Ratio of small diameter grains satisfying formula 2”, “Ratio of large diameter grains satisfying formula 3”, “Average grain size”, and “Average C concentration in residual austenite phase” did.
  • tensile strength “25 degreeC elongation”, “V bendability”, and "150 degreeC elongation” were evaluated.
  • Identification of structure, observation of existing position, and measurement of average particle diameter (average equivalent circle diameter) and occupancy ratio are 500 times to 1000 times by corroding a steel sheet rolling direction cross section or a cross section perpendicular to the rolling direction with a night reagent. was quantified by observation with an optical microscope.
  • the “remaining austenite phase ratio” is measured on a surface that is chemically polished from the surface layer of the steel sheet to 1 ⁇ 4 thickness, and the (200) and (211) area strength of ferrite and the austenite ( 200), (220) and (311) residual austenite was quantified and determined from the area strength.
  • the “average C concentration in the retained austenite phase” (C ⁇ ) is a lattice constant (unit: unit) based on the reflection angle of the (200) plane, (220) plane, and (311) plane of austenite in a line analysis using Cu—K ⁇ rays. : Angstrom) was calculated according to the following formula A.
  • C ⁇ (lattice constant ⁇ 3.572) /0.033 (formula A)
  • steel a does not satisfy the C upper limit specified by the present invention
  • steel b does not satisfy the C lower limit
  • steels c, d, and e do not satisfy the upper limits of S, Si, and Mn, respectively.
  • Steel f does not satisfy the lower limits of Si and Al.
  • Steel g does not satisfy the lower limit of Si and the upper limit of Al.
  • Steel plate A3 and steel plate A4 are steel plates manufactured with a high rolling reduction in the final two passes.
  • the steel plate D3 is a steel plate manufactured by setting the maximum temperature during annealing low.
  • the steel plate D4 is a steel plate manufactured with a large final primary cooling rate.
  • the steel plate E3 is a steel plate manufactured with the final secondary cooling rate set to 50 ° C./second.
  • the steel plate F3 is a steel plate manufactured with a holding temperature set low.
  • the steel plate F4 is a steel plate manufactured with a high holding temperature.
  • the steel plate H3 is a steel plate manufactured with a long holding time.
  • the steel plate H4 is a steel plate manufactured with a final primary cooling rate set low.
  • the steel plate J2 is a steel plate manufactured with a long air cooling time.
  • the steel plate M2 is a steel plate manufactured with a short air cooling time.
  • Steel plate a1 has a ferrite + bainite fraction outside the range, and steel plate b1 has an austenite fraction below the range.
  • the steel sheet e1 has a low average C concentration in the austenite.
  • the steel plate f1 and the steel plate g1 cannot secure an austenite fraction.
  • FIG. 1 is a diagram showing the relationship between tensile strength and 25 ° C. elongation of steel plates according to Examples and Comparative Examples
  • FIG. 2 shows the relationship between tensile strength and V-bendability for the steel plates.
  • FIG. 3 is the figure which showed the relationship between the tensile strength and 150 degreeC elongation of the steel plate which concerns on an Example and a comparative example. From FIG.1 and FIG.3, according to the steel plate and steel plate manufacturing method concerning this invention, it can confirm that high elongation is implement
  • the present invention can provide a steel sheet having high elongation and V bendability as compared with the prior art, and further excellent in press molding stability, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 本発明は、化学成分が、質量%で:C:0.05%~0.35%;Si:0.05%~2.0%;Mn:0.8%~3.0%;Al:0.01%~2.0%; を含有し、P:0.1%以下;S:0.05%以下;N:0.01%以下;に制限し、残部が鉄及び不可避的不純物からなり、フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相を面積率で合計50%以上含有し、残留オーステナイト相を面積率で3%以上含有し、個数比で50%以上の前記残留オーステナイト相の結晶粒が、重心位置での炭素濃度をCgc、粒界位置での炭素濃度をCgbとして、式1を満たす鋼板を提供する。

