WO2013031105A1 - 冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法 - Google Patents

冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013031105A1
WO2013031105A1 PCT/JP2012/005066 JP2012005066W WO2013031105A1 WO 2013031105 A1 WO2013031105 A1 WO 2013031105A1 JP 2012005066 W JP2012005066 W JP 2012005066W WO 2013031105 A1 WO2013031105 A1 WO 2013031105A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel sheet
less
rolled steel
rolled
Prior art date
Application number
PCT/JP2012/005066
Other languages
English (en)
French (fr)
Inventor
由康 川崎
金子 真次郎
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280042043.5A priority Critical patent/CN103764864B/zh
Priority to MX2014002021A priority patent/MX340869B/es
Priority to KR1020147006098A priority patent/KR101600725B1/ko
Priority to EP12828162.3A priority patent/EP2752500B1/en
Priority to US14/241,256 priority patent/US20140360634A1/en
Publication of WO2013031105A1 publication Critical patent/WO2013031105A1/ja
Priority to US16/202,634 priority patent/US11098392B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present invention is a hot rolled steel sheet for cold rolled steel sheet (for hot rolled steel sheet) for hot cold rolled steel sheet (hot rolled steel sheet) and hot rolled steel sheet for hot dip galvanized steel sheet (Excellent workability and material stability suitable for application to automobile parts) hot rolled steel sheet for galvanized steel sheet) and its manufacturing method.
  • Patent Document 1 has excellent ductility by defining the chemical composition and defining the volume ratio of ferrite, bainitic ferrite and retained austenite. Steel plates have been proposed.
  • Patent Document 2 proposes a method for manufacturing a high-strength cold-rolled steel sheet in which variation in elongation in the sheet width direction is improved.
  • Patent Documents 3, 4, and 5 propose a method for producing a high-strength hot-rolled steel sheet by defining cooling conditions in the hot-rolling step.
  • Patent Document 1 since the main purpose is to improve the ductility of the high-strength thin steel sheet, the material stability is not considered. Further, Patent Document 2 only describes variations in total elongation (EL) in the plate width direction, and does not consider variations in materials due to component composition and manufacturing conditions. Furthermore, the above-mentioned Patent Documents 1 and 2 do not consider the structure control in the hot rolling stage, and both improve the ductility and reduce the ductility variation in the width direction by the structure control after the cold rolling. ing. Moreover, in patent document 3, 4, and 5, the manufacturing method of the hot-rolled steel plate excellent in stretch flangeability is proposed, and the hot-rolling raw material for manufacturing a cold-rolled steel plate and the galvanized steel plate for manufacturing are shown. Hot rolled materials are not considered. Therefore, the development of hot-rolled steel sheets for cold-rolled steel sheets and hot-rolled steel sheets for hot-dip galvanized steel sheets, which are excellent in workability and material stability, is an issue.
  • EL total elongation
  • the present invention provides a cold-rolled steel sheet having a TS of 540 MPa or more and excellent workability and material stability, a hot-rolled steel sheet that can be used for manufacturing a hot-dip galvanized steel sheet, and a manufacturing method thereof. With the goal.
  • a structure mainly composed of ferrite and pearlite was built in the winding stage of the hot rolling process, and the structure change due to transformation in the subsequent cooling process was suppressed to control the hot rolled structure with small material variations. Furthermore, the thermal history from the finish rolling exit temperature to the coiling temperature, in particular the cooling rate, is controlled, the steel sheet structure is made mainly of ferrite and pearlite, and the average crystal grain size and area ratio of ferrite and pearlite.
  • the dispersion state (mean free path) of pearlite By controlling the dispersion state (mean free path) of pearlite, the strength of the cold-rolled steel sheet and hot-dip galvanized steel sheet after the subsequent annealing was improved, the ductility was improved, and the material variation was narrowed (stabilized). . From the above, it has become possible to create hot-rolled steel sheets for cold-rolled steel sheets and hot-rolled steel sheets for hot-dip galvanized steel sheets that are excellent in workability and material stability.
  • the present invention has been made based on the above knowledge and has the following features.
  • the component composition is C: 0.04% to 0.20% in mass%, Si: 0.7% to 2.3%, Mn: 0.8% to 2.8%, P : 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, the balance consisting of Fe and inevitable impurities, Ferrite and pearlite, the ferrite has an area ratio of 75% to less than 95% and an average crystal grain size of 5 ⁇ m to 25 ⁇ m, and the pearlite has an area ratio of 5% to less than 25% and an average A hot-rolled steel sheet for cold-rolled steel sheets having a crystal grain size of 2.0 ⁇ m or more and further having an average free path of the pearlite of 5 ⁇ m or more.
  • the difference in tensile strength between the tensile strength at the center in the width direction of the hot-rolled sheet and the tensile strength at the position corresponding to 1/8 of the width of the sheet from the end of the hot-rolled sheet is 30 MPa or less.
  • At least one element selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% is contained in mass%.
  • At least one element selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% is contained in mass%.
  • Component composition is C: 0.04% to 0.20%, Si: 0.7% to 2.3%, Mn: 0.8% to 2.8%, P% by mass : 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, the balance consisting of Fe and inevitable impurities, Ferrite and pearlite, the ferrite has an area ratio of 75% to less than 95% and an average crystal grain size of 5 ⁇ m to 25 ⁇ m, and the pearlite has an area ratio of 5% to less than 25% and an average A hot-rolled steel sheet for hot-dip galvanized steel sheets having a crystal grain size of 2.0 ⁇ m or more and an average free path of the pearlite of 5 ⁇ m or more.
  • the difference in tensile strength between the tensile strength at the center in the width direction of the hot-rolled sheet and the tensile strength at a position corresponding to 1/8 of the width of the sheet from the end of the hot-rolled sheet is 30 MPa or less.
  • At least one element selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% is contained in mass%.
  • At least one element selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% is contained in mass%.
  • the steel slab further has, as a component composition, mass%, Cr: 0.05% to 1.0%, V: 0.005% to 0.5%, Mo: 0.005% [13], containing at least one element selected from 0.5% or less, Ni: 0.05% or more and 1.0% or less, Cu: 0.05% or more and 1.0% or less.
  • the steel slab further has, as a component composition, mass%, Ti: 0.01% to 0.1%, Nb: 0.01% to 0.1%, B: 0.0003%
  • the steel slab further has at least one component composition selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% in terms of mass%.
  • the steel slab further has at least one component composition selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% in terms of mass composition.
  • the steel slab further has, as a component composition, mass%, Cr: 0.05% to 1.0%, V: 0.005% to 0.5%, Mo: 0.005% [18] containing at least one element selected from 0.5% to 1.0%, Ni: 0.05% to 1.0%, Cu: 0.05% to 1.0%, The manufacturing method of the hot-rolled steel sheet for hot-dip galvanized steel sheets of description.
  • the steel slab further has, as a component composition, mass%, Ti: 0.01% to 0.1%, Nb: 0.01% to 0.1%, B: 0.0003%.
  • the steel slab is further at least 1 selected from Ca: 0.001% or more and 0.005% or less, REM: 0.001% or more and 0.005% or less as a component composition by mass%.
  • the steel slab further has at least one component composition selected from Ca: 0.001% to 0.005% and REM: 0.001% to 0.005% in mass%.
  • a steel sheet galvanized on a steel sheet by a hot dip galvanizing method is collectively referred to as a hot dip galvanized steel sheet regardless of whether or not an alloying treatment is performed after the hot dip galvanizing.
  • the hot-dip galvanized steel sheet in the present invention includes both a hot-dip galvanized steel sheet (GI) that has not been subjected to alloying treatment and an alloyed hot-dip galvanized steel sheet (GA) that has been subjected to alloying treatment.
  • the hot-rolled steel sheet for cold-rolled steel sheets and the hot-rolled steel sheet for hot-dip galvanized steel sheets intended in the present invention include both cut-sheet steel sheets and coil-shaped steel sheets (band plates).
  • a hot-rolled steel sheet for cold-rolled steel sheet and a hot-rolled steel sheet for hot-dip galvanized steel sheet that are excellent in workability and material stability can be obtained.
  • the cold-rolled steel sheet and hot-dip galvanized steel sheet manufactured from the hot-rolled steel sheet of the present invention have a TS of 540 MPa or more and are excellent in workability and material stability. Can improve fuel efficiency.
  • annealed sheets cold-rolled steel sheets and hot-dip galvanized steel sheets
