JP5172884B2 - Substrate processing apparatus and substrate processing method - Google Patents
Substrate processing apparatus and substrate processing method Download PDFInfo
- Publication number
- JP5172884B2 JP5172884B2 JP2010082247A JP2010082247A JP5172884B2 JP 5172884 B2 JP5172884 B2 JP 5172884B2 JP 2010082247 A JP2010082247 A JP 2010082247A JP 2010082247 A JP2010082247 A JP 2010082247A JP 5172884 B2 JP5172884 B2 JP 5172884B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- substrate
- lid member
- chamber
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
この発明は、基板を処理する基板処理装置および基板処理方法に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用ガラス基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、太陽電池用基板などの基板が含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate. Examples of substrates to be processed include semiconductor wafers, glass substrates for liquid crystal display devices, substrates for plasma displays, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, Substrates such as a photomask substrate and a solar cell substrate are included.
たとえば半導体装置の製造工程では、半導体ウエハや液晶表示パネル用ガラス基板などの基板に対して、薬液を用いた処理が行われる。この薬液処理のために、基板に対して1枚ずつ処理を行う枚葉式の基板処理装置が用いられることがある。枚葉式の基板処理装置は、内部空間を区画する隔壁を有する処理チャンバと、処理チャンバ内に収容され、基板をほぼ水平に保持して回転させるスピンチャックと、基板に薬液を供給するための薬液ノズルとを備えている。 For example, in a manufacturing process of a semiconductor device, a process using a chemical solution is performed on a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel. For this chemical processing, a single-wafer type substrate processing apparatus that performs processing one by one on a substrate may be used. A single-wafer type substrate processing apparatus includes a processing chamber having partition walls that define an internal space, a spin chuck that is accommodated in the processing chamber and rotates while holding the substrate substantially horizontal, and a chemical solution for supplying a chemical to the substrate. And a chemical nozzle.
たとえば、基板の表面からポリマーを除去する除去処理では、基板に形成された配線の不所望なエッチングを防止するために、酸素濃度が十分に低減された薬液が薬液ノズルから吐出されることがある(特許文献1)。この場合、薬液ノズルから吐出された処理液に酸素が溶け込まないように、処理チャンバ内の雰囲気を低酸素濃度に制御することが望ましい。 For example, in the removal process of removing the polymer from the surface of the substrate, a chemical solution with a sufficiently reduced oxygen concentration may be discharged from the chemical solution nozzle in order to prevent undesired etching of the wiring formed on the substrate. (Patent Document 1). In this case, it is desirable to control the atmosphere in the processing chamber to a low oxygen concentration so that oxygen does not dissolve in the processing liquid discharged from the chemical nozzle.
しかしながら、処理チャンバの内部空間には種々の部材が収容されており、その内部空間は比較的広い。したがって、処理チャンバ内の雰囲気制御を十分に行うことは困難である。
本願発明者らは、処理チャンバ内の雰囲気制御を十分に行うために、処理チャンバの内部空間を密閉させるとともに、その内部空間を狭空間化することを検討している。
ところが、処理チャンバ内には種々の部材が集約して配置されるので、その内部空間を効果的に狭空間化することができない。とくに、基板の乾燥時に基板表面に近接配置されて基板表面を覆った状態で回転する遮断板が備えられる場合には、スピンチャックおよび遮断板を包囲するように処理チャンバを構成する必要がある。そのため、処理チャンバの内部空間の容積を効果的に減少させることができないから、処理チャンバ内の雰囲気制御が不十分になるおそれがある。
In order to sufficiently control the atmosphere in the processing chamber, the inventors of the present application are considering sealing the internal space of the processing chamber and narrowing the internal space.
However, since various members are collectively arranged in the processing chamber, the internal space cannot be effectively narrowed. In particular, in the case where a shielding plate that is disposed close to the substrate surface and rotates while covering the substrate surface when the substrate is dried, the processing chamber needs to be configured to surround the spin chuck and the shielding plate. Therefore, since the volume of the internal space of the processing chamber cannot be effectively reduced, the atmosphere control in the processing chamber may be insufficient.
そこで、この発明の目的は、内部空間の容積を低減できる構造の密閉チャンバ内で、基板に良好な処理を施すことができる基板処理装置および基板処理方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of performing good processing on a substrate in a sealed chamber having a structure capable of reducing the volume of an internal space.
前記の課題を解決するため、請求項1記載の発明は、開口(5)を有するチャンバ本体(6)、前記チャンバ本体に対して回転可能に設けられて前記開口を閉塞する蓋部材(7)、および前記蓋部材と前記チャンバ本体との間を液体でシールする第1液体シール構造(8)を有し、内部空間が外部から密閉された密閉チャンバ(2)と、前記蓋部材を回転させるための蓋部材回転手段(32)と、前記密閉チャンバの内部空間で基板を保持しつつ回転させる基板保持回転手段(3,43,44)と、前記基板保持回転手段により回転される基板に処理液を供給する処理液供給手段(4)と、前記基板保持回転手段および前記密閉チャンバの少なくとも一方を移動させて、前記基板保持回転手段に保持された基板と前記蓋部材とを、接近/離反させる第1移動手段(100)とを含み、前記第1移動手段が、前記処理液供給手段から供給される処理液による液処理が基板に施される液処理位置と、前記液処理位置よりも基板が前記蓋部材に接近し、基板に乾燥処理を施すための乾燥位置との間で、前記基板保持回転手段および前記密閉チャンバの少なくとも一方を移動させるように構成されており、前記蓋部材は、前記基板保持回転手段により保持された基板の主面全域に対向する基板対向面(23)を有しており、前記第1移動手段を制御して、前記基板保持回転手段および前記密閉チャンバを前記乾燥位置に移動させるとともに、前記基板保持回転手段および前記蓋部材回転手段を制御して、前記基板保持回転手段により保持された基板および前記蓋部材を、それぞれ所定の乾燥回転速度で同方向に回転させる乾燥制御手段(131)をさらに含む、基板処理装置(1)である。
In order to solve the above-mentioned problems, the invention according to
なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表すが、特許請求の範囲を実施形態に限定する趣旨ではない。以下、この項において同じ。
この構成によれば、密閉チャンバの内部空間において、基板保持回転手段により基板を回転させつつ、当該基板に処理液を供給できる。
蓋部材が回転可能であるので、蓋部材と基板とを相対的に回転させたり同期回転させたりすることができる。そのため、蓋部材を基板の処理に関連して回転させることも可能であり、これにより、基板の処理を良好に行うことができる。
In addition, although the alphanumeric characters in parentheses represent corresponding components in the embodiments described later, the scope of the claims is not intended to be limited to the embodiments. The same applies hereinafter.
According to this configuration, the processing liquid can be supplied to the substrate while rotating the substrate by the substrate holding and rotating means in the internal space of the sealed chamber.
Since the lid member is rotatable, the lid member and the substrate can be relatively rotated or rotated synchronously. Therefore, it is also possible to rotate the lid member in connection with the processing of the substrate, whereby the processing of the substrate can be performed satisfactorily.
そして、蓋部材とチャンバ本体との間は第1液体シール構造によってシールされている。そのため、蓋部材の回転状態においても、密閉チャンバの内部空間を密閉状態に保つことができる。シール構造として液体シール構造を採用するので、接触式シールを用いる場合と比較して発塵やシール性の低下などがほとんど生じない。これにより、蓋部材とチャンバ本体との間のシールを、長期に渡って良好に保つことができる。 The lid member and the chamber body are sealed by the first liquid seal structure. Therefore, the internal space of the sealed chamber can be kept sealed even when the lid member is rotated. Since a liquid seal structure is employed as the seal structure, dust generation and a decrease in sealing performance hardly occur as compared with the case where a contact seal is used. Thereby, the seal | sticker between a cover member and a chamber main body can be kept favorable over a long period of time.
このように、この発明では、チャンバ本体と回転可能な蓋部材とこれらの間をシールする第1液体シール構造によって、密閉空間が区画される。回転可能な蓋部材は、前述の遮断板としての機能を担うことも可能であるから、密閉空間内に遮断部材を別途備える必要がない。したがって、密閉空間の容積を小さくすることができるので、その内部雰囲気を充分に制御できる。たとえば、内部空間の雰囲気を充分な低酸素雰囲気に制御することができる。 Thus, in the present invention, the sealed space is defined by the chamber body, the rotatable lid member, and the first liquid seal structure that seals between them. Since the rotatable lid member can also function as the above-described blocking plate, it is not necessary to separately provide a blocking member in the sealed space. Therefore, since the volume of the sealed space can be reduced, the internal atmosphere can be sufficiently controlled. For example, the atmosphere in the internal space can be controlled to a sufficiently low oxygen atmosphere.
また、第1移動手段をさらに含むので、基板と蓋部材との相対位置を変化させることができる。したがって、処理液供給手段から供給される処理液により基板が処理される液処理時と、それ以外のときとで、基板と蓋部材との相対位置を変化させることも可能である。これにより、液処理およびそれ以外の処理とをそれぞれ適切な条件で行うことができる。
この構成によれば、基板保持回転部材および密閉チャンバが液処理位置とは異なる乾燥位置にある状態で、基板に乾燥処理が施される。そのため、処理液による影響を抑制した状態で基板に乾燥処理を施すことができる。
また、処理位置よりも基板が蓋部材に接近した乾燥位置で、基板に乾燥処理が施される。そのため、乾燥処理時には、基板と蓋部材との間に微小空間を形成することができる。これにより、基板と蓋部材との間の空間を、その周囲の雰囲気から遮断しつつ、基板に乾燥処理を施すことができる。これにより、基板の表面近傍の雰囲気を精密に制御した状態で良好な乾燥処理を実現でき、かつ、乾燥処理中に基板表面に異物が付着することを抑制できる。
また、蓋部材を基板の回転に同期して回転させることにより基板の主面と蓋部材の基板対向面との間に安定気流が形成される。これにより、基板に対して良好な乾燥処理を施すことができる。
Further, since further comprising a first moving means, it is possible to change the relative position between the substrate and the lid member. Therefore, it is possible to change the relative position of the substrate and the lid member between the time of liquid processing in which the substrate is processed by the processing liquid supplied from the processing liquid supply means and the other time. Thereby, a liquid process and other processes can be performed under appropriate conditions.
According to this configuration, the substrate is subjected to the drying process in a state where the substrate holding rotating member and the sealed chamber are in the drying position different from the liquid processing position. Therefore, it is possible to perform the drying process on the substrate while suppressing the influence of the processing liquid.
In addition, the substrate is subjected to a drying process at a drying position where the substrate is closer to the lid member than the processing position. Therefore, a minute space can be formed between the substrate and the lid member during the drying process. Accordingly, the substrate can be dried while the space between the substrate and the lid member is blocked from the surrounding atmosphere. Thereby, a favorable drying process can be realized in a state in which the atmosphere in the vicinity of the surface of the substrate is precisely controlled, and foreign matter can be prevented from adhering to the substrate surface during the drying process.
Further, by rotating the lid member in synchronization with the rotation of the substrate, a stable airflow is formed between the main surface of the substrate and the substrate facing surface of the lid member. Thereby, a favorable drying process can be performed with respect to a board | substrate.
請求項2記載の発明は、前記第1移動手段が、さらに、前記処理液供給手段から供給される処理液による液処理が基板に施される液処理位置と、前記液処理位置よりも前記基板保持回転手段が前記蓋部材に接近し、前記密閉チャンバ内を洗浄するためのチャンバ洗浄位置との間で、前記基板保持回転手段および前記密閉チャンバの少なくとも一方を移動させるように構成されている、請求項1記載の基板処理装置である。
According to a second aspect of the present invention, the first moving unit further includes a liquid processing position where the substrate is subjected to a liquid process using the processing liquid supplied from the processing liquid supply unit, and the substrate is more than the liquid processing position. The holding rotation means approaches the lid member, and is configured to move at least one of the substrate holding rotation means and the sealed chamber between a chamber cleaning position for cleaning the inside of the sealed chamber. The substrate processing apparatus according to
この構成によれば、基板保持回転手段または密閉チャンバが、液処理位置とは異なるチャンバ洗浄位置にある状態で密閉チャンバ内が洗浄される。チャンバ洗浄位置では、液処理位置のときよりも、基板保持回転手段が蓋部材に接近している。密閉チャンバの内壁面において、液処理位置のときに基板の周囲に対向する領域には、液処理時に基板から飛び散った処理液が付着している。そこで、密閉チャンバを洗浄するときには、基板保持回転手段が液処理位置よりも蓋部材に接近させられる。これにより、たとえば、液処理位置のときに基板の周囲に対向していた内壁面領域は、基板保持回転手段よりも低い位置に位置する。したがって、密閉チャンバ内壁面の洗浄時に、密閉チャンバの内壁面から除去された処理液(液処理時に付着した処理液)が基板保持回転手段にふりかかって付着することを抑制できる。これにより、基板保持回転手段の汚染を抑制できるから、基板保持回転手段に保持される基板の汚染を抑制することができる。 According to this configuration, the inside of the sealed chamber is cleaned in a state where the substrate holding rotation means or the sealed chamber is at a chamber cleaning position different from the liquid processing position. At the chamber cleaning position, the substrate holding and rotating means is closer to the lid member than at the liquid processing position. On the inner wall surface of the hermetic chamber, the processing liquid scattered from the substrate during the liquid processing adheres to a region facing the periphery of the substrate at the liquid processing position. Therefore, when cleaning the sealed chamber, the substrate holding and rotating means is moved closer to the lid member than the liquid processing position. Thereby, for example, the inner wall surface area facing the periphery of the substrate at the liquid processing position is located at a position lower than the substrate holding and rotating means. Therefore, it is possible to prevent the processing liquid removed from the inner wall surface of the hermetic chamber (the processing liquid adhered during the liquid processing) from adhering to the substrate holding and rotating means when the inner chamber wall surface is cleaned. Thereby, since the contamination of the substrate holding and rotating means can be suppressed, the contamination of the substrate held by the substrate holding and rotating means can be suppressed.
