KR20090020711A - 무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법 - Google Patents

무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법 Download PDF

Info

Publication number
KR20090020711A
KR20090020711A KR1020097002092A KR20097002092A KR20090020711A KR 20090020711 A KR20090020711 A KR 20090020711A KR 1020097002092 A KR1020097002092 A KR 1020097002092A KR 20097002092 A KR20097002092 A KR 20097002092A KR 20090020711 A KR20090020711 A KR 20090020711A
Authority
KR
South Korea
Prior art keywords
ball
transmission
input
idler
output
Prior art date
Application number
KR1020097002092A
Other languages
English (en)
Other versions
KR100948685B1 (ko
Inventor
도날드 씨 밀러
데이비드 제이 앨런
로버트 에이 스미스손
Original Assignee
폴브룩 테크놀로지즈 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 폴브룩 테크놀로지즈 인크 filed Critical 폴브룩 테크놀로지즈 인크
Publication of KR20090020711A publication Critical patent/KR20090020711A/ko
Application granted granted Critical
Publication of KR100948685B1 publication Critical patent/KR100948685B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6649Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/08Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving eccentrically- mounted or elliptically-shaped driving or driven wheel; with expansible driving or driven wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/26Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution
    • F16H15/28Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution with external friction surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/40Gearings providing a continuous range of gear ratios in which two members co-operative by means of balls, or rollers of uniform effective diameter, not mounted on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/503Gearings providing a continuous range of gear ratios in which two members co-operate by means of balls or rollers of uniform effective diameter, not mounted on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/52Gearings providing a continuous range of gear ratios in which a member of uniform effective diameter mounted on a shaft may co-operate with different parts of another member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/101Power split variators with one differential at each end of the CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0853CVT using friction between rotary members having a first member of uniform effective diameter cooperating with different parts of a second member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/067Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions mechanical actuating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49464Assembling of gear into force transmitting device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/65Means to drive tool

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)
  • Steroid Compounds (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명에 따르면, 복수개의 경사사볼(1), 입력디스크(34) 및 출력디스크(101)를 구비하는 변속트랜스미션은 그 변속비의 범위에 걸쳐 무한한 속도조합을 제공하는 것을 설명하고 제안한다. 유성기어장치의 사용은 최소속도가 역으로 되도록 하고, 트랜스미션의 독특한 기하학적 구성은 모든 동력경로를 동축을 이루도록 하여 유사한 변속비 범위를 달성하는 트랜스미션에 비하여 트랜스미션의 전체 크기 및 복잡성을 감소시킨다.
트랜스미션, 경사볼, 입력디스크, 출력디스크, 변속비, 속도조합, 아이들러