Description

鋼板及び鋼板製造方法
 本発明は、鋼板及び鋼板製造方法に関する。この鋼板は、主としてプレス加工されて使用される自動車等の構造材料に好適な、伸び及びV曲げ性、更にはプレス成型安定性に優れた高強度鋼板である。
 本願は、2010年1月29日に、日本に出願された特願2010-019193号、及び、2010年2月17日に、日本に出願された特願2010-032667号に基づき優先権を主張し、その内容をここに援用する。
 自動車の車体構造に使用される鋼板には、高い強度に加え、優れた伸び及びV曲げ性が求められる。
 残留オーステナイト相を含むTRIP(Transformation Induced Plasticity)鋼板によれば、TRIP効果により高い強度と高い伸びとを発揮することが知られている。
 特許文献1では、残留オーステナイト鋼の伸びを更に高める目的で、残留オーステナイト相の分率を高く確保し、2種類のフェライト相(ベイニティックフェライト相、ポリゴナルフェライト相)を制御する技術が開示されている。
 特許文献2では、伸びと形状凍結性とを確保する目的で、オーステナイト相の形状をアスペクト比で規定する技術が開示されている。
 特許文献3では、伸びをより高める目的で、オーステナイト相の分布を最適化する技術が開示されている。
 また、特許文献4及び特許文献5では、組織の均一化により、局部延性を高める技術が開示されている。
日本国特開2006-274418号公報 日本国特開2007-154283号公報 日本国特開2008-56993号公報 日本国特開2003-306746号公報 日本国特開平4-88125号公報
M.Takahashi:IS3-2007,(2007),47-50.
 残留オーステナイト鋼は、焼鈍中のフェライト変態及びベイナイト変態の制御によりオーステナイトのC濃度を高めることで、鋼組織に残留オーステナイト相を含有させた鋼であるが、残留オーステナイト鋼は混合組織であるため、高いV曲げ性(局部曲げ性)を発揮することはできなかった。このため、上述の技術では、現在の高強度鋼板に要求されている更に高い伸びとV曲げ性とを両立することはできていない。
 また、TRIP効果は温度依存性があるが、実際のプレス成型では、プレス成型中に金型の温度が変化する。このため、TRIP鋼板をプレス成型する場合、例えば約25℃のプレス成型初期及び例えば約150℃のプレス成形後期に割れなどの欠陥が生じることがあり、プレス成型安定性に問題があった。
 従って、高い伸びとV曲げ性に加え、プレス成型中の温度変化に依存しない優れたプレス成型安定性を実現することが実用上の課題となっていた。
 本発明は、従来と比較して伸び及びV曲げ性が高く、更にはプレス成型安定性に優れた鋼板及びその製造方法を提供することを課題とする。
 本発明は、上述の課題を解決するために以下の方策を採用する。
(1)本願発明の第1の態様は、化学成分が、質量%で:C:0.05%~0.35%;Si:0.05%~2.0%;Mn:0.8%~3.0%;Al:0.01%~2.0%;を含有し、P:0.1%以下;S:0.05%以下;N:0.01%以下;に制限し、残部が鉄及び不可避的不純物からなり、フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相を面積率で合計50%以上含有し、残留オーステナイト相を面積率で3%以上含有し、個数比で50%以上の前記残留オーステナイト相の結晶粒が、重心位置での炭素濃度をCgc、粒界位置での炭素濃度をCgbとして、式1を満たす鋼板である。
  Cgb/Cgc≧1.2   … (式1)
(2)上記(1)に記載の鋼板では、前記化学成分が質量%で、更にMo:0.01~0.5%、Nb:0.005~0.1%、Ti:0.005~0.2%、V:0.005~0.5%、Cr:0.05~5.0%、W:0.05~5.0%、Ca:0.0005~0.05%、Mg:0.0005~0.05%、Zr:0.0005~0.05%、REM:0.0005~0.05%、Cu:0.02~2.0%、Ni:0.02~1.0%、B:0.0003~0.007%の少なくとも1種を含有してもよい。
(3)上記(1)に記載の鋼板では、前記結晶粒の平均粒径が10μm以下であり、前記残留オーステナイト相中の平均炭素濃度が0.7%以上、1.5%以下であってもよい。
(4)上記(1)に記載の鋼板では、個数比で40%以上の前記結晶粒が、1μm以上、2μm未満の平均粒径を有する小径結晶粒であり、個数比で20%以上の前記結晶粒が、2μm以上の平均粒径を有する大径結晶粒であってもよい。
(5)上記(4)に記載の鋼板では、個数比で50%以上の前記小径結晶粒が、重心位置での炭素濃度をCgcS、粒界位置での炭素濃度をCgbSとして、式2を満たし、個数比で50%以上の前記大径結晶粒が、重心位置での炭素濃度をCgcL、粒界位置での炭素濃度をCgbLとして、式3を満たしてもよい。
 CgbS/CgcS>1.3      (式2)
 1.3>CgbL/CgcL>1.1  (式3)
(6)上記(1)~(5)のいずれか1項に記載の鋼板は、少なくとも片面に付与された亜鉛めっき皮膜を有してもよい。
(7)上記(1)~(5)のいずれか1項に記載の鋼板は、少なくとも片面に付与された亜鉛合金めっき皮膜を有してもよい。
(8)本願発明の第2の態様は、上記(1)又は(2)に記載の化学成分を有する鋳片を、850℃以上、970℃以下の仕上げ温度で熱間圧延を施して熱延鋼板を製造する熱間圧延工程と;前記熱延鋼板に対し、1秒以上、10秒以下の空冷を行う空冷工程と;空冷された前記熱延鋼板を、650℃以下の温度域まで平均で10℃/秒以上、200℃/秒以下で冷却した後650℃以下の温度範囲で巻取る巻取り工程と;巻取られた前記熱延鋼板を、酸洗後、40%以上の圧下率で冷間圧延を施して冷延鋼板を製造する冷間圧延工程と;前記冷延鋼板に対し、700℃以上、900℃以下の最高温度で焼鈍を施す焼鈍工程と;焼鈍された前記冷延鋼板を、0.1℃/秒以上、200℃/秒以下の平均冷却速度で350℃以上、480℃以下の温度域に冷却し、この温度域で1秒以上、1000秒以下保持する保持工程と;保持された前記冷延鋼板に対し、350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の平均冷却速度で一次冷却し、さらに120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程と;を備える鋼板製造方法である。
(9)上記(8)に記載の鋼板製造方法は、前記熱間圧延工程では、最終の2パスを各々20%以下のひずみ量にて圧延してもよい。
(10)上記(8)に記載の鋼板製造方法は、前記熱間圧延工程において、1100℃以下まで冷却された後に1100℃以上に再加熱された鋳片を用いてもよい。
(11)上記(8)に記載の鋼板製造方法は、前記保持工程の後に前記鋼板を溶融亜鉛めっき浴に浸漬する浸漬工程を更に備えてもよい。
(12)上記(11)に記載の鋼板製造方法は、前記浸漬工程の後に500℃以上、580℃以下の範囲で合金化処理を行う合金化処理工程を更に備えてもよい。
 上記方策によれば、残留オーステナイト相中のC濃度勾配が適切に制御されているため、極めて安定な残留オーステナイト相を得ることができる。その結果、残留オーステナイトのTRIP効果によって、高強度であるにもかかわらず、極めて高い伸びと、高いV曲げ性とを発揮できる。また、小径結晶粒及び大径結晶粒の量が適切に制御された場合、残留オーステナイトのTRIP機能安定性を分散させることができ、プレス成型中の温度変化に依存しない優れたプレス成型安定性を発揮することができる。また、小径結晶粒のC濃度勾配と大径結晶粒のC濃度勾配とが適切に制御された場合、より優れたプレス成形安定性を発揮することができる。
実施例及び比較例に係る鋼板の、引張強度と25℃伸びとの関係を示す図である。 実施例及び比較例に係る鋼板の、引張強度とV曲げ最小半径(V曲げ性)との関係を示す図である。 実施例及び比較例に係る鋼板の、引張強度と150℃伸びとの関係を示す図である。
 本発明者らは、残留オーステナイトのTRIP効果を伸びだけではなくV曲げ性にも効果的に作用させるためには残留オーステナイト相の安定性をこれまで以上に高めることが有効であること、及び、TRIP効果を広いプレス成型温度範囲で作用させるためには安定性の異なる残留オーステナイト相を均一に分散させることが有効であることを見出した。
 しかしながら、従来の残留オーステナイト鋼のベイナイト変態を利用した残留オーステナイト相へのC濃化の技法では、非特許文献1で説明されているT点の濃度以上にCを濃化させることはできず、残留オーステナイト相の安定性を高めることはできなかった。
 そこで、本発明者らが更に検討を重ねた結果、残留オーステナイト相中のC濃度勾配を適切に制御することによって、極めて安定な残留オーステナイト相を得ることができること、また、残留オーステナイト相のオーステナイト粒の粒径分布を適切に制御することによって、安定性の異なるオーステナイト相を均一に分散させることができることを発見した。
 以下、上述の発見に基づきなされた本発明の一実施形態に係る鋼板について、詳細に説明する。
 まず、本実施形態に係る鋼板、及びその素材である鋳片(鋳造スラブ)について、鋼の化学成分について説明する。尚、各元素の量を示す「%」は質量%を意味する。
(基本元素)
 鋼の化学成分は基本元素としてC、Si、Mn、Alを含有する。
(C:0.05~0.35%)
 Cは、鋼の強度を高め、残留オーステナイト相を確保するために、極めて重要な元素である。C含有量が0.05%未満では十分な強度が確保できず、また、十分な残留オーステナイト相を得ることができない。一方、C含有量が0.35%を超えると、延性やスポット溶接性を著しく劣化させる。上述の特性を考慮し、C含有量をより狭い範囲に規定してもよい。
 従って、C含有量については、下限値が0.05%、好ましくは0.08%、より好ましくは0.15%に規定され、上限値が0.35%、好ましくは0.26%、より好ましくは0.22%に規定される。
(Si:0.05~2.0%)
 Siは強度確保の観点で重要な元素である。Si含有量が0.05%以上の場合、残留オーステナイト相の生成に寄与し延性を確保する効果が得られる。一方、Si含有量が2.0%を超える場合、これらの効果は飽和され、さらに、鋼の脆化を引き起こしやすくなる。溶融亜鉛めっき、化成処理のしやすさが必要な場合、上限値を1.8%に規定してもよい。上述の特性を考慮し、Si含有量をより狭い範囲に規定してもよい。
 従って、Si含有量については、下限値が0.05%、好ましくは0.1%、より好ましくは0.5%に規定され、上限値が2.0%、好ましくは1.8%、より好ましくは1.6%に規定される。
(Mn:0.8~3.0%)
 Mnは強度確保の観点で重要な元素である。Mn含有量が0.8%以上の場合、残留オーステナイト相の生成に寄与し延性を確保する効果が得られる。一方、Mn含有量が3.0%を超える場合、焼入れ性が高まるため、残留オーステナイト相に変わってマルテンサイト相が生成し、過度の強度上昇を招きやすくなる。その結果、製品のバラツキが大きくなり、さらに、延性が不足してしまう。上述の特性を考慮し、Mn含有量をより狭い範囲に規定してもよい。