請求項3に記載のように、前記蓋部材に向けて洗浄液を吐出するための洗浄液吐出手段(34)をさらに含むものであってもよい。
この場合、請求項4に記載のように、前記蓋部材回転手段を制御して、前記蓋部材を所定の蓋洗浄回転速度で回転させるとともに、前記洗浄液吐出手段を制御して、前記洗浄液吐出手段から洗浄液を吐出させるチャンバ洗浄制御手段(131)をさらに含むものであってもよい。
According to a third aspect of the present invention, it may further include a cleaning liquid discharge means (34) for discharging a cleaning liquid toward the lid member.
In this case, as described in
基板の主面から飛散した処理液は蓋部材やチャンバ本体に付着する。この処理液が蓋部材の表面やチャンバ本体の内壁で乾燥して結晶化すると、基板汚染の原因となるおそれがある。この問題は、処理液が薬液の場合にとくに顕著になる。
この構成によれば、蓋部材を回転させながら、洗浄液吐出手段から蓋部材に向けて洗浄液を吐出することにより、蓋部材に付着している処理液を洗浄液で洗い流すことができる。また、蓋部材に供給された洗浄液は、蓋部材の回転による遠心力を受けて、蓋部材の周縁部に向けて移動し、チャンバ本体の内壁に供給される。そのため、チャンバ本体の内壁に付着した処理液を洗い流すことができる。これにより、密閉チャンバの内壁全域を洗浄することができる。蓋部材の回転状態でも、第1液体シール構造の働きにより、密閉チャンバ内の密閉状態を保つことができる。これにより、狭小な内部空間を区画する密閉チャンバの内壁を清浄に保つことができるので、その内部空間内における基板処理を良好に行える。
The processing liquid scattered from the main surface of the substrate adheres to the lid member and the chamber body. If this treatment liquid dries and crystallizes on the surface of the lid member or the inner wall of the chamber body, it may cause substrate contamination. This problem is particularly noticeable when the treatment liquid is a chemical liquid.
According to this configuration, the processing liquid adhering to the lid member can be washed away with the cleaning liquid by discharging the cleaning liquid from the cleaning liquid discharging means toward the lid member while rotating the lid member. In addition, the cleaning liquid supplied to the lid member receives a centrifugal force generated by the rotation of the lid member, moves toward the peripheral edge of the lid member, and is supplied to the inner wall of the chamber body. Therefore, the processing liquid adhering to the inner wall of the chamber body can be washed away. Thereby, the entire inner wall of the sealed chamber can be cleaned. Even in the rotating state of the lid member, the sealed state in the sealed chamber can be maintained by the action of the first liquid seal structure. Thus, the inner wall of the sealed chamber that partitions the narrow internal space can be kept clean, so that the substrate processing in the internal space can be satisfactorily performed.
請求項5記載の発明は、前記基板保持回転手段は、前記密閉チャンバ外に露出する露出部分(40,45)を有しており、前記基板保持回転手段および前記密閉チャンバを、相対的に移動させる第2移動手段(100)と、前記基板保持回転手段と前記チャンバ本体との間を液体でシールする第2液体シール構造(13)とをさらに含む、請求項1〜4のいずれか一項に記載の基板処理装置である。
Invention 請
この構成によれば、基板保持回転手段および密閉チャンバが相対的に移動される。第2液体シール構造は、基板保持回転手段および密閉チャンバの相対位置に関わらず、基板保持回転手段と密閉チャンバとの間を液体でシールする。したがって、基板保持回転手段および密閉チャンバがいずれの位置にあっても、密閉チャンバの内部空間を密閉状態に維持することができる。 According to this configuration, the substrate holding and rotating means and the sealed chamber are relatively moved. The second liquid seal structure seals between the substrate holding and rotating means and the sealed chamber with a liquid regardless of the relative positions of the substrate holding and rotating means and the sealed chamber. Therefore, the inner space of the sealed chamber can be maintained in a sealed state regardless of the position of the substrate holding rotation means and the sealed chamber.
請求項6記載の発明は、前記第1液体シール構造は、前記チャンバ本体に前記開口の全周に渡って形成され、シール用液体を溜めることができるシール溝(104)を有し、前記蓋部材は、前記シール溝に入り込んで前記シール用液体に浸漬されるシール環(101)を有しており、前記シール溝に前記シール用液体を供給する液体供給手段をさらに含み、前記基板処理装置の起動状態において、前記シール溝に、前記液体供給手段からの前記シール用液体が常時供給される、請求項1〜5のいずれか一項に記載の基板処理装置である。 According to a sixth aspect of the present invention, the first liquid seal structure has a seal groove (104) formed in the chamber body over the entire circumference of the opening, and can store a sealing liquid, and the lid The member has a seal ring (101) that enters the seal groove and is immersed in the seal liquid, and further includes a liquid supply means for supplying the seal liquid to the seal groove, and the substrate processing apparatus in the active state, the seal groove, the said sealing liquid from the liquid supply means is always supplied, a substrate processing apparatus according to any one of claims 1-5.
この構成によれば、チャンバ本体には、開口の全周に渡ってシール溝が形成されている。シール溝にシール用液体が溜められた状態で、蓋部材のシール環がシール溝に入り込んで純水に浸漬される。これにより、シール環とシール溝との間がシール用液体によってシールされる。この第1液体シール構造によるシールは、蓋部材の回転状態においても維持される。 According to this configuration, the seal groove is formed in the chamber body over the entire circumference of the opening. With the sealing liquid stored in the seal groove, the seal ring of the lid member enters the seal groove and is immersed in pure water. Thereby, the space between the seal ring and the seal groove is sealed with the sealing liquid. The seal by the first liquid seal structure is maintained even when the lid member is rotated.
そして、シール用液体がシール溝に常時供給されているので、シール用液体が液切れするおそれがない。これにより、蓋部材とチャンバ本体との間のシールを長期間に渡って維持することができる。また、シール溝内のシール用液体を常時置換することができるから、シール溝内のシール用液体中に汚染が蓄積されることを抑制できる。
請求項7に記載のように、前記密閉チャンバ内に、不活性ガスを供給する不活性ガス供給手段(29,30)をさらに含むものであってもよい。
Since the sealing liquid is constantly supplied to the sealing groove, there is no possibility that the sealing liquid will run out. Thereby, the seal | sticker between a cover member and a chamber main body can be maintained over a long period of time. Further, since the sealing liquid in the seal groove can be always replaced, it is possible to suppress the accumulation of contamination in the sealing liquid in the seal groove.
According to a seventh aspect of the present invention, the sealed chamber may further include inert gas supply means (29, 30) for supplying an inert gas.
前記の課題を解決するため、請求項8記載の発明は、開口(5)を有するチャンバ本体(6)、前記チャンバ本体に対して回転可能に設けられて前記開口を閉塞する蓋部材(7)、および前記蓋部材と前記チャンバ本体との間を液体でシールする第1液体シール構造(8)を有し、内部空間が外部から密閉された密閉チャンバ(2)を準備する工程と、前記密閉チャンバの内部空間に基板(W)を配置し、この内部空間で基板を回転させる基板回転工程と、前記基板回転工程と並行して、前記チャンバの内部空間において、基板に処理液を供給する処理液供給工程と、基板と前記蓋部材とを、前記処理液供給工程時よりも基板が前記蓋部材に接近する乾燥位置に配置する乾燥位置配置工程と、前記乾燥位置において、前記蓋部材および基板をそれぞれ所定の乾燥回転速度で回転させる乾燥工程とを含む、基板処理方法である。
In order to solve the above-mentioned problem, the invention according to
この発明の方法によれば、請求項1に関連して説明した作用効果と同様の作用効果を奏する。
請求項9記載の発明は、基板と前記蓋部材とを、前記処理液供給工程時よりも基板が前記蓋部材に接近し、かつ前記乾燥位置よりも基板が前記蓋部材から離反する蓋洗浄位置に配置する蓋洗浄位置配置工程と、その蓋洗浄位置において、前記蓋部材を所定の蓋洗浄回転速度で回転させるとともに、洗浄液吐出手段から前記蓋部材に向けて洗浄液を吐出させる蓋部材洗浄工程とをさらに含む、請求項8記載の基板処理方法である。
According to the method of this invention, there exists an effect similar to the effect demonstrated in relation to
The invention according to
この発明の方法によれば、請求項2に関連して説明した作用効果および請求項4に関連して説明した作用効果と同様の作用効果を奏する。
According to the method of this invention, there exists an effect similar to the effect demonstrated in relation to
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、基板処理装置1の構成を示す図解的な断面図である。図2は、基板処理装置1の構成を説明するための図解的な平面図である。図2には、基板処理装置1のうち、処理液ノズル(処理液供給手段)4およびノズルアーム15に関連する構成を主として記載しており、これらに直接関連のない構成は適宜省略している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view showing the configuration of the
この基板処理装置1は、基板の一例としての円形の半導体ウエハW(以下、単に「ウエハW」という。)におけるデバイス形成領域側の表面(主面)に対して、薬液の一例としての希ふっ酸による洗浄処理(たとえば、ポリマー残渣除去処理)を施すための枚葉型の装置である。
基板処理装置1は、ウエハWを処理するための処理モジュールM1を有している。処理モジュールM1は、密閉チャンバ2と、密閉チャンバ2の内部空間内で1枚のウエハWを水平に保持するとともに、その中心を通る鉛直軸線まわりにウエハWを回転させるスピンチャック(基板保持回転手段)3と、密閉チャンバ2の内部空間内で、スピンチャック3に保持されたウエハWの表面に処理液(薬液または不活性ガス溶存水)を供給するための処理液ノズル4とを備えている。この処理モジュールM1では、密閉チャンバ2の内部空間には、スピンチャック3全体ではなく、その一部(スピンベース43や挟持部材44など)のみが収容されており、また、処理液ノズル4を支持するノズルアーム15を駆動するための直線駆動機構36が、密閉チャンバ2外に配置されている。そのため、密閉チャンバ2の内部空間を効果的に減少しており、当該内部空間はウエハWに対して洗浄処理を施すための最小限の広さにされている。