  • the component composition is C: 0.04% to 0.20%, Si: 0.7% to 2.3%, Mn: 0.8% to 2.8%, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, with the balance being Fe and inevitable impurities
  • the hot-rolled sheet structure is ferrite
  • the ferrite has an area ratio of 75% to less than 95% and an average crystal grain size of 5 ⁇ m to 25 ⁇ m
  • the pearlite has an area ratio of 5% to less than 25% and an average crystal
  • the particle size is 2.0 ⁇ m or more, and the mean free path of the pearlite is 5 ⁇ m or more.
  • C is an austenite generating element, which is an element effective for improving strength and ductility by complexing the structure after annealing. If the C content is less than 0.04%, it is difficult to ensure the strength of the annealed plate. On the other hand, if the amount of C exceeds 0.20% and is added excessively, the welded part and the heat-affected zone are significantly hardened, and the mechanical properties of the welded part deteriorate, so that spot weldability, arc weldability, and the like are reduced. . Therefore, C is 0.04% or more and 0.20% or less. Preferably they are 0.05% or more and 0.14% or less. More preferably, it is 0.07% or more and 0.12% or less.
  • Si 0.7% or more and 2.3% or less
  • Si is a ferrite forming element, and is also an element effective for improving the solid solution strengthening and ductility of the ferrite of the annealed plate.
  • addition of 0.7% or more is necessary.
  • the average crystal grain size and area ratio of desired ferrite are ensured by promoting ferrite transformation in the hot rolling stage, it is an element necessary for improving material stability.
  • Si is made 0.7% to 2.3%.
  • it is 0.9% or more and 2.0% or less. More preferably, it is more than 1.2% and not more than 2.0%.
  • Mn 0.8% or more and 2.8% or less
  • Mn is an austenite generating element and is an element effective for securing the strength of the annealed plate. If the amount of Mn is less than 0.8%, it is difficult to ensure the strength. On the other hand, if the amount of Mn exceeds 2.8% and is added excessively, it is difficult to delay the ferrite transformation and pearlite transformation in the hot rolling stage, and to ensure the desired average grain size and area ratio of ferrite. There is a concern that stability will be reduced. In recent years, the alloy cost of Mn has risend, which also causes an increase in cost. Therefore, Mn is made 0.8% or more and 2.8% or less. Preferably they are 1.2% or more and 2.8% or less.
  • P 0.1% or less
  • P is an element effective for strengthening steel.
  • P is set to 0.1% or less.
  • it is 0.02% or less.
  • P has an effect
  • S 0.01% or less S is an inclusion such as MnS, which causes deterioration in impact resistance and cracks along the metal flow of the weld.
  • To S is set to 0.01% or less. Preferably it is 0.005% or less.
  • Al 0.1% or less
  • Al is made 0.1% or less.
  • it is 0.05% or less.
  • Al is preferably 0.01% or more.
  • N 0.008% or less
  • N is an element that causes the most deterioration of the aging resistance of the steel, and it is preferably as small as possible. If it exceeds 0.008%, the deterioration of the aging resistance becomes significant. Therefore, N is set to 0.008% or less. Preferably it is 0.004% or less.
  • the balance is Fe and inevitable impurities.
  • the following alloy elements can be added as necessary.
  • Cr 0.05% to 1.0%
  • V 0.005% to 0.5%
  • Mo 0.005% to 0.5%
  • Ni 0.05% to 1.0%
  • at least one selected from Cu: 0.05% or more and 1.0% or less Cr, V, Mo, Ni, Cu are elements effective for strengthening steel, and within the range specified in the present invention. If it exists, it can be used to strengthen steel. The effect is obtained when Cr is 0.05% or more, V is 0.005% or more, Mo is 0.005% or more, Ni is 0.05% or more, and Cu is 0.05% or more.
  • B is an element effective for strengthening steel, and the effect is obtained at 0.0003% or more.
  • B is added in excess over 0.0050%, the fraction of the remaining structure such as martensite becomes excessive, and there is a concern that the ductility is lowered due to a significant increase in strength.
  • the cost increases. Therefore, when adding B, the amount is made 0.0003% or more and 0.0050% or less.
  • Ca 0.001% or more and 0.005% or less
  • REM at least one selected from 0.001% or more and 0.005% or less Ca and REM spheroidize the shape of the sulfide, thereby improving local ductility. It is an effective element for improving the adverse effects of sulfides. In order to obtain this effect, 0.001% or more is required for each. However, when Ca and REM are added in excess of over 0.005%, inclusions and the like are increased to cause surface and internal defects. Therefore, when Ca and REM are added, the addition amounts are 0.001% or more and 0.005% or less, respectively.
  • Area ratio of ferrite in hot-rolled sheet structure 75% or more and less than 95%
  • ferrite in the hot-rolled sheet structure needs to have an area ratio of 75% or more. Preferably it is 78% or more. Further, in order to ensure the strength of the annealed sheet, the ferrite of the hot rolled sheet structure needs to be less than 95% in area ratio.
  • Area ratio of pearlite in hot-rolled sheet structure 5% or more and less than 25%
  • pearlite in the hot-rolled sheet structure needs to have an area ratio of 5% or more. Preferably it is 8% or more.
  • the pearlite of a hot-rolled board structure needs to be less than 25% by an area rate.
  • Average grain size of ferrite in hot-rolled sheet structure 5 ⁇ m or more and 25 ⁇ m or less
  • the average crystal grain diameter of ferrite in the hot-rolled sheet structure is required to be 5 ⁇ m or more.
  • the average crystal grain size of ferrite in the hot-rolled sheet structure exceeds 25 ⁇ m, it is difficult to ensure the desired strength of the annealed sheet. Therefore, the average crystal grain size of ferrite in the hot-rolled sheet structure needs to be 5 ⁇ m or more and 25 ⁇ m or less. Preferably they are 8 micrometers or more and 20 micrometers or less.
  • Average crystal grain size of pearlite in hot-rolled sheet structure 2.0 ⁇ m or more
  • the average crystal grain diameter of pearlite in the hot-rolled sheet structure is required to be 2.0 ⁇ m or more. Preferably they are 3.0 micrometers or more and 10 micrometers or less.
  • Average free path of pearlite of hot-rolled sheet structure 5 ⁇ m or more
  • the average free path of pearlite of the hot-rolled sheet structure needs to be 5 ⁇ m or more.
  • they are 6 micrometers or more and 15 micrometers or less.
  • carbides such as cementite, martensite, bainitic ferrite, and retained austenite may be generated as the remaining structure.
  • These remaining structures are preferably 8% or less in terms of area ratio, and within this range, the effects of the present invention are not impaired.
  • the object of the present invention can be achieved if the above steel composition and metallographic structure (the area ratio of ferrite and pearlite, the average crystal grain size, and the mean free path of pearlite) are satisfied.
  • Tensile strength difference (absolute value) between the tensile strength at the center in the width direction of the hot-rolled sheet and the tensile strength at the position corresponding to 1/8 of the width of the sheet from the edge of the width of the hot-rolled sheet: 30 MPa or less Stabilization of the material in the width direction of the hot-rolled sheet is effective for narrowing the material variation in the width direction (stabilization of the material).
  • width 1/8 position a position corresponding to 1/8 of the plate width from the center portion in the width direction of the hot rolled plate and the end portion (edge portion) of the hot rolled plate (hereinafter referred to as “width 1/8 position”) It is preferable that the difference (absolute value) in tensile strength with respect to the tensile strength is 30 MPa or less.
  • the difference in yield stress between the central portion in the width direction of the hot rolled plate and the position corresponding to 1/8 of the plate width from the end portion (edge portion) of the hot rolled plate ( ⁇ YP) and the difference in total elongation ( ⁇ EL) are more preferably 40 MPa or less and 4% or less, respectively.
  • the material variation of the hot-rolled sheet is evaluated at two points of the width center portion and the width 1/8 position, for example, from the center portion in the width direction of the hot-rolled plate and the width end portion (edge) of the hot-rolled plate.
  • the difference in tensile strength from the position corresponding to 1/4 (width 1/4 position) is not evaluated for the material in the vicinity of the edge, so it is difficult to evaluate the material stability in the width direction. This is because the material stability of the annealed plate can be appropriately evaluated by evaluating the difference in the tensile strength between the 1/8 width position and the center of the width.
  • the hot-rolled steel sheet for cold-rolled steel sheet having excellent workability and material stability according to the present invention is obtained by hot-rolling a steel slab having the above-described composition at a finish rolling exit temperature of 850 ° C. or more, and finishing roll exit temperature.
  • a finish rolling exit temperature of 850 ° C. or more
