WO2022097520A1 - 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 - Google Patents

基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2022097520A1
WO2022097520A1 PCT/JP2021/039264 JP2021039264W WO2022097520A1 WO 2022097520 A1 WO2022097520 A1 WO 2022097520A1 JP 2021039264 W JP2021039264 W JP 2021039264W WO 2022097520 A1 WO2022097520 A1 WO 2022097520A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
unit
etching
thickness
Prior art date
Application number
PCT/JP2021/039264
Other languages
English (en)
French (fr)
Inventor
仁 小杉
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020237017659A priority Critical patent/KR20230101837A/ko
Priority to JP2022560722A priority patent/JP7542078B2/ja
Priority to CN202180073335.4A priority patent/CN116438633A/zh
Publication of WO2022097520A1 publication Critical patent/WO2022097520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing method, and a computer-readable recording medium.
  • Patent Document 1 discloses an apparatus for measuring the film thickness of a thin film at the same timing as the etching of the thin film is progressing in order to control the film thickness (etching amount) of the thin film.
  • the device includes an optical probe configured to detect an interference state between the reflected light from the thin film surface and the reflected light from the substrate surface, and a control configured to calculate the film thickness based on the interference state. It has a department.
  • the present disclosure describes a substrate processing apparatus, a substrate processing method, and a computer-readable recording medium capable of accurately measuring the thickness of a film formed on the surface of a substrate.
  • An example of a substrate processing apparatus is a rotation holding portion configured to hold and rotate a substrate having a film formed on its surface, and an etching solution is supplied to the surface of the substrate while the substrate is rotated by the rotation holding portion.
  • the chemical solution supply unit configured as described above
  • the rinse liquid supply unit configured to supply the rinse liquid to the surface of the substrate during the rotation of the substrate by the rotation holding unit, and the measurement head located near the surface of the substrate.
  • a measuring unit configured to measure the thickness of the film in a state, and a driving unit configured to move the measuring head horizontally with respect to the surface of the substrate during measurement by the measuring unit. It is provided with an auxiliary supply unit configured to supply the rinse liquid to the gap between the measurement head and the surface of the substrate during the measurement by the unit and fill the gap with the rinse liquid.
  • the substrate processing apparatus According to the substrate processing apparatus, the substrate processing method, and the computer-readable recording medium according to the present disclosure, it is possible to accurately measure the thickness of the film formed on the surface of the substrate.
  • FIG. 1 is a plan view schematically showing an example of a substrate processing apparatus.
  • FIG. 2 is a side view schematically showing an example of the processing unit.
  • FIG. 3 is a perspective view schematically showing a part of the processing unit of FIG.
  • FIG. 4 is a cross-sectional view schematically showing a part of the processing unit of FIG.
  • FIG. 5 is a block diagram showing an example of a main part of the substrate processing apparatus.
  • FIG. 6 is a schematic diagram showing an example of the hardware configuration of the controller.
  • FIG. 7 (a) is a cross-sectional view showing an example of a film thickness profile in which the film thickness is relatively small in the central portion of the substrate, and FIG.
  • FIG. 7 (b) is a cross-sectional view showing an example of the film thickness profile in which the film thickness is relatively large in the central portion of the substrate.
  • FIG. 7 (c) is a cross-sectional view showing an example of a film thickness profile
  • FIG. 7 (c) is a cross-sectional view showing an example of a film thickness profile having a substantially uniform film thickness over the entire substrate.
  • FIG. 8 is a flowchart for explaining an example of the processing procedure of the substrate.
  • FIG. 9 is a diagram for explaining an example of the processing procedure of the substrate.
  • FIG. 10 is a diagram for explaining the subsequent steps of FIG.
  • FIG. 11 is a diagram for explaining another example of the processing procedure of the substrate.
  • FIG. 12 is a diagram for explaining the subsequent steps of FIG.
  • FIG. 13 is a side view schematically showing another example of the processing unit.
  • the board processing device 1 includes a loading / unloading station 2, a processing station 3, and a controller Ctr (control unit).
  • the loading / unloading station 2 and the processing station 3 may be arranged in a row in the horizontal direction, for example.
  • the substrate W may have a disk shape or a plate shape other than a circle such as a polygon.
  • the substrate W may have a notch portion that is partially cut out.
  • the notch portion may be, for example, a notch (a groove having a U-shape, a V-shape, or the like) or a straight portion extending linearly (so-called orientation flat).
  • the substrate W may be, for example, a semiconductor substrate (silicon wafer), a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or various other substrates.
  • the diameter of the substrate W may be, for example, about 200 mm to 450 mm.
  • the loading / unloading station 2 includes a loading section 4, a loading / unloading section 5, and a shelf unit 6.
  • the mounting unit 4 includes a plurality of mounting tables (not shown) arranged in the width direction (vertical direction in FIG. 1). Each mounting table is configured so that the carrier 7 (container) can be mounted.
  • the carrier 7 is configured to accommodate at least one substrate W in a sealed state.
  • the carrier 7 includes an opening / closing door (not shown) for loading / unloading the substrate W.
  • the loading / unloading section 5 is arranged adjacent to the loading section 4 in the direction in which the loading / unloading station 2 and the processing station 3 are lined up (left-right direction in FIG. 1).
  • the carry-in / carry-out section 5 includes an opening / closing door (not shown) provided corresponding to the mounting section 4. With the carrier 7 mounted on the loading section 4, both the opening / closing door of the carrier 7 and the opening / closing door of the loading / unloading section 5 are opened, so that the inside of the loading / unloading section 5 and the inside of the carrier 7 communicate with each other. do.
  • the carry-in / carry-out unit 5 has a built-in transport arm A1 and a shelf unit 6.
  • the transport arm A1 is configured to be capable of horizontal movement in the width direction (vertical direction in FIG. 1) of the carry-in / carry-out portion 5, vertical movement in the vertical direction, and swivel movement around the vertical axis.
  • the transfer arm A1 is configured to take out the substrate W from the carrier 7 and pass it to the shelf unit 6, and also receive the substrate W from the shelf unit 6 and return it to the carrier 7.
  • the shelf unit 6 is located in the vicinity of the processing station 3 and is configured to mediate the transfer of the substrate W between the loading / unloading unit 5 and the processing station 3.
  • the processing station 3 includes a transport unit 8 and a plurality of processing units 10.
  • the transport unit 8 extends horizontally, for example, in the direction in which the carry-in / out station 2 and the processing station 3 are lined up (left-right direction in FIG. 1).
  • the transport unit 8 has a built-in transport arm A2.
  • the transport arm A2 is configured to be capable of horizontal movement in the longitudinal direction (left-right direction in FIG. 1) of the transport portion 8, vertical movement in the vertical direction, and swivel movement around the vertical axis.
  • the transfer arm A2 is configured to take out the substrate W from the shelf unit 6 and pass it to each processing unit 10, and also receives the substrate W from each processing unit 10 and returns it to the inside of the shelf unit 6.
  • the plurality of processing units 10 are arranged in a row on both sides of the transport unit 8 along the longitudinal direction of the transport unit 8 (left-right direction in FIG. 1).
  • the processing unit 10 is configured to perform a predetermined process (for example, a cleaning process) on the substrate W. Details of the processing unit 10 will be described later.
  • the controller Ctr is configured to partially or wholly control the substrate processing device 1. The details of the controller Ctr will be described later.
  • the processing unit 10 includes a rotation holding unit 20, a chemical liquid supply unit 30, a rinse liquid supply unit 40, a drive unit 50, an auxiliary supply unit 60, a measurement unit 70, and a drive unit 80.
  • the rotation holding portion 20 includes a rotating portion 21, a shaft 22, and a holding portion 23.
  • the rotating unit 21 operates based on an operation signal from the controller Ctr and is configured to rotate the shaft 22.
  • the rotating portion 21 may be a power source such as an electric motor.
  • the holding portion 23 is provided at the tip end portion of the shaft 22, and has a disk shape, for example.
  • the holding portion 23 may be configured to suck and hold the entire back surface of the substrate W by, for example, suction. In this case, even if the substrate W is warped or the like, the substrate W is corrected so as to be substantially horizontal along the surface of the holding portion 23. That is, the rotation holding portion 20 may be configured to rotate the substrate W around a central axis (rotation axis) perpendicular to the surface of the substrate W while the posture of the substrate W is substantially horizontal. As illustrated in FIG. 2, the rotation holding portion 20 may rotate the substrate W counterclockwise when viewed from above.
  • the holding unit 23 has a plurality of heating units 24 and 25 built-in.
  • the heating units 24 and 25 may be a heat source such as a resistance heating heater.
  • the heating unit 24 is located at the center of the holding unit 23. Therefore, the heating unit 24 is configured to heat the central portion of the substrate W while the substrate W is held by the rotation holding portion 20.
  • the heating portion 25 has an annular shape so as to surround the heating portion 24, and is located on the outer peripheral portion of the holding portion 23. Therefore, the heating unit 25 is configured to heat the outer peripheral portion of the substrate W while the substrate W is held by the rotation holding unit 20. In other words, the heating units 24 and 25 are configured to partially heat the substrate W, respectively.
  • the chemical solution supply unit 30 is configured to supply the etching solution L1 to the substrate W.
  • the etching solution L1 is, for example, a chemical solution for etching a film F (for example, a thin film such as a silicon oxide film) arranged on the surface Wa of the substrate W.
  • the etching solution L1 contains, for example, an alkaline chemical solution, an acidic chemical solution, and the like.
  • the alkaline chemical solution contains, for example, SC-1 solution (a mixed solution of ammonia, hydrogen peroxide and pure water), hydrogen peroxide solution, and the like.
  • Acidic chemicals include, for example, SC-2 solution (mixed solution of hydrochloric acid, hydrogen peroxide and pure water), HF solution (hydrofluoric acid), DHF solution (dilute hydrofluoric acid), HNO 3 + HF solution (nitric acid and hydrofluoric acid). Mixture solution) and the like.
  • the chemical liquid supply unit 30 includes a liquid source 31, a pump 32, a valve 33, a nozzle 34, and a pipe 35.
  • the liquid source 31 is a supply source of the etching liquid L1.
  • the pump 32 operates based on an operation signal from the controller Ctr, and is configured to send the etching liquid L1 sucked from the liquid source 31 to the nozzle 34 via the pipe 35 and the valve 33.
  • the valve 33 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows the flow of fluid in the pipe 35 and a closed state that hinders the flow of the fluid in the pipe 35.
  • the nozzle 34 is arranged above the substrate W so that the ejection port faces the surface Wa of the substrate W.
  • the nozzle 34 is configured to discharge the etching solution L1 delivered from the pump 32 from the discharge port.
  • the pipe 35 connects the liquid source 31, the pump 32, the valve 33, and the nozzle 34 in this order from the upstream side.
  • the rinse liquid supply unit 40 is configured to supply the rinse liquid L2 to the substrate W.
  • the rinsing liquid L2 is, for example, a cleaning liquid for washing away the dissolved components of the film F by the etching liquid L1 and the etching liquid L1 supplied to the surface Wa of the substrate W from the surface Wa.
  • the rinse liquid L2 contains, for example, pure water (DIW: deionized water) or the like.
  • the rinse liquid supply unit 40 includes a liquid source 41, a pump 42, a valve 43, a nozzle 44, and a pipe 45.
  • the liquid source 41 is a supply source of the rinse liquid L2.
  • the pump 42 operates based on an operation signal from the controller Ctr, and is configured to send the rinse liquid L2 sucked from the liquid source 41 to the nozzle 44 via the pipe 45 and the valve 43.
  • the valve 43 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows the flow of fluid in the pipe 45 and a closed state that hinders the flow of the fluid in the pipe 45.
  • the nozzle 44 is arranged above the substrate W so that the ejection port faces the surface Wa of the substrate W.
  • the nozzle 44 is configured to discharge the rinse liquid L2 delivered from the pump 42 from the discharge port.
  • the pipe 45 connects the liquid source 41, the pump 42, the valve 43, and the nozzle 44 in this order from the upstream side.
  • the drive unit 50 includes a holding portion 51 and a drive mechanism 52.
  • the holding portion 51 is configured to hold the nozzles 34 and 44.
  • the drive mechanism 52 operates based on the signal from the controller Ctr, and is configured to move the holding portion 51 in the horizontal direction and the vertical direction. Therefore, the nozzles 34 and 44 move in the horizontal direction and the vertical direction as the holding portion 51 moves.
  • the auxiliary supply unit 60 is configured to supply the rinse liquid L2 to the substrate W. It includes a liquid source 61, a pump 62, a valve 63, a nozzle 64, and a pipe 65.
  • the liquid source 61 is a supply source of the rinse liquid L2.
  • the pump 62 operates based on an operation signal from the controller Ctr, and is configured to send the rinse liquid L2 sucked from the liquid source 61 to the nozzle 64 via the pipe 65 and the valve 63.
  • the valve 63 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows the flow of fluid in the pipe 65 and a closed state that hinders the flow of the fluid in the pipe 65.
  • the nozzle 64 is arranged above the substrate W so that the ejection port faces the surface Wa of the substrate W.
  • the nozzle 64 is configured to discharge the rinse liquid L2 delivered from the pump 62 from the discharge port.
  • the pipe 65 connects the liquid source 61, the pump 62, the valve 63, and the nozzle 64 in this order from the upstream side.
  • the measuring unit 70 is configured to measure the thickness of the film F arranged on the surface Wa of the substrate W (hereinafter, simply referred to as “film thickness”) and transmit the measured value to the controller Ctr.