The
The
密閉チャンバ2は、上部開口(開口)5および下部開口200を有する略円筒状のチャンバ本体6と、上部開口5を開閉するための蓋部材7とを備えている(図2では、密閉チャンバ2から蓋部材7を除いた状態を示している)。蓋部材7は、チャンバ本体6に対して回転可能に設けられている。密閉チャンバ2は、チャンバ本体6と蓋部材7との間をシールする第1液体シール構造8をさらに備えている。この第1液体シール構造8は、チャンバ本体6の上端部と蓋部材7の周縁部との間をシール用液体(純水)でシールし、密閉チャンバ2の内部空間を、密閉チャンバ2外の雰囲気から遮断している。チャンバ本体6の下部開口200は、スピンチャック3により閉塞されている。
The sealed
チャンバ本体6は、密閉チャンバ2の内部空間を区画する隔壁9を有している。隔壁9は、スピンチャック3によるウエハWの回転軸線C(以下、単に「回転軸線C」という)に対して略回転対称な形状を有している。隔壁9は回転軸線Cを中心とする略円筒状の円筒部10と、円筒部10の上端から中心側斜め上方(回転軸線Cに近づく方向)に延びる傾斜部11と、円筒部10の下端部に連結された平面視環状の底部12とを備えている。円筒部10における上端部分を除く部分は、下方に向かうに従って厚肉に形成されている。底部12とスピンチャック3(のカバー部材45)との間は、第2液体シール構造13によってシールされている。傾斜部11には、その内外面を貫通する通過孔14が形成されている。この通過孔14はノズルアーム15(後述する)が挿通するものであり、基準線L1(後述する)上に設けられている。
The
傾斜部11の内面は、回転軸線Cを中心とする円錐状の第1円錐面17を有している。円筒部10の内面は、回転軸線Cを中心とする円筒面18と、回転軸線Cを中心とする円錐状の廃液案内面19とを有している。ウエハWへの薬液処理時またはリンス処理時には、回転状態にあるウエハWの周縁から飛散される処理液(薬液またはリンス液)は、主として円筒面18および廃液案内面19に受け止められる。そして、円筒面18に受け止められて廃液案内面19に流下した処理液、および廃液案内面19に受け止められた処理液が、廃液案内面19から排気液溝20(後述する)に案内される(導かれる)。
The inner surface of the
蓋部材7は、ウエハWよりもやや大径の略円板状をなしている。前述の第1液体シール構造8は、蓋部材7の外周部とチャンバ本体6の隔壁9の上端部との間をシールしている。蓋部材7において周縁部を除く部分が、円形をなす平板部21を形成している。平板部21の下面は、スピンチャック3に保持されたウエハWの表面と対向する水平平坦面からなる基板対向面23を形成している。
The lid member 7 has a substantially disk shape that is slightly larger in diameter than the wafer W. The first
蓋部材7の上面には、回転軸線Cと共通の軸線に沿う上回転軸24が固定されている。この上回転軸24は中空に形成されていて、その内部には、ウエハW表面にリンス液としての炭酸水を供給するための処理液上ノズル25が挿通されている。処理液上ノズル25は、スピンチャック3に保持されたウエハW表面の回転中心に向けて処理液を吐出するための処理液上吐出口26を有している。処理液上ノズル25には、炭酸水バルブ27を介して炭酸水が供給されるようになっている。また、上回転軸24の内壁と処理液上ノズル25の外壁との間は、ウエハWの中心部に向けて不活性ガスとしての窒素ガスを供給するための不活性ガス流通路(不活性ガス供給手段)28を形成している。不活性ガス流通路28は、基板対向面23に開口する不活性ガス吐出口(不活性ガス供給手段)29を有している。この不活性ガス流通路28には、不活性ガスバルブ(不活性ガス供給手段)30を介して窒素ガスが供給されるようになっている。
On the upper surface of the lid member 7, an
上回転軸24は、略水平に延びて設けられた蓋アーム31の先端部から垂下した状態で、その先端部に回転可能に取り付けられている。すなわち、蓋部材7は、蓋アーム31により保持されている。上回転軸24には、蓋部材7をスピンチャック3によるウエハWの回転に略同期させて回転させるための蓋部材回転機構(蓋部材回転手段)32が結合されている。
The upper
蓋アーム31には、蓋アーム31を昇降させるための蓋部材昇降機構33が結合されている。この蓋部材昇降機構33により、蓋部材7を、チャンバ本体6の上部開口5を閉塞する閉位置(図1に示す位置)と、この閉位置から上方に離間し、チャンバ本体6の上部開口5を開放する開位置(図12Aに示す位置)との間で昇降させることができる。蓋部材7は、閉位置にあるときおよび開位置にあるときの双方で、蓋アーム31により保持されている。
A lid
チャンバ本体6の隔壁9の内面(より具体的には、第1円錐面17と円筒面18との間の境界部分)には、密閉チャンバ2内を洗浄するための洗浄液ノズル(洗浄液吐出手段)34が設けられている。洗浄液ノズル34は、たとえば、連続流の状態で洗浄液を吐出するストレートノズルであり、チャンバ本体6の隔壁9の内面に、その吐出口を斜め上方に向けて取り付けられている。洗浄液ノズル34の吐出口から吐出された洗浄液は、蓋部材7の下面の中央部と周縁部との中間位置に向けて吐出される。洗浄液ノズル34には、洗浄液バルブ35を介して、洗浄液供給源(図示せず)からの洗浄液(たとえば純水)が供給されるようになっている。
On the inner surface of the
処理液ノズル4は、スピンチャック3の上方で延びるノズルアーム15の先端部に取り付けられている。ノズルアーム15は、水平方向に直線状に延びた棒状をなし、密閉チャンバ2の内外に跨って延びている。ノズルアーム15は、回転軸線C上を通る直線状の基準線L1に沿っており(図2参照)、その断面形状が矩形形状である(図5および図6参照)。ノズルアーム15は、密閉チャンバ2外に配設された直線駆動機構36によって基準線L1に沿う方向に移動可能に支持されている。
The
ノズルアーム15は、チャンバ本体6の隔壁9に形成された通過孔14を挿通している。この通過孔14は基準線L1上に位置している。基準線L1に沿って延びるノズルアーム15がその基準線L1に沿って移動するので、隔壁9における基準線L1上は、ノズルアーム15が常に通過する位置である。その位置に通過孔14が設けられているので、通過孔14の大きさを最小限のサイズに留めることができる。ノズルアーム15とチャンバ本体6の隔壁9との間は、第3シール構造37によってシールされている。
The
処理液ノズル4には、処理液供給管38が接続されている。処理液供給管38には、後述する配管内調合ユニット51(図8参照)から処理液としての薬液およびリンス液が選択的に供給されるようになっている。処理液供給管38に処理液(薬液またはリンス液)が供給されることにより、処理液ノズル4から処理液を吐出させることができる。
図2に示すように、直線駆動機構36は、ノズル駆動モータ139と、ノズル駆動モータ139の出力軸140と回転自在なプーリ141との間に架け渡されたタイミングベルト142と、タイミングベルト142の途中部に結合された連結部材143と、連結部材143の移動を規制して、その連結部材143を基準線L1に沿う方向にのみに移動させるリニアガイド144とを備えている。連結部材143は、ノズルアーム15の基端部に連結されて、このノズルアーム15を支持している。ノズル駆動モータ139が回転駆動すると、タイミングベルト142が回転し、このタイミングベルト142に結合された連結部材143が基準線L1に沿って移動する。これにより、ノズル駆動モータ139の回転駆動力をノズルアーム15に入力することができ、ノズルアーム15を基準線L1に沿って移動させることができる。
A processing
As shown in FIG. 2, the
このノズルアーム15の移動により、処理液ノズル4を、スピンチャック3に保持されたウエハWの側方の退避位置(図1に示す状態。図2では実線で図示)と、スピンチャック3に保持されたウエハWの表面上(図2に二点鎖線で図示)との間を移動させることができ、ウエハWの表面上で、処理液ノズル4からの処理液の吐出位置を移動させることができる。このように、直線駆動機構36が密閉チャンバ2外に配置されるので、密閉チャンバ2の小型化を図ることができる。
By this movement of the
再び図1のみを参照して、スピンチャック3について説明する。スピンチャック3は、水平に延びるベース(露出部分)40と、ベース40上に固定されたスピンモータ41と、このスピンモータ41の回転駆動力が入力される鉛直方向に延びる回転軸42と、回転軸42の上端に水平に取り付けられた円盤状のスピンベース(基板保持回転手段)43と、このスピンベース43上に配置された複数個の挟持部材(基板保持回転手段)44と、スピンモータ41の側方を包囲するカバー部材(露出部分)45とを備えている。スピンベース43は、たとえば、ウエハWよりも直径がやや大きな円盤状の部材である。カバー部材45の下端は、ベース40の外周に固定されている。カバー部材45とベース40とは密着しており、これらカバー部材45とベース40とによって構成されるケーシング内に、密閉チャンバ2外の雰囲気が流入しないようになっている。カバー部材45の上端はスピンベース43の近傍にまで及んでいる。カバー部材45の上端部には、鍔状部材46が取り付けられている。
The
具体的には、鍔状部材46は、カバー部材45から径方向外方へ略水平に張り出す水平部47と、水平部47の径方向途中部から鉛直下方に垂れ下がる内壁部48と、水平部47の外周縁から鉛直下方に垂れ下がる外壁部49と一体的に備えている。内壁部48および外壁部49は、それぞれ、回転軸線Cを中心とする円筒状に形成されている。内壁部48の下端と外壁部49の下端とは略同じ高さに設定されている。
Specifically, the bowl-shaped
複数個の挟持部材44は、スピンベース43の上面周縁部においてウエハWの外周形状に対応する円周上で適当な間隔を空けて配置されている。複数個の挟持部材44は、互いに協働して1枚のウエハWを水平な姿勢で挟持(保持)することができる。複数個の挟持部材44によってウエハWが保持された状態で、スピンモータ41の回転駆動力が回転軸42に入力されることにより、保持されたウエハWがその中心を通る鉛直な回転軸線まわりに回転される。
The plurality of clamping
この実施形態では、スピンチャック3はチャンバ本体6の下部開口200を閉塞している。スピンベース43および挟持部材44が密閉チャンバ2内に収容されており、カバー部材45のほとんど全ての部分とベース40とが密閉チャンバ2外に露出している。そして、鍔状部材46の内壁部48が、チャンバ本体6とスピンチャック3との間をシールする第2液体シール構造13の一部を構成している。
In this embodiment, the
なお、スピンチャック3としては、挟持式のものに限らず、たとえば、ウエハWの裏面を真空吸着することにより、ウエハWを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、その保持したウエハWを回転させることができる真空吸着式のもの(バキュームチャック)が採用されてもよい。
また、この実施形態では、スピンチャック3は昇降可能な構成とされている。基板処理装置1は、スピンチャック3を、処理位置(液処理位置。図1に示す位置)とスピンドライ位置(乾燥位置。図12Eに示す位置)とチャンバ洗浄位置(図12Fに示す位置)との間で昇降させるチャック昇降機構(第1移動手段、第2移動手段)100を備えている。このチャック昇降機構100は、たとえばボールねじ機構やモータなどによって構成されており、たとえばスピンチャック3のベース40に結合されている。処理位置は、スピンチャック3に保持されたウエハWに対して薬液処理またはリンス処理を施すための位置である。スピンドライ位置は、処理位置から上方に離反し、当該ウエハWに対して乾燥処理を施すための位置であり、また、搬送ロボット(図示せず)との間でウエハWを受け渡すための位置である。チャンバ洗浄位置は、密閉チャンバ2の内壁(すなわち、蓋部材7の基板対向面23およびチャンバ本体6の隔壁9の内面)を洗浄するための位置である。
Note that the
In this embodiment, the
この実施形態では、第1液体シール構造8、第2液体シール構造13および第3シール構造37によって、密閉チャンバ2の内部空間と密閉チャンバ2外の空間とが確実に遮断されている。したがって、密閉チャンバ2外の雰囲気の密閉チャンバ2内への進入や、密閉チャンバ2内の雰囲気の密閉チャンバ2外への漏洩を防止することができる。
図3は、第1液体シール構造8およびその周辺の構成を説明するための図解的な断面図である。図1および図3を参照して、第1液体シール構造8およびその周辺の構成について説明する。
In this embodiment, the first
FIG. 3 is a schematic cross-sectional view for explaining the configuration of the first
蓋部材7の周縁部には、蓋部材7の周縁から鉛直下方に垂れ下がる円筒状のシール環101と、シール環101よりも径方向内方で下方に突出する平面視円環状の突条102とが備えられている。突条102の断面形状は三角形状であり、突条102の下面103は、回転軸線Cから離れるに従って低くなる円錐状をなしている。
チャンバ本体6の隔壁9の上端部、すなわち傾斜部11の上端部には、シール用液体としての純水を溜めることができる第1シール溝104が全周に渡って形成されている。第1シール溝104は回転軸線C(図1参照)を中心とする平面視円環状に形成されている。具体的には、傾斜部11の上端部には、平面視円環状の平坦面からなる上端面105と、上端面105の内周縁から鉛直上方に立ち上がる円筒状の内壁部106と、上端面105の外周縁から鉛直上方に立ち上がる円筒状の外壁部107とが一体的に備えられている。この上端面105、内壁部106の外面および外壁部107の内面は、断面略U字状をなしており、上端面105、内壁部106の外面および外壁部107の内面によって第1シール溝104が形成されている。第1シール溝104上にシール環101が位置している。シール環101と第1シール溝104とによって、第1液体シール構造8が構成されている。第1液体シール構造8にはシール用液体としての純水が溜められている。
A cylindrical seal ring 101 that hangs vertically downward from the periphery of the lid member 7, and an
At the upper end of the
蓋部材7が閉位置にある状態では、シール環101の下端部は、第1シール溝104の底部との間に微小な隙間を保って第1シール溝104に収容される。第1シール溝104には純水(シール用液体)が溜められているので、蓋部材7が閉位置にある状態では、シール環101は第1シール溝104に入り込んで、純水に浸漬される。そのため、シール環101と第1シール溝104との間が純水によってシールされている。
In a state where the lid member 7 is in the closed position, the lower end portion of the seal ring 101 is accommodated in the
蓋部材7の側方には、純水を吐出するためのシール用液体供給ノズル108が、その吐出口を第1シール溝104に向けて配置されている。シール用液体ノズル108からの純水の吐出は、基板処理装置1の起動状態において常時行われている。そのため、第1シール溝104には常時純水が溜められている。
内壁部106の上端面は、外壁部107の上端面よりも高い位置に設定されている。そのため、第1シール溝104から溢れた純水は、外壁部107の上端面上を通ってチャンバ本体6外に流れ、チャンバ本体6の外周を伝って流下する。そのため、第1シール溝104に溜められた後の純水が、チャンバ本体6内、すなわち密閉チャンバ2内に流入することはない。チャンバ本体6の外周を伝って流下する純水は、密閉チャンバ2外に設けられた廃液路(図示せず)を通して廃液される。