Description

무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법{SHIFT GUIDE OF A CONTINUOUSLY VARIABLE TRANSMISSION AND METHOD OF DETERMINING A CURVE FOR A SHIFT GUIDE}
본 발명은 크게 트랜스미션(transmission)에 관한 것으로, 보다 상세하게는 연속가변식 트랜스미션에 관한 것이다.
연속가변식 트랜스미션(continuously variable transmission)을 제공하기 위하여, 토크입력디스크(torque input disc)와 토크출력 디스크 사이의 하우징에 지지되는 마찰롤러(traction roller)를 통해 동력이 전달되는 다양한 마찰롤러방식 트랜스미션이 개발되었다. 이러한 트랜스미션에서, 상기 마찰롤러는 지지 구조체에 장착되어, 피벗(pivot)시 요구되는 변속비(transmission ratio)에 따라 변화하는 직경(varying diameter)의 써클(circle)형태로 상기 마찰롤러는 토크 디스크와 결합된다.
그러나 이러한 종래의 해결방식에서의 성과는 한계가 있다. 예를 들면, 그 해결방안의 하나로, 가변가능하도록 조절가능한 변속비를 갖는 차량용 구동허브(driving hub)가 제안되었다. 이러한 방법은 두 개의 이리스 플레이트(iris plate)의 사용을 제안하고 있는데, 마찰롤러의 각 측면 상의 하나의 이리스 플레이트는 상기 마찰롤러의 각 회전축을 틸팅(tilting)시킨다. 그러나 이러한 이리스 플레이트의 사용은 트랜스미션이 변속하는 동안 그 이리스 플레이트를 조절하기 위하여 요구되는 매우 많은 부품들로 인하여 매우 복잡해 질 수 있다. 이러한 트랜스미션을 갖는 다른 어려움은 각 롤러에 대하여 고정되도록 구성되는 가이드링(guide ring)을 구비함으로 인한 것이다. 상기 가이드링이 고정되기 때문에, 각 마찰롤러의 회전축을 이동시키는 것은 어려움이 있다.
앞의 디자인보다 개선된 예로서, 입력디스크 및 출력디스크가 회전하는 샤프트(shaft)를 포함하는 것이다. 상기 입력디스크 및 출력디스크는 모두 샤프트에 장착되고, 상기 샤프트에 대하여 반경방향으로 등간격 배치되는 복수개의 볼(ball)과 접촉한다. 상기 볼은 두 디스크와 마찰접촉하며, 입력디스크로부터 출력디스크로 동력을 전달한다. 상기 샤프트 위에 동심으로 배치되고, 상기 볼들 사이에 배치되는 아이들러(idler)는 입력디스크와 출력디스크에 대한 마찰접촉을 제공하기 위하여 볼이 분리되도록 유지시키는 힘을 제공한다. 이러한 디자인에서의 해결방안의 한계는, 트랜스미션의 속도비가 변화됨에 따라, 볼에 대한 충분한 마찰접촉으로 입력디스크와 출력디스크를 유지시키도록 통상의 접촉력으로서 작용하는 축력(axial force)을 발생시키고 적절히 제어할 수 있는 수단을 구비하지 않고 있다는 것이다. 롤링 구동(rolling traction)의 연속가변식 트랜스미션은 변속마찰볼 상에서 구동 및 종동회전부재가 슬립(slip)되는 것을 방지하기 위하여 저속에서 보다 큰 축력을 필요로 하기 때문에, 고속비(high speed ratio) 및 입력속도와 출력속도가 동일한 때의 1:1 비율(1:1 ratio)에서 과도한 힘이 가해진다. 이러한 과도한 축력은 효율을 저하시키고, 적정량의 힘이 소정 특정 기어비에 대하여 가해지는 경우보다 변속이 현저히 빨라지지 못하게 된다. 또한 이러한 과도한 힘은 변속 전환을 보다 어렵게 하는 문제점이 있다.
따라서 상기의 제반 문제점을 해결하기 위하여 제안된 것으로, 본 발명은 변속비의 함수로서 제공되는 힘을 변화시키는 개선된 축방향 부하발생 시스템을 갖는 연속가변식 트랜스미션을 제공하는데 그 목적이 있다.
이하에서 나타내고 설명되는 시스템 및 방법은 여러 특징을 구비하는 것으로, 요구되는 특성에 대하여 전용적으로 적용되는 것만은 아니다. 이하의 설명에 의하여 표현된 범위로 한정되는 것은 아니며, 보다 중요한 특성에 대하여 개괄적으로 설명한다. 이러한 논점을 고려해 볼 때, 구체적이고 바람직한 실시예의 상세한 설명을 살펴보면, 본 시스템 및 방법이 종래의 시스템 및 방법보다 여러 작용효과를 어떻게 제공하는 것인지 이해할 수 있다.
제1관점에 있어서 제안된 연속가변식 트랜스미션은, 장축; 상기 장축의 둘레에 분산배치되고, 경사가능한 회전축을 구비하는 복수의 볼; 상기 볼에 접촉하는 회전입력디스크; 상기 입력디스크를 마주보며 상기 볼에 접촉하는 회전출력디스크; 상기 장축에 대하여 동축으로 실질적으로 일정한 외경을 구비하고, 상기 장축을 기준으로 한 반경방향에서 상기 각 볼의 내측에 위치하며, 상기 각 볼에 접촉하는 회전 아이들러; 및 상기 장축에 대하여 동축으로 장착되는 유성기어장치를 포함한다.
또한 상기 변속 트랜스미션의 실시예에서, 상기 볼은 둘 이상의 동력경로를 통하여 전달되는 토크성분에 의해 회전하도록 구성될 수 있다. 또한 다른 실시예로, 상기 아이들러 또는 출력디스크 중 적어도 하나는 상기 유성기어장치에 입력토크를 제공하도록 구성될 수 있다.
다른 관점에서 제안된 변속 트랜스미션에서, 상기 유성기어장치는, 상기 장축에 대하여 동축으로 장착되고, 반경방향 내측으로 향하는 기어치를 구비하는 링기어; 상기 링기어 내에서 상기 장축에 대하여 동축으로 분산배치되고, 상기 링기어와 치합되며, 상기 장축으로부터 반경방향으로 떨어져 위치하며 각각의 유성축에 대하여 회전되는 복수의 유성기어; 상기 유성기어에 의해 회전되는 복수의 유성샤프트; 상기 장축에 대하여 동축으로 장착되고, 상기 장축을 기준으로 한 반경방향으로 상기 복수의 유성기어의 내측에 구비되고, 상기 각 유성기어와 치합되는 태양기어; 및 상기 장축에 대하여 동축으로 장착되고, 상기 유성샤프트를 지지하는 유성캐리어를 포함한다.
또한 소정의 실시예에서, 상기 볼의 경사가능한 회전축을 정렬시키고, 상기 볼의 장축 둘레에서의 위치 및 장축 반경방향으로의 위치를 유지하도록 하는 케이지를 더 포함한다. 소정의 실시예로, 상기 유성캐리어에는 입력토크가 제공되고, 상기 유성캐리어는 상기 입력디스크와 결합되고, 상기 태양기어는 케이지와 결합되고, 상기 링기어는 고정되고 회전하지 않으며, 상기 출력디스크에 의하여 출력토크가 제공된다.
다른 관점에서, 상기 입력디스크, 상기 볼, 상기 아이들러 및 상기 출력디스크 사이에 마찰력을 증가시키는 축력을 발생시키도록 본 설명에서 제안된 트랜스미 션의 실시예와 함께 사용되기 위한 축력발생장치가 제안된다. 소정의 실시예로, 상기 축력발생장치에서 발생된 축력량은 변속비의 함수이다. 다른 실시예로, 상기 입력디스크, 상기 볼, 상기 출력디스크, 및 상기 아이들러 각각은 마찰증가코팅재료로 코팅된 접촉면을 구비한다. 소정의 실시형태에 있어 상기 코팅재료는 세라믹 또는 서멧(cermet) 재료로 이루어진다. 다른 실시형태로, 상기 코팅은, 질화규소, 탄화규소, 무전해 니켈, 전기도금 니켈 및 이들의 조합으로 이루어지는 그룹으로부터 선택된 재료로 이루어진다.
또 다른 관점에서 제안된 변속 트랜스미션은, 장축; 상기 장축의 둘레에 분산배치되고, 경사가능한 회전축을 구비하는 복수의 볼; 상기 볼에 접촉하는 회전입력디스크; 상기 입력디스크를 마주보며 상기 볼에 접촉하는 고정 출력디스크; 일정한 외경을 가지며, 상기 장축을 기준으로 한 반경방향에서 상기 각 볼의 내측에 위치하며, 상기 각 볼에 접촉하는 회전 아이들러; 상기 볼의 장축 반경방향으로의 위치 및 장축 방향으로의 정렬을 유지시키고, 상기 장축에 대하여 회전가능한 케이지; 및 상기 아이들러로부터의 출력토크를 제공받고, 출력토크를 변속기의 외부로 전달하도록 구성되는 아이들러 샤프트를 포함한다.
또 다른 관점에서 제안된 변속 트랜스미션은, 장축의 둘레에 분산배치되고, 경사가능한 회전축을 구비하는 복수의 제1 및 제2볼; 제1 및 제2회전입력디스크; 상기 장축과 동축을 이루고, 상기 제1 및 제2입력디스크에 연결되는 입력샤프트; 상기 제1 및 제2볼 사이에 위치하고, 상기 각 제1 및 제2볼에 접촉하는 회전출력디스크; 상기 장축을 기준으로 한 반경방향에서 상기 각 제1볼의 내측에 위치하고, 상기 각 제1볼에 접촉하는 제1원통형 아이들러; 및 상기 장축을 기준으로 한 반경방향에서 상기 각 제2볼의 내측에 위치하고, 상기 각 제2볼에 접촉하는 제2원통형 아이들러를 포함한다.
본 설명에서 제안된 여러 실시예와 함께 사용되기 위하여, 상기 입력디스크, 상기 출력디스크, 및 상기 복수개의 속도조절장치 사이에 접촉면을 증가시키기 위하여 축력을 작용시키는 축력발생장치가 제안되며, 상기 축력발생장치는, 상기 장축과 동축을 이루고, 상기 장축에 대하여 회전가능하며, 외경과 나사형성 구멍을 갖는 내경을 구비한 베어링디스크; 상기 베어링디스크의 일측에 부착되는 복수의 베어링디스크 주변램프; 상기 복수의 베어링디스크 주변램프에 결합되는 복수의 베어링; 상기 베어링에 결합되며, 상기 속도조절장치가 있는 쪽의 반대 쪽의 상기 입력디스크에 장착되는 복수의 입력디스크 주변램프; 상기 장축과 동축을 이루고, 장축에 대하여 회전가능하며, 장축의 외면을 따라 형성되고 상기 베어링디스크의 나사형성 구멍에 결합되는 수나사를 구비하는 복수의 원통형 스크류; 상기 스크류의 단부에 부착되는 복수의 중앙 스크류램프; 및 상기 입력디스크에 부착되고, 상기 복수의 중앙 스크류램프에 결합되는 복수개의 중앙 입력디스크램프를 포함한다.
다른 관점에서, 복수의 볼의 어느 일측에 입력디스크 및 출력디스크를 사용하는 롤링마찰 트랜스미션에서, 복수의 경사가능한 속도조절볼을 지지하고 위치결정하는 케이지가 제안되며, 상기 케이지는, 복수의 홈을 구비하는 제1 및 제2 편평 지지디스크; 상기 제1 및 제2 편평 지지디스크 사이에서 연장되고, 제1단부 및 제2단부를 구비하는 복수의 편평 지지스페이서; 및 각각 상기 지지스페이서의 제1단부 또는 제2단부에 결합되는 복수의 곡면부재를 포함하고, 상기 각 곡면부재는 곡면과 두 개의 측면을 구비하고, 상기 지지스페이서는, 상기 지지디스크의 홈 사이의 상기 지지디스크 둘레에 상기 곡면부재의 측면이 홈의 측면과 대체로 정렬하도록 위치한다.
또 다른 관점에서, 변속비 결정볼의 회전축을 형성하는 축을 경사시킴으로써 롤링마찰 트랜스미션의 변속비를 변화시키는 트랜스미션 변속비를 위한 지지레그가 제안되며, 상기 지지레그는, 장방형 몸체; 축 연결 단부; 상기 축 연결 단부에 대향하는 캠단부; 상기 볼을 향하는 전방측 및 상기 볼로부터 멀어지게 향하는 후방측; 및 상기 축 연결단부와 캠단부 사이의 중앙지지부를 포함하며, 상기 축 연결단부는 상기 축을 수용하도록 형성된 구멍을 구비하고, 상기 캠단부의 전방측에는 상기 구멍의 정렬을 제어하도록 보조하는 볼록하게 만곡된 캠기능면이 형성된다.
다른 관점에서, 각각 경사가능한 축에 대하여 회전가능한 복수개의 볼, 상기 복수개의 볼의 일측에 구비되고 그 각각의 볼과 접촉하는 입력디스크, 및 상기 복수개의 볼의 타측에 구비되고 그 각각의 볼과 접촉하는 출력디스크를 사용하는 변속 롤링마찰 트랜스미션에 사용되기 위한 유체펌핑볼이 제안되며, 상기 유체펌핑볼은, 상기 볼을 통과하는 원통형 내면을 형성하는 볼의 직경을 통해 형성되는 구멍을 구비한 구형볼; 및 상기 볼의 내면에 형성되고, 상기 볼을 통해 연장되는 적어도 하나의 헬리컬홈을 포함한다.
또 다른 관점에서, 직경구멍에 의하여 형성된 각 축을 구비하는 복수의 볼, 상기 복수의 볼의 일측에 구비되고 각각의 볼에 접촉하는 입력디스크, 및 상기 복 수의 볼의 타측에 구비되고 각각의 볼에 접촉하는 출력디스크를 사용하는 변속 롤링마찰 트랜스미션에 사용되는 유체펌핑축이 제안되며, 상기 유체펌핑축은 원통형축과 그 외측면에 형성되는 적어도 하나의 헬리컬홈을 가지며, 상기 원통형축은 상기 볼을 관통하는 구멍의 직경보다 작은 직경을 가지며, 제1단부와 제2단부 및 중간영역을 구비하며, 상기 각 볼의 관통구멍 내에 위치하며, 상기 제1단부 및 제2단부는 관통구멍 밖으로 연장되고, 상기 중간영역은 상기 볼의 관통 구멍 내에 위치하며, 상기 헬리컬홈은 상기 볼의 상기 원통형 축의 관통 구멍 바깥에 위치하는 부위에서 시작하여 상기 중간영역의 적어도 일부까지 연장되는 적어도 하나의 헬리컬홈을 포함한다.
다른 실시예에 있어, 장축을 구비하고, 상기 장축의 둘레에 분산배치되는 복수의 경사가능한 볼을 사용하고, 입력디스크와 출력디스크가 볼의 양측면에 접촉하여 변속비를 제어하는 변속 롤링마찰 트랜스미션의 변환장치가 제안되며, 상기 변환장치는, 상기 장축을 따라 구비되는 관형 트랜스미션축; 복수의 볼 중 대응하는 하나를 관통하는 구멍을 통해 연장되고, 상기 볼이 회전하도록 대응하는 볼의 경사가능한 축을 형성하며, 상기 볼의 외측으로 연장되는 두 단부를 구비한 복수의 볼 축; 상기 볼 축의 각 단부에 각각 연결되고, 상기 트랜스미션 축을 향하며 장축의 반경방향 내측으로 연장되는 복수의 레그; 상기 트랜스미션 축에 대하여 동축으로 위치하고, 상기 장축을 기준으로 한 반경방향에서 각 볼의 내측에 접촉하며, 실질적으로 일정한 외경을 갖는 아이들러; 상기 아이들러의 각 단부에 구비되고, 상기 아이들러를 향하는 편평측과, 상기 아이들러로부터 멀어지는 방향을 향하는 볼록곡 면측을 각각 구비하며, 각 레그와 모두 접촉하도록 상기 장축을 기준으로 한 반경방향으로 연장되는 디스크 형태의 두 시프트가이드; 상기 각 레그에 구비되고, 각 레그의 상기 볼로부터 멀리 떨어진 측면에 부착되는 복수의 롤러 풀리; 상기 적어도 하나의 시프트가이드로부터 축방향으로 연장되는 원통형 풀리 스탠드; 상기 풀리 스탠드에 대하여 방사상으로 위치되고, 그 풀리스탠드에 부착되는 복수의 가이드풀리; 및 제1단부 및 제2단부를 구비하는 가요성의 테더(tether)를 포함하며, 상기 테더의 제1단부는, 상기 축을 통해 상기 풀리스탠드에 근접한 상기 축에 형성되는 슬롯 외측으로 연장되고, 상기 각 롤러풀리 및 각 가이드풀리 주위를 감싸고, 상기 테더의 제2단부는, 상기 축의 외측 변환조정기로 연장되고. 상기 가이드풀리는 그 가이드풀리와 각 롤러풀리의 정렬을 유지하도록 하나 이상의 피벗조인트로 장착되며, 상기 테더가 변속조정기에 의하여 끌어당겨질 경우, 상기 제2단부는 트랜스미션의 변속을 위하여 상기 각 롤러풀리를 끌어당긴다.
다른 실시예에 있어, 장축을 구비하고, 트랜스미션의 변속비를 제어하도록 복수의 경사가능한 볼을 사용하는 변속 트랜스미션의 변환장치가 제안되며, 상기 변환장치는 볼의 관통구멍을 통해 연장되고, 상기 볼의 경사가능한 회전축을 제공하며, 상기 볼의 외측으로 연장되는 두 단부를 구비하는 복수의 볼 축; 상기 볼 축의 각 단부에 각각 연결되고, 상기 트랜스미션 축을 향하며 장축의 반경방향 내측으로 연장되는 복수의 레그; 실질적으로 일정한 반경을 가지며, 상기 각 볼과 동축으로 위치하고, 장축을 기준으로 한 반경방향에서 각 볼의 내측에 접촉하는 원통형 아이들러; 상기 아이들러의 각 단부에 구비되고, 상기 아이들러를 향하는 편평측 과, 상기 아이들러로부터 멀어지는 방향을 향하는 볼록곡면측을 각각 구비하며, 각 레그와 모두 접촉하도록 장축을 기준으로 한 반경방향으로 연장되는 디스크 형태의 제1 및 제2시프트가이드; 및 가이드 휠반경을 가지며, 상기 각 레그에 구비되고, 상기 각 레그의 반경방향 내측 단부에 회전가능하게 장착되고, 상기 각 시프트가이드의 곡선면과 접촉하는 복수의 가이드휠를 포함하며, 상기 볼록곡선면의 형태는, 장축을 중심에 두고 서로 대향하는 두 볼의 중심을 연결하는 선과 장축의 교차점을 원점으로 하는 2차원 좌표에 의하여 결정되고, 상기 볼록곡선면이 접촉지점에서 가이드휠에 실질적으로 접선(tangent)을 이룰 경우, 상기 좌표는 상기 가이드휠면과 시프트가이드면 사이의 접촉 지점의 위치를 상기 아이들러와 시프트가이드의 장축방향 이동의 함수로 나타낸다.
또 다른 실시예에 있어, 엔진; 동력전달계; 및 변속 트랜스미션을 포함하되, 상기 변속 트랜스미션은, 장축; 상기 장축의 둘레에 분산배치되고, 경사가능한 회전축을 구비하는 복수의 볼; 상기 각 볼에 접촉하는 회전입력디스크; 상기 입력디스크를 마주보며 상기 각 볼에 접촉하는 회전출력디스크; 상기 장축에 대하여 동축으로 실질적으로 일정한 외경을 구비하고, 상기 각 볼과 장축의 사이에 위치하며, 상기 각 볼에 접촉하는 회전 아이들러; 및 상기 장축에 대하여 동축으로 장착되는 유성기어장치를 포함하는 차량을 제안한다.
본 발명의 다른 특징 및 작용효과는 상세한 설명 및 첨부된 도면을 참조하여 명확히 이해될 것이다.
이하 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명하며, 명세서 전반에 걸쳐 동일 구성요소에 대해서는 동일 부호를 부여하였다. 본 설명에서 사용되는 용어는 본 발명의 소정의 특정 실시예의 상세한 설명과 함께 사용되기 때문에 단순히 한정하거나 제한하는 것으로 해석되지 않는다. 또한 본 발명의 실시예는 다양한 새로운 특징을 포함할 수 있으며, 요구되는 특성에 대하여 전용적으로 적용되는 것만은 아니며, 본 발명을 실행함에 있어서 기본적인 내용이다.
이하에서 설명된 트랜스미션(transmission)은 미국특허 제6,241,636호, 제6,322,475호 및 제6,419,608호에서 제안된 바와 같이, 틸팅축(tilting axe)을 갖는 속도조절볼(speed adjuster ball)을 사용하는 방식이다. 이들 특허문헌 및 이하에서 설명된 실시예는 후술되는 베리에이터부(variator portion)에 의하여 대략 구분되는 전형적인 두 부분, 입력측(input side)과 출력측(output side)을 구비한다. 상기 트랜스미션의 구동측, 즉 토크(torque) 또는 회전력을 트랜스미션에서 제공받는 측은 입력측으로 칭하며, 트랜스미션의 종동측 또는 트랜스미션의 변속으로부터의 토크를 전달하는 측을 출력측으로 칭한다. 상기 속도조절볼은 입력디스크(input disc) 및 출력디스크와 접촉된다. 그의 축상에서 볼이 경사짐에 따라, 하나의 디스크에서의 롤링접촉점은 폴(pole)측 또는 볼 축(ball axis)측으로 이동되고, 감소된 직경의 써클(circle)형태로 볼과 접촉하며, 다른 디스크에서의 롤링접촉점(rolling contact surface)은 볼의 균분원(equator)측으로 이동되고, 이에 따라 증가된 직경의 써클 형태로 디스크와 접촉한다. 상기 볼 축이 대향방향으로 경사질 경우, 상기 입력디스크 및 출력디스크 각각은 반대의 관계를 이룬다. 이러한 방식으로, 상기 입력디스크의 회전속도에 대한 출력디스크의 회전속도비, 또는 변속비(transmission ratio)는 속도조절볼의 축을 단순히 경사지게 함으로써 넓은 범위에 걸쳐 변화될 수 있다. 상기 볼의 중심부는 트랜스미션의 입력측과 출력측 간의 경계(border)를 형성하고, 상기 볼의 입력측 및 출력측 모두에 배치되는 유사 구성요소들은 동일부호를 부여하여 설명한다. 상기 트랜스미션의 입력측 및 출력측 모두에 위치되는 유사 구성요소들은 입력측에 위치되는 경우 도면부호 끝단에 첨자 "a"를 부여하고, 트랜스미션의 출력측에 위치되는 구성요소들은 각 도면부호 끝단에 첨자 "b"를 부여한다.
도1을 참조해 보면, 트랜스미션(100)의 일실시예는 복수개의 속도조절볼(speed adjusting ball)(1)이 반경방향으로 분배되는 장축(longitudinal axis)(11)을 구비한다. 소정 실시형태의 상기 속도조절볼(1)은 장축(11)에 대하여 각의 위치(angular position)로 구비되고, 다른 실시형태로 상기 볼(1)은 장축(11)에 대하여 공전이 자유롭게 이루어진다. 상기 볼(1)은 그의 입력측에서 입력디스크(34)에 의하여 접촉되고, 그의 출력측에서는 출력디스크(101)에 의하여 접촉된다. 상기 입력디스크(34) 및 출력디스크(101)는 볼(1)의 각 입력측 및 출력측에서 장축에 가까운 내부 보어(bore)로부터 각각 볼(1)과 접촉되도록 하는 반경방향 지점까지 연장하는 환형 디스크로 이루어진다. 상기 입력디스크(34) 및 출력디스크(101) 각각은 각 디스크(34, 101)와 볼(1) 간의 접촉영역을 형성하는 접촉면을 각각 구비한다. 대체로 상기 입력디스크(34)가 장축(11)에 대하여 회전함에 따라, 상기 입력디스크(34)의 접촉영역 각 부분은 회전하고, 회전하는 동안 상기 각 볼(1)과 연속하여 접촉된다. 이는 출력디스크(101)에서도 마찬가지로 유사하게 이루어진다. 상기 입력디스크(34) 및 출력디스크(101)는 단순한 디스크와 같이 형성되거나, 요구되는 입력 및 출력 구성에 따라 오목한형태(concave), 볼록한형태(convex), 원통형태(cylindrical) 또는 다른 어떠한 형태로 형성될 수 있다. 본 실시예에서, 상기 입력 및 출력디스크는 경량화를 위하여 스포크(spoke)형태로 이루어진다. 상기 속도조절볼과 결합하는 디스크의 롤링접촉면은 토크 및 사양의 요구효율에 따라 편평형태(flat), 홈형태, 돌출(convex)형태 또는 다른 형태로 구비될 수 있다. 롤링접촉면이 홈형태로 형성되는 경우는 미끄러짐(slippage)을 방지하도록 요구되는 축력(axial force)량을 감소시키고, 돌출형태의 경우는 효율을 증가시킨다. 또한 상기 볼(1) 모두는 반경방향 최내측지점에서 아이들러(idler)(18)와 접촉된다. 상기 아이들러(18)는 장축(11)에 대하여 동축으로 위치되는 대략 원통형태로 이루어지고, 상기 볼(1)의 반경방향 위치를 유지하는 것을 보조한다. 트랜스미션의 여러 실시예들의 장축(11)에 있어서, 상기 입력디스크(34)와 출력디스크(101)의 접촉면은 볼(1)의 중심으로부터 대략 반경방향 외측에 위치될 수 있고, 아이들러(18)는 볼(1)로부터 반경방향 내측에 위치될 수 있어, 각 볼(1)은 아이들러(18), 입력디스크(34), 및 출력디스크(101)와 3지점 접촉을 이룬다. 상기 입력디스크(34), 출력디스크(101) 및 아이들러(18)는 아래에서 상세히 설명될 여러 실시예들에서 동일 장축(11)에 대하여 모두 회전할 수 있다.
본 설명에서 설명되는 트랜스미션(100)의 실시예는 롤링마찰 트랜스미션이기 때문에, 소정 실시예에서는 입력디스크(34) 및 출력디스크(101)와 볼(1) 접촉에서의 미끄러짐을 방지하기 위하여 높은 축력이 필요로 된다. 높은 토크가 전달되는 동안 축력이 증가됨에 따라, 상기 입력디스크(34), 출력디스크(101) 및 아이들러(18)가 볼(1)과 접촉하는 접촉패치(contact patch)의 변형은 효율을 감소시키고 구성품의 수명을 단축시키는 상당한 문제로 작용한다. 이들 접촉패치를 통해 전달될 수 있는 토크량은 한정되며, 상기 볼(1), 입력디스크(34), 출력디스크(101) 및 아이들러(18)가 이루어지는 재료의 항복강도(yield strength)로 작용된다. 상기 볼(1), 입력디스크(34), 출력디스크(101) 및 아이들러(18)의 마찰계수(friction coefficient)는 소정 토크량을 전달하도록 요구되는 축력(axial force)량에서의 극적인 효과(dramatic effect)를 가지며, 이에 따라 트랜스미션의 효율 및 수명에 대단한 영향을 미친다. 마찰트랜스미션에서 롤링부재의 마찰계수는 성능에 가변가능하게 영향을 주는 매우 중요한 인자이다.
상기 볼(1), 입력디스크(34), 출력디스크(101), 및 아이들러(18)의 표면에는 이들의 성능을 향상시키기 위하여 소정의 코팅(coating)이 적용될 수 있다. 실질적으로 이러한 코팅은, 본 설명에서 설명되는 트랜스미션의 실시예에 대하여 달성되는 동일한 추가적 이점(benefit)을 달성하도록 소정의 롤링마찰 트랜스미션의 롤링접촉부재에 효과적으로 사용될 수 있다. 이러한 소정의 코팅은 롤링부재의 표면 마찰계수를 증가시키기에 유용한 효과를 갖는다. 또한 소정의 코팅은 높은 마찰계수를 가지며, 축력이 증가됨에 따라 증가하는 가변마찰계수를 나타낸다. 높은 마찰계수는 소정 토크에 대하여 축력을 적게 필요로 하고, 이에 따라 트랜스미션의 효율 및 수명은 증가한다. 가변마찰계수는 최대토크를 전달하도록 요구되는 축력량을 감소시킴으로써 트랜스미션의 최대토크 등급(rating)을 증가시킨다.
세라믹(ceramic) 또는 서멧(cermet)와 같은 소정의 코팅은 뛰어난 경도(hardness) 및 마모성(wear property)을 가지며, 롤링마찰 트랜스미션에서 고부하(highly load) 롤링부재의 수명을 크게 연장시킬 수 있다. 질화규소(silicon nitride)와 같은 세라믹 코팅은 높은 마찰계수 및 축력을 증가시킴에 따라 증가하는 가변마찰계수를 구비할 수 있으며, 또한 볼(1), 입력디스크(34), 출력디스크(101), 및 아이들러(18)의 표면에 매우 얇은 층으로 적용될 경우, 이들 구성요소의 수명은 증가될 수 있다. 상기 코팅 두께는 코팅에 사용되는 재료에 따라 좌우되고, 적용 사양(application)에 따라 변화될 수 있지만, 일반적으로 세라믹의 경우 0.5미크론(micron) 내지 2미크론의 범위로 이루어지고, 서멧의 경우 0.75미크론 내지 4미크론의 범위로 이루어진다.
상기 코팅을 적용하도록 이용되는 처리과정은 볼(1), 입력디스크(34), 출력디스크(101), 및 아이들러(18)가 본 트랜스미션의 여러 실시예에서 사용되는 재료인 경화스틸(hardened steel)로 이루어지는 경우를 고려하는 것이 중요하다. 세라믹 및 서멧을 적용하도록 사용되는 소정의 처리과정은 높은 온도를 필요로 하여 볼(1), 입력디스크(34), 출력디스크(101) 및 아이들러(18)의 경도를 저하시켜, 성능에 악영향을 미치고, 빠른 고장을 유발시킨다. 따라서 낮은 온도 적용 처리과정이 요구되며, 저온 진공플라즈마(vacuum plasma), DC펄스 리액티브 마그네트론 스퍼터링(DC pulsed reactive magnetron sputtering), 플라즈마증대 화학증 착(plasma-enhanced chemical vapor deposition: PE-CVD), 불균형 마그네트론 물리증착(unblanced magnetron physical vapor deposition) 및 도금(plating)을 포함하는 다양한 처리과정이 적용될 수 있다. 상기 도금 처리과정은 저가이고 요구되는 코팅 특성을 달성하도록 맞춤조(custom bath)가 형성될 수 있기 때문에 매우 유용하다. 탄화규소(silicon carbide) 또는 질화규소(silicon nitride)를 갖는 코-데포지트 비전기도금 니켈(co-deposited electroless nickel) 또는 전기도금 니켈을 지닌 탄화규소 또는 질화규소 조(bath)에 롤링부재를 침적하는 것은 대량생산에 매우 적합한 저온 용해법이다. 상기에서 언급한 재료에 부가되어 다른 재료가 사용될 수 있음은 당연하다. 이와 같은 처리과정으로, 부품들은 조 내에 침적된 케이지(cage)에 수용되고 교반되어, 용해물은 모든 면에 접촉된다. 상기 코팅의 두께는 구성요소가 조에 침적되는 시간 길이에 의하여 제어된다. 예를 들면 소정 실시예로, 코-데포지트 비전기도금 니켈을 갖는 질화규소를 이용하여 구성요소를 4시간 동안 침적시킴으로써 적절한 코팅두께를 얻을 수 있으며, 이는 단지 일예로 코팅을 형성하기 위한 여러 방법 및 두께를 제어하기 위한 여러 방법은 공지이고, 요구되는 특성, 요구되는 두께 및 구성요소들이 이루어지는 모재(substrate) 또는 베이스(base) 금속을 고려하여 사용될 수 있다.
도1, 도2 및 도3은 트랜스미션(100)을 보호하고, 윤활유를 구비하고, 트랜스미션(100)의 구성요소들을 정렬시키며, 트랜스미션(100)의 힘을 흡수하는 케이스(40)에 둘러싸인 연속가변식 트랜스미션(100)의 일실시예를 나타낸 도면이다. 소정 실시예에서는 상기 케이스(40)를 케이스 캡(cap)(67)으로 커버할 수 있다. 상기 케이스 캡(67)은 중앙부에 입력샤프트가 관통하는 구멍(bore)을 갖는 대략 디스크 형태(disc shape)로 이루어지며, 상기 케이스(40) 내경의 나사부에 대응하여 나사결합되도록 그의 외경에 나사부를 구비한다. 다른 형태로, 상기 케이스 캡(67)은 스냅 링(snap ring)과 케이스(40)의 대응 홈에 의하여 케이스(40)에 고정되거나 그 위치에 유지될 수 있으며, 따라서 그의 외경에 나사부를 구비할 필요는 없다. 상기 케이스 캡(67)을 부착하도록 본 실시예에서 사용되는 패스너(fastener)로서, 상기 케이스 캡(67)은 케이스(40)의 내경으로 연장되어 트랜스미션(100)에 부착되는 기계장치에 케이스(40)를 볼트 결합하도록 사용되는 케이스 패스너(미도시)는 케이스 캡(67)의 대응 홀을 관통할 수 있다. 도시된 실시예의 케이스 캡(67)은 트랜스미션(100)의 다른 구성부품들을 부가적으로 지지하기 위하여 그의 외경에 가까운 영역으로부터 트랜스미션(100)의 출력측으로 연장하는 원형부를 구비한다. 도시된 실시예의 트랜스미션(100)의 중앙부에는, 대체로 구형으로 이루어지고, 트랜스미션(100)의 중심선 또는 회전 장축에 대하여 실질적으로 균일하게 또는 대칭되게 반경방향으로 분산배치된 복수개의 볼(1)이 구비된다. 본 실시예에서는 8개의 볼(1)이 사용된다. 그러나 트랜스미션(100)의 사용목적에 따라 그 이상 또는 그 이하의 볼(1)이 사용될 수 있다. 예를 들면 상기 트랜스미션은 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 이상의 볼(1)을 포함할 수 있다. 3, 4, 5 이상의 볼(1)의 제공은 각각의 볼(1)과 트랜스미션(100)의 다른 구성요소와의 접촉지점에 가해지는 힘을 보다 넓게 분배할 수 있고, 트랜스미션(100)이 볼(1)의 접촉패치에서 미끄러짐을 방지하도록 필요한 힘을 감소시킬 수 있다. 낮은 토크이지만 높은 변속비를 갖는 사양에서의 소정 실시예로 상대적으로 큰 직경의 몇몇 볼을 사용하고, 높은 토크 및 높은 변속비를 갖는 사양에서의 소정 실시예로서는 상대적으로 직경이 큰 많은 볼(1)을 사용할 수 있다. 높은 토크와 낮은 변속비를 가지며 고효율이 중요하지 않는 사양에서의 실시예에서는 상대적으로 직경이 작은 많은 볼(1)을 사용할 수 있다. 마지막으로, 낮은 토크를 가지며 고효율이 중요하지 않은 사양에서의 실시예에서는 상대적으로 작은 직경의 몇몇 볼(1)을 사용한다.
볼 축(ball axle)(3)은 각 볼(1)에 대하여 회전축을 형성하도록 각 볼(1)의 중심을 통과하는 관통홀로 삽입된다. 상기 볼 축(3)은 볼(1)이 회전하는 대략 장방형 샤프트이고, 볼(1) 관통홀의 양측으로 관통되는 두 단부를 구비한다. 소정 실시예에서는 원통형태의 볼 축(3)을 구비하며, 다른 어떠한 형태로 사용될 수 있다. 상기 볼(1)은 볼 축(3)에 대하여 자유자재로 회전하도록 장착된다.
소정 실시예에서는 상기 볼 축(3)의 외면과 대응 볼(1)을 통과하는 구멍의 면 사이에 마찰을 감소시키기 위하여 베어링(별도로 도시하지 않음)이 사용된다. 상기 베어링은 볼(1)의 접촉면 및 대응 볼 축(3)을 따라 소정 위치에 구비되는 소정형태의 베어링으로 이루어질 수 있고, 여러 실시예의 동적기계시스템(dynamic mechanical system)의 디자인에서 공통의 표준 기계구조를 통해 이러한 베어링의 수명 및 유용성을 최대화한다. 이들 실시예 중에서, 상기 볼(1)을 통과하는 구멍의 각 단부에 레이디얼 베어링(radial bearing)이 위치된다. 이들 베어링은 그의 마찰면(race)인 구멍의 내면 또는 볼 축(3)의 외면에 결합되거나, 상기 베어링은 각 볼(1)의 구멍 및 각 볼 축(3)에 형성된 적절한 공동(cavity)에 끼워맞춤되는 별도 의 마찰면(race)을 포함할 수 있다. 일실시예로, 베어링의 홈(미도시)은 적어도 양단부에서 적절한 직경으로 각 볼(1)을 통과하는 구멍을 확장시킴으로써 형성되어, 레이디얼베어링, 롤러베어링, 볼베어링 등이 홈으로 끼워맞춰지고 유지될 수 있다. 다른 실시예로, 상기 볼 축(3)은 배빗(babbit), 테프론(Teflon) 또는 이러한 다른 재료와 같은 마찰감소재료로 피복된다.
*또한 여러 실시예에서는 볼 축(3)의 구멍에 윤활유를 유입시킴으로써 볼 축(3)과 볼(1) 사이의 마찰을 최소화한다. 상기 윤활유는 압력원에 의하여 볼 축(3) 주위의 구멍으로 주입될 수 있고, 또는 볼 축(3) 자체에 형성된 라이플링(rifling) 또는 헬리컬홈(helical groove)에 의하여 구멍으로 유입될 수 있다. 또한 상기 볼 축(3)의 윤활유의 설명은 아래에서 제공된다.
도1에서, 볼(1)의 회전축은 높은 변속비(high ratio) 즉 출력속도가 입력속도보다 큰 변속상태에 놓인 방향으로 경사진 것을 나타낸 것이다. 상기 볼 축(3)이 수평을 이룰 경우, 즉 트랜스미션(100)의 주축에 평행할 경우, 상기 트랜스미션(100)은 입력 및 출력회전속도가 동일한 1:1의 입력회전율 대 출력회전율의 비율을 이룬다. 도2에서, 상기 볼(1)의 회전축은 트랜스미션(100)이 낮은 변속비(low ratio) 즉 출력회전속도가 입력회전속도보다 느린 방향으로 경사진 것을 나타낸 것이다. 도면의 간략화를 위하여, 도2에서 트랜스미션(100)이 변환되는 경우에, 위치 또는 방향이 변화하는 부분만을 도면부호를 부여하였다.
도1, 도2, 도4 및 도5는 트랜스미션(100)을 변환시키기 위한 방향으로 볼(1) 의 축이 어떻게 경사지는 지를 나타낸 것이다. 도5를 참조해 보면, 대부분의 실시예에 대체로 적용되는 복수개의 레그(leg)(2)는 볼(1)을 관통하는 구멍의 단부를 넘어 연장하는 볼 축(3)의 각 단부 가까이에 부착된다. 상기 각 레그(2)는 그의 부착지점으로부터 각 볼 축(3)까지 트랜스미션(100)의 축을 향해 반경방향 내측으로 연장된다. 일실시예로, 각 레그(2)는 볼 축(3)의 각 단부를 수용하는 관통구멍을 구비한다. 상기 볼 축(3)은 레그(2)를 통해 연장되어 각 레그(2)를 넘어 노출되는 단부를 구비하는 것이 바람직하다. 도면에 나타낸 실시예에서, 상기 볼 축(3)은 볼 축(3)의 노출단부 위에 동축으로 슬라이딩가능하게 위치된 롤러(4)를 구비하는 것이 바람직하다. 상기 롤러(4)는 레그(2)의 외측에서 볼 축(3)에 끼워맞춰지는 대략 원통형 휠로 이루어지고, 볼 축(3)에 대하여 자유자재로 회전된다. 상기 롤러(4)는 스프링 클립(spring clip) 또는 다른 기계장치를 통해 볼 축(3)에 부착될 수 있고, 또는 볼 축(3)에서 자유자재로 유동될 수 있다.상기 롤러(4)는 예를 들면 베어링의 외륜이 휠 또는 롤링면을 형성하는 레이디얼베어링으로 이루어질 수 있다. 도1 및 도7에 나타낸 바와 같이, 상기 롤러(4) 및 볼 축(3)의 단부는 한 쌍의 고정체(stator)(80a, 80b)에 의하여 또는 그 고정체에 형성된 내측홈(86)에 끼워맞춰진다.
*상기 고정체(80a, 80b)의 일실시예는 도5 및 도7에 나타내었다. 도면에 나타낸 입력고정체(80a) 및 출력고정체(80b)는 볼(1)의 일측에 트랜스미션의 장축(11)에 대하여 위치되는 대략 평행한 환형디스크 형태로 이루어진다. 여러 실시 예의 상기 고정체(80a, 80b)는 각각 입력고정디스크(81a) 및 출력고정디스크(81b)로 구성되며, 후술될 복수개의 구멍(aperture)을 갖는 실질적으로 균일한 두께의 환형디스크로 이루어진다. 상기 각 입력 및 출력고정디스크(81a, 81b)는 볼(1)을 향하는 제1측 및 볼(1)로부터 멀어지는 방향을 향하는 제2측을 구비한다. 상기 고정디스크(81a, 81b)의 제1측에는 복수개의 고정커브(curve)(82)가 부착된다. 상기 고정커브(82)는 고정디스크(81a, 81b)에 부착되는 곡선면으로 이루어지고, 상기 곡선면은 볼(1)측을 향하는 홈면(concave face)(90)과 상기 볼(1)로부터 멀어지는 방향을 향하는 돌출면(91)을 구비하며, 상기 각 고정디스크(81)와 접촉한다. 소정 실시예로, 상기 고정커브(82)는 고정디스크(81a, 81b)와 일체로 이루어진다. 여러 실시예에서의 상기 고정커브(82)는 실질적으로 균일한 두께를 가지며, 고정커브(82)와 고정디스크(81)가 서로 정렬되고 부착되도록 사용되는 하나 이상의 구멍(별도로 도시하지 않음)을 구비한다. 여러 실시예에서의 상기 고정커브(82), 또는 일체로 사용되는 고정디스크(81a, 81b)는 고정커브(82)와 고정디스크(81a, 81b)의 보다 나은 위치결정 및 정렬을 위하여 플랫스페이서(flat spacer)(83)를 수용하는 슬롯(slot)(710)을 포함한다. 상기 플랫스페이서(83)는 대체로 편평하고, 입력고정체(80a)와 출력고정체(80b) 사이에서 연장되고 이들을 상호연결하는 견고한 재료의 대략 사각편(rectangular piece)으로 이루어진다. 상기 플랫스페이서(83)는 고정커브(82)에 형성된 슬롯(710)에 끼워맞춰진다. 도면에 나타낸 실시예에서, 상기 플랫스페이서(83)는 고정되지 않거나 고정커브(82)에 연결된다. 그러나 소정 실시예에서 상기 스페이서(83)는 용접, 접착 또는 패스닝(fastening)에 의하여 고정커 브(82)에 부착된다.
도7에 나타낸 바와 같이, 상기 플랫스페이서(83)의 내측에 반경방향으로 적어도 각 단부에 구멍(bore)을 갖는 대략 원통형태로 이루어지는 복수개의 원통스페이서(84)가 위치되고, 상기 원통스페이서(84)는 상기 고정디스크(81)와 고정커브(82)를 연결하도록 위치된다. 상기 원통스페이서(84)의 구멍은 각 단부에서 하나의 스페이서 패스너(spacer fastner)(85)를 수용한다. 상기 스페이서 패스너(85)는 고정디스크(81a, 81b), 고정커브(82), 플랫스페이서(83) 및 원통스페이서(84)를 서로 클램핑(clamping)하고 유지하도록 디자인되어, 총괄적으로 케이지(cage)(89)를 형성한다. 상기 케이지(89)는 볼(1)의 반경위치 및 각도위치(radial and angular position)를 유지하고, 서로에 대하여 볼(1)을 정렬시킨다.
상기 볼(1)의 회전축은 트랜스미션(100)의 축으로부터 반경방향 외측으로 입력측 또는 출력측 레그(2)를 이동시킴으로써 변화되고, 볼 축(3)을 경사지게 한다. 이에 따라 각 롤러(4)는, 그 롤러(4)의 직경보다 약간 크게 이루어지고 인접한 각 쌍의 고정커브(82) 사이의 공간에 의하여 형성되는 홈(86)으로 끼워맞춰진다. 따라서 상기 롤러(4)는 고정커브(82)의 측면(92, 93), 즉 고정커브(82)에 대한 제1측(92) 및 제2측(93)을 따라 롤링(rolling)되고, 트랜스미션(100)의 장축(11)과 함께 선상으로의 볼 축(3)의 평면이동을 유지시킨다. 여러 실시예에서, 각 롤러(4)는 트랜스미션(100)의 입력측에서 고정커브(82)의 제1측(92) 및 대응하는 출력고정커브(82)의 대응하는 제1측(92)에서 롤링한다. 이러한 실시예에서 트랜스미션(100)의 힘은 전형적인 통상적인 동작에서 롤러(4)가 고정커브(82)의 제2측(93)과 접촉하는 것을 방지한다. 상기 롤러(4)는 고정커브(82) 사이에 형성된 홈(86)의 폭보다 약간 작은 직경을 가지며, 상기 홈(86)의 가장자리와 대응하는 각 롤러의 주연 사이에 작은 갭(gap)을 형성한다. 상기 입력고정체(80a)와 출력고정체(80b)에서의 고정커브(82)의 대향 배치가 정확한 정렬로 이루어질 경우, 상기 롤러(4)의 주연과 홈(86) 사이의 작은 갭은 볼 축이 약간 경사지도록 하고, 트랜스미션(100)의 장축(11)과 정렬되지 않게 된다. 이러한 조건은 볼 축(3)이 측방향으로 약간 이동되도록 하는 상태인 사이드슬립(sideslip)을 발생시켜, 트랜스미션의 전체효율은 저하된다. 소정 실시예로, 상기 트랜스미션(100)의 입력 및 출력측에서의 고정커브(82)는 서로 약간 오프셋(offset)될 수 있어, 상기 볼 축(3)은 트랜스미션(100)의 축과 평행하게 유지된다. 상기 볼(1)이 볼 축(3)으로 가할 수 있는 주로 교차력(transaxial force)인 소정의 접선력(tangential force)은 볼 축(3), 롤러(4), 및 고정커브(82)의 제1측(92, 93)에 의하여 흡수된다. 상기 볼(1)의 회전축이 변화됨으로써 상기 트랜스미션(100)이 낮거나 높은 변속비로 변환됨에 따라, 단일 볼 축(3)의 대향 단부에 위치되는 한 쌍의 롤러(4) 중 각 하나의 롤러는 각 홈(86)측을 롤링업 및 롤링다운(rolling up and down)함으로써 그의 각 대응 홈(86)을 따라 대향방향으로 이동된다.
도1 및 도7을 참조해 보면, 상기 케이지(89)는 하나 이상의 케이스 커넥터(case connector)(160)로 케이스(40)에 견고하게 부착될 수 있다. 상기 케이스 커넥터(160)는 플랫스페이서(83)의 반경방향 최외측부로부터 대략 직교되게 연장된다. 상기 케이스 커넥터(160)는 플랫스페이서(83)에 고정되거나, 플랫스페이서(83) 와 일체로 형성될 수 있다. 상기 케이스 커넥터(160)의 외측에 의하여 형성되는 개략적 외경은 실질적으로 케이스(40)의 내경과 같은 치수(dimension)로 이루어지며, 상기 케이스 커넥터(160)를 케이스(40)에 견고하게 부착하는 표준 또는 특정한 패스너의 사용을 위하여 상기 케이스(40) 및 케이스 커넥터(60) 모두에 구멍이 제공되며, 이에 따라 상기 케이스(40)는 지지되고, 그 케이스(40)의 이동은 방지된다. 상기 케이스(40)는 프레임(frame) 또는 다른 구조체에 그 케이스(40)를 부착하기 위하여 장착공을 구비한다. 다른 실시예로, 상기 케이스 커넥터(160)는 케이스(40)의 일부분으로서 형성될 수 있고, 케이지(89)를 이루도록 플랫스페이서(83) 또는 다른 케이스(89) 구성요소의 부착을 위한 위치설정을 제공한다.
도1, 도5 및 도7은 각 레지(2)에 부착되며 측면(92, 93) 가장자리에 근접한 경로(path)를 따라 곡선면(82)의 홈면(90)에서 롤링하는 한 쌍의 고정휠(stator wheel)(30)을 포함하는 실시예를 나타내고 있다. 상기 고정휠(30)은 대략 볼 축(3)이 레그(2)를 관통하는 영역에서 상기 레그(2)에 부착된다. 상기 고정휠(30)은 볼 축(3)에 대략 직교하게 레그(2)의 관통공을 통과하는 고정휠핀(31)에 의해 레그(2)에 부착될 수 있으며, 다른 부착방법에 의하여 부착될 수 있다. 상기 고정휠(30)은 고정휠핀(31) 위에 동축으로 슬라이딩가능하게 장착되고, 예를 들면 스냅링(snap ring)과 같은 보통의 패스너로 고정된다. 소정 실시예에서 상기 고정휠(30)은 고정휠핀(31)에 장착되는 내륜(inner race)과 롤링면을 형성하는 외륜(outer race)을 갖는 레이디얼베어링으로 이루어진다. 소정 실시예에서는, 트랜스미션(100)이 변환될 때, 상기 트랜스미션(100)의 장축(11)에 대하여 고정휠(30)이 홈면(90)을 따라 반경방향으로 롤링하도록 레그(2)로부터 충분한 간극(clearance)을 갖고 레그(2)의 각 측에 하나의 고정휠(30)이 위치된다. 소정 실시예에서, 상기 홈면(90)은 볼(1) 중심에 의하여 형성된 트랜스미션(100)의 장축(11)으로부터 반경에 대하여 동심(concentric)을 이루도록 형성된다.
또한 도1, 도5 및 도7를 참조해 보면, 트랜스미션(100)의 장축(11)에 가장 가까운 레그(2)의 단부에 부착될 수 있는 가이드휠(guide whee)(21)이 나타나 있다. 도시된 실시예에서, 상기 가이드휠(21)은 레그(2)의 단부에 형성된 슬롯으로 삽입된다. 상기 가이드휠(21)은 가이드 휠핀(22)으로 레그(21)의 슬롯 내의 위치에 유지되거나, 다른 부착방법에 의하여 유지된다. 상기 가이드휠(21)은 그 각 가이드휠(21) 측에서 레그(2)에 형성된 구멍으로 삽입되고, 슬롯의 평면에 대하여 직교하는 가이드 휠핀(22)에 동축으로 슬라이딩가능하게 장착된다. 소정 실시예로, 상기 레그(2)는 상대적으로 약간 탄성 변형되도록 디자인되어, 트랜스미션(100)의 부품의 제조공차를 허용한다. 상기 볼(1), 레그(2), 볼 축(3), 롤러(4), 고정휠(30), 고정휠핀(31), 가이드휠(21) 및 가이드휠핀(22)은 총괄적으로 도5에 나타낸 볼/레그 조립체를 형성한다.
도4, 도6 및 도7에 나타낸 실시예를 참조해 보면, 케이스(40)의 외측에 위치되는 로드(rod)(10)를 회전시킴으로써 변환이 작동된다. 상기 로드(10)는 일단부 각각이 로드에 부착된 유연성 입력케이블(155a) 및 유연성 출력케이블(155b)을 감고(wrap) 풀도록(unwrap) 사용되고, 상기 두 케이블은 반대되는 각각의 방향으로 상기 로드(10) 둘레를 감싼다. 소정 실시예로, 도6에 나타낸 로드(10)와 같이 우측 으로부터 좌측으로 바라볼 때, 상기 입력케이블(155a)은 로드(10) 둘레를 반시계방향으로 감싸고, 상기 출력케이블(155b)은 로드(10) 둘레를 시계방향으로 감싼다. 상기 입력케이블(155a) 및 출력케이블(155b) 모두는 케이스(40)의 구멍을 통해 연장된 다음, 유연성 입력케이블 하우징(151a), 유연성 출력케이블 하우징(151b)의 일단부를 통해 연장된다. 도면에 나타낸 상기 유연성 입력케이블 하우징(151a) 및 유연성 출력케이블 하우징(151b)은 반경방향 내측 장축(11) 측으로 입력케이블(155a)과 출력케이블(155b)을 안내한 다음, 고정디스크(81a, 81b)의 관통공을 통해 길이방향 외측으로 안내한 후, 다시 반경방향 내측으로 안내하는 유연성 장방형 튜브(elongated tube)로 이루어져, 상기 유연성 입력 및 출력케이블 하우징(151a, 151b)의 타단부는 견고한(rigid) 입력 및 출력케이블 하우징(153a, 153b)의 일단부에 각각 삽입되고 부착된다. 상기 견고한 입력 및 출력케이블 하우징(153a, 153b)은, 케이블(155a, 155b)이 통과하고 유연성 케이블하우징(151a, 151b)의 타단부로부터 반경방향 내측으로 가이드된 다음, 고정디스크(81a, 81b)의 홀을 통해 케이블(155a, 155b)을 길이방향으로 아이들러(18) 가까이의 견고한 케이블하우징(153a, 153b)의 타단부측으로 향하도록 하는 유연성없는(inflexible) 튜브로 이루어진다. 여러 실시예에서, 상기 케이블(155a, 155b)은 그의 타단부에서 일반적인 케이블 패스너 또는 다른 부착수단으로 입력 시프트가이드(shift guide)(13a) 및 출력 시프트가이드(13b)(후술됨)에 부착된다. 후술하겠지만, 상기 시프트가이드(13a, 13b)는 장축(11)을 따라 축방향으로 아이들러(18)를 위치결정하고, 반경방향으로 레그(3)를 위치결정하여, 볼(1)의 축 및 트랜스미션(100)의 변속비를 변화시킨다.
상기 로드(10)가 사용자에 의하여 수동으로 또는 동력원의 보조에 의하여 도6에 나타낸 바와 같이 우측으로부터 좌측으로 로드(10)의 축에 대하여 반시계방향으로 회전될 경우, 상기 입력케이블(155a)은 로드(10)로부터 풀어지고(unwind), 출력케이블(155b)은 로드(10)에 감긴다. 따라서 상기 출력케이블(155b)의 타단부는 출력시프트 가이드(13b)에 텐션력(tension force)을 작용시키고, 상기 입력케이블(155a)은 로드(10)로부터 같은량으로 풀어진다. 이는 아이들러(18)를 트랜스미션(100)의 출력측으로 축방향 이동시키고, 트랜스미션(100)은 낮은 변속비로 변환된다.
또한 도4, 도5 및 도7를 참조해 보면, 각각 내경 및 외경을 갖는 환형링(annular ring)으로 이루어지는 도시된 시프트가이드(13a, 13b)는 두 면을 갖도록 형성된다. 제1면은 상기 각 시프트가이드(13a, 13b)와 각각 결합되는 두 세트(set)의 아이들러 베어링(17a, 17b)을 통해 아이들러(18)와 동력학적으로 접촉하고 그 아이들러(18)를 축방향으로 지지하는 대략 직선면(straight surface)으로 이루어진다. 상기 아이들러(18)로부터 멀어지는 방향을 향하는 상기 각 시프트가이드(13a, 13b)의 제2면은 시프트가이드(13a, 13b)의 내경측으로 직선 또는 편평한 반경방향면(14)으로부터 시프트가이드(13a, 13b)의 외경측 볼록곡선면(97)으로 변화(transition)되는 캠측(cam side)으로 이루어진다. 상기 시프트가이드(13a, 13b)의 내경에서, 장방형 관형 슬리브(longitudinal tubular sleeve)(417a, 417b)는 그 시프트가이드(13a, 13b)로부터 관형 슬리브(417a, 147b)와 결합되도록 대향하는 시프트가이드(13a, 13b)측으로 축방향 연장된다. 소정 실시예로, 도4에 나타낸 바와 같이, 상기 입력측 시프트가이드(13a)의 관형 슬리브는 출력측 시프트가이드(13b)의 관형 슬리브를 수용하도록 그의 내경에 뚫린 부분을 갖는다. 이에 대응하여, 상기 출력측 시프트가이드(13b)의 관형 슬리브의 외경 일부분은 관형 슬리브(417a, 417b)의 일부분이 입력 시프트가이드(13a)의 관형 슬리브(417a, 417b)로 삽입되도록 제거된다. 이는 이러한 실시예의 시프트가이드(13a, 13b)에 부가적인 안정성을 제공한다.
본 실시예에서 도4에 나타낸 가이드샤프트(13a, 13b)의 단면은, 볼 축(3)이 트랜스미션(100)의 장축(11)과 평행할 경우, 아이들러(18)로부터 멀어지는 방향을 향하는 측의 편평면(14)의 형태는 가이드휠(21)이 시프트가이드(13a, 13b)와 접촉하는 반경방향 지점까지 장축(11)과 직교한다. 상기 시프트가이드(13a, 13b)의 주변(perimeter) 측으로 이동하는 지점으로부터, 상기 시프트가이드(13a, 13b)의 형태는 볼록한 형태(convex shape)로 만곡된다. 소정 실시예로, 상기 시프트가이드(13a, 13b)의 볼록면(97)은 하나의 반경뿐만 아니라 복수개의 반경으로 구성되거나, 쌍곡선(hyperbola), 점근선(asymptotic) 등의 형태로 이루어질 수 있다. 상기 트랜스미션(100)이 저속비로 변환됨에 따라, 입력 가이드휠(21a)은 시프트가이드(13a)의 편평면(14)부에서 장축(11)으로 롤링되고, 상기 출력 가이드휠(21b)은 장축(11)으로부터 멀어지는 시프트가이드(13b)의 볼록곡선면(97)부에서 롤링된다. 상기 시프트가이드(13a, 13b)는 수나사(male thread)를 갖는 입력 시프트가이드(13a)의 관형 슬리브를 암나사를 갖는 출력가이드(13b)의 관형슬리브와 나사결합시키거나, 또는 그 반대로 시프트가이드(13a, 13b)를 서로 나사결합시킴으로써 서 로 부착될 수 있다. 또한 입력 또는 출력 시프트가이드 중 하나의 시프트가이드(13a, 13b)는 다른 시프트가이드(13a, 13b)로 압입(press)될 수 있다. 상기 시프트가이드(13a, 13b)는 아교접착(glue), 금속접착(metal adhesive), 용접 또는 다른 수단과 같은 다른 방법으로 서로 부착될 수 있다.
상기 두 시프트가이드(13a, 13b)의 볼록곡선면(97)은 복수개의 가이드휠(21)과 각각 접촉하고 밀어내는 캠면으로서 동작한다. 상기 각 시프트가이드(13a, 13b)의 편평면(41) 및 볼록곡선면(97)은 가이드휠(21)과 접촉되어, 그 시프트가이드(13a, 13b)가 장축(11)을 따라 축방향으로 이동됨에 따라, 상기 가이드휠(21)은 시프트가이드(13a, 13b) 면(14, 19)을 따라 장축(11)으로부터 또는 장축(11)으로 레그(2)를 가압하는 대략 반경방향으로 이동되어, 볼 축(3)의 각도 및 결합된 볼(1)의 회전축의 각도는 변화된다.
도4 및 도7를 참조해 보면, 소정 실시예의 아이들러(18)는 시프트가이드(13a, 13b)의 제1측과 슬리브부 사이에 형성된 골부(trough)에 위치되고, 이에 따라 상기 시프트가이드(13a, 13b)와 일치하여 이동된다. 소정 실시예로, 상기 아이들러(18)는 대략 관형으로 이루어지고, 그의 외경은 입력 및 출력 아이들러 베어링(17a, 17b)의 내경 단부에서 그 내경의 중앙부를 따라 실질적으로 원통형으로 이루어진다. 다른 실시예로, 상기 아이들러(18)의 외경 및 내경은 균일하지 않게 이루어지고 변화될 있으며, 경사지거나(ramped) 만곡된 다른 형태로 이루어질 수 있다. 상기 아이들러(18)는 두 개의 측면을 갖는데, 하나는 입력고정체(80a)에 가까이 위치되고 다른 하나는 출력고정체(80b)에 가까이 위치된다. 상기 아이들러 베어 링(17a, 17b)은 아이들러(18)와 시프트가이드(13a, 13b) 사이에 롤링접촉을 제공한다. 상기 아이들러 베어링(17a, 17b)은 시프트가이드(13a, 13b)의 슬리브부 주위에 동축으로 위치되고, 아이들러(18)를 트랜스미션(100)의 축에 대하여 자유자재로 회전하도록 한다. 상기 트랜스미션(100)의 장축(11) 둘레에 슬리브(19)가 끼워맞춰지고, 시프트가이드(13a, 13b)의 내경 내측을 끼워맞춘다. 상기 슬리브(19)는 입력 슬리브베어링(172a)과 출력 슬리브베어링(172b)에 의하여 각 시프트가이드(13a, 13b)의 베어링 내륜면과 동작가능한 접촉으로 유지되는 대략 관형 구성품으로 이루어진다. 상기 슬리브베어링(172a, 172b)은 시프트가이드(13a, 13b)의 내륜에 제공되는 베어링 외륜을 따라 롤링됨으로써 슬리브(19)의 회전을 제공한다. 상기 아이들러(18), 아이들러 베어링(17a, 17b), 슬리브(19), 시프트가이드(13a, 13b), 및 슬리브베어링(172a, 172b)은 총괄적으로 도4에 나타낸 아이들러 조립체(402)를 형성한다.
도4, 도7 및 도8를 참조해 보면, 소정 실시예의 상기 슬리브(19)는 아이들러 로드(idler rod)(171)의 나사형성 삽입부를 수용하도록 나사부의 내경을 갖는다. 상기 아이들러로드(171)는 트랜스미션(100)의 장축(11)을 따라 놓이는 대략 원통형 로드로 이루어진다. 소정 실시예로, 상기 아이들러 로드(171)는 슬리브(19)로 삽입되도록 그의 길이를 따라 적어도 부분적으로 나사부가 형성된다. 상기 트랜스미션(100)의 출력측을 향하는 상기 아이들러 로드(171)의 제1단부는 슬리브(19)를 통해 나사결합되고, 출력디스크(101)의 내경으로 삽입되는 슬리브(19)의 출력측을 넘어 연장되는 것이 바람직하다.
도8에 나타낸 바와 같이, 소정 실시예의 출력디스크(101)는 중량을 감소시키기 위하여 스포크(spoke)형태의 대략 원뿔 디스크(conical disc)로 이루어지고, 그의 내경으로부터 트랜스미션(100)의 출력측으로 축방향 연장되는 관형 슬리브부를 구비한다. 상기 출력디스크(101)는 구동샤프트, 휠 또는 다른 기계장치측으로 출력토크를 전달한다. 상기 출력디스크(101)는 그의 출력측에서 볼(1)과 접촉하고, 1:1 이외의 변속비에서 트랜지스터의 입력회전과 다른 속도로 회전된다. 상기 출력디스크(101)는 그의 일단부에서 아이들러 로드(171)를 가이드하고 중심에 위치되도록 제공되어, 상기 슬리브(19), 아이들러(18) 및 시프트가이드(13a, 13b)는 트랜스미션(100)의 축과 동심으로 놓이게 된다. 또한 상기 아이들러 로드(171)와 출력디스크(101)의 내경 사이에 마찰을 최소화하기 위하여 아이들러 로드(171)에 환형 베어링이 위치될 수 있다. 상기 아이들러 로드(171), 슬리브(19), 시프트가이드(13a, 13b) 및 아이들러(18)는 동작가능하게 연결되고, 트랜스미션(100)이 변환될 때 모두 일치하여 축방향으로 이동된다.
도2를 참조해 보면, 입력 시프트가이드(13a)와 고정체(80a) 사이에 위치되는 원뿔 스프링(133)은 트랜스미션(100)의 변환을 낮은 변속비로 편향시킨다. 도1을 참조해 보면, 상기 출력디스크(101)의 주변 가까이의 베어링 주행륜(bearing race)과 접촉하는 출력디스크 베어링(102)은 트랜스미션(100)에 의하여 발생된 축력을 흡수하고 케이스(40)로 전달한다. 상기 케이스(40)는 출력디스크 베어링(102)을 가이드하기 위하여 대응하는 베어링 주행륜을 구비한다.
도4, 도5, 및 도7를 참조해 보면, 상기 시프트가이드(13a, 13b)의 축방향 이 동의 한계는 트랜스미션(100)의 변환범위를 규정한다. 축방향 이동은 시프트가이드(13a, 13b)와 접촉하는 고정디스크(81a, 81b)의 내측면(88a, 88b)에 의하여 제한된다. 과도하게 높은 변속비에서, 시프트가이드(13a)는 입력고정디스크(81a)의 내측면(88a)와 접촉하고, 과도하게 낮은 변속비에서는 상기 시프트가이드(13b)는 출력고정디스크(81b)의 내측면(88b)과 접촉한다. 여러 실시예에서, 상기 시프트가이드(13a, 13b)의 볼록곡선면(97)의 곡률(curvature)은 볼(1)의 중심으로부터 가이드휠(21)의 중심까지의 거리, 가이드휠(21)의 반경, 두 가이드휠(21)과 볼(1) 중심 사이에 형성되는 라인(line) 간의 각도, 및 볼(1) 축의 경사각도에 따라서 함수적으로 좌우된다. 이러한 관계의 예시는 도25, 도26 및 도27을 참조하여 후술된다.
도1, 도5 및 도7에 나타낸 실시예를 참조해 보면, 하나 이상의 고정휠(30)은 각 레그(2)의 홀을 통해 삽입되는 고정휠핀(31)을 갖는 각 레그(2)에 부착될 수 있다. 상기 고정휠핀(31)은 고정휠(30)이 각 고정휠핀(31)에서 자유자재로 회전되도록 적정한 사이즈 및 디자인으로 이루어진다. 상기 고정휠(30)은 볼(1)을 향하는 고정커브(82)의 홈곡선면(90)을 따라 롤링된다. 상기 고정휠(30)은 레그(2)가 축방향으로 이동되는 것을 방지하고, 트랜스미션(100)이 변환될 때 볼 축(3)이 용이하게 경사되는 것을 확보하도록 축방향 지지를 제공한다.
도1 및 도7을 참조해 보면, 고정체(80a)에 인접하게 위치되는 스포크형 입력디스크(34)는 부분적으로 캡슐형태로 싸이지만(encapsulate), 대체로 고정체(80a)와 접촉하지 않는다. 상기 입력디스크(34)는 둘 이상의 스포크를 구비할 수 있고, 솔리드(solid) 디스크로 이루어질 수 있다. 상기 스포크는 중량을 저감시키고, 트 랜스미션(100)의 조립을 향상시킨다. 다른 실시예로 솔리드 디스크가 사용될 수 있다. 상기 입력 디스크(34)는 두 개의 측면을 구비하는데, 제1측은 볼(1)과 접촉하고, 제2측은 제1측에 반대되게 향하는 측이다. 상기 입력디스크(34)는 그의 내경에서 한 세트의 암나사부 또는 너트(37) 상에 동축으로 끼워지고, 그로부터 반경방향으로 연장되는 대략 환형 디스크로 이루어진다. 사용되는 상기 케이스(40)가 볼(1) 및 입력디스크(34)를 캡슐형태로 싸는 방식으로 이루어질 경우, 상기 입력디스크(34)의 외경은 케이스(40)에 끼워맞춰지도록 디자인되고, 상기 케이스(40)의 플랜지(flange)에 형성된 관통볼트공으로 삽입되는 일반적인 볼트로 섀시(chassis) 또는 프레임과 같은 견고한 지지구조체(116)에 장착된다. 전술한 바와 같이, 상기 입력디스크(34)는 볼(1)을 향하는 그 입력디스크(34)의 제1측 립(lip)의 주연방향으로 경사진 면 또는 베어링 접촉면을 따라 볼(1)과 회전접촉된다. 또한 전술한 바와 같이, 상기 입력디스크(34)의 소정 실시예는 그의 내경으로 삽입되는 한 세트의 암나사부(37) 또는 너트(37)를 구비하며, 상기 너트(37)는 스크류(35)에 나사결합되어 입력디스크(34)와 스크류(35)는 결합된다.
도1 및 도4을 참조해 보면, 상기 스크류(35)는 구동샤프트(drive shaft)(69)에 부착되고, 그 구동샤프트(96)에 의하여 회전된다. 상기 구동샤프트(96)는 대략 원통형으로 이루어지고, 내부구멍(inner bore)을 구비하고, 제1단부는 축방향으로 출력측을 향하고, 제2단부는 축방향으로 입력측을 향하며, 대체로 일정한 직경을 갖는다. 상기 제1단부에서 상기 구동샤프트(69)는 일반적으로 기어, 스프라켓(sprocket) 또는 모터로부터 크랭크샤프트와 같은 토크입력장치에 견고하게 부착 되고, 이 토크입력장치에 의하여 회전된다. 상기 구동샤프트(69)는 스크류(35)의 내경에 형성된 대응하는 한 세트의 스플라인(spline)과 결합되고 회전되도록 그의 제2단부로부터 연장하는 축방향 스플라인(109)을 구비한다. 상기 구동샤프트(69) 상에 동축으로 위치되는 환형디스크에는 일측이 한 세트의 상승 경사면으로 이루어지는 한 세트의 중앙 구동샤프트 램프(ramp)(99)는 구동샤프트(69)의 스플라인(spline)(109)과 결합되는 결합 프롱(mating prong)을 구비하고, 구동샤프트(69)에 의하여 회전되며, 그 구동샤프트(69)를 따라 축방향으로 이동가능하게 이루어진다. 핀 링(195)은 상기 중앙 구동샤프트 램프(99)의 제2측과 접촉된다. 상기 핀 링(195)은 아이들러 로드(171) 상에 동축으로 위치되고, 축방향이동이 가능하며, 아이들러 로드(171)와 정렬되어 아이들러 핀(196)을 유지하도록 기능하는 횡단구멍(transverse bore)을 구비한다. 상기 아이들러 핀(196)은 핀 링(195)의 직경보다 약간 크게 이루어지는 견고한 장방형 로드로 구성되고, 아이들러 로드(171)의 장방형 슬롯(173)으로 삽입되고, 상기 핀 링(195)의 구멍으로 삽입될 때 제1 및 제2단부 모두에서 핀 링(195)을 약간 넘게 연장된다. 상기 아이들러 로드(171)의 장방형 슬롯(173)은, 도1에 나타낸 바와 같이, 트랜스미션(100)이 1:1로부터 높은 변속비로 변환될 경우, 핀(196)을 축방향 이동하도록 한다. 그러나 상기 트랜스미션(100)이 1:1로부터 낮은 변속비로 변환될 경우, 상기 장방형 슬롯(713)의 입력단부측은 핀(196)과 접촉하고, 이후 상기 핀 링(195)을 통해 중앙 구동샤프트 램프(99)와 동작가능하게 접촉된다. 그러므로 트랜스미션(100)이 1:1및 낮은 변속비일 경우, 상기 아이들러 로드(171)는 중앙 구동샤프트 램프(99)와 작동가능하게 연결되어, 상 기 아이들러 로드(171)가 중앙 구동샤프트 램프(99)를 축방향으로 이동시킬 때, 그 아이들러 로드(171)와 함께 축방향으로 이동된다. 상기 중앙 구동샤프트 램프(99)의 램프면(ramp surface)은 헬리컬(helical), 곡선(curve), 선형(linear) 또는 다른 형태로 이루어질 수 있고, 한 세트의 대응하는 중앙베어링 디스크램프(98)와 동작가능하게 접촉된다. 상기 중앙베어링 디스크램프(98)는 중앙 구동샤프트 램프(99)에 적절하고 대응하는 램프면을 구비한다. 상기 트랜스미션(100)의 출력을 향하는 제1측에서, 중앙베어링 디스크램프(98)는 중앙 구동샤프트 램프(99)를 향하고, 그 중앙 구동샤프트 램프(99)와 접촉되고 그에 의해 구동된다.
*상기 중앙 베어링디스크 램프(98)는 트랜스미션(100)의 장축(11)에 대하여 동축으로 회전되도록 위치되는 대략 환형디스크의 베어링 디스크(60)에 견고하게 부착된다. 상기 베어링 디스크(60)는 베어링디스크 베어링(66)과 접촉하는 볼(1)로부터 멀어지는 방향을 향하는 측의 그의 주변에 근접하여 베어링 마찰면을 구비한다. 상기 베어링디스크 베어링(66)은 베어링디스크(66) 주변에서 환형 스러스트베어링(thrust bearing)으로 이루어지고, 베어링디스크(60)와 입력디스크(34) 사이에 위치된다. 상기 베어링디스크 베어링(66)은 베어링디스크(60)에 대하여 축방향 및 반경방향 지지를 제공하며, 케이스(40)와 함께 트랜스미션(100)의 내부 일부를 부분적으로 캡슐형태로 싸도록 제공되는 케이스 캡(67)에서의 베어링 마찰면에 의하여 지지된다.
