WO2004113751A1 - エンコーダ付転がり軸受ユニット及びその製造方法 - Google Patents

エンコーダ付転がり軸受ユニット及びその製造方法 Download PDF

Info

Publication number
WO2004113751A1
WO2004113751A1 PCT/JP2004/008193 JP2004008193W WO2004113751A1 WO 2004113751 A1 WO2004113751 A1 WO 2004113751A1 JP 2004008193 W JP2004008193 W JP 2004008193W WO 2004113751 A1 WO2004113751 A1 WO 2004113751A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing unit
encoder
rolling bearing
magnetic flux
rolling
Prior art date
Application number
PCT/JP2004/008193
Other languages
English (en)
French (fr)
Inventor
Toshiaki Maeda
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/536,892 priority Critical patent/US20070041673A1/en
Priority to EP04745787A priority patent/EP1669620A4/en
Publication of WO2004113751A1 publication Critical patent/WO2004113751A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • a rolling bearing unit with an encoder which is an object of the present invention, constitutes a rotation speed detecting device for rotatably supporting a wheel of an automobile with respect to a suspension device and detecting a rotation speed of the wheel. Use to do.
  • a rolling bearing unit with a rotation speed detecting device is required to rotatably support the wheel with respect to the suspension device and detect the rotation speed of the wheel.
  • a rolling bearing unit with a rotation speed detecting device for example, Japanese Patent Application Laid-Open No. 6-281018 (Patent Document 1), Japanese Patent Application Laid-Open No. 9-203415 (Patent Document 2), and US Pat. No. 4,948,277 (Patent Document 3) and Japanese Patent Application Laid-Open No. 11-23596 (Patent Document 4) are known.
  • FIG. 5 shows a rolling bearing unit with a rotation speed detecting device described in US Pat. No. 4,948,277 (Patent Document 3).
  • the pair of inner races 1, each of which is a fixed wheel, is externally fitted to a non-rotating axle (not shown) when assembled to a suspension.
  • an inner raceway 2 which is a fixed raceway surface is formed on the outer peripheral surface of each of the inner races 1, an inner raceway 2 which is a fixed raceway surface is formed.
  • a double-row outer ring raceway 4 each of which is a rotating raceway surface, is formed on the inner peripheral surface of the hub 3.
  • a wheel (not shown) of the wheel is fixed to a flange provided on the outer peripheral surface of the hub 3.
  • the inner end of the hub 3 (inside means the side closer to the center in the width direction when assembled to the vehicle, and is the upper side of FIG. 1 and the right of FIG. 3-6.
  • the side closer to the outside is referred to as the outside, below Figure 1 and to the left of Figure 3-6, with the inward and outward directions appropriate for the structure of the vehicle's suspension system, etc. Select according to your design.
  • a core metal 7 constituting a seal ring 6 is fitted and fixed. That is, the cylindrical portion 8 formed on the outer peripheral edge of the metal core 7 is fitted inside the opening of the hub 3 by interference fitting.
  • a sealing material 9 made of an elastic material such as rubber is connected and supported on the inner surface of the core metal 7, and an encoder 10 is further connected and supported on the inner surface of the sealing material 9.
  • the encoder 10 is formed of a permanent magnet, and is formed in an annular shape in which S poles and N poles are alternately arranged in the circumferential direction.
  • a holding ring 11 formed by drawing a metal plate is externally fixed to the inner end of the inner inner ring 1.
  • the tip edges of the plurality of seal lips 12 provided on the seal material 9 constituting the seal ring 6 are brought into sliding contact with the inner and outer circumferential surfaces and the outer surface of the holding ring 11 so that dust or dirt may be formed on the ball 5 installation portion. Prevents rainwater from entering.
  • a sensor 13 is supported and fixed to a part of the holding ring 11, and a detection unit of the sensor 13 is opposed to an inner surface of the encoder 10.
  • the wheel fixed to the hub 3 can be rotatably supported on an axle on which the inner ring 1 is externally fitted.
  • the output of the sensor 13 facing the side surface of the encoder 10 fixed to the hub 3 changes.
  • the frequency at which the output of the sensor 13 changes is proportional to the rotation speed of the wheel. Therefore, if the output signal of the sensor 13 is input to a controller (not shown), the rotation speed of the wheel can be obtained, and the ABS or TCS can be appropriately controlled.
  • FIG. 6 shows a rolling bearing unit with a rotation speed detecting device described in Japanese Patent Application Laid-Open No. 9-203415 (Patent Document 2).
  • the inner ring 1 which is a rotating wheel, in which the inner ring raceway 2 which is a rotating raceway surface is formed on the outer peripheral surface, rotates during use. Externally fixed to the axle.
  • a plurality of balls 5 as rolling elements are provided between the outer raceway 4 which is a fixed raceway surface formed on the inner peripheral surface of the outer raceway 14 and each of the inner raceways 2 described above.
  • Each inner ring 1 is rotatably supported inside.
  • a combination seal ring 15 is provided between the inner peripheral surface of the inner end of the outer race 14 and the outer peripheral surface of the inner end of the inner race 1 so that the inner peripheral surface of the outer race 14 and the inner race 1 Between the outer peripheral surface It closes the opening at the inner end of the existing space.
  • another combination seal ring 16 is provided between the outer peripheral surface of the outer end of the outer race 14 and the outer peripheral surface of the outer end of the inner race 1 so that the inner peripheral surface of the outer race 14 and the inner race 1 are separated. Close the outer end opening of the space that exists between the outer peripheral surface of Of the two sets of combined seal rings 15, 16, a permanent magnet encoder 10a is provided on the inner surface of a slinger 17 constituting the combined seal ring 15 provided inside.
  • the detection unit of the sensor 13a which is supported by the holding case 18 constituting the suspension device, faces the inner surface of the encoder 10a.
  • the rotation speed of the inner ring 1 that rotates together with the axle (not shown) can be detected by the sensor 13a, and the ABS or TCS can be appropriately controlled.
  • FIG. 6 shows a structure in which wheels are supported by a non-independent suspension type suspension device
  • a rolling bearing unit in which wheels are supported by an independent suspension type suspension device is also disclosed in Japanese Patent Application Laid-Open No. 11-23596. And have been known for some time.
  • Patent Document 1 JP-A-6-281018
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-203415
  • Patent Document 3 US Pat. No. 4,948,277
  • Patent Document 4 JP-A-11-23596
  • the residual magnetic flux density of a part of each of the constituent members is increased, and the magnetic flux flowing based on the residual magnetic flux of the part and the magnetic flux exiting from the detected surfaces (inner side surfaces) of the encoders 10 and 10a are described.
  • the directions are the same and overlap each other.
  • FIG. 2 (B) the density of the magnetic flux reaching the detecting portions of the sensors 13 and 13a, as shown in FIG. Higher than the part.
  • the density of the magnetic flux reaching the detecting portions of the sensors 13 and 13a is different from the density of the magnetic flux exiting from the detected surfaces of the encoders 10 and 10a. If it changes according to another requirement, it becomes difficult to ensure the reliability of the rotation speed detection of the encoders 10 and 10a. Specifically, it is necessary to strictly control the threshold value of the strength of the detection signals of the sensors 13 and 13a, and the cost of a controller for processing the signals of the sensors 13 and 13a increases.