On the side of the lid member 7, a sealing
The upper end surface of the
そして、蓋部材7が閉位置にある状態で蓋部材回転機構32が駆動されると、蓋部材7が、回転軸線Cまわりに回転する。第1シール溝104と、回転状態にあるシール環101との間が純水によってシールされているので、蓋部材7の回転中においても、密閉チャンバ2の内部空間を、密閉チャンバ2外の雰囲気から遮断することができる。
蓋部材7が比較的大径(この実施形態ではウエハWよりも大径)であり、そのため、シール環101および第1シール溝104の半径も比較的大径である。したがって、蓋部材7の高速回転時(たとえば乾燥処理時)にはシール環101の周速が大きくなり、第1シール溝104から多量の純水が飛散するおそれがある。しかしながら、第1シール溝104には純水が常時供給されているので、シール環101が純水に常に浸漬されている。これにより、蓋部材7とチャンバ本体6との間を長期に渡ってシールすることができる。
When the lid
The lid member 7 has a relatively large diameter (in this embodiment, a diameter larger than that of the wafer W). Therefore, the radii of the seal ring 101 and the
また、蓋部材7が閉位置(図1および図3に示す状態)にあるときは、突条102の下面103が傾斜部11の第1円錐面17と略同一平面状にある。後述するように、チャンバ洗浄時においては、蓋部材7の基板対向面23に洗浄液としての純水が供給される。基板対向面23に供給された純水は、蓋部材7の回転による遠心力を受けて、基板対向面23を伝って蓋部材7の周縁部へと移動し、突条102の下面103へと達する。下面103と第1円錐面17とが略同一平面状をなしているので、下面103に達した純水が第1円錐面17へとスムーズに移動する。したがって、蓋部材7の基板対向面23に供給された処理液を、チャンバ本体6の隔壁9の内面にスムーズに案内することができる。
When the lid member 7 is in the closed position (the state shown in FIGS. 1 and 3), the
図4は、図1に示す第2液体シール構造13およびその周辺の構成を説明するための図解的な断面図である。図1および図4を参照して、第2液体シール構造13およびその周辺の構成について説明する。
チャンバ本体6の底部12には、その底部12の底壁の内周縁から鉛直上方に立ち上がる内壁部146と、底部12の底壁における径方向途中部から鉛直上方に立ち上がる外壁部147とが形成されている。内壁部146の外面と外壁部147の内面および底部12の底面によって、シール用液体としての純水を溜めるための第2シール溝148が形成されている。第2シール溝148は回転軸線Cを中心とする円環状に形成されている。第2シール溝148は断面U字状をなしており、その上方には鍔状部材46の内壁部48が位置している。第2シール溝148には、シール用液体としての純水が溜められている。
FIG. 4 is a schematic cross-sectional view for explaining the configuration of the second
The
また、外壁部147の外面、ならびに底部12の外周面および底面によって排気液溝20が形成されている。排気液溝20は、ウエハWの処理に用いられた処理液(薬液や不活性ガス溶存水)や洗浄液を廃液し、また、密閉チャンバ2の内部空間の雰囲気を排気するためのシール用液体としての純水を溜めるためのものである。排気液溝20は、第2シール溝148を取り囲むように回転軸線C(図示せず)を中心とする円環状に形成されている。排気液溝20は断面U字状をなしており、その底部には、排気液路110(図4では不図示。図1参照)の一端が接続されている。排気液路110の他端は、気液分離器(図示せず)を介して、廃液処理設備(図示せず)や排気処理設備(図示せず)へと接続されている。排気液溝20の上方には、鍔状部材46の外壁部49が位置している。
Further, an
スピンチャック3が処理位置(図1に示す位置)にある状態では、内壁部48の下端部は、第2シール溝148の底部との間に微小な隙間を保って第2シール溝148に収容される。
スピンチャック3がスピンドライ位置(図12Eに示す位置)に位置するときは、内壁部48の下端部は第2シール溝148の一部と左右方向に重なっている。すなわち、この状態においても、内壁部48の下端部が第2シール溝148に収容されている。
In a state where the
When the
第2シール溝148には、純水配管201を介して純水が供給されるようになっている。第2シール溝148への純水の供給は、基板処理装置1の起動状態において常時行われている。そのため、第2シール溝148には常時、純水が満杯に溜められている。第2シール溝148から溢れた純水は、排気液溝20に流入し、排気液溝20から排気液路110を通って機外の廃液設備へと案内される。
Pure water is supplied to the
図5は、図1に示す第3シール構造37の構成を説明するための図解的な断面図である。図6は、図5の切断面線VI−VIから見た断面図である。図7は、図5の切断面線VII−VIIから見た断面図である。
第3シール構造37は、通過孔14を覆うように隔壁9の外側側面に固定的に取り付けられた気体シール部111と、気体シール部111に当該気体シール部111に対して隔壁9と反対側に固定的に取り付けられる液体シール部121とを備えている。
FIG. 5 is an illustrative sectional view for explaining the configuration of the
The
液体シール部121は、厚肉の矩形板状をなす液体シール本体122を有している。液体シール本体122の中央部には、ノズルアーム15が挿通するための第1挿通孔123(図5参照)が形成されている。第1挿通孔123は液体シール本体122をその厚み方向に貫通している。第1挿通孔123の断面形状は、ノズルアーム15の断面形状と整合する矩形形状をなしている。
The
気体シール部111は、厚肉の矩形板状をなす気体シール本体112を有している。気体シール本体112の中央部には、ノズルアーム15が挿通するための第2挿通孔113(図5参照)が形成されている。第2挿通孔113は気体シール本体112をその厚み方向に貫通している。第2挿通孔113の断面形状は、ノズルアーム15の断面形状と整合する矩形形状をなしている。
The
気体シール部111の第2挿通孔113および液体シール部121の第1挿通孔123は隔壁9の通過孔14に連通している。気体シール本体112の一方面(図5における右面)は、チャンバ本体6の隔壁9の外面に密着状態で接合されている。液体シール本体122の一方面(図5における右面)は、気体シール本体112の他方面(図5における左面)に密着状態で接合されている。したがって、通過孔14、第2挿通孔113および第1挿通孔123を連通する空間内の雰囲気が、隔壁9と気体シール部111との間、または気体シール部111と液体シール部121との間から漏出することはない。
The
ノズルアーム15は、第1挿通孔123の内周面および第2挿通孔113の内周面に摺動可能に挿通されている。液体シール部121と、第1挿通孔123を挿通するノズルアーム15の外表面との間には、後述するように、ノズルアーム15の外表面上をその全周に渡って取り囲む四角環状の第1流通路130が形成されている。その第1流通路130が、シール用液体としての純水で液密にされている。また、気体シール部111と、第2挿通孔113を挿通するノズルアーム15の外表面との間には、後述するように、ノズルアーム15の外表面上をその全周に渡って取り囲む四角環状の第2流通路120が形成されている。
The
薬液処理中およびリンス処理中にウエハWから飛散した処理液(薬液、または薬液を含むリンス液)がノズルアーム15の外表面に付着するおそれがある。薬液がノズルアーム15の外表面で乾燥して結晶化すると、その薬液の乾燥物がパーティクルとなって、スピンチャック3上で回転しているウエハWを汚染するおそれもある。
しかしながら、四角環状の第1流通路130内が純水で液密にされているので、ノズルアーム15の外表面に純水が接液し、この純水によって、ノズルアーム15の外表面に付着した処理液(薬液またはリンス液)が洗い流される。すなわち、ノズルアーム15の外表面を純水によって洗浄することができる。
There is a possibility that the processing liquid (chemical liquid or rinsing liquid containing chemical liquid) scattered from the wafer W during the chemical liquid processing and the rinsing processing may adhere to the outer surface of the
However, since the inside of the square annular
また、四角環状の第2流通路120内を窒素ガスが流通するので、ノズルアーム15の外表面に付着した純水(液体シール部121によって付着した純水)などが除去され、ノズルアーム15の外表面が乾燥される。
さらに、気体シール部111が、液体シール部121よりも密閉チャンバ2の内部空間側に配置されている。したがって、密閉チャンバ2内に進出されるとき、ノズルアーム15の外表面の各位置は、窒素ガスを供給された後に密閉チャンバ2に進入される。液体シール部121によってノズルアーム15の外表面に付着した純水は、気体シール部111の窒素ガスによって除去される。これにより、純水の密閉チャンバ2の内部空間への引込みを確実に防止することができる。
Further, since nitrogen gas flows through the square annular
Further, the
次に、図5および図6を参照して液体シール部121について詳しく説明する。
第1挿通孔123(図5参照)の内周面には、厚み方向の中央位置に、その周方向全域に渡って四角環状の第1環状溝124が形成されている。第1環状溝124におけるノズルアーム15の上面と対向する部分には、厚み方向および鉛直方向の双方に直交する方向(図5における紙面直交方向。図6および図7における左右方向。以下、単に「左右方向」という)の中央部と液体シール本体122の上端面とを接続する液体導入接続路125が開口している。液体導入接続路125は鉛直方向に沿って延びて液体シール本体122の上端面に開口し、その開口部分が、シール用液体としての純水を導入するための液体導入口126を形成している。液体導入口126には、純水供給源(図示せず)からの純水が供給されるようになっている。
Next, the
A square annular first
第1環状溝124におけるノズルアーム15の下面と対向する部分には、左右方向の中央部と液体シール本体122の下端面とを接続する液体導出接続路127が開口している。液体導出接続路127は鉛直方向に沿って延びて液体シール本体122の下端面に開口し、その開口部分が、純水を導出するための液体導出口128を形成している。液体導出口128には、当該液体導出口128に導出された純水を廃液設備へと案内する廃液路129(図5参照)が接続されている。
In the first
ノズルアーム15が第1環状溝124を挿通した状態では、第1環状溝124とノズルアーム15の外表面(上面、下面および両側面)との間に四角環状の第1流通路130が形成される。この第1流通路130は、液体導入口126および液体導出口128とそれぞれ連通している。
液体導入口126に供給されて、液体導入接続路125を流通する純水は、第1流通路130を、ノズルアーム15の上面における左右方向の一方側部分(図6に示す上面の右側部分)、ノズルアーム15の一方側側面(右側側面)およびノズルアーム15の下面における左右方向の一方側部分(図6に示す下面の右側部分)に沿って移動しつつ液体導出接続路127を通って液体導出口128から排出される。
In a state where the
Pure water supplied to the
また、液体導入口126に供給された純水は、第1流通路130を、ノズルアーム15の上面における左右方向の他方側部分(図6に示す上面の左側部分)、ノズルアーム15の他方側側面(左側側面)およびノズルアーム15の下面における左右方向の他方側部分(図6に示す下面の左側部分)に沿って移動しつつ液体導出接続路127を通って液体導出口128から排出される。これにより、液体シール本体122の内周面とノズルアーム15の外表面との間が純水によってシールされる。
The pure water supplied to the
次に、図5および図7を参照して気体シール部111について詳しく説明する。
気体シール部111(図5参照)は、厚肉の矩形板状をなす気体シール本体112を有している。気体シール本体112の中央部には、ノズルアーム15が挿通するための第2挿通孔113が形成されている。第2挿通孔113は気体シール本体112をその厚み方向に貫通している。第2挿通孔113の断面形状は、ノズルアーム15の断面形状と整合する矩形形状をなしている。
Next, the
The gas seal part 111 (refer FIG. 5) has the gas seal
第2挿通孔113の内周面には、厚み方向の中央位置に、その周方向全域に渡って四角環状の第2環状溝114が形成されている。第2環状溝114におけるノズルアーム15の上面と対向する部分には、左右方向の中央部と気体シール本体112の上端面とを接続する気体導入接続路115が開口している。気体導入接続路115は鉛直方向に沿って延びて気体シール本体112の上端面に開口し、その開口部分が、シール用液体としての窒素ガスを導入するための気体導入口116を形成している。気体導入口116には、窒素ガス供給源(図示せず)からの窒素ガスが供給されるようになっている。
On the inner peripheral surface of the
第2環状溝114におけるノズルアーム15の下面と対向する部分には、左右方向の中央部と気体シール本体112の下端面とを接続する気体導出接続路117が開口している。気体導出接続路117は鉛直方向に沿って延びて気体シール本体112の下端面に開口し、その開口部分が、窒素ガスを導出するための気体導出口118を形成している。気体導出口118には、当該気体導出口118に導出された窒素ガスを排気処理設備へと案内する排気路119(図5参照)が接続されている。
A gas
ノズルアーム15が第2環状溝114を挿通した状態では、第2環状溝114とノズルアーム15の外表面(上面、下面および両側面)との間に四角環状の第2流通路120が形成される。この第2流通路120は、気体導入口116および気体導出口118とそれぞれ連通している。
気体導入口116に供給されて、気体導入接続路115を流通する窒素ガスは、第2流通路120を、ノズルアーム15の上面における左右方向の一方側部分(図7に示す上面の右側部分)、ノズルアーム15の一方側側面(右側側面)およびノズルアーム15の下面における左右方向の一方側部分(図7に示す下面の右側部分)に沿って移動しつつ気体導出接続路117を通って気体導出口118から排出される。
In a state where the
Nitrogen gas supplied to the
また、気体導入口116に供給された窒素ガスは、第2流通路120を、ノズルアーム15の上面における左右方向の他方側部分(図7に示す上面の左側部分)、ノズルアーム15の他方側側面(左側側面)およびノズルアーム15の下面における左右方向の他方側部分(図7に示す下面の左側部分)に沿って移動しつつ気体導出接続路117を通って気体導出口118から排出される。これにより、気体シール本体112の内周面とノズルアーム15の外表面との間が窒素ガスによってシールされる。