도1을 참조해 보면, 상기 케이스 캡(67)은 그의 주변 또는 그의 주변 가까이 로부터 출력 단부로 연장하는 관형부를 갖는 구동샤프트(69)로부터 연장되는 대략 환형 디스크 형태로 이루어진다. 상기 케이스 캡(67)은 트랜스미션(100)에 의하여 발생되는 축방향 및 반경방향 힘을 흡수하고, 트랜스미션(100)을 밀봉하여, 윤활유가 누출되고 오염물이 침투되는 것을 방지한다. 상기 케이스 캡(67)은 고정형태이고, 소정 실시예에서는 종래의 고정방법으로 케이스(40)에 견고하게 부착되거나, 케이스(40)의 내경에 대응하는 암나사부와 결합하도록 그 외경에 수나사부를 구비할 수 있다. 전술한 바와 같이, 상기 케이스 캡(67)은 베어링디스크(60)의 주변 가까이에 베어링디스크 베어링(66)과 접촉하고, 그 케이스 캡(67)으로부터 관형 연장부의 출력단부 내측에 위치되는 베어링 마찰면을 구비한다. 또한 상기 케이스 캡(67)은 그 환형부의 내경 가까이에 위치되는 출력측을 향하고, 구동샤프트 베어링(104)과 결합하는 제2베어링 마찰면을 구비한다. 상기 구동샤프트 베어링(104)은 구동샤프트(69)에 축방향 및 반경방향 지지를 제공하도록 스러스트 및 레이디얼 조합베어링으로 이루어진다. 상기 구동샤프트(67)는 입력측을 향하는 그의 외경에 형성되고 구동샤프트 베어링(104)과 결합하는 베어링 마찰면을 구비하고, 스크류(35)에 의하여 발생된 축력을 케이스 캡(67)으로 전달한다. 입력베어링(105)은 구동샤프트(69)에 부가적인 지지를 제공한다. 상기 입력베어링(105)은 구동샤프트(69) 상에 동축으로 위치되고, 트랜스미션(100)의 입력측을 향하는 케이스 캡(67)의 내경에 제3마찰면과 결합된다. 상기 입력베어링(105)에 대한 주행면을 제공하도록 디자인된 베어링 마찰면을 갖는 대략 원통형 나사너트로 이루어진 콘너트(cone nut)(106)는 구동샤프트(69) 상에 나사결합되고, 입력베어링(65)을 지지한다.
도1에 나타낸 실시예를 참조해 보면, 장축(11)에 대하여 대략 링형태를 형성하는 복수개의 한 세트의 주변램프(perimeter ramp)(61)는 베어링 디스크(60)에 견고하게 부착된다. 상기 주변램프(61)는 장축(11)에 대하여 반경방향으로 위치되고, 베어링디스크(60)에 대하여 또는 그에 형성되는 복수개의 경사진 면으로 이루어지고, 출력측을 향한다. 상기 경사진 면은 곡선형태, 헬리컬형태, 선형 또는 다른 형태로 이루어질 수 있으며, 각각은 복수개의 램프베어링(62)의 하나에 가해지는 축력을 제공하는 웨지(wedge)를 형성한다. 상기 램프베어링(62)은 구형(spherical)뿐만 아니라, 원통형, 원뿔형, 다른 기하학적 형태로 이루어질 수 있으며, 베어링케이지(63)에 수용된다. 상기 도면에 도시된 베어링케이지(63)는 각각의 램프 베어링(62)을 수용하는 복수개의 구멍을 갖는 대략 링형태로 이루어진다. 한 세트의 입력디스크램프(64)는 입력디스크(34)에 견고하게 부착되거나, 그 입력디스크(34)의 일부분으로 형성된다. 소정 실시예에서 상기 입력디스크 램프(64)는 입력측을 향하는 램프를 갖는 주변램프(62)에 제공된다. 다른 실시예로, 상기 입력디스크 램프(64)는 램프베어링(62)을 정렬하고 반경방향으로 중심에 위치시키는 베어링 마찰면으로 형성된다. 상기 램프베어링(62)은 주변램프(61)와 입력디스크 램프(64)의 경사면을 롤링업 또는 롤링다운 함으로써 토크변화에 응답한다.
도1 및 도4를 참조해 보면, 출력발생장치(160)는 입력디스크(34)와 볼(1) 사이의 통상적인 접촉력을 증가시키기 위하여 입력디스크(34)에서 발생되고 그로 가해지는 출력을 생성하는 여러 구성요소로 이루어지고, 입력디스크(34)의 마찰에 볼(1) 회전을 사용하는 구성요소이다. 상기 트랜스미션(100)은 충분한 축력을 제공 하여 입력디스크(1), 볼(1), 및 출력디스크(101)가 미끄러지지 않거나, 그들의 접촉지점에서 받아들일 수 있는 양으로만 미끄러진다. 상기 트랜스미션(100)으로 가해지는 토크의 크기가 증가됨에 따라, 적절한 양의 추가적인 축력이 미끄러짐을 방지하도록 요구된다. 또한 높은 변속비 또는 1:1 변속비보다 낮은 변속비에서 미끄러짐을 방지하도록 더 큰 축력이 요구된다. 그러나 높은 변속비 또는 1:1 변속비에서 너무 많은 힘을 제공하는 것은 트랜스미션(100)의 수명을 단축시키고, 효율을 감소시키며, 증가된 축력을 흡수하기 위하여 많은 구성요소를 필요로 한다. 이상적으로 상기 출력발생장치(160)는 트랜스미션(100)의 변환 및 토크의 변화에 따라 볼(1)에 가해지는 축력을 변화시킬 수 있다. 소정 실시예로, 상기 트랜스미션(100)은 이러한 두 가지 목적을 이룰 수 있다. 스크류(screw)(35)는 주변램프(61)에 의하여 제공된 축력으로부터 분리 및 구분되는 축력을 제공하도록 디자인 및 구성될 수 있다. 소정 실시예로, 상기 스크류(35)는 주변램프(61)보다 작은 축력을 제공하고, 트랜스미션(100)의 다른 버젼(version)에서, 상기 스크류(35)는 주변램프(61)보다 큰 힘을 제공하도록 구성된다. 토크의 증가에 따라 상기 스크류(35)가 토크의 증가에 비례하는 양으로 축력을 증가시키도록 너트(37)를 약간 더 회전시킨다. 상기 트랜스미션(100)이 1:1 변속비이고, 사용자 또는 차량이 낮은 변속비로 변환될 경우, 아이들러 로드(171)는 슬리브(19), 슬리브베어링(172), 시프트가이드(13a, 13b) 및 아이들러(18)를 따라 입력측으로 축방향 이동된다. 상기 아이들러 로드(171)가 핀(196) 및 핀링(195)을 통해 중앙 구동샤프트 램프(99)와 접촉하여, 상기 중앙 구동샤프트 램프(99)는 출력측으로 축방향이동하게 된다. 상기 중앙 구동 샤프트 램프(99)의 램프면은 중앙 구동디스크 램프(98)의 대향 램프면과 접촉하여, 상기 중앙 베어링디스크 램프(98)는 베어링 디스크(67)를 회전시키고, 주변램프(61)를 램프베어링(62) 및 입력디스크램프(64)와 결합시킨다. 상기 중앙 구동샤프트 램프(99) 및 중앙 베어링디스크 램프(98)는 토크 스플리팅(torque splitting) 작용을 실행하여, 스크류(35)로부터 주변램프(61)로 소정 토크를 이동시킨다. 이는 주변램프(61)를 통해 유도된 전달토크의 비율(percentage)을 증가시키고, 전술한 바와 같이 주변램프(61)가 토크반응됨으로 인하여, 발생되는 축력양은 증가된다.
또한 도1 및 도4를 참조해 보면, 낮은 변속비로 변환될 경우, 상기 아이들러(18)는 축력측으로 축방향 이동되고, 접촉경로에서 힘의 반작용에 의하여 아래측으로 끌어당겨진다. 또한 상기 아이들러(18)가 아래측으로 더 이동할 경우, 아이들러는 더 강하게 끌어당겨진다. 접촉 뿐만 아니라 이동각도를 가로지르는 수직력에서의 증가와 함께 증가하는 "아이들러의 끌어당겨짐"은 높은 변속비로 변환할 경우 발생한다. 상기 아이들러의 끌어당겨짐은 접촉경로에서 작용하는 횡단힘(transverse force)의 집중으로 인하여 발생되고, 이러한 효과는 스핀(spin)이라 불리운다. 스핀은 볼이 입력디스크(34), 출력디스크(101) 및 아이들러(18)와 접촉하는 3개의 접촉경로에서 발생한다. 상기 아이들러(18)와 볼(1) 사이의 접촉에서 작용하는 스핀으로부터 합성력(resultant force)의 크기는 볼(1), 입력 및 출력디스크(34, 101)의 합성력 크기에 비하여 최소로 된다. 상기 아이들러(18)와 볼(1) 경계부의 접촉경로에서 제공되는 최소한의 스핀으로 인하여, 이러한 접촉경로는 다음의 설명에 의하여 무시될 수 있다. 스핀은 입력디스크(34)와 볼(1) 및 출력디스 크(101)와 볼(1)의 접촉경로에서 효율손실을 고려할 수 있다. 스핀은 볼(1) 및 디스크(34, 101)의 롤링방향에 직교하는 횡단력을 제공한다. 1:1 변속비에서, 입력 및 출력접촉경로에서의 스핀 또는 접촉스핀에 의하여 제공되는 횡단력은 동일하고 반대되며, 본질적으로 상쇄된다. 이러한 상태에서 아이들러(18)에서 축방향 끌어당김은 존재하지 않는다. 그러나 트랜스미션(100)이 예를 들면 낮은 변속비로 변환됨에 따라, 입력디스크(34)와 볼(1)에서의 접촉경로는 볼(1) 축 또는 기둥(pole) 측으로 더 이동된다. 이는 스핀뿐만 아니라 롤링(rolling)방향에 직교하도록 제공되는 횡단력을 감소시킨다. 동시에 상기 출력디스크(101)와 볼(1) 접촉경로는 볼(1)의 축 또는 기둥에 더 가깝게 이동되어, 스핀 및 횡단력은 증가된다. 이는 트랜스미션(100)의 입력 및 출력측에서 스핀에 의하여 제공되는 횡단력이 동일하지 않고, 출력접촉에서의 횡단력이 커지기 때문에, 출력디스크(101)와 볼(1)의 접촉경로가 볼(1)의 축으로 더 가깝게 이동하는 상태를 발생한다. 상기 트랜스미션(100)이 낮은 변속비로 더 변환되면, 볼(1)에 가해지는 접촉에서의 횡단력은 더 강해지게 된다. 상기 볼(1)에서 스핀에 의하여 발생된 횡단력은 높은 변속비로 변환될 경우 반대방향으로 힘을 가한다. 상기 볼 축(3)에 부착된 레그(2)는 시프트가이드(13a, 13b)에 끌어당김을 전달하고, 상기 시프트가이드(13a, 13b)가 아이들러(18) 및 슬리브(19)에 동작가능하게 부착되기 때문에, 축력은 아이들러 로드(171)로 전달된다. 상기 접촉경로를 가로지르는 수직력이 증가됨에 따라, 접촉스핀 증가의 영향은 모든 비율 및 효율을 감소시킨다.
도1 및 도4를 참조해 보면, 트랜스미션(100)이 낮은 변속비로 변환됨에 따 라, 아이들러 로드(171)로 전달되는 끌어당김은 도1에 나타낸 바와 같이 축력을 좌측으로 작용시키고, 입력토크를 스크류(35)로부터 주변램프(61)로 변환시킨다. 상기 트랜스미션(100)이 매우 낮은 변속비로 변환됨에 따라, 상기 아이들러 로드(171)는 더욱 강하게 끌어당겨지고, 중앙 구동샤프트 램프(99)와 중앙 베어링디스크 램프(98)상에 상대이동을 발생시키고, 더 많은 토크를 주변램프(61)로 이동시킨다. 이는 스크류(35)를 통해 전달되는 토크를 감소시키고, 주변램프(61)를 통해 전달되는 토크를 증가시켜, 그 결과 축력을 증가시킨다.
도1 및 도9를 참조해 보면, (후술될 여러 구성품으로 구성되는) 연결해제장치(disengagement mechanism)(소위 '타행장치(coasting mechanism)'라고도 칭함)가 제안된다. 상기 연결해제장치는 입력디스크(34)와 베어링디스크(60) 사이에 위치되고, 출력회전이 입력회전보다 클 경우 트랜스미션(100)을 연결해제한다. 상기 연결해제장치는 복수개의 부품으로 구성되는데, 입력디스크 커넥터(121), 그의 주변 가까이에서 입력디스크(34)에 견고하게 부착되는 대략 원통 장방형 핀을 포함하며, 트랜스미션(100)의 장축(11)에 실질적으로 평행하는 방향으로 입력디스크(34)로부터 베어링디스크(60)측으로 돌출된다. 상기 입력디스크 커넥터(121)는 그의 제1단부에서 클러치레버(clutch lever)(122)와 연결된다. 상기 클러치레버(122)는 견고한 재료의 대략 L자형 편평편(flat piece)으로 이루어지고, 짧은 레그로서 제1단연장부와, 긴 레그로서 제2단연장부를 구비하며, 이 레그들의 교차 연결점으로부터 탄성로드인 프리로더(preloader)(123)에서 피벗된다. 상기 입력디스크 커넥터(121)와 클러치레버(122)의 제1단부의 결합은 슬라이딩결합으로 이루어지고, 입력디스크 커넥터(121)와 클러치레버(122) 간의 상대이동을 허용한다. 상기 클러치레버(122) 결합은 프리로더(123)상에 위치되는 관통공에 의하여 형성된다. 상기 프리로더(123)는 사각, 편평 또는 다른 어떠한 단면형태로 이루어질 수 있는 유연한 장방형 로드로 이루어지며, 그의 제1단부에서 베어링 케이지(63)를 통해 반경방향으로 연장되는 구멍에 부착되고, 그의 제2단부에서는 구동샤프트(69)에 견고하게 부착된다. 상기 프리로더(123)는 램프베어링(62)을 주변램프(61)로 편향시킬 수 있으며, 연결해제장치가 동작하는 동안 입력디스크(34)를 볼로부터 끌어당길 수 있으며, 연결해제장치(120) 구성품과 같이 다른 구성품에 대한 부착 수단으로서 제공될 수 있다. 또한 상기 클러치 레버(122)에 멈춤쇠(pawl)(124)가 부착된다. 상기 멈춤쇠(124)는 대략 웨지(wedge)형으로 이루어지고, 그의 제1단부는 소정지점으로 테이퍼(taper)지고, 제2단부는 관통홀을 갖고 라운드진다. 상기 클러치 레버(122)의 제2단부의 홀로 멈춤쇠 핀(125)이 삽입되어, 멈춤쇠(124)를 클러치 레버(122)에 부착시키고, 멈춤쇠 핀(125)에 대하여 멈춤쇠(124)가 회전되도록 한다. 상기 멈춤쇠(124)는 주연 주위에 기어치(teeth)를 가지며, 클러치레버(122)의 백(back)에 대하여 플랫(flat)이 구비된 디스크 형태의 래칫(ratchet)(즉, 래칫디스크(ratcheting disk))(126)와 결합하고 접촉한다. 상기 래칫(126)의 중앙부에는 프리로더(123)가 클러치레버(122)에 인접하여 통과하며, 트랜스미션(100)의 장축(11)측 반경방향 내측으로 구멍이 구비된다. 상기 래칫(126)은 일반적인 패스너에 의하여 그 위치에 유지되고, 프리로더(123)에 대하여 회전가능하다. 그의 주변에 베벨 기어치(bevel teeth)를 갖는 기어인 래칫베벨(ratchet bevel)(127)은 래칫(126)에 견고하고 동축으로 부착되고 그 래칫(126)의 일부분을 이룬다. 상기 래칫베벨(127)의 기어치는 베벨기어(128)와 치합된다. 도시된 실시예에서 상기 베벨기어(128)는 베어링디스크(60)에 견고하게 부착되는 링형태로 이루어지지만, 구동샤프트(69)와 중앙 구동샤프트 램프(99)와 같은 다른 회전구성품에 부착될 수 있다. 상기 베벨기어(128)는 래칫(126)상의 기어치와 치합되도록 그의 주변 주위에 기어치를 구비한다. 도11에 나타낸 바와 같이 복수개의 코일(coil)을 갖는 코일 스프링인 메인 스프링(main spring)(129)은 트랜스미션(100)의 장축 주위에 동축으로 위치되고, 제1단부는 입력디스크(34)에 부착되고 제2단부는 베어링디스크(60)에 부착된다. 상기 메인스프링(129)는 스크류(35)에 대하여 회전하도록 입력디스크(34)를 편향시키고, 그 스크류(35)로부터 "권취가 풀어져(unwind)" 입력디스크(34)는 볼(1)과 접촉한다.
또한 도1 및 도9를 참조해 보면, 상기 트랜스미션(100)으로의 입력회전이 중지되고, 입력디스크(101)는 하나 이상의 휠, 구동전달계(drive train), 또는 다른 입력회전장치에 의하여 지속적으로 회전되려할 경우, 상기 볼(1)은 입력디스크(101)에 의하여 구동된다. 이후 상기 볼(1)은 스크류(35)상에서 권취되고(wind) 그 볼(1)로부터 결합해제되는 제1방향으로 입력디스크(34)를 회전시킨다. 동일한 제1방향으로 입력디스크(34)에 의하여 회전되는 입력디스크 커넥터(121)는 제1방향으로 클러치레버(122) 및 멈춤쇠(124)와 접촉되고 이들을 회전시킨다. 상기 멈춤쇠(124)는 멈춤쇠 핀(125) 상에 동축으로 위치되는 텐션스프링으로 이루어질 수 있는 멈춤쇠 텐셔너(pawl tensioner)(미도시)에 의하여 래칫(126)의 기어치와 접촉되 도록 편향된다. 상기 멈춤쇠(124)가 래칫(126)의 기어치를 통과함에 따라, 상기 멈춤쇠(124)는 래칫(126)의 기어치상에서 록킹되고, 입력디스크(34)가 제2방향으로 스크류(35)로부터 권치풀림되는 것을 방지하여, 이에 따라 메인스프링(129)의 편향은 유지된다. 상기 래칫(126)의 일부분인 래칫베벨(127)은 회전하지 않는 베벨기어(128)와 상기 래칫(126)은 연결되는 기어치를 구비하기 때문에, 상기 래칫(126)은 제1방향으로 회전되는 것이 방지된다.
상기 트랜스미션(100)의 입력회전이 재개될 경우, 상기 베벨기어(128)는 제1방향으로 베어링디스크(60)에 의하여 회전되고, 래칫베벨(127) 및 래칫(126)은 제2방향으로 회전되며, 그러므로 멈춤쇠(124)는 제2방향으로 회전되어, 입력디스크(34)가 스크류(35)로부터 권치풀림되도록 입력디스크(34)를 편향되도록 하고, 볼(1)과 접촉되도록 한다. 제1단부에서 프리로더(123)에 부착되는 베어링 케이지(63)는 입력디스크(34)가 제1방향으로 회전될 경우 프리로더(123)를 입력디스크(34)에 대하여 회전하도록 한다. 이는 입력디스크(34)가 제1방향으로 회전할 때, 입력디스크(34)에 대하여 회전하는 램프베어링(62)으로 인한 것이다. 유사하게, 상기 트랜스미션(100)의 입력회전이 재개될 때, 상기 베어링디스크(60)는 동일한 상대회전으로 인하여 프리로더(123)에 대하여 회전한다. 이러한 작용은 연결해제장치(120)의 연결 및 해제를 제공한다.
도1 및 도15를 참조해 보면, 래치(latch)(115)는 상기 베어링디스크(60)를 향하는 입력디스크(34) 측에 견고하게 부착되고, 후크레버(hook lever)(113)의 제1 두 단부에 견고하게 부착되는 후크(114)와 결합된다. 상기 후크레버(113)는 그의 제1단부에서 후크(114)를 갖고 제2단부에서 후크 힌지(116)를 갖는 장방향 스트럿(strut)으로 이루어진다. 상기 래치(115)는 후크(114)의 폭 보다 큰 결합영역 또는 개구부를 가지며, 입력디스크(34)와 베어링디스크(60)가 서로 상대적으로 이동할 때 래치(114)의 제한부 내에서 장축(11)에 대하여 반경방향으로 이동하도록 후크(114)에 대한 여분의 공간(extra room)을 제공한다. 상기 후크 힌지(116)는 중간힌지(119)와 결합되고, 제1힌지핀(111)을 갖는 힌지 결합부를 형성한다. 상기 중간 힌지(119)는 두 개의 단부를 갖는 대략 장방형 스트럿으로 이루어지는 입력디스크 레버(112)의 제2단부와 일체로 이루어진다. 상기 입력디스크 레버(112)의 제2단부에는 제2힌지핀(118)을 사용하여 힌지 버팀대(hinge brace)(110)와 결합하는 입력디스크 힌지(117)를 구비한다. 상기 힌지 버팀대(110)는 후크(114), 후크레버(113), 후크힌지(116), 제1힌지핀(111), 중간힌지(119), 힌지디스크 레버(112), 제2힌지핀(118), 및 입력디스크 힌지(117)를 지지하도록 대략 베이스(base)로 이루어지고, 상기 입력디스크(34)를 향하는 측 베어링디스크(60)에 견고하게 부착된다. 상기 래치(115) 및 후크(14)가 결합될 경우, 상기 램프 베어링(62)은 구동디스크(34)에 대하여 축력의 보정량을 제공하지 않는 주변램프(61) 상의 영역으로 롤링을 방지한다. 이러한 확실한 결합은 주변램프(61)에 의하여 램프베어링(62)으로 가해지는 모든 회전력이 입력디스크(34)로 전달되는 것을 확실하게 한다. 프리로더(123)는 그의 일단부가 구동샤프트(69)에 부착되고, 반경방향 외측으로 연장된다. 상기 프리로더(123)의 제2단부는 입력디스크 레버(112)와 접촉하여 입력디스크(34)를 볼(1)로부터부 멀어지게 편향시켜, 입력디스크(34)가 볼(1)로부터 결합해 제되는 경우, 연결해제가 유지되도록 편향된다.
도10을 참조해 보면, 트랜스미션(100)의 다른 축력발생장치의 단면도를 나타내고 있다. 간략화를 위하여, 전술한 축력발생장치와 도10에 나타낸 축력발생장치 사이의 차이점을 나타내었다. 상기 축력발생장치는 하나 이상의 역전 레버(reversing lever)(261)를 포함한다. 상기 역전레버(261)는 반경방향 내측의 제1측과 반경방향 외측의 제2측을 갖는 중심을 벗어난 장착피벗홀을 각각 갖는 대략 편평하고 불규칙한 형태의 캠편(cam piece)으로 이루어진다. 상기 역전레버(261)의 제1측은 아이들러 로드(171)의 장방향 슬롯(173)으로 각각 끼워맞춤된다. 트랜스미션(200)이 낮은 변속비로 변환될 경우, 상기 장방형 슬롯(173)의 단부는 역전레버(261)의 제1측과 접촉하고, 상기 역전레버(261)는 그 역전레버(261)의 피벗홀로 삽입되는 역전핀(262)에 의하여 제공된 축에서 피벗된다. 상기 제1측이 장방향 슬롯(173)의 단부에 의하여 접촉됨에 따라, 상기 역전레버(261)의 제1측 각각은 트랜스미션(100)의 출력측으로 이동되고, 역전레버(261)의 제2측은 입력측으로 이동되어, 역전레버(261)의 캠 기능을 실행한다. 상기 제1측 및 제2측의 길이가 증가 및 감소됨에 따라, 상기 역전레버(261)는 입력측으로 축방향 이동되는 거리를 감소시키고 발생되는 힘을 증가시키도록 디자인될 수 있다. 상기 역전레버(261)는 제공되는 축력을 조절하는 기구적 장점을 제공하는 방식으로 디자인될 수 있다. 이들 제2측에서, 상기 역전레버(261)는 트랜스미션(100)이 저속비로 변환될 때 중앙 스크류 램프(298)의 출력측과 각각 접촉된다. 상기 역전레버(261)는 역전핀(262)에 의하여 레버링(263)에 각각 부착되고, 역전레버(261)를 그 위치에 유지시키기 위하여 레버 링(263)의 홀로 압입 또는 나사결합될 수 있다. 상기 레버링(263)은 주위에 끼워맞춰지는 링형태의 장치로 이루어지고, 아이들러 로드(171)를 따라 축방향으로 슬라이딩되며, 역전레버(261)을 삽입 및 위치결정하도록 하나 이상의 사각 슬롯을 구비한다.
또한 도10에 나타낸 실시예를 참조해 보면, 한 세트의 중앙 스크류 램프(229)가 스크류(35)에 부착되고, 그에 의하여 회전될 수 있다. 본 실시예의 상기 중앙 스크류 램프(299)는, 중앙 스크류 램프(299)가 출력측을 향하는 제1측 및 입력측을 향하는 제2측을 갖는 디스크의 제2측에서 램프로서 형성되는 도4에 나타낸 중앙 스크류 램프(99)와 유사하다. 트랜스미션(100)이 저속비로 변환됨에 따라, 상기 역전레버(261)의 제2측은 중앙 스크류 램프(299)의 제1측에 대하여 밀어내어진다. 전술한 스플라인(109)를 통해 구동샤프트(69)에 스플라인되는 중앙 스크류 램프(299)는 구동샤프트(69)에 의하여 회전되고, 장축(11)을 따라 축방향 이동될 수 있으며, 중앙 스크류 램프(299)가 출력측 이외에 트랜스미션(100)의 입력측을 향하는 것을 제외하고, 전술한 실시예의 중앙 구동샤프트 램프(99)와 유사하다. 상기 중앙 스크류 램프(299)는, 구동샤프트(69)에 대하여 자유자재로 회전하고, 중앙 베어링 디스크 램프(298)가 입력측 이외 트랜스미션(100)의 출력측을 향하는 것을 제외하고 도4에 나타낸 중앙 베어링 디스크램프(98)와 유사한 대응하는 한 세트의 베어링디스크 램프(298)와 접촉한다. 중앙 스크류램프(299)가 역전레버(261)에 의하여 중앙 베어링디스크 램프(298)측으로 축방향으로 밀어내어짐에 따라, 중앙 스크류램프(299)와 중앙 베어링디스크 램프(298)의 램프면의 상대회전은, 주변램프(61) 가 결합되는 지점에 대하여 베어링디스크(60)가 회전하도록 발생되어, 주변램프(61)에 대하여 토크를 변환시키고, 발생되는 축력량을 증가시킨다.
도11을 참조해 보면, 도1의 트랜스미션(100)의 다른 실시예의 단면도를 나타내고 있다. 간략화를 위하여, 전술한 트랜스미션(100)과 본 트랜스미션(100) 간의 차이점만을 설명한다. 상기 트랜스미션(300)은 다른 케이지(389), 다른 연결해제장치(도13 및 도14에서 320), 및 다른 축력발생장치를 포함한다. 또한 도11에 나타낸 실시예에서, 원뿔형 스프링(133)은 트랜스미션(300)의 출력측으로 이동되고, 고속비측으로의 변환을 편향시킨다.
도11 및 도12를 참조해 보면, 다른 케이지(389)가 제안되었다. 상기 케이지(389)는 입력 및 출력 고정디스크(381a, 381b)를 포함하지만, 도면의 간략화를 위하여 출력고정디스크(381b)는 생략되었다. 여러 실시예에서 출력 고정디스크(381b)는 입력고정디스크(381a)와 구조적으로 유사하다. 복수개의 고정커브(382)는 고정디스크(381a, 381b)에 부착되고, 볼(1)을 향하는 제1측과 볼(1)로부터 멀어지는 방향을 향하는 제2측을 구비한다. 상기 각 고정커브(382)의 제2측(391)은 고정디스크(181a, 181b)의 각 하나에 대하여 편평하게 놓이는 편평면으로 이루어진다. 상기 고정커브(382)는 일반적인 패스너 또는 다른 방식의 부착장치로 고정디스크(381a, 381b)에 고정커브(382)를 부착하도록 사용되는 두 개의 관통공을 구비한다. 상기 고정커브(382)는 그의 각 제1측에 복수개의 플랫 스페이서(flat spacer)가 삽입되어 고정디스크(381a, 381b)와 연결되도록 사각 슬롯을 구비한다. 상기 플랫 스페이서(383)는 고정디스크(381) 간의 거리를 설정하도록 제공되고, 고정디스 크(381) 간의 강한 연결을 형성하며, 고정디스크(381)가 평행 및 정렬상태를 확보한다.
도시된 디자인은 실질적으로 편평한 고정디스크(181)와 결합된다. 따라서 상기 고정디스크(181)는 실질적으로 견고한 시트의 견고한 재료를 사용하여 제조될 수 있다. 상기 고정디스크(181)는 스탬핑(stamping), 파인 블랭킹(fine blanking) 또는 산업적으로 알려진 다른 기술과 같은 여러 저가의 제조기술을 사용하여 제조될 수 있다. 이러한 디자인의 상기 고정디스크(181)는 박막형태 또는 시트형태의 금속, 플라스틱, 세라믹, 우드(wood) 또는 종이 생산물 또는 다른 재료로부터 이루어질 수 있다. 상기 도시된 디자인은 재료에서의 현저한 비용절감을 이룰 수 있고, 상대적으로 고가의 구성품의 제조를 적절히 높일 수 있게 한다.
도11, 도13 및 도14를 참조해 보면, 다른 연결해제장치(320)를 제안하고 있다. 도13은 트랜스미션(300)의 축 가까이로부터 바라본 개략 단면도이고, 도14는 트랜스미션(300)의 상부 외측으로부터 중앙측으로 대략 반경방향 내측으로 바라본 개략 단면도이다. 전술한 실시예의 래치트(126) 및 래치트 베벨(127)는 멈춤쇠(124)와 결합되고, 베벨기어(328)와 결합되는 티스를 구비한 본 실시예의 하나의 멈춤쇠 기어(pawl gear)(326)로 결합된다. 다른 실시예에서 베벨기어(328)는 베벨기어 티스를 구비하지 않을 수 있다. 클러치레버(322)는 셋 이상의 구멍을 갖는 견고하고 편평한 L자형 구성요소로 이루어진다. 상기 L자형으로 형성되는 두개의 레그의 결합부에서 최중앙의 구멍은 프리로더(123)에 대하여 회전가능하고 동축으로 이루어지는 클러치레버(322)를 위치결정한다. 상기 클러치레버(322)의 긴 레그의 단부 가까이의 구멍은 멈춤쇠 핀(125)의 삽입을 허용하고, 멈춤쇠(124)에 부착된다. 입력디스크 커넥터(321)와 결합되는 상기 클러치레버(322)의 짧은 레그 단부 가까이의 구멍은 입력디스크 커넥터(321)의 슬롯으로 끼워맞춰지는 클러치핀(329)을 수용하고 유지시킨다. 상기 입력디스크 커넥터(321)는 입력디스크(324)에 견고하게 부착되고, 클러치핀(329)의 슬라이딩 결합을 제공하기 위한 슬롯을 구비한다. 상기 다른 연결해제장치(320)의 동작은 도1 및 도9에서 설명하고 나타낸 연결해제장치(120)와 동일하다.
도11 및 도15를 참조해 보면, 다른 축력발생장치는 트랜스미션(300)의 중앙축에 위치되고 그 중앙축을 따라 축방향 이동 가능한 대략 원뿔형 웨이지(360)를 포함한다. 또한 상기 원뿔형 웨이지(360)는 스플라인(190)과 결합된다. 트랜스미션(300)이 저속비로 변환됨에 따라, 상기 원뿔형 웨이지(360)는 아이들러 로드(171)에 의하여 결합되고, 아이들러 로드(171)와 같이 동일 방향으로 축방향 이동된다. 상기 원뿔형 웨이지(360)는 트랜스미션(300 축 가까이에서 AFG(축력발생장치) 레버(362)의 제1단부와 접촉된다. 상기 AFG레버(362)는 원뿔형 웨이지(360)와 결합하는 반원형 제1단부를 구비하고, 장축(11)으로부터 입력디스크 레버(112)와 결합하는 제2단부측으로 반경방향으로 연장하는 대략 장방형 부품으로 이루어진다. 상기 AFG레버(362)는 그 AFG레버(362)가 회전하는 받침핀(fulcrum pin)(361)과 함께 스플라인(109)에 부착된다. 상기 받침핀(361)은 AFG레버(362)의 피벗을 위하여 제공되어, 상기 AFG레버(362)의 제2단부는 입력디스크레버(112)와 결합된다. 상기 입력디스크레버(112)는 베어링디스크(60)에 동작가능하게 부착되고, 베어링디스 크(60)를 회전시켜, 상기 주변램프(61)는 결합되며, 이에 따라 스크류(35)로부터 주변램프(61)로 입력토크를 이동시킨다. 상기 다른 축력발생장치(360)의 동작은 도1 및 도4에서 전술하고 나타낸 축력발생장치와 동일하다.
도16 및 도17를 참조해 보면, 도1의 트랜스미션(100)의 다른 실시예를 나타내고 있다. 도면의 간략화를 위하여, 도17의 트랜스미션(1700)과 도1의 트랜스미션(100)의 차이점만을 설명한다. 상기 도1의 트랜스미션(100)은 하나의 변환장치를 포함하며, 이러한 변환장치의 용어는 입력속도비에 대한 출력속도비를 변환시키는 트랜스미션(100)의 구성요소를 설명하도록 사용될 수 있다. 본 실시예의 변환장치(401)를 포함하는 조립체 및 구성요소들은 도5의 볼/레그 조립체(403), 입력디스크(34), 출력디스크(101), 도4의 아이들러 어셈블리(402), 및 도7의 케이지(89)를 포함한다. 상기 변환장치(401)의 모든 구성요소 및 조립체들은 트랜스미션(1700)의 특정 사양에 최적으로 변경될 수 있으며, 도16에서 상기 변환장치(401)를 포함하는 조립체 및 구성요소들의 일반적인 형태를 나타내었다.
도17에 나타낸 트랜스미션(1700)의 실시예는 트랜스미션(100)과 유사하나 두개의 변환장치(401)를 포함한다. 이러한 구성은 작은 직경 또는 작은 전체사이즈를 갖는 트랜스미션(1700)에서 높은 토크용량이 요구되는 사양에 유용하다. 또한 이러한 구성은 베어링디스크(114)와 출력디스크(101)를 지지하도록 필요로 되는 레이디얼베어링을 생략하여, 전체효율을 증가시킨다. 상기 트랜스미션(1700)이 두 개의 변환장치를 가짐으로 인하여, 각 변환장치(401)는 출력측을 가지며, 또한 트랜스미션(1700)도 출력측을 갖는다. 그러므로 세개의 출력측을 갖기 때문에, 본 구성에서 는 입력측 및 출력측 사이를 구별하기 위하여 "a" 및 "b"를 갖는 구성요소와 같은 마킹(marking)을 사용하지 않는다. 그러나 도17에 나타낸 바와 같이, 상기 입력측은 우측이고, 입력은 좌측이다.
도17 내지 도19를 참조해 보면, 트랜스미션(1700)을 둘러싸고 캡슐형태로 에워싸는 케이스(423)가 나타나 있다. 상기 케이스(423)는 외측부재 및 오염물로부터 트랜스미션(1700)을 보호하고, 원활한 동작을 위한 윤활유를 수용한다. 상기 케이스(423)는 일반적인 패스너로 엔진, 프레임, 또는 다른 견고한 받침대(미도시)에 부착되고, 케이스 구멍(424)을 통해 끼워맞춰진다. 상기 케이스(423)는 입력토크를 제공받도록 케이스구멍(424)을 갖는 측인 입력측으로 개방되거나 도시된 우측으로 개방된다. 입력토크는 외측 입력원으로부터 토크를 전달할 수 있는 길고, 견고하며, 로드 또는 샤프트로 이루어지는 입력샤프트(425)로 전달된다. 상기 입력샤프트(425)는 스플라인, 키잉(keying), 또는 다른 방식을 통해 베어링디스크(428)로 토크를 전달한다. 상기 베어링디스크(428)는 트랜스미션(1700)에 의하여 발생되는 상당한 축력을 흡수할 수 있는 디스크 형태의 견고한 구성부재로 이루어지고, 도1에 나타낸 베어링디스크(60)와 유사한 디자인으로 이루어진다. 상기 입력샤프트(425)의 입력단부상의 플랜지(429)와 베어링디스크(428) 사이의 입력샤프트(425) 상에는 입력샤프트 베어링(426)이 동축으로 위치되어, 베어링디스크(428)와 입력샤프트(425) 간의 작은량의 상대이동을 허용한다. 상기 베어링디스크(429)가 회전하기 시작할 경우, 주변램프(61), 램프베어링(62), 베어링케이지(63), 입력디스크 램프(64), 및 입력디스크(34)는 전술한 바와 같이 회전한다. 이는 입력측상의 하나인 제1변환장치(420)의 볼(1)을 회전시킨다.
동시에, 입력샤프트(425)가 회전됨에 따라, 제2입력디스크(431)는 회전된다. 상기 제2입력디스크(431)는 입력샤프트(425)에 견고하게 부착되고, 백킹너트(backing nut)로 키잉(keying)될 수 있으며, 용접, 핀결합 또는 다른 부착방법에 의하여 입력샤프트(425) 상에 압착된다. 상기 제2입력디스크(431)는 베어링디스크(428)에 반대되는 트랜스미션(1700)의 출력측에 위치된다. 상기 제2입력디스크(431) 및 베어링디스크(428)는 전술한 바와 같이 볼/디스크 접촉경로에서 미끄러짐을 방지하기 위하여 수직력으로서 작용하는 주변램프(61), 램프베어링(62), 및 입력디스크 램프(64)에 의하여 발생된 상당한 축력을 흡수한다. 상기 제2입력디스크(431)는 전술한 입력디스크(34)의 형태와 유사하고, 입력샤프트(425)의 회전에 따라 제2변환장치(422)의 볼(1)을 회전시킨다. 상기 제2변환장치(422)는 제1변환장치(420)의 대략 경상(mirror image)으로 이루어지고, 트랜스미션(1700)의 입력측으로부터 멀리 위치되어 상기 제1변환장치(420)는 입력측과의 사이에 놓인다.
전술한 바와 같이, 상기 제1변환장치(420)의 볼(1)은 그 구성요소와 함께 그의 롤링접촉을 통해 출력디스크(430)를 회전시킨다. 상기 출력디스크(430)는 전술한 출력디스크(101)와 동일 기능으로서 제공되지만 대향하는 두 접촉면을 구비하고, 두 변환장치(420, 422) 상의 볼(1)과 접촉한다. 도17에 나타낸 단면도로부터, 출력디스크(430)는 얕은 아치형(shallow arch) 또는 거꾸로된 얕은 V자형으로 이루어질 수 있고, 그 단부는 두 변환장치(420, 422)의 볼(1)과 접촉하는 접촉면을 구비한다. 상기 출력디스크(430)는 제2변환장치(422)를 둘어싸고, 대략 원통형태로 출력측으로 연장된다. 도시된 실시예에서, 상기 출력디스크(430)의 원통형태는 제2입력디스크(431)를 둘러싸는 트랜스미션(1700)의 출력측으로 연속적이고, 이후 출력디스크(430)의 직경이 감소되며, 그런 다음 케이스(423)의 출구와 같이 작은 직경의 대략 원통형으로 된다. 상기 출력디스크(430)가 제1 및 제2입력디스크(34, 431)와 동심 및 정렬을 유지하도록, 환형 베어링(434, 435)이 출력디스크(430)를 반경방향으로 정렬시키도록 사용될 수 있다. 케이스베어링(44)은 케이스(423)의 구멍 및 출력디스크(430) 상에 위치되고, 추가적인 지지를 위하여 출력디스크 베어링(435)은 출력디스크(430)와 입력샤프트(425) 위에 위치된다. 상기 출력디스크(430)는 도시된 출력디스크(430)을 형성하도록 서로 연결되는 두 개의 단편으로 이루어질 수 있다. 이는 출력디스크(430)의 원통형 쉘(shell) 내측에 제2변환장치(422)를 조립할 수 있게 한다.
이는 도17에 나타낸 바와 같이, 출력디스크(430)의 큰 직경을 따라 두 개의 환형 플랜지의 사용에 의하여 달성될 수 있다. 소정 실시예로, 상기 환형플랜지는 출력디스크(430)의 큰 직경을 따라 대략 중간부에 위치된다. 도17, 도20 및 도21을 참조해 보면, 상기 트랜스미션(1700)의 볼 축(433)은 전술한 볼 축(3)과 유사하며, 동일 기능을 실행한다. 또한 상기 볼 축(433)은 트랜스미션(1700)의 속도비를 변환시키기 위하여 볼(1)이 경사지는 장치로서 제공된다. 상기 볼 축(433)은 그의 각 입력측 각각에서 길게 연장되고, 출력고정체(435)의 벽을 통해 연장된다. 상기 출력고정체(435)는 전술한 출력고정체(80b)와 유사하지만, 복수개의 반경홈(436)이 출력고정체(435)를 통해 전체적으로 뚫려있다. 상기 출력고정체(435)의 홈(436)은 그 출력고정체(435) 벽을 통해 전체적으로 연속되어, 일련의 동일한 공간의 반경홈(436)이 출력고정체(435)의 중앙에서의 구멍 가까이로부터 주변으로 반경방향으로 연장된다. 상기 볼 축(433)은 장방형 출력단부 상에 동축으로 위치되는 이리스 롤러(407)를 구비한다. 상기 이리스 롤러(407)는 볼 축(433)에서 회전할 수 있는 대략 원통형 휠로 이루어지고, 이리스 플레이트(409)의 홈(411) 내측으로 끼워맞춰지도록 디자인된다. 상기 이리스 플레이트(409)는 트랜스미션(1700)의 장축(11)에 대하여 동축으로 끼워맞춰지도록 그의 중심을 통해 구멍을 갖는 환형 디스크 또는 환형 플레이트로 이루어진다. 상기 이리스 플레이트(409)는 각 이리스 롤러(407)의 두께보다 두 배 큰 두께를 가지며, 구멍으로부터 이리스플레이트(409)의 주변 가까이로 반경방향 외측으로 연장하는 다수의 이리스 홈(411)을 구비한다. 상기 이리스 홈(411)이 반경방향으로 연장됨에 따라, 그의 각도 위치는 변화하여, 이리스 플레이트(409)가 장축(11)에 대하여 각을 이루고 회전됨에 따라, 상기 이리스 홈(411)은 각 길이를 따라 캠 기능을 제공한다. 다시 말해서, 상기 홈(411)은 이리스 플레이트(409)의 중심의 구멍 가까이로부터 그의 주변 가까이의 각 지점으로 나선형(spiral)을 이룬다.
상기 이리스 롤러(407)는 그의 외경을 따라 곡률을 이루거나, 그의 외부코너에서 필릿(fillet)을 구비하여, 볼 축(433)이 경사질 때 상기 이리스 플레이트(409)의 홈(411) 내측에서 그의 직경은 변화되지 않고 유지된다. 상기 이리스 플레이트(409)는 두 변환장치(420, 422)로부터 이리스 플레이트(409)가 모든 변환속도비에서 이리스 플레이트(409)의 홈(411) 내측에 유지될 수 있도록 충분한 두께로 이루어진다. 상기 이리스 홈(411)은 기존의 이리스 플레이트 방식으로 동작하고, 이리스 플레이트(409)가 회전될 때 볼 축(433)이 반경방향 내측 또는 외측으로 이동되도록 한다. 상기 이리스 플레이트(409)는 제1변환장치를 향하는 제1측 및 제2변환장치를 향하는 제2측을 구비하며, 두 출력고정체(435)로부터 연장하는 관형 연장부 상의 인접한 보스(boss)에서 트랜스미션(1700)의 장축(11)에 대하여 동축으로 위치된다. 상기 두 출력고정체(435)는 그 출력고정체(435)의 보스에서 축 구멍(미도시)을 통해 일반적인 패스너로 서로 부착될 수 있다. 상기 출력고정체(435) 보스는 그의 중심에 구멍을 가지며, 그의 중앙으로부터 반경방향 외측으로 위치되는 복수개의 구멍을 구비한다. 소정 실시예로, 상기 출력고정체(435)의 보스는 이리스 플레이트(433)에 대하여 자유로운 회전을 제공하도록 이리스 플레이트(409) 보다 약간 넓은 공간을 형성하며, 소정 실시예는 출력고정체(435) 사이에 이리스 플레이트(409)의 위치를 정확하게 제어하기 위하여 보스 및 이리스 플레이트(409) 사이에 베어링을 사용한다. 상기 이리스 플레이트(409)의 외경에 가까운 이리스 플레이트(409)의 제1측에 이리스 케이블(406)이 부착되며, 연결지점으로부터 길이방향으로 연장된다. 상기 이리스 케이블(406)은 그 이리스 케이블(406)이 밀어내어질 때 이리스 플레이트(409)를 회전시키는 방향으로 제1변환장치(420)의 출력고정체(435)를 통해 루트(route)를 정한다. 상기 이리스 케이블(406)은 출력고정체(435)의 주변 가까이의 구멍을 통과한 후, 변속비를 제어할 수 있는 트랜스미션(1700)의 외측으로 케이스(423)를 통해 루트를 정한다. 외경에 가까운 이리스 플레이트의 제2측에는 이리스 스프링(408)이 부착된다. 또한 상기 이리스 스프링(408)은 제2변환장 치(422)의 출력고정체(435)에 부착된다. 상기 이리스 스프링(408)은 이리스 케이블(406)에 의하여 가해지는 텐션으로부터 이리스 플레이트(409)의 회전에 대항하는 탄성력을 작용시킨다. 상기 이리스 케이블(406)로부터의 텐션이 완화될 때, 상기 이리스 스프링(408)은 이리스 플레이트(409)를 안정위치로 복귀시킨다. 트랜스미션(1700)의 적용에 따라, 이리스 스프링(406)이 이리스 플레이트(409)를 끌어당길 경우, 트랜스미션(1700)은 고속변속비로 변환되고, 이리스 케이블(406)의 텐션이 완화될 경우, 이리스 스프링(408)은 트랜스미션(1700)을 저속변속비로 변환하도록 상기 이리스 플레이트(409)를 구성시킬 수 있다. 또한 상기 이리스 플레이트(409)는, 이리스 케이블(406)이 이리스 플레이트(409)를 끌어당길 경우, 트랜스미션(1700)을 저속비로 변환시키고, 이리스 케이블(406)의 텐션이 완화될 때, 이리스 스프링(408)은 트랜스미션(1700)을 고속비로 변환시키도록 구성될 수 있다.
도16 및 도17를 참조해 보면, 두 변환장치(420, 422)를 갖는 트랜스미션(1700)의 실시예는 트랜스미션(1700)의 부가적인 롤링부재의 정렬에서의 높은 정확도를 필요로 한다. 모든 롤링부재들은 서로 정렬되어야만 하거나, 효율에 영향을 주고, 트랜스미션(1700)의 수명을 단축시킬 수 있다. 조립동안에, 입력디스크(34), 출력디스크(430), 제2입력디스크(431), 및 아이들러 조립체(402)는 동일 장축 상에 정렬된다. 또한 본 실시예에서 전술한 바와 같이 출력고정체(435)에 의하여 결합되는 두 개의 케이지(89)로 이루어지는 케이지(410) 또한 볼/레그 조립체(403)를 정확하게 위치시키도록 장축에 정렬되어야만 한다. 간소화 및 정확성을 달성하기 위하여, 모든 롤링부재들은 입력샤프트(425)에 대하여 위치된다. 제1입력고정베어 링(440) 및 제2입력고정베어링(444)은 케이지(410)의 정렬을 돕도록 입력고정베어링(440, 444)의 구멍에서 입력샤프트(425) 상에 위치된다. 출력고정베어링(442)는 출력고정체(435)의 구멍에서 입력샤프트(425) 상에 위치되고, 케이지(410)를 정렬시킨다. 상기 제1 및 제2아이들러 조립체(402)를 정렬시키기 위하여 제1가이드베어링(441)은 제1시프트가이드(13b)의 구멍에서 입력샤프트(425) 상에 위치되고, 제2가이드베어링(443)은 제2시프트가이드(13b)의 구멍에서 입력샤프트(425)상에 위치된다.
도18 및 도19를 참조해 보면, 상기 케이지(410)는 케이스 슬롯(421)으로 끼워맞춤되는 전술한 케이스 커넥터(383)로 케이스(423)에 부착된다. 상기 케이스 슬롯(421)은 케이스(423)에 그 케이스(423)의 입력측으로 연장하는 장방형 홈으로 이루어지며, 케이스(423)의 일측은 개방된다. 도시된 실시예에서, 상기 케이스는 도19에 나타나지 않은 출력측에서 대부분 폐쇄되지만, 입력측 상에서 개방되고, 케이스(423)를 장착하기 위한 케이스홀(424)을 갖는 케이스(423)의 다른 넓은 원통형 바디로부터 반경방향으로 연장되는 장착플랜지를 구비한다. 조립동안, 케이지(410)로 작용되는 토크에 대항하고, 케이지(410)가 회전되는 것을 방지하기 위하여 케이스 커넥터(383)가 케이스 슬롯(421)에 정렬되는 케이스(423)로 트랜스미션(1700)이 삽입될 수 있다. 상기 케이스(423)의 케이스 커넥터 구멍(412)은 케이지(410)를 케이스(423)에 고정시키도록 케이스 커넥터(383)의 대응하는 구멍으로 패스너를 삽입시킬 수 있다.
도22는 트랜스미션(1700)의 케이지(470)의 다른 실시예를 나타낸 것이다. 제 조비용을 감소시키기 위하여, 때때로 제조되는 다른 부품수를 최소화하고, 대량생산기술을 사용하여 저가로 제공될 수 있는 부품으로 디자인하는 것이 바람직하다. 도시된 케이지(470)는 저가 디자인의 네 개의 다른 부품 및 여러 구성요소를 조립하기 위한 공통의 패스너를 사용한다. 상기 고정체(472)는 입력샤프트(425)가 회전되는 중앙 구멍 가까이로부터 반경방향 외측으로 연장되는 복수개의 반경방향 홈을 갖는 대략 편평 디스크형태의 단면으로 이루어진다. 볼 축(도17에서 433)은 고정체(427)의 홈을 통해 연장된다. 상기 고정체(472)의 중앙구멍을 둘러싸는 복수개의 구멍(471)은 다른 구성요소에 고정체(472)를 고정하기 위하여 제공된다. 도면에 나타낸 실시예에서는 모두 서로 유사한 네 개의 고정체(472)로 이루어지며, 케이지(470)의 일부분을 형성한다. 두 개의 입력고정체(472)는 케이지(470)의 각 단부에 구비되고, 두 개의 출력고정체(472)는 케이지(472)의 중앙 가까이에 구비되며, 고정브리지(stator bridge)(477)로 서로 견고하게 부착된다.
또한 도22에 나타낸 실시예를 참조해 보면, 상기 고정브리지(477)는 중앙구멍을 가지며, 그 고정브리지(477)의 내경 및 외경 사이에 위치도는 관통공을 갖는 디스크형태의 부품으로 이루어진다. 상기 고정브리지(477)의 구멍은 고정체(472)를 고정브리지(477)로 고정하도록 하는 고정체(472) 상의 홀과 상응한다. 이리스 플레이트(409)(미도시)는 고정브리지(477)의 반경방향 외측에 위치되고, 출력고정체(472) 사이에 축방향으로 위치된다. 소정 실시예로, 상기 고정브리지(409)는 이리스 플레이트(409)의 회전을 자유자재로 허용하도록 그 이리스 플레이트(409) 보다 약간 두껍게 이루어지며, 다른 실시예로 출력고정체(472)와 이리스 플레이 트(409) 사이뿐만 아니라 고정브리지(477)와 이리스 플레이트(409) 사이에 베어링이 위치된다. 따라서 상기 고정브리지(477)의 외경은 이리스 플레이트(409)의 내경을 위치시키도록 제공되고, 이리스 플레이트(409)의 축을 설정한다.
스페이서(473)은 입력고정체(472)를 출력고정체(472)에 결합시킨다. 일 실시예로, 상기 스페이서(473)는 시트 또는 플레이트 금속과 같은 편평한 재료로 이루어지고, 여러 목적에 맞게 특정형태를 제공하도록 형성된다. 대체로 상기 스페이서(473)는 그의 중앙에 형성된 홀(475)을 갖는 편평한 사각시트로 이루어지고, 각 단부에 직교 연장부를 갖는다. 상기 스페이서(473)는 고정체(472) 간의 정확한 거리를 설정하고, 케이지(470)의 구조적인 플랜지를 형성하여 볼(1)이 트랜스미션(1700)의 장축을 공전운동하는 것을 방지하며, 서로에 대하여 고정구멍을 정렬시켜, 고정체(472)의 중심이 정렬되고, 고정체(472)의 각도지향성이 동일하며, 케이지(470)가 트위스팅(twisting) 또는 콕킹(cocking)되는 것을 방지하고, 고정 휠(30)가 롤링하는 롤링 요홈면(479)을 제공한다. 각 스페이서(473)는 케이지(470)의 장착영역(480)과 곡선면(479)을 형성하도록 스페이서의 나머지 부분을 벤딩(bending)한 두 단부를 갖고 형성된다. 상기 스페이서(473)는 스페이서(473)를 고정체(473)에 고정하도록 고정체(472)의 대응구멍과 정렬되는 고정체(472)와 접촉되는 측에 장착구멍(481)을 구비한다. 상기 스페이서(473)의 중심 가까이의 구멍(475)은 볼(1)에 대하여 간극을 제공한다.
일실시예로, 그 이상 및 그 이하의 스페이서(473)가 사용될 수 있지만, 각 볼(1)에 대하여 두 개의 스페이서(473)가 구비된다. 각 스페이서(473)는 I자형 빔(I-beam) 형태를 형성하도록 경상(mirror image)으로 서로 맞댄(back to back) 쌍을 이룬다. 일실시예에서 상기 스페이서(473)를 스페이서(473)에 연결하고, 고정체(472)를 고정브리지(477)에 연결하도록 리벳(476)이 사용될 수 있다. 상기 리벳(473)은 조립시 고정체(472), 스페이서(473) 및 고정브리지(477)의 홀에 견고하게 압입된다. 도22에는 두 개의 리벳(476)만이 도시되어 있지만, 모두 동일 디자인을 사용할 수 있다. 상기 스페이서(473)는 제1변환장치(420)에 사용되고, 그 스페이서(473)로부터 대략 반경방향 외측으로 연장된 다음 대략 직교되게 벤딩되는 케이스 커넥터(474)를 구비한다. 소정 실시예의 상기 케이스 커넥터(474)는 스탬핑된 다음 최종 형태를 형성하는 시트금속과 같은 편평한 금속으로 이루어진다. 상기 케이스 커넥터(474)는 스페이서(473)와 일체로 이루어질 수 있고, 그 스페이서(473)에 견고하게 부착될 수 있으며, 입력디스크(34)와 출력디스크(430) 사이에서 케이스(423)로 반경방향으로 연장된다. 소정 실시예로, 상기 케이스 커넥터(474)는 스페이서(473)의 제조과정에서 스페이서(473)의 일부분으로서 형성된다. 상기 케이스 커넥터(474)의 직교하는 단부에서의 케이스 커넥터 구멍(478)은 대응하는 케이스 커넥터 구멍(도19에서 412)와 정렬되어, 케이지(470)는 표준 패스너로 케이스(423)에 고정될 수 있다.
도22에 나타낸 디자인은 실질적으로 편평하게 이루어지고, 실질적으로 견고한 재료의 편평 시트를 사용하여 제조될 수 있는 고정디스크(472)와 결합된다. 또한 상기 케이스 커넥터(474)를 구비하거나 구비하지 않는 스페이서(473)는 실질적으로 편평하고 편평시트 재료로 형성될 수 있으며, 여러 실시예의 케이스 커넥 터(474)의 직교하는 단부에서 장착영역(480) 및 곡선면(480)은 이어지는 벤딩단계에서 형성된다. 상기 고정디스크(472) 및 스페이서는 스탬핑, 파인 블랭킹, 또는 산업적으로 알려진 다른 기술과 같이 여러 저가의 제조기술로 형성된다. 상기 본 디자인의 고정디스크(472) 및 스페이서(473)는 박막형태 또는 시트형태의 금속, 플라스틱, 세라믹, 우드(wood) 또는 종이 생산물 또는 다른 재료로부터 이루어질 수 있다. 도12에 대하여 전술한 바와 같이, 도시된 디자인은 재료에서의 현저한 비용절감을 이룰 수 있고, 상대적으로 고가의 구성품의 제조를 적절히 높일 수 있게 한다. 또한 도22에 나타낸 실시예에서는 트랜스미션에 대하여 이중 공동(dual-cavity) 디자인을 나타내고 있지만, 저가의 제조공정을 통해 제조된 구성요소들은 단일 공동 디자인의 케이지(470)에 대하여도 사용될 수 있다. 예로서, 도시된 두 개의 고정디스크(472)는 이하에서 설명한 트랜스미션(100, 1700)을 사용하기 위한 단일 공동 디자인을 제공하도록 도22의 우측에 케이스 커넥터(474)를 갖는 스페이서(473)에 부착될 수 있다.
도23은 도1 및 도17의 트랜스미션(100, 1700)을 사용하기 위하여 볼(1)의 실시예를 나타낸 것이다. 상기 볼(1)은 그 볼(1)을 통해 윤활유를 펌핑(pumping)하도록 헬리컬홈(helical groove)(450)을 구비한다. 일실시예로, 두개의 헬리컬홈(450)은 볼(1)의 구멍의 일단부에서 시작되어 구멍이 타단부까지 연속되도록 사용된다. 상기 헬리컬홈(450)은 볼(1)을 통해 윤활유를 운송시켜, 열을 제거하고 볼(1)과 볼 축(3, 433) 간에 윤활유를 제공하여, 트랜스미션(100, 1700)의 효율을 향상시키고 수명을 연장시킨다.
도24는 도5의 볼/레그 조립체의 다른 레그(460)를 나타낸 것이다. 상기 레그(460)는 도5에 나타낸 레그(2)에 비하여 단순하며, 고정휠(30), 고정휠핀(31), 가이드휠(21) 또는 가이드휠핀(22)을 구비하지 않는다. 상기 레그(460)는 볼(1)로부터 멀어지게 향하는 제1레그측(463)에 볼록면을 구비하고, 각 고정체(80)의 대응 오목홈(미도시)에 끼워맞춰진다. 상기 볼(1)을 향하는 상기 레그(460)의 제2레그측(465)에서는 오목하게 이루어지고, 레그 캠(leg cam)을 형성하도록 그의 반경방향 내측 가까이에 볼록곡선면을 구비하며, 시프트가이드(13)의 면에 의하여 축방향 및 반경방향으로 접촉하고 위치된다. 종횡 윤활포트(transverse and longitudinal lubrication port)(462, 464)는 각각 윤활유가 레그로 공급되도록 하고 다른 영역으로 전달되도록 한다. 윤활유는 레그 및 트랜스미션(100, 1700)의 다른 부품을 냉각시키도록 사용되고, 레그가 시트프가이드(13) 및 고정체(80)와 접촉되는 부위의 마찰을 최소화한다. 다른 영역으로 윤활유가 제공되도록 레그(460)에 부가적인 포트가 천공 또는 형성될 수 있고, 어떤 다른 포트 개구부가 윤활유 유입구로서 사용될 수 있다. 횡방향 포트(464)는 대략 중심에서 레그(460)의 길이를 따라 각 레그(460)의 바닥 및 상단에서의 축 구멍(461)을 통해 연장되는 구멍이다. 종방향 포트(462)는 횡방향 포트(464)에 대략 직교되게 형성되고, 제1레그측(463)을 넘어 연장되는 일측막힘 구멍(blind hole)이다. 소정 실시예로, 나타낸 바와 같이, 종방향 포트(462)는 횡방향 포트(464)와 교차되고, 제2레그측(465)을 관통하지 않고 한정된다. 소정 실시예로, 종방향포트(462)가 횡방향포트(464)와 교차하는 부위에서, 윤활유는 종방향포트(462)의 개구부로 유입된 다음, 횡방향포트(464)를 통해 전달 될 수 있다.
소정 실시예에서, 볼 축(3, 433)은 볼(1)에 압입 끼워맞춤되고, 볼(1)과 함께 회전된다. 상기 볼 축(3, 433)은 볼 축 구멍(461)과 롤러(4)의 내측에서 회전된다. 윤활유는 마찰을 감소시키기 위하여 윤활층을 제공하기 위한 부분인 레그(460)의 상단을 통해 볼 축 구멍(461)으로 유입된다.
도25 내지 도27를 참조하여, 시프트가이드(13) 상의 볼록곡선면(97)에 접근하기 위한 도해방법(graphical method)를 제안한다. 간략화를 위하여, 아이들러(18), 아이들러 베어링(17) 및 시프트가이드(13)는 그 시프트가이드(13)의 일 실시예의 올바른 볼록곡선면(97)의 분석 및 도식을 간소화하도록 결합된다. 이러한 분석 및 설명을 위하여 다음과 같이 가정한다.
1. 볼(1)이 그의축에 대하여 회전할 수 있고, 그의 축이 회전할 수 있지만 볼(1)은 변위가 없도록 볼(1)의 중심은 고정된다.
2. 볼(1), 볼 축(3, 433), 레그(2) 및 가이드휠(21)은 고정체로서 회전한다.
3. 아이들러(18)는 x방향으로만 이동할 수 있다.
4. 아이들러(18)이 주변면은 볼(1)의 주연에 대하여 접선(tangent)을 이룬다.
5. 시프트가이드(13)의 측면은 가이드휠(21)의 주연과 접선을 이룬다.
6. 볼(1)의 각 회전은 시프트가이드(123)의 선형이동을 발생시키고, 그 반대도 같다.
7. 볼 축(3, 433)이 장축(11)에 수평하고 평행하게 이루어질 경우, 상기 각 가이드휠(21) 및 각 시프트가이드(13)의 접촉지점은 시프트가이드(13)상의 수직벽이 볼록곡선면(97)으로 변화하는 볼록곡선면(97)의 시작지점이다.
상기 볼(1)이 경사질 경우, 하나의 가이드휠(21)만이 볼록곡선면(97)에 접촉하고, 다른 가이드휠(21)은 가이드시프트(13)의 수직벽에 접촉한다.
이러한 분석의 목적은, 볼(1)의 축의 경사 각도의 함수로서 가이드휠(21)이 시프트가이드(13)상의 볼록곡선면(97)과 접촉하는 지점에 근접한 좌표를 발견하기 위한 것이다. 이러한 좌표가 여러 볼 축(3, 433) 각도에 대하여 그 좌표가 정해질 경우, 이동범위에 걸쳐 가이드휠(21)/시프트가이드(13) 접촉지점의 경로를 따르는 좌표지점을 통해 곡선면은 적합하게 이루어질 수 있다.
회전각도가 제로(zero)일 경우, 상기 좌표는 가이드휠(21)/시프트가이드(13) 접촉의 초기위치(xo, yo)에서 시작되고, 이후 볼(1)이 경사지는 동안 증분(incremental) 각도에서 변화된다. 이들 좌표를 비교함으로써, 볼(1) 경사각(theta)의 상관관계로서 상기 가이드휠(21)/시프트가이드(13) 접촉위치(xn, yn)가 결정될 수 있다.
도25 및 도26으로부터 알 수 있는 변수(variable)는 다음과 같다.
1. H1: 볼(1)의 중앙으로부터 가이드휠(21)의 중심까지의 수직거리
2. H2: 볼(1)의 반경 및 아이들러(18)의 반경의 합(sum)
3. W: 볼(1)의 중심으로부터 가이드휠(21)의 중심가지의 수평거리
4. rw: 가이드휠(21)의 반경
이들 알 수 있는 변수로부터 다음과 같은 관계를 확인할 수 있다.
R1 = [(W - rw)2 + H12](1/2) (1)
Phi = TAN-1[W - rw)/H1] (2)
xo = W - rw (3)
yo = H1 - H2 (4)
BETA = TAN-1[H1/W] (5)
R2 = [H12 + W2](1/2) (6)
이러한 지점에서, 볼(1)이 시프트가이드(13)가 x방향으로 이동되도록 하는 THETA 각도로 경사지는 것으로 가정한다(도26). 이로부터 다음을 알 수 있다.
Nu = 90°- BETA - THETA (7)
x2 = R2 *SIN(Nu) (8)
x3 = x2 - rw (9)
x_시프트가이드 = xo -x3 (10)
이는 시프트가이드(13)가 소정 THETA에 대하여 이동하는 x거리이다.
x4 = R1 * SIN(Phi + THETA) (11)
x_가이드휠 = x4 -xo (12)
이는 가이드휠(21)이 소정 THETA에 대하여 이동하는 x거리이다.
이러한 지점에서, 아이들러(18)의 중심에서의 x'-y' 원점(origin)을 정의하는 것은 편리하다. 이는 가이드휠(21)/시프트가이드(13) 접촉좌표를 정하는데 유용 하다.
x1 = xo - (x_시프트가이드 - x_가이드휠) (13)
상기 수학식 (10), (12) 및 (13)을 통합함으로써,
x1 = x4 + x3 -xo (14)
이는 가이드휠(21)/시프트가이드(13) 접촉의 x'위치이다.
가이드휠(21)/시프트가이드(13) 접촉의 y' 위치를 찾는 것은 상대적으로 간단하다.
y2 = R1 * COS(Phi + THETA) (15)
y1 = H2 - y2 (16)
이는 가이드휠(12)/시프트가이드(13) 접촉의 y'위치이다.
따라서 x1 및 y1은 결정될 수 있고, 이후 여러 THETA 값에 대하여 좌표를 정할 수 있다. 이는 도27에 도식적으로 나타내었다. 원위치에서의 좌표를 갖고, 이들을 통해 곡선면을 적용시키는 것은 최적의 CAD 프로그램에 대해서 간단한 문제이다. 전술한 관계로부터 파생된 직접적인 기능도 개발될 수 있지만, 이러한 관계에 대하여 적절한 곡선면을 결정하기 위하여 곡선면 피팅방법(method of curve fitting)은 예를 들면 리니어 리그레션(linear regression)과 같은 적절한 알고리즘을 포함할 수 있다.
도1, 도7 및 도28을 참고해 보면, 트랜스미션(100)은 연속가변식 유성기어(500)로서 사용될 수 있다. 도1 및 도7를 참조하여, 케이지(89)가 장축(11)에 대하여 자유로이 회전하는 실시예에서, 아이들러(18)는 태양기어로서 제공되고, 볼(1)은 유성기어로서 제공되며, 케이지(89)는 볼(1)을 유지시키고 유성캐리어로서 제공되고, 입력디스크(34)는 제1링기어이고, 출력디스크(101)는 제2링기어이다. 각 볼(1)은 입력디스크(34), 출력디스크(101), 및 아이들러(18)에 접촉되고, 케이지(89)에 의하여 운반되고 그 케이지(89)에 의하여 반경방향 위치에 유지된다.
도28은 간략화를 위하여 유성기어(500)의 상부 절반만을 나타낸 윤곽도 또는 개략도이다. 상기 도면은 유성기어(500)의 중앙선 또는 트랜스미션(100)의 장축(11) 위를 절단한 도면이다. 출력디스크(101)에 의하여 각 볼(1) 주위에 형성되는 접촉선은 각 볼(1)의 부위가 제1유성기어(501)로서 제공되도록 하는 가변 롤링직경을 형성한다. 상기 볼(1)의 일부와 아이들러(18) 간의 접촉은 가변 롤링직경을 형성하고, 각 볼(1)의 일부가 제2유성기어(502)로서 제공되도록 한다. 상기 볼(1)과 입력디스크(34) 간의 접촉은 가변 롤링직경을 형성하고, 볼(1)의 일부가 제3유성기어(503)로서 제공되도록 한다.
유성기어(500)의 실시예에서, 가변 레이디얼 및 스러스트 베어링이 입력디스크(34), 출력디스크(101) 및 케이지(89)의 위치를 서로에 대하여 유지할 수 있도록 효과적으로 사용될 수 있다는 것은 해당 기술분야에서 당연한 것이다. 또한 고형(solid) 또는 중공의 샤프트가 본 설명에서 설명된 기능에 충족되도록 입력디스크(34), 출력디스크(101), 케이지(89) 및/또는 아이들러(18)에 사용 및 부착될 수 있고, 회전동력 트랜스미션 분야의 당업자에게 다양한 변경이 이루어질 수 있음은 당연한 것이다.
도29 내지 도31을 참조해 보면, 제1유성기어(501), 제2유성기어(502), 및 제 3유성기어(503)의 각 직경은 트랜스미션(100)을 변환시킴으로써 변화될 수 있다. 도29는 동일 직경을 갖는 제1 및 제3유성기어(501, 503)와, 최대 직경의 제2유성기어(502)를 갖는 트랜스미션(100)을 나타내 것이다. 전술한 바와 같이 볼(1)이 경사져, 유성기어(501, 502, 503)의 직경은 변화되고, 트랜스미션(170)의 입력 대 출력속도비를 변경시킨다. 도30은 볼(1)이 경사져서 제1유성기어(501)의 직경은 증가하고, 제2 및 제3유성기어(502, 503)의 직경은 감소되는 경우를 나타낸 것이다. 도31은 볼(1)이 경사져 제3유성기어(503)의 직경은 경사지고, 제1 및 제2유성기어(501, 503)의 직경은 감소되는 경우를 나타낸 것이다.
입력디스크(34), 아이들러(18), 및/또는 케이지(89) 간의 토크제공원(torque source)을 달리함으로써 여러 다른 속도의 조합이 가능하다. 또한 소정 실시예는 하나 이상의 입력을 사용한다. 예를 들면 입력디스크(34)와 케이지(89)는 모두 입력토크를 제공할 수 있고, 동일속도 또는 다른속도에서 회전할 수 있다. 하나 이상의 입력토크 제공원은 속도를 가변시킬 수 있어 트랜스미션(100)의 능률(ratio possibility)을 증가시킨다. 아래의 리스트는 유성기어로서 트랜스미션(100)을 사용하여 얻을 수 있는 소정 조합을 제공한 것이다. 아래 리스트에서, 입력토크 또는 입력원은 "I", 출력은 "O", 장축(11)에 대하여 회전되지 않도록 고정되는 구성요소는 "F", 구성요소가 자유자재로 회전되도록 하는 경우는 "R"로 나타내었다. "Single In/Single Out"은 하나의 입력 및 하나의 출력을 나타내도록 사용되고, "Dual In/Single Out"은 두 개의 입력 및 하나의 출력을 나타내도록 사용되고, "Dual In/Dual Out"는 두 개의 입력 및 두 개의 출력을 나타내도록 사용되며, "Tripe In/Single Out"는 세 개의 입력 및 하나의 출력을 나타내도록 사용되고, "Single In/Triple Out"는 하나의 입력 및 세 개의 출력을 나타내도록 사용되었다.
Figure 112009006159903-PAT00001
Figure 112009006159903-PAT00002
Figure 112009006159903-PAT00003
Figure 112009006159903-PAT00004
도32를 참조해 보면, 트랜스미션(100)은 보다 많은 속도 조합(speed combination)을 제공하도록 유성기어(505)를 갖는 평행한 동력경로를 통해 결합될 수 있다. 전형적인 유성기어장치(505)는 중심에 태양기어, 태양기어의 주위에 분산배치되고 그 태양기어와 결합되며 그의 각 중심에서 캐리어라 불리는 유성캐리어에 모두 회전가능하게 부착되는 복수개의 유성기어, 및 상기 유성기어를 둘러싸고 그 유성기어와 결합되는 링기어로 이루어진다. 태양기어, 캐리어 및 링기어 간의 입력 및 출력 토크원을 전환함으로써, 많은 속도 조합을 얻을 수 있다. 트랜스미션(100)과 결합된 상기 유성기어장치(505)는 매우 많은 수의 속도조합을 제공하고, 소정의 경우에는 무한 가변 가능한 트랜스미션을 얻을 수 있다. 도32에서, 트랜스미션(100)의 토크입력은 입력디스크(34), 및 그 입력디스크(34)와 대략 동축을 이루고 평행한 동력경로를 구동하도록 제2기어(509)와 접촉하고 회전하는 제1기어(506)에 결합된다. 트랜스미션(100) 또는 CVT(100)의 입력디스크(34)와, 모터 또는 다른 동력장치와 같은 원동기(prime mover) 또는 다른 토크원에 평행한 동력경로의 입력 모두를 결합하는 기본 구성을 "입력결합(Input Coupled)"으로 칭한다. 제1기 어(506) 및 제2기어(509)의 직경을 변화시킴으로써, 평행한 동력경로에 대한 입력속도는 변화될 수 있다. 상기 제2기어(509)는 기어샤프트(508)에 부착되고 기어샤프트(508)를 회전시키며, 소정 실시예에서 기어박스(507)를 회전시킨다. 소정 실시예에서 디자인 옵션으로서 제공되는 기어박스(507)는 평행 동력경로의 회전속도를 더 변화시킬 수 있고, 일반적인 연동 트랜스미션으로 이루어질 수 있다. 기어박스(507)를 사용하지 않는 실시예에서, 기어샤프트(508)는 제3기어(510)를 구동시킨다. 상기 제3기어(510)는 유성기어장치(505)의 태양기어, 캐리어, 또는 링기어를 구동시키고, 요구되는 속도/토크비를 형성하도록 디자인된 직경을 갖는다. 또한 상기 제3기어(510)는 생략될 수 있고, 상기 기어박스(508)가 유성기어장치(505)의 태양기어, 캐리어, 또는 링기어를 직접적으로 회전시킬 수 있다. 또한 상기 유성기어장치(505)는 다른 태양기어, 캐리어 또는 링기어를 구동시키는 CVT(100)의 출력으로부터 입력을 갖는다.