  • the rolling bearing unit with encoder and the method of manufacturing the same according to the present invention have been made in view of such circumstances.
  • a rolling bearing unit with an encoder includes a stationary wheel made of a magnetic material that does not rotate during use, a rotating wheel made of a magnetic material that rotates during use, and a rotating raceway surface formed on the rotating wheel.
  • a plurality of rolling elements disposed between a fixed raceway surface formed on the fixed wheel and an encoder supported on a part of the rotating wheel concentrically with the rotating wheel.
  • the encoder has an annular multipole magnet in which S and N poles are alternately arranged in the circumferential direction.
  • a member made of a magnetic material constituting the rolling bearing unit including the fixed wheel and the rolling wheel, supports the encoder on the rotating wheel. It was previously demagnetized.
  • the magnetic material density of the magnetic material constituting the rolling bearing unit after demagnetization is 0.5 mT (5G) or less, and 2 mT (5 G) when assembled as a rolling bearing unit. 20G) or less.
  • the density of the magnetic flux emitted from the detection surface of the encoder is equal to or greater than 10mT (10G).
  • each member of the rolling bearing unit with an encoder is demagnetized, and then these members are assembled into a rolling bearing unit. Then, an encoder is mounted on a rotating wheel of the rolling bearing unit. Assemble.
  • a rolling bearing unit with an encoder is as follows.
  • the components are assembled to form a rolling bearing unit, and then the rolling is performed.
  • the bearing unit is demagnetized, and then the encoder is mounted on the rotating ring of this rolling bearing unit.
  • the rolling bearing unit with encoder of the present invention configured as described above rotatably supports the wheel, and detects the rotation speed of the wheel fixed to the rotating wheel by combination with a sensor.
  • the operation is the same as that of the above-described rolling bearing unit with encoder which constitutes the above-described rolling bearing unit with rotation speed detecting device.
  • the density of magnetic flux emitted from the rolling bearing unit including a member made of a magnetic material can be suppressed to be low. For this reason, it is necessary to stabilize the density of the magnetic flux reaching the detection part of the sensor provided in a state facing the detection surface of the encoder (to make the size according to the magnetic flux density emerging from the detection surface of the encoder). it can. As a result, the rotation speed of the rotating wheel can be accurately measured without strictly controlling the threshold value of the strength of the detection signal of the sensor.
  • FIG. 1 shows a first example of an embodiment of the present invention. About the structure that appears in the drawing
  • each component made of a magnetic material such as the inner ring 1 constituting the rolling bearing unit, is demagnetized, and the residual magnetic flux of each component is demagnetized. Reduce the density to 0.5mT or less.
  • each of the constituent members having a residual magnetic flux density of 0.5 mT or less that is, a pair of the inner ring 1, the outer ring 14, the plurality of balls 5, and one of the seal ring rings 35 are combined as shown in FIG. 1
  • Rolling bearing unit as shown in (B). In this state, the whole rolling bearing unit The density of the residual magnetic flux to 2mT or less.
  • a combination seal ring 15 to which a permanent magnet encoder 10b is attached is attached between the inner ring 1 and the outer ring 14.
  • the demagnetization process does not necessarily need to be performed for each of the above components.
  • the demagnetization treatment can be applied to the rolling bearing unit in a state in which each of the components not subjected to the demagnetization treatment is assembled into a rolling bearing unit. Even in this case, the density of the residual magnetic flux as a whole of the rolling bearing unit is suppressed to 2 mT or less.
  • the pair of the inner ring 1, the outer ring 14, and the respective balls 5 are each a member made of a magnetic material.
  • the density of the magnetic flux emitted from the configured rolling bearing unit can be kept low. For this reason, as shown in FIG. 2A, the density of the magnetic flux reaching the detection portion of the sensor 13a (see FIG. 6) provided in a state facing the detection surface of the encoder 10b can be stabilized.
  • the magnetic flux force emitted from the rolling bearing unit cannot be added to the magnetic flux emitted from the detected surface of the encoder 10b or cancels the magnetic flux emitted from the detected surface.
  • the density of the magnetic flux reaching the detecting portion of the sensor 13 can be set to a value corresponding to the density of the magnetic flux emitted from the detection surface of the encoder 10b.
  • the rotation speed of each of the inner wheels 1 as the rotating wheels can be accurately measured without strictly controlling the threshold value regarding the strength of the detection signal of the sensor 13.
  • the density of the magnetic flux emitted from the detection surface of the encoder 10b constituting the rotation speed detection device for detecting the rotation speed of the wheel of the automobile is lOmT (lOOG) or more, and Is about 150mT (1500G). Therefore, even if the residual magnetic flux density of the inner ring 1 supporting the encoder is about 0.5 mT, and the residual magnetic flux density of the rolling bearing unit including the inner ring 1 is about 2 mT, the residual magnetic flux causes The effect of the density of the emitted magnetic flux can be reduced to a small extent. For this reason, the change amount (amplitude) of the output signal of the sensor 13a can be made substantially constant, and processing for accurately measuring the rotation speed of each of the inner rings 1 can be facilitated.
  • FIG. 3-4 shows a second to third examples of the embodiment of the present invention.
  • the first example described above The present invention is applied to a rolling bearing unit for supporting wheels on a non-independent suspension type suspension device.
  • the present invention is applied to a rolling bearing unit for supporting wheels on an independent suspension system.
  • the rolling bearing unit is formed by rotatably supporting a hub 3a including a hub body 19 and an inner ring la on the inner diameter side of the outer ring 14a.
  • a rotating flange 20 for mounting wheels is provided on an outer peripheral surface of an outer end portion of the hub body 19, and a first inner raceway 2a is provided on an outer peripheral surface of an intermediate portion.
  • the inner race la has a second inner raceway 2b on the outer peripheral surface thereof, is formed near the inner end of the hub body 19, and has an outer diameter larger than that of the portion provided with the first inner raceway 2a.
  • a first outer raceway 4a facing the first inner raceway 2a and a second outer raceway 4b facing the second inner raceway 2b are provided on the inner circumferential surface of the outer race 14a.
  • a fixed-side flange 22 for supporting the outer ring 14a on a suspension device is formed. Then, between the first and second inner raceways 2a and 2b and the first and second outer raceways 4a and 4b, a plurality of balls 5 as rolling elements are respectively arranged, and the outer race 14a