  • finishing roll exit temperature To 650 ° C is cooled at an average cooling rate of 20 to 90 ° C / s, and then the temperature range up to the coiling temperature is cooled at an average cooling rate of 5 to 35 ° C / s and wound at 470 to 640 ° C. It can be manufactured by taking.
  • the hot-rolled steel sheet for hot-dip galvanized steel sheet having excellent workability and material stability is a hot-rolled steel slab having the above component composition at a finish rolling exit temperature of 850 ° C. or higher, and finish rolling.
  • the temperature range from the delivery side temperature to 650 ° C. is cooled at an average cooling rate of 20 to 90 ° C./s, and then the temperature range to the winding temperature is cooled at an average cooling rate of 5 to 35 ° C./s, and 470 to 640 It can be manufactured by winding at 0 ° C.
  • the steel having the above component composition is melted by a known method, and then slab is obtained through partial rolling or continuous casting, and hot rolled to obtain a hot rolled steel sheet.
  • the slab heating is not particularly limited, but the heating temperature is preferably 1100 to 1300 ° C. Hot rolling is performed under the following conditions.
  • Hot rolling finish rolling temperature 850 ° C. or more
  • the hot rolling finish rolling temperature is set to 850 ° C. or higher.
  • it is 870 degreeC or more.
  • Cooling in the temperature range from the finish rolling exit temperature to 650 ° C at an average cooling rate of 20 to 90 ° C / s (primary cooling)
  • the average cooling rate from the finish rolling exit temperature to 650 ° C. is less than 20 ° C./s, the ferrite transformation proceeds excessively, the desired area ratio of pearlite cannot be obtained, and the ductility of the annealed sheet is lowered.
  • the average cooling rate exceeds 90 ° C./s the ferrite transformation does not proceed sufficiently in the hot-rolled sheet structure, the desired ferrite average crystal grain size and the pearlite average free path cannot be obtained, and the annealing plate Ductility and material stability are reduced. Therefore, the temperature range from the finish rolling outlet temperature to 650 ° C. is cooled at an average cooling rate of 20 to 90 ° C./s.
  • a preferable average cooling rate is 30 to 70 ° C./s.
  • Cooling up to the coiling temperature at an average cooling rate of 5 to 35 ° C / s (secondary cooling)
  • the average cooling rate up to the coiling temperature after the primary cooling is less than 5 ° C./s
  • the ferrite transformation proceeds excessively, the desired pearlite area ratio cannot be obtained, and the ductility of the annealed plate is lowered.
  • the average cooling rate to the coiling temperature after primary cooling exceeds 35 ° C./s, the bainite transformation proceeds after coiling, the desired pearlite area ratio and average crystal grain size cannot be obtained, and the annealed plate The ductility is reduced. Therefore, the average cooling rate up to the coiling temperature is set to 5 to 35 ° C./s.
  • a preferred average cooling rate is 10 to 25 ° C./s.
  • Winding temperature 470-640 ° C
  • the hot rolled sheet structure contains many martensite and bainite low-temperature transformation phases (hard phases), and the desired pearlite area ratio cannot be ensured, and the width direction of the hot rolled sheet Causes a non-uniform hardness distribution and decreases the material stability of the annealed plate.
  • the winding temperature is 470 to 640 ° C.
  • the temperature is preferably 480 to 620 ° C.
  • the hot-rolled steel sheet obtained above is pickled by a generally known method, and if necessary, pretreatment such as degreasing is performed, further cold rolling is performed, and the cold-rolled steel sheet is subjected to annealing treatment.
  • pretreatment such as degreasing is performed
  • further cold rolling is performed
  • the cold-rolled steel sheet is subjected to annealing treatment.
  • a hot dip galvanization process is performed, or a galvanization steel plate is manufactured by performing an alloying process further.
  • a hot dip galvanized steel sheet can also be manufactured by performing an annealing process, a hot dip galvanization process, or performing an alloying process without performing cold rolling after pickling.
  • the steel plates may be heat-treated with any equipment.
  • the cold rolling and annealing treatment is preferably performed under the following conditions.
  • the rolling reduction of cold rolling is preferably 30% or more.
  • the annealing treatment is preferably held for 15 to 600 s in a temperature range of 750 to 900 ° C.
  • the annealing temperature is less than 750 ° C. or the holding time in the temperature range of 750 to 900 ° C. is less than 15 s, an unrecrystallized structure may remain and the ductility may decrease, and the annealing temperature may exceed 900 ° C. or 750 This is because if the holding time in the temperature range of ⁇ 900 ° C. exceeds 600 s, the austenite grains grow remarkably, eventually forming a non-uniform structure, and the material stability may be lowered.
  • hot-dip galvanized steel sheets (GI) not subjected to alloying treatment are hot-dip galvanized, and galvanized steel sheets (GA) are temper rolled for shape correction after alloying treatment. May be applied.
  • hot-dip galvanized steel sheet GI
  • alloyed hot-dip zinc A plated steel sheet GA
  • GI hot-dip galvanized steel sheet
  • GA alloyed hot-dip zinc A plated steel sheet
  • GI hot dip galvanized steel sheet
  • GA alloyed hot-dip zinc A plated steel sheet
  • GI hot dip galvanized steel sheet
  • GA alloyed hot-dip zinc A plated steel sheet
  • the bath temperature was 460 ° C.
  • the alloyed hot-dip galvanized steel sheet (GA) was alloyed at 550 ° C.
  • the plating adhesion amount was 45 g / m 2 per side (double-sided plating), and the alloyed hot-dip galvanized steel sheet (GA) had an Fe concentration in the plating layer of 9 to 12% by mass.
  • the area ratio of ferrite and pearlite with respect to the obtained hot-rolled steel plate was corroded by 3% nital after polishing the plate thickness section parallel to the rolling direction of the plate, and the thickness of the plate was 1 ⁇ 4 position (depth from the steel plate surface). 10 positions at a magnification of 2000 times using a SEM (scanning electron microscope), and using the obtained tissue image, the image of Media Cybernetics, Inc. The area ratio of each structure (ferrite, pearlite) was calculated for 10 visual fields using Pro, and the values were averaged. In the above structure image, ferrite has a gray structure (underground structure), and pearlite has a layered structure of ferrite and cementite (white).
  • the average crystal grain size of ferrite and pearlite was determined by calculating the area of each ferrite crystal grain or pearlite crystal grain using the above-mentioned Image-Pro, calculating the equivalent circle diameter, and averaging these values.
  • the average free path of pearlite is obtained by using the above-mentioned Image-Pro to obtain the coordinates of the centroid of the pearlite (X coordinate, Y coordinate), and assuming that the pearlite is uniformly distributed without extreme bias (1) Calculated by the formula.
  • the remaining structure other than ferrite and pearlite is any of carbides such as cementite, martensite, bainitic ferrite, and retained austenite.
  • L M mean free path of pearlite ( ⁇ m)
  • d M Average crystal grain size of pearlite ( ⁇ m)
  • f Perlite area ratio (%) / 100
  • the obtained cold-rolled steel sheet (CR), hot-dip galvanized steel sheet (GI), and alloyed hot-dip galvanized steel sheet (GA) were subjected to tensile tests.
  • the tensile test is performed in accordance with JIS Z2241 (2010) using a JIS No. 5 test piece obtained by taking a sample so that the tensile direction is perpendicular to the rolling direction of the steel sheet, and TS (tensile strength), EL ( Total elongation) was measured.
  • Ductility was evaluated by a value of TS ⁇ EL. In the present invention, the case where TS ⁇ EL ⁇ 19000 MPa ⁇ % at the center of the width was determined to be good.
  • TS, YP and EL at the width center portion and the width 1/8 position of the annealed plate are measured, and the difference between the width center value and the width 1/8 position value (characteristic value of the width center portion ⁇ width 1 / width (Characteristic values at 8 positions) were calculated as ⁇ TS, ⁇ YP, and ⁇ EL, respectively.
  • the material stability was good when the difference in characteristics ⁇ TS ⁇ 25 MPa, ⁇ YP ⁇ 35 MPa, ⁇ EL ⁇ 3.5% between the width center portion of the annealed plate and the width 1/8 position.
  • the hot-rolled steel sheet for cold-rolled steel sheets and hot-rolled steel sheets for hot-dip galvanized steel sheets according to the present invention have a TS of 540 MPa or higher after subsequent annealing, and are excellent in ductility and material stability.
  • any one or more of strength, ductility, and material stability is inferior.
  • a hot-rolled steel sheet for cold-rolled steel sheet and a hot-rolled steel sheet for hot-dip galvanized steel sheet that are excellent in workability and material stability can be obtained.
  • the cold-rolled steel sheet and hot-dip galvanized steel sheet manufactured from the hot-rolled steel sheet of the present invention can be applied to automobile structural members, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