"입력결합(Input Coupled)"으로 명명된 다음의 테이블(table)에서는, 많지만 전부는 아닌 전술한 바와 같은 기본 배치를 갖고 확인할 수 있는 가능한 다양한 입력 및 출력조합이다. 본 테이블에서, "IT"는 CVT(100)로의 입력토크원을 나타내고, "O"는 유성기어장치(505)와 결합된 CVT의 구성요소를 나타내고, "I1"은 CVT(100) 출력에 결합된 유성기어장치(505)의 구성요소를 나타내고, "OV"는 차량 또는 장치의 출력에 연결되는 유성기어장치(505)의 구성요소를 나타내고, "F"는 축에 대하여 회전하지 않도록 고정된 유성기어장치(505) 또는 트랜스미션(100)의 구성요소를 나타내고, "I2"는 제3기어(509)인 평행경로에 결합된 구성요소를 나타내며, "R"은 축 에 대하여 자유자재로 회전하고 따라서 다른 구성요소를 구동시키지 않는 구성요소를 나타낸다. 본 테이블 및 "출력결합(Output Coupled)"으로 명명된 다음의 테이블에 대하여, 제공되는 전체 테이블 수를 감소시키기 위하여 링기어는 고정되는 유성기어장치(505)만의 구성요소로 가정한다. 또한 태양기어 또는 유성캐리어는 다른 구성요소에 대하여 대응하는 입력 및 출력조합으로 고정될 수 있고, 이들 조합은 본 설명의 지면을 감소시키기 위하여 여기에 제공되지 않지만, 다음의 두 테이블에 기초하여 용이하게 결정될 수 있다.
Figure 112009006159903-PAT00005
Figure 112009006159903-PAT00006
Figure 112009006159903-PAT00007
Figure 112009006159903-PAT00008
Figure 112009006159903-PAT00009
Figure 112009006159903-PAT00010
도33에 나타낸 실시예를 참조해 보면, 토크입력원은 CVT(100)에 입력으로서 결합되는 유성기어장치(505)를 구동시킨다. 상기 CVT(100)의 하나 이상의 구성요소는 평행 동력경로 및 트랜스미션의 출력에 결합된다. 본 실시예에서 평행 동력경로는 다음과 같다. 유성기어장치(505)의 구성요소, 기어샤프트(508)를 회전시킨 다음 전술한 기어박스(507)를 구동시키는 제3기어(510)와 결합되는 태양기어, 캐리어, 또는 링기어 중 하나이다. 상기 기어박스(507)는 제2기어(509)를 회전시킨 다음 제1기어(506)를 구동시키는 기어박스샤프트(511)를 회전시킨다. 이후 상기 제1기어(506)는 CVT(100)의 출력에 결합되는 트랜스미션의 출력샤프트에 장착된다. 본 실시예에서, 상기 유성기어장치(505)는 트랜스미션의 토크원에 결합된 다음, 평행 경로 및 CVT(100) 모두에 토크를 제공하고, 이들 두 경로로부터의 토크는 차량 또는 설비장치의 출력에 결합된다. 그러므로 유성기어장치(505)가 CVT(100) 및 고정 속도비의 평행 경로에 토크를 제공하도록 결합되고, 두 경로는 구동샤프트, 휠 또는 다른 하부장치와 같은 출력에 결합될 경우, 이러한 구성을 "출력결합(Output Coupled)"으로서 칭한다. 이러한 기본 구성에서, CVT(100)와 결합된 유성기어장치(505)는 매우 많은 수의 속도조합을 제공하고, 어떤 경우에는 무한 가변 트랜스미션을 얻을 수 있다.
"출력결합(Output Coupled)"으로 명명된 다음의 테이블에서, 도33에 나타낸 기본 배치의 가능한 많은 조합을 제공하고 설명하나 전부는 아니다. 본 테이블에서, 유성기어장치(505)에 있어, CVT(100)에 결합된 유성기어장치(505)의 구성요소는 "O1"으로 나타내고, "I"는 엔진, 인간 또는 어떠한 동력원으로부터의 입력을 나타내고, "F"는 그 자체의 축에 대하여 회전되지 않도록 고정되는 구성요소를 나타내고, "O2"는 유성기어장치(505)를 통해 평행 경로에 결합된 구성요소를 나타낸다. CVT(100)에 있어, "I"는 유성기어장치(505)에 결합되는 구성요소를 나타내고, "O"는 차량 또는 기계장치의 출력에 결합되는 구성요소를 나타내고, "F"는 전술한 바와 같이 고정 구성요소를 나타내며, "R"은 그의 축에 대하여 자유자재로 회전되어 이에 따라 다른 구성요소를 구동시키지 않는 구성요소를 나타낸다.
Figure 112009006159903-PAT00011
Figure 112009006159903-PAT00012
Figure 112009006159903-PAT00013
Figure 112009006159903-PAT00014
Figure 112009006159903-PAT00015
Figure 112009006159903-PAT00016
도32에 나타낸 실시예를 참조해 보면, "듀얼입력 동력경로 결합 입력(Input Coupled Dual Input Power paths)"으로 명명된 다음의 테이블은 유성기어장치(505)에 두 토크입력원을 갖는 기본 입력결합배치(basic input coupled arrangement)에서의 조합을 나타낸 것이다. 본 테이블에 제공된 참조문자는 전술한 테이블과 같은 동일 구성요소를 나타내나, 유성기어장치(505)에 있어서, CVT(100)의 출력을 나타내는 "I1" 및 평행 경로, 본 경우는 유성기어(510)에 결합되는 구성요소를 나타내는 "I2"는 제외이다.
Figure 112009006159903-PAT00017
Figure 112009006159903-PAT00018
Figure 112009006159903-PAT00019
또한 도32에 나타낸 실시예를 참조해 보면, "트리플입력 결합입력(Input Coupled Triple Input)"으로 명명된 다음의 테이블은 CVT(100)에 세 개의 입력토크 원을 사용하는 실시예를 나타낸 것이다. 본 테이블에 있어서, CVT(100) 참조문자는 전술한 테이블에서와 같이 동일 구성요소를 나타내고, 유성기어장치(505)의 참조문자는 평행경로에 결합되는 구성요소를 나타내는 "I2"를 제외한 동일 구성요소를 나타낸다.
Figure 112009006159903-PAT00020
Figure 112009006159903-PAT00021
도34에 나타낸 실시예를 참조해 보면, 평행경로는 본 제안에서 설명되는 실시예의 특정한 배치로 인하여 생략될 수 있다. 상기 평행경로는 CVT 및 유성기어장치(505)의 여러 구성요소가 전술하고 이하에서 설명될 모든 조합을 제공하도록 결 합되는 동일선상 배치(collinear arrangement)로 조합된다. 소정 실시예로, 유성기어장치(505)는 CVT(100) 입력에 결합되거나, 도34에 나타낸 바와 같이 CVT(100) 출력에 결합될 수 있다. "듀얼출력경로 결합 입력(Input Coupled Dual Output paths)"으로 명명된 다음의 테이블은 CVT(100)로부터 유성기어장치(505)로 두 개의 입력을 구비하는 경우에 이용가능한 여러 조합의 리스트이다. CVT(100)에 대한 참조문자는 전술한 테이블과 동일하고, 유성기어장치(505)의 참조문자에 있어서는, 평행경로에 더 이상 결합되지 않지만 제2CVT(100) 출력에 결합되는 "I2"를 제외하고 동일 구성요소를 나타낸다.
Figure 112009006159903-PAT00022
Figure 112009006159903-PAT00023
Figure 112009006159903-PAT00024
앞의 두 테이블에 있어, 전술한 트랜스미션은 각 조합에 대하여 반대의 결과를 제공하도록 반대로 될 수 있지만, 이러한 반대의 조합은 용이하게 확인할 수 있기 때문에, 본 설명에서는 지면을 고려하여 별도로 설명하지 않는다. 예를 들면, 듀얼출력 결합 출력(Output Coupled Dual Output)에 대하여, 듀얼입력 결합 입력(Input Coupled/Dual Input)의 반대(inverse)는 유성기어장치(505) 입력의 어느 한쪽이 CVT(100) 출력의 어느 한쪽에 결합되는 것임을 알 수 있다.
또한 도34에 나타낸 실시예를 참조해 보면, "듀얼-듀얼 결합 입력(Input Coupled Dual-Dual)"으로 명명된 다음의 테이블은 CVT(100)로 두 개의 토크입력 및 CVT(100)로부터 두 개의 출력이 유성기어장치(505)로 제공되는 경우에 이용가능한 여러 조합을 제공한다.
Figure 112009006159903-PAT00025
Figure 112009006159903-PAT00026
도34를 참조하여, "출력에 일체로 결합된 유성기어장치(Internally Coupled Planetary on Output)"로 명명된 다음의 테이블은 유성기어장치(505)가 CVT(100)의 구성요소에 직접적으로 결합될 때 이용가능한 전부는 아닌 여러 조합을 제공한다. CVT(100)에 있어서, 참조문자 "O1"은 유성기어장치(505)의 "I1"에 결합되는 구성요소를 나타내고, "R"은 자유로이 롤링하거나 제2입력인 구성요소를 나타내고, "F"는 트랜스미션에 대한 고정 구조체 또는 고정 케이스와 같은 고정 구성요소에 견고하게 부착되는 구성요소를 나타내고, "O2"는 유성기어장치(505)의 "I2"에 결합되는 구성요소이다. 유성기어장치(505)에 있어서, "I1"은 CVT(100)의 제1출력 구성요소에 결합되는 구성요소를 나타내고, "O"는 차량 또는 다른 부하장치에 출력을 제공하는 구성요소를 나타내고, "F"는 고정 구성요소를 나타내고, "I2"는 제2CVT(100) 출력 구성요소에 결합되는 구성요소를 나타낸다. 다음의 테이블에서 나타낸 조합에 있어, 입력부재는 다른 부재의 결합배치에 대응하는 변화를 갖는 유성부재의 어느 하나에 결합될 수 있는 것임을 알 수 있다.
Figure 112009006159903-PAT00027
Figure 112009006159903-PAT00028
Figure 112009006159903-PAT00029
Figure 112009006159903-PAT00030
Figure 112009006159903-PAT00031
도35는 출력결합배치(output-coupled arrangement)에서 유성기어장치(505)와 결합되는 트랜스미션(100)의 실시예를 나타낸 사시도이다. 이러한 출력결합배치에서, 평행경로는 생략되고, 하나 이상의 입력토크원이 유성기어장치(505)에 결합된다. 그런 다음 상기 유성기어장치(505)는 대응하는 CVT(100)의 하나 또는 두 개의 구성요소에 결합되는 하나 또는 두 개의 출력을 구비한다. 예를 들면, 일실시의 구성에서, 링기어(524)는 케이스(40)(미도시)에 견고하게 부착되고, 복수개의 유성기어(522)는 유성샤프트(523)를 통해 입력디스크(34)에 동작가능하게 부착되고, 입력은 유성샤프트(523)를 연결하는 유성캐리어(미도시)에 결합된다. 이러한 배치에서 상기 유성기어(522)는 태양기어(520)를 회전시키고, 또한 상기 태양기어(520)는 케이지(89)(미도시)를 회전시키는 케이지 샤프트(521)에 부착된다. 상기 유성기어(522)는 태양기어(520)를 공전할 때 상기 태양기어(520)는 한번 회전하고, 또한 각 유성샤프트(523)에 대하여 회전하는 유성기어(522)에 의하여 더 회전된다. 따라서 상기 태양기어(520) 및 케이지(89)(미도시)는 유성캐리어(미도시) 및 입력디스크(34)보다 빠르게 회전한다.
이러한 구성에서 상기 케이지(89)가 입력디스크(34)보다 빠르게 회전하기 때 문에, 볼(1)은 입력의 역방향으로 회전하고, CVT(100)의 속도범위에 대하여 변화는 구성요소의 지향성은 변화되는데, 여기에서 다른 실시예의 저속에 대한 지향(orientation)은 고속을 제공하고, 고속에 대한 지향은 저속을 제공한다. 아이들러(18)(미도시)가 CVT(100)의 입력측으로 이동됨에 따라, 출력속도는 제로로 감소되고, 출력디스크(101)는 회전하지 않는다. 다시 말해서, 이러한 상태는 트랜스미션이 회전하는 입력과 완전히 결합되지만 출력은 회전되지 않는 경우를 발생시킨다. 이러한 상태는 유성기어(522) 및 태양기어(520)의 치수(tooth count)를 조절함으로써 이루어질 수 있다. 예를 들면, 태양기어(520)가 유성기어(522)의 사이즈에 두 배일 경우, 태양기어(520) 및 케이지(89)는 유성캐리어 및 입력디스크(34)의 속도보다 두 배로 회전한다. 상기 입력디스크(34) 속도에 대한 케이지(89)속도를 증가시킴으로써, 출력디스크(101)가 CVT(100)의 변환범위의 일단에서 역으로 회전되고, 이러한 단부와 CVT(100)의 변환범위의 중간지점 사이에서 출력디스크(101)가 제로로 되는 범위를 제공할 수 있다. 변환범위를 결정하는 모든 다른 인자(factor)는 제로이고, 출력속도는 일정하다는 가정하에서, 상기 출력디스크(101)의 속도가 제로가 되는 CVT(100)의 변위범위에서의 지점은 태양기어(520)의 속도를 유성캐리어의 속도로 분할함으로써 좌표를 정할 수 있다.
"입력에 일체로 결합된 유성기어장치(Internally Coupled Planetary on Input)"로 명명된 다음의 테이블은 도35에 나타낸 실시예를 변화시킴으로써 달성될 수 있는 조합을 전부는 아니지만 대부분 나타낸 것이다. 유성기어장치(505)의 구성요소에 대한 참조에 있어, "I1"은 제1CVT(100) 입력 구성요소 "I1"에 결합되는 출 력 구성요소를 나타내고, "I2"는 제2CVT(100)입력 구성요소 "I2"에 결합되는 제2출력 구성요소를 나타내고, "F"는 유성기어장치(505)와 CVT(100) 모두에 대하여 고정되는 구성요소를 나타낸다. CVT(100)에 있어, "R"은 자유로이 회전하거나 토크의 제2출력 중 하나인 구성요소를 나타낸다. 본 테이블 및 앞의 테이블에서, 유성 링기어만이 고정되는 것으로 나타내며, 보다 많은 조합의 결과를 이루는 구조일 경우 어떤 다른 유성부재가 고정부재로 이루어질 수 있다. 본 설명에서 이러한 부가적인 조합은 지면(space)을 절약하기 위하여 나타내지 않았다. 또한 다음의 테이블에서, 주 발동기(엔진)로부터 하나의 입력만을 나타내었다. 이러한 구성은 병행 하이브리드 차량에서와 같이 유성부재에 걸쳐 두 개의 독립된 입력을 수용하기 위한 용적을 갖지만, 이들 조합은 지면 절약을 위하여 별도로 나타내지 않았으며, 이는 도시된 예 및 설명으로부터 부가적인 실시예로 당업자가 충분히 이해할 수 있다. 다음의 테이블로부터의 구성은 앞의 테이블로부터의 어떠한 구성과 조합될 수 있으며, 입력 및 출력에 각각 구비되는 두 개의 유성장치를 사용하는 구성의 장치를 제공하도록 단일 또는 이중 용적 CVT와 조합될 수 있다.
Figure 112009006159903-PAT00032
Figure 112009006159903-PAT00033
Figure 112009006159903-PAT00034
Figure 112009006159903-PAT00035
Figure 112009006159903-PAT00036
앞의 테이블에서는, 하나의 CVT(100) 및 하나의 유성기어장치(505)만이 사용된다. 부가적인 조합을 개발하도록 많은 유성기어장치를 사용하는 것은 당업자에게 주지의 사실이다. 상기 테이블에서 설명한 CVT(100)는 유성기어장치에 유사한 방식으로 제공될 수 있음으로 인하여, 본 설명에서 당연히 리스트되지 않은 실질적으로 많은 조합들을 생성하기 위하여 입력 및 출력단 모두에서 유성기어장치를 갖는 CVT(100)를 조합하는 것은 본 기술분야의 당업자에게 용이한 것이다. 그러나 이러한 조합들은 본 기술분야의 특성내에서 본 설명의 일부로서 충분히 고려되는 것이다.
예시
이하의 변형은 각각의 특정 사양에 대하여 효과적인 특성을 구비할 수 있다. 상기 변형은 어떠한 특정 사양의 목적을 달성하도록 필요에 따라 변경되고 제어될 수 있다. 이하에서 설명 및/또는 앞의 테이블에서 열거한 소정의 변형을 적용한 특정 실시예를 설명한다. 도36a 내지 도36c는 하나의 토크입력원을 구비하는 변형이며, 두 개의 토크출력원을 제공하는 일실시예의 트랜스미션(3600)을 나타낸 것이다. 앞에서와 같이, 도36a 내지 도36c에 나타낸 실시예와 앞서 나타내고 설명한 실시예 간의 현저한 차이점만을 설명한다. 또한 나타낸 구성요소들은 앞서 나타내지 않은 동력경로(power path) 및 토크출력원의 제공방식을 본 기술분야의 당업자에게 제안하도록 제공된다. 많은 부가적인 구성요소들이 동작가능한 실시예에 대하여 사용될 수 있음을 알 수 있으나, 도면의 간략화를 위하여 많은 구성요소들은 생략하거나 개략적으로 박스형태로 나타내었다.
도36a를 참조해 보면, 토크는 전술한 실시예와 같이 구동샤프트(3669)를 통해 입력된다. 본 실시예의 상기 구동샤프트(3669)는 두 개의 단부를 갖는 중공 샤프트로 이루어지고, 제1단에서 트랜스미션(3600)으로 토크를 제공하는 소정의 원동기(prime mover)와 결합되고, 제2단에서는 유성캐리어(3630)와 결합된다. 상기 유성캐리어(3630)는 트랜스미션(3600)의 장축과 동축으로 위치되는 디스크형태로 이 루어지고, 그의 중심에서 구동샤프트(3669)와 연결되고, 트랜스미션(3600)의 케이스(3640) 내측 반경 가까이로 반경방향 연장한다. 본 실시예에서, 케이스(3640)는 고정되고, 사용되는 차량 또는 설비의 소정 지지구조체에 고정된다. 레이디얼 캐리어베어링(radial carrier bearing)(3631)은 케이스(3640)의 내면과 유성캐리어(3630)의 외부 가장자리 사이에 위치된다. 어떤 실시예의 캐리어베어링(3631)은 유성캐리어(3630)에 레이디얼 지지를 제공하는 레이디얼베어링으로 이루어진다. 다른 실시예로, 상기 캐리어베어링(3631)은 콕킹뿐만 아니라 반경방향 또는 축방향 이동을 방지하는 유성캐리어에 반경방향 및 축방향 모두의 지지를 제공하는 콤파운드베어링(compound bearing)으로 이루어진다.
복수개의 유성샤프트(3632)는 유성캐리어(3630)의 중심 및 외부 가장자리 사이 반경방향 위치로부터 유성캐리어(3630)에서 연장된다. 상기 유성샤프트(3632)는 트랜스미션(3600)의 출력단 측으로 축방향으로 연장되고, 유성캐리어(3630)를 입력디스크(3634)를 연결하는 대략 원통형 샤프트로 이루어지며, 각 유성기어(3635)가 회전하는 축을 각각 형성한다. 상기 유성샤프트((3632)는 입력디스크(3634) 또는 유성캐리어(3630)의 입력측으로 형성될 수 있고, 입력디스크(3634) 또는 유성캐리어로 나사결합될 수 있고, 입력디스크(3634) 또는 유성캐리어 중 하나로 나사결합될 수 있으며, 패스너 또는 다른 방법으로 부착될 수 있다. 상기 유성기어(3635)는 유성샤프트(3632)에 의하여 지지되고 그 유성샤프트(3632)에 대하여 회전하는 단순한 회전기어로 이루어지고, 많은 실시예에서 유성기어(3635)와 유성샤프트(3632) 사이에 베어링을 사용한다. 이들은 직선기어치 또는 헬리컬기어치를 구비할 수 있 지만, 헬리컬 기어치가 사용될 경우, 유성기어(3635)에 의한 토크의 전달에 의하여 발생되는 축방향 스러스트를 흡수하도록 스러스트 베어링이 사용된다.
또한 도36a에 나타낸 실시예를 참조해 보면, 상기 유성기어(3635)는 그의 각축에 대하여 회전할 때마다 각 주연을 따라 두 영역에서 치합한다. 상기 트랜스미션(3600)의 장축으로부터 가장 멀리 떨어지게 위치된 제1주연위치에서, 각 유성기어(3635)는 링기어(3637)와 치합된다. 상기 링기어(3637)는 케이스(3640)의 내면에 형성되거나 그에 부착되는 내부기어이다. 소정의 실시예로, 상기 링기어(3637)는 그 링기어(3637)의 내면에 형성되는 한 세트(set)의 레이디얼 기어치로 이루어지고, 반경방향 내측으로 연장되어, 유성기어(3635)는 상기 기어치와 결합될 수 있고, 링기어(3637)의 내면을 따라 진행되며 트랜스미션(3600)의 장축을 공전한다. 반경방향 최외측부에 대략 대향하는 유성기어(3635)의 주연지점에서, 상기 링기어(3635)는 태양기어(3620)와 치합된다. 상기 태양기어(3620)는 유성기어(3635)의 중심부에서 트랜스미션(3600)의 장축에 대하여 동축으로 장착되고, 모든 유성기어(3635)와 치합되는 레이디얼 기어이다. 상기 유성캐리어(3630)가 유성기어(3635)를 태양기어(3620)에 대하여 회전시킴에 따라, 상기 유성기어(3635)는 링기어(3637)와 치합에 의하여 각 유성샤프트(3632)에 대하여 회전되고, 따라서 태양기어(3620)를 공전함과 동시에 그 공전함에 따라 자신의 샤프트에서 회전된다. 이는 구동샤프트(3669)에 의한 입력속도보다 큰 속도에서 태양기어(3620)로 전달되는 회전에너지로부터 비롯된 것이다.
도36a에 나타낸 실시예에서, 상기 구동샤프트(3669)는 유성캐리어(3630) 및 유성샤프트(3632)를 통해 입력디스크(3634)를 구동시킨다. 그러나 상기 유성기어(3635)는 태양기어(3620)를 구동시켜, 상기 유성캐리어로부터의 동력은 입력디스크(3634) 및 태양기어(362)로 분배된다. 상기 태양기어(3620)는 본 실시예의 케이지(3689)에 견고하게 연결되고 그 케이지(3689)를 회전시킨다. 상기 케이지(2689)는 전술한 실시예와 유사하며, 따라서 도면의 간략화 및 설명의 이해를 위하여 본 설명에서는 상기 구성요소들의 전부에 대해서는 나타내지 않았다. 다른 실시예로, 상기 케이지(3689)는 트랜스미션(3660)의 장축에 대하여 볼(3601)을 위치결정하고, 본 실시예의 상기 케이지(2689)는 축에 대하여 회전하기 때문에, 상기 볼(3601)은 트랜스미션(3600)의 장축을 공전하게 된다. 앞서 설명한 바와 유사한 입력디스크(3634)는 앞의 실시예들과 같은 방식으로 볼(3601)에 입력토크를 제공한다. 그러나 상기 태양기어(3620) 또한 케이지(3689)의 회전에 의하여 볼(3601)에 입력토크를 제공하고, 입력디스크(3634)로부터 입력을 부가시킨다. 본 실시예에서, 출력디스크(3611)는 케이스(3640)에 견고하게 고정되고, 축에 대하여 회전되지 않는다. 따라서 상기 볼(3601)은 출력디스크(3611)의 표면을 따라 롤링하고, 이에 따라 트랜스미션(3600)의 장축을 공전하고, 각 축에 대하여 회전된다.
다른 실시예로, 상기 볼(3601)은 그 축에 대하여 아이들러(3618)를 회전시키나, 본 실시예에서 상기 아이들러(3618)는 출력디스크(3611)의 내경에 의하여 형성된 완전통체(whole)를 넘어 연장되는 아이들러 샤프트(3610)를 포함한다. 상기 볼(3601)은 아이들러(3618)를 구동시키고, 이어서 아이들러 샤프트(3610)를 구동시키며, 트랜스미션(3600)으로부터 제1출력토크를 제공한다. 도36b에 나타낸 바와 같 이, 상기 아이들러 샤프트(3610)는 그 아이들러 샤프트(3610)로부터 동력을 받아들이는 장치와 용이하게 결합되도록 하는 단면형태로 이루어질 수 있으며, 소정 실시예로 도시된 바와 같이 6각형(hexagonal)으로 이루어지지만, 어떤 다른 형태가 사용될 수도 있다. 앞서 설명한 바와 같이 변속하는 동안 아이들러(3618)의 축방향으로 인하여, 상기 아이들러 샤프트(3610)는 트랜스미션(3600)의 변속동안 축방향으로 이동된다. 이는 이러한 디자인의 아이들러 샤프트(3610)와 입력장치(미도시) 간의 결합이 아이들러샤프트(3618)의 축이동을 허용하도록 하는 것을 의미한다. 이는 아이들러 샤프트(3610)가 출력장치 내에서 자유로이 이동되거나, 볼 스플라인에 의한 것과 같이 스플라인 출력 아이들러샤프트(3610)의 사용에 의하여 출력장치 내에서 자유로이 이동되도록 약각 큰 출력장치를 허용함으로써 달성될 수 있다. 또한 아이들러(3618)는 아이들러샤프트(3610)의 축방향 위치를 유지하도록 아이들러 샤프트(3610)에 스플라인(spline)될 수 있다.
도36a 및 도36b에 나타낸 바와 같이, 케이지(3689)는 출력 동력원도 제공할 수 있다. 도면에 나타낸 바와 같이, 케이지(3689)는 그의 출력측 내경에서 케이지샤프트(3690)에 연결될 수 있다. 도시된 실시예에서는, 케이지 샤프트(3690)는 그의 단부에서 출력기어 또는 스플라인이 형성되어, 제2출력원으로서 동력을 제공한다.
도36a에 나타낸 바와 같이, 트랜스미션(3600)의 여러 구성요소의 축방향 및 반경방향 위치를 유지하도록 여러 베어링이 제공될 수 있다. 상기 케이지(3689)는 케이지 출력베어링(3691)에 의하여 그의 위치에 지지될 수 있고, 상기 케이지 출력 베어링은 케이스(3640)에 대하여 케이지의 축방향 및 반경방향 위치 모두를 유지하도록 레이디얼 지지체를 제공하도록 레이디얼 베어링으로 이루어지거나 베어링을 적절하게 조합하여 이루어질 수 있다.
상기 케이지 출력베어링(3691)은 케이지 입력베어링(3692)에 의하여 보조되는데, 상기 케이지입력베어링은, 레이디얼 베어링으로 이루어지거나 적절히 조합된 레이디얼-스러스트베어링으로 이루어지며, 입력디스크(3634)에 대하여 케이지(3689)를 위치결정한다. 상기 입력디스크(3634)에 약간의 축방향 이동 또는 변형이 가해질 경우에 축력발생장치를 사용하는 실시예에서, 상기 케이지 입력베어링(3692)은 산업적으로 공지된 기계장치에 의하여 이러한 이동을 허용하도록 디자인된다. 입력디스크(3634)가 케이지입력베어링(3692)의 외륜에 대하여 축방향으로 약간 이동될 수 있도록, 일실시예로 예를 들면 볼 스플라인에 의하여 입력디스크(3634)의 내경에 스플라인된 외부 베어링마찰면을 사용한다.
도36a에서 나타낸 실시예의 변환장치는 아이들러(3618)에 의하여 제공되는 출력토크를 허용하도록 도시된 실시예로부터 약간 변경된다. 본 실시예에서, 상기 아이들러(3618)는 시프트로드(3671)에 의한 동작에 따라 축방향으로 이동됨으로써 변위를 시작하고, 이어 시프트가이드(3613)를 축방향으로 이동시켜 전술한 바와 같이 변환장치가 볼(3601)의 축을 변경하도록 한다. 본 실시예에서 상기 시프트로드(3671)는 아이들러(3618)로 나아가지 않지만, 아이들러 입력베어링(3674)와 아이들러 출력베어링(3673)을 통해 아이들러(3618)와 접촉만 한다. 상기 아이들러 입력 및 출력베어링(3674, 3673) 각각은 트랜스미션(3600)의 장축을 따라 축방향 및 반 경방향 모두로 아이들러(3618)를 위치결정하는 조합 스러스트 및 레이디얼베어링이다.
상기 시프트로드(3671)가 출력단측으로 축방향 이동될 경우, 상기 입력 아이들러베어링(3674)는 아이들러에 축력을 가하고, 이에 따라 상기 아이들러는 출력단부로 이동하고, 소정의 변속비로 변화하기 시작한다. 도시된 실시예의 시프트로드(3671)는 태양기어(3620)의 중심에 형성된 내경을 통해 아이들러(3618)을 넘어 아이들러 단부베어링(3675)에 의하여 구동샤프트(3669) 내에 반경방향 정렬이 유지되는 구동샤프트(3669)의 제2단부로 연장된다. 상기 시프트로드(3671)는 구동샤프트(3669)내에서 축방향으로 이동되지만, 여러 실시예들의 아이들러 단부베어링(3675)은 이러한 동작을 허용한다. 전술한 바와 같이, 여러 실시예들은 구동샤프트(3669)의 내면에 형성된 결합스플라인과 결합되는 스플라인 외륜을 사용한다. 이러한 스플라인 외륜은 시프트로드(3671)가 축방향으로 전후 이동됨에 따라 구동샤프트(3669)의 내면을 따라 슬라이딩하도록 하고, 시프트로드(3671)를 반경방향으로 정렬을 보조하도록 사용되는 레이디얼 지지체를 제공한다. 상기 태양기어(3620)의 내부구멍은 시프트로드(3671)와 태양기어(3620) 사이에 위치되는 베어링(미도시)에 의하여 시프트로드(3671)에 대하여 반경방향으로 지지될 수 있다. 상기 시프트로드(3671)가 축 이동할 수 있도록 내륜 또는 외륜은 스플라인될 수 있다.
도36a에 나타낸 실시예의 아이들러(3618)가 트랜스미션(3600)를 변속시키도록 축방향 이동될 경우, 상기 아이들러(3618)는 시프트가이드(3613)를 이동시킨다. 도면에 나타낸 실시예에서, 상기 시프트가이드(3613)는 아이들러(3618)의 각 단부 에 대하여 동축으로 장착되는 환형 링으로 이루어진다. 상기 도시된 시프트가이드(3613)는 내부 시프트가이드 베어링(3617) 및 외부 시프트가이드 베어링(3672)에 의하여 반경방향 및 축방향 위치에 각각 유지된다. 본 실시예의 상기 내부 및 외부 시프트가이드 베어링은 아이들러(2618)에 대하여 시프트가이드(3613)의 축방향 및 반경방향 정렬을 유지하도록 그 시프트가이드(3613)에 축방향 및 반경방향 지지를 제공하는 조합 베어링으로 이루어진다. 상기 각 시프트가이드(3613)는 아이들러(3618)로부터 멀어지는 방향으로 연장되는 관형슬리브(미도시)를 구비할 수 있어, 상기 시프트가이드베어링(3617, 3672)은 필요한 만큼 시프트가이드(3613)에 부가적인 공간적 지지를 제공할 수 있다. 상기 시프트로드(3671)는 리드스크류(lead screw)와 같은 에크미 나사단부(acme threaded end)나 유압동작피스톤 또는 다른 공지의 기계장치와 같이 축이동을 발생시키기 위한 공지의 장치에 의하여 축방향으로 이동될 수 있다.
도36a와 도36b, 주로 도36c에 나타낸 바와 같이, 트랜스미션(3600)을 통한 동력경로는 평행하고 동축경로를 이룬다. 초기에 동력은 구동샤프트(3669)를 통해 트랜스미션(3600)으로 전달된다. 그런 다음 상기 동력은 유성캐리어(3630) 및 유성기어(3635)를 통해 입력디스크(3634)와 태양기어(3620) 모두로 전달된다. 이후 다음의 동력경로는 태양기어(3620) 및 케이지(3689)로부터 전달되고, 케이지샤프트(3689)를 통해 트랜스미션(3600)으로 출력된다. 이러한 동력경로는 태양기어(3620)와 유성기어(3635)의 치수(dimension)에 기초하여 구동샤프트로부터 고정된 변속비를 제공한다. 제2동력경로는 유성샤프트(3632)를 통해 유성캐리어(3630) 로부터 입력디스크(3634)로의 경로이다. 이러한 동력경로는 입력디스크(3634)로부터 볼(3601)로, 볼(3601)로부터 아이들샤프트(3618)로 연속되고, 아이들러샤프트(3610)를 통해 트랜스미션(3600)으로부터 출력된다. 이러한 특정한 배치는 두 개의 동력경로가 트랜시미션(3600)을 통해 평행하고 동축 경로로 전달되도록 한다. 이러한 방식의 트랜스미션은 동일 토크 트랜시미션에 비하여 작은 단면적을 갖도록 하고, 다른 IVTs에 비하여 보다 단순한 디자인이고 사이즈 및 중량에서도 현저한 감소를 갖도록 한다.
도36a 내지 도36c에 나타낸 실시예는 전술한 테이블에서의 리스트에서와 같이 아이들러(3618)가 어떻게 동력출력으로 사용될 수 있는지와, 전술한 바와 같이 유성기어장치가 CVT와 어떻게 결합되는 것인지를 해당기술분야의 당업자에게 설명된다. 이러한 디자인의 변형이 사용될 수 있고, 설명된 여러 조합을 달성할 수 있으며, 이용가능한 매우 많은 조합들로 인하여 본 설명에서는 모든 다른 디자인은 설명하지 않는다. 또한 본 설명에서 제공되는 축력발생장치는 본 실시예에서도 사용될 수 있지만, 이러한 장치의 간략화를 위하여 설명하지 않았다. 본 설명에서 설명된 축력발생장치 또는 다른 축력발생장치를 사용하는 실시예에 있어, 축력발생장치의 구성요소들은 유성샤프트(3632)가 입력디스크(3634)에 연결되는 부위 사이에 제공될 수 있지만, 다른 배치에도 적용될 수 있다. 이러한 실시예에서, 도32 및 도33에 설명된 동력경로는 동일 토크 트랜스미션에 대하여 보다 작은 트랜스미션(3600)을 허용하도록 트랜스미션(3600)의 축과 동축을 이루도록 이동되고, 이에 따라 이러한 실시예의 중량 및 공간의 감소를 이룬다. 도36a 내지 도36c는 여러 실 시예에서 트랜스미션의 여러 구성요소로부터 회전동력이 어떻게 제공될 수 있는지를 나타내도록 한 하나의 조합을 설명한다. 분명하게 본 기술분야의 당업자는 연결을 변화시킴으로써 본 설명에서 제공된 다른 구성이 어떻게 달성될 수 있는지를 쉽게 이해할 수 있으며, 제안된 조합을 간략히 설명하기 위한 목적에 있어 모든 조합 또는 다른 여러 조합을 설명하기에는 너무 방대하고 불필요한 부담이 된다. 따라서 도35 및 도36a에 나타낸 실시예는 분리된 비동축 평행 동력경로(separate non-coaxial parallel power path)에 대한 설명의 필요없이 앞에서 또는 아래에서 리스트된 어떠한 변형을 제공하도록 필요에 따라 변경될 수 있다.
다음으로 도37a에 나타낸 바와 같은 트랜스미션(3700)의 다른 실시예를 설명한다. 본 실시예에서, 출력디스크(3711)는 회전허브쉘(rotating hub shell)(3740)를 형성하도록 앞의 실시예의 케이스의 일부분으로서 형성된다. 이러한 실시예는 모터사이클(motorcycle) 또는 바이사이클(bicycle)과 같은 적용에 가장 적합하다. 앞서 언급한 바와 같이, 지면 및 설명을 간략히 하기 위하여 본 실시예와 전술한 실시예 간의 본질적인 차이점만을 설명한다. 본 실시예에서, 입력토크는 체인(chain) 또는 유사한 소정의 장치용 벨트 또는 스프라켓(sprocket)의 풀리(pully)로 이루어질 수 있는 입력휠(3730)으로 제공된다. 이후 상기 입력휠(3770)은 두 회전구성요소의 각도 정렬을 유지하도록 압입끼워맞춤, 키결합(splining) 또는 다른 적절한 방법에 의하여 중공 구동샤프트(3769)의 외측에 부착된다. 상기 구동샤프트(3769)는 소위 엔드캡(end cap)(3741)이라 하는 허브쉘(3749)의 제거가능한 단부를 통과한다. 상기 엔드캡(3741)은 그의 중심에 구동샤 프트가 트랜스미션(3700)의 내측으로 통과하도록 하는 구멍을 가지며, 상기 허브쉘(3740)의 내경과 결합하는 외경을 구비하는 대략 환형형태로 이루어진다. 상기 엔드캡(3741)은 상기 허브쉘(3740)에 고정되거나, 트랜스미션(3700)의 내부 구성요소를 캡슐형태로 싸도록 상기 허브쉘에 나사결합될 수 있다. 도면에 나타낸 실시예의 상기 엔드캡(3741)은 출력발생장치(3760)를 위치결정하고 지지하도록 그의 외경 내측에 베어링면 및 대응 베어링을 구비하고, 그 엔드캡(3741)과 구동샤프트(3769) 간의 지지를 제공하도록 그의 내경에 베어링면 및 대응 베어링을 구비한다.
상기 구동샤프트(3769)는 입력축(3751)에 끼워맞춰지고 그에 대하여 회전하며, 프레임너트(3752)에 의하여 차량 프레임(3715)에 고정되고, 트랜스미션(3700)에 대한 지지를 제공하는 중공튜브로 이루어진다. 상기 입력축(3751)은 도1에 나타낸 바와 같이 이전의 실시예에 제안된 시프트로드와 유사한 시프트로드(3771)를 수용한다. 본 실시예의 시프트로드(3771)는 차량프레임(3715)을 넘어 연장되는 입력축(3751)의 단부에 나사결합되는 시프트캡(3743)에 의하여 동작된다. 상기 시프트캡(3743)은 입력축(37551)의 외면에 형성된 외측 나사형성부와 결합하는 내면에 형성되는 한 세트의 내측 나사형성부를 갖는 튜브 캡으로 이루어진다. 상기 시프트로드(3771)의 단부는 시프트캡(3743)의 입력단부에 형성된 구멍을 통해 연장되고, 시프트캡(3743)이 시프트로드(3771)에 고정되도록 나사결합된다. 애크미나사 또는 다른 나사로 이루어질 수 있는 상기 시프트로드(3771)의 나사형성부를 회전시킴으로써, 축방향으로 이동하게 되고, 상기 시프트로드(3771)는 시프트캡(3743)에 고정되기기 때문에, 상기 시프트로드(3771)도 축방향으로 이동되어, 시프트가이드(3713) 및 아이들러(3718)의 이동을 동작시키고, 이에 따라 트랜스미션(3700)은 변속된다.
도37a에 나타낸 실시예를 참조해 보면, 구동샤프트(3769)는 출력축(3751) 및 하나 이상의 니들베어링(needle bearing) 또는 다른 레이디얼 지지베어링으로 이루어질 수 있는 샤프트지지베어링(3722)에서 이동되고, 그에 의하여 지지된다. 상기 구동샤프트(3769)는 전술한 실시예와 같이 축력발생장치(3760)으로 토크를 제공한다. 본 설명에서 제안된 어떠한 다른 축력발생장치가 본 트랜스미션(3700)에 사용될 수 있고, 본 실시예는, 전술한 실시예와 같이, 입력디스크(3734)와 베어링디스크(3760)으로 토크를 분배하도록 키고정(splining) 또는 다른 적절한 장치에 의하여 구동샤프트(3769)에 의하여 구동되는 스크류(3735)를 사용할 수 있다. 본 실시예에서, 트랜스미션(3700)의 내측으로 침투되는 이물질의 양을 제한하도록 구동샤프트(3769)의 단부를 넘어 입력휠(3770)의 내경과 입력축(3751)의 외경 사이에 구동밀봉부재(drive seal)(3722)가 제공된다. 상기 엔드캡(3741)과 구동샤프트(3769) 사이로부터 이물질 침투를 제한하도록 케이스캡(3742)과 입력휠 사이에 다른 밀봉부재가 사용될 수 있다. 또한 도면에 나타낸 실시예는 전술한 실시예와 같은 유사한 케이지(3789)를 사용하지만, 도면에 나타낸 트랜스미션(3700)은 볼 축(3703)에서 볼(1)을 지지하도록 축베어링(3799)를 사용한다. 상기 축 베어링(3799)은 니들베어링이나 다른 적절한 베어링으로 이루어질 수 있고, 볼과 볼 축(3703) 간의 마찰을 감소시킨다. 본 설명에서 제안되거나 해당분야에서 공지의 볼 및 볼 축의 다른 여러 실시예가 발생되는 마찰을 감소시키도록 이용될 수 있다.
도37a에 나타낸 실시예를 참조해 보면, 케이지(3789) 및 시프트로드(3771)는 출력축(3753)에 의하여 출력측에 지지된다. 상기 출력축(3753)은 허브쉘(3740)의 출력단부에 형성되는 구멍에 위치되고, 케이지(3789)와 외측 차량프레임(3715) 사이에서 소정의 관형 지지부재로 이루어진다. 상기 출력축(3753)은 그의 외경과 허브쉘(3740)의 내경 사이에 형성되는 베어링마찰면 및 베어링을 구비하여, 출력축(3753)이 트랜스미션(3700)의 출력측에 지지를 제공함으로써 두 구성요소가 상대회전하도록 한다. 상기 출력샤프트는 출력지지너트(3754)에 의하여 차량프레임(3715)에 클램핑된다.
도37a에 나타낸 바와 같이, 본 트랜스미션(3700)은 주위를 덮어싸는 시프트코드(shifting cord)(3755)에 텐션을 가함으로써 변속되고, 시프트캡(3743)에 회전력을 제공한다. 상기 시프트코드(3755)는 텐션력을 작용시킬 수 있는 테더(tether)로 이루어지고, 조작자(operator)에 의하여 트랜스미션(3700)을 변속하도록 사용되는 변속조정기(shifter)(미도시)로 동작한다. 소정 실시예로, 상기 시프트코드(3755)는 밀고 당길 수 있는 가이드와이어로 이루어져, 단지 하나의 동축 가이드선(미도시)이 트랜스미션(3700)으로부터 변속조정기로 연결될 필요가 있다. 상기 시프트코드(3755)는 조작자에 의하여 사용되는 변속조정기로부터 시프트캡으로 그리고 그 시프트캡으로부터 하우징 스토퍼(housing stop)(3716)에 의하여 실행된다. 상기 하우징 스토퍼(3716)는 시프트코드(3755)를 시프트캡(3743)으로 가이드하도록 차량프레임(3715)로부터의 연장부이다. 도면에 나타낸 실시예에서, 스토퍼 가이드(3716)는 시프트코드(3755)가 통과하는 가이드되는 그의 길이방향을 따라 형성된 슬롯을 구비한 소정의 원통형으로 이루어진다. 다른 사항에 대하여, 도37a에 나타 낸 트랜스미션(3700)은 본 설명에서 제안된 다른 실시예와 유사하다.
도37a에 나타낸 일 실시예와 유사한 다른 실시예를 도37b에 나타내었다. 본 실시예에서, 출력디스크(3711)는 케이스(3740)에 고정되지만, 상기 케이스(3740)는 고정되고 회전되지 않는다. 그러나 본 실시예에서 도36a에 나타낸 본 실시예와 유사하게 상기 케이지(3789)는 출력디스크(3711) 및 케이스(3740)에 대하여 자유로이 회전된다. 이는 출력이 아이들러(3718)를 통해 원위치되는 것을 의미한다. 본 실시예에서 아이들러(3718)은 도36a의 실시예에서 제안된 것과 유사한 이동가능한 출력샤프트(3753)에 부착된다. 출력샤프트(3753)는 출력스플라인(3754)의 출력측의 먼 단부에서 종결되고, 이동가능한 출력샤프트(3753)를 트랜스미션(3700)에 의하여 토크를 공급하는 소정의 장치와 결합되도록 한다. 본 실시예에서, 토크는 체인 및 스프라켓(미도시), 입력기어(미도시) 또는 공지의 다른 결합수단에 의하여 입력샤프트(3772)를 통해 트랜스미션(3700)으로 토크가 제공된다. 그런 다음 토크는 앞의 실시예에서 제안된 바와 같이 입력디스크(3734)를 통과한다. 그러나 제안된 바와 같이, 도37a를 참조해 보면, 볼(3701)은 출력디스크(3711)의 표면을 따라 이동되고, 아이들러(3718)로 토크를 전달한다.
도36a에 나타낸 실시예와 같이, 아이들러(3718)를 통해 토크출력을 제공함으로써, 본 실시예의 시프트가이드(3713)는 출력샤프트(3753)의 외면에서 베어링(3717)에 의하여 지지된다. 본 트랜스미션(3700)은 시프트로드(3771)를 축방향 이동시킴으로써 변속되고, 엑추에이터(actuator)(3743)에 의하여 작동된다. 상기 엑추에이터는 도37a에 나타낸 시프트캡으로 이루어지거나, 작동모터 또는 수동으로 제어되는 휠 또는 기어로 이루어질 수 있고, 상기 엑추에이터(3743)는 하나 이상의 유압피스톤과 같이 시프트로드(3771)를 축방향으로 위치결정하기 위한 다른 장치로 이루어질 수 있다. 소정 실시예로, 아래에서 설명될 축력발생장치(3960) 및 변위장치가 사용될 수 있다. 본 실시예는, 다른 트랜스미션 방식과 비교해 볼 때, 매우 높은 변속비가 매우 높은 효율 및 매우 작은 마찰손실에서 이루어질 수 있다.
도38은 본 설명에서 제안된 여러 트랜스미션에서 사용될 수 있는 볼 축(3803)의 다른 실시예를 나타낸 것이다. 본 실시예에서, 볼 축(3803)의 외경에 형성된 나사형성부(3810)에 의하여 볼의 구멍으로 오일이 펌핑된다. 구멍의 부근에서 볼(1)의 표면에 부착되는 오일층은, 부착된 표면와 같은 동일속도로 볼(1)이 축(3803)에 대하여 회전하고 주행됨에 따라 축(3803)으로부터 빠져나오고, 표면층으로부터 각 거리에 따른 접합력의 감소로 오일 점도를 생성하는 동일 인력에 의하여 결속되는 인접한 오일층이 빠져나온다. 이들 오일층이 축에 대하여 빠져나오게 됨에 따라, 이 오일층에서 특정량의 오일 선단(leading edge)이 축(3803)의 외면에 형성된 한 세트의 나사형성부의 표면에 의하여 밀림(shear)된다. 상기 나사형성부(3810)는 애크미 나사로 이루어지거나, 본 설명에서 제안된 펌핑작용에 적절한 다른 방식의 나사형성부로 이루어질 수 있다. 각 오일량은 나사형성부(3810)의 반경 외측인 인접한 층으로부터 밀림되고, 이는 동일작용에 의하여 연속적으로 밀림되는 유사한 층으로 이동된다. 상기 나사형성부(3810)가 볼(1)의 구멍으로 나아가도록 형성되기 때문에, 밀림되는 오일량은 이어서 발생되는 추가적인 밀림작용에 의하여 연속적으로 이동됨에 따라 볼(1) 내측으로 이동된다. 이러한 작용이 연속됨 에 따라, 오일은 그 자신의 인력에 의하여 볼(1)의 구멍 내측으로 강제 이동되고, 일종의 펌핑작용을 형성한다. 따라서 상기 "펌핑" 작용은 오일의 점도에 비례한다. 이러한 펌핑효과를 촉진하기 위하여, 여러 실시예에서, 윤활유는, 어떤 특정 실시예의 볼(1)에 의하여 실험된 볼의 회전비율(spin rate)의 범위에 걸쳐 실험된 전단율(shear rate)에서 뉴튼유체(Newtonian fluid)로서 작용하도록 사용에 적합한 윤활유이다.
도38을 참조해 보면, 상기 나사형성부(3810)는, 오일을 볼(1)로 흐르도록 하는 이동 밀림작용을 생성하도록 볼(1) 가장자리의 약간 외측인 볼 축(3803)의 축을 따른 지점에서 시작된다. 상기 나사형성부(3810)가 연장되는 볼(1) 외측 거리는 만분의 5인치(0.5 thousandths of an inch) 내지 2인치로 이루어질 수 있고, 다른 실시예로 상기 거리는 백분의 1인치(10 thousandths of an inch) 내지 1인치로 이루어지거나, 제조비용 및 다른 고려사항에 따라 그 이상 또는 그 이하로 이루어질 수 있다. 도면에 나타낸 실시예의 나사형성부(3810)는 볼(1)의 구멍으로 연장되고, 볼 축(3803)의 여분 보다 작은 직경이 되도록 볼 축(3803)의 길이에 의하여 형성되는 저장소(reservoir)(3820)의 볼 내측에서 종결된다. 상기 저장소(3820)는 볼 축의 외경이 볼(1)의 내경에 근접하도록 증가하는 볼(1) 내측의 저장소 단부(3830)에서 끝나게 되어, 오일은 볼 축(3803)과 볼(1)의 내면 사이의 작은 갭으로부터 볼(1)로 새어나오도록 하고, 그 결과 두 구성요소 사이에 윤활막(lubricating film)을 형성하도록 고압오일이 제공된다. 소정 실시예로, 저장소(3820)는 형성되지 않고, 단순히 나사형성부(3810)가 구멍의 중간 부근에서 종결된다.
상기 볼(1) 구멍에 윤활압력을 유지하기 위하여 상기 볼 축(3803)과 볼(1)의 내면 사이의 갭 사이즈를 조절함으로써 새어나오는 오일량과 펌핑되는 오일량 간의 균형은 구현될 수 있다. 이러한 균형은 오일의 점도, 갭의 사이즈 및 볼(1)의 회전율에 좌우된다. 상기 저장소 단부(3830)가 볼(1)의 중간부 가까이에 위치되도록 나타내고 있지만, 이는 단지 도식화를 위한 목적이며, 적용에 따라 상기 저장소(3820)는 볼(1)의 다른 단부에 근접하여 종결되거나, 나사형성부(3810) 가까이에서 종결될 수 있다. 유사한 다른 실시예로, 볼(1) 및 볼 축(3803)의 중간부 가까이에 저장소(3820)에서 종결되는 본 실시예에서 제안한 바와 같이 나사형성부(3810)가 형성되는 것을 제외하고, 도23에 나타낸 것과 유사하게, 볼(1) 구멍의 내측에 형성되는 나사형성부에 의하여 동일한 지향성으로 형성된다.
도39a 내지 도39c를 참조하여, 또 다른 축력발생장치(3960)를 설명한다. 본 실시예에서, 스크류(3935)는 입력디스크(3934) 대신에 베어링디스크(미도시)의 내부구멍에 위치된다. 본 실시예에서, 상기 스크류(3935)는 구동샤프트로부터 결합스플라인과 결합하는 스플라인(3975)을 통해 구동샤프트(미도시)에 의하여 직접적으로 구동된다. 그런 다음 상기 스크류(3935)는 중앙 스크류 램프(3998)과 중앙디스크램프(3999)를 통하여 입력디스크(3934), 및 나사형성부(3976)와 베어링디스크의 구멍의 내면에 형성된 대응하는 한 세트의 내측 나사형성부(미도시)를 통해 베어링디스크로 토크를 분배한다. 상기 스크류(3935)가 구동샤프트에 의하여 회전됨에 따라, 상기 스크류(3935)의 출력단부에 형성되는 한 세트의 중앙 스크류램프(3998)가 회전되고, 대응하는 한 세트의 중앙디스크램프(3999)를 회전시킨다. 상기 중앙 디 스크램프(3999)는 그의 내경 가까이에서 입력디스크(3934)의 입력측에 형성된 스러스트 와셔면(thrust washer surface)에 형성되고, 상기 중앙스크류램프(3998)에 의하여 회전됨에 따라, 상기 중앙디스크램프(3999)는 중앙디스크램프(3998, 3999)의 경사면의 반작용으로부터 입력디스크(3934)에 토크 및 축력을 제공하기 시작한다. 또한 상기 스크류(3935)의 회전은 나사형성부(3976)가 베어링디스크의 나사형성부와 결합되도록 하여, 베어링디스크를 회전시키기 시작한다.
도39a를 참조해 보면, 도면에 나타낸 실시예에서, 상기 축력발생장치(3960)는 아이들러(3918)의 위치에 의하여 직접적으로 영향을 받는다. 본 실시예에서, 아이들러 조립체는, 입력측 스러스트가이드(3713)로부터 연장하고, 반경방향 외측으로 환형 연장되어 입력디스크(3934) 가까이에서 끝나는 소위 풀리스탠드(pully stand)(3930)인 관형 연장부를 구비한다. 고정링크(3916), 제1링크핀(3917), 숏(short)링크(3912), 캠링크(3914), 캠링크핀(3915) 및 고정캠핀(3923)으로 이루어지는 연동조립체는 풀리스탠드(3930)으로부터 스크류(3935)측으로 축방향으로 연장되고, 변속비에 따라 스크류(3935)를 축방향으로 위치결정한다. 상기 고정링크(3916)는 풀리스탠드(3930)의 입력단으로부터 스크류(3935)측으로 연장되고, 제1링크핀(3917)에 의하여 숏링크(3912)를 개재하도록 연결된다. 상기 제1링크핀(3917)은 고정링크(3916)과 숏링크(3912) 간의 플로팅핀조인트(floating pin joint)을 형성하여, 상기 숏링크(3912)는 변속동안 두 링크(3916, 3912)가 축방향으로 이동됨에 따라 제1링크핀(3917)에 대하여 회전할 수 있다. 그런다음 상기 숏링크(3912)는 그의 타단부에서 캠링크핀(3915)에 의하여 캠링크(3914)에 연결되어, 플로팅핀조인트를 형성한다. 상기 캠링크(3914)는 축(3971)에 고정되는 고정캠핀(3923), 또는 다른 고정구성요소에 의하여 축방향으로 고정되고, 아이들러(3918)가 축방향으로 이동됨에 따라 캠링크(3914)가 회전되는 핀조인트를 형성한다.
다음의 설명에서, 도면의 간략화를 위하여, 도1의 베어링디스크(60), 램프베어링(62), 주변램프(61) 및 입력디스크램프(64)에 대하여 별도의 설명은 생략하지만, 유사한 구성요소가 본 실시예에서에서 매우 유사하게 기능하도록 사용될 수 있다. 도39a 내지 도39c에 나타낸 축력발생장치(3960)가 높은 변속비로 동작할 경우, 상기 아이들러(3918)는 그의 먼 입력측 축위치에 위치되고, 이에 따라 고정링크(3916)도 입력측으로 먼 축방향 지점에 위치된다. 상기 제1링크핀(3917), 숏링크(3912) 및 제2링크핀(3921)은 모두 입력측으로 위치되고, 이에 따라 캠링크(3914)는 고정캠핀(3923)에 대하여 지향되어, 그의 캠면(별도로 도시하지 않음)은 스크류(3935)로부터 멀어지게 회전된다. 낮은 변속비에서 출력측으로 스크류를 이동시키도록 상기 캠링크(3914)가 고정캠핀(3923) 축에 대하여 회전될 경우, 상기 캠링크(3914)는 스크류(3935)에 캠력을 작용시킨다. 그러나 낮은 변속비에서, 도면에 나타낸 바와 같이, 상기 캠링크(3914)의 캠면은 스크류(3935)로부터 멀어지게 회전된다. 이는 스크류(3935)가 가장 먼 지점에서 입력측으로 놓이도록(settle)하여, 스크류 나사형성부(3976)와의 결합을 유지시키도록 입력측으로부터 출력측으로 바라볼 때 베어링디스크를 스크류(3935)에 대하여 반시계방향으로 회전하도록 한다. 이에 따라, 베어링램프는 반시계방향으로 회전되어, 베어링이 적거나 없는 축력을 제공하는 베어링디스크램프와 입력디스크(3934)의 램프 사이의 지점에서 디스 크베어링(도면에 나타나 있지 않지만 도1과 관련하여 앞서 제안된 것과 유사함)이 롤링되록 한다.
한편, 도39a에서 좌측으로 바라본 스크류(3935)의 최대 위치로 인하여, 중앙스크류램프(3998)는 중앙디스크램프(3999)와 완전히 결합되어, 상기 입력디스크(3934)는 시계방향으로 약간 회전되며, 이에 따라 스크류(3935)의 축방향 위치를 그의 가장 먼 출력측 위치에 있도록 한다. 이러한 방식의 입력디스크(3934)의 회전은 입력디스크램프가 베어링디스크램프의 반대방향으로 회전되지 않고, 이에 따라 주변램프 및 베어링을 부하를 작용시키지 않는 효과를 확대한다는 것을 의미한다. 이러한 상태에서, 대부분의 축력 또는 모든 축력은 중앙램프(3998, 3999)에 의하여 제공될 수 있고, 주변램프에 의한 축력은 거의 발생되지 않는다.
상기 아이들러(3918)가 출력측으로 이동되어 낮은 변속비로 변속됨에 따라, 상기 링크조립체는 연장되고, 이에 따라 고정링크(3916)는 스크류(3935)로부터 멀어지는 축방향으로 이동되고, 캠링크(3914)는 고정캠핀(3923)에 대하여 회전된다. 상기 캠링크(3914)가 캠링크핀(3923)에 대하여 회전됨에 따라, 상기 고정링크(3916)의 축이동은 캠링크(3914)의 일단에서 동작하고, 타단은 스크류(3935)측으로 이동되며, 이에 따라 고정링크(3916)에 의하여 작용되는 축력의 방향은 전환된다. 상기 캠링크(3914)에 여러 연결이 이루어지는 부위의 길이를 조절함으로써, 상기 고정링크(3916)에 의하여 작용되는 축력은 레버동작에 의하여 감소되거나 확대된다. 상기 캠링크(3914)의 캠단부는 스크류(3935)의 출력측에서 스러스트 와셔(3924)로 축력을 작용시킨다. 상기 스러스트 와셔(3924)는 스크류(3935)에 합성 축력을 제공하도록 스크류 스러스트베어링(3925) 및 베어링 마찰면(3926)에 결합된다. 이에 대응하여, 상기 스크류(3935)는 입력측으로 축방향 이동되고, 그의 나사형성부(3976)는 입력측으로부터 출력측으로 바라볼 때 베어링디스크를 시계방향으로 회전시켜, 주변램프가 회전되도록 하여 램프베어링은 주변램프를 따라 축력을 발생시키도록 시작하는 위치로 이동된다. 이 때, 입력측으로의 스크류(3935)의 축방향 이동으로 인하여, 중앙스크류램프(3998)는 중앙디스크램프(3999)로부터 결합해제되고, 입력디스크(3934)는 스크류(3935)에 대하여 반시계방향으로 회전되며, 축력을 발생시키는 위치로 주변램프베어링이 이동되도록 한다. 상기 링크조립체의 이러한 레버동작으로, 본 실시예의 축력발생장치(3960)는 중앙램프(3998, 3999)와 주변램프 사이의 축력 및 토크를 효과적으로 분배한다.
도39a에는 트랜스미션의 전체 사이즈를 감소시키도록 도5의 레그조립체에 대하여 다른 레그조립체를 나타낸다. 도면에 나타낸 실시예에서, 롤러(3904)는 도5의 레그(3)에 비하여 레그(3902)의 반경방향 내측에 위치된다. 또한 입력디스크(34) 및 출력디스크(미도시)는 아이들러(18)의 부하를 감소시키는 그의 축에 근접한 지점에서 볼(1)과 접촉하고, 트랜스미션이 보다 많은 토크를 발생하도록 한다. 이러한 두 변형예로, 본 실시예의 입력디스크(34) 및 출력디스크는 선 "O.D"로 나타낸 바와 같이 직경방향으로 대향하는 본 실시예의 두 볼(3901)에서 가장 먼 대향지점과 실질적으로 같은 직경으로 전체 직경을 감소시킬 수 있다.
도39a에 나타낸 실시예의 다른 특징은 변환조립체의 변형이다. 본 실시예의 롤러(3904)는 그의 외측 가장자리에 볼록한 반경 대신에 오목한 반경(concave radius)(3905)을 각각 갖는 풀리로서 형성된다. 이는 상기 롤러(3904)가 트랜스미션을 변속하기 위하여 볼 축(3903)과 볼(3901)의 축을 변경시키기 위한 풀리로서 작용하도록 할 뿐만 아니라, 볼 축(3903)을 완전하게 정렬하도록 한다. 도1 및 도6과 관련하여 제안된 유연성 케이블(155) 또는 유사한 변속케이블이 일측의 롤러(3904) 주위에 감쌀 수 있도록 하여, 텐션이 작용될 경우, 이들 롤러(3904)는 서로 가깝게 되고, 이에 따라 트랜스미션을 변속시킨다. 상기 변속케이블(도39에서는 미도시)은 케이지(도1의 89)를 통하여 가이드롤러(3951)에 의해 롤러(3904)로 가이드될 수 있고, 또한 도면에 나타낸 실시예에서는 풀리스탠드(3930)의 출력단부에 대하여 가이드샤프트(3952)에 장착되는 풀리로 이루어진다.
소정 실시예로, 상기 가이드롤러(3951) 및 가이드샤프트(3952)는 가이드롤러(3951)의 축이 피벗되도록 디자인되어, 볼 축(3903)의 각이 트랜스미션의 축에 대하여 변화됨에 따라 롤러(3904)와 풀리방식 정렬을 유지한다. 소정 실시예로, 이는 가이드샤프트(3952)를 피벗조인트 또는 트러니언(trunnion) 또는 다른 공지의 방법으로 풀리스탠드(3930)에 장착함으로써 달성될 수 있다. 본 실시예에서, 하나의 시프트케이블이 볼(3901)의 입력측 또는 출력측 중 하나에 한 세트의 롤러(3904)에서 동작할 수 있고, 스프링(미도시)은 다른 방향으로 변위시키도록 볼 축(3903)을 편향시킨다. 다른 실시예로, 두 개의 시프트케이블이 사용될 수 있는데, 하나는 일측에서 롤러(3904)를 반경방향 내측으로 끌어당기고, 다른 하나는 볼(3901)의 대향단부에서 롤러(3904)를 그 측에서 반경방향 내측으로 끌어당겨 트랜스미션을 변속시킨다. 이러한 실시예에서, 제2풀리 스탠드(3930) 또는 다른 적절 한 구성이 시프트가이드(3913)의 출력단부에 형성되고, 대응하는 한 세트의 가이드샤프트(3925) 및 가이드롤러(3951)는 제2풀리스탠드(3930)에 장착된다. 이러한 실시예의 케이블(미도시)은 축(3971)에 형성된 구멍 또는 슬롯(미도시)을 통과하고, 상기 축(3971)을 통해 트랜스미션 외측으로 인출된다. 상기 케이블은 축(3971)의 일단부 또는 양단부를 통과할 수 있고, 또는 입력디스크(미도시)와 출력디스크(미도시) 중 하나 또는 모두, 또는 허브(미도시)를 축방향으로 넘어 축(3971)에 형성된 부가적인 구멍을 통해 통과될 수 있다. 여기에서 상기 출력디스크는 회전허브이다. 상기 케이블이 통과하는 구멍 및/또는 슬롯은 반경 가장자리의 사용을 통해 케이블 재료의 수명을 최대화하도록 디자인되며, 풀리 및 이러한 장치는 케이블의 운반(conveyance)을 위하여 축 및 트랜스미션의 여러 위치에 사용될 수 있다.
도39a, 도40a 및 도40b를 참조하여, 도39a의 축력발생장치(3960)의 연동조립체(4000)의 일실시예를 설명한다. 도면에 나타낸 연동조립체(4000) 또한 고정링크(3916), 제1링크핀(3917), 숏링크(3912), 제2링크핀(3921), 캠링크(3914), 캠링크핀(3915) 및 고정캠핀으로 이루어진다. 본 실시예의 고정링크(3916)는 도39a의 풀리스탠드(3930)에 견고하게 부착되는 제1단부 및 제1단부로부터 멀어지는 방향을 향하고, 핀조인트구멍이 형성된 제2단부를 구비하는 장방형 스트럿(elongated strut)으로 이루어진다. 상기 고정링크(3916)는 축(3971) 측을 따라 대략 평행하게 이루어진다. 상기 제1링크핀(3917)은 고정링크(3916)의 제2단부의 구멍 내에 위치되고, 상기 고정링크(3916)의 제2단부와 숏링크(3912)의 제2단부를 결합하며, 대응하는 핀조인트구멍을 구비한다. 상기 숏링크(3912)는 두 단부를 갖는 스트 럿(strut)으로 이루어지지만, 그의 제1 및 제2단부에 형성된 구멍을 구비한다. 캠링크핀(3915)은 숏링크(3912)의 제2단부의 구멍 내에 위치되고, 캠링크(3914)에 형성된 핀조인트구멍을 통해 숏링크(3912)의 제2단부를 캠링크의 제1단부와 결합시킨다. 상기 캠링크(3914)는 두 개의 단부를 갖는데, 제1단부는 캠단부 및 대향 캠단부는 그의 외측 가장자리에 형성된 캠면(4020)을 구비한다. 또한 상기 캠링크(3914)는 제2단부와 캠단부 사이 중간에 형성된 제2핀조인트구멍을 구비하고, 고정캠핀(3923)이 통과한다. 상기 고정캠핀(3923)은 축(3971)과 같은 트랜스미션의 고정부에 고정되어, 캠링크(3914)가 회전하는 축을 형성한다.
도40a는 매우 높은 변속비에 대응하여 수축상태에서의 연동조립체(4000)를 나타낸 것으로, 고정링크는 도39a에 대하여 앞서 제안된 바와 같이 트랜스미션의 입력단부측으로 모두 이동된 상태이다. 도40b는 낮은 변속비에 대응하여 확장상태에서의 연동조립체(4000)를 나타낸 것이다. 앞서 제안된 바와 같이, 상기 캠링크(3914)는 스크류(3935)로 축력을 작용시켜, 트랜스미션이 높은 변속비에서 낮은 변속비로 변환됨에 따라 중앙램프(3998, 3999)로부터의 축력발생을 주변램프로 이동시킨다. 또한 트랜스미션이 낮은 변속비로부터 높은 변속비로 변환될 때, 상기 캠링크(3914)는 스크류(3935)로 작용되는 축력량을 감소시켜, 스크류(3935)가 출력단부측으로 축방향 이동되도록 하고, 이에 따라 주변램프로부터의 축력발생은 중앙램프(3998, 3999)로 이동된다.
도40a 및 도40b에 나타낸 바와 같이, 상기 캠링크(3914)의 캠면(4020)은 매우 다양한 로딩(loading) 및 언로딩(unloading) 형태를 제공하도록 디자인될 수 있 다. 실질적으로, 본 실시예에서, 제2캠면(4010)은 캠링크(3914)의 제2단부에 제공된다. 도40a에 나타낸 바와 같이, 매우 높은 변속비에서는, 캠면(4020)은 스크류(3935)로의 축력이 전혀 또는 작은량으로 작용하도록 완전하게 언로딩(unloading)된다. 그러나 소정 실시예에서, 다양한 속도비에서 작용되는 높은 축력량이 요구될 수 있으며, 이 경우 가장 높은 변속비에서, 제2캠면(4010)은 스크류로의 축력을 증가시키고, 이에 따라 소정의 축력발생이 역으로 주변디스크로 전달되어, 높은 변속비에서 필요할 수 있는 축력량을 증가시킨다. 이는 단지 여러 변형의 일예로, 특정 적용이 요구되는 토크-속도 형태에 따라 축력발생장치(4060)에 의한 축력발생 제어를 변화시키는 것을 포함할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
도1은 본 발명의 일실시예의 트랜스미션이 높은 변속비로 변환된 상태를 나타낸 측단면도.
도2는 도1의 트랜스미션이 낮은 변속비로 변환된 상태를 나타낸 측단면도.
도3은 도1의 Ⅲ-Ⅲ선에 따른 트랜스미션의 일단부를 나타낸 단면도.
도4는 도1의 트랜스미션의 아이들러 및 램프 서브조립체(sub-assembly)을 개략적으로 나타낸 부분 단면 사시도.
도5는 도1의 트랜스미션의 볼 서브조립체를 개략적으로 나타낸 사시도.
도6은 도1의 트랜스미션의 시프트로드 서브조립체를 개략적으로 나타낸 사시도.
도7은 도1의 트랜스미션의 케이지 서브조립체를 개략적으로 나타낸 사시도.
도8은 도1의 트랜스미션의 출력디스크를 나타낸 단면사시도.
도9는 도1의 트랜스미션을 개략적으로 나타낸 단면사시도.
도10은 도1의 트랜스미션의 축력발생장치의 다른 실시예를 개략적으로 나타낸 일부 단면 사시도.
도11은 도1의 트랜스미션의 다른 실시예를 나타낸 단면도.
도12는 도11의 트랜스미션의 케이지 서브조립체를 개략적으로 나타낸 부분 단면 사시도.
도13은 도11의 트랜스미션의 축 부근으로부터 바라본 다른 결합해제장치를 개략적으로 나타낸 사시도.
도14는 도11의 트랜스미션의 상부 외측으로부터 중앙측으로 바라본 다른 결합해제장치를 개략적으로 나타낸 사시도.
도15는 도11의 트랜스미션의 축력발생장치 서브조립체의 일부분을 개략적으로 나타낸 사시도.
도16은 도1의 트랜스미션의 변환장치를 나타낸 단면도.
도17은 두 개의 변환장치를 갖는 도1의 트랜스미션의 다른 실시예를 개략적으로 나타낸 단면도.
도18은 도17의 Ⅰ-Ⅰ선에 따른 트랜스미션의 일단부 단면도.
도19는 도17의 트랜스미션의 사시도.
도20은 도17의 트랜스미션의 이리스 플레이트의 사시도.
도21은 도17의 트랜스미션의 고정체의 사시도.
도22는 도17의 트랜스미션의 다른 케이지를 나타낸 부분 단면 사시도.
도23은 도5의 볼/레그 조립체의 홈을 갖는 볼을 나타낸 구성도.
도24는 도5의 볼/레그 조립체의 다른 레그를 나타낸 구성도.
도25는 도1 및 도17의 트랜스미션의 시프트 가이드에 대한 볼록곡면을 형성하도록 사용되는 적용가능한 기하학적 관계를 나타낸 볼 및 레그 조립체의 개략도.
도26은 도1 및 도17의 트랜스미션의 시프트 가이드에 대한 볼록곡면을 형성하도록 사용되는 적용가능한 기하학적 관계를 나타낸 경사방향에서의 볼 및 레그 조립체의 개략도.
도27은 도1 및 도17의 트랜스미션의 시프트가이드에 대한 볼록곡면을 형성하 도록 이용되는 소정의 기하학적 관계를 나타낸 볼록곡면의 개략도.
도28은 유성기어세트로서의 기능을 나타낸 도1의 트랜스미션의 개략도.
도29는 제1비율에서의 세 개의 유성기어를 나타낸 도1의 트랜스미션의 개략도.
도30은 제2비율에서의 세 개의 유성기어를 나타낸 도1의 트랜스미션의 개략도.
도31은 제3비율에서의 세 개의 유성기어를 나타낸 도1의 트랜스미션의 개략도.
도32는 출력측과 평행 동력경로에서 유성기어세트와 결합된 도1의 트랜스미션을 나타낸 개략도.
도33은 입력측과 평행 동력경로에서 유성기어세트와 결합된 도1의 트랜스미션을 나타낸 개략도.
도34는 출력측에서 유성기어세트와 결합된 도1의 트랜스미션을 나타낸 개략도.
도35는 입력측에서 유성기어세트와 결합된 도1의 트랜스미션을 나타낸 개략도.
도36a 내지 도36c는 하나의 입력토크를 이용하고, 두 개의 출력토크 동력원을 제공하는 가변식 트랜스미션의 실시예를 각각 나타낸 측단면도, 사시도, 및 개략도.
도37a는 출력디스크가 회전허브의 일부분으로 이루어지는 연속가변식 트랜스 미션의 다른 실시예를 나타낸 측단면도.
도37b는 출력디스크가 고정허브의 일부분으로 이루어지는 연속가변 트랜스미션의 다른 실시예를 나타낸 측단면도.
도38은 다른 볼 축의 측면도.
도39a는 본 발명의 트랜스미션의 실시예에 대하여 다른 축력발생장치를 나타낸 측단면도.
도39b 및 도39c는 각각 다른 축력발생장치의 스크류를 나타낸 사시도 및 측단면도.
도40a는 도39의 다른 축력발생장치와 사용되기 위한 다른 연동조립체를 나타낸 구성도.
도40b는 도40a의 링크조립체가 연장된 형태를 나타낸 구성도.