  • the hub 3a is rotatably supported on the inner diameter side of the hub.
  • a nut 23 is screwed into a male screw portion formed on the inner end of the hub body 19 to hold down the inner ring la. And the hub body 19 is prevented from being separated.
  • the inner ring (right end in FIG. 3) opening of the outer ring 14 a is closed by a cover 24.
  • the cover 24 includes a bottomed cylindrical main body 25 formed by injection molding of a synthetic resin, and a fitting cylinder 26 connected to an opening of the main body 25.
  • the fitting cylinder 26 is connected to the opening of the main body 25 by molding the base end of the fitting cylinder 26 during the injection molding of the main body 25.
  • the cover 24 configured as described above is fixed to the outer end of the outer ring 14a by tightly fitting the first half (the left half in FIG. 3) of the fitting tube 26 to the inner end of the outer ring 14a.
  • the inner end opening is closed.
  • An encoder 10c made of a permanent magnet is provided on a portion of the outer peripheral surface of the inner end la of the inner ring la which is externally fitted and fixed to the inner end of the hub body 19 outside the second inner raceway 2b. It is supported via a support ring 27 made of plate.
  • This support ring 27 is made of a magnetic metal plate such as SPCC. By bending, the whole is formed in an annular shape with an L-shaped cross section, and the inner ring la is fixed to the inner end of the inner ring la with an outer fit by an interference fit.
  • the encoder 10c is formed by, for example, attaching rubber mixed with ferrite powder to the inner surface of the annular portion forming the support ring 27 by baking or the like.
  • the encoder 10c is magnetized in the axial direction (the left-right direction in FIG. 5) and changes the magnetization direction alternately and at equal intervals in the circumferential direction. Therefore, on the inner surface of the encoder 10c, which is the portion to be detected, the S poles and the N poles are arranged alternately and at equal intervals in the circumferential direction.
  • the sensor 29 is an IC that incorporates a magnetic detecting element such as a Hall element and a magnetoresistive element (MR element) that changes its characteristics according to the flow direction of magnetic flux, and a waveform shaping circuit for adjusting the output waveform of the magnetic detecting element. And a pole piece or the like made of a magnetic material for guiding a magnetic flux exiting from the encoder 10c (or flowing into the encoder 10c) to the magnetic detection element.
  • MR element magnetoresistive element
  • the fixed-side flange 22 fixed to the outer peripheral surface of the outer ring 14a is fixedly connected to the suspension device by bolts (not shown).
  • the wheel By fixing the wheel to a rotating flange 20 fixed to the outer peripheral surface of the hub body 19 by a stud 31 provided on the rotating flange 20, the wheel is rotatably supported with respect to the suspension device.
  • the N pole and the S pole existing on the inner surface of the encoder 10c alternately pass near the end face of the detection unit of the sensor 29.
  • the frequency at which the output of the sensor 29 changes in this way is proportional to the rotation speed of the wheel. Therefore, if the output of the sensor 29 is sent to a controller (not shown), ABS and TCS can be appropriately controlled.
  • each member made of a magnetic material constituting the rolling bearing unit that is, the inner ring la, the hub body 19, and the outer
  • a demagnetization process is performed to reduce the density of the residual magnetic flux of the ring 14a, the ball 5, the nut 23, and the fitting cylinder 26 to 0.5 mT or less. Then, the density of the residual magnetic flux of the entire rolling bearing unit is suppressed to 2 mT or less.
  • this rolling bearing unit may be subjected to demagnetization in a state where the above-mentioned constituent members not subjected to demagnetization treatment are assembled into a rolling bearing unit. .
  • the support ring 27 to which the encoder 10c is attached is externally fitted and fixed to the inner ring la of the rolling bearing unit in which the residual magnetic flux density is suppressed to 2 mT or less.
  • the density of the magnetic flux that exits from the encoder 10c and reaches the detection unit of the sensor 29 is stabilized, and highly reliable rotation speed detection can be performed at low cost.
  • the second example described above relates to a structure for supporting driven wheels (front wheels of FR and RR vehicles, rear wheels of FF vehicles). And rear wheels of RR vehicles, front wheels of FF vehicles, and all wheels of 4WD vehicles).
  • a spline hole 32 for engaging a spline shaft attached to the constant velocity joint is provided in the center of the hub body 19a.
  • the inner ring la externally fitted to the inner end of the hub body 19a is suppressed by a caulking portion 33 formed at the inner end of the hub body 19a.
  • a gap between the inner peripheral surface of the outer end of the outer ring 14a and the outer peripheral surface of the intermediate portion of the hub body 19a is closed by a seal ring 34 which is fitted and fixed to the outer end of the outer ring 14a.
  • the space between the inner peripheral surface of the inner end of the outer race 14a and the outer peripheral surface of the inner end of the inner race la is closed by the same combination seal ring 15 as in the first example described above.
  • a tone wheel 10b made of a permanent magnet is attached to an inner surface of a slinger 17 constituting the combined seal ring 15.
  • a detection unit of a sensor 29a supported by a part of a suspension device such as a knuckle is made to face the inner surface of the tone wheel 10b.
  • each member made of a magnetic material constituting the rolling bearing unit that is, the inner ring la, the hub body 19a, the outer ring 14a, and the ball 5 Demagnetization treatment to reduce the residual magnetic flux density of each to 0.5 mT or less. Then, the density of the residual magnetic flux as the whole rolling bearing unit is suppressed to 2 mT or less.
  • the rolling bearing unit may be subjected to a demagnetization treatment, as in the case of the above-mentioned first and second examples.
  • the combination sealing ring 15 including the slinger 17 to which the encoder 10b is attached is externally fixed to the inner ring la of the rolling bearing unit in which the density of the residual magnetic flux is suppressed to 2 mT or less.
  • the density of the magnetic flux coming out of the encoder 10b and reaching the detection unit of the sensor 29a is stabilized, and highly reliable rotation speed detection can be performed at low cost.
  • the rolling bearing unit with encoder and the method of manufacturing the same according to the present invention are configured and operated as described above. However, since reliable rotation speed detection can be performed at low cost, the rolling bearing unit such as ABS, TCS, etc. It can contribute to the spread of equipment for stabilizing the operation of various vehicles and the improvement of performance.
  • FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention in the order of assembly steps.
  • FIG. 2 is a diagram showing two examples of a state of a density of magnetic flux coming out of an encoder and reaching a detection unit of a sensor.
  • FIG. 3 is a sectional view showing a second example of the embodiment of the present invention.
  • FIG. 4 is a sectional view showing a third example of the embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view showing a first example of a conventional structure.
  • FIG. 6 is a sectional view showing a second example of the conventional structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)