540MPa以上のTSを有し、加工性と材質安定性に優れた冷延鋼板、溶融亜鉛めっき鋼板の製造に使用できる熱延鋼板およびその製造方法を提供する。 熱延鋼板の成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延鋼板の組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上、95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上、25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程は5μm以上である。

Description

冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
 本発明は、自動車部材用途への適用に好適な加工性と材質安定性に優れた冷延鋼板用熱延鋼板(hot rolled steel sheet for cold rolled steel sheet)、溶融亜鉛めっき鋼板用熱延鋼板(hot rolled steel sheet for galvanized steel sheet)およびその製造方法に関する。
 近年、地球環境の保護意識の高まりから、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、車体材料の高強度化での薄肉化を図り、車体を軽量化しようとする動きが活発となってきている。しかしながら、鋼板の高強度化により、延性の低下が懸念される。このため、高強度高延性鋼板の開発が望まれている。また、鋼板の高強度化、薄肉化により形状凍結性(shape fixability)は著しく低下する。これに対応するため、プレス成形時に、離型後の形状変化を予め予測し、形状変化量を見込んで型を設計することが広く行われているが、鋼板の引張強度(TS)が変化すると、これらを一定とした見込み量からのズレが大きくなり、形状不良が発生し、プレス成形後に一個一個形状を板金加工する等の手直しが不可欠となり、量産効率を著しく低下させる。従って、鋼板のTSのバラツキは可能な限り小さくすることが要求されている。
 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板の延性向上に対しては、これまでにフェライト-マルテンサイト二相鋼(Dual-Phase鋼)や残留オーステナイトの変態誘起塑性(Transformation Induced Plasticity)を利用したTRIP鋼など、種々の複合組織型高強度鋼板が開発されてきた。
 例えば、高強度冷延鋼板および高強度溶融亜鉛めっき鋼板においては、特許文献1では、化学成分を規定し、フェライトとベイニティックフェライトと残留オーステナイトの体積率を規定することにより、延性に優れた鋼板が提案されている。特許文献2では、板幅方向における伸びのバラツキが改善された高強度冷延鋼板の製造方法が提案されている。また、熱延鋼板においては、特許文献3、4、5では、熱延工程での冷却条件を規定することにより、高強度熱延鋼板の製造方法が提案されている。
特開2007-182625号公報 特開2000-212684号公報 特許第3119122号公報 特許第3823338号公報 特開平10-36917号公報
 しかしながら、特許文献1では、高強度薄鋼板の延性を向上させることを主目的としているため、材質安定性については考慮されていない。また、特許文献2では、板幅方向における全伸び(EL)のバラツキについてのみ述べており、成分組成や製造条件による材質のバラツキについては考慮されていない。さらに、上述の特許文献1、2は、熱間圧延段階での組織制御は考慮されておらず、ともに冷間圧延後の組織制御により、延性の向上および幅方向の延性バラツキの縮小化を図っている。また、特許文献3、4、5では、伸びフランジ性に優れた熱延鋼板の製造方法が提示されており、冷延鋼板を製造するための熱延素材および溶融亜鉛めっき鋼板を製造するための熱延素材は考慮されていない。そのため、加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板の開発が課題となる。
 本発明は、かかる事情に鑑み、540MPa以上のTSを有し、加工性と材質安定性に優れた冷延鋼板、溶融亜鉛めっき鋼板の製造に使用できる熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、540MPa以上のTSを有し、加工性と材質安定性に優れた冷延鋼板および溶融亜鉛めっき鋼板を製造するための熱延素材を得るべく鋭意検討を重ねたところ、以下のことを見出した。
 熱間圧延工程の巻き取り段階でフェライトとパーライトを主体とする組織を造り込み、その後の冷却過程での変態による組織変化を抑制し、材質バラツキの小さい熱延組織制御を図った。さらに、仕上げ圧延出側温度から巻き取り温度までの熱履歴、とくに冷却速度を制御し、鋼板の組織をフェライトとパーライトを主体とする組織にするとともに、フェライトとパーライトの平均結晶粒径と面積率およびパーライトの分散状態(平均自由行程)を制御することにより、その後の焼鈍後の冷延鋼板および溶融亜鉛めっき鋼板の強度確保と延性の向上および材質バラツキの狭小化(材質安定化)を図った。以上のことより、加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板の創製が可能となった。
 本発明は、以上の知見に基づいてなされたものであり、以下の特徴を備えている。
[1] 成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上、95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上、25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上である、冷延鋼板用熱延鋼板。
[2] さらに、熱延板幅方向の中心部の引張強度と熱延板幅端部から板幅の1/8に相当する位置の引張強度との引張強度差が30MPa以下である、[1]に記載の冷延鋼板用熱延鋼板。
[3]さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、[1]に記載の冷延鋼板用熱延鋼板。
[4]さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、[1]または[3]に記載の冷延鋼板用熱延鋼板。
[5]さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[1]または[3]に記載の冷延鋼板用熱延鋼板。
[6]さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[4]に記載の冷延鋼板用熱延鋼板。
[7]成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上、95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上、25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上である、溶融亜鉛めっき鋼板用熱延鋼板。
[8]さらに、熱延板幅方向の中心部の引張強度と熱延板幅端部から板幅の1/8に相当する位置の引張強度との引張強度差が30MPa以下である、[7]に記載の溶融亜鉛めっき鋼板用熱延鋼板。
[9]さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、[7]に記載の溶融亜鉛めっき鋼板用熱延鋼板。
[10]さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、[7]または[9]に記載の溶融亜鉛めっき鋼板用熱延鋼板。
[11]さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[7]または[9]に記載の溶融亜鉛めっき鋼板用熱延鋼板。
[12]さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[11]に記載の溶融亜鉛めっき鋼板用熱延鋼板。
[13]質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取る、冷延鋼板用熱延鋼板の製造方法。
[14]前記鋼スラブが、さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、[13]に記載の冷延鋼板用熱延鋼板の製造方法。
[15]前記鋼スラブが、さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、[13]または[14]に記載の冷延鋼板用熱延鋼板の製造方法。
[16]前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[13]または[14]に記載の冷延鋼板用熱延鋼板の製造方法。
[17]前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[15]に記載の冷延鋼板用熱延鋼板の製造方法。
[18]質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取る、溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
[19]前記鋼スラブが、さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、[18]に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