Further, the nitrogen gas supplied to the
図8は、処理モジュールM1(図1参照)に対して処理液を供給するための構成の模式図である。基板処理装置1は、純水中の酸素を脱気し、当該純水中に不活性ガスを添加して不活性ガス溶存水を生成する不活性ガス溶存水生成ユニット50と、処理モジュールM1に対して処理液を供給するための処理液供給モジュールM2とをさらに備えている。
不活性ガス溶存水生成ユニット50は、純水供給源(図示せず)から供給された純水から不活性ガス溶存水を生成することができる。不活性ガス溶存水生成ユニット50によって生成された不活性ガス溶存水は、処理液供給モジュールM2に供給される。不活性ガス溶存水生成ユニット50は、たとえば、気体透過性および液体不透過性を有する中空糸分離膜を介して、純水からの酸素の脱気および純水への不活性ガスの添加を行うものである。このような構成の不活性ガス溶存水生成ユニット50としては、たとえば、メンブラーナ社製の商品名「リキセル(商標)分離膜コンタクター」を用いることができる。不活性ガス溶存水生成ユニット50の具体的な構成は、たとえば特開2004−22572号公報に示されている。
FIG. 8 is a schematic diagram of a configuration for supplying the processing liquid to the processing module M1 (see FIG. 1). The
The inert gas dissolved water production |
不活性ガス溶存水生成ユニット50は、供給された純水中の酸素濃度が、たとえば20ppb以下になるまで酸素を脱気する。また、不活性ガス溶存水生成ユニット50は、純度の高い窒素ガス(窒素ガスの濃度が、たとえば99.999%〜99.999999999%のもの)を純水中に添加して、窒素濃度が、たとえば7ppm〜24ppmの不活性ガス溶存水を生成する。不活性ガス溶存水中の窒素濃度をこの範囲内の値にすることにより、不活性ガス溶存水中の酸素濃度が時間の経過とともに上昇することを抑制または防止することができる。
The inert gas dissolved
処理液供給モジュールM2は、この図8では、処理液供給管38に処理液を供給するための構成のみを示しているが、処理液上ノズル25などの他のノズルに処理液を吐出するための構成に処理液を供給することができる。処理液供給モジュールM2は、薬液原液と不活性ガス溶存水とを混合して処理液としての薬液を調合する配管内調合ユニット51と、配管内調合ユニット51に薬液原液を供給する薬液供給ユニット53とを備えている。
The processing liquid supply module M2 shows only the configuration for supplying the processing liquid to the processing
「薬液原液」とは、不活性ガス溶存水との混合前の薬液を意味する。薬液原液の例としては、ふっ酸(HF)、塩酸(HCL)、ふっ酸とIPA(イソプロピルアルコール)の混合液、フッ化アンモニウム(NH4F)を例示できる。薬液原液としてふっ酸を用いた場合には、配管内調合ユニット51において、ふっ酸と不活性ガス溶存水とが所定の割合で混合(調合)され、希ふっ酸(DHF)が生成される。
The “chemical solution stock” means a chemical solution before mixing with the inert gas-dissolved water. Examples of the chemical stock solution include hydrofluoric acid (HF), hydrochloric acid (HCL), a mixed liquid of hydrofluoric acid and IPA (isopropyl alcohol), and ammonium fluoride (NH 4 F). When hydrofluoric acid is used as the chemical solution stock solution, the hydrofluoric acid and the inert gas-dissolved water are mixed (prepared) at a predetermined ratio in the in-
配管内調合ユニット51は、供給配管54を介して不活性ガス溶存水生成ユニット50に接続されている。配管内調合ユニット51には、供給配管54を介して不活性ガス溶存水生成ユニット50から不活性ガス溶存水が供給される。また、配管内調合ユニット51は、薬液供給配管55を介して薬液供給ユニット53に接続されている。配管内調合ユニット51には、薬液供給配管55を介して薬液供給ユニット53から薬液原液が供給される。配管内調合ユニット51は、薬液供給ユニット53から供給された薬液原液と、不活性ガス溶存水生成ユニット50から供給された不活性ガス溶存水とを混合して処理液としての薬液を調合することができる。
The in-
配管内調合ユニット51は、処理液供給管38に接続されており、この処理液供給管38を通して処理液ノズル4に処理液としての薬液を供給することができる。また、配管内調合ユニット51および不活性ガス溶存水生成ユニット50から供給された不活性ガス溶存水に薬液原液を混合させることなく、当該不活性ガス溶存水をリンス液としてそのまま処理液供給管38を通して処理液ノズル4に供給することができる。これにより、処理液ノズル4に薬液および不活性ガス溶存水を選択的に供給することができる。
The in-
配管内調合ユニット51は、薬液原液と不活性ガス溶存水とをその内部で混合することができる配管としての混合部59と、供給配管54に介装されたバルブ60および流量調整バルブ61と、薬液供給配管55に介装された薬液バルブ62および薬液流量調整バルブ63とを備えている。供給配管54および薬液供給配管55は、それぞれ混合部59に接続されている。
The in-
バルブ60が開かれることにより、流量調整バルブ61で調整された所定流量の不活性ガス溶存水を混合部59に供給することができ、薬液バルブ62を開くことにより、薬液流量調整バルブ63で調整された所定流量の薬液原液を混合部59に供給することができる。バルブ60を開いた状態で、薬液バルブ62が開かれることにより、混合部59内を流通している不活性ガス溶存水に薬液原液を注入(インジェクション)して、薬液原液と不活性ガス溶存水とを混合させることができる。したがって、混合部59に対する薬液原液の供給量と不活性ガス溶存水の供給量とを調整することにより、所定の割合に調合された薬液を生成することができる。また、薬液バルブ62を閉じた状態でバルブ60のみが開かれることにより、混合部59に対して不活性ガス溶存水のみを供給することができる。これにより、不活性ガス溶存水に薬液原液を混合させることなく、当該不活性ガス溶存水をリンス液としてそのまま処理液供給管38に供給することができる。
When the
薬液供給ユニット53は、薬液原液を貯留する薬液タンク71と、薬液タンク71から配管内調合ユニット51に薬液原液を導く薬液供給配管55とを備えている。薬液タンク71は、密閉容器からなるものであり、薬液タンク71の内部空間は、その外部空間から遮断されている。薬液供給配管55の一端は、薬液タンク71に接続されている。薬液供給配管55には、薬液タンク71側から順にポンプ72、フィルタ73、および脱気ユニット74が介装されている。脱気ユニット74は、不活性ガス溶存水生成ユニット50と同様の構成のものであり、不活性ガスの添加を行わないようになっている。
The chemical
また、薬液タンク71には、薬液供給管75が接続されている。薬液タンク71には、薬液供給管75を介して薬液原液供給源(図示せず)からの薬液原液が供給される。薬液供給管75には、薬液タンク71への薬液原液の供給および供給停止を切り換えるための薬液バルブ76が介装されている。薬液タンク71には、たとえば、薬液タンク71内の液量が所定量以下になった場合に未使用の薬液原液が供給されるようになっている。これにより、薬液タンク71に未使用の薬液原液を補充することができる。
Further, a chemical
また、薬液タンク71には、不活性ガス供給管77が接続されている。薬液タンク71には、不活性ガス供給管77を介して不活性ガス供給源(図示せず)からの不活性ガスが供給される。不活性ガス供給管77には、薬液タンク71への不活性ガスの供給および供給停止を切り換えるための不活性ガスバルブ78が介装されている。薬液タンク71には、たとえば常時、不活性ガスが供給されるようになっている。
An inert
薬液タンク71に不活性ガスを供給することにより、薬液タンク71内から空気を追い出すことができる。したがって、薬液タンク71内の空気に含まれる酸素が、薬液タンク71内に貯留された薬液原液に溶け込んで、当該薬液原液中の溶存酸素量が増加することを抑制または防止することができる。また、不活性ガスによって薬液タンク71内を加圧することにより、薬液タンク71内に貯留された薬液原液を薬液供給配管55に圧送することができる。
By supplying an inert gas to the
薬液タンク71内の薬液原液は、不活性ガスによる圧力やポンプ72による吸引力により薬液タンク71から汲み出される。そして、汲み出された薬液原液は、ポンプ72により昇圧され、フィルタ73を通過して異物が除去される。さらに、フィルタ73を通過した薬液原液は、脱気ユニット74によって脱気され、溶存酸素量が低減される。その後、溶存酸素量が低減された薬液原液が配管内調合ユニット51に供給される。
The chemical solution stock solution in the
図9は、基板処理装置1に備えられた配管の図解図である。
処理液供給管38などの処理液を流通させるための全ての配管は、図9に示す構造にされている。以下では、処理液供給管38などの処理液を流通させるための全ての配管を総称して「配管79」という。
配管79は、処理液が流通する内配管80と、この内配管80を取り囲む外配管81とを備えた2重配管構造を有している。内配管80は、外配管81の内部において、内配管80と外配管81との間に介在する支持部材(図示せず)によって支持されている。内配管80は、外配管81に対して非接触状態で支持されている。内配管80と外配管81との間には筒状の空間が形成されている。内配管80および外配管81は、たとえば、フッ素樹脂(より具体的には、耐薬液性および耐熱性に優れたPFA(perfluoro alkylvinyl ether tetrafluoro ethlene copolymer)製である。PFAは、酸素を透過させることができる。
FIG. 9 is an illustrative view of piping provided in the
All the pipes for circulating the processing liquid such as the processing
The
また、外配管81には、不活性ガスバルブ82が介装された不活性ガス供給管83と、排気バルブ84が介装された排気配管85とが接続されている。不活性ガスバルブ82を開くことにより、不活性ガス供給管83を介して不活性ガス供給源(図示せず。たとえば、窒素ガス)からの不活性ガスを外配管81の内部に供給することができる。これにより、内配管80と外配管81との間に不活性ガスを充填することができる。また、排気バルブ84が開かれることにより、内配管80と外配管81との間から気体を排気させることができる。
Further, an inert
排気バルブ84が開かれた状態で不活性ガスバルブ82が開かれることにより、内配管80と外配管81との間から空気を追い出して、この間の雰囲気を不活性ガス雰囲気に置換することができる。これにより、内配管80を不活性ガスにより包囲することができる。そして、内配管80と外配管81との間の雰囲気が不活性ガス雰囲気に置換された後、不活性ガスバルブ82および排気バルブ84を閉じることにより、内配管80が不活性ガスによって包囲された状態を維持することができる。
By opening the
内配管80が不活性ガスにより包囲されることにより、内配管80の内部に進入する酸素の量を低減することができる。これにより、内配管80内を流通する処理液に酸素が溶け込んで、当該処理液中の酸素濃度が上昇することを抑制または防止することができる。
図10は、基板処理装置1の電気的構成を説明するためのブロック図である。
基板処理装置1は、マイクロコンピュータを含む構成の制御装置(チャンバ洗浄制御手段、乾燥制御手段)131を備えている。制御装置131は、スピンモータ41、蓋部材昇降機構33、蓋部材回転機構32、チャック昇降機構100、ノズル駆動モータ139などの動作を制御する。また、基板処理装置1に備えられた各バルブ27,30,35,60〜63,76,78の開閉は、制御装置131によって制御される。
By enclosing the inner pipe 80 with the inert gas, the amount of oxygen entering the inner pipe 80 can be reduced. Thereby, it can suppress or prevent that oxygen melt | dissolves in the process liquid which distribute | circulates the inside piping 80, and the oxygen concentration in the said process liquid rises.
FIG. 10 is a block diagram for explaining the electrical configuration of the
The
図11は、基板処理装置1によって処理されるウエハWの表面状態の一例を説明するための断面図である。
以下に説明するように、この基板処理装置1に搬入されるウエハWは、たとえば、表面にポリマー残渣(ドライエッチングやアッシング後の残渣)が付着しており、金属パターンが露出したものである。金属パターンは、銅やタングステンその他の金属の単膜であってもよいし、複数の金属膜を積層した多層膜であってもよい。多層膜の一例としては、銅膜の表面に拡散防止のためのバリアメタル膜を形成した積層膜を挙げることができる。
FIG. 11 is a cross-sectional view for explaining an example of the surface state of the wafer W processed by the
As will be described below, the wafer W carried into the
図11に示すように、ウエハWの表面上には、層間絶縁膜87が形成されている。層間絶縁膜87には、下配線溝88がその上面から掘り下げて形成されている。下配線溝88には、銅配線89が埋設されている。層間絶縁膜87上には、エッチストッパ膜90を介して、被加工膜の一例としての低誘電率絶縁膜91が積層されている。低誘電率絶縁膜91には、上配線溝92がその上面から掘り下げて形成されている。さらに、低誘電率絶縁膜91には、上配線溝92の底面から銅配線89の表面に達するヴィアホール93が形成されている。上配線溝92およびヴィアホール93には、銅が一括して埋め込まれる。
As shown in FIG. 11, an
上配線溝92およびヴィアホール93は、低誘電率絶縁膜91上にハードマスクが形成された後、ドライエッチング処理が行われ、低誘電率絶縁膜91におけるハードマスクから露出した部分が除去されることにより形成される。上配線溝92およびヴィアホール93の形成後、アッシング処理が行われ、低誘電率絶縁膜91上から不要となったハードマスクが除去される。ドライエッチング時およびアッシング時には、低誘電率絶縁膜91やハードマスクの成分を含む反応生成物が、ポリマー残渣となって、低誘電率絶縁膜91の表面(上配線溝92およびヴィアホール93の内面を含む。)などに付着する。そのため、アッシング後には、ウエハWの表面にポリマー除去液を供給して、低誘電率絶縁膜91の表面からポリマー残渣を除去するための処理が行われる。以下では、ウエハWの表面から基板処理装置1を用いてポリマー残渣を除去するための処理例について説明する。