Abstract

 永久磁石製のエンコーダ10bから出てセンサの検出部に達する磁束密度を安定させて、信頼性の高い回転速度検出を低コストで行なえる様にする。  それぞれが磁性材製である、内輪1、外輪14、玉5の残留磁束密度を、個々で0.2mT以下、転がり軸受ユニットとして組み立てた状態で2mT以下にする。この為、上記エンコーダ10bから出る磁束が、上記転がり軸受ユニットの残留磁束の影響を受けにくくして、上記課題を解決できる。

Description

明 細 書
エンコーダ付転がり軸受ユニット及びその製造方法
技術分野
[0001] この発明の対象となるエンコーダ付転がり軸受ユニットは、 自動車の車輪を懸架装 置に対して回転自在に支持すると共に、この車輪の回転速度を検出する為の回転速 度検出装置を構成する為に利用する。
背景技術
[0002] アンチロックブレーキシステム(ABS)或はトラクシヨンコントロールシステム(TCS)を 制御する為には、車輪の回転速度を検出する必要がある。従って、車輪を懸架装置 に対して回転自在に支持すると共にこの車輪の回転速度を検出する為に、回転速度 検出装置付転がり軸受ユニットが必要になる。この様な回転速度検出装置付転がり 軸受ユニットとして従来から、例えば日本特開平 6 - 281018号公報(特許文献 1)、 日本特開平 9 - 203415号公報 (特許文献 2)、米国特許第 4948277号公報 (特許 文献 3)、 日本特開平 11 - 23596号公報 (特許文献 4)に記載されている様な構造の ものが知られている。
[0003] 図 5は、このうちの米国特許第 4948277号公報(特許文献 3)に記載された回転速 度検出装置付転がり軸受ユニットを示している。それぞれが固定輪である 1対の内輪 1は、懸架装置への組み付け状態では、回転しない車軸(図示せず)に外嵌される。 上記各内輪 1の外周面には、それぞれが固定軌道面である内輪軌道 2を、それぞれ 形成している。又、使用時に回転する回転輪であるハブ 3の内周面には、それぞれ が回転軌道面である複列の外輪軌道 4を形成している。そして、これら各外輪軌道 4 と上記各内輪軌道 2との間に、それぞれが転動体である複数個の玉 5を設け、上記 車軸の周囲にハブ 3を、回転自在に支持している。車輪のホイール(図示せず)は、 このハブ 3の外周面に設けられたフランジに固定される。
[0004] 更に、上記ハブ 3の内端(内とは自動車への組み付け状態で幅方向中央寄りとなる 側を言い、図 1の上、図 3— 6の右。反対に車両の幅方向外寄りとなる側を外と言い、 図 1の下、図 3— 6の左。但し、内外方向は、 自動車の懸架装置の構造等に応じて適 宜設計的に選択する。)開口部には、シールリング 6を構成する芯金 7を内嵌固定し ている。即ち、この芯金 7の外周縁部に形成した円筒部 8を上記ハブ 3の開口部に、 締まり嵌めにより内嵌している。そして、この芯金 7の内側面に、ゴム等の弹性材製の シール材 9を結合支持し、更にこのシール材 9の内側面にエンコーダ 10を結合支持 している。このエンコーダ 10は永久磁石により構成され、 S極と N極とを円周方向に 亙って交互に配置した円環状に造られている。
[0005] 一方、上記 1対の内輪 1のうち、内側の内輪 1の内端部には、金属板を絞り成形して 成る保持環 11を外嵌固定している。上記シールリング 6を構成するシール材 9に設け られた複数のシールリップ 12の先端縁は、この保持環 11の内外両周面及び外側面 に摺接させて、上記玉 5設置部分に塵芥や雨水が進入するのを防止している。又、 上記保持環 11の一部にはセンサ 13を支持固定し、このセンサ 13の検出部を、上記 エンコーダ 10の内側面に対向させている。
[0006] 上述した様な回転速度検出装置付転がり軸受ユニットの場合、ハブ 3に固定された 車輪を、内輪 1を外嵌支持した車軸に対し、回転自在に支持できる。又、車輪と共に 上記ハブ 3が回転すると、このハブ 3に固定したエンコーダ 10の側面と対向したセン サ 13の出力が変化する。このセンサ 13の出力が変化する周波数は、車輪の回転速 度に比例する。従って、センサ 13の出力信号を図示しない制御器に入力すれば、上 記車輪の回転速度を求め、 ABSや TCSを適切に制御できる。
[0007] 又、図 6は、 日本特開平 9 - 203415号公報(特許文献 2)に記載された回転速度検 出装置付転がり軸受ユニットを示している。本例の場合、上述した従来構造の第 1例 の場合とは逆に、外周面に回転軌道面である内輪軌道 2を形成した、それぞれが回 転輪である内輪 1は、使用時に回転する車軸に外嵌固定される。これら各内輪 1の周 囲に、使用時にも回転しない固定輪である外輪 14を、上記各内輪 1と同心に配置し ている。そして、この外輪 14の内周面に形成した、固定軌道面である外輪軌道 4と上 記各内輪軌道 2との間に、転動体である複数個の玉 5を設けて、上記外輪 14の内側 に各内輪 1を、回転自在に支持している。
[0008] 上記外輪 14の内端部内周面と内方の内輪 1の内端部外周面との間には組み合わ せシールリング 15を設けて、上記外輪 14の内周面と上記内輪 1の外周面との間に存 在する空間の内端開口部を塞いでいる。又、上記外輪 14の外端部内周面と外方の 内輪 1の外端部外周面との間には別の組み合わせシールリング 16を設けて、上記外 輪 14の内周面と上記内輪 1の外周面との間に存在する空間の外端開口部を塞いで レ、る。上記 2組の組み合わせシールリング 15、 16のうち、内方に設けられた組み合わ せシールリング 15を構成するスリンガ 17の内側面に、永久磁石製のエンコーダ 10a を添設している。そして、このエンコーダ 10aの内側面に、懸架装置を構成する保持 ケース 18に支持した、センサ 13aの検出部を対向させている。この様な従来構造の 第 2例の場合、このセンサ 13aにより、図示しない車軸と共に回転する上記内輪 1の 回転速度を検出して、 ABSや TCSを適切に制御できる。尚、図 6は、非独立懸架式 の懸架装置に車輪を支持する構造を示しているが、独立懸架式の懸架装置に車輪 を支持する転がり軸受ユニットに就いても、 日本特開平 11—23596号公報等に記載 されて従来から知られてレ、る。
[0009] 特許文献 1 :特開平 6 - 281018号公報
特許文献 2:特開平 9 - 203415号公報
特許文献 3:米国特許第 4948277号明細書
特許文献 4:特開平 11 - 23596号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述の様な各特許文献に記載された従来構造の場合、転がり軸受ユニットの構成 部材の残留磁気の影響に就いて特に考慮していない。これに対して、この転がり軸 受ユニットの各構成部材は、軸受鋼等の磁性金属により造る場合が殆どである。この 為、これら各構成部材の残留磁気によって、センサ 13、 13aによるエンコーダ 10、 10 aの回転速度検出の信頼性を確保する為に要するコストが嵩む可能性がある。
[0011] 例えば、上記各構成部材の一部分の残留磁束密度が高くなり、当該部分の残留磁 気に基づいて流れる磁束と、上記エンコーダ 10、 10aの被検出面(内側面)から出る 磁束との方向が同じで互いに重なった場合を考えてみる。この場合には、上記セン サ 13、 13aの検出部に達する磁束の密度力 図 2 (B)に示す様に、上記エンコーダ 1 0、 10aの被検出面の円周方向の一部で他の部分よりも高くなる。又、図示はしない 力 残留磁気に基づいて流れる磁束と、上記エンコーダ 10、 10aの被検出面(内側 面)から出る磁束との方向が逆で互いに重なった場合には、上記センサ 13、 13aの 検出部に達する磁束の密度力 上記エンコーダ 10、 10aの被検出面の円周方向の 一部で他の部分よりも低くなる。