  • the measuring unit 70 may be configured to measure the film thickness with reference to the surface Wa of the substrate W.
  • the measuring unit 70 may be, for example, a film thickness measuring device using a spectroscopic interferometry.
  • the measuring unit 70 is, for example, an irradiation unit that irradiates light toward the surface Wa of the substrate W, light reflected by the irradiation unit on the surface Wa of the substrate W, and light from the irradiation unit is the film F. It may include a light receiving unit that receives multiple reflected light, which is a superposition of light reflected on the surface of the above.
  • the measuring unit 70 includes a measuring head 71 arranged in the vicinity of the surface Wa of the substrate W when measuring the film thickness. Therefore, during the measurement of the film thickness, a gap G exists between the tip of the measuring head 71 and the surface Wa of the substrate W.
  • the drive unit 80 includes a holding unit 81 and a drive mechanism 82 (drive unit).
  • the holding portion 81 is configured to hold the nozzle 64 and the measuring head 71.
  • the nozzle 64 and the measuring head 71 may be adjacent to each other while the nozzle 64 and the measuring head 71 are held by the holding portion 81.
  • the tip (lower end) of the measuring head 71 is more on the surface Wa of the substrate W than the lower end of the nozzle 64. It may be located near.
  • the measuring head 71 may be located radially outward from the nozzle 64. In a state where the nozzle 64 and the measurement head 71 are held by the holding portion 81, the measurement head 71 may be located on the downstream side in the rotation direction of the substrate W with respect to the nozzle 64. In a state where the nozzle 64 and the measuring head 71 are held by the holding portion 81, the measuring head 71 is located on the downstream side of the rotating substrate W where the rinse liquid L2 discharged from the nozzle 64 flows through the surface Wa. It may be located (see FIG. 3).
  • the drive mechanism 82 operates based on a signal from the controller Ctr, and is configured to move the holding portion 81 in the horizontal direction and the vertical direction. Therefore, the nozzle 64 and the measuring head 71 move in the horizontal direction and the vertical direction as the holding portion 81 moves.
  • the controller Ctr has a reading unit M1, a storage unit M2, a processing unit M3, and an indicating unit M4 as functional modules.
  • These functional modules merely divide the functions of the controller Ctr into a plurality of modules for convenience, and do not necessarily mean that the hardware constituting the controller Ctr is divided into such modules.
  • Each functional module is not limited to that realized by executing a program, but is realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) that integrates the circuits. You may.
  • the reading unit M1 is configured to read a program from a computer-readable recording medium RM.
  • the recording medium RM records a program for operating each part of the substrate processing apparatus 1 including the processing unit 10.
  • the recording medium RM may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or an optical magnetic recording disk.
  • the storage unit M2 is configured to store various data.
  • the storage unit M2 may store, for example, a program read from the recording medium RM by the reading unit M1, setting data input from the operator via an external input device (not shown), and the like.
  • the storage unit M2 may store, for example, the measured value of the film thickness received from the measuring unit 70, the target value of the film thickness, the processing conditions for the etching process of the film F, and the like.
  • the processing conditions may be composed of a combination of a plurality of set values for operating each part of the processing unit 10 during the etching process.
  • the set values are, for example, the position of the nozzle 34 with respect to the surface Wa of the substrate W, the discharge flow rate of the etching solution L1, the ejection time of the etching solution L1, the temperature of the etching solution L1, the rotation speed of the substrate W, and the temperatures of the heating units 24 and 25. Etc. may be included.
  • the storage unit M2 may store in advance the film thickness profile in the plane of the substrate W, that is, the processing conditions corresponding to the fluctuation state of the film thickness in the plane of the substrate W. For example, the etching rate of the outer peripheral portion of the substrate W becomes higher than that of the central portion corresponding to the first film thickness profile (see FIG. 7A) in which the film thickness at the central portion of the substrate W is smaller than that of the outer peripheral portion.
  • the first processing condition configured by the combination of such set values may be stored in advance in the storage unit M2. For example, the etching rate of the outer peripheral portion of the substrate W is smaller than that of the central portion corresponding to the second film thickness profile (see FIG.
  • the second processing condition configured by the combination of such set values may be stored in advance in the storage unit M2.
  • the third processing condition configured by the above may be stored in advance in the storage unit M2.
  • the processing unit M3 is configured to process various data.
  • the processing unit M3 is, for example, based on various data stored in the storage unit M2, and each unit of the substrate processing device 1 (for example, a rotating unit 21, a heating unit 24, 25, a pump 32, 42, 62, a valve 33, 43, 63, drive mechanism 52, 82) may be generated to operate the signal.
  • each unit of the substrate processing device 1 for example, a rotating unit 21, a heating unit 24, 25, a pump 32, 42, 62, a valve 33, 43, 63, drive mechanism 52, 82
  • the instruction unit M4 drives the operation signal generated by the processing unit M3 into each unit of the substrate processing device 1 (for example, the rotating unit 21, the heating unit 24, 25, the pump 32, 42, 62, the valve 33, 43, 63,). It is configured to transmit to the mechanisms 52, 82).
  • the hardware of the controller Ctr may be configured by, for example, one or a plurality of control computers. As shown in FIG. 6, the controller Ctr may include the circuit C1 as a hardware configuration.
  • the circuit C1 may be composed of an electric circuit element (circuitry).
  • the circuit C1 may include, for example, a processor C2, a memory C3, a storage C4, a driver C5, and an input / output port C6.
  • the processor C2 is configured to realize each of the above-mentioned functional modules by executing a program in cooperation with at least one of the memory C3 and the storage C4 and executing input / output of a signal via the input / output port C6. It may have been done.
  • the memory C3 and the storage C4 may function as the storage unit M2.
  • the driver C5 may be a circuit configured to drive each part of the substrate processing device 1.
  • the input / output port C6 may be configured to mediate the input / output of a signal between the driver C5 and each part of the board processing device 1.
  • the board processing device 1 may include one controller Ctr, or may include a controller group (control unit) composed of a plurality of controller Ctrs.
  • each of the above functional modules may be realized by one controller Ctr, or may be realized by a combination of two or more controller Ctrs. ..
  • the controller Ctr is composed of a plurality of computers (circuit C1)
  • each of the above functional modules may be realized by one computer (circuit C1), or two or more computers (circuit C1). ) May be realized.
  • the controller Ctr may have a plurality of processors C2. In this case, each of the above functional modules may be realized by one processor C2 or may be realized by a combination of two or more processors C2.
  • the controller Ctr controls the transfer arms A1 and A2 to take out one substrate W from the carrier 7 and transfer it to one of the processing units 10.
  • the substrate W conveyed into the processing unit 10 is placed on the holding portion 23.
  • the controller Ctr controls the rotating portion 21 and the holding portion 23 (rotating holding portion 20) to suck and hold the back surface of the substrate W by the holding portion 23 and rotate the substrate W.
  • the controller Ctr controls the pumps 42, 62 and the valves 43, 63 (rinse liquid supply unit 40 and auxiliary supply unit 60).
  • the rinse liquid L2 is supplied to each of the surface Wa and the gap G of the substrate W.
  • the rinse liquid L2 discharged from the nozzle 44 may be supplied toward the substantially central portion of the surface Wa of the substrate W.
  • the rinse liquid L2 discharged from the nozzle 44 flows through the entire surface Wa from the central portion of the substrate W toward the peripheral edge due to the rotation of the substrate W, and then is shaken off to the outside. Therefore, the thin film R1 of the rinse liquid L2 (see FIGS. 4 and 9 (a)) is formed on the entire surface Wa of the substrate W. Therefore, the appearance of the dry region is suppressed on the surface Wa of the substrate W.
  • the thickness of the thin film R1 formed on the surface Wa of the substrate W by the rinse liquid L2 discharged from the nozzle 44 may be, for example, about 0.1 mm to 0.4 mm.
  • the rinse liquid L2 supplied from the nozzle 64 to the gap G flows from the liquid landing position on the surface Wa of the substrate W toward the peripheral edge of the substrate W due to the rotation of the substrate W, and then is shaken off to the outside. Therefore, a thick film R2 of the rinse liquid L2 (see FIGS. 4 and 9 (a)) is formed in the vicinity of the gap G.
  • the thickness of the thick film R2 may be, for example, about 1 mm to 3 mm.
  • the controller Ctr controls the drive mechanism 82 to transfer the measurement head 71 (holding portion 81) to the substrate W. It is moved substantially horizontally along the surface Wa.
  • the film thickness of the film F in the plane of the substrate W is measured by the measuring unit 70, and the measured value is stored in the storage unit M2 (see steps S1 and 9 (a) in FIG. 8).
  • the instruction unit M4 may execute a process of controlling the drive mechanism 82 so that the measurement head 71 (holding unit 81) is moved in the substantially horizontal direction along the radial direction of the substrate W.
  • the instruction unit M4 may execute a process of controlling the drive mechanism 82 so that the measurement head 71 (holding unit 81) is moved from the central portion of the substrate W toward the peripheral edge.
  • the instruction unit M4 may execute a process of controlling the drive mechanism 82 so that the measurement head 71 (holding unit 81) is moved from the peripheral edge of the substrate W toward the central portion.
  • the controller Ctr selects one processing condition from the plurality of processing conditions stored in the storage unit M2 based on the measured value of the film thickness measured in step S1 (see step S2 in FIG. 8). ..
  • processing conditions suitable for etching the film F are selected based on the measured value of the film thickness before etching. Therefore, for example, even when the film thickness before etching fluctuates in the plane of the substrate W, the film thickness after etching can be made uniform.
  • the controller Ctr may select a processing condition such that the thickness of the film F after the etching process is equal to or less than a predetermined target value and is almost flat as a whole. For example, when the measured value measured in step S1 indicates the first film thickness profile (see FIG. 7A), the controller Ctr may select the first processing condition from the storage unit M2. When the measured value measured in step S1 indicates a second film thickness profile (see FIG. 7B), the controller Ctr may select the second processing condition from the storage unit M2. When the measured value measured in step S1 is indicated by the third film thickness profile (see FIG. 7C), the controller Ctr may select the third processing condition from the storage unit M2.
  • the controller Ctr controls the rotation holding unit 20 to rotate the substrate W sucked and held by the holding unit 23 at a predetermined rotation speed.
  • the controller Ctr controls the pump 32 and the valve 33 (chemical liquid supply unit 30) based on the processing conditions selected in step S2, and the etching solution L1 is transferred to the substrate at a predetermined discharge flow rate, discharge time, and temperature. It is supplied to the surface Wa of W (see step S3 and FIG. 9B in FIG. 8). Even if the etching liquid L1 is started to be supplied while the rinse liquid L2 supplied in step S1 covers the surface Wa of the substrate W in order to suppress the appearance of the dry region on the surface Wa of the substrate W. good. Therefore, the supply of the rinse liquid L2 from the nozzles 44 and 64 may be stopped after the supply of the etching liquid L1 is started.
  • the controller Ctr may set other parts of the processing unit 10 by using a plurality of setting values included in the processing conditions selected in step S2. For example, when the first processing condition is selected, the controller Ctr may control the heating units 24 and 25 so that the temperature of the heating unit 25 is higher than that of the heating unit 24. In this case, since the etching rate at the outer peripheral portion of the substrate W is higher than that at the central portion, the film F at the outer peripheral portion of the substrate W is more likely to be etched. When the second processing condition is selected, the controller Ctr may control the heating units 24 and 25 so that the temperature of the heating unit 24 is higher than that of the heating unit 25. In this case, since the etching rate in the central portion of the substrate W is higher than that in the outer peripheral portion, the film F in the central portion of the substrate W is more likely to be etched.
  • the etching solution L1 discharged from the nozzle 34 may be supplied toward the substantially central portion of the surface Wa of the substrate W.
  • the etching solution L1 discharged from the nozzle 34 flows through the entire surface Wa from the central portion of the substrate W toward the peripheral edge due to the rotation of the substrate W, and then is shaken off to the outside. Therefore, the thin film R3 of the etching solution L1 (see FIG. 9B) is formed on the entire surface Wa of the substrate W. Therefore, the appearance of the dry region is suppressed on the surface Wa of the substrate W.
  • the controller Ctr controls each part of the processing unit 10 in the same manner as in step S1 and measures the film thickness of the film F in the plane of the substrate W by the measuring unit 70 (steps S4 and 3 in FIG. 8). 4 and 10 (a)).
  • the rinse liquid L2 from the nozzles 44 and 64 is covered with the etching solution L1 supplied in step S3 while covering the surface Wa of the substrate W. Supply may be started. Therefore, the supply of the etching solution L1 may be stopped after the supply of the rinse solution L2 from the nozzles 44 and 64 is started.
  • the controller Ctr updates the processing conditions based on the measured value of the film thickness measured in step S4, and stores the updated processing conditions in the storage unit M2 (see step S5 in FIG. 8).
  • the measured value indicates the first film thickness profile (see FIG. 7A)
  • At least one of a plurality of setting values may be updated.
  • the etching processing conditions are updated based on the measured value of the film thickness after etching, it is possible to control the etching processing by feedback.
  • the measured value indicates the second film thickness profile (see FIG. 7B)
  • a plurality of processing conditions are included so that the etching rate in the central portion of the substrate W is higher than that in the outer peripheral portion.
  • At least one of the set values may be updated.
  • the controller Ctr determines whether or not the measured value of the film thickness measured in step S4 is equal to or less than a predetermined target value (see step S6 in FIG. 8).
  • the controller Ctr controls the rotation holding unit 20 to the holding unit 23.