Claims (24)

  1. 무단 변속기(continuously variable transmission)용 시프트 가이드(shift guide)로서,
    디스크형 몸체(disc-shaped body); 및
    상기 디스크형 몸체의 일측에 형성된 곡면을 포함하며,
    상기 곡면은 무단 변속기의 속도조절볼(speed adjuster ball)의 반경에 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  2. 제1항에 있어서,
    상기 곡면은 속도조절볼의 회전축의 경사 각도에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  3. 제1항에 있어서,
    상기 곡면은 무단 변속기의 아이들러(idler)의 반경에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  4. 제1항에 있어서,
    상기 곡면은 무단 변속기의 아이들러의 폭에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  5. 제1항에 있어서,
    상기 곡면과 이어지는 대체로 편평한 면이 더 형성된 것을 특징으로 하는
    시프트 가이드.
  6. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 곡면은 볼록한 곡면을 포함하는 것을 특징으로 하는
    시프트 가이드.
  7. 무단 변속기(continuously variable transmission)용 시프트 가이드(shift guide)의 곡면을 결정하는 방법으로서,
    무단 변속기의 속도조절볼(speed adjuster ball)의 반경과 연관된 정보를 저장하는 단계; 및
    상기 저장된 속도조절볼의 반경에 기초하여 곡면의 x-, y-좌표를 정하는 단계를 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  8. 제7항에 있어서,
    상기 무단 변속기의 아이들러(idler)의 반경 및 폭과 연관된 정보를 저장하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  9. 제7항에 있어서,
    상기 속도조절볼의 경사가능한 회전축(tiltable axis)의 경사 각도와 연관된 정보를 저장하는 단계를 더 포함하며,
    상기 경사 각도에 더 기초하여 상기 곡면의 x-, y- 좌표를 정하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  10. 제7항에 있어서,
    상기 무단 변속기의 가이드휠(guide wheel)의 반경과 연관된 정보를 저장하는 단계를 더 포함하며,
    상기 가이드휠의 반경에 더 기초하여 상기 곡면의 x-, y- 좌표를 정하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  11. 제10항에 있어서,
    상기 속도조절볼의 중심 위치와 상기 가이드휠의 중심 위치 사이의 거리와 연관된 정보를 저장하는 단계를 더 포함하며,
    상기 거리에 더 기초하여 상기 곡면의 x-, y- 좌표를 정하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  12. 제7항에 있어서,
    상기 속도조절볼의 중심을 고정 위치로 정의하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  13. 경사 가능한 회전축(tiltable axis)을 갖는 속도조절볼(speed adjuster ball)과, 시프트 가이드와 작동가능하게 연결되는 가이드휠(guide wheel)과, 상기 속도조절볼과 접촉하는 아이들러(idler)를 포함하는 무단 변속기(continuously variable transmission)에 사용하는 변속 기구(shifting mechanism)용 시프트 가이드(shift guide)로서,
    볼록한 곡면을 포함하며,
    상기 볼록한 곡면은 경사 가능한 회전축의 경사 각도에 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  14. 제13항에 있어서,
    상기 볼록한 곡면은 상기 속도조절볼의 반경에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  15. 제13항에 있어서,
    상기 볼록한 곡면은 아이들러의 폭에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  16. 제13항에 있어서,
    상기 볼록한 곡면은 가이드휠의 반경에 더 기초하여 형성된 것을 특징으로 하는
    시프트 가이드.
  17. 경사 가능한 회전축(tiltable axis)을 갖는 속도조절볼(speed adjuster ball), 상기 속도조절 볼과 접촉하는 아이들러(idler), 시프트 가이드와 접촉하는 가이드휠(guide wheel), 상기 가이드휠과 속도조절볼을 작동 가능하게 연결하는 레그(leg)를 포함하는 변속 기구(shifting mechanism)에 사용하는 시프트 가이드(shift guide)의 볼록한 곡면의 형상을 결정하는 방법으로서,
    상기 속도조절볼의 반경, 상기 아이들러의 반경 및 폭과 연관된 정보를 저장하는 단계;
    상기 속도조절볼의 중심을 고정 위치로 정의하는 단계;
    상기 고정 위치, 속도조절볼의 반경, 및 아이들러의 반경 및 폭에 기초하여 볼록한 곡면의 x-, y-좌표를 정하는 단계를 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  18. 제17항에 있어서,
    상기 경사 가능한 회전축의 경사 각도에 더 기초해서 상기 볼록한 곡면의 x-, y-좌표를 정하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  19. 제17항에 있어서,
    상기 가이드휠과 시프트 가이드 사이의 접점을 정하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  20. 제17항에 있어서,
    상기 아이들러의 중심 위치를 x-좌표 상의 가변 위치와, y-좌표 상의 고정 위치로 정의하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  21. 경사 가능한 회전축(tiltable axis)을 갖는 속도조절볼(speed adjuster ball), 상기 속도조절볼과 접촉하는 아이들러(idler), 및 시프트 가이드와 접촉하는 가이드휠(guide wheel)를 포함하는 변속 기구(shifting mechanism)에 사용하는 시프트 가이드(shift guide)의 볼록한 곡면을 결정하는 방법으로서,
    상기 아이들러의 중심에 위치한 원점을 갖는 2차원 좌표계를 정의하는 단계;
    상기 속도조절볼의 중심을 2차원 좌표계 상의 고정 위치로 정의하는 단계; 및
    상기 변속 기구의 치수를 특정하기 위한 2차원 좌표계의 변수들을 정의하는 단계를 포함하며,
    상기 변수들 중에는 상기 속도조절볼의 반경과 아이들러의 폭이 포함된 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  22. 제21항에 있어서,
    상기 가이드휠의 반경을 변수로 정의하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  23. 제21항에 있어서,
    상기 속도조절볼의 반경과 아이들러의 폭에 기초하여 볼록한 곡면의 x-, y-좌표를 정하는 단계를 더 포함하는 것을 특징으로 하는
    시프트 가이드의 곡면 결정 방법.
  24. 제21항에 있어서,
    상기 아이들러의 중심 위치를 x-좌표 상의 가변 위치와, y-좌표 상의 고정 위치로 정의하는 단계를 더 포함하는
    시프트 가이드의 곡면 결정 방법.
KR1020097002092A 2003-02-28 2004-02-27 무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법 KR100948685B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US45096503P 2003-02-28 2003-02-28
US60/450,965 2003-02-28
US49437603P 2003-08-11 2003-08-11
US60/494,376 2003-08-11
US51260003P 2003-10-16 2003-10-16
US60/512,600 2003-10-16
US53793804P 2004-01-21 2004-01-21
US60/537,938 2004-01-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020087004982A Division KR100949391B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션