 従って、Mn含有量については、下限値が0.8%、好ましくは0.9%、より好ましくは1.2%に規定され、上限値が3.0%、好ましくは2.8%、より好ましくは2.6%に規定される。
(Al:0.01~2.0%)
 Al含有量が0.01%以上の場合、Siと同様、残留オーステナイト相の生成に寄与し延性を確保する効果が得られる。一方、Al含有量が2.0%を越える場合、効果は飽和し、かえって鋼を脆化させる。上述の特性を考慮し、Al含有量をより狭い範囲に規定してもよい。
 従って、Al含有量については、下限値が0.01%.好ましくは0.015%、より好ましくは0.04%超に規定され、上限値が2.0%、好ましくは1.8%、より好ましくは1.4%未満に規定される。
 溶融亜鉛めっきを付与する場合、Alは溶融亜鉛めっき性を劣化させるため、その上限を1.8%とすることが望ましい。
 尚、同様の効果を奏する上述のSiとAlとを鋼中に多量に添加する場合には、Si+Al含有量について規定してもよい。
 この場合、Si+Al含有量について、下限値が0.8%、好ましくは0.9%、より好ましくは1.0%に規定され、上限値が4.0%、好ましくは3.0%、より好ましくは2.0%に規定される。
(制限元素)
 上述の鋼では、制限元素であるP、S、Nの含有量が以下のように制限される。
(P:0.1%以下)
 P含有量は、必要な鋼板強度に応じて制限される。P含有量が0.1%を超えると、粒界への偏析により局部延性を劣化させ、さらに、溶接性を劣化させる。このため、P含有量は0.1%以下に制限される。
 Pは不可避的に鋼中に含まれるため、下限値は0%超であるが、P含有量を極めて低く制限するには多大なコストを要するため、下限値を0.001%又は0.006%に規定してもよい。上述の特性を考慮し、P含有量をより狭い範囲に規定してもよい。
 従って、P含有量については、0.1%以下、好ましくは0.05%以下、より好ましくは0.01%以下に制限される。また、下限値については、0%超、0.001%、又は0.006%に規定されてもよい。
(S:0.05%以下)
 Sは、MnSを生成することで局部延性、溶接性を劣化させる元素である。このため、S含有量は0.05%以下に制限される。
 Sは不可避的に鋼中に含まれるため、下限値は0%超であるが、S含有量を極めて低く制限するには多大なコストを要するため、下限値を0.0005%又は0.001%超に規定してもよい。また、上述の特性を考慮し、S含有量をより狭い範囲に規定してもよい。
 従って、S含有量については、0.05%以下、好ましくは0.01%以下、より好ましくは0.004%未満に制限される。また、下限値については、0%超、0.0005%、又は0.001%超に規定されてもよい。
(N:0.01%以下)
 Nは、多量に含有すると、時効性を劣化させ、さらに、AlN析出量が多くなってAl添加の効果を減少させる。このため、N含有量は0.01%以下に制限される。
 Nは不可避的に鋼中に含まれるため、下限値は0%超に規定されるが、N含有量を極めて低く制限するには多大なコストを要するため、下限値を0.001%又は0.002超に規定してもよい。また、上述の特性を考慮し、N含有量をより狭い範囲に規定してもよい。
 従って、N含有量については、0.01%以下、好ましくは0.008%以下、より好ましくは0.005%未満に制限される。また、下限値については、0%超、0.001%、又は0.002%超に規定されてもよい。
(Fe及び不可避的不純物)
 上述の鋼は、残部として、鉄及び不可避的不純物を含有する。不可避的不純物としては、スクラップから混入するSn、As等が挙げられる。また、本発明の特性を損なわない範囲で他の元素を含有してもよい。
(選択元素)
 上述の鋼は、選択元素としてMo、Nb、Ti、V、Cr、W、Ca、Mg、Zr、REM、Cu、Ni、Bの少なくとも1種を含有してもよい。
(Mo:0.01~0.5%)
 Mo含有量が0.01%以上である場合、鋼中のパーライト相の生成を抑制する効果が得られる。このためMoは、焼鈍中の冷却速度が遅い場合、又は、めっきの合金化処理等で再加熱がなされる場合に重要となる元素である。しかし、Mo含有量が0.5%を超える場合、延性や化成処理性を劣化させることがある。より高い強度と延性のバランスを得るためには、0.3%以下とすることが好ましい。上述の特性を考慮し、Mo含有量をより狭い範囲に規定してもよい。
 従って、Moを鋼中に含有させる場合、下限値を0.01%、好ましくは0.02%に規定してもよく、上限値を0.5%、好ましくは0.3%、より好ましくは0.2%に規定してもよい。
(Nb:0.005~0.1%)
(Ti:0.005~0.2%)
(V:0.005~0.5%)
(Cr:0.05~5.0%)
(W:0.05~5.0%)
 Nb、Ti、V、Cr、Wは、微細な炭化物、窒化物、又は、炭窒化物を生成する元素であり、強度確保に有効である。強度確保の観点から、Nbの下限値を0.005%、Tiの下限値を0.005%、Vの下限値を0.005%、Crの下限値を0.05%、Wの下限値を0.05%に規定してもよい。
 一方、これらの元素を過度に鋼中に添加すると、鋼の強度が上昇しすぎて延性が低下する。延性確保の観点から、Nbの上限値を0.1%、Tiの上限値を0.2%、Vの上限値を0.5%、Crの上限値を5.0%、Wの上限値を5.0%に規定してもよい。
 また、上述の特性を考慮し、それぞれの元素の含有量をより狭い範囲に規定してもよい。
 従って、Nbを鋼中に含有させる場合、下限値を0.005%、好ましくは0.01%に規定してもよく、上限値を0.1%、好ましくは0.05%、より好ましくは0.03%に規定してもよい。
 また、Tiを鋼中に含有させる場合、下限値を0.005%、好ましくは0.01%に規定してもよく、上限値を0.2%、好ましくは0.1%、より好ましくは0.07%に規定してもよい。
 また、Vを鋼中に含有させる場合、下限値を0.005%、好ましくは0.01%に規定してもよく、上限値を0.5%、好ましくは0.3%、より好ましくは0.1%に規定してもよい。
 また、Crを鋼中に含有させる場合、下限値を0.05%、好ましくは0.1%に規定してもよく、上限値を5.0%、好ましくは3.0%、より好ましくは1.0%に規定してもよい。
 また、Wを鋼中に含有させる場合、下限値を0.05%、好ましくは0.1%に規定してもよく、上限値を5.0%、好ましくは3.0%、より好ましくは1.0%に規定してもよい。
(Ca:0.0005~0.05%)
(Mg:0.0005~0.05%)
(Zr:0.0005~0.05%)
(REM:0.0005~0.05%)
 Ca、Mg、Zr、REM(希土類元素)は、硫化物及び酸化物の形状を制御して局部延性及び穴拡げ性を向上させる。このため、各元素の下限値を0.0005%に規定してもよい。
 一方、鋼がこれらの元素を過度に含有する場合、加工性が劣化する。このため、各元素の上限値を0.05%に規定してもよい。
 また、上述の特性を考慮し、それぞれの元素の含有量をより狭い範囲に規定してもよい。
 従って、Caを鋼中に含有させる場合、下限値を0.0005%、好ましくは0.001%に規定してもよく、上限値を0.05%、好ましくは0.01%、より好ましくは0.005%に規定してもよい。
 また、Mgを鋼中に含有させる場合、下限値を0.0005%、好ましくは0.001%に規定してもよく、上限値を0.05%、好ましくは0.01%、より好ましくは0.005%に規定してもよい。
 また、Zrを鋼中に含有させる場合、下限値を0.0005%、好ましくは0.001%に規定してもよく、上限値を0.05%、好ましくは0.01%、より好ましくは0.005%に規定してもよい。
 また、REMを鋼中に含有させる場合、下限値を0.0005%、好ましくは0.001%に規定してもよく、上限値を0.05%、好ましくは0.01%、より好ましくは0.005%に規定してもよい。
(Cu:0.02~2.0%)
(Ni:0.02~1.0%)
(B:0.0003~0.007%)
 Cu、Ni、Bは、変態を遅らせ鋼の強度を高める効果が得られることができる。このため、Cuの下限値を0.02%、Niの下限値を0.02%、Bの下限値を0.0003%に規定してもよい。
 一方、それぞれの元素を過度に添加すると、焼入れ性が強くなりすぎ、フェライト変態、ベイナイト変態が遅くなるため、残留オーステナイト相へのC濃化を遅れさせる。このため、Cuの上限値を2.0%、Niの上限値を1.0%、Bの上限値を0.007%に規定してもよい。
 また、上述の特性を考慮し、それぞれの元素の含有量をより狭い範囲に規定してもよい。
 従って、Cuを鋼中に含有させる場合、下限値を0.02%、好ましくは0.04%に規定してもよく、上限値を2.0%、好ましくは1.5%、より好ましくは1.0%に規定してもよい。
 また、Niを鋼中に含有させる場合、下限値を0.02%、好ましくは0.04%に規定してもよく、上限値を1.0%、好ましくは0.7%、より好ましくは0.5%に規定してもよい。
 また、Bを鋼中に含有させる場合、下限値を0.0003%、好ましくは0.0005%に規定してもよく、上限値を0.007%、好ましくは0.005%、より好ましくは0.003%に規定してもよい。
 次に、本実施形態に係る鋼板の鋼組織について説明する。尚、鋼組織に関する「%」は、特に説明がない限り、面積率を意味する。
 本実施形態に係る鋼板の鋼組織は、面積率で、フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相を全組織に対して合計50%以上、好ましくは60%、より好ましくは70%以上含有する。また、この鋼組織は、残留オーステナイト相を全組織に対して3%以上、好ましくは5%超、より好ましくは10%超含有する。焼き戻しマルテンサイト相については必要とされる鋼板強度に応じて含有させればよく、0%であってもよい。なお、パーライト相は、5%以下であれば鋼組織に含有されても材質を著しく劣化させることはないので、5%以下の範囲で含有してもよい。
 フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相が合計50%未満の場合、残留オーステナイト相中のC濃度を高くすることができないため、残留オーステナイト相が濃度勾配を有しても、相の安定性を確保することが困難となり、V曲げ性が劣化する。一方、フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相が合計95%を超えると、残留オーステナイト相を3%以上確保することが困難となり、伸びの低下を引き起こすため、95%以下であることが好ましい。