  • the substrate W that is attracted and held is rotated at a predetermined rotation speed for a predetermined time.
  • the rinse liquid L2 is shaken off from the surface Wa of the substrate W, and the substrate W is dried (see step S7 and FIG. 10B in FIG. 8).
  • the controller Ctr controls the transport arms A1 and A2 to transport the dried substrate W and return it to the carrier 7.
  • the controller Ctr sets the processing conditions used in step S3. Correct (see step S9 in FIG. 8). That is, the controller Ctr corrects at least one of the plurality of set values included in the processing conditions so that the processing conditions can obtain a larger etching rate.
  • the controller Ctr controls the rotation holding unit 20 based on the processing conditions corrected in step S4, and rotates the substrate W sucked and held by the holding unit 23 at a predetermined rotation speed.
  • the controller Ctr controls the chemical liquid supply unit 30 based on the processing conditions corrected in step S4 to supply the etching liquid L1 to the surface Wa of the substrate W at a predetermined discharge flow rate, discharge time, and temperature. (See step S10 in FIG. 8).
  • the controller Ctr controls the chemical liquid supply unit 30 based on the processing conditions corrected in step S4 to supply the etching liquid L1 to the surface Wa of the substrate W at a predetermined discharge flow rate, discharge time, and temperature. (See step S10 in FIG. 8).
  • the processing conditions may be corrected so that the part is mainly etched in step S9.
  • the film F is re-etched using the corrected processing conditions, so that the film thickness after the re-etching treatment can be made uniform.
  • steps S4 and below are repeatedly executed until the film thickness becomes equal to or less than a predetermined target value. Even if the etching liquid L1 is started to be supplied while the rinse liquid L2 supplied in step S4 covers the surface Wa of the substrate W in order to suppress the appearance of the dry region on the surface Wa of the substrate W. good. Therefore, the supply of the rinse liquid L2 from the nozzles 44 and 64 may be stopped after the supply of the etching liquid L1 is started. Further, the controller Ctr may further update the processing conditions updated in step S5 by using the corrected processing conditions.
  • step S7 the controller Ctr determines whether or not there is a subsequent substrate W to be processed (see step S8 in FIG. 8).
  • step S8 the controller Ctr determines whether or not there is a subsequent substrate W to be processed.
  • step S1 when there is a subsequent substrate W to be processed (when "NO" in step S8 of FIG. 8), that is, when the unprocessed substrate W is housed in the carrier 7, the controller Ctr is the transfer arm A1. , A2 is controlled, one unprocessed substrate W is taken out from the carrier 7, and the substrate W is placed on the holding portion 23. After that, as illustrated in FIG. 8, step S2 or lower may be executed for the substrate W. At this time, in step S2, the processing conditions updated in step S5 may be used. In the substrate W of the same lot, the film thickness profile of the film F formed on the surface Wa tends to be similar. Therefore, by using the processing conditions after the update, step S1 is omitted and the untreated substrate W is used. Etching process can be performed efficiently.
  • the state in which the measuring head 71 is immersed in the rinsing liquid L2 is maintained during the measurement of the film thickness by the measuring unit 70. Therefore, when measuring the film thickness, it is not affected by the surface fluctuation of the rinse liquid L2. Therefore, it is possible to accurately measure the thickness of the film F formed on the surface of the substrate W. Further, when the film thickness is measured by the measuring unit 70, the etching solution L1 does not adhere to the measuring unit 70. Therefore, since it is not necessary to consider the chemical resistance of the measuring unit 70, the cost of the measuring unit 70 can be suppressed, and the film thickness can be measured in substantially the same environment regardless of the type of the etching solution L1. Is possible.
  • a liquid film of the rinse liquid L2 is formed on the entire surface Wa of the substrate W during the measurement of the film thickness by the measuring unit 70. Therefore, the drying of the surface Wa of the substrate W is suppressed by the rinsing liquid L2, so that particles and the like are less likely to adhere to the surface Wa of the substrate W. Therefore, it is possible to improve the quality of the surface treatment of the substrate W.
  • the holding portion 23 is configured to totally adsorb the back surface of the substrate W. Therefore, even if the substrate W is warped, the surface Wa of the substrate W is kept substantially horizontal by being totally adsorbed on the holding portion 23. Therefore, the film thickness can be measured more accurately.
  • the measuring unit 70 is configured to measure the thickness of the film F with reference to the surface Wa of the substrate W. Therefore, even if there is a variation in the thickness of the substrate W in the plane of the substrate W, the film thickness is measured by excluding the influence of the variation. Therefore, the film thickness can be measured more accurately.
  • the heating units 24 and 25 are configured to partially heat the substrate W. Therefore, when the heating units 24 and 25 operate during the etching process, the etching progress rate changes between the partially heated region of the substrate W and the other regions. Therefore, when the thickness of the film F formed on the substrate W is not uniform, the region of the substrate W having a large film thickness is partially heated by the heating portions 24 and 25 to reduce the film thickness after etching. It is possible to make them evenly close.
  • the film thickness is measured by the measuring unit 70 while the rinse liquid L2 is being supplied to the substrate W, that is, in a state where the progress of the etching process of the film F is suppressed by the rinse liquid L2. I was going.
  • the film thickness may be measured by the measuring unit 70 while the etching process of the film F is in progress.
  • the controller Ctr controls the rotation holding unit 20 and the chemical solution supply unit 30 based on predetermined processing conditions, and supplies the etching solution L1 to the surface Wa of the rotating substrate W to the surface Wa of the substrate W. Let me. (See FIG. 11 (a)).
  • the controller Ctr controls the auxiliary supply unit 60 while continuing to discharge the etching liquid L1 from the nozzle 34, so that the etching liquid L1 is also supplied to the gap G (see FIG. 11B). ). That is, in this example, the etching solution L1 is stored in the liquid source 61 of the auxiliary supply unit 60. While the etching solution L1 is being supplied to the surface Wa of the substrate W and the gap G, the controller Ctr controls the drive mechanism 82 to move the measurement head 71 (holding portion 81) substantially horizontally along the surface Wa of the substrate W. Move (see FIG. 11 (b)). As a result, the film thickness of the film F during the etching process is measured by the measuring unit 70, and the measured value is stored in the storage unit M2.
  • the controller Ctr controls the rotation holding unit 20 and the rinsing liquid supply unit 40 to supply the rinsing liquid L2 to the surface Wa of the rotating substrate W ( See FIG. 12 (a)).
  • the etching solution L1 is washed away from the surface Wa of the substrate W by the rinsing solution L2.
  • the substrate W is dried in the same manner as in step S7, and the processing of the substrate is completed (see FIG. 12B).
  • the processing unit 10 may further include a chemical solution supply unit 90 (another chemical solution supply unit) configured to supply the etching solution L1 to the substrate W.
  • a chemical solution supply unit 90 another chemical solution supply unit
  • the progress rate of etching of the film F is different between the region of the substrate W to which the etching solution is supplied from the chemical solution supply unit 30 and the region of the substrate W to which the etching solution L1 is supplied from the chemical solution supply unit 90. Therefore, when the thickness of the film on the surface of the substrate W fluctuates (when the film thickness in the plane of the substrate W is non-uniform), the etching solution L1 is also sent from the chemical solution supply unit 90 in addition to the chemical solution supply unit 30. Is supplied to the surface Wa of the substrate W, so that the film thickness after etching can be made uniform.
  • the controller Ctr when the first processing condition is selected in step S2, the controller Ctr has a discharge flow rate, a discharge time, a temperature, etc. of the etching solution L1 in the chemical solution supply unit 90, which is higher than that of the chemical solution supply unit 30.
  • the chemical solution supply units 30 and 90 may be controlled so as to increase the size. In this case, since the etching rate at the outer peripheral portion of the substrate W is higher than that at the central portion, the film F at the outer peripheral portion of the substrate W is more likely to be etched.
  • the controller Ctr causes the chemical solution supply unit 30 to have a larger discharge flow rate, discharge time, temperature, etc.
  • the chemical supply units 30, 90 may be controlled. In this case, since the etching rate in the central portion of the substrate W is higher than that in the outer peripheral portion, the film F in the central portion of the substrate W is more likely to be etched.
  • the nozzles 34 and 44 are held by the holding portion 51 and are configured to move along with the holding portion 51.
  • the nozzles 34, 44 are connected to separate drive mechanisms and may be configured to move individually.
  • the nozzle 64 and the measuring unit 70 may be connected to separate drive mechanisms and configured to move individually.
  • the nozzles 34, 44, 64 and the measuring unit 70 are configured to move horizontally with respect to the surface Wa of the substrate W.
  • the substrate W may be configured to move horizontally with respect to the nozzles 34, 44, 64 and the measuring unit 70, or both the nozzles 34, 44, 64 and the measuring unit 70 and the substrate W move horizontally. It may be configured to do so.
  • Example 1 An example of a substrate processing apparatus is a rotation holding portion configured to hold and rotate a substrate having a film formed on its surface, and an etching solution is supplied to the surface of the substrate while the substrate is rotated by the rotation holding portion.
  • the chemical solution supply unit configured as described above
  • the rinse liquid supply unit configured to supply the rinse liquid to the surface of the substrate during the rotation of the substrate by the rotation holding unit, and the measurement head located near the surface of the substrate.
  • a measuring unit configured to measure the thickness of the film in a state
  • a driving unit configured to move the measuring head horizontally with respect to the surface of the substrate during measurement by the measuring unit.
  • an auxiliary supply unit configured to supply the rinse liquid to the gap between the measurement head and the surface of the substrate during the measurement by the unit and fill the gap with the rinse liquid.
  • the state in which the measuring head is immersed in the rinsing liquid is maintained during the measurement of the film thickness by the measuring unit. Therefore, when measuring the film thickness, it is not affected by the surface fluctuation of the rinsing liquid. Therefore, it is possible to accurately measure the thickness of the film formed on the surface of the substrate. Further, when the film thickness is measured by the measuring unit, the etching solution does not adhere to the measuring unit. Therefore, since it is not necessary to consider the chemical resistance of the measuring unit, it is possible to reduce the cost of the measuring unit and to measure the film thickness in substantially the same environment regardless of the type of etching solution. Become.
  • the rinse liquid supply unit may be configured to form a liquid film of the rinse liquid on the entire surface of the substrate during the measurement by the measurement unit.
  • the drying of the surface of the substrate is suppressed by the rinsing liquid, it becomes difficult for particles and the like to adhere to the surface of the substrate. Therefore, it is possible to improve the quality of the surface treatment of the substrate.
  • the rotation holding portion may include a holding portion configured to totally adsorb the back surface of the substrate. In this case, even if the substrate is warped, the surface of the substrate is kept substantially horizontal by being totally adsorbed to the holding portion. Therefore, the film thickness can be measured more accurately.
  • the measuring unit may be configured to measure the thickness of the film with reference to the surface of the substrate. In this case, even if there is a variation in the thickness of the substrate in the plane of the substrate, the film thickness is measured by excluding the influence of the variation. Therefore, the film thickness can be measured more accurately.
  • Example 5 The apparatus according to any one of Examples 1 to 4 may further include a heating unit configured to partially heat the substrate.
  • a heating unit configured to partially heat the substrate.
  • the etching progress rate changes between the partially heated region of the substrate and the other regions. Therefore, when the thickness of the film formed on the substrate is not uniform, the film thickness after etching can be made uniform by partially heating the region of the substrate where the film thickness is large by the heating portion. It becomes.
  • Example 6 The apparatus according to any one of Examples 1 to 5 further includes another chemical solution supply unit configured to supply the etching solution to a region other than the central portion of the surface of the substrate during rotation of the substrate by the rotation holding unit.
  • the chemical liquid supply unit may be configured to supply the etching liquid to the central portion of the surface of the substrate during the rotation of the substrate by the rotation holding unit.
  • the progress rate of etching of the film is different between the region of the substrate to which the etching solution is supplied from the chemical solution supply unit and the region of the substrate to which the etching solution is supplied from another chemical solution supply unit. Therefore, when the thickness of the film on the surface of the substrate fluctuates, it is possible to make the film thickness after etching evenly close by supplying the etching solution to the surface of the substrate from another chemical solution supply unit. Become.
  • Example 7 The device according to any one of Examples 1 to 6 further includes a control unit, and the control unit controls the rotation holding unit so as to hold and rotate the substrate, and supplies the etching solution to the surface of the substrate.
  • the substrate is controlled to hold and rotate the substrate while controlling the substrate.
  • the second process of controlling the rinse liquid supply unit and the auxiliary supply unit so as to supply the rinse liquid to the surface and the gap of the surface and the gap, respectively, and the measurement during the supply of the rinse liquid and the rotation of the substrate in the second process.
  • a third process that controls the measuring unit to measure the film thickness while controlling the drive unit so that the head moves relative to the surface of the substrate in the horizontal direction, and the measured value of the film thickness. It may be configured to execute the fourth process of updating the process condition based on the above. In this case, since the etching processing conditions are updated based on the measured value of the film thickness after etching, it is possible to control the etching processing by feedback.
  • Example 8 In the apparatus of Example 7, the control unit controls the rotation holding unit so as to hold and rotate the subsequent substrate on which another film is formed on the surface, and supplies the etching solution to the surface of the succeeding substrate. It may be configured to control the chemical solution supply unit to further perform a fifth process of etching another film based on the process conditions after being updated in the fourth process.
  • the fluctuation state (film thickness profile) of the thickness of the film formed on the surface tends to be similar. Therefore, according to Example 8, when processing the same lot of substrates, the measurement of the film thickness before the etching treatment on the subsequent substrate can be omitted by using the processing conditions after the update. Therefore, it is possible to efficiently perform the subsequent etching process of the substrate.