Publications (2)

Publication Number Publication Date
KR20090020711A true KR20090020711A (ko) 2009-02-26
KR100948685B1 KR100948685B1 (ko) 2010-03-19

Family

ID=32966706

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020087004982A KR100949391B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션
KR1020057016056A KR100885303B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션 및 이를 포함하는 차량
KR1020087020717A KR100908284B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션
KR1020097002092A KR100948685B1 (ko) 2003-02-28 2004-02-27 무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020087004982A KR100949391B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션
KR1020057016056A KR100885303B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션 및 이를 포함하는 차량
KR1020087020717A KR100908284B1 (ko) 2003-02-28 2004-02-27 연속가변식 트랜스미션

Country Status (15)

Country Link
US (26) US7011600B2 (ko)
EP (3) EP1597495B1 (ko)
JP (9) JP4667371B2 (ko)
KR (4) KR100949391B1 (ko)
CN (1) CN102352920A (ko)
AT (1) ATE484697T1 (ko)
AU (2) AU2004217514B2 (ko)
BR (1) BRPI0407856B1 (ko)
CA (3) CA2516494C (ko)
DE (1) DE602004029557D1 (ko)
DK (1) DK2426375T3 (ko)
ES (1) ES2443344T3 (ko)
HK (2) HK1085783A1 (ko)
MX (1) MXPA05009106A (ko)
WO (1) WO2004079223A2 (ko)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551210B2 (en) * 2000-10-24 2003-04-22 Motion Technologies, Llc. Continuously variable transmission
US7296815B2 (en) 1998-03-02 2007-11-20 Anthony S. Ellsworth Bicycle suspension apparatus and related method
KR100884970B1 (ko) * 2001-04-26 2009-02-23 모션 테크놀로지즈 엘엘씨 연속 가변 변속기용 스핀들 지지체와 동력 조절기 조립체및 그 제조방법
US7011600B2 (en) * 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
JP2004316881A (ja) * 2003-04-18 2004-11-11 Hideo Ogoshi 楔ローラ伝動装置の伝動ローラ支持機構
US7166052B2 (en) * 2003-08-11 2007-01-23 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7214159B2 (en) * 2003-08-11 2007-05-08 Fallbrook Technologies Inc. Continuously variable planetary gear set
AU2005269791A1 (en) * 2004-07-21 2006-02-09 Fallbrook Technologies Inc. Rolling traction planetary drive
DK1815165T3 (da) * 2004-10-05 2012-06-18 Fallbrook Technologies Inc Trinløst variabel transmission
US7430934B2 (en) * 2005-02-18 2008-10-07 Movine Technology Forward, Inc Continuously variable transmission (CVT) utilizing an adjustable fulcrum
US7771300B2 (en) * 2005-05-02 2010-08-10 Purdue Research Foundation Devices for electrically assisting and actuating continuously variable transmissions
AU2006299847A1 (en) * 2005-08-22 2007-04-19 Viryd Technologies Inc. Fluid energy converter
EP1938005B1 (en) * 2005-08-24 2013-10-02 Fallbrook Intellectual Property Company LLC Wind turbine
KR101327190B1 (ko) 2005-10-28 2013-11-06 폴브룩 테크놀로지즈 인크 전동 드라이브
DK1954959T3 (da) * 2005-11-22 2013-08-26 Fallbrook Ip Co Llc Kontinuerlig variabel transmission
US7434764B2 (en) * 2005-12-02 2008-10-14 Sikorsky Aircraft Corporation Variable speed gearbox with an independently variable speed tail rotor system for a rotary wing aircraft
CN102226464B (zh) * 2005-12-09 2013-04-17 福博科技术公司 一种用于变速器的轴向力产生机构
EP1811202A1 (en) * 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
US7882762B2 (en) * 2006-01-30 2011-02-08 Fallbrook Technologies Inc. System for manipulating a continuously variable transmission
DK2002154T3 (da) 2006-03-14 2014-01-13 Fallbrook Ip Co Llc Gearskifter til scooter
WO2007106874A2 (en) * 2006-03-14 2007-09-20 Autocraft Industries, Inc. Improved wheelchair
US7866444B2 (en) * 2006-04-06 2011-01-11 Fairfield Manufacturing Company, Inc. Cascading oil flow bearing lubrication device
US7980973B1 (en) 2006-05-01 2011-07-19 Purdue Research Foundation Coaxial electrical actuator for continuously variable transmissions
US7980972B1 (en) 2006-05-01 2011-07-19 Purdue Research Foundation Roller variator for actuating continuously variable transmissions
EP2018314A4 (en) * 2006-05-11 2010-04-14 Fallbrook Technologies Inc STAGELESS ADJUSTABLE DRIVE TRAIN
CN102269055B (zh) 2006-06-26 2013-08-28 福博科技术公司 无级变速器
EP2060829B1 (en) * 2006-09-08 2013-01-16 Mikuni Corporation Continuously variable transmission
US8376903B2 (en) 2006-11-08 2013-02-19 Fallbrook Intellectual Property Company Llc Clamping force generator
DE102008003047A1 (de) * 2007-01-24 2008-07-31 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Stellvorrichtung mit einem CVT-Planetenwälzgetriebe
US8738255B2 (en) * 2007-02-01 2014-05-27 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
CN101657653B (zh) 2007-02-12 2014-07-16 福博科知识产权有限责任公司 一种传动装置
CN103438207B (zh) * 2007-02-16 2016-08-31 福博科技术公司 无限变速式无级变速器、无级变速器及其方法、组件、子组件和部件
US7954574B2 (en) * 2007-03-23 2011-06-07 Fairfield Manufacturing Company, Inc. Offset drive system for utility vehicles
US8056662B2 (en) * 2007-03-23 2011-11-15 Fairfield Manufacturing Company, Inc. Lubrication system for right-angle drives used with utility vehicles
WO2008131353A2 (en) 2007-04-24 2008-10-30 Fallbrook Technologies Inc. Electric traction drives
WO2008154437A1 (en) * 2007-06-11 2008-12-18 Fallbrook Technologies Inc. Continuously variable transmission
CN101796327B (zh) 2007-07-05 2014-01-29 福博科技术公司 无级变速器
US7887032B2 (en) * 2007-11-07 2011-02-15 Fallbrook Technologies Inc. Self-centering control rod
CN101861482B (zh) 2007-11-16 2014-05-07 福博科知识产权有限责任公司 用于变速传动装置的控制器
US7878935B2 (en) * 2007-11-26 2011-02-01 Derek Lahr Continuously variable transmission with external cam
KR100863344B1 (ko) * 2007-12-20 2008-10-15 주식회사 파워스 무단 변속장치
PL2234869T3 (pl) 2007-12-21 2012-12-31 Fallbrook Tech Inc Przekładnie automatyczne i sposoby dla przekładni automatycznych
CA2716908C (en) 2008-02-29 2017-06-27 Fallbrook Technologies Inc. Continuously and/or infinitely variable transmissions and methods therefor
US8317651B2 (en) 2008-05-07 2012-11-27 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
JP5457438B2 (ja) 2008-06-06 2014-04-02 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー 無限可変変速機、及び無限可変変速機用の制御システム
US8133143B2 (en) * 2008-06-16 2012-03-13 Fairfield Manufacturing Company, Inc. Gear reducer electric motor assembly with internal brake
CN107246463A (zh) * 2008-06-23 2017-10-13 福博科知识产权有限责任公司 无级变速器
US8075437B2 (en) * 2008-07-30 2011-12-13 Allison Transmission, Inc. Gear assembly for multi-speed countershaft transmission
US8818661B2 (en) 2008-08-05 2014-08-26 Fallbrook Intellectual Property Company Llc Methods for control of transmission and prime mover
US8469856B2 (en) * 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
PL2342479T3 (pl) 2008-10-14 2013-10-31 Fallbrook Ip Co Llc Przekładnia bezstopniowa
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
NL2002145C (en) * 2008-10-28 2010-04-29 Mci Mirror Controls Int Nl Bv Drive unit for mirror adjustment mechanism.
TWI378192B (en) * 2008-11-07 2012-12-01 Ind Tech Res Inst Speed adjusting mechanism for roller traction toroidal continuously variable transmission
US7857080B2 (en) 2009-01-19 2010-12-28 Hitachi Automotive Products (Usa), Inc. System for selectively consuming and storing electrical energy in a hybrid vehicle
EP2389527B1 (en) 2009-01-22 2018-08-08 Orbital Traction, Ltd. Fluid movement systems including a continuously variable transmission
CN102317649B (zh) * 2009-02-16 2015-03-18 卞东奂 无级变速器
EP4151883A1 (en) 2009-04-16 2023-03-22 Fallbrook Intellectual Property Company LLC Continuously variable transmission
US8414441B2 (en) 2009-04-23 2013-04-09 Toyota Jidosha Kabushiki Kaisha Speed change control system for transmission of vehicle
US8323143B2 (en) 2009-12-02 2012-12-04 Fairfield Manufacturing Company, Inc. Integrated spindle-carrier electric wheel drive
US8512195B2 (en) 2010-03-03 2013-08-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
WO2011114494A1 (ja) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 無段変速機
WO2011121743A1 (ja) * 2010-03-30 2011-10-06 トヨタ自動車株式会社 ハイブリッド車両のエンジン始動制御装置
US8862298B2 (en) * 2010-03-30 2014-10-14 Toyota Jidosha Kabushiki Kaisha Drive control device of hybrid vehicle
BRPI1001768A2 (pt) 2010-05-24 2012-01-24 Jose Luiz Bertazzolli transmissão continuamente variável
US9912209B2 (en) * 2010-07-20 2018-03-06 Differential Dynamics Corporation Renewable energy marine hydrokinetic or wind turbine
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
WO2012138610A1 (en) 2011-04-04 2012-10-11 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
JPWO2012144023A1 (ja) * 2011-04-20 2014-07-28 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
CN103890455B (zh) * 2011-08-26 2016-08-24 传输Cvt股份有限公司 过夹紧保护方法及其夹紧机构
US8439151B2 (en) 2011-09-23 2013-05-14 Trw Automotive U.S. Llc Apparatus for use in turning steerable vehicle wheels
CN103958989A (zh) 2011-10-03 2014-07-30 福博科知识产权有限责任公司 具有无级变速器的制冷系统
US9347532B2 (en) 2012-01-19 2016-05-24 Dana Limited Tilting ball variator continuously variable transmission torque vectoring device
CA2861889A1 (en) 2012-01-23 2013-08-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2815152A1 (en) 2012-02-15 2014-12-24 Dana Limited Transmission and driveline having a tilting ball variator continuously variable transmission
WO2013155602A1 (en) * 2012-04-19 2013-10-24 Transmission Cvtcorp Inc. Roller position control in a toric-drive cvt
US8820186B2 (en) * 2012-06-06 2014-09-02 Sun Race Sturmey-Archer, Inc. Transmission capable of multi-speed gear-shifting by reverse motion
DE102012014751B3 (de) * 2012-07-26 2014-01-02 Eads Deutschland Gmbh Hilfsantriebssystem für einen Hubschrauber
EP2880336B1 (en) * 2012-08-03 2019-10-16 Transmission CVT Corp Inc. Over clamping protection method and clamping mechanism therefor
US9556941B2 (en) 2012-09-06 2017-01-31 Dana Limited Transmission having a continuously or infinitely variable variator drive
JP6320386B2 (ja) 2012-09-07 2018-05-09 デーナ リミテッド 遊星ギヤセットを含むボール式cvt/ivt
WO2014039440A1 (en) * 2012-09-07 2014-03-13 Dana Limited Cvt based on a ball type cvp including powersplit paths through a bevel gear
EP2893220A4 (en) 2012-09-07 2016-12-28 Dana Ltd CONTINUOUS BALL VARIATION TRANSMISSION WITH DIRECT DRIVE MODE
WO2014039901A1 (en) 2012-09-07 2014-03-13 Dana Limited Ball type continuously variable transmission/ infinitely variable transmission
CN104768787A (zh) 2012-09-07 2015-07-08 德纳有限公司 具有动力分流路径的球型cvt
US9599204B2 (en) 2012-09-07 2017-03-21 Dana Limited Ball type CVT with output coupled powerpaths
CN104755812A (zh) 2012-09-07 2015-07-01 德纳有限公司 包括动力分流路径的基于球型cvp的ivt
JP5803878B2 (ja) * 2012-11-05 2015-11-04 トヨタ自動車株式会社 無段変速機
WO2014078583A1 (en) 2012-11-17 2014-05-22 Dana Limited Continuously variable transmission
GB201223469D0 (en) * 2012-12-27 2013-02-13 Mazaro Nv Design features to improve power density and efficiency of a reversible variable transmission - RVT
US9316159B2 (en) 2013-01-30 2016-04-19 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
US10094295B2 (en) 2013-01-30 2018-10-09 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
WO2014124063A1 (en) 2013-02-08 2014-08-14 Microsoft Corporation Pervasive service providing device-specific updates
WO2014165259A1 (en) * 2013-03-13 2014-10-09 Dana Limited Transmission with cvt and ivt variator drive
US8814739B1 (en) 2013-03-14 2014-08-26 Team Industries, Inc. Continuously variable transmission with an axial sun-idler controller
US9133918B2 (en) * 2013-03-14 2015-09-15 Team Industries, Inc. Continuously variable transmission with differential controlling assemblies
US9057439B2 (en) * 2013-03-14 2015-06-16 Team Industries, Inc. Infinitely variable transmission with IVT traction ring controlling assemblies
EP2971860A4 (en) 2013-03-14 2016-12-28 Dana Ltd CONTINUOUS VARIATION TRANSMISSION AND CONTINUOUS VARIATION TRANSMISSION VARIATOR DRIVE
CN105121905A (zh) 2013-03-14 2015-12-02 德纳有限公司 球型连续式无级变速器
US9752500B2 (en) 2013-03-14 2017-09-05 Pratt & Whitney Canada Corp. Gas turbine engine with transmission and method of adjusting rotational speed
US8827856B1 (en) 2013-03-14 2014-09-09 Team Industries, Inc. Infinitely variable transmission with an IVT stator controlling assembly
US9322461B2 (en) * 2013-03-14 2016-04-26 Team Industries, Inc. Continuously variable transmission with input/output planetary ratio assembly
KR102433297B1 (ko) 2013-04-19 2022-08-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 무단 변속기
WO2014186732A1 (en) * 2013-05-17 2014-11-20 Dana Limited 3-mode front-wheel drive continuously variable planetary transmission with stacked gearsets
JP2016520782A (ja) 2013-06-06 2016-07-14 デーナ リミテッド 3モード前輪駆動および後輪駆動連続可変遊星トランスミッション
DE102013220299A1 (de) 2013-08-23 2015-02-26 Robert Bosch Gmbh Fahrzeug mit elektrischem Hilfsantrieb und stufenlos verstellbarem Planetengetriebe
US10030751B2 (en) 2013-11-18 2018-07-24 Dana Limited Infinite variable transmission with planetary gear set
US10088022B2 (en) 2013-11-18 2018-10-02 Dana Limited Torque peak detection and control mechanism for a CVP
JP6003943B2 (ja) * 2014-04-28 2016-10-05 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
KR101518378B1 (ko) * 2014-06-10 2015-05-07 진흥구 무단변속장치
EP3158230A4 (en) 2014-06-17 2018-03-07 Dana Limited Off-highway continuously variable planetary-based multimore transmission including infinite variable transmission and direct continuously variable tranmission
DE102014221512A1 (de) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Koaxial angeordnetes Reibringgetriebe für ein mit Motorkraft und/oder Pedalkraft betreibbares Fahrzeug
GB201419494D0 (en) * 2014-10-31 2014-12-17 Torotrak Dev Ltd Variations
JP6241427B2 (ja) * 2015-01-27 2017-12-06 トヨタ自動車株式会社 ハイブリッド車両
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US9822870B2 (en) * 2015-04-03 2017-11-21 Allison Transmission, Inc. Manufacturing technique for variator cooling technologies
KR101758361B1 (ko) * 2015-07-20 2017-07-17 퍼스텍주식회사 로봇용 무단 변속 장치
US10035511B2 (en) * 2015-07-27 2018-07-31 Cummins Inc. Method and system for controlling operation of an engine powered device having cyclical duty cycles
US10670116B2 (en) 2015-08-28 2020-06-02 Differential Dynamics Corporation Control apparatus and method for variable renewable energy
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission
JP2018528373A (ja) * 2015-09-22 2018-09-27 ダナ リミテッド 液圧負荷に応答して車両のエンジン速度を上昇させる方法
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
JP6575376B2 (ja) * 2016-01-28 2019-09-18 スズキ株式会社 無段変速装置
KR102364407B1 (ko) * 2016-03-18 2022-02-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 무단 변속기 시스템 및 방법
ES2883603T3 (es) * 2016-04-04 2021-12-09 Mazaro Nv Variador planetario para transmisión variable
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
US10253881B2 (en) 2016-05-20 2019-04-09 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
WO2018005747A1 (en) 2016-06-29 2018-01-04 Dana Limited Powertrain
WO2018045128A2 (en) 2016-08-31 2018-03-08 Dana Limited Electric axle transmission with a ball variator continuously variable planetary transmission with and without torque vectoring for electric and hybrid electric vehicles
JP6773297B2 (ja) * 2016-10-14 2020-10-21 日本電産シンポ株式会社 無段変速機および自転車
CN107339385B (zh) * 2016-10-31 2023-08-15 西华大学 一种无自旋单环盘式无级变速单元
DE102016223922A1 (de) * 2016-12-01 2018-06-07 Volkswagen Aktiengesellschaft Traktionsgetriebe und Antriebseinheit für ein Kraftfahrzeug
CN106763626B (zh) * 2017-01-04 2023-08-01 芜湖长捷航空动力科技有限责任公司 一种直升机变扭变速系统
CA3205784A1 (en) 2017-01-20 2018-07-26 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission
JP6429339B2 (ja) * 2017-02-24 2018-11-28 摩特動力工業股▲ふん▼有限公司Motive Power Industry Co.,Ltd. 無段変速機構
US20180306283A1 (en) 2017-04-24 2018-10-25 Fallbrook Intellectual Property Company Llc Disc with insertable pins and method of manufacture for same
JP6453377B2 (ja) * 2017-05-01 2019-01-16 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー 無段変速機
US10392094B2 (en) * 2017-06-06 2019-08-27 The Boeing Company Transmissions for rotating coaxial drive shafts in opposite directions
WO2019028320A1 (en) 2017-08-04 2019-02-07 Dana Limited POWERTRAIN
WO2019036324A1 (en) 2017-08-14 2019-02-21 Dana Limited MOTORPOWER GROUPS COMPRISING A CONTINUOUS BALL-TYPE VARIATION TRANSMISSION AND A PLANETARY RAVIGNEAUX TRAIN
CN109681619B (zh) * 2017-10-19 2022-02-08 上海汽车集团股份有限公司 一种变速箱的配油系统及配油盘总成
TWI652419B (zh) * 2017-10-31 2019-03-01 摩特動力工業股份有限公司 持續出力之無段變速器
DE102018008464A1 (de) 2017-11-02 2019-06-27 Wilfried Donner Antriebsstrang mit zwei separaten , mittels Zwischengetriebe gekoppelten schaltbaren Getrieben
WO2019086064A1 (de) 2017-11-02 2019-05-09 Wilfried Donner Antriebsstrang mit zwei separaten, mittels zwischengetriebe gekoppelten schaltbaren getrieben
CN107917170A (zh) * 2017-12-15 2018-04-17 韩喜胜 碟式无级变速装置
CN110005773A (zh) * 2018-01-04 2019-07-12 胡莉妮 一种钢球无级变速器
EP3543560B1 (de) * 2018-03-19 2020-11-25 Rudolf Glassner Stufenloses verzweigungsgetriebe
EP3825588A4 (en) * 2018-07-20 2022-07-27 Zhejiang Sanhua Intelligent Controls CO., Ltd. ELECTRONIC EXPANSION VALVE, METHOD OF MANUFACTURE THEREOF AND THERMAL MANAGEMENT DEVICE
DE102018119485A1 (de) * 2018-08-10 2020-02-13 Schaeffler Technologies AG & Co. KG Elektromechanische Antriebsanordnung für ein Kraftfahrzeug
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11628942B2 (en) 2019-03-01 2023-04-18 Pratt & Whitney Canada Corp. Torque ripple control for an aircraft power train
EP3931091A4 (en) 2019-03-01 2023-01-11 Pratt & Whitney Canada Corp. DISTRIBUTED PROPULSION CONFIGURATIONS FOR AIRCRAFT WITH MIXED PROPULSION SYSTEMS
US11732639B2 (en) 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems
EP3941830B1 (en) 2019-03-18 2024-11-06 Pratt & Whitney Canada Corp. Architectures for hybrid-electric propulsion
EP3798076A1 (de) 2019-09-27 2021-03-31 Traktionssysteme Austria GmbH Getriebe
CN113135253A (zh) * 2020-01-20 2021-07-20 八方电气(苏州)股份有限公司 电动自行车速度力矩传感器系统及电动自行车
US11486472B2 (en) 2020-04-16 2022-11-01 United Technologies Advanced Projects Inc. Gear sytems with variable speed drive
CN111425565A (zh) * 2020-05-09 2020-07-17 横店集团英洛华电气有限公司 可选择性的双出轴减速机构
KR102495338B1 (ko) * 2021-01-25 2023-02-06 이문구 유성기어장치와 자석의 자력을 이용한 자전거
KR102572815B1 (ko) * 2021-09-08 2023-08-31 주식회사 네오오토 개선된 원 웨이 클러치를 구비하는 전기자동차용 변속기
CN114852352A (zh) * 2022-05-18 2022-08-05 王子路 一种多旋翼自动控制无人机