[20]前記鋼スラブが、さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、[18]または[19]に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
[21]前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[18]または[19]に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
[22]前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、[20]に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
 なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
 また、本発明においては、溶融亜鉛めっき後、合金化処理を施す、施さないにかかわらず、溶融亜鉛めっき方法によって鋼板上に亜鉛めっきした鋼板を総称して溶融亜鉛めっき鋼板と呼称する。すなわち、本発明における溶融亜鉛めっき鋼板とは、合金化処理を施していない溶融亜鉛めっき鋼板(GI)、合金化処理を施した合金化溶融亜鉛めっき鋼板(GA)の両方を含むものである。また、本発明で意図する冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板は、切板状の鋼板、コイル状の鋼板(帯板)の両方を含むものである。
 本発明によれば、加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板が得られる。本発明の熱延鋼板から製造した冷延鋼板、溶融亜鉛めっき鋼板は、540MPa以上のTSを有し、加工性と材質安定性に優れるので、例えば、自動車構造部材に適用することにより車体軽量化による燃費改善を図ることができる。
 以下に、本発明の詳細を説明する。
 熱延板組織のフェライトとパーライトの平均結晶粒径と面積率を適正に制御することにより、その後の焼鈍後に良好な延性を得ることが可能となった。さらに、熱延の熱履歴の制御により、熱延板組織のフェライトの平均結晶粒径とパーライトの平均結晶粒径および平均自由行程を制御することで、パーライトが疎に分散した熱延組織を造り込むことができるため、その後、焼鈍処理を施して製造する冷延鋼板、溶融亜鉛めっき鋼板(以下、焼鈍処理を施した鋼板を「焼鈍板」とも記載する。)のさらなる延性の向上と材質バラツキの狭小化(材質安定化)に繋がることがわかった。つまり、熱延段階での組織制御を考慮することで、加工性と材質安定性に優れた冷延鋼板、溶融亜鉛めっき鋼板の製造が可能となった。
 以上が本発明を完成するに至った技術的特徴である。
 そして、成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上、95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上、25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上であることを特徴とする。
 (1)まず、成分組成について説明する。
 C:0.04%以上0.20%以下
 Cはオーステナイト生成元素であり、焼鈍後組織を複合化し、強度と延性の向上に有効な元素である。C量が0.04%未満では、焼鈍板の強度の確保が難しい。一方、C量が0.20%を超えて過剰に添加すると、溶接部および熱影響部の硬化が著しく、溶接部の機械的特性が劣化するため、スポット溶接性、アーク溶接性等が低下する。よって、Cは0.04%以上0.20%以下とする。好ましくは0.05%以上0.14%以下である。より好ましくは0.07%以上0.12%以下である。
 Si:0.7%以上2.3%以下
 Siはフェライト生成元素であり、焼鈍板のフェライトの固溶強化および延性の向上に有効な元素でもある。焼鈍板の強度と延性のバランスの向上には0.7%以上の添加が必要である。また、熱延段階でのフェライト変態を促進することにより所望のフェライトの平均結晶粒径および面積率が確保されるため、材質安定性を向上させるために必要な元素である。しかしながら、2.3%を超えるSiの過剰な添加は、赤スケール等の発生により表面性状の劣化や、めっき付着・密着性の劣化を引き起こす。よって、Siは0.7%以上2.3%以下とする。好ましくは、0.9%以上2.0%以下である。より好ましくは1.2%超え2.0%以下である。
 Mn:0.8%以上2.8%以下
 Mnは、オーステナイト生成元素であり、焼鈍板の強度の確保に有効な元素である。Mn量は0.8%未満では強度の確保が難しい。一方、Mn量が2.8%を超えて過剰に添加すると、熱延段階でのフェライト変態とパーライト変態を遅延し、所望のフェライトの平均結晶粒径および面積率を確保することが難しく、材質安定性が低下する懸念がある。また、近年、Mnの合金コストが高騰しているため、コストアップの要因にもなる。従って、Mnは0.8%以上2.8%以下とする。好ましくは1.2%以上2.8%以下である。
 P:0.1%以下
 Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。また、0.1%を超えると溶融亜鉛めっきの合金化速度を大幅に遅延させる。従って、Pは0.1%以下とする。好ましくは0.02%以下である。また、Pは固溶強化の作用を有し、所望の強度に応じて添加できる元素でもあるため、Pは0.005%以上であるのが好ましい。
 S:0.01%以下
 Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面からSは0.01%以下とする。好ましくは0.005%以下である。
 Al:0.1%以下
 Alの過剰な添加は、酸化物系介在物の増加による表面性状や成形性の劣化を招き、コスト高にもなるため、Alは0.1%以下とする。好ましくは0.05%以下である。また、Alはフェライトを生成させ、強度と延性のバランスを向上させるのに有効な元素であるため、Alは0.01%以上であることが好ましい。
 N:0.008%以下
 Nは、鋼の耐時効性を最も大きく劣化させる元素であり、少ないほど好ましく、0.008%を超えると耐時効性の劣化が顕著となる。従って、Nは0.008%以下とする。好ましくは0.004%以下である。
 残部はFeおよび不可避的不純物である。ただし、これらの成分元素に加えて、以下の合金元素を必要に応じて添加することができる。
 Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種
 Cr、V、Mo、Ni、Cuは鋼の強化に有効な元素であり、本発明で規定した範囲内であれば鋼の強化に使用して差し支えない。その効果は、Crは0.05%以上、Vは0.005%以上、Moは0.005%以上、Niは0.05%以上、Cuは0.05%以上で得られる。しかしながら、Crは1.0%、Vは0.5%、Moは0.5%、Niは1.0%、Cuは1.0%を超えて過剰に添加すると、マルテンサイト等の残部組織(後記)の分率が過大となり著しい強度上昇による延性の低下の懸念が生じる。また、コストアップの要因にもなる。したがって、これらの元素を添加する場合には、その量をそれぞれCrは0.05%以上1.0%以下、Vは0.005%以上0.5%以下、Moは0.005%以上0.5%以下、Niは0.05%以上1.0%以下、Cuは0.05%以上1.0%以下とする。
 Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種
 Ti、Nbは鋼の析出強化に有効な元素である。その効果は、Tiは0.01%以上、Nbは0.01%以上で得られる。しかしながら、Tiは0.1%、Nbは0.1%を超えて過剰に添加すると、マルテンサイト等の残部組織の分率が過大となり著しい強度上昇による延性の低下の懸念が生じる。また、コストアップの要因にもなる。従って、Ti、Nbを添加する場合には、その添加量をTiは0.01%以上0.1%以下、Nbは0.01%以上0.1%以下とする。
 Bは鋼の強化に有効な元素であり、その効果は、0.0003%以上で得られる。しかしながら、Bは0.0050%を超えて過剰に添加すると、マルテンサイト等の残部組織の分率が過大となり著しい強度上昇による延性の低下の懸念が生じる。また、コストアップの要因にもなる。したがって、Bを添加する場合には、その量を0.0003%以上0.0050%以下とする。
 Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種
 CaおよびREMは、硫化物の形状を球状化し、局部延性への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには、それぞれ0.001%以上必要である。しかしながら、CaおよびREMは、0.005%を超えて過剰に添加すると、介在物等の増加を引き起こし表面および内部欠陥などを引き起こす。したがって、Ca、REMを添加する場合は、その添加量はそれぞれ0.001%以上0.005%以下とする。
 (2)次に、ミクロ組織について説明する。
 熱延板組織のフェライトの面積率:75%以上95%未満
 焼鈍板の良好な延性を確保するためには、熱延板組織のフェライトは面積率で75%以上必要である。好ましくは78%以上である。また、焼鈍板の強度を確保するためには、熱延板組織のフェライトは面積率で95%未満である必要である。
 熱延板組織のパーライトの面積率:5%以上25%未満
 焼鈍板の良好な延性を確保するためには、熱延板組織のパーライトは面積率で5%以上必要である。好ましくは8%以上である。また、焼鈍板の材質安定性を確保するためには、熱延板組織のパーライトは面積率で25%未満である必要である。
 熱延板組織のフェライトの平均結晶粒径:5μm以上25μm以下