  • Example 9 In the apparatus of Example 7 or Example 8, the control unit performs a sixth process of determining whether or not the measured value of the film thickness is equal to or less than a predetermined target value, and the measured value of the film thickness is the target value.
  • the film is etched by controlling the rotation holding unit so as to hold and rotate the substrate again and controlling the chemical solution supply unit so as to supply the etching solution to the surface of the substrate. It may be configured to further execute the seventh process. In this case, since the same substrate is etched again, the film can be etched so that the film thickness is equal to or less than a predetermined target value. Therefore, even if the film thickness after etching exceeds a predetermined target value, the substrate on which the film is formed can be effectively used without being discarded.
  • Example 10 In the apparatus of Example 9, in the seventh process, when it is determined that the measured value of a part of the film thickness exceeds the target value, the rotation holding portion is controlled so as to hold and rotate the substrate.
  • the chemical solution supply unit may be controlled so as to supply the etching solution to the surface of the substrate, and a part of the film may be etched. In this case, the portion of the film whose film thickness exceeds the target value is mainly etched. Therefore, it is possible to make the film thickness of the same substrate after the etching process to be uniform.
  • Example 11 The apparatus according to any one of Examples 7 to 10 further includes a control unit and a storage unit configured to store a plurality of processing conditions for etching the film, and the control unit holds the substrate.
  • the measuring unit is controlled to measure the thickness of the film while controlling the drive unit so as to move the measuring head relative to the surface of the substrate in the horizontal direction.
  • the ninth process the tenth process of determining one process condition from a plurality of process conditions based on the measured value of the film thickness, and the tenth process of controlling the rotation holding unit so as to hold and rotate the substrate.
  • the chemical solution supply unit is controlled so as to supply the etching solution to the surface of the substrate, and the eleventh process of etching the film based on one process condition determined in the tenth process is further executed. It may be configured.
  • the etching treatment conditions suitable for etching the film are selected based on the measured value of the film thickness before etching. Therefore, for example, even when the film thickness before etching fluctuates in the plane of the substrate, the film thickness after etching can be made uniform.
  • An example of the substrate processing method is a first step of supplying an etching solution to the surface of a substrate while rotating a substrate having a film formed on the surface to etch the film based on predetermined processing conditions, and a measurement head.
  • the third step includes a fourth step of measuring the thickness of the film while moving the measuring head horizontally with respect to the surface of the substrate while supplying the rinse liquid and rotating the substrate. In this case, the same effect as that of the apparatus of Example 1 can be obtained.
  • the second step may include supplying the rinse liquid to the surface of the substrate so that a liquid film of the rinse liquid is formed on the entire surface of the substrate. In this case, the same effect as that of the apparatus of Example 2 can be obtained.
  • Example 14 in the method of Example 12 or Example 13, the fourth step may include measuring the thickness of the film by a measuring unit with the back surface of the substrate totally adsorbed. In this case, the same effect as that of the apparatus of Example 3 can be obtained.
  • Example 15 in any of the methods of Examples 12 to 14, the fourth step may include measuring the thickness of the film by a measuring unit with reference to the surface of the substrate. In this case, the same effect as that of the apparatus of Example 4 can be obtained.
  • Example 16 In any of the methods of Examples 12 to 15, the first step may include etching the film with the substrate partially heated. In this case, the same effect as that of the apparatus of Example 5 can be obtained.
  • the first step may include supplying the etching solution to the central portion of the surface of the substrate and the region other than the central portion of the surface of the substrate, respectively. .. In this case, the same effect as that of the apparatus of Example 6 can be obtained.
  • Example 18 In any of the methods 12 to 17, the fifth step is to update the processing conditions based on the measured values obtained by measuring the thickness of the film etched in the first step in the fourth step. Further steps may be included. In this case, the same effect as that of the apparatus of Example 7 can be obtained.
  • Example 19 The method of Example 18 is based on the processing conditions after being updated in the fifth step by supplying an etching solution to the surface of the succeeding substrate while rotating the succeeding substrate having another film formed on the surface. It may further include a sixth step of etching another film. In this case, the same effect as that of the apparatus of Example 8 can be obtained.
  • Example 20 The method of Example 18 or Example 19 is a seventh step of determining whether or not the measured value of the film thickness is equal to or less than a predetermined target value, and determining that the measured value of the film thickness exceeds the target value. If this is the case, the eighth step of supplying the etching solution to the surface of the substrate while rotating the substrate again to etch the film may be further included. In this case, the same effect as that of the apparatus of Example 9 can be obtained.
  • Example 21 In the method of Example 20, in the eighth step, when it is determined that the measured value of a part of the film thickness exceeds the target value, the etching solution is supplied to the surface of the substrate while rotating the substrate. , May include etching a portion of the film. In this case, the same effect as that of the apparatus of Example 10 can be obtained.
  • Example 22 The method of any of Examples 12 to 21 is for etching the film based on the measured value obtained by measuring the thickness of the film before being etched in the first step in the fourth step.
  • the ninth step of determining one processing condition from the plurality of processing conditions of the above is further included, and the first step is determined in the ninth step by supplying an etching solution to the surface of the substrate while rotating the substrate. It may include etching the film based on one of the treatment conditions. In this case, the same effect as that of the apparatus of Example 11 can be obtained.
  • Example 23 As an example of a computer-readable recording medium, a program for causing the substrate processing apparatus to execute any of the methods of Examples 12 to 22 may be recorded. In this case, the same effect as that of the apparatus of Example 1 can be obtained.
  • a computer-readable recording medium is a non-transitory computer recording medium (for example, various main storage devices or auxiliary storage devices) or a propagation signal (transitory computer recording medium) (. For example, a data signal that can be provided via a network) may be included.
