WO2019045376A1 - 플렉서블 디스플레이 소자 기판용 폴리이미드 필름 - Google Patents

플렉서블 디스플레이 소자 기판용 폴리이미드 필름 Download PDF

Info

Publication number
WO2019045376A1
WO2019045376A1 PCT/KR2018/009818 KR2018009818W WO2019045376A1 WO 2019045376 A1 WO2019045376 A1 WO 2019045376A1 KR 2018009818 W KR2018009818 W KR 2018009818W WO 2019045376 A1 WO2019045376 A1 WO 2019045376A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide film
polyimide precursor
film
temperature
Prior art date
Application number
PCT/KR2018/009818
Other languages
English (en)
French (fr)
Inventor
정혜원
박찬효
이진호
박진영
김경환
홍예지
최단비
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170112323A external-priority patent/KR101907320B1/ko
Priority claimed from KR1020170172005A external-priority patent/KR20190071195A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/617,858 priority Critical patent/US11485859B2/en
Priority to CN201880021220.9A priority patent/CN110494475B/zh
Priority to EP18852591.9A priority patent/EP3680282A4/en
Priority to JP2019546832A priority patent/JP6938837B2/ja
Publication of WO2019045376A1 publication Critical patent/WO2019045376A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polyimide film for a flexible display element substrate having low residual stress and improved transmittance and a method for manufacturing the same.
  • Polyimide (PI) is a polymer having a relatively low crystallinity or mostly noncrystalline structure. It is easy to synthesize and can produce a thin film film. It also has advantages of not requiring a crosslinking agent for curing, transparency, rigid chain structure Is a polymer material with excellent heat resistance, chemical resistance, excellent mechanical properties, electrical properties and dimensional stability. It is widely used in electric and electronic materials such as automobile, aerospace, flexible circuit board, liquid crystal alignment film for LCD, have.
  • polyimide is a high-performance polymer material having high thermal stability, mechanical properties, chemical resistance, and electrical properties, and is growing as a substrate material for flexible display.
  • thermal expansion coefficient should not be negative at a temperature of 350 DEG C or more in order to lower the defect rate due to the residual stress of the substrate in the heat treatment process. Therefore, many researches have been carried out to minimize changes in optical characteristics and thermal history while maintaining the basic characteristics of polyimide.
  • the polymerization of monomers such as diamine and dianhydride in the polymerization of polyimide for substrate is advantageous in terms of viscosity and molecular weight stability.
  • the substrate using polyimide polymerized with excess of diamine exhibits a shrinkage at high temperature due to a negative thermal expansion coefficient (CTE) at a high temperature of 350 ° C or higher.
  • CTE thermal expansion coefficient
  • the CTE is negative, residual stress is induced in the heat treatment process of the TFT process, resulting in various defects such as cracking of the inorganic film and lifting of the film.
  • the present invention also provides a method for producing the polyimide film.
  • the present invention also provides a flexible display device comprising the polyimide film as a substrate.
  • thermal expansion coefficient (A) in the range of 100 to 350 ⁇ ⁇ and the thermal expansion coefficient (B) in the range of 350 to 450 ⁇ ⁇ satisfy 0 ⁇ B / A ⁇ 2.
  • the polyimide film may have a thermal expansion coefficient (A) in a range of 100 to 350 ° C. and a thermal expansion coefficient (B) in a range of 350 to 450 ° C. in a range of 0 ⁇ B-A ⁇ 1.
  • the polyimide film may be formed by curing a polyimide precursor solution at a final curing temperature of 450 ° C or higher.
  • the polyimide film comprises 3,3 ', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) per mole of 4,4'-paraphenylenediamine (pPDA) (CTE) may be a positive value at a temperature of 350 DEG C or higher, and is prepared from polyimide encapsulated at the end by adding a phthalic anhydride (PA) and polymerized at a molar ratio of less than 1 mol.
  • s-BPDA 4,4'-biphenylcarboxylic acid dianhydride
  • pPDA 4,4'-paraphenylenediamine
  • the 3,3 ', 4,4'-biphenylcarboxylic dianhydride (s-BPDA) and 4,4'-paraphenylenediamine (pPDA) have a molar ratio of 0.98: 1. ≪ / RTI >
  • the polyimide film may have a transmittance of 70% or more.
  • the end-capping agent comprising the PA may be added in a 0.02 to 0.025 molar ratio relative to 1 mole of pPDA.
  • the CTE measured when the polyimide film cooled after the first temperature increase is secondarily heated from 50 ° C to 450 ° C may have a value of not less than 0 and not more than 7 ° C / ppm .
  • the present invention also provides a method for producing a polyimide film for a flexible display device substrate.
  • the final curing temperature may be 450 ⁇ or higher.
  • a flexible display device comprising the polyimide film.
  • the polyimide film according to the present invention has a positive CTE without deteriorating its heat resistance even at a temperature of 350 DEG C or more, has a low thermal expansion coefficient and a high thermal expansion coefficient with a small difference in thermal expansion coefficient and has a stable thermal expansion property and a high transmittance, it is possible to more easily manufacture the TFT device through the align key.
  • Fig. 1 shows the change in thermal expansion of the polyimide film according to Example 1 and Comparative Example 1 in the range of 100 to 460 ⁇ ⁇ .
  • the present invention relates to a polyimide film which does not cause thermal shrinkage at high temperatures.
  • a polyimide film having a coefficient of thermal expansion (A) in a range of 100 to 350 ° C and a coefficient of thermal expansion (B) in a range of 350 to 450 ° C of 0 ⁇ B / A ⁇ 2.
  • the polyimide film may have a thermal expansion coefficient (A) in a range of 100 to 350 ° C. and a thermal expansion coefficient (B) in a range of 350 to 450 ° C. in a range of 0 ⁇ B-A ⁇ 1.
  • the polyimide film according to the present invention When the B / A is 2 or more, or the BA is 1 or more, the difference in the thermal expansion coefficient between the high temperature and the low temperature is large, and the polyimide film according to the present invention has a high thermal expansion coefficient and a low temperature thermal expansion coefficient, . That is, the polyimide film according to the present invention exhibits a stable expansion characteristic even when the difference in the thermal expansion coefficient between the high temperature and the low temperature is not large, so that the process stability is excellent and the product defects can be reduced.
  • B / A may be 0.5 or more, or 0.8 or more, or 1 or more, and may have a value of 1.8 or less or 1.5 or less. Also, B-A may be 0.1 or more or 0.3 or more and 0.9 or less or 0.8 or less.
  • the thermal expansion coefficient may be based on a value measured on a 10- ⁇ m-thick film formed at a temperature of 400 ° C. or higher.
  • the polyimide film may be formed by curing a polyimide precursor solution at a final curing temperature of 450 ° C or higher.
  • the film according to the present invention comprises 3,3 ', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) per mole of 4,4'-paraphenylenediamine (pPDA) With less than 1 mole, and adding a phthalic anhydride (PA) to encapsulate the terminal.
  • s-BPDA 4,4'-biphenylcarboxylic acid dianhydride
  • pPDA 4,4'-paraphenylenediamine
  • PA phthalic anhydride
  • the film according to the present invention may have a positive thermal expansion coefficient (CTE) at a temperature of 350 DEG C or higher.
  • CTE positive thermal expansion coefficient
  • CTE at a high temperature shows negative (shrinking behavior)
  • the permeability may be lowered due to the amine terminal group.
  • a negative CTE may be generated at a temperature of 350 ° C or higher in the TMA measurement, which may induce residual stress on the substrate during the heat treatment process of the substrate device TFT applying the high temperature process temperature And may cause various defects such as cracks in the inorganic film and lifting of the film.
  • the present inventors have studied to provide a polyimide having improved mechanical properties while improving thermal stability.
  • PA phthalic anhydride
  • the 3,3 ', 4,4'-biphenylcarboxylic dianhydride (s-BPDA) and 4,4'-paraphenylenediamine (pPDA) are reacted at a ratio of 0.98: 1 to 0.99: , Preferably 0.9875: 1 to 0.9890: 1.
  • phthalic anhydride together with s-BPDA and pPDA, it is possible to improve the heat resistance and the permeability, and the phthalic anhydride is used in a molar ratio of 0.02 to 0.025, preferably 0.022 To 0.025 molar ratio.
  • the polyimide film according to the present invention has a positive thermal expansion coefficient at a temperature of 350 ° C or higher, more specifically, a CTE measurement method using TMA, wherein the polyimide film cooled after the first heating is heated at 100 ° C to 460 ° C.
  • the CTE value measured at the second temperature increase may be a positive value at a temperature of 350 ° C or higher, preferably 0 to 7 ppm / ° C, and preferably 0 to 6 ppm / Or less.
  • Examples of the method for encapsulating the terminal of the polyimide obtained from the diamine and the tetracarboxylic acid dianhydride using the terminal sealing agent include a method of reacting the tetracarboxylic acid dianhydride and the diamine followed by continuing the reaction by adding the terminal sealing agent, A method in which an end-capping agent is added to the diamine to react with the tetracarboxylic acid dianhydride, followed by further reaction with tetracarboxylic acid dianhydride, a method in which tetracarboxylic acid dianhydride, diamine and the terminal endblock agent are simultaneously added and reacted .
  • the polyimide precursor having end-capped groups can be polymerized.
  • the polymerization reaction of the polyimide precursor can be carried out according to a usual polyimide precursor polymerization method such as solution polymerization.
  • the reaction may be carried out under anhydrous conditions, and the temperature during the polymerization may be -75 to 50 ° C, preferably 0 to 40 ° C.
  • the diamine and the acid dianhydride may be contained in an amount of about 10 to 30% by weight in the polymerization solvent, and the polymerization time and the reaction temperature The molecular weight can be controlled accordingly.
  • the solvent include ethyl acetate
  • sulfoxide-based solvents such as dimethyl sulfoxide and diethyl sulfoxide; Formaldehyde type solvents such as N, N-dimethylformamide and N, N-diethylformamide; Acetamide-based solvents such as N, N-dimethylacetamide and N, N-diethylacetamide; Pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone may be used alone or as a mixture.
  • aromatic hydrocarbons such as xylene and toluene may be further used.
  • the method for producing a polyimide film using the polyimide precursor is characterized in that the polyimide precursor composition comprising the polyimide precursor and the organic solvent is coated on one side of the substrate and separated from the substrate after the imidation and curing process .
  • the polyimide precursor composition may be in the form of a solution in which a polyimide precursor is dissolved in an organic solvent.