[0012] この様に、上記各構成部材の一部分の残留磁気に基づいて、上記センサ 13、 13a の検出部に達する磁束の密度が、上記エンコーダ 10、 10aの被検出面から出る磁束 の密度とは別の要件で変化すると、このエンコーダ 10、 10aの回転速度検出の信頼 性確保が難しくなる。具体的には、上記センサ 13、 13aの検出信号の強さに関する 閾値を厳密に規制する必要が生じ、このセンサ 13、 13aの信号を処理する為の制御 器のコストが嵩む。
本発明のエンコーダ付転がり軸受ユニットとその製造方法は、この様な事情に鑑み て発明したものである。
課題を解決するための手段
[0013] 本発明のエンコーダ付転がり軸受ユニットは、使用時にも回転しない磁性材製の固 定輪と、使用時に回転する磁性材製の回転輪と、この回転輪に形成された回転軌道 面と上記固定輪に形成された固定軌道面との間に配置された複数の転動体と、上記 回転輪の一部にこの回転輪と同心に支持されたエンコーダとを備える。そして、この エンコーダは、円周方向に関して S極と N極とを交互に配置した円環状の多極磁石 を備えたものである。
[0014] 特に、上記エンコーダ付転がり軸受ユニットに於いては、上記固定輪及び上記回 転輪を含む、転がり軸受ユニットを構成する磁性材製の部材は、上記エンコーダを上 記回転輪に支持する以前に脱磁されたものである。
[0015] そして、好ましくは、上記転がり軸受ユニットを構成する磁性材製の部材の脱磁後 の磁束密度は、単体で 0. 5mT (5G)以下、転がり軸受ユニットとして組み立てた状 態で 2mT (20G)以下である。
[0016] 更に好ましくは、エンコーダの被検出面から出る磁束の密度が lOmT (lOOG)以上 とする。
[0017] 又、本発明のエンコーダ付転がり軸受ユニットの製造方法の一態様は、上述の様な エンコーダ付転がり軸受ユニットを造る為、このエンコーダ付転がり軸受ユニットを構 成する各部材を脱磁した後、これら各部材を組み立てて転がり軸受ユニットとし、次 いで、この転がり軸受ユニットの回転輪にエンコーダを組み付ける。
[0018] 更に、本発明のエンコーダ付転がり軸受ユニットの製造方法の別態様は、上述の 様なエンコーダ付転がり軸受ユニットを造る為、構成各部材を組み立てて転がり軸受 ユニットを構成した後、この転がり軸受ユニットを脱磁し、次いで、この転がり軸受ュニ ットの回転輪にエンコーダを組み付ける。
発明の効果
[0019] 上述の様に構成される本発明のエンコーダ付転がり軸受ユニットにより、車輪を回 転自在に支持すると共に、センサとの組み合わせにより回転輪に固定された車輪の 回転速度を検出する際の作用は、前述した従来の回転速度検出装置付転がり軸受 ユニットを構成するエンコーダ付転がり軸受ユニットと同様である。
[0020] 特に、本発明のエンコーダ付転がり軸受ユニットの場合、磁性材製の部材を含んで 構成される転がり軸受ユニットから出る磁束の密度を低く抑えられる。この為、ェンコ 一ダの被検出面と対向する状態で設けられたセンサの検出部に達する磁束の密度 を安定させる(エンコーダの被検出面から出る磁束密度に応じた大きさにする)事が できる。この結果、上記センサの検出信号の強さに関する閾値を厳密に規制しなくて も、回転輪の回転速度を正確に測定できる。
発明を実施するための最良の形態
[0021] 図 1は、本発明の実施の形態の第 1例を示している。図面に表れる構造に就いては
、前述の図 6に示した、従来構造の第 2例と同様であるから、同等部分には同一符号 を付して、重複する説明を省略し、以下、本発明の特徴部分を中心に説明する。
[0022] 本例の場合、先ず、図 1 (A)に示す様に、転がり軸受ユニットを構成する内輪 1等、 磁性材製の各構成部材を脱磁し、これら各構成部材の残留磁束の密度を 0. 5mT 以下にする。
[0023] 次いで、それぞれの残留磁束の密度が 0. 5mT以下である各構成部材、即ち、 1対 の内輪 1、外輪 14、複数個の玉 5、一方のシールリングリング 35を組み合わせて、図 1 (B)に示す様な転がり軸受ユニットとする。この状態で、この転がり軸受ユニット全体 としての残留磁束の密度を、 2mT以下に抑える。
[0024] そして、最後に、永久磁石製のエンコーダ 10bを装着した組み合わせシールリング リング 15を、上記内輪 1と上記外輪 14との間に装着する。
[0025] 尚、脱磁処理は、必ずしも上記各構成部材毎に行なう必要はなレ、。脱磁処理を施 していないこれら各構成部材を組み立てて転がり軸受ユニットとした状態で、この転 力 ^軸受ユニットに脱磁処理を施す事もできる。この場合でも、この転がり軸受ュニッ ト全体としての残留磁束の密度を、 2mT以下に抑える。
[0026] 上述の様に構成され組み立てられる本例のエンコーダ付転がり軸受ユニットの場合 、それぞれが磁性材製の部材である、上記各 1対の内輪 1と上記外輪 14と上記各玉 5とにより構成される転がり軸受ユニットから出る磁束の密度を低く抑えられる。この為 、図 2 (A)に示す様に、上記エンコーダ 10bの被検出面と対向する状態で設けられた センサ 13a (図 6参照)の検出部に達する磁束の密度を安定させる事ができる。
[0027] 即ち、上記転がり軸受ユニットから出る磁束力 上記エンコーダ 10bの被検出面か ら出る磁束に足されたり、或はこの被検出面から出る磁束を打ち消したりする事がな レ、か、あってもその程度が低い為、上記センサ 13の検出部に達する磁束の密度を、 上記エンコーダ 10bの被検出面から出る磁束の密度に応じた大きさにする事ができ る。この結果、上記センサ 13の検出信号の強さに関する閾値を厳密に規制しなくて も、回転輪である上記各内輪 1の回転速度を正確に測定できる。
[0028] より具体的に述べれば、自動車の車輪の回転速度を検出する為の回転速度検出 装置を構成するエンコーダ 10bの被検出面から出る磁束の密度は lOmT (lOOG)以 上、一般的には 150mT(1500G)程度ある。従って、上記エンコーダを支持する内 輪 1の残留磁束密度が 0. 5mT程度、更にはこの内輪 1を含む転がり軸受ユニットの 残留磁束密度が 2mT程度あっても、この残留磁束により上記被検出面から出る磁束 の密度が受ける影響を僅少に抑えられる。この為、上記センサ 13aの出力信号の変 化量 (振幅)をほぼ一定にできて、上記各内輪 1の回転速度を正確に測定する為の 処理が容易になる。
[0029] 次に、図 3— 4は、本発明の実施の形態の第 2— 3例を示している。上述した第 1例 力 非独立懸架式の懸架装置に車輪を支持する為の転がり軸受ユニットに本発明を 適用しているのに対して、これら各例の場合には、独立懸架式の懸架装置に車輪を 支持する為の転がり軸受ユニットに本発明を適用する場合に就いて示している。
[0030] 先ず、図 3に示した第 2例のうち、図面に表れる基本構造は、 日本特開平 11 - 235 96号公報に記載された構造と同じである。本例の場合、転がり軸受ユニットは、外輪 14aの内径側にハブ本体 19と内輪 laとから成るハブ 3aを回転自在に支持して成る。 このハブ本体 19の外端部の外周面には車輪を取り付ける為の回転側フランジ 20を 、中間部外周面には第一の内輪軌道 2aを、それぞれ設けている。又、上記内輪 la は、その外周面に第二の内輪軌道 2bを有し、上記ハブ本体 19の内端寄り部分に形 成され、上記第一の内輪軌道 2aを設けた部分よりも外径寸法が小さくなつた、段部 2 1に外嵌している。又、上記外輪 14aの内周面に、上記第一の内輪軌道 2aに対向す る第一の外輪軌道 4a及び上記第二の内輪軌道 2bに対向する第二の外輪軌道 4bを 、外周面に上記外輪 14aを懸架装置に支持する為の固定側フランジ 22を、それぞれ 形成している。そして、上記第一、第二の内輪軌道 2a、 2bと上記第一、第二の外輪 軌道 4a、 4bとの間に、転動体である玉 5をそれぞれ複数個ずつ配置し、上記外輪 14 aの内径側に上記ハブ 3aを回転自在に支持している。尚、上記内輪 laを上記段部 2 1に外嵌した状態で、上記ハブ本体 19の内端部に形成した雄ねじ部にナット 23を螺 合して、上記内輪 laを抑え付け、この内輪 l aと上記ハブ本体 19との分離防止を図つ ている。