The upper wiring trench 92 and the via
図12A〜図12Fは、基板処理装置1によるウエハWの処理の一例を説明するための工程図である。以下では、図1、図8、図9および図12A〜図12Fを参照して、基板処理装置1によるウエハWの処理例について説明する。
ウエハWの処理に先立って、図12Aに示すように、蓋部材7は、スピンチャック3のスピンベース43から上方に離間した離間位置に配置されている。そのため、密閉チャンバ2の上部開口5が開放されている。また、スピンチャック3がスピンドライ位置(図12Eに示す位置)まで上昇させられ、そのスピンドライ位置で待機させられている。処理液ノズル4は、スピンチャック3の側方の退避位置に退避させられている。バルブ27,30,35,60〜63,76,78は、いずれも閉じられている。
12A to 12F are process diagrams for explaining an example of the processing of the wafer W by the
Prior to the processing of the wafer W, as shown in FIG. 12A, the lid member 7 is disposed at a spaced position spaced upward from the
アッシング後のウエハWは、搬送ロボット(図示せず)によって基板処理装置1内に搬入されて、スピンドライ位置にあるスピンチャック3にその表面を上方に向けた状態で保持される。ウエハWの保持後、制御装置131はチャック昇降機構100を制御して、スピンチャック3を処理位置に向けて下降させる。また、制御装置131は蓋部材昇降機構33を制御して、蓋部材7を閉位置(図1参照)まで下降させる。その後、チャンバ本体6の上部開口5が蓋部材7によって閉塞される(図12B参照)。これにより、密閉チャンバ2の内部空間が外部から密閉され、密閉チャンバ2が実質的に密閉のチャンバとして機能するようになる。
The ashed wafer W is carried into the
次いで、図12Bに示すように、密閉チャンバ2の内部空間の空気雰囲気を不活性ガス(窒素ガス)雰囲気に置換する不活性ガスパージ処理が行われる。具体的には、制御装置131は不活性ガスバルブ30を開いて、窒素ガスを不活性ガス吐出口29から密閉チャンバ2の内部空間内に供給する。このときにおける不活性ガス吐出口29からの窒素ガスの吐出流量は、たとえば50〜300L/min、好ましくは150L/minである。不活性ガス吐出口29から吐出された窒素ガスは、密閉チャンバ2の内部空間に広がり、密閉チャンバ2内の空気を排気液溝20(図1および図4参照)の排気口を通して密閉チャンバ2外に押し出す。これにより、密閉チャンバ2内の雰囲気が窒素ガス雰囲気に置換されていく。この密閉チャンバ2内への窒素ガスの供給は、乾燥処理の終了まで続行される。
Next, as shown in FIG. 12B, an inert gas purge process is performed in which the air atmosphere in the internal space of the sealed
この実施形態では、窒素ガスパージの期間中、ウエハWは静止状態(非回転状態)とされている。しかしながら、制御装置131がスピンモータ41を制御することによりウエハWが回転されてもよい。
この不活性ガスパージ処理は、密閉チャンバ2の内部空間における酸素濃度が、所定の低濃度(たとえば100ppm以下)に達するまで継続される。密閉チャンバ2内の酸素濃度が所定の低濃度に達したか否かは、チャンバ本体6の隔壁9の内面に酸素濃度センサ(図示せず)を配置し密閉チャンバ2内の酸素濃度を検出することにより判定してもよいし、不活性ガス吐出口29の窒素ガスの吐出時間が所定時間に達したことにより判定してもよい。そして、密閉チャンバ2内の酸素濃度が所定の低濃度に達すると、次いで、ウエハWの表面からポリマー残渣を除去するための薬液処理(図12C参照)がウエハWに施される。
In this embodiment, the wafer W is in a stationary state (non-rotating state) during the nitrogen gas purge period. However, the wafer W may be rotated by the
This inert gas purge process is continued until the oxygen concentration in the internal space of the sealed
薬液処理の開始タイミングになると、制御装置131はスピンモータ41を制御して、ウエハWを所定の液処理速度(10〜500rpm、好ましくは250rpm)で回転させる。
また、制御装置131は配管内調合ユニット51を制御し、薬液としての希ふっ酸を処理液ノズル4から吐出する。具体的には、制御装置131は、薬液バルブ62およびバルブ60を開く。薬液バルブ62およびバルブ60が開かれることにより、混合部59には、薬液原液としてのふっ酸と不活性ガス溶存水とが供給される。これにより、混合部59内を流通している不活性ガス溶存水にふっ酸が注入され、前述した所定比率で調合された希ふっ酸が生成される。また、制御装置131は、希ふっ酸の混合比および吐出流量をそれぞれ所期の混合比および吐出流量(供給流量)とするために、流量調整バルブ61および薬液流量調整バルブ63の開度をそれぞれ調整する。希ふっ酸は、薬液の一例であるとともに、ポリマー除去液の一例である。この実施形態では、混合部59で生成される希ふっ酸は、たとえば、ふっ酸と純水とが1:10〜1:1800、好ましくは1:10〜1:800の混合比で混合(調合)されている。また、混合部59で生成される希ふっ酸の吐出流量(供給流量)は0.5L/min〜3L/min、好ましくは1L/minである。そして、混合部59で生成された希ふっ酸は、処理液供給管38に供給され、処理液ノズル4からウエハWの表面に向けて吐出される。この処理液ノズル4から吐出される希ふっ酸は、脱気ユニット74により酸素が脱気されたふっ酸が、不活性ガス溶存水生成ユニット50により酸素が脱気された純水によって希釈されたものである。したがって、酸素濃度が十分に低減されている。
When the chemical liquid processing start timing comes, the
Further, the
また、図12Cに示すように、薬液処理では、制御装置131はノズル駆動モータ139を制御して、ノズルアーム15を所定の範囲で往復移動させる。これにより、処理液ノズル4からの希ふっ酸が導かれるウエハWの表面上の供給位置は、ウエハWの回転中心からウエハWの周縁部に至る範囲内を、ウエハWの回転方向と交差する直線状の軌跡を描きつつ往復移動する。また、ウエハWの表面に供給された希ふっ酸は、ウエハWの表面の全域に拡がる。これにより、ウエハWの表面の全域に、希ふっ酸がむらなく供給される。処理液ノズル4からウエハWの表面に希ふっ酸が供給されることにより、その希ふっ酸の化学的能力により、ウエハWの表面に形成されたポリマー残渣を除去することができる。ウエハWの表面に供給された希ふっ酸は、ウエハWの周縁部からウエハWの側方に向けて飛散する。このとき、ウエハWの表面から飛散した処理液は、主としてチャンバ本体6の隔壁9の内面(とくに円筒面18および廃液案内面19)、ノズルアーム15の外表面、および処理液ノズル4に付着する。
As shown in FIG. 12C, in the chemical processing, the
また、薬液処理が行われるとき、密閉チャンバ2の内部空間への窒素ガスの供給が行われている。そのため、密閉チャンバ2の内部空間は窒素ガス雰囲気に維持され、密閉チャンバ2の内部空間における酸素濃度の上昇が抑制または防止されている。そのため、処理液ノズル4から吐出された希ふっ酸に雰囲気中の酸素が溶け込むことを抑制し、これにより、希ふっ酸中の酸素濃度の上昇を抑制または防止することができる。したがって、ウエハWの表面に対して、酸素濃度が十分に低減された希ふっ酸を供給することができる。これにより、ウエハW上において、希ふっ酸中の溶存酸素に起因する酸化反応が生じることを抑制または防止することができる。その結果、希ふっ酸のように、ウエハWに供給される薬液が酸化物に対するエッチング作用を有するものであったとしても、ウエハW上において不所望なエッチングが生じることを抑制または防止することができる。
Further, when chemical treatment is performed, nitrogen gas is supplied to the internal space of the sealed
薬液処理が所定時間(たとえば10〜60秒間、好ましくは30秒間)に渡って行われると、次いで、ウエハWの表面から薬液を洗い流すリンス処理(図12D参照)がウエハWに施される。
具体的には、制御装置131は配管内調合ユニット51のバルブ60を開いた状態に維持しつつ薬液バルブ62を閉じる。薬液バルブ62が閉じられて、バルブ60が開いた状態にされることにより、混合部59には不活性ガス溶存水のみが供給される。したがって、処理液供給管38には不活性ガス溶存水が供給され、処理液ノズル4からは、リンス液としての不活性ガス溶存水が吐出される。
When the chemical treatment is performed for a predetermined time (for example, 10 to 60 seconds, preferably 30 seconds), a rinsing process (see FIG. 12D) for washing away the chemical from the surface of the wafer W is then performed on the wafer W.
Specifically, the
また、リンス処理においても、制御装置131はノズル駆動モータ139を制御して、ノズルアーム15を所定の範囲で往復移動させる。これにより、処理液ノズル4からの不活性ガス溶存水が導かれるウエハWの表面上の供給位置は、ウエハWの回転中心からウエハWの周縁部に至る範囲内を、ウエハWの回転方向と交差する直線状の軌跡を描きつつ往復移動する。また、ウエハWの表面に供給された不活性ガス溶存水は、ウエハWの表面の全域に拡がり、ウエハWの表面に付着している希ふっ酸が不活性ガス溶存水によって洗い流される。そして、希ふっ酸を含む不活性ガス溶存水は、ウエハWの回転によって振り切られて、その周縁部から側方に飛散する。このとき、希ふっ酸を含む不活性ガス溶存水は、主としてチャンバ本体6の隔壁9の内面(とくに円筒面18および廃液案内面19)、ノズルアーム15の外表面、および処理液ノズル4に付着する。
Also in the rinsing process, the
処理液ノズル4から吐出される不活性ガス溶存水は、不活性ガス溶存水生成ユニット50により酸素が脱気されており、溶存酸素量が十分に低減されている。さらに、不活性ガス溶存水生成ユニット50により生成された不活性ガス溶存水は、窒素ガスの添加により、時間の経過とともに酸素濃度が上昇することが抑制または防止されている。加えて、密閉チャンバ2内の雰囲気中の酸素濃度は十分に低減されている。したがって、ウエハWの表面に対して、酸素濃度が十分に低減された不活性ガス溶存水を供給することができ、ウエハW上において、不活性ガス溶存水中の溶存酸素に起因する酸化反応が生じることを抑制または防止することができる。したがって、ウエハW上に残留している希ふっ酸による酸化物のエッチングを抑制することができ、これによりウエハW上における不所望なエッチングの発生を抑制または防止することができる。
The inert gas dissolved water discharged from the
このリンス処理は、密閉チャンバ2の内部空間におけるフッ素イオンの残留量が、たとえば所定の低値(0.15ng/cm2以下)に達するまで継続される。密閉チャンバ2内のフッ素イオンの残留量が所定の低値に達したか否かは、チャンバ本体6の隔壁内面にフッ素イオンセンサ(図示せず)を配置し密閉チャンバ2内のフッ素イオンの残留量を検出することにより判定してもよいし、処理液ノズル4からの不活性ガス溶存水の吐出時間が所定時間に達したことにより判定してもよい。密閉チャンバ2内のフッ素イオンの残量が所定の低値に達すると、次いで、密閉チャンバ2内を洗浄するためのチャンバ洗浄処理が実行される。チャンバ洗浄処理については後述する。
This rinsing process is continued until the residual amount of fluorine ions in the internal space of the sealed
チャンバ洗浄処理の終了後は、図12Eに示すように、ウエハWを乾燥させる乾燥処理(スピンドライ)が行われる。
制御装置131は、チャック昇降機構100を制御して、スピンチャック3を最上方のスピンドライ位置まで上昇させる。これにより、蓋部材7の基板対向面23が、スピンチャック3に保持されたウエハWの表面に近接する。このスピンドライ位置ではスピンチャック3に保持されたウエハWの表面と、蓋部材7の基板対向面23との間の間隔は、所定の狭間隔(たとえば0.1〜5.0mm。好ましくは2.5mm)である。そのため、ウエハWの表面と基板対向面23との間には微小空間が形成され、その側方の雰囲気から遮断される。
After the chamber cleaning process is completed, as shown in FIG. 12E, a drying process (spin drying) for drying the wafer W is performed.
The
そして、スピンチャック3がスピンドライ位置まで上昇されると、制御装置131は、スピンモータ41の回転速度を加速して、スピンチャック3に保持されたウエハWを高回転速度(たとえば1000〜2500rpm。好ましくは2500rpm)で回転させる。また、乾燥処理時には、制御装置131は蓋部材回転機構32を制御して、蓋部材7をウエハWの回転に同期して、ウエハWの回転方向と同方向に回転させる。そのため、ウエハWの表面と蓋部材7の基板対向面23との間に安定気流が形成されるとともに、ウエハWの表面と基板対向面23との間の空間がその側方の雰囲気から遮断される。
When the
さらに、不活性ガス吐出口29からの窒素ガスの吐出が継続されている。したがって、ウエハWの表面と基板対向面23との間に、ウエハWの中心部からウエハWの周縁部に向かう窒素ガスの気流が形成され、ウエハWの表面と基板対向面23との間が窒素ガスで充満される。これにより、低酸素雰囲気下でウエハWに乾燥処理を施すことができる。
この乾燥処理では、ウエハWが高回転速度で回転されることにより、ウエハWに付着しているリンス液(不活性ガス溶存水)は、ウエハWの回転による遠心力を受けてウエハWの周囲に振り切られる。これにより、ウエハWからリンス液が除去され、ウエハWが乾燥される。
Further, the discharge of nitrogen gas from the inert
In this drying process, when the wafer W is rotated at a high rotational speed, the rinsing liquid (inert gas-dissolved water) adhering to the wafer W is subjected to a centrifugal force generated by the rotation of the wafer W and is surrounded by the wafer W. It is shaken off. Thereby, the rinse liquid is removed from the wafer W, and the wafer W is dried.