  • the polyimide precursor composition has such a shape, for example, when a polyimide precursor is synthesized in an organic solvent, May be obtained by adding the polyimide precursor solution itself or the same solution obtained after the polymerization or diluting the polyimide precursor solution obtained after the polymerization with another solvent.
  • the polyimide precursor composition preferably contains a solid content in an amount such that the polyimide precursor composition has an appropriate viscosity in view of processability such as coating properties in the film forming step.
  • the solid content is preferably 5 to 20 wt% based on the total weight of the polyimide precursor composition, ≪ / RTI > Alternatively, it may be desirable to adjust the polyimide precursor composition to have a viscosity of 400 to 50,000 cP.
  • the viscosity of the polyimide precursor composition may be less than 400 cP, and when the viscosity of the polyimide precursor composition is more than 50,000 cP, the flowability of the display substrate using the polyimide precursor composition may be reduced during coating, It is possible to cause problems in the manufacturing process.
  • the polyimide film can be produced by applying the polyimide precursor composition prepared above to one surface of the substrate, thermally imidizing and curing the polyimide precursor composition at a temperature of 80 ° C to 500 ° C, and then separating from the substrate.
  • the substrate may be glass, metal substrate, plastic substrate, or the like without any particular limitation.
  • the polyimide precursor is excellent in thermal and chemical stability during the imidation and curing process, A glass substrate that can be easily separated without damage to the subsequently formed polyimide-based film may be desirable.
  • the coating method include a spin coating method, a bar coating method, a roll coating method, an air-knife method, a gravure method, a reverse roll method, a kiss roll method, a doctor blade method, A spray method, a dipping method, a brushing method, or the like may be used. Of these, it is more preferable to carry out the continuous process and to perform the casting method which can increase the imidization rate of the polyimide.
  • the polyimide precursor composition may also be applied over the substrate to a thickness range such that the polyimide film to be finally prepared has a thickness suitable for the display substrate.
  • the thickness is 10 to 30 mu m.
  • a drying process for removing the solvent present in the polyimide precursor composition prior to the curing process may be further optionally performed.
  • the drying process may be carried out according to a conventional method, specifically at a temperature of 140 ° C or lower, or 80 ° C to 140 ° C. If the drying temperature is lower than 80 ⁇ , the drying process becomes longer. If the drying temperature is higher than 140 ⁇ , the imidization rapidly proceeds to make it difficult to form a polyimide film having a uniform thickness.
  • the curing process may be carried out by heat treatment at a temperature of 80 ° C to 500 ° C.
  • the curing process may be carried out by a multi-stage heat treatment at various temperatures within the above-mentioned temperature range.
  • the curing time in the curing step is not particularly limited and can be, for example, 3 to 60 minutes.
  • a subsequent heat treatment step may be further optionally performed to increase the imidization ratio of the polyimide in the polyimide film after the curing step to form the polyimide-based film having the above-mentioned physical properties.
  • the subsequent heat treatment step is preferably performed at 200 ° C or higher, or 200 ° C to 500 ° C for 1 minute to 30 minutes.
  • the subsequent heat treatment process may be performed once or may be performed in two or more stages. Specifically, it may be carried out in three stages including a first heat treatment at 200 to 220 ⁇ , a second heat treatment at 300 ⁇ to 380 ⁇ , and a third heat treatment at 400 to 500 ⁇ , And curing at a temperature of 450 ° C or higher for 30 minutes or more.
  • the polyimide film formed on the substrate can be produced from the substrate by a conventional method to produce a polyimide film.
  • the polyimide according to the present invention may have a glass transition temperature of about 360 DEG C or higher. Since the polyimide film has such excellent heat resistance, the polyimide film can maintain excellent heat resistance and mechanical properties against high temperature heat added during the device manufacturing process.
  • the polyimide film according to the present invention may have a thermal decomposition temperature (Td 1%) of 1% or less, which is 550 ° C or more.
  • the polyimide film according to the present invention has excellent mechanical properties.
  • the elongation may be 20% or more, preferably 25% or more
  • the tensile strength may be 500 MPa or more, preferably 520 MPa or more, more preferably 530 MPa or more
  • the tensile modulus may be 10 GPa or more.
  • the present invention provides a polyimide film encapsulated with a terminal end-capping agent comprising a phthalic anhydride, thereby exhibiting a positive CTE value even at a high temperature and causing a negative CTE (contraction occurrence) It is possible to provide a polyimide film having high transmittance characteristics, preferably a polyimide film having a transmittance of 70% or more. In the case of manufacturing an element on the polyimide substrate, the align key The fabrication of the TFT device can be facilitated.
  • the polyimide according to the present invention can be used as a substrate for a device, a cover substrate for a display, an optical film, an IC (integrated circuit) package, an adhesive film, a multilayer flexible printed circuit (FPC) Protective films for optical discs, and the like.
  • a substrate for a device a cover substrate for a display
  • an optical film an IC (integrated circuit) package
  • an adhesive film an adhesive film
  • a multilayer flexible printed circuit (FPC) Protective films for optical discs and the like.
  • the present invention provides a flexible display device including the polyimide film.
  • the display device may include a liquid crystal display device (LCD), an organic light emitting diode (OLED), and the like.
  • LCD liquid crystal display device
  • OLED organic light emitting diode
  • LTPS low temperature polycrystalline silicon
  • the polyimide precursor solution was prepared by adding the organic solvent so that the solid concentration of the polyimide precursor solution prepared from the reaction was 12.8 wt%.
  • the polyimide precursor solution was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C / min, and cured at 120 ° C for 10 minutes and at 460 ° C for 55 minutes. After completion of the curing process, the glass substrate was immersed in water, and the film formed on the glass substrate was peeled off and dried at 100 ° C in an oven to prepare a film of polyimide having a thickness of 10 ⁇ m.
  • NMP paraphenylenediamine
  • p-PDA paraphenylenediamine
  • RTI &gt 6.797 g
  • s-BPDA 3,3 ', 4,4'-biphenylcarboxylic dianhydride
  • the polyimide precursor solution prepared from the reaction was prepared by adding the organic solvent so that the solid concentration of the polyimide precursor was 12.8 wt%.
  • the polyimide precursor solution was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C / min, and cured at 120 ° C for 10 minutes and at 460 ° C for 55 minutes. After completion of the curing process, the glass substrate was immersed in water, and the film formed on the glass substrate was peeled off and dried at 100 DEG C in an oven to prepare a polyimide film having a thickness of 10 mu m.
  • NMP N-methyl-2-pyrrolidone
  • the polyimide precursor solution prepared from the reaction was prepared by adding the organic solvent to a solid concentration of 12.8 wt%.
  • the polyimide precursor solution was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C / min, and cured at 120 ° C for 10 minutes and at 460 ° C for 55 minutes. After completion of the curing process, the glass substrate was immersed in water, and the film formed on the glass substrate was peeled off and dried at 100 ° C in an oven to prepare a film of polyimide having a thickness of 10 ⁇ m.
  • the polyimide precursor solution prepared from the reaction was prepared by adding the organic solvent so that the solid concentration of the polyimide precursor was 12.8 wt%.
  • the polyimide precursor solution was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C / min, and cured at 120 ° C for 10 minutes and at 460 ° C for 55 minutes. After completion of the curing process, the glass substrate was immersed in water, and the film formed on the glass substrate was peeled off and dried at 100 DEG C in an oven to prepare a polyimide film having a thickness of 10 mu m.
  • the film was prepared to have a size of 5 x 16 mm, and then the sample was loaded into a Q400 instrument of TA using an accessory. The actual measured film length was equal to 16 mm.
  • the film pulling force was set at 0.02 N, and the film was subjected to a first temperature raising process at a temperature raising rate of 5 ⁇ / min in a temperature range of from room temperature to 450 ⁇ , and then cooled at a cooling rate of 5 ⁇ / min at 50 ⁇ . Then, each of the cooled samples was heated from 50 ° C to 450 ° C at a heating rate of 5 ° C / min, and the change in thermal expansion of the sample was measured with TMA.
  • the thermal expansion coefficients measured in the range of 100 to 350 ° C, 350 to 450 ° C, and 100 to 450 ° C are shown in Table 1, and the dimensional change patterns of the films of Example 1 and Comparative Example 1 are shown in FIG. 1 .
  • dumbbell specimens were prepared in accordance with ASTM D 412, and then the elongation (%) and tensile strength (tensile strength) of each resin film were measured at a rate of 30 mm and 10 mm / (MPa) and tensile modulus (GPa) were measured.
  • the transmittance was measured according to JIS K 7105 using a transmittance meter (Model 8453 UV-visible Spectrophotometer, manufactured by Agilent Technologies) and the average transmittance was measured at a wavelength of 380 to 780 nm.
  • the polyimide film according to the present invention has a high thermal expansion coefficient (B) and a low thermal expansion coefficient (A) of 0 ⁇ B / A ⁇ 2 and 0 ⁇ BA ⁇ And CTE is positive at 350 ° C. or higher while maintaining mechanical properties and permeability.
  • Comparative Examples 2 and 3 are polyimide film produced by mixing an excess amount of diamine without addition of phthalic anhydride (PA), CTE was negative at a temperature of 350 ° C. or higher, and BPDA
  • Comparative Examples 2 and 3 having a -PMDA-pPDA skeleton, the heat resistance was lowered by further including PMDA, and it was confirmed that CTE was negative at a temperature of 350 ° C or higher.
  • Comparative Example 3 is encapsulated with PA, the heat resistance is lowered as PMDA is added.
  • the transmittance was also significantly reduced as compared with the polyimide film of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명에 따른 폴리이미드 필름은 100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0< B/A < 2 를 만족함으로써, 350℃ 이상의 온도에서도 내열성 저하 없이 플렉서블 디스플레이 소자용 기판으로 유용하게 사용될 수 있다.