[0031] 又、上記外輪 14aの内端(図 3の右端)開口部は、カバー 24により塞いでいる。この カバー 24は、合成樹脂を射出成形して成る有底円筒状の本体 25と、この本体 25の 開口部に結合した嵌合筒 26とから成る。この嵌合筒 26は、その基端部を上記本体 2 5の射出成形時にモールドする事により、この本体 25の開口部に結合している。この 様に構成するカバー 24は、上記嵌合筒 26の先半部(図 3の左半部)を上記外輪 14a の内端部に、締まり嵌めで外嵌固定する事により、この外輪 14aの内端開口部を塞 いでいる。
[0032] 又、上記ハブ本体 19の内端部に外嵌固定した内輪 laの内端部外周面で前記第 二の内輪軌道 2bから外れた部分に、永久磁石製のエンコーダ 10cを、磁性金属板 製の支持環 27を介して支持している。この支持環 27は、 SPCC等の磁性金属板を 折り曲げる事により、断面 L字形で全体を円環状に形成し、上記内輪 laの内端部に 締まり嵌めで外嵌固定している。又、上記エンコーダ 10cは、例えばフェライト粉末を 混入したゴムを上記支持環 27を構成する円輪部の内側面に、焼き付け等により添着 して成る。このエンコーダ 10cは、軸方向(図 5の左右方向)に着磁すると共に、着磁 方向を円周方向に亙り交互に且つ等間隔で変化させている。従って、被検知部であ る、上記エンコーダ 10cの内側面には、 S極と N極とが円周方向に亙り交互に且つ等 間隔で配置されている。
[0033] 又、上記カバー 24を構成する本体 25の一部で上記エンコーダ 10cの内側面と対 向する部分には、揷入孔 28を、上記本体 25を貫通させる状態で、上記外輪 1の軸方 向に亙り形成している。そして、この揷入孔 28内に、センサ 29 (検出素子等を合成樹 脂中に包埋して成るセンサユニットを含む)の検知部を揷入し、係止ばね 30により抑 え付けている。上記センサ 29は、ホール素子、磁気抵抗素子 (MR素子)等、磁束の 流れ方向に応じて特性を変化させる磁気検出素子並びにこの磁気検出素子の出力 波形を整える為の波形整形回路を組み込んだ ICと、上記エンコーダ 10cから出る( 或は上記エンコーダ 10cに流れ込む)磁束を上記磁気検出素子に導く為の、磁性材 製のポールピース等とを、合成樹脂中に包坦して成る。
[0034] 上述の様な回転速度検出装置付転がり軸受ユニットの使用時には、前記外輪 14a の外周面に固設した固定側フランジ 22を懸架装置に対して、図示しないボルトにより 結合固定すると共に、前記ハブ本体 19の外周面に固設した回転側フランジ 20に車 輪を、この回転側フランジ 20に設けたスタッド 31により固定する事で、上記懸架装置 に対して上記車輪を回転自在に支持する。この状態で車輪が回転すると、上記セン サ 29の検知部の端面近傍を、前記エンコーダ 10cの内側面に存在する N極と S極と が交互に通過する。この結果、上記センサ 29内を流れる磁束の方向が変化し、この センサ 29の出力が変化する。この様にしてセンサ 29の出力が変化する周波数は、 上記車輪の回転数に比例する。従って、上記センサ 29の出力を図示しない制御器 に送れば、 ABSや TCSを適切に制御できる。
[0035] この様な構造を有するエンコーダ付転がり軸受ユニットに本発明を適用する場合、 転がり軸受ユニットを構成する磁性材製の各部材、即ち、内輪 la、ハブ本体 19、外 輪 14a、玉 5、ナット 23、嵌合筒 26の残留磁束の密度を、それぞれ 0. 5mT以下に低 減する脱磁処理を施す。そして、転がり軸受ユニット全体としての残留磁束の密度を 2mT以下に抑える。脱磁処理を施していないこれら上記各構成部材を組み立てて 転がり軸受ユニットとした状態で、この転がり軸受ユニットに脱磁処理を施しても良い 事は、前述した第 1例の場合と同様である。
[0036] 何れにしても、上記エンコーダ 10cを添着した前記支持環 27は、残留磁束の密度 を 2mT以下に抑えた転がり軸受ユニットの内輪 laに外嵌固定する。
[0037] この様な本例の場合も、上記エンコーダ 10cから出て上記センサ 29の検出部に達 する磁束の密度を安定させ、信頼性の高い回転速度検出を低コストで行なえる。
[0038] 次に、図 4に示した、本発明の実施の形態の第 3例に就いて説明する。上述した第 2例が、従動輪 (FR車及び RR車の前輪、 FF車の後輪)を支持する為の構造に関す るものであるのに対して、本例は、駆動輪 (FR車及び RR車の後輪、 FF車の前輪、 4 WD車の全輪)を支持する為の構造に関する。この為に本例の場合には、ハブ本体 19aの中心部に、等速ジョイントに付属のスプライン軸を係合させる為のスプライン孔 32を設けている。又、上記ハブ本体 19aの内端部に形成したかしめ部 33により、この ハブ本体 19aの内端部に外嵌した内輪 laを抑え付けている。
[0039] 又、外輪 14aの外端部に内嵌固定したシールリング 34により、この外輪 14aの外端 部内周面と上記ハブ本体 19aの中間部外周面との間の隙間を塞いでいる。又、この 外輪 14aの内端部内周面と上記内輪 laの内端部外周面との間を、前述した第 1例と 同様の組み合わせシールリング 15により塞いでいる。そして、この組み合わせシール リング 15を構成するスリンガ 17の内側面に、永久磁石製のトーンホイール 10bを添 着している。更に、このトーンホイール 10bの内側面に、ナックル等の懸架装置の一 部に支持したセンサ 29aの検出部を対向させる様にしている。
[0040] この様な構造を有するエンコーダ付転がり軸受ユニットに本発明を適用する場合も 、転がり軸受ユニットを構成する磁性材製の各部材、即ち、内輪 la、ハブ本体 19a、 外輪 14a、玉 5の残留磁束の密度を、それぞれ 0. 5mT以下に低減する脱磁処理を 施す。そして、転がり軸受ユニット全体としての残留磁束の密度を 2mT以下に抑える 。脱磁処理を施していないこれら上記各構成部材を組み立てて転がり軸受ユニットと した状態で、この転がり軸受ユニットに脱磁処理を施しても良い事は、前述した第 1一 2例の場合と同様である。
[0041] 何れにしても、上記エンコーダ 10bを添着したスリンガ 17を含む上記組み合わせシ ールリング 15は、残留磁束の密度を 2mT以下に抑えた転がり軸受ユニットの内輪 la に外嵌固定する。
[0042] この様な本例の場合も、上記エンコーダ 10bから出て上記センサ 29aの検出部に 達する磁束の密度を安定させ、信頼性の高い回転速度検出を低コストで行なえる。 産業上の利用の可能性
[0043] 本発明のエンコーダ付転がり軸受ユニットとその製造方法は、以上に述べた通り構 成され作用するが、信頼性の高い回転速度検出を低コストで行なえる為、 ABSや T CS等、各種車両の運行安定化の為の装置の装置の普及並びに高性能化に寄与で きる。
図面の簡単な説明
[0044] [図 1]図 1は、本発明の実施の形態の第 1例を、組立工程順に示す断面図である。
[図 2]図 2は、エンコーダから出てセンサの検出部に達する磁束の密度の状態の 2例 を示す線図である。
[図 3]図 3は、本発明の実施の形態の第 2例を示す断面図である。
[図 4]図 4は、本発明の実施の形態の第 3例を示す断面図である。
[図 5]図 5は、従来構造の第 1例を示す部分断面図である。
[図 6]図 6は、従来構造の第 2例を示す断面図である。
符号の説明
[0045] 1、 la 内輪
2、 2a、 2b 内輪軌道
3、 3a ハブ
4、 4a、4b 外輪軌道
5 玉
6 シーノレリング
7 芯金 円筒部
シール材
、 10a、 10b、 10c エンコーダ 保持環
シールリップ
、 13a, 13b センサ 、 14a 外輪
、 16 組み合わせシールリング スリンガ
保持ケース
、 19a ハブ本体
回転側フランジ
段部
固定側フランジ
ナット
カバー
本体
嵌合筒
支持環
挿入孔
、 29a センサ
係止ばね
スタッド
スプライン孑し
かしめ部
シールリング
シールリング