  • Substrate processing device 10 ... Processing unit, 20 ... Rotation holding section, 21 ... Rotating section, 23 ... Holding section, 24, 25 ... Heating section, 30 ... Chemical solution supply section, 40 ... Rinse solution supply section, 50 ... Drive Unit, 60 ... Auxiliary supply unit, 70 ... Measurement unit, 71 ... Measurement head, 80 ... Drive unit, 82 ... Drive mechanism (drive unit), 90 ... Chemical solution supply unit (another chemical supply unit), Ctrl ... Controller (control) Part), F ... film (another film), G ... gap, L1 ... etching solution, L2 ... rinsing solution, M2 ... storage unit, RM ... recording medium, W ... substrate (subsequent substrate), Wa ... surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本開示は、基板の表面に形成されている膜の厚さを精度よく測定することが可能な基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体を説明する。 基板処理装置は、基板を保持して回転させるように構成された回転保持部と、回転保持部による基板の回転中に、基板の表面にエッチング液を供給するように構成された薬液供給部と、回転保持部による基板の回転中に、基板の表面にリンス液を供給するように構成されたリンス液供給部と、測定ヘッドが基板の表面近傍に位置した状態で膜の厚さを測定するように構成された測定部と、測定部による測定中に、測定ヘッドを基板の表面に対して水平方向に相対移動させるように構成された駆動部と、測定部による測定中に、測定ヘッドと基板の表面との間の隙間にリンス液を供給して隙間をリンス液で満たすように構成された補助供給部とを備える。

Description

基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体
 本開示は、基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体に関する。
 基板(例えば、半導体ウエハ)を微細加工して半導体デバイスを製造するにあたり、基板の表面に形成されている薄膜(例えば、シリコン酸化膜)を薬液(例えば、フッ酸等のエッチング液)で所定の厚さとなるまで除去するエッチング処理が行われている。特許文献1は、薄膜の膜厚(エッチング量)をコントロールするために、薄膜のエッチングが進行しているのと同じタイミングで薄膜の膜厚を測定する装置を開示している。当該装置は、薄膜表面からの反射光と基板表面からの反射光との干渉状態を検出するように構成された光学プローブと、当該干渉状態に基づいて膜厚を算出するように構成された制御部とを備えている。
特開2003-332299号公報
 本開示は、基板の表面に形成されている膜の厚さを精度よく測定することが可能な基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体を説明する。
 基板処理装置の一例は、表面に膜が形成された基板を保持して回転させるように構成された回転保持部と、回転保持部による基板の回転中に、基板の表面にエッチング液を供給するように構成された薬液供給部と、回転保持部による基板の回転中に、基板の表面にリンス液を供給するように構成されたリンス液供給部と、測定ヘッドが基板の表面近傍に位置した状態で膜の厚さを測定するように構成された測定部と、測定部による測定中に、測定ヘッドを基板の表面に対して水平方向に相対移動させるように構成された駆動部と、測定部による測定中に、測定ヘッドと基板の表面との間の隙間にリンス液を供給して隙間をリンス液で満たすように構成された補助供給部とを備える。
 本開示に係る基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体によれば、基板の表面に形成されている膜の厚さを精度よく測定することが可能となる。
図1は、基板処理装置の一例を模式的に示す平面図である。 図2は、処理ユニットの一例を模式的に示す側面図である。 図3は、図2の処理ユニットの一部を模式的に示す斜視図である。 図4は、図2の処理ユニットの一部を模式的に示す断面図である。 図5は、基板処理装置の主要部の一例を示すブロック図である。 図6は、コントローラのハードウェア構成の一例を示す概略図である。 図7(a)は、基板の中央部において膜厚が相対的に小さい膜厚プロファイルの一例を示す断面図であり、図7(b)は、基板の中央部において膜厚が相対的に大きい膜厚プロファイルの一例を示す断面図であり、図7(c)は、基板の全体にわたって膜厚が略均一な膜厚プロファイルの一例を示す断面図である。 図8は、基板の処理手順の一例を説明するためのフローチャートである。 図9は、基板の処理手順の一例を説明するための図である。 図10は、図9の後続の工程を説明するための図である。 図11は、基板の処理手順の他の例を説明するための図である。 図12は、図11の後続の工程を説明するための図である。 図13は、処理ユニットの他の例を模式的に示す側面図である。
 以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
 まず、図1を参照して、基板Wを処理するように構成された基板処理装置1について説明する。基板処理装置1は、搬入出ステーション2と、処理ステーション3と、コントローラCtr(制御部)とを備える。搬入出ステーション2及び処理ステーション3は、例えば水平方向に一列に並んでいてもよい。
 基板Wは、円板状を呈してもよいし、多角形など円形以外の板状を呈していてもよい。基板Wは、一部が切り欠かれた切欠部を有していてもよい。切欠部は、例えば、ノッチ(U字形、V字形等の溝)であってもよいし、直線状に延びる直線部(いわゆる、オリエンテーション・フラット)であってもよい。基板Wは、例えば、半導体基板(シリコンウエハ)、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。基板Wの直径は、例えば200mm~450mm程度であってもよい。
 搬入出ステーション2は、載置部4と、搬入搬出部5と、棚ユニット6とを含む。載置部4は、幅方向(図1の上下方向)において並ぶ複数の載置台(図示せず)を含んでいる。各載置台は、キャリア7(収容容器)を載置可能に構成されている。キャリア7は、少なくとも一つの基板Wを密封状態で収容するように構成されている。キャリア7は、基板Wを出し入れするための開閉扉(図示せず)を含む。
 搬入搬出部5は、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において、載置部4に隣接して配置されている。搬入搬出部5は、載置部4に対応して設けられた開閉扉(図示せず)を含む。載置部4上にキャリア7が載置された状態で、キャリア7の開閉扉と搬入搬出部5の開閉扉とが共に開放されることで、搬入搬出部5内とキャリア7内とが連通する。
 搬入搬出部5は、搬送アームA1及び棚ユニット6を内蔵している。搬送アームA1は、搬入搬出部5の幅方向(図1の上下方向)における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA1は、キャリア7から基板Wを取り出して棚ユニット6に渡し、また、棚ユニット6から基板Wを受け取ってキャリア7内に戻すように構成されている。棚ユニット6は、処理ステーション3の近傍に位置しており、搬入搬出部5と処理ステーション3との間での基板Wの受け渡しを仲介するように構成されている。
 処理ステーション3は、搬送部8と、複数の処理ユニット10とを含む。搬送部8は、例えば、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において水平に延びている。搬送部8は、搬送アームA2を内蔵している。搬送アームA2は、搬送アームA1は、搬送部8の長手方向(図1の左右方向)における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA2は、棚ユニット6から基板Wを取り出して各処理ユニット10に渡し、また、各処理ユニット10から基板Wを受け取って棚ユニット6内に戻すように構成されている。
 複数の処理ユニット10は、搬送部8の両側のそれぞれにおいて、搬送部8の長手方向(図1の左右方向)に沿って一列に並ぶように配置されている。処理ユニット10は、基板Wに所定の処理(例えば、洗浄処理)を行うように構成されている。処理ユニット10の詳細については、後述する。
 コントローラCtrは、基板処理装置1を部分的又は全体的に制御するように構成されている。コントローラCtrの詳細については後述する。
 [処理ユニット]
 続いて、図2~図4を参照して、処理ユニット10について詳しく説明する。処理ユニット10は、回転保持部20と、薬液供給部30と、リンス液供給部40と、駆動ユニット50と、補助供給部60と、測定部70と、駆動ユニット80とを備える。
 回転保持部20は、回転部21と、シャフト22と、保持部23とを含む。回転部21は、コントローラCtrからの動作信号に基づいて動作し、シャフト22を回転させるように構成されている。回転部21は、例えば電動モータ等の動力源であってもよい。
 保持部23は、シャフト22の先端部に設けられており、例えば円板状を呈している。保持部23は、例えば吸着等により、基板Wの裏面全体を吸着保持するように構成されていてもよい。この場合、基板Wに反りなどがあっても、保持部23の表面に沿って基板Wが略水平となるように矯正される。すなわち、回転保持部20は、基板Wの姿勢が略水平の状態で、基板Wの表面に対して垂直な中心軸(回転軸)周りで基板Wを回転させるように構成されていてもよい。図2に例示されるように、回転保持部20は、上方から見て反時計回りに基板Wを回転させてもよい。
 保持部23は、複数の加熱部24,25を内蔵している。加熱部24,25は、例えば、抵抗加熱ヒータなどの熱源であってもよい。加熱部24は、保持部23の中央部に位置している。そのため、回転保持部20に基板Wが保持された状態において、加熱部24は、基板Wの中央部を加熱するように構成されている。加熱部25は、加熱部24を取り囲むように環状を呈しており、保持部23の外周部に位置している。そのため、回転保持部20に基板Wが保持された状態において、加熱部25は、基板Wの外周部を加熱するように構成されている。換言すれば、加熱部24,25はそれぞれ、基板Wを部分的に加熱するように構成されている。
 薬液供給部30は、基板Wにエッチング液L1を供給するように構成されている。エッチング液L1は、例えば、基板Wの表面Waに配置された膜F(例えば、シリコン酸化膜などの薄膜)をエッチング処理するための薬液である。エッチング液L1は、例えば、アルカリ性の薬液、酸性の薬液などを含む。アルカリ性の薬液は、例えば、SC-1液(アンモニア、過酸化水素及び純水の混合液)、過酸化水素水などを含む。酸性の薬液は、例えば、SC-2液(塩酸、過酸化水素及び純水の混合液)、HF液(フッ酸)、DHF液(希フッ酸)、HNO+HF液(硝酸及びフッ酸の混合液)などを含む。
 薬液供給部30は、液源31と、ポンプ32と、バルブ33と、ノズル34と、配管35とを含む。液源31は、エッチング液L1の供給源である。ポンプ32は、コントローラCtrからの動作信号に基づいて動作し、液源31から吸引したエッチング液L1を、配管35及びバルブ33を介してノズル34に送り出すように構成されている。
 バルブ33は、コントローラCtrからの動作信号に基づいて動作し、配管35における流体の流通を許容する開状態と、配管35における流体の流通を妨げる閉状態との間で遷移するように構成されている。ノズル34は、吐出口が基板Wの表面Waに向かうように基板Wの上方に配置されている。ノズル34は、ポンプ32から送り出されたエッチング液L1を吐出口から吐出するように構成されている。配管35は、上流側から順に、液源31、ポンプ32、バルブ33及びノズル34を接続している。
 リンス液供給部40は、基板Wにリンス液L2を供給するように構成されている。リンス液L2は、例えば、基板Wの表面Waに供給されたエッチング液L1及びエッチング液L1による膜Fの溶解成分を当該表面Waから洗い流すための洗浄液である。リンス液L2は、例えば、純水(DIW:deionized water)などを含む。
 リンス液供給部40は、液源41と、ポンプ42と、バルブ43と、ノズル44と、配管45とを含む。液源41は、リンス液L2の供給源である。ポンプ42は、コントローラCtrからの動作信号に基づいて動作し、液源41から吸引したリンス液L2を、配管45及びバルブ43を介してノズル44に送り出すように構成されている。
 バルブ43は、コントローラCtrからの動作信号に基づいて動作し、配管45における流体の流通を許容する開状態と、配管45における流体の流通を妨げる閉状態との間で遷移するように構成されている。ノズル44は、吐出口が基板Wの表面Waに向かうように基板Wの上方に配置されている。ノズル44は、ポンプ42から送り出されたリンス液L2を吐出口から吐出するように構成されている。配管45は、上流側から順に、液源41、ポンプ42、バルブ43及びノズル44を接続している。
 駆動ユニット50は、保持部51と、駆動機構52とを含む。保持部51は、ノズル34,44を保持するように構成されている。駆動機構52は、コントローラCtrからの信号に基づいて動作し、保持部51を水平方向及び上下方向に移動させるように構成されている。そのため、ノズル34,44は、保持部51の移動に伴って、水平方向及び上下方向に移動する。
 補助供給部60は、基板Wにリンス液L2を供給するように構成されている。液源61と、ポンプ62と、バルブ63と、ノズル64と、配管65とを含む。液源61は、リンス液L2の供給源である。ポンプ62は、コントローラCtrからの動作信号に基づいて動作し、液源61から吸引したリンス液L2を、配管65及びバルブ63を介してノズル64に送り出すように構成されている。
 バルブ63は、コントローラCtrからの動作信号に基づいて動作し、配管65における流体の流通を許容する開状態と、配管65における流体の流通を妨げる閉状態との間で遷移するように構成されている。ノズル64は、吐出口が基板Wの表面Waに向かうように基板Wの上方に配置されている。ノズル64は、ポンプ62から送り出されたリンス液L2を吐出口から吐出するように構成されている。配管65は、上流側から順に、液源61、ポンプ62、バルブ63及びノズル64を接続している。
 測定部70は、基板Wの表面Waに配置された膜Fの厚さ(以下、単に「膜厚」という。)を測定し、その測定値をコントローラCtrに送信するように構成されている。測定部70は、基板Wの表面Waを基準として膜厚を測定するように構成されていてもよい。測定部70は、例えば、分光干渉法を用いた膜厚測定器であってもよい。この場合、測定部70は、例えば、基板Wの表面Waに向けて光を照射する照射部と、照射部からの光が基板Wの表面Waで反射した光及び照射部からの光が膜Fの表面で反射した光の重ね合わせである多重反射光を受光する受光部とを含んでいてもよい。
 測定部70は、膜厚の測定に際して基板Wの表面Waの近傍に配置される測定ヘッド71を含む。そのため、膜厚の測定中、測定ヘッド71の先端と基板Wの表面Waとの間には隙間Gが存在している。
 駆動ユニット80は、保持部81と、駆動機構82(駆動部)とを含む。保持部81は、ノズル64及び測定ヘッド71を保持するように構成されている。ノズル64及び測定ヘッド71が保持部81に保持された状態において、ノズル64及び測定ヘッド71は隣接していてもよい。図2~図4に例示されるように、ノズル64及び測定ヘッド71が保持部81に保持された状態において、測定ヘッド71の先端(下端)は、ノズル64の下端よりも基板Wの表面Waの近くに位置していてもよい。
 ノズル64及び測定ヘッド71が保持部81に保持された状態において、測定ヘッド71は、ノズル64よりも径方向外方に位置していてもよい。ノズル64及び測定ヘッド71が保持部81に保持された状態において、測定ヘッド71は、ノズル64よりも基板Wの回転方向下流側に位置していてもよい。ノズル64及び測定ヘッド71が保持部81に保持された状態において、測定ヘッド71は、ノズル64よりも、回転中の基板Wにノズル64から吐出されたリンス液L2が表面Waを流れる下流側に位置していてもよい(図3参照)。
 駆動機構82は、コントローラCtrからの信号に基づいて動作し、保持部81を水平方向及び上下方向に移動させるように構成されている。そのため、ノズル64及び測定ヘッド71は、保持部81の移動に伴って、水平方向及び上下方向に移動する。
 [コントローラの詳細]