Family Cites Families (734)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675713A (en) 1954-04-20 Protective mechanism for variable
US1121210A (en) 1914-12-15 Fried Krupp Germaniawerft Ag Submarine boat.
GB592320A (en) 1945-03-13 1947-09-15 Frederick Whigham Mcconnel Improvements in or relating to variable speed-gears
USRE22761E (en) 1946-05-28 Transmission
US719595A (en) 1901-07-06 1903-02-03 Jacob B Huss Bicycle driving mechanism.
US1207985A (en) 1914-08-17 1916-12-12 Charles I Null Antifriction-hanger.
US1175677A (en) 1914-10-24 1916-03-14 Roderick Mcclure Power-transmitting device.
US1380006A (en) 1917-08-04 1921-05-31 Hamilton Beach Mfg Co Variable-speed transmission
US1629092A (en) 1918-09-10 1927-05-17 Whitin Machine Works Waste-removal apparatus
JP3223241B2 (ja) 1997-03-17 2001-10-29 本田技研工業株式会社 ベルト式無段変速機
US1390971A (en) 1921-01-24 1921-09-13 Samain Pierre Gearing
US1558222A (en) 1924-01-14 1925-10-20 Beetow Albert Backlash take-up for gears
CH118064A (de) 1924-08-07 1926-12-16 Jakob Arter Reibungswechselgetriebe.
US1629902A (en) 1924-08-07 1927-05-24 Arter Jakob Power-transmitting device
US1686446A (en) 1926-04-15 1928-10-02 John A Gilman Planetary transmission mechanism
FR620375A (fr) 1926-06-24 1927-04-21 Dispositif de pression automatique pour plateaux de friction
US1774254A (en) 1927-06-28 1930-08-26 John F Daukus Clutch mechanism
US1903228A (en) 1927-10-21 1933-03-28 Gen Motors Corp Frictional gearing
DE498701C (de) 1927-11-18 1930-05-31 Jakob Arter Reibkugelwechselgetriebe
US1865102A (en) 1929-05-07 1932-06-28 Frank A Hayes Variable speed transmission mechanism
US1793571A (en) * 1929-12-14 1931-02-24 Frank O Vaughn Variable-speed drive
US1847027A (en) * 1930-02-19 1932-02-23 Thomsen Thomas Peter Change-speed gear
US1978439A (en) 1930-04-01 1934-10-30 John S Sharpe Variable transmission
US1850189A (en) 1930-07-16 1932-03-22 Carl W Weiss Transmission device
GB391448A (en) 1930-08-02 1933-04-27 Frank Anderson Hayes Improvements in or relating to friction transmission
US1930228A (en) * 1931-05-27 1933-10-10 Perser Corp Apparatus for viewing stereoscopic pictures
US1858696A (en) 1931-07-08 1932-05-17 Carl W Weiss Transmission
US1856696A (en) * 1931-07-16 1932-05-03 Wire Novelty Mfg Company Slide buckle
US2131158A (en) 1932-02-03 1938-09-27 Gen Motors Corp Continuously variable transmission
US2086491A (en) * 1932-04-11 1937-07-06 Adiel Y Dodge Variable speed transmission
US2109845A (en) * 1932-07-23 1938-03-01 Erban Operating Corp Power transmission mechanism
US2196064A (en) 1933-02-04 1940-04-02 Erban Patents Corp Driving energy consumer
US2060884A (en) 1933-09-19 1936-11-17 Erban Operating Corp Power transmission mechanism
US2112763A (en) * 1933-12-28 1938-03-29 Cloudsley John Leslie Variable speed power transmission mechanism
US2030203A (en) * 1934-05-31 1936-02-11 Gen Motors Corp Torque loading lash adjusting device for friction roller transmissions
US2134225A (en) 1935-03-13 1938-10-25 Christiansen Ejnar Variable speed friction gear
US2152796A (en) 1935-03-13 1939-04-04 Erban Patents Corp Variable speed transmission
US2100629A (en) 1936-07-18 1937-11-30 Chilton Roland Transmission
US2209254A (en) 1938-07-29 1940-07-23 Yrjo A Ahnger Friction transmission device
US2259933A (en) 1939-02-20 1941-10-21 John O Holloway Clutch coupling for motor vehicles
US2325502A (en) 1940-03-08 1943-07-27 Georges Auguste Felix Speed varying device
US2269434A (en) 1940-11-18 1942-01-13 Cuyler W Brooks Automatic transmission mechanism
US2595367A (en) 1943-11-09 1952-05-06 Picanol Jaime Toroidal variable-speed gear drive
US2480968A (en) 1944-08-30 1949-09-06 Ronai Ernest Variable transmission means
US2469653A (en) 1945-02-01 1949-05-10 Kopp Jean Stepless variable change-speed gear with roller bodies
US2461258A (en) 1946-06-06 1949-02-08 Cuyler W Brooks Automatic transmission mechanism
US2596538A (en) 1946-07-24 1952-05-13 Allen A Dicke Power transmission
US2553465A (en) 1946-11-30 1951-05-15 Monge Jean Raymond Barthelemy Manual or power-operated planetary transmission
BE488557A (ko) 1948-04-17
US2586725A (en) 1950-02-08 1952-02-19 Roller Gear Corp Variable-speed transmission
US2595538A (en) * 1950-08-08 1952-05-06 William L Coleman Downspout strainer
US2696888A (en) 1951-05-26 1954-12-14 Curtiss Wright Corp Propeller having variable ratio transmission for changing its pitch
US2675234A (en) * 1952-03-14 1954-04-13 Louis E Reames Hobbyhorse
US2716357A (en) 1952-07-07 1955-08-30 Rennerfelt Sven Bernhard Continuously variable speed gears
US2730904A (en) 1952-07-14 1956-01-17 Rennerfelt Sven Bernhard Continuously variable speed gears
US2748614A (en) 1953-06-23 1956-06-05 Zenas V Weisel Variable speed transmission
US2901924A (en) 1954-08-05 1959-09-01 New Prod Corp Accessory drive
US2873911A (en) 1955-05-26 1959-02-17 Librascope Inc Mechanical integrating apparatus
US2868038A (en) 1955-05-26 1959-01-13 Liquid Controls Corp Infinitely variable planetary transmission
US2913932A (en) 1955-10-04 1959-11-24 Mcculloch Motors Corp Variable speed planetary type drive
US2874592A (en) 1955-11-07 1959-02-24 Mcculloch Motors Corp Self-controlled variable speed planetary type drive
US2959063A (en) 1956-09-11 1960-11-08 Perbury Engineering Ltd Infinitely variable change speed gears
US2891213A (en) 1956-10-30 1959-06-16 Electric Control Corp Constant frequency variable input speed alternator apparatuses
BE571424A (ko) 1957-11-12
US2931234A (en) 1957-11-12 1960-04-05 George Cohen 600 Group Ltd Variable speed friction drive trans-mission units
US2931235A (en) 1957-11-12 1960-04-05 George Cohen 600 Group Ltd Variable speed friction drive transmissions
US2883883A (en) * 1957-11-13 1959-04-28 Curtiss Wright Corp Variable speed transmission
US2964959A (en) 1957-12-06 1960-12-20 Gen Motors Corp Accessory drive transmission
BE574149A (fr) 1958-01-09 1959-04-16 Fabrications Unicum Soc D Dispositif de pression des variateurs de vitesse à friction
DE1171692B (de) 1958-01-09 1964-06-04 Fabrications Unicum Soc D Reibungsgetriebe mit mehreren flachen Reibscheiben
US3048056A (en) 1958-04-10 1962-08-07 Gen Motors Corp Drive system
US3035460A (en) 1958-12-02 1962-05-22 Guichard Louis Automatic infinitely variablespeed drive
US2959070A (en) 1959-01-09 1960-11-08 Borg Warner Accessory drive
US2959972A (en) 1959-02-11 1960-11-15 Avco Mfg Corp Single ball joint roller support for toroidal variable ratio transmissions
US3051020A (en) 1959-02-16 1962-08-28 Thornton Axle Inc Locking differential with pressure relief device
US3008061A (en) 1959-04-21 1961-11-07 Barden Corp Slow speed motor
US2949800A (en) 1959-05-11 1960-08-23 Neuschotz Robert Tool for installing threaded elements
US3248960A (en) 1959-11-13 1966-05-03 Roller Gear Ltd Variable speed drive transmission
GB908002A (en) 1959-11-27 1962-10-10 Johan Laerum Food ration kit for sports and military use
DE1178259B (de) * 1959-12-03 1964-09-17 Motoren Werke Mannheim Ag Haupt- und Nebenpleuelstange fuer V-Maschinen
US3204476A (en) 1960-04-05 1965-09-07 William S Rouverol Variable speed transmission
US3237468A (en) 1960-05-13 1966-03-01 Roller Gear Ltd Variable speed drive transmission
US3246531A (en) 1960-11-04 1966-04-19 Kashihara Manabu Infinitely variable speed change gear
DE1217166B (de) 1960-11-04 1966-05-18 Manabu Kashihara Kugelreibungsgetriebe mit schwenkbaren Kugeln
BE629125A (ko) * 1961-03-08
US3229538A (en) 1961-09-25 1966-01-18 Roller Gear Ltd Variable speed drive transmission
US3154957A (en) 1961-10-16 1964-11-03 Kashihara Manabu Infinitely variable speed change gear utilizing a ball
US3086704A (en) 1961-11-24 1963-04-23 Ryan Aeronautical Co Cosine-secant multiplier
CH398236A (fr) 1962-09-20 1965-08-31 Yamamoto Sota Variateur de vitesse continu à friction
US3216283A (en) 1963-03-04 1965-11-09 Ford Motor Co Variable speed torque transmitting means
US3283614A (en) 1963-04-10 1966-11-08 Gen Motors Corp Friction drive mechanism
US3163050A (en) 1963-06-19 1964-12-29 Excelermatic Toroidal transmission bearing means
US3273648A (en) 1963-07-08 1966-09-20 Charles F Barnard Well tools
US3184983A (en) * 1963-10-30 1965-05-25 Excelermatic Toroidal transmission mechanism with torque loading cam means
US3211364A (en) 1963-10-30 1965-10-12 Lau Blower Co Blower wheel
FR1376401A (fr) 1963-12-05 1964-10-23 Fabrications Unicum Soc D Perfectionnements au dispositif de réglage des variateurs de vitesse à friction enparticulier
JPS441098Y1 (ko) 1964-12-24 1969-01-17
JPS422843Y1 (ko) 1965-01-18 1967-02-20
US3273468A (en) * 1965-01-26 1966-09-20 Fawick Corp Hydraulic system with regenerative position
JPS422844Y1 (ko) 1965-02-06 1967-02-20
JPS413126Y1 (ko) 1965-08-04 1966-02-23
US3340895A (en) 1965-08-27 1967-09-12 Sanders Associates Inc Modular pressure regulating and transfer valve
GB1119988A (en) 1965-10-14 1968-07-17 Nat Res Dev Transmission system for interconnecting two rotary machines
US3464281A (en) 1965-10-27 1969-09-02 Hiroshi Azuma Friction-type automatic variable speed means
GB1132473A (en) 1965-11-15 1968-11-06 James Robert Young Variable ratio friction transmission and control system therefor
US3280646A (en) 1966-02-02 1966-10-25 Ford Motor Co Control system for an infinitely variable speed friction drive
GB1135141A (en) 1966-07-04 1968-11-27 Self Changing Gears Ltd Improved auxiliary overdrive gear
JPS47448B1 (ko) 1966-07-08 1972-01-07
JPS47449B1 (ko) * 1966-07-08 1972-01-07
US3430504A (en) 1966-08-29 1969-03-04 Gen Motors Corp Transmission
GB1195205A (en) 1966-09-12 1970-06-17 Nat Res Dev Improvements in or relating to Toroidal Race Transmission Units.
SE316664B (ko) 1966-11-30 1969-10-27 B Gustavsson
US3407687A (en) 1967-03-27 1968-10-29 Hayashi Tadashi Variable ratio power transmission device
JPS4629087Y1 (ko) 1967-04-11 1971-10-08
JPS47962Y1 (ko) 1967-05-09 1972-01-14
US3477315A (en) 1967-12-18 1969-11-11 Elmer Fred Macks Dynamoelectric device with speed change mechanism
JPS4720535Y1 (ko) 1968-06-14 1972-07-10
JPS47207Y1 (ko) 1968-06-24 1972-01-07
JPS4729762Y1 (ko) 1969-03-03 1972-09-06
US3574289A (en) 1969-05-06 1971-04-13 Gen Motors Corp Transmission and control system
US3581587A (en) 1969-05-06 1971-06-01 Gen Motors Corp Transmission
BE732960A (ko) * 1969-05-13 1969-10-16
JPS4912742B1 (ko) * 1969-10-15 1974-03-27
JPS4941536B1 (ko) * 1969-11-27 1974-11-09
NL7004605A (ko) 1970-04-01 1971-10-05
US3707888A (en) 1970-07-31 1973-01-02 Roller Gear Ltd Variable speed transmission
US3695120A (en) 1971-01-14 1972-10-03 Georg Titt Infinitely variable friction mechanism
JPS5232351Y2 (ko) 1971-02-05 1977-07-23
CH534826A (de) * 1971-02-18 1973-03-15 Zuercher Andre Reibgetriebe
US3727473A (en) 1971-04-14 1973-04-17 E Bayer Variable speed drive mechanisms
JPS4729762U (ko) 1971-04-24 1972-12-05
US3774259A (en) * 1971-05-18 1973-11-27 Shur Brite Wax O Matic Inc Automatic surface polishing system
US3727474A (en) 1971-10-04 1973-04-17 Fullerton Transiission Co Automotive transmission
JPS5125903B2 (ko) 1971-11-13 1976-08-03
US3749453A (en) 1972-03-29 1973-07-31 Westinghouse Air Brake Co Apparatus for detecting emergency venting of brake pipe
US3768715A (en) * 1972-05-01 1973-10-30 Bell & Howell Co Planetary differential and speed servo
JPS5320180B2 (ko) 1972-05-09 1978-06-24
US3929838A (en) 1972-05-27 1975-12-30 Bayer Ag N-methyl-n-(3-trifluoromethylphenylmercapto)-carbamic acid dihydrobenzofuranyl esters
US3802284A (en) 1972-08-02 1974-04-09 Rotax Ltd Variable-ratio toric drive with hydraulic relief means
US3769849A (en) 1972-08-02 1973-11-06 E Hagen Bicycle with infinitely variable ratio drive
US3987681A (en) 1972-08-09 1976-10-26 Gulf & Western Industrial Products Company Clamp for presses
JPS5235481B2 (ko) 1972-09-29 1977-09-09
FR2204697B1 (ko) 1972-10-30 1975-01-03 Metaux Speciaux Sa
US3810398A (en) 1972-11-16 1974-05-14 Tracor Toric transmission with hydraulic controls and roller damping means
US3820416A (en) 1973-01-05 1974-06-28 Excelermatic Variable ratio rotary motion transmitting device
DE2310880A1 (de) 1973-03-05 1974-09-12 Helmut Koerner Laufring-einstellvorrichtung fuer stufenlos einstellbare kugel-umlaufgetriebe
IT1016679B (it) * 1973-07-30 1977-06-20 Valdenaire J Dispositivo di trasmissione parti colarmente per autoveicoli
GB1376057A (en) 1973-08-01 1974-12-04 Allspeeds Ltd Steplessly variable friction transmission gears
US4023442A (en) 1973-08-16 1977-05-17 Oklahoma State University Automatic control means for infinitely variable transmission
JPS5085019A (ko) * 1973-12-03 1975-07-09
GB1494895A (en) * 1973-12-15 1977-12-14 Raleigh Industries Ltd Epicyclic change speed gears
JPS547337B2 (ko) 1974-02-27 1979-04-05
JPS5618748Y2 (ko) * 1974-02-28 1981-05-01
US3866985A (en) * 1974-03-04 1975-02-18 Caterpillar Tractor Co Track roller
GB1469776A (en) 1974-03-05 1977-04-06 Cam Gears Ltd Speed control devices
GB1461355A (en) 1974-05-29 1977-01-13 Coates Bros Co Ltd Rheological agents
US3891235A (en) * 1974-07-02 1975-06-24 Cordova James De Bicycle wheel drive
US3984129A (en) 1974-07-15 1976-10-05 Hege Advanced Systems Corporation Reciprocating pedal drive mechanism for a vehicle
US3954282A (en) 1974-07-15 1976-05-04 Hege Advanced Systems Corporation Variable speed reciprocating lever drive mechanism
JPS5125903A (ko) 1974-08-28 1976-03-03 Hitachi Ltd
JPS51150380A (en) 1975-06-18 1976-12-23 Babcock Hitachi Kk Response property variable ae sensor
DE2532661C3 (de) 1975-07-22 1978-03-09 Jean Walterscheid Gmbh, 5204 Lohmar Teleskopwelle, insbesondere für Landmaschinen
JPS5235481U (ko) * 1975-09-04 1977-03-12
JPS5916719B2 (ja) 1975-09-13 1984-04-17 松下電工株式会社 放電灯始動装置
US4098146A (en) 1976-09-10 1978-07-04 Textron Inc. Traction-drive transmission
JPS5350395U (ko) * 1976-09-30 1978-04-27
JPS5348166A (en) 1976-10-13 1978-05-01 Toyoda Mach Works Ltd Stepless change gear
FR2379330A1 (fr) * 1977-02-04 1978-09-01 Zerhoch Vorrichtungs Masch Machine a dresser les toles et materiaux plats
US4177683A (en) 1977-09-19 1979-12-11 Darmo Corporation Power transmission mechanism
US4193226A (en) * 1977-09-21 1980-03-18 Kayex Corporation Polishing apparatus
US4159653A (en) 1977-10-05 1979-07-03 General Motors Corporation Torque-equalizing means
US4169609A (en) 1978-01-26 1979-10-02 Zampedro George P Bicycle wheel drive
GB1600646A (en) 1978-03-22 1981-10-21 Olesen H T Power transmission having a continuously variable gear ratio
CA1115218A (en) 1978-09-01 1981-12-29 Yves J. Kemper Hybrid power system and method for operating same
GB2035481B (en) 1978-11-16 1983-01-19 Cam Gears Ltd Speed control systems
US4314485A (en) 1978-11-16 1982-02-09 Cam Gears Limited Speed control systems
CH632071A5 (de) 1978-11-20 1982-09-15 Beka St Aubin Sa Variator.
US4227712A (en) 1979-02-14 1980-10-14 Timber Dick Pedal driven vehicle
JPS55135259A (en) 1979-04-05 1980-10-21 Toyota Motor Corp Cup-type stepless speed change gear
FR2460427A1 (fr) 1979-06-29 1981-01-23 Seux Jean Perfectionnements aux variateurs de vitesse
JPS5624251A (en) 1979-07-31 1981-03-07 Mitsubishi Heavy Ind Ltd Rolling transmission planetary roller device with combined clutch function
JPS5647231A (en) 1979-09-25 1981-04-28 Komatsu Metsuku Kk Forming method for fan blade of cooling fan
JPS56101448A (en) 1980-01-10 1981-08-14 Nissan Motor Co Ltd Frictional transmission device
JPS56127852A (en) 1980-03-12 1981-10-06 Toyoda Mach Works Ltd Stepless transmission device
DE3169011D1 (en) * 1980-05-31 1985-03-28 Bl Tech Ltd Control systems for continuously variable ratio transmissions
GB2080452A (en) 1980-07-17 1982-02-03 Franklin John Warrender Variable speed gear box
US4391156A (en) 1980-11-10 1983-07-05 William R. Loeffler Electric motor drive with infinitely variable speed transmission
US4382186A (en) 1981-01-12 1983-05-03 Energy Sciences Inc. Process and apparatus for converged fine line electron beam treatment of objects
US4382188A (en) 1981-02-17 1983-05-03 Lockheed Corporation Dual-range drive configurations for synchronous and induction generators
US4526255A (en) 1981-03-03 1985-07-02 J. I. Case Company Fluid drive transmission employing lockup clutch
US4631469A (en) 1981-04-14 1986-12-23 Honda Giken Kogyo Kabushiki Kaisha Device for driving electrical current generator for use in motorcycle
DE3215221C2 (de) 1981-06-09 1984-03-22 Georg 3300 Braunschweig Ortner Probenbehälter für Parfüm od. dgl.
US4369667A (en) * 1981-07-10 1983-01-25 Vadetec Corporation Traction surface cooling method and apparatus
JPS5823560A (ja) 1981-07-31 1983-02-12 Seiko Epson Corp インサ−ト射出型成形金型の2段突出し成形装置
EP0073475B1 (en) 1981-08-27 1988-02-03 Nissan Motor Co., Ltd. Control apparatus and method for engine-continuously variable transmission
JPS5865361A (ja) 1981-10-09 1983-04-19 Mitsubishi Electric Corp ロ−ラ変速機
JPS5899548A (ja) 1981-12-10 1983-06-13 Honda Motor Co Ltd ベルト式無段変速機
JPS58126965A (ja) 1982-01-22 1983-07-28 Hitachi Ltd ガスタ−ビン用シユラウド
US4700581A (en) 1982-02-05 1987-10-20 William R. Loeffler Single ball traction drive assembly
US4459873A (en) 1982-02-22 1984-07-17 Twin Disc, Incorporated Marine propulsion system
EP0087547B1 (en) 1982-02-25 1986-09-03 FIAT AUTO S.p.A. Epicyclic transmission with steplessly-variable speed control, having tapered planet wheels of dual conicity
US4574649A (en) 1982-03-10 1986-03-11 B. D. Yim Propulsion and speed change mechanism for lever propelled bicycles
FI69867C (fi) 1982-03-29 1986-05-26 Unilever Nv Behandling av en tvaettmedelstaong
US4494524A (en) * 1982-07-19 1985-01-22 Lee Wagner Centrifugal heating unit
JPS5926657A (ja) 1982-08-04 1984-02-10 Toyota Motor Corp 無段変速式動力伝達装置を備えた車両の制御装置
US4501172A (en) 1982-08-16 1985-02-26 Excelermatic Inc. Hydraulic speed control arrangement for an infinitely variable transmission
JPS5969565A (ja) 1982-10-13 1984-04-19 Mitsubishi Electric Corp 無段変速装置
US4512107A (en) * 1982-11-16 1985-04-23 The Perkin-Elmer Corporation Automated polisher for cylindrical surfaces
JPS59144826A (ja) 1983-02-02 1984-08-20 Nippon Denso Co Ltd 一方向性クラツチ
JPS59190557A (ja) 1983-04-13 1984-10-29 Tokyo Gijutsu Kenkyusho:Kk 摩擦球無段変速機
JPS59217051A (ja) 1983-05-23 1984-12-07 Toyota Motor Corp 車両用無段変速機の制御方法
GB2150240B (en) * 1983-11-17 1987-03-25 Nat Res Dev Continuously-variable ratio transmission
US4781663A (en) 1984-03-27 1988-11-01 Reswick James B Torque responsive automatic bicycle transmission with hold system
US4617838A (en) 1984-04-06 1986-10-21 Nastec, Inc. Variable preload ball drive
JPS60247011A (ja) 1984-05-22 1985-12-06 Nippon Seiko Kk エンジン補機駆動装置
US4569670A (en) 1984-05-31 1986-02-11 Borg-Warner Corporation Variable pulley accessory drive
US4567781A (en) 1984-06-08 1986-02-04 Norman Russ Steady power
JPS6131754A (ja) 1984-07-21 1986-02-14 Yutaka Abe 半球コマによる無段変速機
JPS6153423A (ja) 1984-08-20 1986-03-17 Diesel Kiki Co Ltd エンジン補機駆動制御装置
US4585429A (en) 1984-09-19 1986-04-29 Yamaha Hatsudoki Kabushiki Kaisha V-belt type continuously variable transmission
US4735430A (en) 1984-11-13 1988-04-05 Philip Tomkinson Racing bicycle having a continuously variable traction drive
JPS61144466A (ja) 1984-12-17 1986-07-02 Mitsubishi Electric Corp エンジンの補機駆動装置
JPH0646900B2 (ja) 1985-01-25 1994-06-22 ヤンマー農機株式会社 育苗施設
JPS61176326A (ja) * 1985-02-01 1986-08-08 株式会社日立製作所 診断装置
US4713976A (en) * 1985-03-22 1987-12-22 Vern Heinrichs Differential having a generally spherical differencing element
JPS61228155A (ja) 1985-04-01 1986-10-11 Mitsubishi Electric Corp エンジンの補機駆動装置
JPS61169464U (ko) 1985-04-03 1986-10-21
JPS61270552A (ja) 1985-05-25 1986-11-29 Matsushita Electric Works Ltd 変速機
US4630839A (en) 1985-07-29 1986-12-23 Alenax Corp. Propulsion mechanism for lever propelled bicycles
JPH0650169B2 (ja) 1985-08-01 1994-06-29 松下電器産業株式会社 触媒燃焼装置
GB8522747D0 (en) 1985-09-13 1985-10-16 Fellows T G Transmission systems
JPS6275170A (ja) 1985-09-28 1987-04-07 Daihatsu Motor Co Ltd トルクカム装置
US4744261A (en) 1985-11-27 1988-05-17 Honeywell Inc. Ball coupled compound traction drive
JPS62127556A (ja) 1985-11-27 1987-06-09 スペリ− コ−ポレイシヨン ボ−ル結合複合牽引駆動装置
US4650375A (en) * 1985-12-02 1987-03-17 James W. Millsap Drill braking system
US4717368A (en) 1986-01-23 1988-01-05 Aisin-Warner Kabushiki Kaisha Stepless belt transmission
US4735541A (en) 1986-06-17 1988-04-05 Westinghouse Electric Corp. Tube drive apparatus employing flexible drive belts
US4752211A (en) * 1986-09-12 1988-06-21 Sabin Darrel B Flow proportioning system
US4838122A (en) 1986-09-18 1989-06-13 Bridgestone Cycle Co., Ltd. Speed change device for bicycle
JPH0776582B2 (ja) 1986-11-15 1995-08-16 シンポ工業株式会社 車両の自動変速装置
JPS63160465A (ja) 1986-12-24 1988-07-04 Nec Corp フアクシミリ走査方式
DE3706716A1 (de) 1987-03-02 1988-09-15 Planetroll Antriebe Gmbh Getriebe
US4869130A (en) 1987-03-10 1989-09-26 Ryszard Wiecko Winder
JPS63219953A (ja) 1987-03-10 1988-09-13 Kubota Ltd デイスク式無段変速装置
JPS63262877A (ja) 1987-04-20 1988-10-31 Semiconductor Energy Lab Co Ltd 超電導素子
CA1296548C (en) 1987-04-24 1992-03-03 Torao Hattori Belt type continuously variable transmission for vehicles
JP2607889B2 (ja) 1987-08-04 1997-05-07 光洋精工株式会社 減速電動機
JPS6439865A (en) 1987-08-05 1989-02-10 Toshiba Corp Private branch exchange
JPS6460440A (en) 1987-08-31 1989-03-07 Fuji Heavy Ind Ltd Control device for constant speed traveling of vehicle with continuously variable transmission
ES2008251A6 (es) 1987-10-06 1989-07-16 Aranceta Angoitia Inaki Transmision para bicicletas.
JPH01286750A (ja) 1988-05-10 1989-11-17 Fuji Heavy Ind Ltd 自動車の発電機
US4909101A (en) 1988-05-18 1990-03-20 Terry Sr Maurice C Continuously variable transmission
JP2708469B2 (ja) 1988-06-01 1998-02-04 マツダ株式会社 エンジンの充発電装置
US4961477A (en) 1988-06-08 1990-10-09 Sweeney John F Wheel chair transporter
US4857035A (en) 1988-07-21 1989-08-15 Anderson Cyril F Continuous, variable power bicycle transmission device
US5025685A (en) 1988-07-29 1991-06-25 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicles
US4964312A (en) 1988-10-17 1990-10-23 Excelermatic Inc. Infinitely variable traction roller transmission
US5020384A (en) 1988-10-17 1991-06-04 Excelermatic Inc. Infinitely variable traction roller transmission
JPH02130224A (ja) 1988-11-09 1990-05-18 Mitsuboshi Belting Ltd 補機駆動装置
JPH02157483A (ja) 1988-12-07 1990-06-18 Nippon Seiko Kk 風力発電装置
JP2734583B2 (ja) 1988-12-16 1998-03-30 日産自動車株式会社 無段変速機の変速制御装置
JPH02182593A (ja) 1989-01-10 1990-07-17 Shimpo Ind Co Ltd 2輪車の自動変速装置
US5006093A (en) 1989-02-13 1991-04-09 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for vehicle power transmitting system having continuously variable transmission
JPH02271142A (ja) 1989-04-12 1990-11-06 Nippondenso Co Ltd 摩擦無段変速機
JP2568684B2 (ja) 1989-04-25 1997-01-08 日産自動車株式会社 摩擦車式無段変速機
DE8906491U1 (de) 1989-05-26 1989-07-20 Rittal-Werk Rudolf Loh Gmbh & Co Kg, 6348 Herborn Vorrichtung zum elektrisch leitenden Verbinden einer Leiterplatte mit einer Modulschiene eines Baugruppenträgers
JPH0826924B2 (ja) 1989-09-06 1996-03-21 日産自動車株式会社 トロイダル型無段変速機
JPH03149442A (ja) 1989-11-02 1991-06-26 Mitsuo Okamoto 摩擦式無段変速機
US5044214A (en) 1989-12-11 1991-09-03 Barber Jr John S Toroidal transmission with split torque and equalization planetary drive
DE59008977D1 (de) 1989-12-12 1995-06-01 Ascom Tech Ag Übertragungseinrichtung mit einer optischen übertragungsstrecke.
DE3940919A1 (de) 1989-12-12 1991-06-13 Fichtel & Sachs Ag Antriebsnabe mit stufenlos verstellbarem reibradgetriebe
DE3941768C1 (ko) 1989-12-18 1991-02-07 Qingshan 8000 Muenchen De Liu
JPH03223555A (ja) 1990-01-26 1991-10-02 Nippon Seiko Kk トロイダル型無段変速機
CN1054340A (zh) 1990-02-24 1991-09-04 李培基 差动式变频发电机组
JP2832283B2 (ja) 1990-04-13 1998-12-09 富士重工業株式会社 無段変速機の制御装置
US5059158A (en) 1990-05-08 1991-10-22 E.B.T., Inc. Electronic transmission control system for a bicycle
GB9018082D0 (en) 1990-08-17 1990-10-03 Fellows Thomas G Improvements in or relating to transmissions of the toroidal-race,rolling-traction type
US5121654A (en) 1990-09-04 1992-06-16 Hector G. Fasce Propulsion and transmission mechanism for bicycles, similar vehicles and exercise apparatus
JPH04151053A (ja) 1990-10-12 1992-05-25 Takashi Takahashi トラクション型変速装置
JPH04166619A (ja) 1990-10-30 1992-06-12 Mazda Motor Corp パワーユニットにおける補機駆動装置
US5318403A (en) * 1990-12-25 1994-06-07 Ebara Corporation Interstage casing for a pump made of sheet metal and method of manufacturing the same
US5125677A (en) * 1991-01-28 1992-06-30 Ogilvie Frank R Human powered machine and conveyance with reciprocating pedals
US5236211A (en) 1991-02-08 1993-08-17 Ohannes Meguerditchian Drive system
US5156412A (en) 1991-02-08 1992-10-20 Ohannes Meguerditchian Rectilinear pedal movement drive system
JPH04272553A (ja) * 1991-02-26 1992-09-29 Suzuki Motor Corp 摩擦無段変速機
US5562564A (en) 1991-03-14 1996-10-08 Synkinetics, Inc. Integral balls and cams type motorized speed converter with bearings arrangement
JPH04327055A (ja) * 1991-04-23 1992-11-16 Nissan Motor Co Ltd 無段変速機
JP2666608B2 (ja) 1991-05-28 1997-10-22 日産自動車株式会社 摩擦車式無段変速機
DE4120540C1 (ko) 1991-06-21 1992-11-05 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
DE4126993A1 (de) 1991-08-16 1993-02-18 Fichtel & Sachs Ag Antriebsnabe für ein Fahrzeug, insbesondere Fahrrad, mit stufenlos einstellbarem Übersetzungsverhältnis.
DE4127043A1 (de) 1991-08-16 1993-02-18 Fichtel & Sachs Ag Antriebsnabe mit stufenlos einstellbarem uebersetzungsverhaeltnis
DE4127030A1 (de) * 1991-08-16 1993-02-18 Fichtel & Sachs Ag Antriebsnabe mit stufenlos einstellbarem uebersetzungsverhaeltnis
JPH0792107B2 (ja) 1991-09-26 1995-10-09 エヌティエヌ株式会社 トルクリミッタ
JP3200901B2 (ja) 1991-12-20 2001-08-20 株式会社日立製作所 電気自動車の駆動装置
US5138894A (en) 1992-01-06 1992-08-18 Excelermatic Inc. Axial loading cam arrangement in or for a traction roller transmission
JP2578448Y2 (ja) * 1992-03-13 1998-08-13 日産自動車株式会社 ローディングカム装置
US5645507A (en) * 1992-03-17 1997-07-08 Eryx Limited Continuously variable transmission system
JPH0742799B2 (ja) 1992-05-20 1995-05-10 石塚硝子株式会社 防虫畳
JP3369594B2 (ja) * 1992-05-29 2003-01-20 本田技研工業株式会社 電気走行車
JP2588342B2 (ja) 1992-07-22 1997-03-05 安徳 佐藤 自転車の油圧駆動装置
JP3243653B2 (ja) * 1992-07-22 2002-01-07 ニッタ株式会社 増減速機
JPH0650358A (ja) 1992-07-30 1994-02-22 Ntn Corp 自動復帰機能付トルクリミッタ
JPH0650169A (ja) 1992-07-31 1994-02-22 Koyo Seiko Co Ltd エンジン補機駆動用変速ユニット
TW218909B (en) 1992-09-02 1994-01-11 Song-Tyan Uen A continuous transmission of eccentric slide block clutch type
JPH06174030A (ja) * 1992-12-03 1994-06-21 Jatco Corp 摩擦車式無段変速機
CA2085022C (en) 1992-12-10 1998-12-08 Irwin W. Knight Transmission having torque converter and planetary gear train
US5330396A (en) 1992-12-16 1994-07-19 The Torax Company, Inc. Loading device for continuously variable transmission
GB9300862D0 (en) 1993-01-18 1993-03-10 Fellows Thomas G Improvements in or relating to transmissions of the toroidal-race,rolling-traction type
US5451070A (en) 1993-05-26 1995-09-19 Lindsay; Stuart M. W. Treadle drive system with positive engagement clutch
IL106440A0 (en) 1993-07-21 1993-11-15 Ashot Ashkelon Ind Ltd Wind turbine transmission apparatus
JPH0742799A (ja) 1993-08-02 1995-02-10 Koyo Seiko Co Ltd 補機駆動装置
US5385514A (en) 1993-08-11 1995-01-31 Excelermalic Inc. High ratio planetary transmission
US5375865A (en) 1993-09-16 1994-12-27 Terry, Sr.; Maurice C. Multiple rider bicycle drive line system including multiple continuously variable transmissions
US5664636A (en) 1993-10-29 1997-09-09 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with electric motor
JPH07133857A (ja) 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd 正逆転用無段変速機
JPH07139600A (ja) 1993-11-15 1995-05-30 Mazda Motor Corp トロイダル型無段変速機
US5383677A (en) 1994-03-14 1995-01-24 Thomas; Timothy N. Bicycle body support apparatus
JP3448337B2 (ja) 1994-03-17 2003-09-22 川崎重工業株式会社 油圧式無段変速機
JP3058005B2 (ja) * 1994-04-28 2000-07-04 日産自動車株式会社 無段変速機の制御装置
EP0756675B1 (fr) 1994-05-04 1998-08-12 Jean Valdenaire Transmission mecanique a variation continue automatique et son procede de mise en action
US5746676A (en) 1994-05-31 1998-05-05 Ntn Corporation Friction type continuously variable transmission
JP3456267B2 (ja) 1994-08-26 2003-10-14 日本精工株式会社 トロイダル型無段変速機
JPH08135748A (ja) * 1994-11-04 1996-05-31 Isao Matsui 自動無段変速機
EP0881089B1 (en) 1994-11-21 2001-08-01 Riso Kagaku Corporation Rotary stencil printing machine
US5508574A (en) 1994-11-23 1996-04-16 Vlock; Alexander Vehicle transmission system with variable speed drive
US5799541A (en) 1994-12-02 1998-09-01 Fichtel & Sachs Ag Twist-grip shifter for bicycles and a bicycle having a twist-grip shifter
JPH08170706A (ja) 1994-12-14 1996-07-02 Yasukuni Nakawa 自動無段変速機
JP3595887B2 (ja) 1995-03-07 2004-12-02 光洋精工株式会社 無段変速装置
EP0759393B1 (en) * 1995-03-13 2002-08-21 Sakae Co., Ltd. Bicycle and speed change operating device for the same
GB9505346D0 (en) 1995-03-16 1995-05-03 Fellows Thomas G Improvements in or relating to continuously-variable-ratio transmissions
JP3404973B2 (ja) 1995-03-29 2003-05-12 日産自動車株式会社 トロイダル型無段変速機の変速制御装置
JP2973920B2 (ja) 1995-05-24 1999-11-08 トヨタ自動車株式会社 ハイブリッド電気自動車
US6054844A (en) 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
JP3097505B2 (ja) 1995-07-13 2000-10-10 トヨタ自動車株式会社 車両用駆動装置
JP3414059B2 (ja) 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置
CN2245830Y (zh) 1995-07-30 1997-01-22 朱向阳 电磁-行星传动无级变速器
US5690346A (en) 1995-07-31 1997-11-25 Keskitalo; Antti M. Human powered drive-mechanism with versatile driving modes
JPH0989064A (ja) 1995-09-27 1997-03-31 Ntn Corp 摩擦式無段変速機
CN1093060C (zh) 1995-11-20 2002-10-23 托罗特拉克(开发)有限公司 对位置伺服系统或涉及位置伺服系统的改进
US6066067A (en) * 1995-11-20 2000-05-23 Torotrak Limited Position servo systems
JP3585617B2 (ja) 1995-12-28 2004-11-04 本田技研工業株式会社 無段変速機付きパワーユニット
KR100377658B1 (ko) 1996-01-11 2003-07-16 지멘스 악티엔게젤샤프트 자동차자동변속기용제어장치
JP3911749B2 (ja) 1996-03-29 2007-05-09 マツダ株式会社 自動変速機の制御装置
JPH09267647A (ja) 1996-04-02 1997-10-14 Honda Motor Co Ltd ハイブリッド車の動力伝達機構
DE19713423C5 (de) 1996-04-03 2015-11-26 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zur Betätigung eines Getriebes
JP3314614B2 (ja) 1996-04-26 2002-08-12 日産自動車株式会社 トロイダル型無段変速機のローディングカム
JP3355941B2 (ja) 1996-07-16 2002-12-09 日産自動車株式会社 トロイダル型無段変速機
JPH1061739A (ja) 1996-08-22 1998-03-06 Mamoru Ishikuri 無段変速装置
JPH1078094A (ja) 1996-08-30 1998-03-24 Mamoru Ishikuri ケーシングをプーリとする無段変速装置
US5947797A (en) * 1996-09-11 1999-09-07 Buzzetti; Mike Computer-controlled method for polishing
JPH1089435A (ja) * 1996-09-11 1998-04-07 Mamoru Ishikuri 無段変速装置
JP3480261B2 (ja) 1996-09-19 2003-12-15 トヨタ自動車株式会社 電気自動車の駆動装置
JP3284060B2 (ja) 1996-09-20 2002-05-20 株式会社シマノ 自転車の変速制御方法及びその変速制御装置
TW371646B (en) 1996-09-26 1999-10-11 Mistubishi Heavy Ind Ltd Driving unit for an electric motor driven bicycle
JPH10115355A (ja) 1996-10-08 1998-05-06 Mamoru Ishikuri 従動2軸無段変速装置
JPH10115356A (ja) 1996-10-11 1998-05-06 Isuzu Motors Ltd 遊星摩擦車式無段変速機
CN1167221A (zh) 1996-11-08 1997-12-10 邢万义 行星传动无级调速装置
US5888160A (en) 1996-11-13 1999-03-30 Nsk Ltd. Continuously variable transmission
JP3385882B2 (ja) 1996-11-19 2003-03-10 日産自動車株式会社 トロイダル型無段変速機の油圧制御装置
JPH10194186A (ja) 1997-01-13 1998-07-28 Yamaha Motor Co Ltd 電動自転車
JP3670430B2 (ja) 1997-02-05 2005-07-13 株式会社モリック 電動自転車用駆動装置
US6113513A (en) 1997-02-26 2000-09-05 Nsk Ltd. Toroidal type continuously variable transmission
JP3409669B2 (ja) * 1997-03-07 2003-05-26 日産自動車株式会社 無段変速機の変速制御装置
JP3711688B2 (ja) 1997-03-22 2005-11-02 マツダ株式会社 トロイダル式無段変速機
US6186922B1 (en) 1997-03-27 2001-02-13 Synkinetics, Inc. In-line transmission with counter-rotating outputs
US6004239A (en) 1997-03-31 1999-12-21 Ntn Corporation Friction type continuously variable speed changing mechanism
US6079726A (en) 1997-05-13 2000-06-27 Gt Bicycles, Inc. Direct drive bicycle
JP4128636B2 (ja) * 1997-05-19 2008-07-30 ウルリッヒ・ロース 円錐摩擦リング式変速機および円錐摩擦リング式変速機の摩擦リング制御のための方法
JP3341633B2 (ja) 1997-06-27 2002-11-05 日産自動車株式会社 無段変速機搭載車の変速ショック軽減装置
US5995895A (en) 1997-07-15 1999-11-30 Case Corporation Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps
US6101895A (en) 1997-07-25 2000-08-15 Shimano, Inc. Grip for a bicycle shift control device
US6119800A (en) 1997-07-29 2000-09-19 The Gates Corporation Direct current electric vehicle drive
JPH1163130A (ja) 1997-08-07 1999-03-05 Nidec Shimpo Corp トラクション伝動装置
JP3618967B2 (ja) 1997-08-08 2005-02-09 日産自動車株式会社 車両用トロイダル型無段変速機
US6171210B1 (en) 1997-08-12 2001-01-09 Nsk Ltd. Toroidal type continuous variable transmission system
US6000707A (en) 1997-09-02 1999-12-14 Linear Bicycles, Inc. Linear driving apparatus
US6419608B1 (en) * 1999-10-22 2002-07-16 Motion Technologies, Llc Continuously variable transmission
US6551210B2 (en) * 2000-10-24 2003-04-22 Motion Technologies, Llc. Continuously variable transmission
US6241636B1 (en) * 1997-09-02 2001-06-05 Motion Technologies, Llc Continuously variable transmission
TW401496B (en) 1997-09-11 2000-08-11 Honda Motor Co Ltd Swash plate type continuously variable transmission
JP3293531B2 (ja) 1997-09-19 2002-06-17 日産自動車株式会社 無段変速機の制御装置
JPH11108147A (ja) 1997-10-02 1999-04-20 Nippon Seiko Kk 無段変速装置
US6261200B1 (en) 1997-10-02 2001-07-17 Nsk Ltd. Continuously variable transmission
DE19851995B4 (de) * 1997-11-11 2006-01-12 Nsk Ltd. Stufenlos verstellbares Toroidgetriebe
ATE382811T1 (de) 1997-11-12 2008-01-15 Folsom Technologies Inc Hydraulische maschine
CN2320843Y (zh) 1997-11-16 1999-05-26 陈金龙 行星钢球无级变速器
GB9727295D0 (en) 1997-12-24 1998-02-25 Torotrak Dev Ltd Improvements in or relating to steplessly-variable-ratio transmission apparatus
JP4056130B2 (ja) 1997-12-26 2008-03-05 松下電器産業株式会社 電動補助自転車における駆動補助装置
CN1107177C (zh) 1998-01-12 2003-04-30 轨道牵引有限公司 连续变速传动装置
JP4478225B2 (ja) 1998-01-26 2010-06-09 東京自動機工株式会社 伝達車
US6119539A (en) 1998-02-06 2000-09-19 Galaxy Shipping Enterprises, Inc. Infinitely and continuously variable transmission system
CA2259771C (en) 1998-02-19 2003-04-01 Hitachi, Ltd. Transmission, and vehicle and bicycle using the same
JPH11257479A (ja) 1998-03-10 1999-09-21 Honda Motor Co Ltd トロイダル型無段変速機の制御装置
JP3853963B2 (ja) 1998-03-20 2006-12-06 本田技研工業株式会社 パワーユニット
TW360184U (en) 1998-04-18 1999-06-01 Jun-Liang Chen Improved structure for bicycle
GB2337090A (en) 1998-05-08 1999-11-10 Torotrak Dev Ltd Hydraulic control circuit for a continuously-variable ratio transmission
JP3259684B2 (ja) 1998-06-22 2002-02-25 日産自動車株式会社 車両用トロイダル型無段変速機
JP2000006877A (ja) 1998-06-22 2000-01-11 Yamaha Motor Co Ltd 電動車両用動力ユニット
JP2000153795A (ja) 1998-06-29 2000-06-06 Yamaha Motor Co Ltd 電動補助車両
JP3409701B2 (ja) 1998-07-03 2003-05-26 日産自動車株式会社 ハイブリッド車両の制御装置
DE19831502A1 (de) 1998-07-14 2000-01-20 Zahnradfabrik Friedrichshafen Verfahren zur Ansteuerung einer Weg- und/oder Winkelstelleinrichtung ohne Absolutpositionsgeber sowie die Einrichtung selbst
JP2000046135A (ja) 1998-07-28 2000-02-18 Nissan Motor Co Ltd トロイダル型無段変速機の変速制御装置
US6076846A (en) 1998-08-06 2000-06-20 Clardy; Carl S. Bicycle chest rest system
DE19981672D2 (de) 1998-09-09 2001-01-18 Luk Lamellen & Kupplungsbau Antriebsstrang
JP2000120822A (ja) 1998-10-21 2000-04-28 Nsk Ltd 無段変速装置
JP3514142B2 (ja) 1998-11-04 2004-03-31 日産自動車株式会社 車両制御装置
DE19851738A1 (de) 1998-11-10 2000-05-18 Getrag Getriebe Zahnrad Triebstrang für ein Kraftfahrzeug
JP2000142549A (ja) * 1998-11-11 2000-05-23 Sony Corp 駆動補助機付き自転車
WO2000032433A1 (fr) * 1998-12-01 2000-06-08 Hitachi, Ltd. Dispositif d'entrainement et vehicule
US6676549B1 (en) 1998-12-18 2004-01-13 Shimano, Inc. Motion sensor for use with a bicycle sprocket assembly
DE19858553A1 (de) * 1998-12-18 2000-06-21 Zahnradfabrik Friedrichshafen Stufenlos verstellbares Fahrzeuggetriebe
JP3498901B2 (ja) 1998-12-25 2004-02-23 日産自動車株式会社 ベルト式無段変速機の制御装置
US6095940A (en) 1999-02-12 2000-08-01 The Timken Company Traction drive transmission
JP2000230622A (ja) 1999-02-15 2000-08-22 Nissan Motor Co Ltd 変速比無限大無段変速機及び変速比無限大無段変速機の組立方法
DE19908250A1 (de) 1999-02-25 2000-08-31 Zahnradfabrik Friedrichshafen Übersetzungsregelung eines stufenlosen Automatgetriebes
DE60029662T2 (de) 1999-03-16 2007-08-09 Sumitomo Heavy Industries, Ltd. Zykloidengetriebe und Planeten-Reibradgetriebe
US6325386B1 (en) 1999-03-30 2001-12-04 Shimano, Inc. Rotatable seal assembly for a bicycle hub transmission
JP4241993B2 (ja) * 1999-04-01 2009-03-18 パナソニック株式会社 炭化水素センサ
US6099431A (en) 1999-05-06 2000-08-08 Ford Global Technologies, Inc. Method for operating a traction drive automatic transmission for automotive vehicles
US6312358B1 (en) 1999-05-21 2001-11-06 Advanced Technology Institute Of Commuter-Helicopter, Ltd. Constant speed drive apparatus for aircraft generator and traction speed change apparatus
US6045477A (en) 1999-06-14 2000-04-04 General Motors Corporation Continuously variable multi-range powertrain with a geared neutral
DE19929424A1 (de) 1999-06-26 2001-01-11 Bosch Gmbh Robert Reibrad-Umlaufgetriebe mit Kegelrädern
JP2001027298A (ja) 1999-07-15 2001-01-30 Nsk Ltd トロイダル型無段変速機の回転軸
JP2001071986A (ja) 1999-09-03 2001-03-21 Akebono Brake Ind Co Ltd 自転車用自動変速装置
EP1216370A2 (en) 1999-09-20 2002-06-26 Transmission Technologies Corporation Dual strategy control for a toroidal drive type continuously variable transmission
JP3547347B2 (ja) 1999-09-20 2004-07-28 株式会社日立製作所 車両用電動発電装置
US20080038274A1 (en) * 1999-09-23 2008-02-14 Foster Keith A Inhibition of secretion from non-neuronal cells
JP2001107827A (ja) 1999-10-07 2001-04-17 Toyota Motor Corp 内燃機関の始動装置および内燃機関の始動方法
JP3824821B2 (ja) 1999-10-08 2006-09-20 本田技研工業株式会社 ハイブリッド車両の回生制御装置
EP1221439B1 (en) 1999-10-14 2007-01-03 Kaken Pharmaceutical Co., Ltd. Tetrahydroquinoline derivatives
JP3956096B2 (ja) 1999-11-12 2007-08-08 フォールブルック テクノロジーズ インコーポレイテッド 無段変速装置
JP2001165296A (ja) 1999-12-06 2001-06-19 Nissan Motor Co Ltd 変速比無限大無段変速機の変速制御装置
US6499373B2 (en) * 1999-12-17 2002-12-31 Dale E. Van Cor Stack of gears and transmission system utilizing the same
US6375412B1 (en) * 1999-12-23 2002-04-23 Daniel Christopher Dial Viscous drag impeller components incorporated into pumps, turbines and transmissions
DE60100404T2 (de) 2000-01-07 2004-08-12 Nissan Motor Co. Ltd. Stufenloses Getriebe
TW582363U (en) 2000-01-14 2004-04-01 World Ind Co Ltd Apparatus for changing speed of bicycles
JP3804383B2 (ja) 2000-01-19 2006-08-02 トヨタ自動車株式会社 燃料電池を有する車両の制御装置
JP4511668B2 (ja) 2000-02-02 2010-07-28 本田技研工業株式会社 車両用無段変速機
JP3539335B2 (ja) 2000-03-10 2004-07-07 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP2001328466A (ja) 2000-03-14 2001-11-27 Nissan Motor Co Ltd 変速比無限大無段変速機の駆動力制御装置
JP3696474B2 (ja) 2000-03-17 2005-09-21 ジヤトコ株式会社 無段変速機の油圧制御装置
JP3628932B2 (ja) 2000-03-21 2005-03-16 ジヤトコ株式会社 無段変速機の制御装置
DE10014464A1 (de) 2000-03-23 2001-09-27 Zahnradfabrik Friedrichshafen Verfahren zum positionsgenauen Zusammenbau einer Planetenrad-Einheit
JP3630297B2 (ja) 2000-03-23 2005-03-16 日産自動車株式会社 自動車用トロイダル式無段変速機
KR200195466Y1 (ko) 2000-03-29 2000-09-01 비에이텍주식회사 무단변속기
JP3458818B2 (ja) 2000-03-30 2003-10-20 日産自動車株式会社 変速比無限大無段変速機の制御装置
DE10021912A1 (de) 2000-05-05 2001-11-08 Daimler Chrysler Ag Stufenloses Fahrzeuggetriebe
JP3785901B2 (ja) 2000-05-19 2006-06-14 トヨタ自動車株式会社 無段変速機の変速制御装置
JP3738665B2 (ja) 2000-05-19 2006-01-25 トヨタ自動車株式会社 変速機の油圧制御装置
JP3855599B2 (ja) 2000-05-23 2006-12-13 トヨタ自動車株式会社 車両用無段変速機の制御装置
US6492785B1 (en) 2000-06-27 2002-12-10 Deere & Company Variable current limit control for vehicle electric drive system
US6358178B1 (en) 2000-07-07 2002-03-19 General Motors Corporation Planetary gearing for a geared neutral traction drive
US6390948B1 (en) * 2000-07-12 2002-05-21 Ford Global Technologies, Inc. Transmission ratio change control during mode transitions in lean burn/DISI engines
JP3458830B2 (ja) 2000-07-21 2003-10-20 日産自動車株式会社 変速比無限大無段変速機の制御装置
JP2002039319A (ja) 2000-07-27 2002-02-06 Honda Motor Co Ltd 車両用無段変速装置
US6406399B1 (en) 2000-07-28 2002-06-18 The Timken Company Planetary traction drive transmission
DE10040039A1 (de) 2000-08-11 2002-02-21 Daimler Chrysler Ag Wechselgetriebe-Anordnung
US6371878B1 (en) 2000-08-22 2002-04-16 New Venture Gear, Inc. Electric continuously variable transmission
DE10139119A1 (de) 2000-09-08 2002-03-21 Luk Lamellen & Kupplungsbau Drehmomentenfühler
US6367833B1 (en) 2000-09-13 2002-04-09 Shimano, Inc. Automatic shifting control device for a bicycle
JP3415601B2 (ja) 2000-10-23 2003-06-09 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3726670B2 (ja) 2000-10-25 2005-12-14 日産自動車株式会社 トロイダル型無段変速機
JP4254051B2 (ja) 2000-11-15 2009-04-15 日本精工株式会社 トロイダル型無段変速機
GB2369164A (en) 2000-11-16 2002-05-22 Torotrak Dev Ltd Hydraulic control of a continuously-variable ratio transmission
DE10059450A1 (de) * 2000-11-30 2002-06-13 Zf Batavia Llc Akustische Erkennung von Variatorschlupf bei CVT-Getrieben
JP2002250421A (ja) * 2000-12-21 2002-09-06 Kayseven Co Ltd 無段変速機
KR100368658B1 (ko) 2000-12-27 2003-01-24 현대자동차주식회사 차량용 클러치
JP3531607B2 (ja) * 2000-12-28 2004-05-31 トヨタ自動車株式会社 トロイダル型無段変速機およびフルトロイダル型無段変速機
KR100916987B1 (ko) 2001-01-03 2009-09-14 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 하이브리드 전기차의 작동 특성들을 제어하는 방법
JP3680739B2 (ja) 2001-02-06 2005-08-10 日産自動車株式会社 無段変速機の変速制御装置
JP3638876B2 (ja) 2001-03-01 2005-04-13 株式会社日立製作所 車両の駆動装置及び車両
JP3942836B2 (ja) 2001-03-09 2007-07-11 ジヤトコ株式会社 車両用自動変速機の作動油冷却装置
US6482094B2 (en) 2001-03-16 2002-11-19 Schenck Rotec Gmbh Self-aligning splined male shaft head and engagement method
JP2002307956A (ja) 2001-04-11 2002-10-23 Suzuki Motor Corp 車両用駆動装置
US6390945B1 (en) 2001-04-13 2002-05-21 Ratio Disc Corp. Friction gearing continuously variable transmission
JP3914999B2 (ja) 2001-04-19 2007-05-16 川崎重工業株式会社 変速制御方法および変速制御装置
KR100884970B1 (ko) * 2001-04-26 2009-02-23 모션 테크놀로지즈 엘엘씨 연속 가변 변속기용 스핀들 지지체와 동력 조절기 조립체및 그 제조방법
JP3838052B2 (ja) 2001-05-08 2006-10-25 日産自動車株式会社 トロイダル型無段変速機
JP4378898B2 (ja) 2001-05-08 2009-12-09 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
DE10124265B4 (de) 2001-05-18 2015-10-29 Gustav Klauke Gmbh Pumpe
US20020179348A1 (en) 2001-05-30 2002-12-05 Goro Tamai Apparatus and method for controlling a hybrid vehicle
GB0113523D0 (en) 2001-06-04 2001-07-25 Torotrak Dev Ltd An Hydraulic control circuit for a continuosly variable transmission
JP2002372114A (ja) 2001-06-13 2002-12-26 Ntn Corp 摩擦式無段変速機
US6532890B2 (en) * 2001-06-14 2003-03-18 Ad-Ii Engineering Inc. Speed indicator for a shifting device of bicycle
US6434960B1 (en) 2001-07-02 2002-08-20 Carrier Corporation Variable speed drive chiller system
JP3632634B2 (ja) 2001-07-18 2005-03-23 日産自動車株式会社 ハイブリッド車両の制御装置
US6814170B2 (en) 2001-07-18 2004-11-09 Nissan Motor Co., Ltd. Hybrid vehicle
JP2003028258A (ja) 2001-07-19 2003-01-29 Nsk Ltd トロイダル型無段変速機
JP4186438B2 (ja) 2001-07-26 2008-11-26 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP2003056662A (ja) 2001-08-09 2003-02-26 Nsk Ltd トロイダル無段変速機
GB0121739D0 (en) 2001-09-08 2001-10-31 Milner Peter J An improved continuously variable transmission
JP2003097669A (ja) 2001-09-27 2003-04-03 Jatco Ltd トルクスプリット式変速比無限大無段変速機
JP3758546B2 (ja) 2001-10-05 2006-03-22 日本精工株式会社 無段変速装置
JP3714226B2 (ja) 2001-10-19 2005-11-09 日本精工株式会社 トロイダル型無段変速機
JP3535490B2 (ja) 2001-10-19 2004-06-07 本田技研工業株式会社 動力伝達装置
DE10155372A1 (de) * 2001-11-10 2003-05-22 Bosch Gmbh Robert System und Verfahren zur Vorgabe eines Motordrehmomentes und einer Getriebeübersetzung bei einem Fahrzeug mit kontinuierlich verstellbarem Getriebe
JP3758151B2 (ja) 2001-11-22 2006-03-22 日本精工株式会社 トロイダル型無段変速機
JP2003161357A (ja) 2001-11-27 2003-06-06 Ntn Corp 風力発電機用増速機
JP4284905B2 (ja) 2001-12-04 2009-06-24 日産自動車株式会社 無段変速機の変速制御装置
TWI268320B (en) 2001-12-04 2006-12-11 Yamaha Motor Co Ltd Continuously variable transmission and method of controlling it allowing for control of the axial position of a movable sheave without a sensor for measuring the axial position of the movable sheave on a rotational shaft and for stable control with the movable sheave being held in position
US6932739B2 (en) 2001-12-25 2005-08-23 Nsk Ltd. Continuously variable transmission apparatus
JP2003194207A (ja) 2001-12-25 2003-07-09 Nsk Ltd トロイダル型無段変速装置
JP3980352B2 (ja) 2001-12-28 2007-09-26 ジヤトコ株式会社 トロイダル型無段変速機のトルクシフト補償装置
JP3775660B2 (ja) 2002-01-17 2006-05-17 日本精工株式会社 トロイダル型無段変速機のローディングカム装置の保持器
CN1434229A (zh) 2002-01-19 2003-08-06 刘亚军 多传动副无级变速传动装置
US6709355B2 (en) 2002-01-28 2004-03-23 O'hora Gerard M. Continuously variable transmission
CN100432494C (zh) 2002-02-07 2008-11-12 卢克摩擦片和离合器两合公司 用于调节功率分支的自动变速器的变速比的方法及功率分支的自动变速器
JP3654868B2 (ja) 2002-02-21 2005-06-02 株式会社シマノ 自転車用変速制御装置及び自転車用変速制御方法
US7011592B2 (en) 2002-03-08 2006-03-14 Shimano, Inc. Sprocket assembly for a bicycle
GB0207530D0 (en) * 2002-04-02 2002-05-08 Univ Nottingham High field strength microwave production and microwave processing of materials e.g. weakening of multi-phase materials
US6839617B2 (en) 2002-04-11 2005-01-04 Nissan Motor Co., Ltd. Extension of operating range of feedback in CVT ratio control
JP4168785B2 (ja) 2002-04-18 2008-10-22 日本精工株式会社 無段変速装置用トロイダル型無段変速ユニットの変速比の制御方法及び装置
US6740003B2 (en) 2002-05-02 2004-05-25 Shimano, Inc. Method and apparatus for controlling a bicycle transmission
JP4198937B2 (ja) 2002-05-17 2008-12-17 株式会社豊田中央研究所 トロイダル式cvtの変速制御装置
DE10223425A1 (de) 2002-05-25 2003-12-04 Bayerische Motoren Werke Ag Stufenlos regelbares Reibrollen-Toroidgetriebe
JP4115166B2 (ja) 2002-05-31 2008-07-09 本田技研工業株式会社 無段変速装置を備える自転車
US6931316B2 (en) * 2002-06-05 2005-08-16 Nissan Motor Co., Ltd. Toroidal continuously variable transmission control apparatus
JP4214720B2 (ja) 2002-06-10 2009-01-28 日産自動車株式会社 トロイダル型無段変速機
TWI235214B (en) 2002-06-18 2005-07-01 Yung-Tung Chen Transmission system
JP2004038722A (ja) 2002-07-05 2004-02-05 Sunstar Eng Inc 電動アシスト自転車提供のサーバシステム
US7207918B2 (en) 2002-07-10 2007-04-24 Tadahiro Shimazu Continuously variable transmission
US6852064B2 (en) 2002-07-18 2005-02-08 Sauer-Danfoss, Inc. Hydromechanical transmission electronic control system for high speed vehicles
US6781510B2 (en) 2002-07-24 2004-08-24 Shimano, Inc. Bicycle computer control arrangement and method
US7303503B2 (en) 2002-08-02 2007-12-04 Nsk Ltd. Toroidal-type continuously variable transmission
JP3921148B2 (ja) 2002-08-07 2007-05-30 ジヤトコ株式会社 パワースプリット型無段変速装置
US20050233846A1 (en) 2002-08-12 2005-10-20 Green Arthur G Variable radius continuously variable transmission
JP4123869B2 (ja) 2002-08-23 2008-07-23 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
US6682432B1 (en) 2002-09-04 2004-01-27 Kinzou Shinozuka Multiple shaft diameter flexible coupling system
DE10241006A1 (de) 2002-09-05 2004-03-25 Zf Friedrichshafen Ag Elektromagnetische Schalteinrichrung eines zweistufigen Planetengetriebes
CA2401474C (en) 2002-09-05 2011-06-21 Ecole De Technologie Superieure Drive roller control for toric-drive transmission
ES2431114T3 (es) 2002-09-30 2013-11-25 Ulrich Rohs Transmisión
DE10249485A1 (de) 2002-10-24 2004-05-06 Zf Friedrichshafen Ag Leistungsverzweigtes Getriebe
US7111860B1 (en) 2002-10-25 2006-09-26 Jorge Grimaldos Treadle scooter
JP2004162652A (ja) 2002-11-14 2004-06-10 Nsk Ltd 風力発電装置
AU2003261558B2 (en) * 2002-11-15 2009-06-11 Towhaul Corporation Brake cooling system and method of cooling brakes in an axle
JP3832424B2 (ja) 2002-11-28 2006-10-11 日本精工株式会社 無段変速装置
JP3951904B2 (ja) 2002-11-29 2007-08-01 株式会社エクォス・リサーチ ハイブリッド車用駆動装置
JP3896958B2 (ja) 2002-12-05 2007-03-22 日本精工株式会社 無段変速装置
EP1426284B1 (en) 2002-12-06 2007-02-14 Campagnolo Srl Electronically servo-assisted bicycle gearshift and related method
JP4064806B2 (ja) 2002-12-19 2008-03-19 ヤマハモーターエレクトロニクス株式会社 動力補助用同期電動機の構造
JP3817516B2 (ja) 2002-12-26 2006-09-06 本田技研工業株式会社 ハイブリッド車両の駆動制御装置
US7028570B2 (en) 2003-01-21 2006-04-18 Honda Motor Co., Ltd. Transmission
JP2004232776A (ja) 2003-01-31 2004-08-19 Honda Motor Co Ltd トロイダル無段変速機
US6868949B2 (en) 2003-02-06 2005-03-22 Borgwarner, Inc. Start-up clutch assembly
EP1593879A4 (en) 2003-02-10 2009-01-14 Ntn Toyo Bearing Co Ltd DRIVE TRACTION TRANSMISSION
JP2004245326A (ja) 2003-02-14 2004-09-02 Nsk Ltd 無段変速装置
US6808053B2 (en) 2003-02-21 2004-10-26 New Venture Gear, Inc. Torque transfer device having an electric motor/brake actuator and friction clutch
JP4216093B2 (ja) 2003-02-26 2009-01-28 日本トムソン株式会社 固形潤滑剤入り転がり軸受の製造方法
US6991053B2 (en) 2003-02-27 2006-01-31 Ford Global Technologies, Llc Closed-loop power control for hybrid electric vehicles
US7011600B2 (en) * 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
US6991679B2 (en) * 2003-02-28 2006-01-31 Fitel Usa Corporation Multiple feed applicator assembly for coating optical fibers
CN1283258C (zh) 2003-03-11 2006-11-08 北京金桥时代生物医药研究发展中心 一种抗肝纤维化的药物及其制备方法
WO2004083870A2 (en) 2003-03-19 2004-09-30 The Regents Of The University Of California Method and system for controlling rate of change of ratio in a continuously variable transmission
GB0307038D0 (en) 2003-03-27 2003-04-30 Torotrak Dev Ltd System and method for controlling a continuously variable transmission
JP2004301251A (ja) 2003-03-31 2004-10-28 Koyo Seiko Co Ltd フルトロイダル型無段変速機
NL1023319C2 (nl) 2003-05-01 2004-11-03 Govers Henricus Johannes Anton Wegvoertuig met hulpinrichting.
US7028475B2 (en) 2003-05-20 2006-04-18 Denso Corporation Fluid machine
JP2005003063A (ja) 2003-06-11 2005-01-06 Nissan Motor Co Ltd 内燃機関の振動低減装置
JP4370842B2 (ja) 2003-07-14 2009-11-25 日本精工株式会社 無段変速装置
US7214159B2 (en) * 2003-08-11 2007-05-08 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7166052B2 (en) 2003-08-11 2007-01-23 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7070530B2 (en) 2003-08-26 2006-07-04 The Timken Company Method and apparatus for power flow management in electro-mechanical transmissions
TWI225912B (en) 2003-09-12 2005-01-01 Ind Tech Res Inst The mechanism for reverse gear of a belt-type continuously variable transmission
JP4054739B2 (ja) 2003-09-24 2008-03-05 株式会社シマノ 自転車用変速制御装置
US20050086334A1 (en) * 2003-10-17 2005-04-21 Nokia Corporation System and associated terminal, method and computer program product for recording content usage statistics
TWI227206B (en) 2003-11-13 2005-02-01 Han Jie Technology Co Ltd Degassing device for hot pipe filler
JP2005188694A (ja) 2003-12-26 2005-07-14 Koyo Seiko Co Ltd トロイダル型無段変速機
US7316628B2 (en) 2004-01-13 2008-01-08 The Gates Corporation Ip Law Dept. Two speed transmission and belt drive system
US7010406B2 (en) 2004-02-14 2006-03-07 General Motors Corporation Shift inhibit control for multi-mode hybrid drive
US7086981B2 (en) 2004-02-18 2006-08-08 The Gates Corporation Transmission and constant speed accessory drive
US7029075B2 (en) 2004-02-20 2006-04-18 Shimano Inc. Bicycle hub sealing assembly
JP4588333B2 (ja) 2004-02-27 2010-12-01 株式会社モートロン・ドライブ 回転カム調圧装置
ATE467069T1 (de) 2004-04-01 2010-05-15 Bhsci Llc Stufenlos verstellbares getriebe
JP4332796B2 (ja) 2004-04-19 2009-09-16 トヨタ自動車株式会社 遊星歯車変速機を有する回転電機及びそれを構成する回転子支持軸の製造方法
DE102004022356B3 (de) 2004-04-30 2005-12-01 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Toroidgetriebe
JP2007535715A (ja) 2004-05-01 2007-12-06 ケイデンス デザイン システムズ インコーポレイテッド 集積回路レイアウトを設計する方法及び機器
JP4151607B2 (ja) 2004-05-06 2008-09-17 トヨタ自動車株式会社 ベルト式無段変速機
CN2714896Y (zh) 2004-05-08 2005-08-03 颜广博 电子多功能无级变速装置
DE102004024031A1 (de) 2004-05-11 2005-12-08 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hydraulikkreis für ein Toroidgetriebe
US7383748B2 (en) 2004-05-28 2008-06-10 Rankin Charles G Automotive drivetrain having deflection compensation
US7475758B2 (en) 2004-06-18 2009-01-13 Hayes Bicycle Group, Inc. Bicycle disc brake having non-continuous spline surface for quick connection to or release from a wheel hub
DE102005063529B4 (de) 2004-06-21 2020-01-16 Schaeffler Technologies AG & Co. KG Nasslaufende Doppelkupplung in Lamellenbauweise
JP4729753B2 (ja) 2004-07-02 2011-07-20 独立行政法人海上技術安全研究所 無段変速機構を有する手動車椅子
JP2006046633A (ja) 2004-07-02 2006-02-16 Yamaha Motor Co Ltd 車両
CA2573111C (en) 2004-07-07 2012-06-05 Eaton Corporation Shift point strategy for hybrid electric vehicle transmission
AU2005269791A1 (en) 2004-07-21 2006-02-09 Fallbrook Technologies Inc. Rolling traction planetary drive
US7063195B2 (en) 2004-07-27 2006-06-20 Ford Global Technologies, Llc Dual clutch assembly for a motor vehicle powertrain
JP4553298B2 (ja) 2004-08-05 2010-09-29 本田技研工業株式会社 電動車両のモータ冷却構造
CA2479890A1 (en) 2004-09-27 2006-03-27 Samuel Beaudoin High efficiency generator system and continuously variable transmission therefor
US7727106B2 (en) 2004-10-01 2010-06-01 Pierre Maheu Continuously variable transmission
DK1815165T3 (da) 2004-10-05 2012-06-18 Fallbrook Technologies Inc Trinløst variabel transmission
US7332881B2 (en) 2004-10-28 2008-02-19 Textron Inc. AC drive system for electrically operated vehicle
TWM275872U (en) 2004-12-02 2005-09-21 Wan Way Co Ltd Improved structure of roller skate frame
DE102004060351A1 (de) 2004-12-15 2006-07-06 Siemens Ag Elektromotor für Rotation und Axialbewegung
US7238139B2 (en) 2005-01-06 2007-07-03 Ford Global Technologies, Inc. Electric and hybrid electric powertrain for motor vehicles
JP2006200549A (ja) 2005-01-18 2006-08-03 Fujitsu Ten Ltd 無段変速機の制御方法及び制御装置
TWI302501B (en) 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit
KR101341275B1 (ko) 2005-02-22 2013-12-12 코요 베어링즈 유에스에이, 엘엘씨 추력 베어링 조립체
JP4637632B2 (ja) 2005-03-31 2011-02-23 株式会社エクォス・リサーチ 無段変速機
JP2006283900A (ja) 2005-04-01 2006-10-19 Nsk Ltd トロイダル型無段変速機及び無段変速装置
EP1710477B1 (de) 2005-04-07 2009-02-25 Getrag Ford Transmissions GmbH Schaltventilvorrichtung für ein Schaltsystem eines Schaltgetriebes
JP4867192B2 (ja) 2005-04-14 2012-02-01 三菱自動車工業株式会社 無段変速機の制御装置
US7473202B2 (en) 2005-04-15 2009-01-06 Eaton Corporation Continuously variable dual mode transmission
TW200637745A (en) 2005-04-18 2006-11-01 Sanyang Industry Co Ltd Motorbike mixed power apparatus
JP2006300241A (ja) 2005-04-21 2006-11-02 Pentax Corp 一方向入出力回転伝達機構
JP4641222B2 (ja) * 2005-06-30 2011-03-02 本田技研工業株式会社 無段変速機制御装置
DE102005031764A1 (de) 2005-07-07 2007-01-18 Zf Friedrichshafen Ag Verfahren zum Steuern eines Antriebsstranges eines Fahrzeugs mit einer Antriebsmaschine und mit einem Getriebe
JP4157883B2 (ja) 2005-07-29 2008-10-01 株式会社シマノ 自転車用内装変速ハブのキャップ部材
AU2006299847A1 (en) * 2005-08-22 2007-04-19 Viryd Technologies Inc. Fluid energy converter
EP1938005B1 (en) 2005-08-24 2013-10-02 Fallbrook Intellectual Property Company LLC Wind turbine
JP4814598B2 (ja) 2005-09-20 2011-11-16 ヤンマー株式会社 油圧式無段変速装置
JP2007085514A (ja) 2005-09-26 2007-04-05 Nidec-Shimpo Corp 無段変速機
US8088036B2 (en) 2005-09-30 2012-01-03 Jtekt Corporation Drive control device for vehicle
US7343236B2 (en) 2005-10-24 2008-03-11 Autocraft Industries, Inc. Electronic control system
US7285068B2 (en) 2005-10-25 2007-10-23 Yamaha Hatsudoki Kabushiki Kaisha Continuously variable transmission and engine
KR101327190B1 (ko) 2005-10-28 2013-11-06 폴브룩 테크놀로지즈 인크 전동 드라이브
JP4375321B2 (ja) 2005-10-31 2009-12-02 トヨタ自動車株式会社 無段変速機の変速制御装置
TWM294598U (en) 2005-11-08 2006-07-21 Tuan Huei Improved continuous stepless transmission structure
DK1954959T3 (da) 2005-11-22 2013-08-26 Fallbrook Ip Co Llc Kontinuerlig variabel transmission
CN102226464B (zh) 2005-12-09 2013-04-17 福博科技术公司 一种用于变速器的轴向力产生机构
EP1811202A1 (en) 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
US7882762B2 (en) 2006-01-30 2011-02-08 Fallbrook Technologies Inc. System for manipulating a continuously variable transmission
WO2007106874A2 (en) 2006-03-14 2007-09-20 Autocraft Industries, Inc. Improved wheelchair
DK2002154T3 (da) 2006-03-14 2014-01-13 Fallbrook Ip Co Llc Gearskifter til scooter
JP4731505B2 (ja) 2006-03-17 2011-07-27 ジヤトコ株式会社 ベルト式無段変速機の油圧制御装置
US20070228687A1 (en) 2006-03-17 2007-10-04 Rodger Parker Bicycle propulsion mechanism
US9005220B2 (en) * 2006-04-04 2015-04-14 C.R. Bard, Inc. Suturing devices and methods with energy emitting elements
EP2018314A4 (en) 2006-05-11 2010-04-14 Fallbrook Technologies Inc STAGELESS ADJUSTABLE DRIVE TRAIN
JP2007321931A (ja) 2006-06-02 2007-12-13 Nsk Ltd トロイダル型無段変速機
CN102269055B (zh) 2006-06-26 2013-08-28 福博科技术公司 无级变速器
US7479090B2 (en) 2006-07-06 2009-01-20 Eaton Corporation Method and apparatus for controlling a continuously variable transmission
JP2008014412A (ja) 2006-07-06 2008-01-24 Jtekt Corp 車両の駆動制御装置
US7547264B2 (en) 2006-08-14 2009-06-16 Gm Global Technology Operations, Inc. Starter alternator accessory drive system for a hybrid vehicle
JP2008057614A (ja) 2006-08-30 2008-03-13 Yamaha Motor Co Ltd ベルト式無段階変速装置
US8251863B2 (en) 2006-09-01 2012-08-28 Hdt Robotics, Inc. Continuously variable transmission with multiple outputs
US8376903B2 (en) 2006-11-08 2013-02-19 Fallbrook Intellectual Property Company Llc Clamping force generator
JP4928239B2 (ja) 2006-11-28 2012-05-09 株式会社クボタ 作業車
US7860631B2 (en) 2006-12-08 2010-12-28 Sauer-Danfoss, Inc. Engine speed control for a low power hydromechanical transmission
FR2909938B1 (fr) 2006-12-15 2009-07-17 Valeo Equip Electr Moteur Accouplement entre le moteur thermique et le compresseur de climatisation d'un vehicule automobile
JP2008155802A (ja) 2006-12-25 2008-07-10 Toyota Motor Corp 車両用駆動装置の制御装置
DE102008003047A1 (de) 2007-01-24 2008-07-31 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Stellvorrichtung mit einem CVT-Planetenwälzgetriebe
US7641588B2 (en) 2007-01-31 2010-01-05 Caterpillar Inc. CVT system having discrete selectable speed ranges
US8738255B2 (en) 2007-02-01 2014-05-27 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
CN101657653B (zh) 2007-02-12 2014-07-16 福博科知识产权有限责任公司 一种传动装置
CN103438207B (zh) 2007-02-16 2016-08-31 福博科技术公司 无限变速式无级变速器、无级变速器及其方法、组件、子组件和部件
WO2008131353A2 (en) 2007-04-24 2008-10-30 Fallbrook Technologies Inc. Electric traction drives
US7679207B2 (en) 2007-05-16 2010-03-16 V3 Technologies, L.L.C. Augmented wind power generation system using continuously variable transmission and method of operation
DE102008026862B4 (de) 2007-06-06 2013-02-21 Nsk Ltd. Stufenloses Toroidgetriebe
WO2008154437A1 (en) 2007-06-11 2008-12-18 Fallbrook Technologies Inc. Continuously variable transmission
CN101796327B (zh) 2007-07-05 2014-01-29 福博科技术公司 无级变速器
JP2008002687A (ja) 2007-09-25 2008-01-10 Fujitsu Ten Ltd 無段変速機制御装置
JP5029290B2 (ja) 2007-10-29 2012-09-19 日産自動車株式会社 可変圧縮比エンジン
US7887032B2 (en) 2007-11-07 2011-02-15 Fallbrook Technologies Inc. Self-centering control rod
CN101861482B (zh) 2007-11-16 2014-05-07 福博科知识产权有限责任公司 用于变速传动装置的控制器
PL2234869T3 (pl) 2007-12-21 2012-12-31 Fallbrook Tech Inc Przekładnie automatyczne i sposoby dla przekładni automatycznych
CA2716908C (en) 2008-02-29 2017-06-27 Fallbrook Technologies Inc. Continuously and/or infinitely variable transmissions and methods therefor
GB0805213D0 (en) 2008-03-20 2008-04-30 Torotrak Dev Ltd An electric controller for a continuously variable transmission and a method of control of a continuously variable transmission
JP5235481B2 (ja) 2008-04-23 2013-07-10 三洋電機株式会社 車両用の電源装置
US8957032B2 (en) 2008-05-06 2015-02-17 Alba Therapeutics Corporation Inhibition of gliadin peptides
US8317651B2 (en) 2008-05-07 2012-11-27 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
JP5457438B2 (ja) 2008-06-06 2014-04-02 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー 無限可変変速機、及び無限可変変速機用の制御システム
CN107246463A (zh) 2008-06-23 2017-10-13 福博科知识产权有限责任公司 无级变速器
US8818661B2 (en) 2008-08-05 2014-08-26 Fallbrook Intellectual Property Company Llc Methods for control of transmission and prime mover
US8469856B2 (en) * 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP4668307B2 (ja) 2008-08-29 2011-04-13 ジヤトコ株式会社 変速機
JP4603607B2 (ja) 2008-09-18 2010-12-22 国立大学法人東北大学 車椅子用車輪の駆動旋回装置
BRPI0805746B1 (pt) 2008-10-02 2020-06-09 Luis Andre Parise câmbio de transição contínua - ctc
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
JP2010144906A (ja) 2008-12-22 2010-07-01 Equos Research Co Ltd 無段変速機
US20100181130A1 (en) 2009-01-21 2010-07-22 Wen-Cheng Chou Dual-Drivetrain of Power-Assist Vehicle
WO2010092661A1 (ja) 2009-02-10 2010-08-19 トヨタ自動車株式会社 無段変速機構およびその無段変速機構を用いた変速機
EP4151883A1 (en) 2009-04-16 2023-03-22 Fallbrook Intellectual Property Company LLC Continuously variable transmission
US8414441B2 (en) 2009-04-23 2013-04-09 Toyota Jidosha Kabushiki Kaisha Speed change control system for transmission of vehicle
CN102428328B (zh) 2009-05-19 2015-11-25 开利公司 可变速压缩机
ES2643067T3 (es) 2009-10-08 2017-11-21 Ultimate Transmissions Pty Ltd Motor de tracción toroidal total
US8230961B2 (en) 2009-11-04 2012-07-31 Toyota Motor Engineering & Manufacturing North America, Inc. Energy recovery systems for vehicles and wheels comprising the same
GB0920546D0 (en) 2009-11-24 2010-01-06 Torotrak Dev Ltd Drive mechanism for infinitely variable transmission
US8172022B2 (en) * 2009-11-30 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Energy recovery systems for vehicles and vehicle wheels comprising the same
US8585529B2 (en) 2010-01-29 2013-11-19 Wayne Paul Bishop Positive drive infinitely variable transmission
US8992376B2 (en) 2010-02-22 2015-03-31 Toyota Jidosha Kabushiki Kaisha Power transmission device
US8512195B2 (en) 2010-03-03 2013-08-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
WO2011114494A1 (ja) 2010-03-18 2011-09-22 トヨタ自動車株式会社 無段変速機
WO2011121743A1 (ja) 2010-03-30 2011-10-06 トヨタ自動車株式会社 ハイブリッド車両のエンジン始動制御装置
US8581463B2 (en) 2010-06-01 2013-11-12 Lawrence Livermore National Laboratory, Llc Magnetic bearing element with adjustable stiffness
US8382631B2 (en) * 2010-07-21 2013-02-26 Ford Global Technologies, Llc Accessory drive and engine restarting system
US20120035011A1 (en) 2010-08-09 2012-02-09 Menachem Haim Electro mechanical bicycle derailleur actuator system and method
NL2005297C2 (nl) 2010-09-01 2012-03-05 Fides5 B V Fiets met elektrische aandrijving.
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2012107725A (ja) 2010-11-18 2012-06-07 Toyota Motor Corp 無段変速機
US8376889B2 (en) * 2010-12-07 2013-02-19 Ford Global Technologies, Llc Transmission producing continuously variable speed ratios
JP2012122568A (ja) 2010-12-09 2012-06-28 Toyota Motor Corp 無段変速機
WO2012088502A1 (en) 2010-12-23 2012-06-28 Vandyne Superturbo, Inc. Symmetrical traction drive
US8517888B1 (en) 2011-01-07 2013-08-27 Ernie Brookins Mechanical power transmission system and method
WO2012105663A1 (ja) 2011-02-03 2012-08-09 日本精工株式会社 トロイダル型無段変速機
JP2012172685A (ja) 2011-02-17 2012-09-10 Nsk Ltd トロイダル型無段変速機
JP5201272B2 (ja) 2011-03-29 2013-06-05 トヨタ自動車株式会社 無段変速機
JP5626076B2 (ja) 2011-03-30 2014-11-19 トヨタ自動車株式会社 無段変速機及び無段変速機の組立方法
WO2012138610A1 (en) 2011-04-04 2012-10-11 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
DE102011016672A1 (de) 2011-04-09 2012-10-11 Peter Strauss Stufenloses Getriebe
JP5500118B2 (ja) 2011-04-18 2014-05-21 トヨタ自動車株式会社 無段変速機
EP2719923A4 (en) 2011-06-10 2016-03-02 Toyota Motor Co Ltd TRANSMISSION WITH CONTINUOUS VARIATION
JP5783260B2 (ja) 2011-09-21 2015-09-24 トヨタ自動車株式会社 無段変速機
JP5263446B1 (ja) 2011-09-22 2013-08-14 トヨタ自動車株式会社 無段変速機
CA2861889A1 (en) 2012-01-23 2013-08-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
RU2014134128A (ru) 2012-02-24 2016-04-10 Тойота Дзидося Кабусики Кайся Бесступенчатая коробка передач
US9556941B2 (en) 2012-09-06 2017-01-31 Dana Limited Transmission having a continuously or infinitely variable variator drive
JP5590098B2 (ja) 2012-10-31 2014-09-17 トヨタ自動車株式会社 無段変速機
DE102012023551A1 (de) 2012-12-01 2014-06-05 Peter Strauss Stufenloses Tretlagergetriebe für Fahrräder, Pedelecs und E-Bikes mit optional integrierbarem Elektromotor
US8814739B1 (en) 2013-03-14 2014-08-26 Team Industries, Inc. Continuously variable transmission with an axial sun-idler controller
US8827856B1 (en) 2013-03-14 2014-09-09 Team Industries, Inc. Infinitely variable transmission with an IVT stator controlling assembly
CN105121905A (zh) 2013-03-14 2015-12-02 德纳有限公司 球型连续式无级变速器
KR102433297B1 (ko) 2013-04-19 2022-08-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 무단 변속기
WO2014186732A1 (en) 2013-05-17 2014-11-20 Dana Limited 3-mode front-wheel drive continuously variable planetary transmission with stacked gearsets
DE102014007271A1 (de) 2013-06-15 2014-12-18 Peter Strauss Stufenloses Tretlagergetriebe für LEV's ( Light electric vehicles) mit integrierbarem Elektromotor
JP2015227691A (ja) 2014-05-30 2015-12-17 トヨタ自動車株式会社 無段変速機
JP2015227690A (ja) 2014-05-30 2015-12-17 トヨタ自動車株式会社 無段変速機
JP5880624B2 (ja) 2014-05-30 2016-03-09 トヨタ自動車株式会社 無段変速機
JP2016014435A (ja) 2014-07-02 2016-01-28 株式会社デンソー シフトレンジ切換制御装置
US9682744B2 (en) 2014-07-30 2017-06-20 Shimano Inc. Bicycle shifting control apparatus
US20170225742A1 (en) 2014-08-05 2017-08-10 Fallbrook Intellectual Property Company Llc Components, systems and methods of bicycle-based network connectivity and methods for controlling a bicycle having network connectivity
EP3177517A1 (en) 2014-08-05 2017-06-14 Fallbrook Intellectual Property Company LLC Components, systems and methods of bicycle-based network connectivity and methods for controlling a bicycle having network connectivity
DE102014221514A1 (de) 2014-10-23 2016-04-28 Robert Bosch Gmbh Verstellbares Reibringgetriebe für ein mit Motorkraft und/oder Pedalkraft betreibbares Fahrzeug
JP2018511510A (ja) 2015-02-13 2018-04-26 シヴィライズド・サイクルズ・インコーポレーティッド 電気自転車の変速機システム、方法、および装置
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US9896152B2 (en) 2015-05-25 2018-02-20 Shimano Inc. Bicycle transmission system
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission
US10546052B2 (en) 2015-10-12 2020-01-28 Sugarcrm Inc. Structured touch screen interface for mobile forms generation for customer relationship management (CRM)
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
KR102364407B1 (ko) 2016-03-18 2022-02-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 무단 변속기 시스템 및 방법
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
US10253881B2 (en) 2016-05-20 2019-04-09 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
JP6477656B2 (ja) 2016-10-14 2019-03-06 トヨタ自動車株式会社 動力伝達装置の油路構造
US20180306283A1 (en) 2017-04-24 2018-10-25 Fallbrook Intellectual Property Company Llc Disc with insertable pins and method of manufacture for same
US10173757B2 (en) 2017-05-11 2019-01-08 Jimmy Styks Llc Watersport board fins with fin retention systems and watersport boards containing the same

Also Published As

Publication number Publication date
BRPI0407856A (pt) 2006-02-14
JP5844842B2 (ja) 2016-01-20
US20050153808A1 (en) 2005-07-14
JP5735951B2 (ja) 2015-06-17
US20150260284A1 (en) 2015-09-17
US20080125281A1 (en) 2008-05-29
US7250018B2 (en) 2007-07-31
US20050119086A1 (en) 2005-06-02
US20050124456A1 (en) 2005-06-09
KR20080086936A (ko) 2008-09-26
US7169076B2 (en) 2007-01-30
US20080132377A1 (en) 2008-06-05
US7166056B2 (en) 2007-01-23
US7036620B2 (en) 2006-05-02
MXPA05009106A (es) 2006-01-27
JP6370354B2 (ja) 2018-08-08
US20180066754A1 (en) 2018-03-08
US20080132373A1 (en) 2008-06-05
US20050255957A1 (en) 2005-11-17
US20050170927A1 (en) 2005-08-04
US8469853B2 (en) 2013-06-25
US20040171452A1 (en) 2004-09-02
AU2004217514B2 (en) 2009-10-01
ATE484697T1 (de) 2010-10-15
US20050159267A1 (en) 2005-07-21
JP2010144932A (ja) 2010-07-01
JP2010101496A (ja) 2010-05-06
US7396209B2 (en) 2008-07-08
US7011600B2 (en) 2006-03-14
CA2516494A1 (en) 2004-09-16
BRPI0407856B1 (pt) 2018-03-13
JP2017032145A (ja) 2017-02-09
US9732848B2 (en) 2017-08-15
ES2443344T3 (es) 2014-02-19
US8267829B2 (en) 2012-09-18
JP5070273B2 (ja) 2012-11-07
US7238137B2 (en) 2007-07-03
US20120309579A1 (en) 2012-12-06
JP2015155760A (ja) 2015-08-27
AU2009251194B2 (en) 2012-11-01
JP2014001860A (ja) 2014-01-09
US7686729B2 (en) 2010-03-30
US7288042B2 (en) 2007-10-30
US7232395B2 (en) 2007-06-19
DK2426375T3 (da) 2014-01-27
KR100948685B1 (ko) 2010-03-19
US20050164819A1 (en) 2005-07-28
HK1085783A1 (en) 2006-09-01
EP2426375A1 (en) 2012-03-07
US7727108B2 (en) 2010-06-01
KR20080027500A (ko) 2008-03-27
US20130281256A1 (en) 2013-10-24
JP2018109450A (ja) 2018-07-12
CN102352920A (zh) 2012-02-15
WO2004079223A3 (en) 2005-07-14
EP1597495B1 (en) 2010-10-13
CA2707686C (en) 2011-04-26
US8628443B2 (en) 2014-01-14
EP1597495A4 (en) 2009-04-29
JP4667371B2 (ja) 2011-04-13
AU2004217514A1 (en) 2004-09-16
US20050117983A1 (en) 2005-06-02
US20080121487A1 (en) 2008-05-29
US20050130784A1 (en) 2005-06-16
US9046158B2 (en) 2015-06-02
US20050159266A1 (en) 2005-07-21
US7235031B2 (en) 2007-06-26
US7238136B2 (en) 2007-07-03
US8066614B2 (en) 2011-11-29
EP1597495A2 (en) 2005-11-23
JP2006519349A (ja) 2006-08-24
KR100908284B1 (ko) 2009-07-17
CA2707686A1 (en) 2004-09-16
CA2683006A1 (en) 2004-09-16
CA2516494C (en) 2010-04-06
CA2683006C (en) 2010-09-14
US20050178893A1 (en) 2005-08-18
US20050153809A1 (en) 2005-07-14
US10428939B2 (en) 2019-10-01
US7125297B2 (en) 2006-10-24
US7651437B2 (en) 2010-01-26
JP5759525B2 (ja) 2015-08-05
KR20050117528A (ko) 2005-12-14
AU2009251194A1 (en) 2010-01-21
DE602004029557D1 (de) 2010-11-25
JP6503491B2 (ja) 2019-04-17
KR100885303B1 (ko) 2009-02-24
EP2246594B1 (en) 2012-06-27
US7198585B2 (en) 2007-04-03
HK1150246A1 (en) 2011-11-11
JP6198772B2 (ja) 2017-09-20
EP2246594A1 (en) 2010-11-03
JP2014134292A (ja) 2014-07-24
WO2004079223A2 (en) 2004-09-16
US20080125282A1 (en) 2008-05-29
US20050119087A1 (en) 2005-06-02
US7238138B2 (en) 2007-07-03
US20120035016A1 (en) 2012-02-09
US20050119090A1 (en) 2005-06-02
US7322901B2 (en) 2008-01-29
EP2426375B1 (en) 2013-10-23
US7731615B2 (en) 2010-06-08
JP2013061074A (ja) 2013-04-04
US20140128195A1 (en) 2014-05-08
KR100949391B1 (ko) 2010-03-25

Similar Documents

Publication Publication Date Title
KR100948685B1 (ko) 무단변속기용 시프트가이드 및 시프트가이드의 곡면결정방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 9