 本実施形態に係る鋼板では、残留オーステナイト相の結晶粒のC濃度分布が適切に制御される。すなわち、残留オーステナイト相の結晶粒の、フェライト相、ベイナイト相、又は焼き戻しマルテンサイト相に接する相界面でのC濃度(Cgb)が、結晶粒の重心位置でのC濃度(Cgc)に比べて高くなるように制御される。これにより、相界面での残留オーステナイト相の安定性を高め、優れた伸びとV曲げ性とを発揮することができる。
 より具体的には、個数比で50%以上、好ましくは55%、より好ましくは60%以上の残留オーステナイト相の結晶粒が、以下の式1を満たす場合に、残留オーステナイト相全体の安定性を高める効果が得られる。
  Cgb/Cgc≧1.2   (式1)
 Cgb、Cgc(及び、後述するCgbS、CgcS、CgbL、CgcL)は、精度が保証される測定方法であれば、どのような測定方法で測定しても構わない。例えば、FE-SEM付属のEPMAを用いて、0.5μm以下ピッチでC濃度を測定することによって得ることができる。
 ここで、相界面のC濃度(Cgb)とは、粒界に最も近い、結晶粒側の測定点のC濃度のことをいう。ただし、測定条件によっては、結晶粒の外側の影響を受けて、Cgbが低く測定される場合がある。その場合は、粒界近傍で最も高いC濃度をCgbとする。
 界面の局部的なC濃度を測定することは、現在の技術では不可能である。しかし、本発明者らが検討を重ねた結果、通常の測定において、式1の条件を満たせば、十分な効果が得られると判断できた。
 残留オーステナイト相の結晶粒の平均粒径は、10μm以下、好ましくは4μm、より好ましくは2μm以下であればよい。ここでいう「粒径」とは、平均円相当径を意味し、「平均粒径」とはその個数平均を意味する。平均粒径が10μm超では、残留オーステナイト相の分散が粗く、TRIP効果を充分に発揮することができないため、優れた伸びを得られない。また、残留オーステナイト相の結晶粒の平均粒径が1μm未満の場合、所定のC濃度勾配を有する相界面を得ることが難しく、優れたV曲げ性を得られない。
 残留オーステナイト相中の平均炭素濃度は、C濃度勾配と同様、残留オーステナイトの安定性に大きく寄与する。平均C濃度が0.7%未満では残留オーステナイトの安定性が極めて低くなるので、TRIP効果を効果的に得ることができず、伸びが低下する。一方、平均C濃度が1.5%を超えても、伸び改善の効果は飽和し、製造コストが増加する。このため、残留オーステナイト相中の平均炭素濃度については、上限を0.7%、好ましくは0.8%、より好ましくは0.9%に規定してもよく、下限を1.5%、好ましくは1.4%、より好ましくは1.3%に規定してもよい。
 本実施形態に係る鋼板においては、残留オーステナイト相の結晶粒の粒径を適切に分布させ、安定性の異なる残留オーステナイト相を均一に分散させてもよい。この場合、安定性の高い残留オーステナイト相が例えば約25℃のプレス成型初期でのプレス成形性に寄与し、安定性の低い残留オーステナイト相が例えば約150℃のプレス成型後期でのプレス成形性に寄与する。このため、高い伸びとV曲げ性に加え、優れたプレス成型安定性も発揮することができる。
 プレス成型安定性を確保するためには、連続プレス中に金型温度が変化しても常にTRIP効果を発揮できるように残留オーステナイト相の結晶粒を分散させる必要がある。そこで、本実施形態に係る鋼板においては、安定性の異なる残留オーステナイト相の結晶粒を均一に分散させることにより、金型温度に依存しない優れたプレス成型性を実現可能としている。
 具体的には、鋼板中の残留オーステナイト相の結晶粒について、個数比40%以上の結晶粒が1μm以上2μm未満の粒径を有する小径結晶粒であり、個数比20%以上が2μm以上の粒径を有する大径結晶粒であることが好ましい。この場合、安定性の異なるオーステナイト粒が均一に分散されるため、優れたプレス成型安定性を実現することができる。
 0.5μm未満の粒(極小径結晶粒)はC濃度勾配を与えることが極めて困難であり、極めて不安定な残留オーステナイト相の結晶粒となることからプレス成形性への寄与が低い。0.5μm以上、2μm未満の粒(小径結晶粒)は多量の炭素が隣接粒から流れ込むため、成品で大きな濃度勾配を維持することが可能となり、比較的安定性の高い残留オーステナイト相の結晶粒となる。この小径結晶粒を個数比で40%以上存在させることでこの効果を発揮できる。2μm以上の粒(大径結晶粒)は隣接粒からの炭素流入量が少なく、濃度勾配が小さい、比較的低い安定性を持った残留オーステナイト相の結晶粒となる。この残留オーステナイト相は低プレス域でTRIP効果を起こしやすい。この大径結晶粒を個数比で20%以上存在させることでこの効果を発揮できる。
 更に、本実施形態に係る鋼板では、残留オーステナイト相の結晶粒のサイズ毎に適切なC濃度勾配が付与されていてもよい。より具体的には、個数比で50%、好ましくは55%、より好ましくは60%以上の小径結晶粒が、重心位置での炭素濃度をCgcS、粒界位置での炭素濃度をCgbSとして、式2を満たし、且つ、個数比で50%以上、好ましくは55%、より好ましくは60%以上の大径結晶粒が、重心位置での炭素濃度をCgcL、粒界位置での炭素濃度をCgbLとして、式3を満たすことが好ましい。
  CgbS/CgcS>1.3     (式2)
  1.3>CgbL/CgcL>1.1 (式3)
 このように、残留オーステナイト相の結晶粒のサイズ毎に適切なC濃度勾配を付与することにより、例えば約25℃の比較的低温度状態、及び、約150℃の比較的高温度状態において、安定して高いプレス成形性を発揮することができる。
 CgbS/CgcSの値が1.3を超える小径結晶粒が、全小径結晶粒に対する個数比で50%以上であれば、小径結晶粒が高い安定性を有することによりプレス成形初期の低温状態での伸びを高めることができる。一方、このような安定な残留オーステナイトは、プレス成型後期の高温状態での伸びが低下する。これを補償するべく、CgbL/CgcLの値が1.1超1.3未満である大径結晶粒が、全大径結晶粒に対する個数比で50%以上であれば、大径結晶粒が低い安定性を有することにより、プレス後期の高温状態での伸びの改善に効果的である。但し、CgbL/CgcLの値が1.1未満であると更に高い温度の伸びに作用してしまうことから150℃以下の伸びが劣化する。
 これらの濃度比を確保できるときに、低温から高温まで高いプレス成形性を確保できるが、この効果を組織全体で担保するには、全ての小径結晶粒のうち、式2を満たす小径結晶粒が個数比で50%以上、好ましくは55%、より好ましくは60%必要であり、それ未満ではそのTRIP効果が少ないため特に低温でのプレス成形性が劣化する。一方で、大径結晶粒においては、式3を満たすとき、高温域で高いプレス成形性を得ることができる。この大径結晶粒に対しても、この効果を組織全体で担保するには、全ての大径結晶粒のうち、式3を満たす大径結晶粒が個数比で50%以上、好ましくは55%、より好ましくは60%必要である。
 本実施形態に係る鋼板は、少なくとも片面に亜鉛めっき被膜、又は亜鉛合金めっき被膜を有してもよい。
 以下に、本発明の一実施形態に係る鋼板製造方法について説明する。
 本発明の一実施形態は、熱間圧延工程と、空冷工程と、巻取り工程と、冷間圧延工程と、焼鈍工程と、保持工程と、最終冷却工程とを少なくとも備える。以下、それぞれの工程について詳細に説明する。
(熱間圧延工程)
 熱間圧延工程では、連続鋳造された直後の鋳造スラブ(鋳片)、又は、1100℃以下まで冷却された後に1100℃以上に再加熱された鋳造スラブに対して熱間圧延を施し、熱延鋼板を製造する。再加熱された鋳造スラブを用いる場合、再加熱温度が1100℃未満では、均質処理が不十分となり、強度とV曲げ性の低下が生じる。この熱間圧延工程における仕上げ温度は、オーステナイト粒の再結晶・成長の観点からは高い方が望ましいため、850℃以上、970℃以下とする。熱間圧延の仕上げ温度が850℃未満では、(フェライト+オーステナイト)2相域圧延となり、延性の低下をもたらす。一方、熱間圧延の仕上げ温度が970℃を超えると、オーステナイト粒径が粗大になり、フェライト相分率が小さくなって、延性が低下する。
 残留オーステナイト相における結晶粒のC濃度勾配を均一に分散させる場合、熱延における最終2パス(最終前段及び最終段)での圧下量は小さい方が望ましいため、各々20%以下に設定してもよい。また、最終1パス(最終段)での圧下率は、15%以下、又は10%以下に設定してもよい。これにより、残留オーステナイト相の結晶粒のサイズを分散させることができ、鋼板のプレス成型安定性を向上させることができる。それぞれの圧下量が20%を越える場合、オーステナイト粒の再結晶が進むため、最終組織における2μm以上の粒径(円相当径)の結晶粒を得ることが困難となる。
(空冷工程)
 空冷工程では、上述のようにして得られた熱延鋼板に対し1秒以上、10秒以下の冷却(空冷)を行う。空冷時間が1秒未満ではオーステナイト粒の再結晶・成長が不十分となり、最終組織の残留オーステナイト相の結晶粒も小さくなる。一方で、空冷時間が10秒を超えるとオーステナイト粒の粗大化により、均一性が失われ、伸びが劣化する。空冷時間は、好ましくは5秒以下、より好ましくは3秒以下に設定される。
(巻取り工程)
 巻取り工程では、空冷された熱延鋼板を650℃以下の温度域まで、10℃/秒以上200℃/秒以下の平均冷却速度で冷却した後、650℃以下、好ましくは600℃以下、より好ましくは400℃以下の温度範囲で巻取る。平均冷却速度が10℃/秒未満、又は、巻取り温度が650℃超では、V曲げ性を著しく劣化させるパーライト相が生成する。平均冷却速度が200℃/秒を超えると、パーライト抑制効果は飽和し、また、冷却終点温度のばらつきが大きくなり安定した材質を確保することが難しくなる。
 このため、平均冷却速度については、下限が10℃/秒、好ましくは30℃/秒、より好ましくは40℃/秒に設定され、上限が200℃/秒、好ましくは150℃/秒、より好ましくは120℃/秒に設定される。また、巻取り温度については、下限が200℃、好ましくは400℃、より好ましくは650℃に設定され、上限が600℃又は550℃に設定される。
(冷間圧延工程)
 冷間圧延工程では、巻取られた熱延鋼板を、酸洗後、40%以上の圧下率で冷間圧延を施し、冷延鋼板を製造する。圧下率が40%未満では、焼鈍中の再結晶や逆変態が抑制されて、伸びの低下を起こす。ここでの圧下率の上限は特に規定されるものではないが、90%、又は70%であればよい。
(焼鈍工程)
 焼鈍工程では、冷延鋼板に対し、700℃以上、900℃以下の最高温度で焼鈍を施す。最高温度が700℃未満では、焼鈍中のフェライト相の再結晶が遅れるため、伸びの低下を引き起こす。900℃超では、マルテンサイト分率が増加し、伸びの低下を起こす。
 このため、焼鈍最高温度については、下限が700℃、好ましくは720℃、より好ましくは750℃超に設定され、上限が900℃、好ましくは880℃、より好ましくは850℃未満に設定される。
 尚、焼鈍工程後には、降伏点伸びを抑制する目的から、約1%のスキンパス圧延を行ってもよい。
(保持工程)
 過時効処理(以下、OA)を行うために、保持工程では、焼鈍された冷延鋼板を、0.1℃/秒以上、200℃/秒以下の平均冷却速度で350℃以上、480℃以下の温度域に冷却し、この温度域で1秒以上、1000秒以下保持する。焼鈍後の冷却において、組織を凍結し、ベイナイト変態を効率的に引き起こすため、平均冷却速度は0.1℃/秒以上、200℃/秒以下に設定される。平均冷却速度が0.1℃/秒未満では変態を制御できない。一方、平均冷却速度が200℃/秒を越えると、その効果は飽和し、また、残留オーステナイト生成に最も重要となる冷却終点温度の温度制御性を著しく劣化させる。従って、平均冷却速度については、下限が0.1℃/秒、好ましくは2℃/秒、より好ましくは3℃/秒に設定され、上限が200℃/秒、好ましくは150℃/秒、より好ましくは120℃/秒に設定される。
 冷却終点温度及びその後の保持は、ベイナイト生成を制御し、残留オーステナイトのC濃度を決定する重要である。冷却終点温度を350℃未満とすると、マルテンサイトが多量に生じ、鋼強度が過剰に高くなり、さらに、オーステナイトを残留させることが難しくなるため、伸びの低下が極めて大きくなる。冷却終点温度が480℃を超えると、ベイナイト変態が遅くなり、さらに、保持中にセメンタイトの生成が起こり、残留オーステナイト中のCの濃化が低下する。したがって、冷却終点温度及び保持温度については、下限が350℃、好ましくは380℃、より好ましくは390℃に設定され、上限が480℃、好ましくは470℃、より好ましくは460℃に設定される。
 保持時間は1秒以上、1000秒以下とする。保持時間が1秒未満では、ベイナイト変態が十分に起こらず、残留オーステナイトへのC濃化が不十分となる。1000秒を越えると、オーステナイト相中にセメンタイトが生成し、Cの濃度低下が起こりやすくなる。このため、保持時間については、下限が1秒、好ましくは10秒、より好ましくは40秒に設定され、上限が1000秒、好ましくは600秒、より好ましくは400秒に設定される。
(最終冷却工程)
 最終冷却工程では、保持後の冷延鋼板に対し、350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の平均冷却速度で一次冷却し、さらに120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する。
 OA後の冷却中に起こる微かな変態は、オーステナイト中の粒界近傍のC濃度を増す上で重要な役割を担う。このため、一次冷却では、350℃から220℃までの温度域を平均冷却速度5℃/秒以上25℃/秒以下の平均冷却速度で鋼板を冷却する。350℃から220℃までの温度域の冷却速度が25℃/秒を超えると、この間に変態が進まず、オーステナイト中へのC濃化が起こらない。一方、350℃から220℃までの温度域の冷却速度が5℃/秒未満だと、オーステナイト中でCの拡散が進み、Cの濃度勾配が小さくなる。
 従って、一次冷却の平均冷却速度については、下限が5℃/秒、好ましくは6℃/秒、より好ましくは7℃/秒超に設定され、上限が20℃/秒、好ましくは19℃/秒、より好ましくは18℃/秒未満に設定される。
 また、120℃以下の低温域では、Cの拡散がさらに限定され、変態が起こりにくくなる。このため、二次冷却では、120℃から常温近傍までの温度範囲を平均冷却速度100℃/秒以上で鋼板を冷却して、オーステナイト相中のC濃度勾配を350℃から220℃で達成したままとする。あるいは、二次冷却では、120℃から常温近傍までの温度範囲を平均冷却速度5℃/秒以下で鋼板を冷却して、オーステナイト相中のC濃度勾配をより著しいものとする。二次冷却において平均冷却速度を5℃/秒超100℃/秒未満とすると、変態が起きないばかりでなく、粒界のC濃度の低下が発生する。
 従って、二次冷却の平均冷却速度については、5℃/秒以下、好ましくは4℃/秒以下、より好ましくは3℃/秒以下に設定するか、あるいは、100℃/秒以上、好ましくは120℃/秒以上、より好ましくは150℃/秒以上に設定する。
 以上説明した本実施形態に係る鋼板製造方法によれば、ベイナイト変態によって残留オーステナイト相のCが濃化した後の冷却条件の制御により、残留オーステナイト相中のC濃度勾配を、粒界部のC濃度が高くなるように制御することが可能である。また、焼鈍後の冷却におけるオーステナイト相中へのC濃化とあわせることで、残留オーステナイト相の安定性を高くすることが可能である。
 また、残留オーステナイト相の結晶粒のサイズを分散させて残留オーステナイト相のC濃度勾配を均一に分散させる場合、鋼板のプレス成型安定性を向上させることができる。
 本技術は、溶融亜鉛めっき鋼板の製造にも適用が可能である。この場合、上記の保持工程後、最終冷却工程前に、鋼板を溶融亜鉛めっき浴に浸漬する。さらに、浸漬後、合金化処理を施すことも可能である。合金化処理は、500℃以上、580℃の範囲で行う。500℃未満では合金化が不十分となり、580℃超では過合金となり耐食性が著しく劣化する。
 なお、本発明は、鋳造条件により影響を受けるものではない。例えば、鋳造方法(連続鋳造かインゴット鋳造)、スラブ厚の違いによる影響少なく、薄スラブなど特殊な鋳造、熱延方法を用いてもよい。また、鋼板に電気めっきを施してもよい。
 本発明を実施例に基づきさらに説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した条件例であり、本発明はこの条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 まず、表1に示した化学成分を有する鋳造スラブA~V(実施例の鋼成分)と鋳造スラブa~g(比較例の鋼成分)とを製造した。
Figure JPOXMLDOC01-appb-T000001
 これらの鋳造スラブに対し熱間圧延を施し、熱延鋼板を製造した。熱間圧延における、最終2パスに相当する6段目、7段目の圧延での圧下率、及び仕上げ温度については、表2に示す。その後、所定の時間空冷した熱延鋼板を約550℃まで、平均冷却速度60℃/秒で冷却した後、約540℃で巻取りを行った。巻取られた熱延鋼板を酸洗し、その後、50%の圧下率で冷間圧延を施し、冷延鋼板を製造した。
 更に、表2に示した最高焼鈍温度により、焼鈍処理を行った。焼鈍後は、降伏点伸びを抑制する目的から、1%のスキンパス圧延を行った。
 その後、過時効処理を行うために、焼鈍後の鋼板を冷却し、保持した。ここでの冷却速度、保持温度、及び保持時間は、表2に示される。更に、一部の鋼板に対しては、保持後の鋼板を溶融亜鉛めっき浴に浸漬した後、所定の合金化温度で合金化処理を行った。
 最後に、所定の冷却速度で冷延鋼板の一次冷却(350~220℃の範囲の冷却)及び二次冷却(120℃~20℃の範囲の冷却)を行い、鋼板A1~V1、a1~g1を製造した。
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた鋼板の鋼組織及び鋼板特性を、表3、表4に示す。鋼組織については、「フェライト+ベイナイト+焼き戻しマルテンサイトの割合」、「残留オーステナイト相の割合」、「式1を満たす結晶粒の割合」、「小径結晶粒の割合」、「大径結晶粒の割合」、「式2を満たす小径結晶粒の割合」、「式3を満たす大径結晶粒の割合」、「結晶粒平均粒径」、及び「残留オーステナイト相中の平均C濃度」を測定した。また、鋼板特性については、「引張強さ」、「25℃伸び」、「V曲げ性」及び「150℃伸び」について評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 組織の同定、存在位置の観察および平均粒径(平均円相当径)と占有率の測定は、ナイタ-ル試薬により鋼板圧延方向断面または圧延方向と直角な断面を腐食させて500倍~1000倍の光学顕微鏡観察により定量化した。
 「残留オーステナイト相の割合」の測定は、鋼板の表層より1/4厚まで化学研磨した面で行い、単色化したMoKα線による、フェライトの(200)及び(211)面積分強度とオーステナイトの(200)、(220)及び(311)面積分強度から残留オーステナイトを定量化し、求めた。
 また、「残留オーステナイト相中の平均C濃度」(Cγ)は、Cu-Kα線による線解析で、オーステナイトの(200)面、(220)面、(311)面の反射角から格子定数(単位:オングストローム)を求め、下記の式Aに従い算出した。
   Cγ=(格子定数-3.572)/0.033    … (式A)
 「25℃伸び」及び「150℃伸び」は、JIS5号引張試験片のC方向引張により、25℃、150℃温度にて評価した。
 「V曲げ性」は、V曲げ試験で割れの発生しない最小のRで評価した。V曲げ試験は、30mm×200mmの試験片を、種々のRをもつV字ブロックを用いて、90度に曲げて行った。支え間は95mmとし、支え台でしわ押さえ力(BHF)を98kNとした。割れの判定は、目視又は拡大鏡を用いた観察で行い、表面に亀裂又はくびれが発生したものを割れと判定した。
 表1の鋼a~gのうち、鋼aは本発明で規定するC上限、鋼bはC下限を満たしていない。鋼c、d、eはそれぞれ、S、Si、Mnの上限を満たしていない。鋼fはSiとAlの下限を満たしていない。鋼gはSiの下限とAlの上限を満たしていない。
 鋼板A3及び鋼板A4は、最終2パスでの圧下率が高く設定されて製造された鋼板である。
 鋼板D3は、焼鈍時の最高温度が低く設定されて製造された鋼板である。
 鋼板D4は、最終の一次冷却速度が大きく設定されて製造された鋼板である。
 鋼板E3は、最終の二次冷却速度が50℃/秒に設定されて製造された鋼板である。
 鋼板F3は、保持温度が低く設定されて製造された鋼板である。
 鋼板F4は、保持温度が高く設定されて製造された鋼板である。
 鋼板H3は、保持時間が長く設定されて製造された鋼板である。
 鋼板H4は、最終一次冷却速度が小さく設定されて製造された鋼板である。
 鋼板J2は、空冷時間が長く設定されて製造された鋼板である。
 鋼板M2は、空冷時間が短く設定されて製造された鋼板である。
 鋼板a1はフェライト+ベイナイト分率が範囲外にあり、鋼板b1はオーステナイト分率が範囲以下である。鋼板e1はオーステナイト中の平均C濃度が低い。鋼板f1及び鋼板g1はオーステナイト分率が確保できない。
 図1は、実施例及び比較例に係る鋼板の、引張強度と25℃伸びとの関係を示した図であり、図2は、同鋼板について、引張強度とV曲げ性との関係を示した図である。図1及び図2から、本発明に係る鋼板及び鋼板製造方法によれば、高い伸びとV曲げ性とを両立できていることが確認できる。
 また、図3は、実施例及び比較例に係る鋼板の、引張強度と150℃伸びとの関係を示した図である。図1及び図3から、本発明に係る鋼板及び鋼板製造方法によれば、高い伸びが25℃、150℃の何れの温度においても実現できていることが確認できる。
 本発明によれば、本発明は、従来と比較して伸び及びV曲げ性が高く、更にはプレス成型安定性に優れた鋼板及びその製造方法を提供することができる。

Claims (12)

  1.  化学成分が、質量%で:
     C:0.05%~0.35%;
     Si:0.05%~2.0%;
     Mn:0.8%~3.0%;
     Al:0.01%~2.0%;
    を含有し、
     P:0.1%以下;
     S:0.05%以下;
     N:0.01%以下;
    に制限し、
     残部が鉄及び不可避的不純物からなり、
     フェライト相、ベイナイト相、及び焼き戻しマルテンサイト相を面積率で合計50%以上含有し、
     残留オーステナイト相を面積率で3%以上含有し、
     個数比で50%以上の前記残留オーステナイト相の結晶粒が、重心位置での炭素濃度をCgc、粒界位置での炭素濃度をCgbとして、式1を満たす
    ことを特徴とする鋼板。
      Cgb/Cgc≧1.2   … (式1)
  2.  前記化学成分が質量%で、更に
     Mo:0.01%~0.5%;
     Nb:0.005%~0.1%;
     Ti:0.005%~0.2%;
     V:0.005%~0.5%;、
     Cr:0.05%~5.0%;
     W:0.05%~5.0%;
     Ca:0.0005%~0.05%;
     Mg:0.0005%~0.05%;
     Zr:0.0005%~0.05%;
     REM:0.0005%~0.05%;
     Cu:0.02%~2.0%;
     Ni:0.02%~1.0%;
     B:0.0003%~0.007%;
    の少なくとも1種を含有する
    ことを特徴とする請求項1に記載の鋼板。
  3.  前記結晶粒の平均粒径が10μm以下であり、
     前記残留オーステナイト相中の平均炭素濃度が0.7%以上、1.5%以下である
    ことを特徴とする請求項1に記載の鋼板。
  4.  個数比で40%以上の前記結晶粒が、1μm以上、2μm未満の平均粒径を有する小径結晶粒であり、
     個数比で20%以上の前記結晶粒が、2μm以上の平均粒径を有する大径結晶粒である
    ことを特徴とする請求項1に記載の鋼板。
  5.  個数比で50%以上の前記小径結晶粒が、重心位置での炭素濃度をCgcS、粒界位置での炭素濃度をCgbSとして、式2を満たし、
     個数比で50%以上の前記大径結晶粒が、重心位置での炭素濃度をCgcL、粒界位置での炭素濃度をCgbLとして、式3を満たす
    ことを特徴とする請求項4に記載の鋼板。
     CgbS/CgcS>1.3      (式2)
     1.3>CgbL/CgcL>1.1  (式3)
  6.  前記鋼板が、少なくとも片面に付与された亜鉛めっき皮膜を有する
    ことを特徴とする請求項1~5のいずれか1項に記載の鋼板。
  7.  前記鋼板が、少なくとも片面に付与された亜鉛合金めっき皮膜を有する
    ことを特徴とする請求項1~5のいずれか1項に記載の鋼板。
  8.  請求項1又は2に記載の化学成分を有する鋳片を、850℃以上、970℃以下の仕上げ温度で熱間圧延を施して熱延鋼板を製造する熱間圧延工程と;
     前記熱延鋼板に対し、1秒以上、10秒以下の空冷を行う空冷工程と;
     空冷された前記熱延鋼板を、650℃以下の温度域まで平均で10℃/秒以上、200℃/秒以下で冷却した後650℃以下の温度範囲で巻取る巻取り工程と;
     巻取られた前記熱延鋼板を、酸洗後、40%以上の圧下率で冷間圧延を施して冷延鋼板を製造する冷間圧延工程と;
     前記冷延鋼板に対し、700℃以上、900℃以下の最高温度で焼鈍を施す焼鈍工程と;
     焼鈍された前記冷延鋼板を、0.1℃/秒以上、200℃/秒以下の平均冷却速度で350℃以上、480℃以下の温度域に冷却し、この温度域で1秒以上、1000秒以下保持する保持工程と;
     前記冷延鋼板に対し、350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の平均冷却速度で一次冷却し、さらに120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程と;
    を備えることを特徴とする鋼板製造方法。
  9.  前記熱間圧延工程では、最終の2パスを各々20%以下のひずみ量にて圧延する
    ことを特徴とする請求項8に記載の鋼板製造方法。
  10.  前記熱間圧延工程では、1100℃以下まで冷却された後に1100℃以上に再加熱された鋳片を用いる
    ことを特徴とする請求項8に記載の鋼板製造方法。
  11.  前記保持工程の後に前記鋼板を溶融亜鉛めっき浴に浸漬する浸漬工程を更に備える
    ことを特徴とする請求項8に記載の鋼板製造方法。
  12.  前記浸漬工程の後に500℃以上、580℃以下の範囲で合金化処理を行う合金化処理工程を備える
    ことを特徴とする請求項11に記載の鋼板製造方法。
PCT/JP2011/051896 2010-01-29 2011-01-31 鋼板及び鋼板製造方法 WO2011093490A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020127020375A KR101477877B1 (ko) 2010-01-29 2011-01-31 강판 및 강판 제조 방법
EP11737199.7A EP2530180B1 (en) 2010-01-29 2011-01-31 Steel sheet and method for manufacturing the steel sheet
US13/575,252 US9410231B2 (en) 2010-01-29 2011-01-31 Steel sheet and method of manufacturing steel sheet
CN201180007358.1A CN102770571B (zh) 2010-01-29 2011-01-31 钢板及钢板制造方法
JP2011525765A JP4902026B2 (ja) 2010-01-29 2011-01-31 鋼板及び鋼板製造方法
ES11737199T ES2705232T3 (es) 2010-01-29 2011-01-31 Lámina de acero y método para fabricar la lámina de acero
BR112012018697-3A BR112012018697B1 (pt) 2010-01-29 2011-01-31 chapa de aço e método de produção da chapa de aço
MX2012008690A MX2012008690A (es) 2010-01-29 2011-01-31 Placa de acero y proceso para producir la placa de acero.
PL11737199T PL2530180T3 (pl) 2010-01-29 2011-01-31 Blacha stalowa cienka i sposób wytwarzania blachy stalowej cienkiej
CA2788095A CA2788095C (en) 2010-01-29 2011-01-31 Steel sheet and method of manufacturing steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-019193 2010-01-29
JP2010019193 2010-01-29
JP2010-032667 2010-02-17
JP2010032667 2010-02-17

Publications (1)

Publication Number Publication Date
WO2011093490A1 true WO2011093490A1 (ja) 2011-08-04

Family

ID=44319467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051896 WO2011093490A1 (ja) 2010-01-29 2011-01-31 鋼板及び鋼板製造方法

Country Status (11)

Country Link
US (1) US9410231B2 (ja)
EP (1) EP2530180B1 (ja)
JP (1) JP4902026B2 (ja)
KR (1) KR101477877B1 (ja)
CN (1) CN102770571B (ja)
BR (1) BR112012018697B1 (ja)
CA (1) CA2788095C (ja)
ES (1) ES2705232T3 (ja)
MX (1) MX2012008690A (ja)
PL (1) PL2530180T3 (ja)
WO (1) WO2011093490A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605244A (zh) * 2012-03-30 2012-07-25 武汉钢铁(集团)公司 一种耐腐蚀结构用彩涂钢及其生产方法
CN102700186A (zh) * 2012-06-02 2012-10-03 安徽博特金属复合材料制造有限公司 超深冲铜钢铜冷轧层压复合金属材料及其制造方法
JP2014185359A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高強度鋼板
CN104213040A (zh) * 2014-08-27 2014-12-17 南京创贝高速传动机械有限公司 一种高强度轴承的专用钢材及其加工工艺
EP2746416A4 (en) * 2011-08-17 2015-11-11 Kobe Steel Ltd HIGHLY RESISTANT STEEL SHEET WITH EXCELLENT HOT-TEMPERATURE AND HOT-TEMPERATURE MOLDING CAPABILITY, AND HOT MOLDING METHOD THEREOF
WO2016021194A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021193A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
KR101618477B1 (ko) * 2011-10-04 2016-05-04 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
JP2016098427A (ja) * 2014-11-26 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板
WO2017168961A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
CN113512688A (zh) * 2021-07-15 2021-10-19 重庆增隆新材料科技有限公司 一种航空超高强度钢球形粉体材料及制备方法
JP2022514564A (ja) * 2018-12-19 2022-02-14 ポスコ バーリング性に優れた高強度冷延鋼板、合金化溶融亜鉛めっき鋼板、及びこれらの製造方法
WO2022131625A1 (ko) * 2020-12-17 2022-06-23 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
JP7403658B2 (ja) 2019-12-18 2023-12-22 ポスコホールディングス インコーポレーティッド 加工性に優れた高強度鋼板及びその製造方法
JP7442645B2 (ja) 2019-12-18 2024-03-04 ポスコホールディングス インコーポレーティッド 加工性に優れた高強度鋼板及びその製造方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746417B1 (en) * 2011-08-17 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel plate
KR101449128B1 (ko) * 2012-10-04 2014-10-08 주식회사 포스코 재질균일성 및 가공성이 우수한 고탄소 열연강판 및 그 제조방법
KR101439667B1 (ko) * 2012-12-20 2014-09-12 주식회사 포스코 고강도 고인성 인 함유강
KR101461729B1 (ko) 2012-12-21 2014-11-14 주식회사 포스코 강도 및 연성이 우수한 보론 첨가 고탄소강 및 이의 제조방법
KR101461765B1 (ko) * 2012-12-27 2014-11-13 주식회사 포스코 강도 및 연성이 우수한 열연강판 및 그의 제조방법
KR101490569B1 (ko) * 2012-12-27 2015-02-05 주식회사 포스코 고강도 인 함유강
WO2015011511A1 (fr) * 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier à très hautes caractéristiques mécaniques de résistance et de ductilité, procédé de fabrication et utilisation de telles tôles
CN103614664A (zh) * 2013-10-22 2014-03-05 芜湖市鸿坤汽车零部件有限公司 一种内燃机气阀用马氏体合金钢材料及其制备方法
KR101529180B1 (ko) * 2013-10-30 2015-06-16 현대제철 주식회사 강재 및 이를 이용한 강 제품 제조 방법
CN103589952A (zh) * 2013-11-27 2014-02-19 内蒙古包钢钢联股份有限公司 一种稀土合金化trip钢
CN103882323B (zh) * 2014-03-20 2016-06-29 马钢(集团)控股有限公司 MnCr合金化热成形用钢及其生产方法
KR101597418B1 (ko) * 2014-03-28 2016-02-24 현대제철 주식회사 고강도 열연강판 및 그 제조 방법
CN104264039B (zh) * 2014-10-13 2016-08-24 内蒙古科技大学 一种含稀土La的TRIP钢板和制备方法
KR101657822B1 (ko) 2014-12-24 2016-09-20 주식회사 포스코 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
JP6327395B2 (ja) * 2015-02-20 2018-05-23 新日鐵住金株式会社 熱延鋼板
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
JP6399201B2 (ja) 2015-02-25 2018-10-03 新日鐵住金株式会社 熱延鋼板
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
CN106319368B (zh) * 2015-06-16 2018-04-24 鞍钢股份有限公司 一种经济型薄链板及其制造方法
CN107849666B (zh) * 2015-07-13 2020-05-12 日本制铁株式会社 钢板、热浸镀锌钢板和合金化热浸镀锌钢板、以及它们的制造方法
JP6460238B2 (ja) 2015-07-13 2019-01-30 新日鐵住金株式会社 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6749818B2 (ja) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018026014A1 (ja) 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板
MX2019000051A (es) 2016-08-05 2019-04-01 Nippon Steel & Sumitomo Metal Corp Lamina de acero y lamina de acero chapada.
US11021776B2 (en) 2016-11-04 2021-06-01 Nucor Corporation Method of manufacture of multiphase, hot-rolled ultra-high strength steel
US10968502B2 (en) 2016-11-04 2021-04-06 Nucor Corporation Method of manufacture of multiphase, cold-rolled ultra-high strength steel
JP6414246B2 (ja) 2017-02-15 2018-10-31 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN108929983A (zh) * 2017-05-23 2018-12-04 陈章华 低碳低硼高铬合金钢及其制备方法
CN108950428A (zh) * 2017-05-23 2018-12-07 陈章华 一种中铬耐磨合金钢及其制备方法
CN108950426A (zh) * 2017-05-23 2018-12-07 陈章华 低碳低硼中铬合金钢及其制备方法
CN108950427A (zh) * 2017-05-23 2018-12-07 陈章华 低碳低硼低铬合金钢及其制备方法
CN108950376A (zh) * 2017-05-23 2018-12-07 陈章华 一种低铬耐磨合金钢及其制备方法
JP6860420B2 (ja) 2017-05-24 2021-04-14 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2019102258A1 (en) * 2017-11-27 2019-05-31 Arcelormittal Method for manufacturing a rail and corresponding rail
CN108467988A (zh) * 2018-02-08 2018-08-31 江西新能源科技职业学院 一种组合机械臂
CN109182894A (zh) * 2018-08-21 2019-01-11 宁波市拓欧金属制品有限公司 一种精密耐磨损顶胶冲压件及其生产工艺
MX2021003246A (es) * 2018-10-04 2021-05-12 Nippon Steel Corp Lamina de acero galvanorrecocido.
EP3845674A4 (en) * 2018-10-17 2021-07-21 JFE Steel Corporation SHEET STEEL AND ITS MANUFACTURING PROCESS
KR102153200B1 (ko) * 2018-12-19 2020-09-08 주식회사 포스코 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
EP4108792A4 (en) * 2020-02-20 2023-07-19 Nippon Steel Corporation HOT ROLLED STEEL SHEET
KR20220149782A (ko) * 2020-04-07 2022-11-08 닛폰세이테츠 가부시키가이샤 슬래브 및 그 연속 주조 방법
CN111424211B (zh) * 2020-04-30 2021-08-20 鞍钢股份有限公司 宽幅700MPa级热轧集装箱用耐候钢及其制造方法
CN112251669B (zh) * 2020-09-30 2022-02-18 鞍钢股份有限公司 2000MPa级热冲压车轮轮辐用热轧钢板及其制造方法
CN112267065B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112267067B (zh) * 2020-09-30 2022-02-18 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112226690B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112267066B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112226691B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辐用热轧钢板及其制造方法
CN112760562B (zh) * 2020-12-22 2022-03-29 鞍钢集团北京研究院有限公司 一种耐延迟断裂2000MPa级钢板及其制备方法
CN113462986B (zh) * 2021-07-16 2022-08-16 鞍钢股份有限公司 2000MPa环保耐热农机用钢及其制造方法
CN113667894B (zh) * 2021-08-13 2022-07-15 北京首钢冷轧薄板有限公司 一种具有优良扩孔性能800MPa级双相钢及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184226A (ja) * 1988-01-14 1989-07-21 Kobe Steel Ltd 高延性高強度複合組織鋼板の製造法
JPH0488125A (ja) 1990-07-30 1992-03-23 Nippon Steel Corp 伸びフランジ性と延性の優れた高強度熱延鋼板の製造方法
JP2003171736A (ja) * 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2003306746A (ja) 2002-04-18 2003-10-31 Jfe Steel Kk 加工性に優れた高張力鋼板ならびにその製造方法および加工方法
JP2006274418A (ja) 2005-03-30 2006-10-12 Kobe Steel Ltd 均一伸びに優れた高強度冷延鋼板およびその製造方法
JP2007154283A (ja) 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2007321233A (ja) * 2006-06-05 2007-12-13 Nippon Steel Corp 耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2008056993A (ja) 2006-08-31 2008-03-13 Nippon Steel Corp 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2008231541A (ja) * 2007-03-22 2008-10-02 Sumitomo Metal Ind Ltd 高強度冷延鋼板およびその製造方法
JP2008231480A (ja) * 2007-03-19 2008-10-02 Jfe Steel Kk 高強度冷延鋼板及び高強度冷延鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
US6319338B1 (en) * 1996-11-28 2001-11-20 Nippon Steel Corporation High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4188608B2 (ja) * 2001-02-28 2008-11-26 株式会社神戸製鋼所 加工性に優れた高強度鋼板およびその製造方法
EP1504134B1 (en) * 2001-06-06 2007-05-16 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
CN100510141C (zh) * 2004-12-28 2009-07-08 株式会社神户制钢所 耐氢脆化特性优良的超高强度薄钢板
EP1978113B1 (en) * 2005-12-06 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP4964488B2 (ja) * 2006-04-20 2012-06-27 新日本製鐵株式会社 プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184226A (ja) * 1988-01-14 1989-07-21 Kobe Steel Ltd 高延性高強度複合組織鋼板の製造法
JPH0488125A (ja) 1990-07-30 1992-03-23 Nippon Steel Corp 伸びフランジ性と延性の優れた高強度熱延鋼板の製造方法
JP2003171736A (ja) * 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2003306746A (ja) 2002-04-18 2003-10-31 Jfe Steel Kk 加工性に優れた高張力鋼板ならびにその製造方法および加工方法
JP2006274418A (ja) 2005-03-30 2006-10-12 Kobe Steel Ltd 均一伸びに優れた高強度冷延鋼板およびその製造方法
JP2007154283A (ja) 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2007321233A (ja) * 2006-06-05 2007-12-13 Nippon Steel Corp 耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2008056993A (ja) 2006-08-31 2008-03-13 Nippon Steel Corp 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2008231480A (ja) * 2007-03-19 2008-10-02 Jfe Steel Kk 高強度冷延鋼板及び高強度冷延鋼板の製造方法
JP2008231541A (ja) * 2007-03-22 2008-10-02 Sumitomo Metal Ind Ltd 高強度冷延鋼板およびその製造方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746416A4 (en) * 2011-08-17 2015-11-11 Kobe Steel Ltd HIGHLY RESISTANT STEEL SHEET WITH EXCELLENT HOT-TEMPERATURE AND HOT-TEMPERATURE MOLDING CAPABILITY, AND HOT MOLDING METHOD THEREOF
US9657381B2 (en) 2011-08-17 2017-05-23 Kobe Steel, Ltd. High-strength steel sheet having excellent room-temperature formability and warm formability, and warm forming method thereof
KR101618477B1 (ko) * 2011-10-04 2016-05-04 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN102605244A (zh) * 2012-03-30 2012-07-25 武汉钢铁(集团)公司 一种耐腐蚀结构用彩涂钢及其生产方法
CN102700186A (zh) * 2012-06-02 2012-10-03 安徽博特金属复合材料制造有限公司 超深冲铜钢铜冷轧层压复合金属材料及其制造方法
JP2014185359A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高強度鋼板
JP5983895B2 (ja) * 2014-08-07 2016-09-06 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP5983896B2 (ja) * 2014-08-07 2016-09-06 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021193A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016021194A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN104213040B (zh) * 2014-08-27 2016-02-17 南京创贝高速传动机械有限公司 一种高强度轴承的专用钢材及其加工工艺
CN104213040A (zh) * 2014-08-27 2014-12-17 南京创贝高速传动机械有限公司 一种高强度轴承的专用钢材及其加工工艺
JP2016098427A (ja) * 2014-11-26 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板
WO2016084847A1 (ja) * 2014-11-26 2016-06-02 株式会社神戸製鋼所 高強度高延性鋼板
JP6264506B1 (ja) * 2016-03-31 2018-01-24 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11136642B2 (en) 2016-03-31 2021-10-05 Jfe Steel Corporation Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
JP2018090894A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP6264505B1 (ja) * 2016-03-31 2018-01-24 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168961A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11136636B2 (en) 2016-03-31 2021-10-05 Jfe Steel Corporation Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
JP2018090893A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP2022514564A (ja) * 2018-12-19 2022-02-14 ポスコ バーリング性に優れた高強度冷延鋼板、合金化溶融亜鉛めっき鋼板、及びこれらの製造方法
JP7267428B2 (ja) 2018-12-19 2023-05-01 ポスコ カンパニー リミテッド バーリング性に優れた高強度冷延鋼板、合金化溶融亜鉛めっき鋼板、及びこれらの製造方法
JP7403658B2 (ja) 2019-12-18 2023-12-22 ポスコホールディングス インコーポレーティッド 加工性に優れた高強度鋼板及びその製造方法
JP7442645B2 (ja) 2019-12-18 2024-03-04 ポスコホールディングス インコーポレーティッド 加工性に優れた高強度鋼板及びその製造方法
WO2022131625A1 (ko) * 2020-12-17 2022-06-23 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
CN113512688A (zh) * 2021-07-15 2021-10-19 重庆增隆新材料科技有限公司 一种航空超高强度钢球形粉体材料及制备方法
CN113512688B (zh) * 2021-07-15 2022-04-26 重庆增隆新材料科技有限公司 一种航空超高强度钢球形粉体材料及制备方法

Also Published As

Publication number Publication date
CN102770571A (zh) 2012-11-07
CN102770571B (zh) 2014-07-09
US20120305144A1 (en) 2012-12-06
KR101477877B1 (ko) 2014-12-30
ES2705232T3 (es) 2019-03-22
EP2530180A4 (en) 2017-06-28
EP2530180B1 (en) 2018-11-14
CA2788095C (en) 2014-12-23
JP4902026B2 (ja) 2012-03-21
EP2530180A1 (en) 2012-12-05
MX2012008690A (es) 2012-08-23
US9410231B2 (en) 2016-08-09
BR112012018697A2 (pt) 2016-05-03
CA2788095A1 (en) 2011-08-04
PL2530180T3 (pl) 2019-05-31
KR20120107003A (ko) 2012-09-27
JPWO2011093490A1 (ja) 2013-06-06
BR112012018697B1 (pt) 2018-11-21

Similar Documents

Publication Publication Date Title
JP4902026B2 (ja) 鋼板及び鋼板製造方法
JP5589893B2 (ja) 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
CN109642288B (zh) 高强度钢板及其制造方法
JP6052471B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013018722A1 (ja) 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
JP5114747B2 (ja) 穴拡げ性と延性のバランスが極めて良好な高強度鋼板の製造方法と亜鉛めっき鋼板の製造方法
JP5245228B2 (ja) 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
KR20180120210A (ko) 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
KR20120023804A (ko) 가공성 및 내피로 특성이 우수한 고강도 합금화 용융 아연 도금 강판 및 그 제조 방법
WO2011090180A1 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016031166A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5589925B2 (ja) 伸びと均一塗装焼付硬化性能に優れた高強度薄鋼板およびその製造方法
WO2013088666A1 (ja) 高降伏比高強度冷延鋼板とその製造方法
WO2013031105A1 (ja) 冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
WO2014156142A1 (ja) 高強度鋼板およびその製造方法
JP5958668B1 (ja) 高強度鋼板およびその製造方法
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
WO2016147550A1 (ja) 高強度冷延鋼板およびその製造方法
JP2007070648A (ja) 穴拡げ性に優れた高強度薄鋼板およびその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
WO2020080493A1 (ja) 鋼板及び鋼板の製造方法
JP2018502992A (ja) 成形性に優れた複合組織鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007358.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011525765

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2788095

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6557/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/008690

Country of ref document: MX

Ref document number: 2011737199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201003763

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127020375

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13575252

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018697

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018697

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120726