また、スピンチャック3のスピンドライ位置において、乾燥処理の直前に、ウエハWの表面にIPA液を供給することもできる。図1に二点鎖線で示すように、処理液上ノズル25にIPA液が供給されるようになっている場合、ウエハWの表面の中心にIPA液を供給することができ、これにより不活性ガス溶存水(リンス液)とIPA液とを良好に置換することができ、ウエハWの表面を良好に乾燥させることができる。
Also, the IPA liquid can be supplied to the surface of the wafer W immediately before the drying process at the spin dry position of the
乾燥処理が所定の乾燥時間に渡って行われると、制御装置131はスピンモータ41を制御して、ウエハWの回転を停止させる。また、制御装置131は、蓋部材回転機構32を駆動して蓋部材7の回転を停止させるとともに、蓋部材回転機構32を駆動して、蓋部材7をスピンチャック3のスピンベース43から上方に離間した開位置(図12A参照)まで上昇させる。これにより、密閉チャンバ2の上部開口5が開放される。また、制御装置131は不活性ガスバルブ30を閉じて、不活性ガス吐出口29からの窒素ガスの供給を停止する。
When the drying process is performed for a predetermined drying time, the
その後、開放された上部開口5を介してスピンドライ位置に位置するスピンチャック3から基板搬送ロボット(図示せず)にウエハWが引き渡され、基板搬送ロボットによってウエハWが密閉チャンバ2内から搬出される。
なお、リンス処理時において、処理液ノズル4からのリンス液を用いてリンス処理を行うのではなく、処理液上ノズル25からのリンス液を用いてリンス処理が行われていてもよい。この場合、リンス処理時には、炭酸水バルブ27が開かれて、処理液上ノズル25の処理液上吐出口26から、ウエハWの上面に向けて炭酸水が吐出される。ウエハWに供給された炭酸水は、ウエハWの回転による遠心力を受けてウエハWの表面全域に広がり、これによりウエハWの表面に付着した薬液が洗い流される。
Thereafter, the wafer W is transferred from the
In the rinsing process, the rinsing process may be performed using the rinsing liquid from the processing liquid
また、処理液ノズル4からのリンス液と処理液上ノズル25からのリンス液との双方を用いてリンス処理が行われていてもよい。
次いで、密閉チャンバ2内を洗浄液(たとえば純水)で洗浄するチャンバ洗浄処理について説明する。このチャンバ洗浄処理は、基板処理装置1による処理の間に実施されてもよく、チャンバ洗浄処理時には、スピンチャック3にはウエハWは保持されておらず、スピンチャック3はチャンバ洗浄位置に位置している。
Further, the rinsing process may be performed using both the rinsing liquid from the processing
Next, a chamber cleaning process for cleaning the inside of the sealed
制御装置131は、チャック昇降機構100を制御して、スピンチャック3をチャンバ洗浄位置まで下降させる。また、制御装置131は、蓋部材昇降機構33を制御して蓋部材7を閉位置まで下降させるとともに、蓋部材回転機構32を制御して蓋部材を所定の回転速度で回転させる。また、制御装置131は洗浄液バルブ35を開いて、洗浄液ノズル34から蓋部材7の基板対向面23に洗浄液が供給される。この実施形態では、洗浄液として純水が用いられる(図12F参照)。
The
蓋部材7の基板対向面23に供給された純水は、蓋部材7の回転による遠心力を受けて、蓋部材7の基板対向面23を伝って回転半径方向の外方へと移動する。これにより、蓋部材7の基板対向面23の略全域に純水をむらなく行き渡らせることができ、蓋部材7の基板対向面23に付着している薬液および薬液を含むリンス液を、純水で洗い流すことができる。
The pure water supplied to the
また、蓋部材7の基板対向面23を伝って回転半径方向外方側へ移動する純水は、下面103(図3参照)と第1円錐面17(図1参照)とを介してチャンバ本体6の隔壁9の内面に案内され、チャンバ本体6の隔壁9の内面を伝って流下する。このとき、隔壁9の内面に付着している処理液(薬液や薬液を含むリンス液)が、洗浄液によって洗い流される。こうして処理液を洗い流した純水は、排気液溝20に流入し、この排気液溝20および排気液路110を通して廃液処理設備に案内される。
The pure water moving outward in the rotational radial direction along the
また、処理位置とは異なるチャンバ洗浄位置でチャンバ洗浄処理が実行される。処理位置でチャンバ洗浄位置が実行されると、薬液処理時やリンス処理時にウエハWの周縁から飛散し、チャンバ本体6の隔壁9の内面に付着した処理液(薬液や薬液を含むリンス液)がスピンチャック3にふりかかり、そのスピンチャック3を汚染するおそれがある。しかしながら、液処理位置とは異なるチャンバ洗浄位置では、隔壁9の内面に付着した処理液がスピンチャック3にふりかかることがない。そのため、スピンチャック3を汚染することなく密閉チャンバ2内を洗浄することができる。
Further, the chamber cleaning process is executed at a chamber cleaning position different from the processing position. When the chamber cleaning position is executed at the processing position, the processing liquid (the rinsing liquid including the chemical liquid and the chemical liquid) scattered from the periphery of the wafer W during the chemical liquid processing and the rinsing process and attached to the inner surface of the
なお、チャンバ洗浄処理を、ウエハWに対する一連の洗浄処理中に行うこともできる。この場合、リンス処理後乾燥処理前に行われることが望ましい。このとき、スピンチャック3にはウエハWが保持されており、チャンバ洗浄処理によってウエハWに洗浄液がかかることが考えられる。この場合、ウエハWに洗浄液を介して酸素が供給されないように、洗浄液として不活性ガス溶存水が用いられることが望ましい。また、チャンバ洗浄処理を一連の洗浄処理中に行う場合は、チャンバ洗浄処理中には、不活性ガス吐出口29から窒素ガスの供給が行われていることが望ましい。これにより、チャンバ洗浄処理中においても、密閉チャンバ2内を低酸素濃度状態に維持することができる。
The chamber cleaning process can also be performed during a series of cleaning processes on the wafer W. In this case, it is desirable to carry out after the rinse treatment and before the drying treatment. At this time, the wafer W is held on the
また、一連の処理(ウエハWに対する洗浄処理)において、薬液処理における密閉チャンバ2における窒素ガスの供給流量は、窒素ガスパージ時と同流量であってもよいし、窒素ガスパージ時よりも大流量にされていてもよい。また、リンス処理における密閉チャンバ2における窒素ガスの供給流量は、窒素ガスパージ時と同流量であってもよいし、窒素ガスパージ時よりも大流量にされていてもよい。さらに、乾燥処理時における密閉チャンバ2における窒素ガスの供給流量は、窒素ガスパージ時と同流量であってもよいし、窒素ガスパージ時よりも大流量にされていてもよい。
Further, in a series of processes (cleaning process for the wafer W), the supply flow rate of nitrogen gas in the sealed
以上により、この実施形態によれば、密閉チャンバ2の内部空間は密閉されている。また、その内部空間の容積は小さくされている。そのため、密閉チャンバ2の内部空間の雰囲気制御を良好に行うことができる。したがって、内部空間の雰囲気を充分な低酸素雰囲気に制御することができ、これにより、酸素濃度が十分に低減された雰囲気下で、ウエハWに処理液による処理を施すことができる。
As described above, according to this embodiment, the internal space of the sealed
また、蓋部材7とチャンバ本体6との間は第1液体シール構造8によってシールされている。そのため、蓋部材7の回転状態においても、密閉チャンバ2の内部空間を密閉状態に保つことができる。また、液体シール構造が採用されているので、接触式シールを用いる場合と比較して発塵やシール性の低下などがほとんど生じない。これにより、蓋部材7とチャンバ本体6との間のシールを、長期に渡って良好に保つことができる。
The lid member 7 and the
以下では、基板処理装置1によりウエハWを処理することにより得られた測定結果等について説明する。
図13は、不活性ガス溶存水中の酸素濃度と銅のエッチング量との関係を示す図である。この図13は、ウエハWの表面に対して希ふっ酸による薬液処理(ポリマー除去処理)を行ったときの銅のエッチング量(膜減り)の測定結果である。希ふっ酸は、ふっ酸と純水との比率が1:100に調合されたものを用いた。また、希ふっ酸に含まれるふっ酸は、酸素が脱気されていないものを用いた。この測定で用いられた希ふっ酸は、純水の割合に対してふっ酸の割合が非常に小さいので、希ふっ酸中の酸素濃度は、当該希ふっ酸を調合するのに用いた不活性ガス溶存水中の酸素濃度と略等しいとみなすことができる。薬液処理時間は、60secである。
Hereinafter, measurement results and the like obtained by processing the wafer W by the
FIG. 13 is a diagram showing the relationship between the oxygen concentration in the inert gas-dissolved water and the etching amount of copper. FIG. 13 shows the measurement results of the etching amount (film reduction) of copper when a chemical solution treatment (polymer removal treatment) with dilute hydrofluoric acid is performed on the surface of the wafer W. The dilute hydrofluoric acid used was prepared with a ratio of hydrofluoric acid to pure water of 1: 100. In addition, as the hydrofluoric acid contained in the diluted hydrofluoric acid, oxygen that was not degassed was used. The dilute hydrofluoric acid used in this measurement has a very small proportion of hydrofluoric acid relative to the proportion of pure water, so the oxygen concentration in dilute hydrofluoric acid is the inertness used to prepare the dilute hydrofluoric acid. It can be considered that it is substantially equal to the oxygen concentration in the gas dissolved water. The chemical treatment time is 60 seconds.
この図13において、一番左の測定値(一番左の●の値)は、酸素濃度が12ppbの不活性ガス溶存水によって希ふっ酸を調合し、この希ふっ酸を用いて薬液処理を行ったときの銅のエッチング量である。また、左から2番目の測定値(左から2番目の●の値)は、酸素濃度が20ppbの不活性ガス溶存水によって希ふっ酸を調合し、この希ふっ酸を用いて薬液処理を行ったときの銅のエッチング量である。図13に示す測定結果から、酸素濃度が20ppb以下の不活性ガス溶存水によって調合した希ふっ酸を用いて薬液処理を行えば銅のエッチングを確実に抑制または防止できることが理解される。すなわち、酸素濃度が20ppb以下の不活性ガス溶存水によって調合した希ふっ酸であれば銅酸化物の生成を確実に抑制または防止できることが理解される。 In FIG. 13, the leftmost measurement value (the leftmost ● value) is prepared by diluting hydrofluoric acid with an inert gas dissolved water having an oxygen concentration of 12 ppb, and using this dilute hydrofluoric acid to perform chemical treatment. This is the amount of copper etching performed. The second measured value from the left (second value from the left) is prepared by dilute hydrofluoric acid with an inert gas dissolved water having an oxygen concentration of 20 ppb, and chemical treatment is performed using this dilute hydrofluoric acid. This is the amount of copper etching. From the measurement results shown in FIG. 13, it is understood that copper etching can be reliably suppressed or prevented by performing chemical treatment using dilute hydrofluoric acid prepared with an inert gas-dissolved water having an oxygen concentration of 20 ppb or less. That is, it is understood that the formation of copper oxide can be reliably suppressed or prevented with dilute hydrofluoric acid prepared with an inert gas-dissolved water having an oxygen concentration of 20 ppb or less.
図14は、ウエハWの上方の酸素濃度とウエハWの表面に供給された純水中の酸素濃度との関係を示す図である。
この図14は、スピンチャック3を処理位置に位置させた状態で、処理液ノズル4からスピンチャック3に保持されたウエハWの表面に向けて不活性ガス溶存水を吐出させ、ウエハWの表面に供給された不活性ガス溶存水の酸素濃度を測定した結果である。処理液ノズル4からは、酸素濃度が10ppbに調整された不活性ガス溶存水を吐出させた。
FIG. 14 is a diagram illustrating the relationship between the oxygen concentration above the wafer W and the oxygen concentration in the pure water supplied to the surface of the wafer W.
In FIG. 14, the inert gas-dissolved water is discharged from the processing
この図14において、一番左の測定値(一番左の■の値)は、ウエハWの上方の酸素濃度が0.001%(10ppm)のときにウエハWの表面に供給された不活性ガス溶存水の酸素濃度の値であり、このときの不活性ガス溶存水中の酸素濃度は12ppbとなっていた。また、左から2番目の測定値(左から2番目の■の値)は、ウエハWの上方の酸素濃度が0.01%(100ppm)のときにウエハWの表面に供給された不活性ガス溶存水の酸素濃度の値であり、このときの不活性ガス溶存水中の酸素濃度は20ppbとなっていた。 In FIG. 14, the leftmost measured value (leftmost solid value) is the inertness supplied to the surface of the wafer W when the oxygen concentration above the wafer W is 0.001% (10 ppm). It is the value of the oxygen concentration of the gas-dissolved water, and the oxygen concentration in the inert gas-dissolved water at this time was 12 ppb. The second measured value from the left (the second value from the left) is the inert gas supplied to the surface of the wafer W when the oxygen concentration above the wafer W is 0.01% (100 ppm). This is the value of the dissolved water oxygen concentration, and the oxygen concentration in the inert gas dissolved water at this time was 20 ppb.
図14に示す測定結果から、酸素濃度が10ppbに調整された純水をウエハWの表面に向けて吐出させたときに、ウエハWの上方の酸素濃度が100ppm以下であれば、ウエハWの表面に供給される純水の酸素濃度を20ppb以下に維持できることが分かる。したがって、図13に示す測定結果を考慮すると、ウエハWの上方の酸素濃度を100ppm以下とし、酸素濃度が10ppb以下の希ふっ酸をウエハWの表面に向けて吐出させれば、酸素濃度が20ppb以下の希ふっ酸をウエハWの表面に供給して、希ふっ酸中の溶存酸素により銅が酸化されることを確実に抑制または防止することができる。 From the measurement results shown in FIG. 14, when the pure water whose oxygen concentration is adjusted to 10 ppb is discharged toward the surface of the wafer W, if the oxygen concentration above the wafer W is 100 ppm or less, the surface of the wafer W is It can be seen that the oxygen concentration of pure water supplied to the water can be maintained at 20 ppb or less. Therefore, considering the measurement results shown in FIG. 13, if the oxygen concentration above the wafer W is set to 100 ppm or less and dilute hydrofluoric acid having an oxygen concentration of 10 ppb or less is discharged toward the surface of the wafer W, the oxygen concentration is 20 ppb. By supplying the following diluted hydrofluoric acid to the surface of the wafer W, it is possible to reliably suppress or prevent copper from being oxidized by dissolved oxygen in the diluted hydrofluoric acid.
図15は、純水中の酸素濃度と純水中の窒素濃度との関係を示す図である。この図15において、一点鎖線で示された値は、純水から酸素を脱気した直後の酸素濃度の測定値であり、実線で示された値は、一点鎖線で示された値まで酸素が脱気された純水を、10sec以上大気に開放した後の酸素濃度の測定値である。また、純水に対して窒素ガスを添加していないときの、純水中の窒素濃度は、3ppmであった。 FIG. 15 is a diagram showing the relationship between the oxygen concentration in pure water and the nitrogen concentration in pure water. In FIG. 15, the value indicated by the alternate long and short dash line is a measured value of the oxygen concentration immediately after degassing oxygen from pure water, and the value indicated by the solid line indicates that oxygen has reached the value indicated by the alternate long and short dash line. This is a measured value of oxygen concentration after degassed pure water is opened to the atmosphere for 10 seconds or more. Moreover, the nitrogen concentration in the pure water when no nitrogen gas was added to the pure water was 3 ppm.
図15に示す測定結果から、純水中の窒素濃度が7ppm未満であると、純水中の酸素濃度が時間の経過とともに上昇してしまう。したがって、純水に窒素ガスを添加して、純水中の窒素濃度を7ppm以上にすることにより、純水中の酸素濃度が時間の経過とともに上昇することを抑制または防止することができる。これにより、酸素が脱気された純水中の酸素濃度を低い状態に維持することができる。 From the measurement results shown in FIG. 15, when the nitrogen concentration in the pure water is less than 7 ppm, the oxygen concentration in the pure water increases with time. Therefore, it is possible to suppress or prevent the oxygen concentration in the pure water from increasing over time by adding nitrogen gas to the pure water so that the nitrogen concentration in the pure water is 7 ppm or more. Thereby, the oxygen concentration in the pure water from which oxygen has been deaerated can be maintained in a low state.
以上、この発明の一実施形態について説明したが、この発明は、他の形態で実施することもできる。
たとえば、ウエハWの搬出入の際に、スピンチャック3をスピンドライ位置ではなく、ウエハWをスピンドライ位置から上方に離間した(スピンチャック3が蓋部材7に接近した)搬出入位置で、スピンチャック3に保持されていてもよい。
As mentioned above, although one Embodiment of this invention was described, this invention can also be implemented with another form.