Description

플렉서블 디스플레이 소자 기판용 폴리이미드 필름
본 출원은 2017.09.04. 출원된 한국특허출원 10-2017-0112323호 및 2017.12.14. 출원된 한국특허출원 10-2017-0172005호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 잔류응력이 낮고 투과도가 개선된 플렉서블 디스플레이 소자 기판용 폴리이미드 필름 및 그 제조방법에 관한 것이다.
폴리이미드(polyimide, PI)는 비교적 결정화도가 낮거나 대부분 비결정성 구조를 갖는 고분자로서, 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요하지 않은 장점뿐만 아니라 투명성, 강직한 사슬구조에 의해 뛰어난 내열성과 내화학성, 우수한 기계적 물성, 전기적 특성 및 치수안정성을 갖고 있는 고분자 재료로 현재 자동차, 항공 우주분야, 유연성 회로기판, LCD용 액정 배향막, 접착 및 코팅제 등의 전기, 전자재료로 널리 사용되고 있다.
특히 폴리이미드는 높은 열 안정성, 기계적 물성, 내화학성, 그리고 전기적 특성을 가지고 있는 고성능 고분자 재료로서 플렉서블 디스틀레이용 기판 소재로서 관심이 증대되고 있는데, 디스플레이 용도에 사용하기 위해서는 투명해야 하며, 디스플레이 제조를 위한 열처리 공정에서 기판의 잔류응력으로 인한 불량율을 낮추기 위해서는 350℃ 이상의 온도에서 열팽창계수가 음수이면 안되는 문제가 있다. 따라서 현재 폴리이미드의 기본적인 특성을 유지하면서 광학적 특성과 열 이력 변화를 최소화하기 위한 연구가 많이 진행되고 있다.
플렉서블 디스플레이는 자유로운 폼 팩터(form factor), 가볍고 얇은 특성 및 깨지지 않는 특성 때문에 시장의 수요가 증가하고 있다. 이러한 플렉서블 디스플레이를 구현함에 있어 내열성이 우수한 폴리이미드인 BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride)-PDA(phenylene diamine)으로 구성되는 폴리이미드가 이용된다.
기판용 폴리이미드 중합시 단량체인 디아민과 이무수물 중 디아민을 더 과량으로 중합시키는 경우 점도 및 분자량 안성정 측면에서 유리한 것으로 알려져 있다. 그러나, 디아민 과량으로 중합한 폴리이미드를 이용한 기판은 350℃ 이상의 고온에서 열팽창계수(CTE)가 음수이어서 고온에서 수축하는 거동을 보일 뿐만 아니라, 450℃ 이상의 온도로 경화시 아민 말단기로 인해서 투과도가 저하되는 문제점이 있다. CTE가 음수인 경우에는 TFT 공정의 열처리 과정에서 잔류응력을 유발하여 무기막의 크랙, 필름의 들뜸과 같은 각종 불량을 야기한다.
이에 본 발명은 상기와 같은 문제를 해결하기 위해, 고온의 공정에서도 수축이 일어나지 않으면서, 투과도 또한 향상된 폴리이미드 필름을 제공하고자 한다.
또한, 본 발명은 상기 폴리이미드 필름을 제조하는 방법을 제공하고자 하는 것이다.
또한, 본 발명은 상기 폴리이미드 필름을 기판으로서 포함하는 플렉서블 디스플레이 소자를 제공하고자 하는 것이다.
본 발명은 전술한 과제를 해결하기 위해,
100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B/A < 2 를 만족하는 것인 폴리이미드 필름을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 필름은 100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B-A < 1 을 만족하는 것일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름은 폴리이미드 전구체 용액을 최종 경화온도 450℃ 이상에서 경화시켜 제막된 것일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름은 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA) 1몰 미만의 몰비로 중합되며, 프탈릭 안하이드라이드(PA)를 첨가하여 말단을 봉지된 폴리이미드로부터 제조되며, 350℃ 이상의 온도에서 열팽창계수(CTE)가 양수의 값을 갖는 것일 수 있다.
일 실시예에 따르면, 상기 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA) 및 4,4'-파라페닐렌디아민(pPDA)이 0.98:1 내지 0.99:1의 몰비로 중합되는 것일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름은 투과도가 70% 이상일 수 있다.
일 실시예에 따르면, 상기 PA를 포함하는 말단 봉지제가 pPDA 1몰에 대해 0.02 내지 0.025 몰비로 첨가될 수 있다.
일 실시예에 따르면, 일 실시예에 따르면, 1차 승온 후 냉각된 폴리이미드 필름을 50℃에서 450℃로 2차 승온시 측정된 CTE는 0 이상 7℃/ppm 이하의 값을 갖는 것일 수 있다.
본 발명의 다른 과제를 해결하기 위해, 중합용매에 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA)을 1몰 미만으로 포함하는 중합성분 및 프탈릭 안하이드라이드(PA)를 첨가하여 폴리이미드 전구체를 제조하는 단계;
상기 폴리이미드 전구체 및 유기용매를 포함하는 폴리이미드 전구체 용액을 제조하는 단계;
상기 폴리이미드 전구체 용액을 기판상에 도포하는 단계; 및
상기 도포된 폴리이미드 전구체 용액을 건조 및 가열하여 폴리이미드 필름을 제조하는 단계를 포함하는 플렉서블 디스플레이 소자 기판용 폴리이미드 필름의 제조방법을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 전구체 용액의 건조 및 가열을 통한 경화공정에 있어서, 최종 경화온도가 450℃ 이상일 수 있다.
본 발명의 또 다른 과제를 해결하기 위해, 상기 폴리이미드 필름을 포함하는 플렉서블 디스플레이 소자를 제공한다.
본 발명에 따른 폴리이미드 필름은 350℃ 이상의 온도에서도 내열성 저하 없이 양수의 CTE를 가지며, 저온 열팽창계수와 고온 열팽창계수의 차이가 적어 안정적인 열팽창특성을 가지며 또한 높은 투과도를 가져 디스플레이 소자의 기판으로 사용할 때 align key를 통한 TFT 디바이스를 보다 용이하게 제작할 수 있다.
도 1은 실시예 1 및 비교예 1에 따른 폴리이미드 필름의 100 내지 460℃ 범위에서의 열팽창 변화를 나타낸 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명은, 고온에서 열에 의한 수축현상이 발생하지 않는 폴리이미드 필름에 관한 것이다.
본 발명에 따르면, 100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B/A <2 을 만족하는 것인 폴리이미드 필름을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 필름은 100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B-A < 1 을 만족하는 것일 수 있다.
B/A가 2 이상이거나 B-A가 1 이상인 것은 고온 및 저온 열팽창계수의 차이가 크다는 것을 의미하며, 본 발명에 따른 폴리이미드 필름은 고온 및 저온 열팽창계수가 모두 양수이면서 그 차이가 크지 않은 것을 하나의 특징으로 한다. 즉 본 발명에 따른 폴리이미드 필름은 고온 및 저온 열팽창계수의 차이가 크지 않다는 것은 공정 온도의 변화에도 안정적인 팽창 특성을 보이므로 공정 안정성이 우수하고 제품 불량을 줄일 수 있다.
바람직한 실시예에 따르면, B/A 는 0.5 이상 또는 0.8 이상 또는 1 이상일 수 있고, 1.8 이하 또는 1.5 이하의 값을 가질 수 있다. 또한 B-A는 0.1 이상 또는 0.3 이상이고 0.9 이하 또는 0.8 이하일 수 있다.
상기 열팽창계수는 400℃ 이상의 온도에서 제막한 두께 10um 필름에서 측정한 값을 기준으로 할 수 있다. 일 양태에 따르면, 상기 폴리이미드 필름은 폴리이미드 전구체 용액을 최종 경화온도 450℃ 이상에서 경화시켜 제막된 것일 수 있다.
일 양태에 따르면, 본 발명에 따른 필름은 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA)을 1몰 미만으로 반응시켜 제조되며, 프탈릭 안하이드라이드(PA)를 첨가하여 말단을 봉지시켜 제조될 수 있다.
특히 본 발명에 따른 필름은 350℃ 이상의 온도에서 열팽창계수(CTE)가 양수의 값을 갖는 것일 수 있다.
일반적으로 폴리이미드를 제조하는 과정에서 폴리이미드 전구체 용액의 점도 및 분자량의 안정성을 중점으로 하므로 디아민을 과량으로 반응시켜 폴리이미드 필름의 물성을 개선하고자 하는 노력을 해왔으나, 단순히 디아민이 과량인 조성에서는 폴리이미드 필름의 열팽창계수가 고온에서 음수를 나타내는 등의 열안정성 문제가 발생할 수 있다.
특히 NMP(N-메틸-2-피롤리돈) 용매를 사용하여 디아민 과량의 폴리이미드 기판을 제조하는 경우에는, 고온에서의 CTE가 음수(수축하는 거동)을 보이며, 450℃ 이상의 온도로 경화시 아민 말단기로 인해서 투과도 저하될 수 있다. 또한, NMP를 사용하는 폴리이미드 필름에서는 TMA 측정 시, 350℃ 이상의 온도에서 negative CTE가 발생할 수 있어, 이는 고온의 공정온도를 가하는 기판 device TFT 공정 중, 열처리 과정에서 기판에 잔류응력을 유발시킬 수 있으며, 무기막의 크랙, 필름의 들뜸과 같은 각종 불량의 원인이 될 수 있다.
이에, 본 발명자들은 열안정성을 향상시키면서도 보다 개선된 기계적 특성을 갖는 폴리이미드를 제공하기 위해 연구하였다.
본 발명의 일 양태에 따르면 디아민을 과량으로 첨가하되, 프탈릭 안하이드라이드 (PA, phthalic anhydride)로 주쇄를 말단 봉지(endcapping) 시키고 400℃, 바람직하게는 450℃ 이상의 고온에서 최종 경화시킴으로써, 350℃ 이상의 고온에서도 열 팽창계수가 양수인 폴리이미드 필름을 제공할 수 있다. 즉, 고온에 의한 수축 현상이 일어나지 않도록 하였다.
일 실시예에 따르면 상기 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA) 및 4,4'-파라페닐렌디아민(pPDA)을 0.98:1 내지 0.99:1, 바람직하게는 0.9875:1 내지 0.9890:1의 몰비로 중합시킬 수 있다.
또한, s-BPDA와 pPDA 함께 프탈릭 안하이드라이드를 추가하여 반응시킴으로써, 내열성 및 투과도를 함께 향상시킬 수 있으며, 상기 프탈릭 안하이드라이드는 pPDA 1몰에 대해 0.02 내지 0.025 몰비, 바람직하게는 0.022 내지 0.025몰비로 첨가되어 중합시킬 수 있다.
본 발명에 따른 폴리이미드 필름은, 350℃ 이상의 온도에서 열팽창계수가 양의 값을 가지며, 보다 상세하게는 TMA를 이용한 CTE 측정방법에 있어서, 1차 승온 이후 냉각된 폴리이미드 필름을 100℃에서 460℃로 2차 승온시 측정된 CTE 값이 350℃ 이상의 온도에서 양수를 나타내는 것일 수 있으며, 바람직하게는 는 0 이상 7 ppm/℃ 이하의 값을 가질 수 있으며, 바람직하게는 0 이상 6 ppm/℃이하의 열팽창계수를 갖는 것일 수 있다.
상기 말단 봉지제를 사용해 상기 디아민과 테트라카본산이무수물로부터 얻어지는 폴리이미드의 말단을 봉지하는 방법으로는, 테트라카본산이무수물과 디아민을 반응시킨 후에, 상기 말단 봉지제를 첨가하여 반응을 계속하는 방법, 디아민에 말단 봉지제을 가하여 반응시킨 후, 테트라카본산이무수물을 첨가하여, 반응을 더 계속하는 방법, 테트라카본산이무수물, 디아민 및 상기 말단 봉지제를 동시에 첨가하여 반응시켜 제조하는 방법 등이 있을 수 있다.
상기한 반응으로부터 말단이 봉지된 폴리이미드 전구체를 중합할 수 있다.
상기 폴리이미드 전구체 중합 반응은 용액 중합 등 통상의 폴리이미드 전구체 중합 방법에 따라 실시될 수 있다.
상기 반응은 무수 조건에서 실시될 수 있으며, 상기 중합반응시 온도는 -75 내지 50℃, 바람직하게는 0 내지 40℃에서 실시될 수 있다. 디아민이 유기용매에 용해된 상태에서 산이무수물을 투입하는 방식으로 실시될 수 있으며, 이 중에서 디아민 및 산이무수물은 중합용매에서 대략 10 내지 30 중량%의 함량으로 포함될 수 있고, 중합 시간 및 반응 온도에 따라 분자량이 조절될 수 있다.
또한 상기 중합반응에 사용될 수 있는 유기용매로는 구체적으로, 감마-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 톨루엔, 크실렌, 테트라메틸벤젠 등의 방향족 탄화수소류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 아세트산에틸, 아세트산부틸, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노부틸에테르아세테이트, 디에틸렌 글리콜모노에틸에테르아세테이트, 디프로필렌글리콜모노메틸에테르아세테이트, 에탄올, 프로판올, 에틸렌글리콜, 프로필렌글리콜, 카르비톨 , 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), N-비닐피롤리돈, 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카프로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄, 비스(2-메톡시에틸)에테르, 1,2-비스(2-메톡시에톡시)에탄, 비스[2-(2-메톡시에톡시)]에테르, 디메틸프로피온아마이드, 디에틸프로피온아마이드 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 사용될 수 있다.
바람직하게는, 디메틸술폭시드, 디에틸술폭시드 등의 술폭시드계 용매; N,N-디메틸포름아미드, N,N-디에틸포름아미드 등의 포름아미드계 용매; N,N-디메틸아세트아미드, N,N-디에틸아세트아미드 등의 아세트아미드계 용매; N-메틸-2-피롤리돈, N-비닐-2-피롤리돈 등의 피롤리돈계 용매를 단독 또는 혼합물로서 이용할 수 있다. 그러나 이에 한정되는 것은 아니다. 또한, 크실렌, 톨루엔과 같은 방향족 탄화수소를 더 포함하여 사용될 수 있다.
상기 제조된 폴리이미드 전구체를 이용하여 폴리이미드 필름을 제조하는 방법은, 상기 폴리이미드 전구체 및 유기용매를 포함하는 폴리이미드 전구체 조성물을 기판의 일면에 도포하고 이미드화 및 경화공정 이후, 기판으로부터 분리하는 단계를 포함한다.
구체적으로, 상기 폴리이미드 전구체 조성물은 유기용매 중에 폴리이미드 전구체가 용해된 용액의 형태일 수 있으며, 이러한 형태를 갖는 경우, 예를 들어 폴리이미드 전구체를 유기용매 중에서 합성한 경우에는, 폴리이미드 전구체 조성물은 중합 후 얻어지는 폴리이미드 전구체 용액 그 자체 또는 동일 용액을 더 첨가한 것이어도 되고, 또는 상기 중합 후 얻어진 폴리이미드 전구체 용액을 다른 용매로 희석한 것이어도 된다.
상기 폴리이미드 전구체 조성물은 필름 형성 공정시의 도포성 등의 공정성을 고려하여 적절한 점도를 갖도록 하는 양으로 고형분을 포함하는 것이 바람직하며, 상기 고형분은 폴리이미드 전구체 조성물 총 중량에 대해 5 내지 20 중량%로 포함될 수 있다. 또는, 상기 폴리이미드 전구체 조성물이 400 내지 50,000cP의 점도를 갖도록 조절하는 것이 바람직할 수 있다. 폴리이미드 전구체 조성물의 점도가 400cP 미만 일 수 있으며, 폴리이미드 전구체 조성물의 점도가 50,000cP를 초과할 경우 상기 폴리이미드 전구체 조성물을 이용한 디스플레이 기판의 제조시 유동성이 저하되어 코팅시 고르게 도포가 되지 않는 등의 제조 공정상의 문제점을 야기할 수 있다.
다음으로, 상기에서 제조한 폴리이미드 전구체 조성물을 기판의 일면에 도포하고 80℃ 내지 500℃ 온도에서 열 이미드화 및 경화한 후, 기판으로부터 분리함으로써 폴리이미드 필름이 제조될 수 있다.
이때, 상기 기판으로는 유리, 금속기판 또는 플라스틱 기판 등이 특별한 제한 없이 사용될 수 있으며, 이 중에서도 폴리이미드 전구체에 대한 이미드화 및 경화공정 중 열 및 화학적 안정성이 우수하고, 별도의 이형제 처리 없이도, 경화 후 형성된 폴리이미드계 필름에 대해 손상 없이 용이하게 분리될 수 있는 유리 기판이 바람직할 수 있다.
또, 상기 도포 공정은 통상의 도포 방법에 따라 실시될 수 있으며, 구체적으로는 스핀코팅법, 바코팅법, 롤코팅법, 에어-나이프법, 그라비아법, 리버스 롤법, 키스 롤법, 닥터 블레이드법, 스프레이법, 침지법 또는 솔질법 등이 이용될 수 있다. 이중에서도 연속 공정이 가능하며, 폴리이미드의 이미드화율을 증가시킬 수 있는 캐스팅법에 의해 실시되는 것이 보다 바람직할 수 있다.
또, 상기 폴리이미드 전구체 조성물은 최종 제조되는 폴리이미드 필름이 디스플레이 기판용으로 적합한 두께를 갖도록 하는 두께 범위로 기판 위에 도포될 수 있다.
구체적으로는 10 내지 30㎛의 두께가 되도록 하는 양으로 도포될 수 있다. 상기 폴리이미드 전구체 조성물 도포 후, 경화 공정에 앞서 폴리이미드 전구체 조성물 내에 존재하는 용매를 제거하기 위한 건조공정이 선택적으로 더 실시될 수 있다.
상기 건조공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로 140℃ 이하, 혹은 80℃ 내지 140℃의 온도에서 실시될 수 있다. 건조 공정의 실시 온도가 80℃ 미만이면 건조 공정이 길어지고, 140℃를 초과할 경우 이미드화가 급격히 진행되어 균일한 두께의 폴리이미드 필름 형성이 어렵다.
이어서, 상기 경화 공정은 80℃ 내지 500℃ 온도에서의 열처리에 의해 진행 될 수 있다. 상기 경화 공정은 상기한 온도범위 내에서 다양한 온도에 서의 다단계 가열처리로 진행될 수도 있다. 또, 상기 경화 공정시 경화 시간은 특별히 한정되지 않으며, 일 예로서 3 내지 60분 동안 실시될 수 있다.
또, 상기 경화 공정 후에 폴리이미드 필름내 폴리이미드의 이미드화율을 높여 상술한 물성적 특징을 갖는 폴리이미드계 필름을 형성하기 위해 후속의 열처리 공정이 선택적으로 더 실시될 수도 있다.
상기 후속의 열처리 공정은 200℃ 이상, 혹은 200℃ 내지 500℃에서 1분 내지 30분 동안 실시되는 것이 바람직하다. 또 상기 후속의 열처리 공정은 1회 실시 될 수도 있고 또는 2회 이상 다단계로 실시될 수도 있다. 구체적으로는 200 내지 220℃에서의 제1열처리, 300℃ 내지 380℃에서의 제2열처리 및 400℃ 내지 500℃에서의 제3열처리를 포함하는 3단계로 실시될 수 있으며, 바람직하게는 최종 경화온도가 450℃ 이상인 조건에서 30분 이상 경화시켜 제조될 수 있다.
이후, 기판 위에 형성된 폴리이미드 필름을 통상의 방법에 따라 기판으로부터 박리함으로써 폴리이미드 필름이 제조될 수 있다.
본 발명에 따른 폴리이미드는 약 360℃ 이상의 유리전이온도를 갖는 것일 수 있다. 이와 같이 우수한 내열성을 갖기 때문에 상기 폴리이미드를 포함하는 필름은 소자 제조 공정 중에 부가되는 고온의 열에 대해서도 우수한 내열성 및 기계적 특성을 유지할 수 있다.
본 발명에 따른 폴리이미드 필름은 1%의 질량감소를 나타내는 열분해온도 (Td 1%)가 550℃ 이상일 수 있다.
또한, 본 발명에 따른 폴리이미드 필름은 기계적 물성이 매우 우수하며, 예를 들면, 연신율(Elongation)은 20% 이상, 바람직하게는 25% 이상일 수 있으며, 인장강도는 500 MPa이상, 바람직하게는 520 MPa이상, 보다 바람직하게는 530 MPa이상일 수 있고, 인장 모듈러스(Tensile Modulus)은 10 GPa 이상일 수 있다.
본 발명은 프탈릭 안하이드라이드(phthalic anhydride)를 포함하는 말단 봉지제로 말단이 봉지된 폴리이미드 필름을 제공함으로써, 고온에서도 양수의 CTE값을 나타내어 고온공정상에서 negative CTE(수축발생)에 의해 발생될 수 있는 문제를 해결할 수 있을 뿐만 아니라, 높은 투과도 특성을 갖는 폴리이미드 필름, 바람직하게는 70% 이상의 투과도를 갖는 폴리이미드 필름을 제공할 수 있으며, 상기한 폴리이미드 기판 상에 소자를 제작할 경우 align key를 통한 TFT 디바이스의 제작이 보다 용이해 질 수 있다.
본 발명에 따른 폴리이미드는 소자용 기판, 디스플레이용 커버기판, 광학 필름(optical film), IC(integrated circuit) 패키지, 점착 필름(adhesive film), 다층 FPC(flexible printed circuit), 테이프, 터치패널, 광디스크용 보호필름 등과 같은 다양한 분야에 사용될 수 있다.
본 발명은 상기 폴리이미드 필름을 포함하는 플렉서블 디스플레이 장치를 제공한다. 예를 들면, 상기 디스플레이 장치는 액정 표시 장치(liquid crystal display device, LCD), 유기발광다이오드(organic light emitting diode, OLED) 등을 들 수 있으며, 특히 고온 공정을 필요로 하는 LTPS(low temperature polycrystalline silicon)공정을 사용하는 OLED 디바이스에 적합할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상위한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1> BPDA-pPDA/ PA(98.9:100:2.2) 폴리이미드 중합
질소 기류가 흐르는 교반기 내에 유기용매 NMP(N-메틸-2-피롤리돈) 100g를 채운 후, 반응기 온도를 25℃로 유지한 상태에서 파라 페닐렌디아민(p-PDA) 6.192g(57.259mmol)을 용해시켰다. 상기 p-PDA 용액에 3,3',4,4,'-비페닐카르복실산 이무수물(s-BPDA) 16.661g(56.629mmol)과 NMP 56.96g을 동일한 온도에서 첨가하여 일정 시간 용해하며 교반한 후 폴리아믹산을 중합하였다. 이후 상기 폴리아믹산 용액에 프탈릭 안하이드라이드(PA) 0.187g(1.260mmol)을 투입하여 일정 시간 교반 하여 폴리이미드 전구체를 제조하였다.
상기 반응으로부터 제조된 폴리이미드 전구체 용액의 고형분 농도를 12.8중량%가 되도록 상기 유기용매를 첨가하여 폴리이미드 전구체 용액을 제조하였다.
상기 폴리이미드 전구체 용액을 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 6℃/min의 속도로 가열하였으며, 120℃에서 10분, 460℃에서 55분을 유지하여 경화 공정을 진행하였다. 경화 공정 완료 후에, 유리 기판을 물에 담궈 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100℃로 건조하여, 두께가 10㎛인 폴리이미드의 필름을 제조하였다.
<비교예 1> BPDA-pPDA(98.9:100) 폴리이미드 중합
질소 기류가 흐르는 교반기 내에 유기용매 NMP(N-메틸-2-피롤리돈) 100g를 채운 후, 반응기 온도를 25℃로 유지한 상태에서 파라 페닐렌디아민(p-PDA) 6.243g(57.726mmol)을 용해시켰다. 상기 p-PDA 용액에 3,3',4,4,'-비페닐카르복실산 이무수물(s-BPDA) 16.797g(57.091mmol)과 NMP 56.96g을 동일한 온도에서 첨가하여 일정시간 용해 하며 교반한 후 폴리이미드 전구체를 제조하였다.
상기 반응으로부터 제조된 폴리이미드 전구체를 고형분 농도를 12.8중량%가 되도록 상기 유기용매를 첨가하여 폴리이미드 전구체 용액을 제조하였다.
상기 폴리이미드 전구체 용액을 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 6℃/min의 속도로 가열하였으며, 120 ℃에서 10분, 460℃에서 55분을 유지하여 경화 공정을 진행하였다. 경화 공정 완료 후에, 유리 기판을 물에 담가 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100℃로 건조하여, 두께가 10㎛인 폴리이미드의 필름을 제조하였다.
<비교예 2> BPDA-PMDA-pPDA(88.9:10:100) 폴리이미드 중합
질소 기류가 흐르는 교반기 내에 유기용매 NMP(N-메틸-2-피롤리돈) 100g를 채운 후, 반응기 온도를 25℃로 유지한 상태에서 파라 페닐렌디아민(p-PDA) 6.364g(58.849mmol)을 용해시켰다. 상기 p-PDA 용액에 3,3',4,4,'-비페닐카르복실산 이무수물(s-BPDA) 15.393g(52.316mmol), 피로멜리트산 이무수물(PMDA) 1.289g(5.885mmol)과 NMP 56.96g을 동일한 온도에서 첨가하여 일정시간 용해 하며 교반한 후 폴리이미드 전구체를 제조하였다.
상기 반응으로부터 제조된 폴리이미드 전구체를 고형분 농도 12.8중량%가 되도록 상기 유기용매를 첨가하여 폴리이미드 전구체 용액을 제조하였다.
상기 폴리이미드 전구체 용액을 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 6℃/min의 속도로 가열하였으며, 120℃에서 10분, 460℃에서 55분을 유지하여 경화 공정을 진행하였다. 경화 공정 완료 후에, 유리 기판을 물에 담궈 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100℃로 건조하여, 두께가 10㎛인 폴리이미드의 필름을 제조하였다.
<비교예 3> BPDA-PMDA-pPDA/PA(88.9:10:100:2.2) 폴리이미드 중합
질소 기류가 흐르는 교반기 내에 유기용매 NMP(N-메틸-2-피롤리돈) 100g를 채운 후, 반응기 온도를 25℃로 유지한 상태에서 파라 페닐렌디아민(p-PDA) 6.311g(58.363mmol)을 용해시켰다. 상기 p-PDA 용액에 3,3',4,4,'-비페닐카르복실산 이무수물(s-BPDA) 15.265g(51.885mmol), 피로멜리트산 이무수물(PMDA) 1.273g(5.836mmol)과 NMP 56.96g을 동일한 온도에서 첨가하여 일정 시간 용해하며 교반한 후 폴리이미드 전구체를 제조하였다. 이후 상기 폴리아믹산 용액에 프탈릭 안하이드라이드(PA) 0.190g(1.284mmol)을 투입하여 일정 시간 교반하여 폴리이미드 전구체를 제조하였다.
상기 반응으로부터 제조된 폴리이미드 전구체를 고형분 농도를 12.8중량%가 되도록 상기 유기용매를 첨가하여 폴리이미드 전구체 용액을 제조하였다.
상기 폴리이미드 전구체 용액을 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 6℃/min의 속도로 가열하였으며, 120 ℃에서 10분, 460℃에서 55분을 유지하여 경화 공정을 진행하였다. 경화 공정 완료 후에, 유리 기판을 물에 담가 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100℃로 건조하여, 두께가 10㎛인 폴리이미드의 필름을 제조하였다.
<실험예 1>
상기 제조된 각각의 폴리이미드 필름에 대하여 하기와 같은 방법으로 CTE, 열분해온도, 기계적 물성 및 투과도 등을 측정하여 표 1에 나타내었다.
<열팽창계수 측정>
상기 실시예 및 비교예 에서 제조된 각각의 폴리이미드 필름에 대하여 필름을 5 x 16 mm 크기로 준비한 뒤 악세서리를 이용하여 TA사의 Q400 장비에 시료를 로딩한다. 실제 측정되는 필름의 길이는 16mm로 동일하게 하였다. 필름을 당기는 힘을 0.02N으로 설정하고 상온에서 450℃ 온도 범위에서 5℃/min 의 승온 속도로 1차 승온 공정을 진행한 후, 50℃로 5℃/min 의 냉각 속도로 냉각(cooling)시켰다. 이후, 상기 냉각된 각각의 샘플을 50℃에서 450℃까지 5℃/min의 승온 속도로 가열(heating)시키면서 샘플의 열팽창 변화를 TMA로 측정하였다. 100~350℃ 구간 및 350~450 ℃ 구간, 그리고 100~450℃ 구간에서 측정된 열팽창계수를 표 1에 나타내었고, 실시예 1 및 비교예 1의 필름에 대해 치수변화 양상을 도 1에 나타내었다.
<열 분해온도 측정>
TA instruments사의 Discovery TGA를 이용하여 질소 분위기에서 중합체의 중량 감소율 1%일 때의 온도를 측정하였다.
<기계적 물성 측정>
ASTM D 412 규정에 따라 덤벨 형태의 시험편 3 내지 4종을 제작한 후에, Instron사의 3342B 모델 장비를 이용하여 grip간 간격을 30mm, 10 mm/min 속도로 각 수지 필름의 연신율(%), 인장강도(MPa) 및 인장 모듈러스(GPa)를 측정하였다.
<투과도>
투과도는 JIS K 7105에 의거하여 투과율계(모델명 8453 UV-visible Spectrophotometer, Agilent Technologies 제조)로 380~780nm 파장에 대한 투과율의 평균을 측정하였다.
Figure PCTKR2018009818-appb-img-000001
표 1 및 도 1의 결과에 나타나듯이, 본 발명에 따른 폴리이미드 필름은 고온 열팽창계수(B)와 저온열팽층계수가(A)가 0 < B/A<2 와 0 < B-A <1의 조건을 모두 만족하고, 기계적 물성 및 투과성은 유지하면서, 350℃ 이상에서 CTE가 양수로 나타나는 것을 알 수 있다.
반면, 비교예의 필름들은 모두 음수로 나타났는데, 특히 프탈산 무수물(PA) 첨가없이 디아민을 과량으로 배합하여 제조된 폴리이미드 필름인 비교예 1은 350℃ 이상의 온도에서 CTE가 음수로 나타났으며, BPDA-PMDA-pPDA 골격을 갖는 비교예 2 및 3의 경우, PMDA를 추가로 포함함으로써, 내열성이 저하되어 350℃ 이상의 온도에서 CTE가 음수로 나타나는 것을 확인하였다. 특히, 비교예 3은 PA로 봉지되어 있음에도 불구하고 PMDA가 추가됨에 따라 내열성이 저하되어 나타나는 것을 알 수 있다. 또한, 비교예 2 및 3은 투과도 역시 본 발명의 폴리이미드 필름에 비해 현저히 감소되는 것으로 나타났다.
이상으로부터, 본 발명은 디아민 과량의 폴리이미드 필름으로부터 유도되는 우수한 기계적 물성은 그대로 유지하면서 고온에서의 CTE 수축 특성이 억제되어 내열성이 현저히 개선된 폴리이미드 필름을 제공할 수 있을 뿐만 아니라, 투과도 또한 향상시킬 수 있어, 고온공정에서도 보다 투명하고 견고한 폴리이미드 필름을 제공할 수 있음을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (11)

100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B/A <2 을 만족하는 것인 폴리이미드 필름.
제1항에 있어서,
100~350℃ 구간의 열팽창 계수(A)와 350~450℃ 구간의 열팽창 계수(B)가 0 < B-A < 1 을 만족하는 것인 폴리이미드 필름.
제1항에 있어서,
상기 폴리이미드 필름은 폴리이미드 전구체 용액을 최종 경화온도 450℃ 이상에서 경화시켜 제막된 것인 폴리이미드 필름.
제1항에 있어서,
상기 폴리이미드 필름은 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA) 1몰 미만의 몰비로 중합되고, 프탈릭 안하이드라이드(PA)를 첨가하여 말단이 봉지된 폴리이미드로 제조되며, 350℃ 이상의 온도에서 열팽창계수(CTE)가 양(+)의 값을 갖는 것을 특징으로 하는 폴리이미드 필름.
제4항에 있어서,
상기 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA) 및 4,4'-파라페닐렌디아민(pPDA)의 몰비가 0.98:1 내지 0.99:1 인 것인 폴리이미드 필름.
제1항에 있어서,
상기 필름의 투과도가 70% 이상인 폴리이미드 필름.
제4항에 있어서,
상기 프탈릭 안하이드라이드(PA)를 포함하는 말단 봉지제가 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 0.02 내지 0.025 몰비로 중합되는 것인 폴리이미드 필름.
제1항에 있어서,
1차 승온 후 냉각된 폴리이미드 필름을 50℃에서 450℃로 2차 승온시 측정된 열팽창계수(CTE)는 0 이상 7℃/ppm 이하의 값을 갖는 것인 폴리이미드 필름.
중합용매에 4,4'-파라페닐렌디아민(pPDA) 1몰에 대해 3,3',4,4,'-비페닐카르복실산 이무수물 (s-BPDA)을 1몰 미만으로 포함하는 중합성분 및 말단봉지제로서 프탈릭 안하이드라이드(PA)를 첨가하여 폴리이미드 전구체를 제조하는 단계;
상기 폴리이미드 전구체 및 유기용매를 포함하는 폴리이미드 전구체 용액을 제조하는 단계;
상기 폴리이미드 전구체 용액을 기판상에 도포하는 단계; 및
상기 도포된 폴리이미드 전구체 용액을 건조 및 가열하는 단계를 포함하는 제1항의 폴리이미드 필름의 제조방법.
제9항에 있어서,
상기 폴리이미드 전구체 용액의 건조 및 가열을 통한 경화공정에 있어서, 최종 경화온도가 450℃ 이상인 폴리이미드 필름의 제조방법.
제1항 내지 제8항 중 어느 한 항에 따른 폴리이미드 필름을 기판으로 포함하는 플렉서블 디스플레이 소자.
PCT/KR2018/009818 2017-09-04 2018-08-27 플렉서블 디스플레이 소자 기판용 폴리이미드 필름 WO2019045376A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/617,858 US11485859B2 (en) 2017-09-04 2018-08-27 Polyimide film for flexible display device substrate
CN201880021220.9A CN110494475B (zh) 2017-09-04 2018-08-27 用于柔性显示装置基底的聚酰亚胺膜
EP18852591.9A EP3680282A4 (en) 2017-09-04 2018-08-27 POLYIMIDE FILM FOR FLEXIBLE DISPLAY DEVICE SUBSTRATE
JP2019546832A JP6938837B2 (ja) 2017-09-04 2018-08-27 フレキシブルディスプレイ素子基板用ポリイミドフィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0112323 2017-09-04
KR1020170112323A KR101907320B1 (ko) 2017-09-04 2017-09-04 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
KR1020170172005A KR20190071195A (ko) 2017-12-14 2017-12-14 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
KR10-2017-0172005 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019045376A1 true WO2019045376A1 (ko) 2019-03-07

Family

ID=65527867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009818 WO2019045376A1 (ko) 2017-09-04 2018-08-27 플렉서블 디스플레이 소자 기판용 폴리이미드 필름

Country Status (6)

Country Link
US (1) US11485859B2 (ko)
EP (1) EP3680282A4 (ko)
JP (1) JP6938837B2 (ko)
CN (1) CN110494475B (ko)
TW (1) TWI683839B (ko)
WO (1) WO2019045376A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262507B1 (ko) * 2019-02-14 2021-06-08 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용하여 제조된 폴리이미드 필름
CN112500570B (zh) * 2021-02-04 2021-05-25 武汉柔显科技股份有限公司 柔性显示器件及显示器用聚酰胺酸清漆、聚酰亚胺薄膜
KR102634467B1 (ko) * 2021-08-20 2024-02-06 에스케이마이크로웍스 주식회사 폴리아마이드-이미드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115090A (en) * 1990-03-30 1992-05-19 Sachdev Krishna G Viscosity stable, essentially gel-free polyamic acid compositions
KR0172005B1 (ko) 1994-09-16 1999-03-20 호소야 레이지 형광체 및 형광표시장치
KR20120096005A (ko) * 2009-11-20 2012-08-29 우베 고산 가부시키가이샤 방향족 폴리이미드 필름, 적층체 및 태양 전지
KR20140004655A (ko) * 2011-01-07 2014-01-13 도레이 카부시키가이샤 폴리아미드산 수지 조성물 및 그의 제조 방법
JP5428180B2 (ja) * 2008-03-31 2014-02-26 大日本印刷株式会社 ポリイミド前駆体樹脂組成物、及び電子部品
KR20170069190A (ko) * 2017-06-09 2017-06-20 코오롱인더스트리 주식회사 플라스틱 소재의 플렉서블 디스플레이 기판
KR20170112323A (ko) 2016-03-31 2017-10-12 단국대학교 천안캠퍼스 산학협력단 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3d 라미네이션 설비

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171828A (en) 1989-10-26 1992-12-15 Occidental Chemical Corporation Copolyimide ODPA/BPDA/4,4'-ODA or P-PDA
JPH0649405A (ja) 1992-07-30 1994-02-22 Pentel Kk ボールペン用蛍光水性インキ
JP3323337B2 (ja) 1994-10-14 2002-09-09 エヌイーシートーキン株式会社 TiO2−CaO−NiO系非磁性基板材料
US20040132900A1 (en) * 2003-01-08 2004-07-08 International Business Machines Corporation Polyimide compositions and use thereof in ceramic product defect repair
US20080044639A1 (en) * 2006-06-26 2008-02-21 Kwok Pong Chan Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
US8545975B2 (en) * 2006-06-26 2013-10-01 Sabic Innovative Plastics Ip B.V. Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
JP2008239930A (ja) 2007-03-29 2008-10-09 Du Pont Toray Co Ltd ポリアミック酸、それからなるポリイミドフィルムおよびその製造方法、並びにフレキシブル回路基板
US8071273B2 (en) 2008-03-31 2011-12-06 Dai Nippon Printing Co., Ltd. Polyimide precursor, resin composition comprising the polyimide precursor, pattern forming method using the resin composition, and articles produced by using the resin composition
JP5604524B2 (ja) 2009-10-27 2014-10-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高温摩耗用途向けポリイミド樹脂
KR20120101660A (ko) * 2009-10-27 2012-09-14 이 아이 듀폰 디 네모아 앤드 캄파니 고온 마모 용도를 위한 폴리이미드 수지
JP2013100379A (ja) * 2010-03-03 2013-05-23 Ube Industries Ltd ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池
KR101240955B1 (ko) 2010-12-27 2013-03-11 웅진케미칼 주식회사 고온에서의 열적 치수안정성이 우수한 폴리이미드 필름 및 그를 이용한 디스플레이 소자용 기판
WO2013077364A1 (ja) 2011-11-25 2013-05-30 日産化学工業株式会社 ディスプレイ基板用樹脂組成物
KR101688173B1 (ko) 2011-12-26 2016-12-21 코오롱인더스트리 주식회사 플라스틱 기판
TWI460211B (zh) 2012-04-20 2014-11-11 Taimide Technology Inc 芳香族聚醯亞胺膜、其製備方法、及其應用
CN103374130B (zh) * 2012-04-20 2016-01-20 达迈科技股份有限公司 芳香族聚酰亚胺膜、其制备方法、及其应用
KR101773652B1 (ko) * 2013-04-09 2017-09-12 주식회사 엘지화학 적층체의 제조방법 및 이를 이용하여 제조된 적층체
US9691995B2 (en) * 2013-12-04 2017-06-27 Lg Chem, Ltd. Method of manufacturing substrate for organic electronic device
JP2016102147A (ja) * 2014-11-27 2016-06-02 Jxエネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
KR101775204B1 (ko) 2014-12-04 2017-09-19 주식회사 엘지화학 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
KR102262746B1 (ko) 2015-01-30 2021-06-10 에스케이이노베이션 주식회사 폴리아믹산 조성물 및 폴리이미드 기재
KR101748928B1 (ko) 2015-02-04 2017-07-03 주식회사 엘지화학 액정 배향막 조성물 및 액정 배향막
US9975997B2 (en) 2015-03-27 2018-05-22 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and films and electronic devices including the same
US10508175B2 (en) 2015-03-27 2019-12-17 Samsung Electronics Co., Ltd. Composition and polyamideimide composite and polyamideimide film and electronic device
KR102502596B1 (ko) * 2015-03-27 2023-02-22 삼성전자주식회사 조성물, 이로부터 제조된 복합체, 및 이를 포함하는 필름 및 전자 소자
KR20160118962A (ko) 2015-04-03 2016-10-12 스미토모 베이클리트 컴퍼니 리미티드 프리프레그, 수지 기판, 금속 부착 적층판, 프린트 배선 기판, 및 반도체 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115090A (en) * 1990-03-30 1992-05-19 Sachdev Krishna G Viscosity stable, essentially gel-free polyamic acid compositions
KR0172005B1 (ko) 1994-09-16 1999-03-20 호소야 레이지 형광체 및 형광표시장치
JP5428180B2 (ja) * 2008-03-31 2014-02-26 大日本印刷株式会社 ポリイミド前駆体樹脂組成物、及び電子部品
KR20120096005A (ko) * 2009-11-20 2012-08-29 우베 고산 가부시키가이샤 방향족 폴리이미드 필름, 적층체 및 태양 전지
KR20140004655A (ko) * 2011-01-07 2014-01-13 도레이 카부시키가이샤 폴리아미드산 수지 조성물 및 그의 제조 방법
KR20170112323A (ko) 2016-03-31 2017-10-12 단국대학교 천안캠퍼스 산학협력단 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3d 라미네이션 설비
KR20170069190A (ko) * 2017-06-09 2017-06-20 코오롱인더스트리 주식회사 플라스틱 소재의 플렉서블 디스플레이 기판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680282A4

Also Published As

Publication number Publication date
CN110494475B (zh) 2022-09-20
TWI683839B (zh) 2020-02-01
US20200165452A1 (en) 2020-05-28
US11485859B2 (en) 2022-11-01
TW201912678A (zh) 2019-04-01
JP6938837B2 (ja) 2021-09-22
CN110494475A (zh) 2019-11-22
EP3680282A4 (en) 2020-11-25
EP3680282A1 (en) 2020-07-15
JP2020509127A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017176000A1 (ko) 내열성이 개선된 폴리이미드 필름 및 그 제조방법
WO2018038309A1 (ko) 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름
KR101907320B1 (ko) 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2012091232A1 (ko) 투명 폴리이미드 필름 및 그 제조방법
EP2342266A2 (en) Polyimide film
WO2017204462A1 (ko) 폴리아미드이미드, 이의 제조방법 및 이를 이용한 폴리아미드이미드 필름
WO2013100558A1 (ko) 폴리아믹산 용액
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2018216853A1 (ko) 레이저 박리 용이성 및 고내열성을 갖는 폴리아믹산 수지의 제조방법 및 이를 이용하여 제조한 폴리이미드 필름
WO2019045376A1 (ko) 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
KR102040355B1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019221364A1 (ko) 방열특성이 우수한 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2019088441A1 (ko) 디스플레이 기판용 폴리이미드 필름
JP7476464B2 (ja) ポリイミド系樹脂フィルムおよびそれを用いたディスプレイ装置用基板、および光学装置
KR102245672B1 (ko) 내열성이 개선된 폴리이미드의 제조방법
WO2019160252A1 (ko) 열전도도가 향상된 폴리이미드 필름 및 그 제조 방법
KR20190071195A (ko) 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2016108675A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2022107966A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2016129926A1 (ko) 폴리아믹산, 폴리이미드 수지 및 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852591

Country of ref document: EP

Effective date: 20200406