 コントローラCtrは、図5に示されるように、機能モジュールとして、読取部M1と、記憶部M2と、処理部M3と、指示部M4とを有する。これらの機能モジュールは、コントローラCtrの機能を便宜上複数のモジュールに区切ったものに過ぎず、コントローラCtrを構成するハードウェアがこのようなモジュールに分かれていることを必ずしも意味するものではない。各機能モジュールは、プログラムの実行により実現されるものに限られず、専用の電気回路(例えば論理回路)、又は、これを集積した集積回路(ASIC:Application Specific Integrated Circuit)により実現されるものであってもよい。
 読取部M1は、コンピュータ読み取り可能な記録媒体RMからプログラムを読み取るように構成されている。記録媒体RMは、処理ユニット10を含む基板処理装置1の各部を動作させるためのプログラムを記録している。記録媒体RMは、例えば、半導体メモリ、光記録ディスク、磁気記録ディスク、光磁気記録ディスクであってもよい。
 記憶部M2は、種々のデータを記憶するように構成されている。記憶部M2は、例えば、読取部M1において記録媒体RMから読み出したプログラム、外部入力装置(図示せず)を介してオペレータから入力された設定データなどを記憶してもよい。記憶部M2は、例えば、測定部70から受信した膜厚の測定値、膜厚の目標値、膜Fのエッチング処理のための処理条件などを記憶していてもよい。
 処理条件は、エッチング処理に際して処理ユニット10の各部を動作させるための複数の設定値の組み合わせによって構成されていてもよい。設定値は、例えば、基板Wの表面Waに対するノズル34の位置、エッチング液L1の吐出流量、エッチング液L1の吐出時間、エッチング液L1の温度、基板Wの回転数、加熱部24,25の温度などを含んでいてもよい。
 記憶部M2は、基板Wの面内における膜厚プロファイル、すなわち、基板Wの面内における膜厚の高低の変動状況に対応する処理条件を予め記憶していてもよい。例えば、基板Wの中央部における膜厚が外周部よりも小さい第1の膜厚プロファイル(図7(a)参照)に対応して、基板Wの外周部のエッチングレートが中央部よりも大きくなるような設定値の組み合わせによって構成された第1の処理条件が、記憶部M2に予め記憶されていてもよい。例えば、基板Wの中央部における膜厚が外周部よりも大きい第2の膜厚プロファイル(図7(b)参照)に対応して、基板Wの外周部のエッチングレートが中央部よりも小さくなるような設定値の組み合わせによって構成された第2の処理条件が、記憶部M2に予め記憶されていてもよい。例えば、基板Wの全体にわたって膜厚が略均一な第3の膜厚プロファイル(図7(c)参照)に対応して、基板Wの全体にわたってエッチングレートが略均一となるような設定値の組み合わせによって構成された第3の処理条件が、記憶部M2に予め記憶されていてもよい。
 処理部M3は、各種データを処理するように構成されている。処理部M3は、例えば、記憶部M2に記憶されている各種データに基づいて、基板処理装置1の各部(例えば、回転部21、加熱部24,25、ポンプ32,42,62、バルブ33,43,63、駆動機構52,82)を動作させるための信号を生成してもよい。
 指示部M4は、処理部M3において生成された動作信号を、基板処理装置1の各部(例えば、回転部21、加熱部24,25、ポンプ32,42,62、バルブ33,43,63、駆動機構52,82)に送信するように構成されている。
 コントローラCtrのハードウェアは、例えば一つ又は複数の制御用のコンピュータにより構成されていてもよい。コントローラCtrは、図6に示されるように、ハードウェア上の構成として回路C1を含んでいてもよい。回路C1は、電気回路要素(circuitry)で構成されていてもよい。回路C1は、例えば、プロセッサC2と、メモリC3と、ストレージC4と、ドライバC5と、入出力ポートC6とを含んでいてもよい。
 プロセッサC2は、メモリC3及びストレージC4の少なくとも一方と協働してプログラムを実行し、入出力ポートC6を介した信号の入出力を実行することで、上述した各機能モジュールを実現するように構成されていてもよい。メモリC3及びストレージC4は、記憶部M2として機能してもよい。ドライバC5は、基板処理装置1の各部をそれぞれ駆動するように構成された回路であってもよい。入出力ポートC6は、ドライバC5と基板処理装置1の各部との間で、信号の入出力を仲介するように構成されていてもよい。
 基板処理装置1は、一つのコントローラCtrを備えていてもよいし、複数のコントローラCtrで構成されるコントローラ群(制御部)を備えていてもよい。基板処理装置1がコントローラ群を備えている場合には、上記の機能モジュールがそれぞれ、一つのコントローラCtrによって実現されていてもよいし、2個以上のコントローラCtrの組み合わせによって実現されていてもよい。コントローラCtrが複数のコンピュータ(回路C1)で構成されている場合には、上記の機能モジュールがそれぞれ、一つのコンピュータ(回路C1)によって実現されていてもよいし、2つ以上のコンピュータ(回路C1)の組み合わせによって実現されていてもよい。コントローラCtrは、複数のプロセッサC2を有していてもよい。この場合、上記の機能モジュールがそれぞれ、一つのプロセッサC2によって実現されていてもよいし、2つ以上のプロセッサC2の組み合わせによって実現されていてもよい。
 [基板処理方法]
 続いて、図8~図10を参照して、膜Fのエッチング処理及び膜厚測定処理を含む基板処理方法について説明する。なお、当該方法の開始前に、載置部4の載置台にキャリア7が予め載置される。当該キャリア7内には、表面Waに膜Fが形成された少なくとも一枚の基板Wが収容されている。
 まず、コントローラCtrが搬送アームA1,A2を制御して、キャリア7から基板Wを1枚取り出し、いずれかの処理ユニット10内に搬送する。処理ユニット10内に搬送された基板Wは、保持部23に載置される。
 次に、コントローラCtrが回転部21及び保持部23(回転保持部20)を制御して、基板Wの裏面を保持部23で吸着保持し、且つ、基板Wを回転させる。この状態で、図3、図4及び図9(a)に例示されるように、コントローラCtrがポンプ42,62及びバルブ43,63(リンス液供給部40及び補助供給部60)を制御して、基板Wの表面Wa及び隙間Gのそれぞれにリンス液L2を供給させる。
 ノズル44から吐出されたリンス液L2は、基板Wの表面Waの略中央部に向けて供給されてもよい。この場合、ノズル44から吐出されたリンス液L2は、基板Wの回転によって、基板Wの中央部から周縁に向けて表面Waの全体を流れた後、外方に振り切られる。そのため、基板Wの表面Waの全体にリンス液L2の薄膜R1(図4及び図9(a)参照)が形成される。したがって、基板Wの表面Waにおいて、乾燥領域の出現が抑制される。ノズル44から吐出されたリンス液L2によって基板Wの表面Waに形成される薄膜R1の厚さは、例えば、0.1mm~0.4mm程度であってもよい。
 一方、ノズル64から隙間Gに供給されたリンス液L2は、基板Wの回転によって、基板Wの表面Waへの着液位置から基板Wの周縁に向けて流れた後、外方に振り切られる。そのため、隙間Gの近傍にリンス液L2の厚膜R2(図4及び図9(a)参照)が形成される。厚膜R2の厚さは、例えば1mm~3mm程度であってもよい。膜厚の測定中において、測定ヘッド71の先端部が常に厚膜R2内に位置した状態(常にリンス液L2に浸漬された状態)が維持される(図3、図4及び図9(a)参照)。
 次に、基板Wの回転中で且つノズル44,64から基板Wへのリンス液L2の供給中に、コントローラCtrが駆動機構82を制御して、測定ヘッド71(保持部81)を基板Wの表面Waに沿って略水平方向に移動させる。これにより、基板Wの面内における膜Fの膜厚が測定部70によって測定され、その測定値が記憶部M2に記憶される(図8のステップS1及び図9(a)参照)。このとき、指示部M4は、測定ヘッド71(保持部81)を基板Wの径方向に沿って略水平方向に移動させるように、駆動機構82を制御する処理を実行してもよい。指示部M4は、測定ヘッド71(保持部81)を基板Wの中央部から周縁に向けて移動させるように、駆動機構82を制御する処理を実行してもよい。指示部M4は、測定ヘッド71(保持部81)を基板Wの周縁から中央部に向けて移動させるように、駆動機構82を制御する処理を実行してもよい。
 次に、コントローラCtrは、ステップS1で測定された膜厚の測定値に基づいて、記憶部M2に記憶されている複数の処理条件から一つの処理条件を選択する(図8のステップS2参照)。この場合、エッチング前の膜厚の測定値に基づいて、当該膜Fをエッチング処理するのに適した処理条件が選択される。そのため、例えば、エッチング前の膜厚が基板Wの面内において変動している場合であっても、エッチング後の膜厚を均一に近づけることが可能となる。
 コントローラCtrは、ステップS1における測定値に基づいて、エッチング処理後の膜Fの厚さが所定の目標値以下で且つ全体的に平坦に近づくような処理条件を選択してもよい。例えば、ステップS1において測定された測定値が第1の膜厚プロファイル(図7(a)参照)を示す場合、コントローラCtrは、記憶部M2から第1の処理条件を選択してもよい。ステップS1において測定された測定値が第2の膜厚プロファイル(図7(b)参照)を示す場合、コントローラCtrは、記憶部M2から第2の処理条件を選択してもよい。ステップS1において測定された測定値が第3の膜厚プロファイル(図7(c)参照)が示す場合、コントローラCtrは、記憶部M2から第3の処理条件を選択してもよい。
 次に、ステップS2において選択された処理条件に基づいて、コントローラCtrが回転保持部20を制御して、保持部23によって吸着保持されている基板Wを、所定の回転数で回転させる。この状態で、ステップS2において選択された処理条件に基づいて、コントローラCtrがポンプ32及びバルブ33(薬液供給部30)を制御して、所定の吐出流量、吐出時間及び温度でエッチング液L1を基板Wの表面Waに供給させる(図8のステップS3及び図9(b)参照)。なお、基板Wの表面Waにおいて乾燥領域の出現を抑制するために、ステップS1で供給されたリンス液L2が基板Wの表面Waを覆っている状態で、エッチング液L1の供給を開始してもよい。そのため、エッチング液L1の供給開始後に、ノズル44,64からのリンス液L2の供給が停止されてもよい。
 コントローラCtrは、ステップS2において選択された処理条件に含まれる複数の設定値を用いて、処理ユニット10の他の各部を設定してもよい。例えば、第1の処理条件が選択された場合には、コントローラCtrは、加熱部25の温度が加熱部24よりも高くなるように、加熱部24,25を制御してもよい。この場合、基板Wの外周部におけるエッチングレートが中央部よりも高くなるので、基板Wの外周部における膜Fがよりエッチングされやすくなる。第2の処理条件が選択された場合には、コントローラCtrは、加熱部24の温度が加熱部25よりも高くなるように、加熱部24,25を制御してもよい。この場合、基板Wの中央部におけるエッチングレートが外周部よりも高くなるので、基板Wの中央部における膜Fがよりエッチングされやすくなる。
 ノズル34から吐出されたエッチング液L1は、基板Wの表面Waの略中央部に向けて供給されてもよい。この場合、ノズル34から吐出されたエッチング液L1は、基板Wの回転によって、基板Wの中央部から周縁に向けて表面Waの全体を流れた後、外方に振り切られる。そのため、基板Wの表面Waの全体にエッチング液L1の薄膜R3(図9(b)参照)が形成される。したがって、基板Wの表面Waにおいて、乾燥領域の出現が抑制される。
 次に、コントローラCtrが、ステップS1と同様に処理ユニット10の各部を制御して、基板Wの面内における膜Fの膜厚を測定部70によって測定する(図8のステップS4、図3、図4及び図10(a)参照)。なお、基板Wの表面Waにおいて乾燥領域の出現を抑制するために、ステップS3で供給されたエッチング液L1が基板Wの表面Waを覆っている状態で、ノズル44,64からのリンス液L2の供給を開始してもよい。そのため、ノズル44,64からのリンス液L2の供給開始後に、エッチング液L1の供給が停止されてもよい。
 次に、コントローラCtrは、ステップS4で測定された膜厚の測定値に基づいて、処理条件を更新し、更新後の処理条件を記憶部M2に記憶させる(図8のステップS5参照)。例えば、当該測定値が第1の膜厚プロファイル(図7(a)参照)を示す場合、基板Wの外周部におけるエッチングレートが中央部よりも高い処理条件となるように、処理条件に含まれる複数の設定値のうち少なくとも一つの設定値を更新してもよい。この場合、エッチング後の膜厚の測定値に基づいてエッチングの処理条件が更新されるので、エッチング処理をフィードバック制御することが可能となる。当該測定値が第2の膜厚プロファイル(図7(b)参照)を示す場合、基板Wの中央部におけるエッチングレートが外周部よりも高い処理条件となるように、処理条件に含まれる複数の設定値のうち少なくとも一つの設定値を更新してもよい。
 次に、コントローラCtrは、ステップS4で測定された膜厚の測定値が所定の目標値以下であるか否かを判断する(図8のステップS6参照)。ステップS4で測定された膜厚の測定値が所定の目標値以下である場合(図8のステップS6で「YES」の場合)、コントローラCtrが回転保持部20を制御して、保持部23に吸着保持されている基板Wを、所定の回転数で所定時間回転させる。これにより、基板Wの表面Waからリンス液L2が振り切られ、基板Wの乾燥が行われる(図8のステップS7及び図10(b)参照)。その後、コントローラCtrが搬送アームA1,A2を制御して、乾燥処理が行われた基板Wを搬送してキャリア7内に戻す。
 一方、ステップS4で測定された膜厚の測定値が所定の目標値を上回っていた場合(図8のステップS6で「NO」の場合)、コントローラCtrは、ステップS3で用いられた処理条件を補正する(図8のステップS9参照)。すなわち、コントローラCtrは、より大きなエッチングレートが得られる処理条件となるように、処理条件に含まれる複数の設定値のうち少なくとも一つの設定値を補正する。
 次に、コントローラCtrが、ステップS4において補正された処理条件に基づいて、コントローラCtrが回転保持部20を制御して、保持部23によって吸着保持されている基板Wを、所定の回転数で回転させる。この状態で、ステップS4において補正された処理条件に基づいて、コントローラCtrが薬液供給部30を制御して、所定の吐出流量、吐出時間及び温度でエッチング液L1を基板Wの表面Waに供給させる(図8のステップS10参照)。これにより、基板Wの面内における膜Fのうち、少なくとも膜厚が所定の目標値を超えている部分が、再度エッチングされる。この場合、エッチング後の膜厚が所定の目標値を超えていたとしても、同じ基板Wを再度エッチング処理することにより、当該基板Wを廃棄等することなく有効利用することが可能となる。
 なお、エッチング後の膜Fの一部の膜厚が所定の目標値を上回っている場合、ステップS9において、当該一部が主としてエッチングされるように処理条件が補正されてもよい。この場合、ステップS10において、補正された当該処理条件を用いて膜Fが再度エッチングされることにより、再度のエッチング処理後の膜厚を均一に近づけることが可能となる。
 その後は、膜厚が所定の目標値以下となるまで、ステップS4以下が繰り返し実行される。なお、基板Wの表面Waにおいて乾燥領域の出現を抑制するために、ステップS4で供給されたリンス液L2が基板Wの表面Waを覆っている状態で、エッチング液L1の供給を開始してもよい。そのため、エッチング液L1の供給開始後に、ノズル44,64からのリンス液L2の供給が停止されてもよい。また、コントローラCtrは、補正後の処理条件を用いて、ステップS5で更新された処理条件をさらに更新してもよい。
 ステップS7で基板Wの乾燥が完了すると、コントローラCtrは、後続の処理対象の基板Wがあるか否かを判断する(図8のステップS8参照)。後続の処理対象の基板Wがない場合(図8のステップS8で「YES」の場合)、すなわち、キャリア7内に収容されていた基板Wが全て処理された場合、基板処理が終了する。
 一方、後続の処理対象の基板Wがある場合(図8のステップS8で「NO」の場合)、すなわち、キャリア7内に未処理の基板Wが収容されている場合、コントローラCtrが搬送アームA1,A2を制御して、キャリア7から未処理の基板Wを1枚取り出し、当該基板Wを保持部23に載置する。その後、図8に例示されるように、当該基板Wに対してステップS2以下が実行されてもよい。このとき、ステップS2においては、ステップS5において更新された後の処理条件が用いられてもよい。同一ロットの基板Wにおいては、表面Waに形成される膜Fの膜厚プロファイルが類似する傾向があるので、更新後の処理条件を用いることで、ステップS1を省略して、未処理の基板Wのエッチング処理を効率的に行うことが可能となる。
 [作用]
 以上の例によれば、測定部70による膜厚の測定中に、測定ヘッド71がリンス液L2に浸漬された状態が維持される。そのため、膜厚の測定に際して、リンス液L2の表面変動の影響を受けない。したがって、基板Wの表面に形成されている膜Fの厚さを精度よく測定することが可能となる。また、測定部70による膜厚の測定に際して、測定部70にエッチング液L1が付着しない。そのため、測定部70の耐薬性を考慮する必要がないので、測定部70のコストを抑制することが可能となると共に、エッチング液L1の種類によらずに略同じ環境で膜厚を測定することが可能となる。