For example, when the wafer W is loaded / unloaded, the
また、スピンチャック3を昇降させる構成ではなく、密閉チャンバ2を昇降させる構成とすることもできる。また、スピンチャック3および密閉チャンバ2の双方を昇降させる構成とすることもできる。これらの場合、密閉チャンバ2を昇降させるための昇降機構はたとえば本体チャンバ6に結合される。そして、密閉チャンバ2を昇降させる際には、密閉チャンバ2(すなわち、チャンバ本体6およびと蓋部材7)の昇降に併せて、ノズルアーム15やノズル駆動モータ139などの駆動機構を昇降させる必要がある。
Moreover, it is also possible to adopt a configuration in which the sealed
また、ノズルアーム15の断面形状が矩形形状ではなく、円形形状であってもよい。
また、密閉チャンバ2の形状などの工夫により、ノズルアーム15を駆動するための直線駆動機構36を密閉チャンバ2内に収容しても、密閉チャンバ2内の容積を小さくできる場合は、直線駆動機構36を密閉チャンバ2内に収容してもよい。
さらには、移動ノズルである処理液ノズル4に代えて、スピンチャック3の上方でその吐出口をウエハWの表面(たとえば中央部)に向けて固定的に配置された処理液ノズルを用いることもできる。この場合、直線駆動機構36の構成は不要である。
Further, the cross-sectional shape of the
If the
Furthermore, instead of the processing
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of matters described in the claims.
1 基板処理装置
2 密閉チャンバ
3 スピンチャック(基板保持回転手段)
4 処理液ノズル(処理液供給手段)
5 上部開口(開口)
6 チャンバ本体
7 蓋部材
8 第1液体シール構造
13 第2液体シール構造
23 基板対向面
28 不活性ガス流通路(不活性ガス供給手段)
29 不活性ガス吐出口(不活性ガス供給手段)
30 不活性ガスバルブ(不活性ガス供給手段)
32 蓋部材回転機構(蓋部材回転手段)
34 洗浄液ノズル(洗浄液吐出手段)
40 ベース(露出部分)
43 スピンベース(基板保持回転手段)
44 挟持部材(基板保持回転手段)
45 カバー(露出部分)
100 チャック昇降機構(第1移動手段、第2移動手段)
101 シール環
104 シール溝
131 制御装置(チャンバ洗浄制御手段、乾燥制御手段)
W ウエハ(基板)
DESCRIPTION OF
4 treatment liquid nozzle (treatment liquid supply means)
5 Upper opening (opening)
6 Chamber body 7
29 Inert gas outlet (inert gas supply means)
30 Inert gas valve (inert gas supply means)
32 Lid member rotating mechanism (Lid member rotating means)
34 Cleaning liquid nozzle (cleaning liquid discharge means)
40 Base (exposed part)
43 Spin base (substrate holding and rotating means)
44 Holding member (substrate holding and rotating means)
45 Cover (exposed part)
100 Chuck elevating mechanism (first moving means, second moving means)
101
W Wafer (Substrate)
Claims (9)
前記蓋部材を回転させるための蓋部材回転手段と、
前記密閉チャンバの内部空間で基板を保持しつつ回転させる基板保持回転手段と、
前記基板保持回転手段により回転される基板に処理液を供給する処理液供給手段と、
前記基板保持回転手段および前記密閉チャンバの少なくとも一方を移動させて、前記基板保持回転手段に保持された基板と前記蓋部材とを、接近/離反させる第1移動手段とを含み、
前記第1移動手段が、前記処理液供給手段から供給される処理液による液処理が基板に施される液処理位置と、前記液処理位置よりも基板が前記蓋部材に接近し、基板に乾燥処理を施すための乾燥位置との間で、前記基板保持回転手段および前記密閉チャンバの少なくとも一方を移動させるように構成されており、
前記蓋部材は、前記基板保持回転手段により保持された基板の主面全域に対向する基板対向面を有しており、
前記第1移動手段を制御して、前記基板保持回転手段および前記密閉チャンバを前記乾燥位置に移動させるとともに、前記基板保持回転手段および前記蓋部材回転手段を制御して、前記基板保持回転手段により保持された基板および前記蓋部材を、それぞれ所定の乾燥回転速度で同方向に回転させる乾燥制御手段をさらに含む、基板処理装置。 A chamber body having an opening; a lid member rotatably provided to the chamber body to close the opening; and a first liquid seal structure for sealing a gap between the lid member and the chamber body with a liquid. A sealed chamber whose internal space is sealed from the outside;
A lid member rotating means for rotating the lid member;
A substrate holding and rotating means for rotating while holding the substrate in the internal space of the sealed chamber;
Treatment liquid supply means for supplying a treatment liquid to the substrate rotated by the substrate holding rotation means ;
First moving means for moving at least one of the substrate holding and rotating means and the hermetic chamber so that the substrate held by the substrate holding and rotating means and the lid member approach / separate,
The first moving unit has a liquid processing position where the substrate is subjected to liquid processing using the processing liquid supplied from the processing liquid supply unit, and the substrate is closer to the lid member than the liquid processing position and is dried on the substrate. It is configured to move at least one of the substrate holding and rotating means and the sealed chamber between a drying position for performing processing,
The lid member has a substrate facing surface facing the entire main surface of the substrate held by the substrate holding and rotating means,
The first moving unit is controlled to move the substrate holding / rotating unit and the sealed chamber to the drying position, and the substrate holding / rotating unit and the lid member rotating unit are controlled by the substrate holding / rotating unit. A substrate processing apparatus, further comprising a drying control unit configured to rotate the held substrate and the lid member in the same direction at a predetermined drying rotation speed .
前記基板保持回転手段および前記密閉チャンバを、相対的に移動させる第2移動手段と、
前記基板保持回転手段と前記チャンバ本体との間を液体でシールする第2液体シール構造とをさらに含む、請求項1〜4のいずれか一項に記載の基板処理装置。 The substrate holding and rotating means has an exposed portion exposed outside the sealed chamber;
Second moving means for relatively moving the substrate holding and rotating means and the sealed chamber;
Further comprising a second liquid seal structure for sealing between said chamber body and the substrate holding and rotating means in liquid, the substrate processing apparatus according to any one of claims 1-4.
前記蓋部材は、前記シール溝に入り込んで前記シール用液体に浸漬されるシール環を有しており、
前記シール溝に前記シール用液体を供給する液体供給手段をさらに含み、
前記基板処理装置の起動状態において、前記シール溝に、前記液体供給手段からの前記シール用液体が常時供給される、請求項1〜5のいずれか一項に記載の基板処理装置。 The first liquid seal structure has a seal groove that is formed over the entire circumference of the opening in the chamber body, and can store a sealing liquid.
The lid member has a seal ring that enters the seal groove and is immersed in the sealing liquid;
Liquid supply means for supplying the sealing liquid to the seal groove;
In active state of the substrate processing apparatus, the seal groove, said sealing liquid from said liquid supply means is fed continuously, a substrate processing apparatus according to any one of claims 1-5.
前記密閉チャンバの内部空間に基板を配置し、この内部空間で基板を回転させる基板回転工程と、
前記基板回転工程と並行して、前記チャンバの内部空間において、基板に処理液を供給する処理液供給工程と、
基板と前記蓋部材とを、前記処理液供給工程時よりも基板が前記蓋部材に接近する乾燥位置に配置する乾燥位置配置工程と、
前記乾燥位置において、前記蓋部材および基板をそれぞれ所定の乾燥回転速度で回転させる乾燥工程とを含む、基板処理方法。 A chamber body having an opening; a lid member rotatably provided to the chamber body to close the opening; and a first liquid seal structure for sealing a gap between the lid member and the chamber body with a liquid. Preparing a sealed chamber having an internal space sealed from the outside;
A substrate rotating step of disposing a substrate in the internal space of the sealed chamber and rotating the substrate in the internal space;
In parallel with the substrate rotation step, a processing liquid supply step for supplying a processing liquid to the substrate in the internal space of the chamber;
A drying position arranging step of arranging the substrate and the lid member at a drying position where the substrate is closer to the lid member than at the time of the treatment liquid supply step;
And a drying step of rotating the lid member and the substrate at a predetermined drying rotation speed at the drying position.
その蓋洗浄位置において、前記蓋部材を所定の蓋洗浄回転速度で回転させるとともに、洗浄液吐出手段から前記蓋部材に向けて洗浄液を吐出させる蓋部材洗浄工程とをさらに含む、請求項8記載の基板処理方法。 A lid cleaning position arranging step of arranging the substrate and the lid member at a lid washing position where the substrate is closer to the lid member than at the time of the processing liquid supply step and the substrate is separated from the lid member than the drying position. When,
The substrate according to claim 8 , further comprising a lid member cleaning step of rotating the lid member at a predetermined lid cleaning rotational speed at the lid cleaning position and discharging a cleaning liquid from a cleaning liquid discharge unit toward the lid member. Processing method.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010082247A JP5172884B2 (en) | 2010-03-31 | 2010-03-31 | Substrate processing apparatus and substrate processing method |
US13/045,024 US8501025B2 (en) | 2010-03-31 | 2011-03-10 | Substrate treatment apparatus and substrate treatment method |
KR1020110021287A KR101258002B1 (en) | 2010-03-31 | 2011-03-10 | Substrate treatment apparatus and substrate treatment method |
CN201110072471.XA CN102214548B (en) | 2010-03-31 | 2011-03-22 | Substrate treatment apparatus and substrate treatment method |
CN201410363150.9A CN104143520B (en) | 2010-03-31 | 2011-03-22 | Substrate board treatment |
TW100110975A TWI489542B (en) | 2010-03-31 | 2011-03-30 | Substrate treatment apparatus and substrate treatment method |
TW104116029A TWI562222B (en) | 2010-03-31 | 2011-03-30 | Substrate treatment apparatus |
US13/928,127 US9899240B2 (en) | 2010-03-31 | 2013-06-26 | Substrate treatment apparatus |
US13/933,851 US20130291905A1 (en) | 2010-03-31 | 2013-07-02 | Substrate treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010082247A JP5172884B2 (en) | 2010-03-31 | 2010-03-31 | Substrate processing apparatus and substrate processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011216607A JP2011216607A (en) | 2011-10-27 |
JP5172884B2 true JP5172884B2 (en) | 2013-03-27 |
Family
ID=44946065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010082247A Expired - Fee Related JP5172884B2 (en) | 2010-03-31 | 2010-03-31 | Substrate processing apparatus and substrate processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5172884B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5248633B2 (en) | 2011-01-18 | 2013-07-31 | 東京エレクトロン株式会社 | Liquid processing apparatus and liquid processing method |
JP5694118B2 (en) | 2011-01-18 | 2015-04-01 | 東京エレクトロン株式会社 | Liquid processing apparatus and liquid processing method |
JP6132696B2 (en) * | 2013-07-24 | 2017-05-24 | 株式会社ディスコ | Chuck table |
WO2015098655A1 (en) | 2013-12-25 | 2015-07-02 | 株式会社Screenホールディングス | Substrate processing device |
US10573507B2 (en) | 2014-03-28 | 2020-02-25 | SCREEN Holdings Co., Ltd. | Substrate processing apparatus and substrate processing method |
JP7175122B2 (en) * | 2018-08-02 | 2022-11-18 | 東京エレクトロン株式会社 | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD |
CN114263902B (en) * | 2021-12-03 | 2023-08-25 | 苏州智程半导体科技股份有限公司 | Mixed steam generation system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06333899A (en) * | 1993-05-19 | 1994-12-02 | Matsushita Electric Ind Co Ltd | Chemical treatment method and treatment device therefor |
JP2004111592A (en) * | 2002-09-18 | 2004-04-08 | Sumitomo Precision Prod Co Ltd | Rotary substrate processing device |
JP4928428B2 (en) * | 2007-12-10 | 2012-05-09 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, and storage medium |
JP2009267101A (en) * | 2008-04-25 | 2009-11-12 | Dainippon Screen Mfg Co Ltd | Substrate-treating device |
-
2010
- 2010-03-31 JP JP2010082247A patent/JP5172884B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011216607A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5358505B2 (en) | Substrate processing equipment | |
KR101258002B1 (en) | Substrate treatment apparatus and substrate treatment method | |
JP5752760B2 (en) | Substrate processing apparatus and substrate processing method | |
JP5390808B2 (en) | Substrate processing apparatus and substrate processing method | |
US10115610B2 (en) | Substrate processing apparatus | |
JP5172884B2 (en) | Substrate processing apparatus and substrate processing method | |
JP5920867B2 (en) | Substrate processing apparatus and substrate processing method | |
JP2010010421A (en) | Substrate processing apparatus | |
KR102208292B1 (en) | Substrate processing apparatus and substrate processing method | |
KR101035983B1 (en) | Single type substrate treating apparatus and method of exhausting in the apparatus | |
US11152204B2 (en) | Substrate processing method and substrate processing apparatus | |
KR101866640B1 (en) | Substrate processing method and substrate processing apparatus | |
JP2008027931A (en) | Substrate processing apparatus and method | |
US20210313191A1 (en) | Substrate processing method and substrate processing device | |
JP2016072609A (en) | Wafer processing method and wafer processing apparatus | |
KR20180040127A (en) | Substrate processing method and substrate processing apparatus | |
KR102223972B1 (en) | Substrate processing apparatus and substrate processing method | |
JP5979743B2 (en) | Substrate processing equipment | |
TWI809652B (en) | Substrate processing method and substrate processing apparatus | |
TWI733075B (en) | Substrate processing method and substrate processing apparatus | |
JP5194044B2 (en) | Treatment liquid supply apparatus and treatment liquid supply method | |
JP6640630B2 (en) | Substrate processing apparatus and substrate processing method | |
KR101023067B1 (en) | Single type substrate treating apparatus and method for controlling presure of substrate treating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5172884 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |