WO2005062459A1 - 車両用発電機の制御システム - Google Patents

車両用発電機の制御システム Download PDF

Info

Publication number
WO2005062459A1
WO2005062459A1 PCT/JP2003/016253 JP0316253W WO2005062459A1 WO 2005062459 A1 WO2005062459 A1 WO 2005062459A1 JP 0316253 W JP0316253 W JP 0316253W WO 2005062459 A1 WO2005062459 A1 WO 2005062459A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control
terminal
signal
battery
Prior art date
Application number
PCT/JP2003/016253
Other languages
English (en)
French (fr)
Inventor
Shiro Iwatani
Yoshihito Itou
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/016253 priority Critical patent/WO2005062459A1/ja
Priority to EP03780886.2A priority patent/EP1696553B1/en
Priority to US10/543,404 priority patent/US7129594B2/en
Priority to JP2005510031A priority patent/JP4316568B2/ja
Priority to CNB2003801093499A priority patent/CN1328845C/zh
Publication of WO2005062459A1 publication Critical patent/WO2005062459A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/243Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with on/off action
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the present invention relates to a control system for a vehicular generator which realizes a simplified circuit configuration and a reduced cost by using only three types of control signals from external terminals in a control device for adjusting a generated voltage of the generator. Things.
  • FIG. 5 is a circuit configuration diagram showing a conventional control system for a vehicle generator.
  • a conventional vehicle generator control system includes a control device 1 mounted on a vehicle for adjusting a generated voltage, and a vehicle-mounted power generator having a field coil 201, an armature coil 202, and a rectifier 203. And a key switch 3 that is turned on during operation of the vehicle, and a vehicle-mounted battery 4 that is charged by a voltage output from the armature coil 202 via the rectifier 203.
  • the control device 1 has a voltage detection circuit for detecting a terminal voltage of the battery 4 (hereinafter, referred to as “battery voltage”), and controls the field current supplied to the field coil 201 in accordance with the battery voltage. By doing so, the generated voltage is adjusted to a predetermined voltage.
  • the control device 1 includes an output terminal B (hereinafter, referred to as “B terminal”) connected to the battery 4, an input terminal S for detecting battery voltage (hereinafter, referred to as “S terminal”), and a key switch 3. And a power input terminal IG (hereinafter referred to as ⁇ IG terminal) connected to the battery 4 via the power supply.
  • B terminal an output terminal B
  • S terminal an input terminal S for detecting battery voltage
  • S terminal for detecting battery voltage
  • a key switch 3 a key switch 3.
  • a power input terminal IG hereinafter referred to as ⁇ IG terminal
  • control device 1 is connected to a field M ⁇ S F ET 10
  • a diode 102 connected to the output terminal of the power MOSFET 101 for backflow prevention, and a transistor for turning on / off the power MOSFET 101
  • connection point between the resistors 103 and 105 is connected to the output terminal of the transistor 104 and the gate terminal of the power MOSFET 101.
  • Comparator 106, resistor 107 and variable resistor 108 constitute a voltage detection circuit for detecting a battery voltage.
  • the resistor 107 and the variable resistor 108 divide the battery voltage to generate a detection voltage, and input the detection voltage to the comparator 106.
  • connection point between the resistor 107 and the variable resistor 108 is connected to the comparison input terminal (+) of the comparator 106, and the reference input terminal (1) of the comparator 106 is applied with the reference voltage Vref.
  • the gate voltage of the power MOSFET 101 becomes the divided voltage value of the battery voltage by the voltage dividing ratio of the resistors 103 and 105. Since the power MOSFET 101 is in a conductive state, a field current is supplied to the field coil 201, and the generator 2 is in a state capable of generating power.
  • the Zener diode 110 supplied with the battery voltage via the resistor 109 constitutes a constant voltage power supply VI based on the battery voltage. Further, based on the constant voltage power supply V1, a reference voltage Vref (comparison reference for the battery voltage) in the comparator 106 is generated.
  • the voltage detection circuits 107 and 108 in the control device 1 detect the battery voltage from the S terminal and input it to the comparison input terminal (+) of the comparator 106. .
  • the voltage generated by the generator 2 is controlled to a predetermined voltage.
  • the generated voltage is suppressed to reduce the engine load, or conversely, the generated voltage is promoted to charge the battery rapidly. It is necessary to be able to set the generated voltage to three or more types.
  • a control system for a vehicle generator of this type is referred to, for example, in Japanese Patent Application Laid-Open No. 62-107643.