 以上の例によれば、測定部70による膜厚の測定中に、基板Wの表面Waの全体にリンス液L2の液膜が形成される。そのため、基板Wの表面Waの乾燥がリンス液L2によって抑制されるので、基板Wの表面Waにパーティクル等が付着し難くなる。したがって、基板Wの表面処理の品質を高めることが可能となる。
 以上の例によれば、保持部23は、基板Wの裏面を全体的に吸着するように構成されている。そのため、基板Wに反りが存在していても、基板Wが保持部23に対して全体的に吸着されることにより、基板Wの表面Waが略水平に保たれる。したがって、膜厚をより精度よく測定することが可能となる。
 以上の例によれば、測定部70は、基板Wの表面Waを基準として、膜Fの厚さを測定するように構成されている。そのため、基板Wの面内において基板Wの厚さに変動が存在していても、当該変動の影響を排除して膜厚が測定される。したがって、膜厚をより精度よく測定することが可能となる。
 以上の例によれば、加熱部24,25は、基板Wを部分的に加熱するように構成されている。そのため、エッチング処理中に加熱部24,25が動作することにより、基板Wのうち部分的に加熱された領域とそれ以外の領域とで、エッチングの進行速度が変化する。したがって、基板Wに形成されている膜Fの厚さが均一でない場合に、基板Wのうち膜厚が大きい領域を加熱部24,25によって部分的に加熱することで、エッチング後の膜厚を均一に近づけることが可能となる。
 [変形例]
 本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。特許請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
 (1)以上の例では、基板Wへのリンス液L2の供給中に、すなわち、膜Fのエッチング処理の進行がリンス液L2によって抑制されている状態で、測定部70による膜厚の測定を行っていた。しかしながら、膜Fのエッチング処理の進行中に、測定部70による膜厚の測定を行ってもよい。この場合、まず、所定の処理条件に基づいて、コントローラCtrが回転保持部20及び薬液供給部30を制御して、回転中の基板Wの表面Waにエッチング液L1を基板Wの表面Waに供給させる。(図11(a)参照)。
 エッチング処理がある程度進行すると、ノズル34からのエッチング液L1の吐出を継続したまま、コントローラCtrが補助供給部60を制御して、隙間Gにもエッチング液L1を供給させる(図11(b)参照)。すなわち、この例において、補助供給部60の液源61にはエッチング液L1が貯留されている。基板Wの表面Wa及び隙間Gへのエッチング液L1の供給中に、コントローラCtrが駆動機構82を制御して、測定ヘッド71(保持部81)を基板Wの表面Waに沿って略水平方向に移動させる(図11(b)参照)。これにより、エッチング処理中の膜Fの膜厚が測定部70によって測定され、その測定値が記憶部M2に記憶される。
 その後、測定された膜厚が所定の目標値以下となるまで、エッチング処理中の膜厚測定が必要に応じて繰り返し行われる。測定された膜厚が所定の目標値以下となった場合、コントローラCtrが回転保持部20及びリンス液供給部40を制御して、回転中の基板Wの表面Waにリンス液L2を供給する(図12(a)参照)。これにより、リンス液L2によってエッチング液L1が基板Wの表面Waから洗い流される。次に、ステップS7と同様に基板Wの乾燥が行われ、基板の処理が完了する(図12(b)参照)。
 (2)図13に例示されるように、処理ユニット10は、基板Wにエッチング液L1を供給するように構成された薬液供給部90(別の薬液供給部)をさらに含んでいてもよい。この場合、薬液供給部30からエッチング液が供給される基板Wの領域と、薬液供給部90からエッチング液L1が供給される基板Wの領域とにおいて、膜Fのエッチングの進行速度が異なる。そのため、基板Wの表面における膜の厚さが変動している場合(基板Wの面内における膜厚が不均一である場合)、薬液供給部30に加えて薬液供給部90からもエッチング液L1を基板Wの表面Waに供給することで、エッチング後の膜厚を均一に近づけることが可能となる。
 図13の例において、ステップS2で第1の処理条件が選択された場合には、コントローラCtrは、薬液供給部90におけるエッチング液L1の吐出流量、吐出時間、温度等が薬液供給部30よりも大きくなるように、薬液供給部30,90を制御してもよい。この場合、基板Wの外周部におけるエッチングレートが中央部よりも高くなるので、基板Wの外周部における膜Fがよりエッチングされやすくなる。一方、ステップS2で第2の処理条件が選択された場合には、コントローラCtrは、薬液供給部30におけるエッチング液L1の吐出流量、吐出時間、温度等が薬液供給部90よりも大きくなるように、薬液供給部30,90を制御してもよい。この場合、基板Wの中央部におけるエッチングレートが外周部よりも高くなるので、基板Wの中央部における膜Fがよりエッチングされやすくなる。
 (3)上記の例では、ノズル34,44は、保持部51に保持されており、保持部51に随伴して移動するように構成されていた。しかしながら、ノズル34,44は、別々の駆動機構に接続されており、個別に移動するように構成されていてもよい。同様に、ノズル64及び測定部70は、別々の駆動機構に接続されており、個別に移動するように構成されていてもよい。
 (4)上記の例では、基板Wの表面Waに対してノズル34,44,64及び測定部70が水平移動するように構成されていた。しかしながら、ノズル34,44,64及び測定部70に対して基板Wが水平移動するように構成されていてもよいし、ノズル34,44,64及び測定部70と基板Wとの双方が水平移動するように構成されていてもよい。
 [他の例]
 例1.基板処理装置の一例は、表面に膜が形成された基板を保持して回転させるように構成された回転保持部と、回転保持部による基板の回転中に、基板の表面にエッチング液を供給するように構成された薬液供給部と、回転保持部による基板の回転中に、基板の表面にリンス液を供給するように構成されたリンス液供給部と、測定ヘッドが基板の表面近傍に位置した状態で膜の厚さを測定するように構成された測定部と、測定部による測定中に、測定ヘッドを基板の表面に対して水平方向に相対移動させるように構成された駆動部と、測定部による測定中に、測定ヘッドと基板の表面との間の隙間にリンス液を供給して隙間をリンス液で満たすように構成された補助供給部とを備える。この場合、測定部による膜厚の測定中に、測定ヘッドがリンス液に浸漬された状態が維持される。そのため、膜厚の測定に際して、リンス液の表面変動の影響を受けない。したがって、基板の表面に形成されている膜の厚さを精度よく測定することが可能となる。また、測定部による膜厚の測定に際して、測定部にエッチング液が付着しない。そのため、測定部の耐薬性を考慮する必要がないので、測定部のコストを抑制することが可能となると共に、エッチング液の種類によらずに略同じ環境で膜厚を測定することが可能となる。
 例2.例1の装置において、リンス液供給部は、測定部による測定中に、基板の表面の全体にリンス液の液膜を形成するように構成されていてもよい。この場合、基板の表面の乾燥がリンス液によって抑制されるので、基板の表面にパーティクル等が付着し難くなる。したがって、基板の表面処理の品質を高めることが可能となる。
 例3.例1又は例2の装置において、回転保持部は、基板の裏面を全体的に吸着するように構成された保持部を含んでいてもよい。この場合、基板に反りが存在していても、基板が保持部に対して全体的に吸着されることにより、基板の表面が略水平に保たれる。そのため、膜厚をより精度よく測定することが可能となる。
 例4.例1~例3のいずれかの装置において、測定部は、基板の表面を基準として、膜の厚さを測定するように構成されていてもよい。この場合、基板の面内において基板の厚さに変動が存在していても、当該変動の影響を排除して膜厚が測定される。そのため、膜厚をより精度よく測定することが可能となる。
 例5.例1~例4のいずれかの装置は、基板を部分的に加熱するように構成された加熱部をさらに備えていてもよい。この場合、エッチング処理中に加熱部が動作することにより、基板のうち部分的に加熱された領域とそれ以外の領域とで、エッチングの進行速度が変化する。そのため、基板に形成されている膜の厚さが均一でない場合に、基板のうち膜厚が大きい領域を加熱部によって部分的に加熱することで、エッチング後の膜厚を均一に近づけることが可能となる。
 例6.例1~例5のいずれかの装置は、回転保持部による基板の回転中に、基板の表面の中心部以外の領域にエッチング液を供給するように構成された別の薬液供給部をさらに備え、薬液供給部は、回転保持部による基板の回転中に、基板の表面の中心部にエッチング液を供給するように構成されていてもよい。この場合、薬液供給部からエッチング液が供給される基板の領域と、別の薬液供給部からエッチング液が供給される基板の領域とにおいて、膜のエッチングの進行速度が異なる。そのため、基板の表面における膜の厚さが変動している場合に、別の薬液供給部からもエッチング液を基板の表面に供給することで、エッチング後の膜厚を均一に近づけることが可能となる。
 例7.例1~例6のいずれかの装置は、制御部をさらに備え、制御部は、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面にエッチング液を供給させるように薬液供給部を制御して、所定の処理条件に基づいて膜をエッチングする第1の処理と、第1の処理の後に、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面及び隙間にそれぞれリンス液を供給させるように、リンス液供給部及び補助供給部を制御する第2の処理と、第2の処理におけるリンス液の供給中で且つ基板の回転中に、測定ヘッドを基板の表面に対して水平方向に相対移動させるように駆動部を制御しつつ、膜の厚さを測定するように測定部を制御する第3の処理と、膜の厚さの測定値に基づいて処理条件を更新する第4の処理とを実行するように構成されていてもよい。この場合、エッチング後の膜厚の測定値に基づいてエッチングの処理条件が更新されるので、エッチング処理をフィードバック制御することが可能となる。
 例8.例7の装置において、制御部は、表面に別の膜が形成された後続の基板を保持して回転させるように回転保持部を制御しつつ、後続の基板の表面にエッチング液を供給させるように薬液供給部を制御して、第4の処理で更新された後の処理条件に基づいて別の膜をエッチングする第5の処理をさらに実行するように構成されていてもよい。ところで、同一ロットの基板においては、表面に形成される膜の厚さの変動状態(膜厚プロファイル)が類似する傾向がある。そのため、例8によれば、同一ロットの基板を処理する場合に更新後の処理条件を用いることで、後続の基板におけるエッチング処理前の膜厚の測定を省略できる。したがって、後続の基板のエッチング処理を効率的に行うことが可能となる。
 例9.例7又は例8の装置において、制御部は、膜の厚さの測定値が所定の目標値以下であるか否かを判定する第6の処理と、膜の厚さの測定値が目標値を超えると判定された場合、再度、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面にエッチング液を供給させるように薬液供給部を制御して、膜をエッチングする第7の処理とをさらに実行するように構成されていてもよい。この場合、同じ基板が再度エッチング処理されるので、膜厚が所定の目標値以下となるように膜がエッチングされうる。そのため、エッチング後の膜厚が所定の目標値を超えていたとしても、当該膜が形成されている基板を廃棄等することなく有効利用することが可能となる。
 例10.例9の装置において、第7の処理は、膜のうち一部の厚さの測定値が目標値を超えると判定された場合、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面にエッチング液を供給させるように薬液供給部を制御して、膜の一部をエッチングすることを含んでいてもよい。この場合、膜のうち膜厚が目標値を超える部分が主としてエッチングされる。そのため、同じ基板の再度のエッチング処理後の膜厚を均一に近づけることが可能となる。
 例11.例7~例10のいずれかの装置は、制御部と、膜のエッチングのための複数の処理条件を記憶するように構成された記憶部とをさらに備え、制御部は、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面及び隙間にそれぞれリンス液を供給させるように、リンス液供給部及び補助供給部を制御する第8の処理と、第8の処理におけるリンス液の供給中で且つ基板の回転中に、測定ヘッドを基板の表面に対して水平方向に相対移動させるように駆動部を制御しつつ、膜の厚さを測定するように測定部を制御する第9の処理と、膜の厚さの測定値に基づいて複数の処理条件から一つの処理条件を決定する第10の処理と、基板を保持して回転させるように回転保持部を制御しつつ、基板の表面にエッチング液を供給させるように薬液供給部を制御して、第10の処理で決定された一つの処理条件に基づいて膜をエッチングする第11の処理とをさらに実行するように構成されていてもよい。この場合、エッチング前の膜厚の測定値に基づいて、当該膜をエッチング処理するのに適したエッチングの処理条件が選択される。そのため、例えば、エッチング前の膜厚が基板の面内において変動している場合であっても、エッチング後の膜厚を均一に近づけることが可能となる。
 例12.基板処理方法の一例は、表面に膜が形成された基板を回転させつつ、基板の表面にエッチング液を供給して、所定の処理条件に基づいて膜をエッチングする第1の工程と、測定ヘッドを基板の表面の近傍に配置する第2の工程と、基板を回転させつつ、基板の表面と、測定ヘッド及び基板の表面の間の隙間とにそれぞれリンス液を供給する第3の工程と、第3の工程におけるリンス液の供給中で且つ基板の回転中に、測定ヘッドを基板の表面に対して水平方向に相対移動させながら、膜の厚さを測定する第4の工程とを含む。この場合、例1の装置と同様の作用効果が得られる。
 例13.例12の方法において、第2の工程は、基板の表面の全体にリンス液の液膜が形成されるように基板の表面にリンス液を供給することを含んでいてもよい。この場合、例2の装置と同様の作用効果が得られる。
 例14.例12又は例13の方法において、第4の工程は、基板の裏面を全体的に吸着した状態で、測定部により膜の厚さを測定することを含んでいてもよい。この場合、例3の装置と同様の作用効果が得られる。
 例15.例12~例14のいずれかの方法において、第4の工程は、基板の表面を基準として、測定部により膜の厚さを測定することを含んでいてもよい。この場合、例4の装置と同様の作用効果が得られる。
 例16.例12~例15のいずれかの方法において、第1の工程は、基板を部分的に加熱した状態で膜をエッチングすることを含んでいてもよい。この場合、例5の装置と同様の作用効果が得られる。
 例17.例12~例16のいずれかの方法において、第1の工程は、基板の表面の中心部と、基板の表面の中心部以外の領域とにそれぞれエッチング液を供給することを含んでいてもよい。この場合、例6の装置と同様の作用効果が得られる。
 例18.例12~例17のいずれかの方法は、第1の工程でエッチングされた膜の厚さを第4の工程で測定することによって得られた測定値に基づいて処理条件を更新する第5の工程をさらに含んでいてもよい。この場合、例7の装置と同様の作用効果が得られる。
 例19.例18の方法は、表面に別の膜が形成された後続の基板を回転させつつ、後続の基板の表面にエッチング液を供給して、第5の工程で更新された後の処理条件に基づいて別の膜をエッチングする第6の工程をさらに含んでいてもよい。この場合、例8の装置と同様の作用効果が得られる。
 例20.例18又は例19の方法は、膜の厚さの測定値が所定の目標値以下であるか否かを判定する第7の工程と、膜の厚さの測定値が目標値を超えると判定された場合、再度、基板を回転させつつ、基板の表面にエッチング液を供給して、膜をエッチングする第8の工程とをさらに含んでいてもよい。この場合、例9の装置と同様の作用効果が得られる。
 例21.例20の方法において、第8の工程は、膜のうち一部の厚さの測定値が目標値を超えると判定された場合、基板を回転させつつ、基板の表面にエッチング液を供給して、膜の一部をエッチングすることを含んでいてもよい。この場合、例10の装置と同様の作用効果が得られる。
 例22.例12~例21のいずれかの方法は、第1の工程でエッチングされる前の膜の厚さを第4の工程で測定することによって得られた測定値に基づいて、膜のエッチングのための複数の処理条件から一つの処理条件を決定する第9の工程をさらに含み、第1の工程は、基板を回転させつつ、基板の表面にエッチング液を供給して、第9の工程で決定された一つの処理条件に基づいて膜をエッチングすることを含んでいてもよい。この場合、例11の装置と同様の作用効果が得られる。
 例23.コンピュータ読み取り可能な記録媒体の一例は、例12~例22のいずれかの方法を基板処理装置に実行させるためのプログラムを記録していてもよい。この場合、例1の装置と同様の作用効果が得られる。本明細書において、コンピュータ読み取り可能な記録媒体は、一時的でない有形の媒体(non-transitory computer recording medium)(例えば、各種の主記憶装置又は補助記憶装置)又は伝播信号(transitory computer recording medium)(例えば、ネットワークを介して提供可能なデータ信号)を含んでいてもよい。
 1…基板処理装置、10…処理ユニット、20…回転保持部、21…回転部、23…保持部、24,25…加熱部、30…薬液供給部、40…リンス液供給部、50…駆動ユニット、60…補助供給部、70…測定部、71…測定ヘッド、80…駆動ユニット、82…駆動機構(駆動部)、90…薬液供給部(別の薬液供給部)、Ctr…コントローラ(制御部)、F…膜(別の膜)、G…隙間、L1…エッチング液、L2…リンス液、M2…記憶部、RM…記録媒体、W…基板(後続の基板)、Wa…表面。

Claims (23)

  1.  表面に膜が形成された基板を保持して回転させるように構成された回転保持部と、
     前記回転保持部による前記基板の回転中に、前記基板の表面にエッチング液を供給するように構成された薬液供給部と、
     前記回転保持部による前記基板の回転中に、前記基板の表面にリンス液を供給するように構成されたリンス液供給部と、
     測定ヘッドが前記基板の表面近傍に位置した状態で前記膜の厚さを測定するように構成された測定部と、
     前記測定部による測定中に、前記測定ヘッドを前記基板の表面に対して水平方向に相対移動させるように構成された駆動部と、
     前記測定部による測定中に、前記測定ヘッドと前記基板の表面との間の隙間にリンス液を供給して前記隙間をリンス液で満たすように構成された補助供給部とを備える、基板処理装置。
  2.  前記リンス液供給部は、前記測定部による測定中に、前記基板の表面の全体にリンス液の液膜を形成するように構成されている、請求項1に記載の装置。
  3.  前記回転保持部は、前記基板の裏面を全体的に吸着するように構成された保持部を含む、請求項1又は2に記載の装置。
  4.  前記測定部は、前記基板の表面を基準として、前記膜の厚さを測定するように構成されている、請求項1~3のいずれか一項に記載の装置。
  5.  前記基板を部分的に加熱するように構成された加熱部をさらに備える、請求項1~4のいずれか一項に記載の装置。
  6.  前記回転保持部による前記基板の回転中に、前記基板の表面の中心部以外の領域にエッチング液を供給するように構成された別の薬液供給部をさらに備え、
     前記薬液供給部は、前記回転保持部による前記基板の回転中に、前記基板の表面の中心部にエッチング液を供給するように構成されている、請求項1~5のいずれか一項に記載の装置。
  7.  制御部をさらに備え、
     前記制御部は、
      前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面にエッチング液を供給させるように前記薬液供給部を制御して、所定の処理条件に基づいて前記膜をエッチングする第1の処理と、
      前記第1の処理の後に、前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面及び前記隙間にそれぞれリンス液を供給させるように、前記リンス液供給部及び前記補助供給部を制御する第2の処理と、
      前記第2の処理におけるリンス液の供給中で且つ前記基板の回転中に、前記測定ヘッドを前記基板の表面に対して水平方向に相対移動させるように前記駆動部を制御しつつ、前記膜の厚さを測定するように前記測定部を制御する第3の処理と、
      前記膜の厚さの測定値に基づいて前記処理条件を更新する第4の処理とを実行するように構成されている、請求項1~6のいずれか一項に記載の装置。
  8.  前記制御部は、表面に別の膜が形成された後続の基板を保持して回転させるように前記回転保持部を制御しつつ、前記後続の基板の表面にエッチング液を供給させるように前記薬液供給部を制御して、前記第4の処理で更新された後の前記処理条件に基づいて前記別の膜をエッチングする第5の処理をさらに実行するように構成されている、請求項7に記載の装置。
  9.  前記制御部は、
      前記膜の厚さの測定値が所定の目標値以下であるか否かを判定する第6の処理と、
      前記膜の厚さの測定値が前記目標値を超えると判定された場合、再度、前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面にエッチング液を供給させるように前記薬液供給部を制御して、前記膜をエッチングする第7の処理とをさらに実行するように構成されている、請求項7又は8に記載の装置。
  10.  前記第7の処理は、前記膜のうち一部の厚さの測定値が前記目標値を超えると判定された場合、前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面にエッチング液を供給させるように前記薬液供給部を制御して、前記膜の前記一部をエッチングすることを含む、請求項9に記載の装置。
  11.  制御部と、
     前記膜のエッチングのための複数の処理条件を記憶するように構成された記憶部とをさらに備え、
     前記制御部は、
      前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面及び前記隙間にそれぞれリンス液を供給させるように、前記リンス液供給部及び前記補助供給部を制御する第8の処理と、
      前記第8の処理におけるリンス液の供給中で且つ前記基板の回転中に、前記測定ヘッドを前記基板の表面に対して水平方向に相対移動させるように前記駆動部を制御しつつ、前記膜の厚さを測定するように前記測定部を制御する第9の処理と、
      前記膜の厚さの測定値に基づいて前記複数の処理条件から一つの処理条件を決定する第10の処理と、
      前記基板を保持して回転させるように前記回転保持部を制御しつつ、前記基板の表面にエッチング液を供給させるように前記薬液供給部を制御して、前記第10の処理で決定された前記一つの処理条件に基づいて前記膜をエッチングする第11の処理とをさらに実行するように構成されている、請求項7~10のいずれか一項に記載の装置。
  12.  表面に膜が形成された基板を回転させつつ、前記基板の表面にエッチング液を供給して、所定の処理条件に基づいて前記膜をエッチングする第1の工程と、
     測定部の測定ヘッドを前記基板の表面の近傍に配置する第2の工程と、
     前記基板を回転させつつ、前記基板の表面と、前記測定ヘッド及び前記基板の表面の間の隙間とにそれぞれリンス液を供給する第3の工程と、
     前記第3の工程におけるリンス液の供給中で且つ前記基板の回転中に、前記測定ヘッドを前記基板の表面に対して水平方向に相対移動させながら、前記膜の厚さを測定する第4の工程とを含む、基板処理方法。
  13.  前記第2の工程は、前記基板の表面の全体にリンス液の液膜が形成されるように前記基板の表面にリンス液を供給することを含む、請求項12に記載の方法。
  14.  前記第4の工程は、前記基板の裏面を全体的に吸着した状態で、前記測定部により前記膜の厚さを測定することを含む、請求項12又は13に記載の方法。
  15.  前記第4の工程は、前記基板の表面を基準として、前記測定部により前記膜の厚さを測定することを含む、請求項12~14のいずれか一項に記載の方法。
  16.  前記第1の工程は、前記基板を部分的に加熱した状態で前記膜をエッチングすることを含む、請求項12~15のいずれか一項に記載の方法。
  17.  前記第1の工程は、前記基板の表面の中心部と、前記基板の表面の中心部以外の領域とにそれぞれエッチング液を供給することを含む、請求項12~16のいずれか一項に記載の方法。
  18.  前記第1の工程でエッチングされた前記膜の厚さを前記第4の工程で測定することによって得られた測定値に基づいて前記処理条件を更新する第5の工程をさらに含む、請求項12~17のいずれか一項に記載の方法。
  19.  表面に別の膜が形成された後続の基板を回転させつつ、前記後続の基板の表面にエッチング液を供給して、前記第5の工程で更新された後の前記処理条件に基づいて前記別の膜をエッチングする第6の工程をさらに含む、請求項18に記載の方法。
  20.  前記膜の厚さの測定値が所定の目標値以下であるか否かを判定する第7の工程と、
     前記膜の厚さの測定値が前記目標値を超えると判定された場合、再度、前記基板を回転させつつ、前記基板の表面にエッチング液を供給して、前記膜をエッチングする第8の工程とをさらに含む、請求項18又は19に記載の方法。
  21.  前記第8の工程は、前記膜のうち一部の厚さの測定値が前記目標値を超えると判定された場合、前記基板を回転させつつ、前記基板の表面にエッチング液を供給して、前記膜の前記一部をエッチングすることを含む、請求項20に記載の方法。
  22.  前記第1の工程でエッチングされる前の前記膜の厚さを前記第4の工程で測定することによって得られた測定値に基づいて、前記膜のエッチングのための複数の処理条件から一つの処理条件を決定する第9の工程をさらに含み、
     前記第1の工程は、前記基板を回転させつつ、前記基板の表面にエッチング液を供給して、前記第9の工程で決定された前記一つの処理条件に基づいて前記膜をエッチングすることを含む、請求項12~21のいずれか一項に記載の方法。
  23.  請求項12~22のいずれか一項に記載の方法を基板処理装置に実行させるためのプログラムを記録した、コンピュータ読み取り可能な記録媒体。
PCT/JP2021/039264 2020-11-05 2021-10-25 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 WO2022097520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237017659A KR20230101837A (ko) 2020-11-05 2021-10-25 기판 처리 장치, 기판 처리 방법 및 컴퓨터 판독 가능한 기록 매체
JP2022560722A JP7542078B2 (ja) 2020-11-05 2021-10-25 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体
CN202180073335.4A CN116438633A (zh) 2020-11-05 2021-10-25 基板处理装置、基板处理方法以及计算机可读取的记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-185063 2020-11-05
JP2020185063 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097520A1 true WO2022097520A1 (ja) 2022-05-12

Family

ID=81457862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039264 WO2022097520A1 (ja) 2020-11-05 2021-10-25 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体

Country Status (4)

Country Link
JP (1) JP7542078B2 (ja)
KR (1) KR20230101837A (ja)
CN (1) CN116438633A (ja)
WO (1) WO2022097520A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154701A (ja) * 1996-09-24 1998-06-09 Tokyo Electron Ltd 枚葉回転処理方法及びその装置
JPH11354489A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 半導体製造装置及び半導体装置のエッチング方法
JP2015103656A (ja) * 2013-11-25 2015-06-04 東京エレクトロン株式会社 液処理装置、液処理方法及び記憶媒体
WO2020022187A1 (ja) * 2018-07-26 2020-01-30 東京エレクトロン株式会社 基板処理システム及び基板処理方法
JP2020053607A (ja) * 2018-09-27 2020-04-02 東京エレクトロン株式会社 基板処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452918B1 (ko) 2002-04-12 2004-10-14 한국디엔에스 주식회사 두께측정시스템이 구비된 회전식각장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154701A (ja) * 1996-09-24 1998-06-09 Tokyo Electron Ltd 枚葉回転処理方法及びその装置
JPH11354489A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 半導体製造装置及び半導体装置のエッチング方法
JP2015103656A (ja) * 2013-11-25 2015-06-04 東京エレクトロン株式会社 液処理装置、液処理方法及び記憶媒体
WO2020022187A1 (ja) * 2018-07-26 2020-01-30 東京エレクトロン株式会社 基板処理システム及び基板処理方法
JP2020053607A (ja) * 2018-09-27 2020-04-02 東京エレクトロン株式会社 基板処理装置

Also Published As

Publication number Publication date
KR20230101837A (ko) 2023-07-06
JP7542078B2 (ja) 2024-08-29
JPWO2022097520A1 (ja) 2022-05-12
CN116438633A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
KR102463977B1 (ko) 웨이퍼들을 이송하기 위한 장비 프런트 엔드 모듈 및 웨이퍼들을 이송하는 방법
JP6080291B2 (ja) 基板処理方法および基板処理装置
JP6740065B2 (ja) 基板洗浄装置、基板処理装置、基板洗浄方法および基板処理方法
JP6740066B2 (ja) 基板洗浄装置、基板処理装置および基板洗浄方法
JP5911689B2 (ja) 基板処理装置および基板処理方法
TWI546878B (zh) 基板處理裝置及基板處理方法
WO2017090505A1 (ja) 基板液処理装置、基板液処理方法および記憶媒体
JP4926678B2 (ja) 液浸露光用洗浄装置および洗浄方法、ならびにコンピュータプログラムおよび記憶媒体
US10964558B2 (en) Substrate processing method and substrate processing device
KR20120074197A (ko) 기판 액처리 장치 및 기판 액처리 방법 및 기판 액처리 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
KR102559412B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
US11784057B2 (en) Substrate processing apparatus, linked processing system, and substrate processing method
US20170076938A1 (en) Substrate processing method, substrate processing apparatus, and storage medium
JP2019125660A (ja) 基板処理方法および基板処理装置
JP2021034533A (ja) 基板処理方法及び基板処理システム
JP2019033246A (ja) 基板処理方法、記憶媒体及び基板処理システム
JP6814653B2 (ja) 基板処理方法および基板処理装置
JP2006344907A (ja) 基板処理方法および基板処理装置
WO2022097520A1 (ja) 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体
JP6726430B2 (ja) 基板処理装置および基板処理方法
JP5597602B2 (ja) 基板処理装置、基板処理方法及びその基板処理方法を実行させるためのプログラムを記録した記憶媒体
WO2021054021A1 (ja) 基板処理方法、基板処理装置および基板処理液
WO2020195695A1 (ja) 基板処理装置、基板処理方法および半導体製造方法
JP6803737B2 (ja) 基板処理方法および基板処理装置
TWI851167B (zh) 循環裝置、循環裝置之控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560722

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237017659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889073

Country of ref document: EP

Kind code of ref document: A1