 焼鈍板の良好な材質安定性を確保するためには、熱延板組織のフェライトの平均結晶粒径が5μm以上必要である。また、熱延板組織のフェライトの平均結晶粒径が25μmを超えると焼鈍板の所望の強度確保が難しい。そのため、熱延板組織のフェライトの平均結晶粒径は5μm以上25μm以下とする必要がある。好ましくは8μm以上20μm以下である。
 熱延板組織のパーライトの平均結晶粒径:2.0μm以上
 焼鈍板の良好な延性を確保するためには、熱延板組織のパーライトの平均結晶粒径が2.0μm以上必要である。好ましくは3.0μm以上10μm以下である。
 熱延板組織のパーライトの平均自由行程:5μm以上
 焼鈍板の良好な延性と材質安定性を確保するためには、熱延板組織のパーライトの平均自由行程が5μm以上必要である。好ましくは6μm以上15μm以下である。
 なお、熱延板組織において、フェライト、パーライト以外に、残部組織として、セメンタイト等の炭化物、マルテンサイト、ベイニティックフェライト、残留オーステナイト等を生じる場合がある。これらの残部組織は、面積率で8%以下が好ましく、この範囲であれば、本発明の効果は損なわれない。本発明では、上記の鋼成分組成と金属組織の構成(フェライトとパーライトの面積率および平均結晶粒径、パーライトの平均自由行程)が満足されていれば、本発明の目的を達成できる。
 (3)熱延板幅方向の中心部の引張強度と熱延板幅端部から板幅の1/8に相当する位置の引張強度との引張強度差(絶対値):30MPa以下
 焼鈍板の幅方向材質バラツキの狭小化(材質安定化)を図るうえで、熱延板の幅方向の材質安定化が有効である。焼鈍板の材質安定化の観点から、熱延板幅方向の中心部と熱延板幅端部(エッジ部)から板幅の1/8に相当する位置(以下、「幅1/8位置」とも記載する。)との引張強度の差(絶対値)が30MPa以下であることが好ましい。
 また、焼鈍板の材質安定化の観点から、熱延板の幅方向の中心部と熱延板幅端部(エッジ部)から板幅の1/8に相当する位置との降伏応力の差(ΔYP)、全伸びの差(ΔEL)が、それぞれ40MPa以下、4%以下であることがさらに好ましい。熱延板の材質バラツキを、幅中心部と幅1/8位置の2点で評価するのは、例えば、熱延板の幅方向の中心部と熱延板幅端部(エッジ)から板幅の1/4に相当する位置(幅1/4位置)との引張強度の差では、エッジ付近の材質が評価されないため、十分な幅方向の材質安定性の評価が困難であるが、さらにエッジ寄りの幅1/8位置と幅中心部の引張強度の差で評価することで、焼鈍板の材質安定性の適切な評価が可能になるためである。
 (4)次に、本発明の冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板の製造方法の一実施形態について説明する。
 本発明の加工性と材質安定性に優れた冷延鋼板用熱延鋼板は、上記の成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取ることにより製造することができる。
 また、本発明の加工性と材質安定性に優れた溶融亜鉛めっき鋼板用熱延鋼板は、上記の成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取ることにより製造することができる。
 以下、詳細に説明する。
 上記の成分組成を有する鋼は、公知の方法により、溶製した後、分塊圧延または連続鋳造を経てスラブとし、熱間圧延を施して熱延鋼板とする。スラブの加熱については、特に条件を限定しないが、加熱温度は1100~1300℃が好ましい。熱間圧延は以下の条件で行う。
 熱間圧延の仕上げ圧延出側温度:850℃以上
 熱間圧延の仕上げ圧延出側温度が850℃未満になると、熱延板組織において、フェライトが圧延方向に伸長した組織となり、焼鈍板の延性および材質安定性が低下する。そのため、熱間圧延の仕上げ圧延出側温度を850℃以上とする。好ましくは870℃以上である。
 仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却(一次冷却)
 仕上げ圧延出側温度から650℃までの平均冷却速度が20℃/s未満になると、フェライト変態が過剰に進行し、所望のパーライトの面積率が得られず、焼鈍板の延性が低下する。また、平均冷却速度が90℃/sを超えると、熱延板組織において、フェライト変態が十分に進行せず、所望のフェライト平均結晶粒径およびパーライトの平均自由行程が得られず、焼鈍板の延性と材質安定性が低下する。したがって、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却する。好ましい平均冷却速度は30~70℃/sである。
 巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却(二次冷却)
 前記一次冷却後、巻き取り温度までの平均冷却速度が5℃/s未満になると、フェライト変態が過剰に進行し、所望のパーライト面積率が得られず、焼鈍板の延性が低下する。また、一次冷却後、巻き取り温度までの平均冷却速度が35℃/sを超えると、巻き取り後にベイナイト変態が進行し、所望のパーライトの面積率と平均結晶粒径が得られず、焼鈍板の延性が低下する。したがって、巻き取り温度までの平均冷却速度を5~35℃/sとする。好ましい平均冷却速度は10~25℃/sである。
 巻き取り温度:470~640℃
 巻き取り温度が470℃未満になると、熱延板組織において、マルテンサイトやベイナイトの低温変態相(硬質相)を多く含み、所望のパーライトの面積率を確保できない組織となり、熱延板の幅方向で不均一な硬度分布が生じ、焼鈍板の材質安定性が低下する。また、巻き取り温度が640℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなり、焼鈍板の所望強度の確保が難しくなる。そのため、巻き取り温度は470~640℃とする。好ましくは480~620℃である。
 前記で得た熱延鋼板を、通常公知の方法で酸洗し、必要に応じては、脱脂などの予備処理を実施し、さらに冷間圧延を行い、焼鈍処理を施すことで冷延鋼板を製造する。また、焼鈍処理を施した後、溶融亜鉛めっき処理を施し、またはさらに合金化処理を施すことで、溶融亜鉛めっき鋼板を製造する。また、酸洗後、冷間圧延を施すことなく、焼鈍処理、溶融亜鉛めっき処理を施し、またはさらに合金化処理を施すことで、溶融亜鉛めっき鋼板を製造することもできる。なお、本発明の製造方法における一連の熱処理においては、鋼板はいかなる設備で熱処理を施されてもかまわない。冷間圧延、焼鈍処理は以下の条件で行うことが好ましい。
 冷間圧延を行う場合、冷間圧延の圧下率が30%未満になると、焼鈍時にフェライトの再結晶が促進されず、未再結晶フェライトが残存し、焼鈍板の延性が低下する場合があるため、冷間圧延の圧下率は30%以上が好ましい。焼鈍処理は、750~900℃の温度域で15~600s保持することが好ましい。焼鈍温度が750℃未満または750~900℃の温度域での保持時間が15s未満になると、未再結晶組織が残存し、延性が低下する場合があり、焼鈍温度が900℃を超え、または750~900℃の温度域での保持時間が600sを超えると、オーステナイト粒の成長が著しく、最終的に不均一な組織が形成され、材質安定性が低下する場合があるためである。
 冷延鋼板では焼鈍後、合金化処理を施さない溶融亜鉛めっき鋼板(GI)は、溶融亜鉛めっき後、合金化溶融亜鉛めっき鋼板(GA)は合金化処理後に形状矯正等のために調質圧延を施してもよい。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを1200℃に加熱後、表2に示す仕上げ圧延出側温度で2.3~4.5mmの板厚まで熱間圧延を行い、表2に示す条件で冷却し巻き取った。次いで、得られた熱延板を酸洗し、冷間圧延した後、800℃で焼鈍し、必要に応じて、溶融亜鉛めっき処理、またはさらに亜鉛めっきの合金化処理を施し、冷延鋼板(CR)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)を得た。一部熱延板については、酸洗後、冷間圧延を施さないで、焼鈍、溶融亜鉛めっき処理、またはさらに亜鉛めっきの合金化処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)を得た。溶融亜鉛めっき浴は溶融亜鉛めっき鋼板(GI)では、Al:0.19質量%含有亜鉛浴を使用し、合金化溶融亜鉛めっき鋼板(GA)では、Al:0.14質量%含有亜鉛浴を使用し、浴温は460℃とし、合金化溶融亜鉛めっき鋼板(GA)については、550℃で合金化処理を施した。めっき付着量は片面あたり45g/m2(両面めっき)とし、合金化溶融亜鉛めっき鋼板(GA)は、めっき層中のFe濃度を9~12質量%とした。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 得られた熱延鋼板に対して、フェライトとパーライトの面積率は、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、得られた組織画像を用いて、Media Cybernetics社のImage-Proを用いて各組織(フェライト、パーライト)の面積率を10視野分算出し、それらの値を平均して求めた。上記の組織画像において、フェライトは灰色の組織(下地組織)、パーライトはフェライトとセメンタイト(白色)の層状の組織を呈している。フェライトとパーライトの平均結晶粒径は、上述のImage-Proを用いて、各々のフェライト結晶粒もしくはパーライト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して求めた。パーライトの平均自由行程は、上述のImage-Proを用いて、パーライトの重心の座標(X座標、Y座標)を求め、極端な偏りがなく均一に分散していることを前提に下記(1)式により算出した。フェライト、パーライト以外の残部組織は、セメンタイト等の炭化物、マルテンサイト、ベイニティックフェライト、残留オーステナイトのいずれかである。
 
   L=(d/2)(4π/3f)1/3     (式1)
 
ただし、
:パーライトの平均自由行程(μm)
:パーライトの平均結晶粒径(μm)
f:パーライトの面積率(%)÷100
 得られた冷延鋼板(CR)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)の引張試験を行った。引張試験は、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z2241(2010年)に準拠して行い、TS(引張強度)、EL(全伸び)を測定した。延性は、TS×ELの値で評価した。なお、本発明では、幅中心部でTS×EL≧19000MPa・%の場合を良好と判定した。
 熱延板の幅中心部と幅1/8位置のTS、降伏応力(YP)、ELについては、JIS5号引張試験片(引張方向が圧延方向と直角方向)を用いて上記と同様の引張試験を行なって測定し、幅中心部の値と幅1/8位置の値の差(幅中心部の特性値-幅1/8位置の特性値)をそれぞれΔTS、ΔYP、ΔELとして算出した。なお、本発明では、熱延板の幅中心部と幅1/8位置の特性差ΔTS≦30MPa、ΔYP≦40MPa、ΔEL≦4.0%の場合を材質安定性が良好と判定した。
 また、焼鈍板の幅中心部と幅1/8位置のTS、YP、ELを測定し、幅中心部の値と幅1/8位置の値の差(幅中心部の特性値-幅1/8位置の特性値)をそれぞれΔTS、ΔYP、ΔELとして算出した。なお、焼鈍板の幅中心部と幅1/8位置の特性差ΔTS≦25MPa、ΔYP≦35MPa、ΔEL≦3.5%の場合を材質安定性が良好と判定した。
 以上により得られた結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明例の冷延鋼板用熱延鋼板および溶融亜鉛めっき鋼板用熱延鋼板は、その後の焼鈍後のTSが540MPa以上であり、延性および材質安定性にも優れている。一方、比較例では、強度、延性、材質安定性のいずれか一つ以上が劣っている。
 本発明によれば、加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板が得られる。本発明の熱延鋼板から製造した冷延鋼板、溶融亜鉛めっき鋼板は、例えば、自動車構造部材に適用することができる。

Claims (22)

  1.  成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上、95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上、25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上である、冷延鋼板用熱延鋼板。
  2.  さらに、熱延板幅方向の中心部の引張強度と熱延板幅端部から板幅の1/8に相当する位置の引張強度との引張強度差が30MPa以下である、請求項1に記載の冷延鋼板用熱延鋼板。
  3.  さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項1に記載の冷延鋼板用熱延鋼板。
  4.  さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項1または3に記載の冷延鋼板用熱延鋼板。
     
     
  5.  さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項1または3に記載の冷延鋼板用熱延鋼板。
  6.  さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項4に記載の冷延鋼板用熱延鋼板。
  7.  成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上,95%未満、かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上,25%未満、かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上である、溶融亜鉛めっき鋼板用熱延鋼板。
  8.  さらに、熱延板幅方向の中心部の引張強度と熱延板幅端部から板幅の1/8に相当する位置の引張強度との引張強度差が30MPa以下である、請求項7に記載の溶融亜鉛めっき鋼板用熱延鋼板。
  9.  さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項7に記載の溶融亜鉛めっき鋼板用熱延鋼板。
  10.  さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項7または9に記載の溶融亜鉛めっき鋼板用熱延鋼板。
  11.  さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項7または9に記載の溶融亜鉛めっき鋼板用熱延鋼板。
  12.  さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項11に記載の溶融亜鉛めっき鋼板用熱延鋼板。
  13.  質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取る、冷延鋼板用熱延鋼板の製造方法。
  14.  前記鋼スラブが、さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項13に記載の冷延鋼板用熱延鋼板の製造方法。
  15.  前記鋼スラブが、さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項13または14に記載の冷延鋼板用熱延鋼板の製造方法。
  16.  前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項13または14に記載の冷延鋼板用熱延鋼板の製造方法。
  17.  前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項15に記載の冷延鋼板用熱延鋼板の製造方法。
  18.  質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、仕上げ圧延出側温度850℃以上で熱間圧延し、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、巻き取り温度までの温度域を平均冷却速度5~35℃/sで冷却し、470~640℃で巻き取る、溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
     
  19.  前記鋼スラブが、さらに、成分組成として、質量%で、Cr:0.05%以上1.0%以下、V:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項18に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
  20.  前記鋼スラブが、さらに、成分組成として、質量%で、Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下、B:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項18または19に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
  21.  前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項18または19に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
  22.  前記鋼スラブが、さらに、成分組成として、質量%で、Ca:0.001%以上0.005%以下、REM:0.001%以上0.005%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項20に記載の溶融亜鉛めっき鋼板用熱延鋼板の製造方法。
     
     
PCT/JP2012/005066 2011-08-31 2012-08-09 冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法 WO2013031105A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280042043.5A CN103764864B (zh) 2011-08-31 2012-08-09 冷轧钢板用热轧钢板、热镀锌钢板用热轧钢板及其制造方法
MX2014002021A MX340869B (es) 2011-08-31 2012-08-09 Lamina de acero laminada en caliente para lamina de acero laminada en frio, lamina de acero laminada en caliente para lamina de acero galvanizada, y metodo para la fabricacion de las mismas.
KR1020147006098A KR101600725B1 (ko) 2011-08-31 2012-08-09 냉연 강판용 열연 강판, 용융 아연 도금 강판용 열연 강판 및 그 제조 방법
EP12828162.3A EP2752500B1 (en) 2011-08-31 2012-08-09 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
US14/241,256 US20140360634A1 (en) 2011-08-31 2012-08-09 Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
US16/202,634 US11098392B2 (en) 2011-08-31 2018-11-28 Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188712A JP5397437B2 (ja) 2011-08-31 2011-08-31 加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
JP2011-188712 2011-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/241,256 A-371-Of-International US20140360634A1 (en) 2011-08-31 2012-08-09 Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
US16/202,634 Division US11098392B2 (en) 2011-08-31 2018-11-28 Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2013031105A1 true WO2013031105A1 (ja) 2013-03-07

Family

ID=47755637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005066 WO2013031105A1 (ja) 2011-08-31 2012-08-09 冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法

Country Status (8)

Country Link
US (2) US20140360634A1 (ja)
EP (1) EP2752500B1 (ja)
JP (1) JP5397437B2 (ja)
KR (1) KR101600725B1 (ja)
CN (1) CN103764864B (ja)
MX (1) MX340869B (ja)
TW (1) TWI470094B (ja)
WO (1) WO2013031105A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492645A (zh) * 2013-09-04 2016-04-13 株式会社神户制钢所 冷加工性和加工后的表面特性及硬度优异的热轧钢板
JP2016089235A (ja) * 2014-11-07 2016-05-23 Jfeスチール株式会社 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
WO2024150687A1 (ja) * 2023-01-13 2024-07-18 日本製鉄株式会社 熱延鋼板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119655B2 (ja) * 2014-03-31 2017-04-26 Jfeスチール株式会社 鋼帯内における材質のバラツキが小さい成形性に優れた高強度合金化溶融亜鉛めっき鋼帯およびその製造方法
JP6052476B1 (ja) * 2015-03-25 2016-12-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR101808431B1 (ko) * 2016-06-21 2017-12-13 현대제철 주식회사 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2021123886A1 (en) * 2019-12-19 2021-06-24 Arcelormittal High toughness hot rolled and annealed steel sheet and method of manufacturing the same
KR20230093722A (ko) * 2021-12-20 2023-06-27 주식회사 포스코 진공열차 튜브용 열연강판 및 그 제조방법
KR20240098878A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 진공열차 튜브용 열연강판 및 그 제조 방법
KR20240098514A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 강도와 인성이 우수한 강판 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240617A (ja) * 1988-03-18 1989-09-26 Sumitomo Metal Ind Ltd 冷間圧延性に優れた熱延鋼帯の製造法
JPH06248340A (ja) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd 加工性に優れた熱延鋼板の製造方法
JPH108188A (ja) * 1996-06-26 1998-01-13 Kobe Steel Ltd 加熱部の耐高速破壊特性に優れた加工用鋼板
JP2002173738A (ja) * 2000-12-06 2002-06-21 Nkk Corp 高加工性高張力熱延鋼板
JP2010275600A (ja) * 2009-05-29 2010-12-09 Jfe Steel Corp 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276015A (en) * 1978-07-19 1981-06-30 Rogers Richard R Method and apparatus for molding clay pigeons and the like
JPH02149646A (ja) * 1988-11-30 1990-06-08 Kobe Steel Ltd 加工性、溶接性に優れた高強度熱延鋼板とその製造方法
JPH04276015A (ja) * 1991-03-01 1992-10-01 Sumitomo Metal Ind Ltd 孔拡げ性に優れた熱延鋼板の製造法
JP3119122B2 (ja) 1995-05-26 2000-12-18 住友金属工業株式会社 高強度熱延鋼板の製造法
JP3823338B2 (ja) 1995-05-26 2006-09-20 住友金属工業株式会社 高強度熱延鋼板の製造方法
JPH1036917A (ja) 1996-07-25 1998-02-10 Nippon Steel Corp 伸びフランジ性に優れた高強度熱延鋼板の製造方法
JP3039862B1 (ja) * 1998-11-10 2000-05-08 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板
JP3583306B2 (ja) 1999-01-20 2004-11-04 株式会社神戸製鋼所 板幅方向における伸びのバラツキが改善された高強度高延性冷延鋼板の製造方法
JP2000290750A (ja) * 1999-04-08 2000-10-17 Kawasaki Steel Corp 形状凍結性に優れた熱延鋼板
DE60110586T2 (de) * 2000-05-31 2005-12-01 Jfe Steel Corp. Kaltgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaftenund herstellungsverfahren für ein solches stahlblech
ATE383452T1 (de) * 2001-10-04 2008-01-15 Nippon Steel Corp Ziehbares hochfestes dünnes stahlblech mit hervorragender formfixierungseigenschaft und herstellungsverfahren dafür
JP2005206917A (ja) * 2004-01-26 2005-08-04 Nisshin Steel Co Ltd 材質安定性に優れた高強度合金化溶融亜鉛めっき原板用熱延鋼帯,溶融亜鉛めっき鋼帯および製造法
JP4221023B2 (ja) 2005-12-06 2009-02-12 株式会社神戸製鋼所 耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5187003B2 (ja) * 2008-06-03 2013-04-24 Jfeスチール株式会社 成形性と耐疲労特性に優れた高張力鋼材およびその製造方法
JP4998756B2 (ja) * 2009-02-25 2012-08-15 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US8771927B2 (en) 2009-04-15 2014-07-08 Brewer Science Inc. Acid-etch resistant, protective coatings
JP4737319B2 (ja) * 2009-06-17 2011-07-27 Jfeスチール株式会社 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5786318B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US8951366B2 (en) * 2010-01-26 2015-02-10 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and method of manufacturing thereof
CN105940134B (zh) * 2014-01-29 2018-02-16 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
US11136643B2 (en) * 2016-08-10 2021-10-05 Jfe Steel Corporation High-strength steel sheet and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240617A (ja) * 1988-03-18 1989-09-26 Sumitomo Metal Ind Ltd 冷間圧延性に優れた熱延鋼帯の製造法
JPH06248340A (ja) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd 加工性に優れた熱延鋼板の製造方法
JPH108188A (ja) * 1996-06-26 1998-01-13 Kobe Steel Ltd 加熱部の耐高速破壊特性に優れた加工用鋼板
JP2002173738A (ja) * 2000-12-06 2002-06-21 Nkk Corp 高加工性高張力熱延鋼板
JP2010275600A (ja) * 2009-05-29 2010-12-09 Jfe Steel Corp 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492645A (zh) * 2013-09-04 2016-04-13 株式会社神户制钢所 冷加工性和加工后的表面特性及硬度优异的热轧钢板
JP2016089235A (ja) * 2014-11-07 2016-05-23 Jfeスチール株式会社 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
WO2024150687A1 (ja) * 2023-01-13 2024-07-18 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
MX340869B (es) 2016-07-28
JP5397437B2 (ja) 2014-01-22
US20190106773A1 (en) 2019-04-11
JP2013049901A (ja) 2013-03-14
TW201313918A (zh) 2013-04-01
KR101600725B1 (ko) 2016-03-07
US20140360634A1 (en) 2014-12-11
EP2752500A4 (en) 2015-08-19
EP2752500A1 (en) 2014-07-09
TWI470094B (zh) 2015-01-21
KR20140044931A (ko) 2014-04-15
EP2752500B1 (en) 2016-10-26
CN103764864A (zh) 2014-04-30
MX2014002021A (es) 2014-03-27
CN103764864B (zh) 2016-08-17
US11098392B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
JP5858199B2 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
US11098392B2 (en) Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
JP4998756B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
JP5786318B2 (ja) 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
WO2016113788A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2009203549A (ja) 高強度鋼板とその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
WO2011090184A1 (ja) 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011090180A1 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2013069252A1 (ja) 高張力熱延鋼板およびその製造方法
JP2017133102A (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
JP2015071824A (ja) 高強度鋼板の製造方法
JP6249140B1 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
JP2013241636A (ja) 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
WO2018030502A1 (ja) 高強度鋼板およびその製造方法
JP5483916B2 (ja) 曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
JP5594438B2 (ja) 高張力熱延めっき鋼板およびその製造方法
JP2012158797A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828162

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012828162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/002021

Country of ref document: MX

Ref document number: 2012828162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147006098

Country of ref document: KR

Kind code of ref document: A