Claims

請求の範囲
[1] 使用時にも回転しない磁性材製の固定輪と、使用時に回転する磁性材製の回転輪 と、この回転輪に形成された回転軌道面と上記固定輪に形成された固定軌道面との 間に配置された複数の転動体と、上記回転輪の一部にこの回転輪と同心に支持され たエンコーダとを備え、このエンコーダは、円周方向に関して S極と N極とを交互に配 置した円環状の多極磁石を備えたものであるエンコーダ付転がり軸受ユニットに於い て、上記固定輪及び上記回転輪を含む、転がり軸受ユニットを構成する磁性材製の 部材は、上記エンコーダを上記回転輪に支持する以前に脱磁されたものである事を 特徴とするエンコーダ付転がり軸受ユニット。
[2] 転がり軸受ユニットを構成する磁性材製の部材の脱磁後の磁束密度は、単体で 0. 5 mT以下、転がり軸受ユニットとして組み立てた状態で 2mT以下である、請求項 1に 記載したエンコーダ付転がり軸受ユニット。
[3] エンコーダの被検出面から出る磁束の密度が 10mT以上である、請求項 1一 2の何 れかに記載したエンコーダ付転がり軸受ユニット。
[4] 請求項 1一 3の何れかに記載したエンコーダ付転がり軸受ユニットを造る為、このェン コーダ付転がり軸受ユニットを構成する各部材を脱磁した後、これら各部材を組み立 てて転がり軸受ユニットとし、次いで、この転がり軸受ユニットの回転輪にエンコーダ を組み付ける、エンコーダ付転がり軸受ユニットの製造方法。
[5] 請求項 1一 3の何れかに記載したエンコーダ付転がり軸受ユニットを造る為、構成各 部材を組み立てて転がり軸受ユニットを構成した後、この転がり軸受ユニットを脱磁し 、次いで、この転がり軸受ユニットの回転輪にエンコーダを組み付ける、エンコーダ付 転がり軸受ユニットの製造方法。
PCT/JP2004/008193 2003-06-24 2004-06-11 エンコーダ付転がり軸受ユニット及びその製造方法 WO2004113751A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/536,892 US20070041673A1 (en) 2003-06-24 2004-06-11 Rolling bearing unit with encoder and its manufacturing method
EP04745787A EP1669620A4 (en) 2003-06-24 2004-06-11 BALL BEARING COMPRISING AN ENCODER AND METHOD OF MANUFACTURING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003178994A JP2005016569A (ja) 2003-06-24 2003-06-24 エンコーダ付転がり軸受ユニット及びその製造方法
JP2003-178994 2003-06-24

Publications (1)

Publication Number Publication Date
WO2004113751A1 true WO2004113751A1 (ja) 2004-12-29

Family

ID=33535041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008193 WO2004113751A1 (ja) 2003-06-24 2004-06-11 エンコーダ付転がり軸受ユニット及びその製造方法

Country Status (6)

Country Link
US (1) US20070041673A1 (ja)
EP (1) EP1669620A4 (ja)
JP (1) JP2005016569A (ja)
KR (1) KR20050085616A (ja)
CN (1) CN100538096C (ja)
WO (1) WO2004113751A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269347A1 (en) * 2006-01-20 2010-10-28 Yoshito Takada Rolling bearing system for vehicles
US7928726B2 (en) * 2008-03-25 2011-04-19 Ntn Corporation Rotation sensor unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868525B1 (fr) * 2004-04-05 2006-06-09 Hutchinson Sa Codeur pour arbre, dispositif comprenant un tel codeur et procede de fabrication d'un tel codeur
CN100429416C (zh) * 2006-03-28 2008-10-29 中国矿业大学 疏水磁性润滑的轴承
JP5086003B2 (ja) * 2007-08-28 2012-11-28 Ntn株式会社 回転センサユニット
DE102010013214A1 (de) * 2010-03-29 2011-09-29 Schaeffler Technologies Gmbh & Co. Kg Radlageranordnung mit Sensoranschlag
JP5686000B2 (ja) * 2011-03-14 2015-03-18 日本精工株式会社 エンコーダ付転がり軸受ユニットの製造方法
CN104455038B (zh) * 2014-12-16 2017-01-18 黑龙江大学 用于球轴承自动装配机的外环测量装置上的悬挂部件
CN105526269B (zh) * 2016-02-01 2017-12-26 常州东风轴承有限公司 一种双列角接触球轴承的装球方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234621A (ja) * 1988-03-11 1989-09-19 Chubu Electric Power Co Inc ベアリングの嵌装方法
US4948277A (en) 1989-01-20 1990-08-14 The Torrington Company Rotating seal with integrated magnetic encoder for a bearing with information sensors
JPH06281018A (ja) 1993-01-19 1994-10-07 Snr Roulements コーダ内蔵密閉構造
JPH08211081A (ja) * 1994-08-11 1996-08-20 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
JPH09203415A (ja) 1996-01-26 1997-08-05 Nippon Seiko Kk トーンホイール付転がり軸受ユニット
JPH1123596A (ja) 1997-03-31 1999-01-29 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
JP2001242187A (ja) * 2000-03-01 2001-09-07 Ntn Corp 磁気エンコーダ、車輪用軸受および磁気エンコーダの製造方法
JP2002318239A (ja) * 2001-04-24 2002-10-31 Ntn Corp 車輪軸受用磁気エンコーダの着磁方法および着磁装置
JP2002365303A (ja) * 2001-06-08 2002-12-18 Nsk Ltd 回転速度検出装置付車輪用回転支持装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922681A (en) * 1957-11-26 1960-01-26 Gen Motors Corp Antifriction bearings
US3251117A (en) * 1964-10-20 1966-05-17 Massachusetts Inst Technology Bearing pre-run process
US4054333A (en) * 1976-08-05 1977-10-18 Esmond William G Bearing unit
US5491632A (en) * 1994-05-26 1996-02-13 General Motors Corporation Rotary encoder with neutral position
JP3312531B2 (ja) * 1994-07-18 2002-08-12 日本精工株式会社 回転速度検出装置付ハブユニット
JP3189624B2 (ja) * 1994-08-11 2001-07-16 日本精工株式会社 回転速度検出装置付転がり軸受ユニット
US5670874A (en) * 1995-03-16 1997-09-23 Nsk Ltd. Rolling bearing unit with rotating speed sensor having peripherally facing annular tone wheel and sensor
DE69815739T2 (de) * 1997-03-31 2004-04-22 Nsk Ltd. Kugellager mit Drehzahlsensor
GB2330417B (en) * 1997-10-17 1999-09-08 Nsk Ltd Rolling bearing unit with rotational speed sensor
IT1305082B1 (it) * 1998-12-24 2001-04-10 Skf Ind Spa Ruota fonica per un cuscinetto volvente.
JP3862453B2 (ja) * 1999-09-10 2006-12-27 Ntn株式会社 車輪軸受装置
JP2004117318A (ja) * 2002-09-30 2004-04-15 Ntn Corp 回転センサ付軸受およびこれを用いたモータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234621A (ja) * 1988-03-11 1989-09-19 Chubu Electric Power Co Inc ベアリングの嵌装方法
US4948277A (en) 1989-01-20 1990-08-14 The Torrington Company Rotating seal with integrated magnetic encoder for a bearing with information sensors
JPH06281018A (ja) 1993-01-19 1994-10-07 Snr Roulements コーダ内蔵密閉構造
JPH08211081A (ja) * 1994-08-11 1996-08-20 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
JPH09203415A (ja) 1996-01-26 1997-08-05 Nippon Seiko Kk トーンホイール付転がり軸受ユニット
JPH1123596A (ja) 1997-03-31 1999-01-29 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
JP2001242187A (ja) * 2000-03-01 2001-09-07 Ntn Corp 磁気エンコーダ、車輪用軸受および磁気エンコーダの製造方法
JP2002318239A (ja) * 2001-04-24 2002-10-31 Ntn Corp 車輪軸受用磁気エンコーダの着磁方法および着磁装置
JP2002365303A (ja) * 2001-06-08 2002-12-18 Nsk Ltd 回転速度検出装置付車輪用回転支持装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1669620A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269347A1 (en) * 2006-01-20 2010-10-28 Yoshito Takada Rolling bearing system for vehicles
US8539676B2 (en) * 2006-01-20 2013-09-24 Jtekt Corporation Rolling bearing system for vehicles
US7928726B2 (en) * 2008-03-25 2011-04-19 Ntn Corporation Rotation sensor unit

Also Published As

Publication number Publication date
EP1669620A4 (en) 2006-10-11
KR20050085616A (ko) 2005-08-29
CN1720400A (zh) 2006-01-11
US20070041673A1 (en) 2007-02-22
EP1669620A1 (en) 2006-06-14
CN100538096C (zh) 2009-09-09
JP2005016569A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3968857B2 (ja) 回転速度検出部のシール構造
US7126328B2 (en) Rolling bearing unit with rotational speed detecting device
JP4857485B2 (ja) エンコーダ付車輪用回転支持装置
JP3580002B2 (ja) 回転速度検出装置付転がり軸受ユニット
JP2005042866A5 (ja)
US5938346A (en) Rolling bearing unit with rotating speed sensor
JP3656530B2 (ja) エンコーダ付組み合わせシールリングとこれを組み込んだ車輪支持用転がり軸受ユニット
WO2004113751A1 (ja) エンコーダ付転がり軸受ユニット及びその製造方法
JP2004354299A (ja) 回転速度センサ内蔵軸受装置
JP3497351B2 (ja) エンコーダ付転がり軸受ユニット
WO2008075456A1 (ja) センサホルダおよびこれを内蔵した回転速度検出装置付き車輪用軸受装置
JP3624494B2 (ja) トーンホイール付転がり軸受ユニット
JPH1048230A (ja) 軸受組立体
JP3427829B2 (ja) エンコーダ付転がり軸受ユニット
JP2003307229A (ja) パルス生成環内蔵軸受およびハブユニット軸受
JP2003130069A (ja) エンコーダ付駆動輪用転がり軸受ユニット
JP2009002385A (ja) 回転速度検出装置付き車輪用軸受装置
JP4742796B2 (ja) 回転検出装置付転がり軸受ユニット
JP4656917B2 (ja) 回転速度検出装置付車輪用軸受装置
WO2004085972A1 (ja) エンコーダ付転がり軸受ユニット及びその製造方法
JP4622185B2 (ja) エンコーダ及びエンコーダ付転がり軸受ユニット
JP2001194376A (ja) 回転速度検出装置付転がり軸受ユニット
JP2004354102A (ja) エンコーダ及びエンコーダ付転がり軸受ユニット
JP2002122445A (ja) エンコーダ及びエンコーダ付転がり軸受ユニット
JPH1151950A (ja) 回転速度検出装置付転がり軸受ユニット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004745787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057010773

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048016663

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057010773

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007041673

Country of ref document: US

Ref document number: 10536892

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10536892

Country of ref document: US