  • two sets of power generation voltages are set.
  • An external input terminal is required, and there is a problem that the wiring of the control device is increased.
  • Japanese Patent No. 3109881 can be mentioned as a control system that provides only one input terminal from the external control unit and arbitrarily adjusts the control voltage.
  • Japanese Patent No. 3109881 can be mentioned.
  • the present invention has been made to solve the above problems, and has a single dedicated control terminal for taking in a control signal from the outside, thereby simplifying the entire system and achieving cost reduction.
  • the purpose of the present invention is to obtain a control system for a vehicle generator that has three types of control signals (ground signal, release signal, and pull-up signal).
  • a vehicle generator control system includes a generator mounted on a vehicle and having an armature coil and a field coil, and charged by a generated voltage output from the armature coil mounted on the vehicle. And a voltage detection circuit that detects a terminal voltage of the battery, and intermittently controls a field current supplied to a field coil according to the terminal voltage of the battery, thereby adjusting the generated voltage to a predetermined voltage.
  • a single control terminal is provided for the control device, an external control unit is connected to the control terminal, and the external control unit is connected to the battery terminal voltage and vehicle
  • any one of a ground signal, an open signal and a pull-up signal is supplied to the control terminal as a control signal, and the control device transmits the ground signal supplied to the control terminal to
  • the generator shuts down the generator by shutting off the field current, and intermittently controls the field current in response to the open signal supplied to the control terminal to reduce the generator voltage to the first normal state.
  • the generated current is adjusted to the second control voltage higher than the first control voltage by intermittently controlling the field current.
  • FIG. 1 is a circuit configuration diagram showing a control system for a vehicle generator according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an example of the switching operation of the first and second control voltages according to the control signal according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a gradual increase (gradual decrease) switching control operation of the first and second control voltages based on the duty control of the external control unit according to the second embodiment of the present invention.
  • FIG. 4 is a circuit configuration diagram showing a control system for a vehicle generator according to Embodiment 2 of the present invention.
  • FIG. 5 is a circuit configuration diagram showing a conventional control system for a vehicle generator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit configuration diagram showing a control system for a vehicle generator according to Embodiment 1 of the present invention.
  • the same components as those described above are denoted by the same reference numerals. Or “A” after the symbol, and the detailed description is omitted.
  • the resistor 109 and the Zener die which constitute the power supply circuit in the control device 1A Aether 110 is omitted here to avoid complication of the drawing.
  • an external control unit 5 is provided in addition to the configuration described above.
  • the control device 1A is provided with a single control terminal C (hereinafter, referred to as "C terminal").
  • the C terminal is connected to an external control unit 5 and an external control.
  • the control signal from unit 5 is input.
  • the external control unit 5 controls one of the ground signal (ground voltage), the open signal and the pull-up signal (high voltage) to the C terminal according to the battery voltage and the driving condition of the vehicle. It is supplied as a signal.
  • controller 1A in response to the ground signal supplied to terminal C, controller 1A puts generator 2 in a power generation stop state by interrupting the field current, and responds to the open signal supplied to terminal C.
  • the generated voltage is adjusted to the first control voltage during normal operation, and the field current is intermittently controlled in response to the pull-up signal supplied to the C terminal. Adjust the voltage to a second control voltage higher than the first control voltage.
  • the external control unit 5 includes transistors 501 and 502 connected to the C terminal and a transistor for determining a control signal (input state of the C terminal) supplied to the C terminal. And a control circuit 503 for ON / OFF control of 501 and 502.
  • the resistors 1 1 1 and 1 1 which determine the voltage division ratio of the reference input terminal (1) of the comparator 106 are used. It has 1 2 and 1 13.
  • the resistors 11 1 to 11 13 constituting the voltage detection circuit in the control device 1 A generate the reference voltage V ref from the constant voltage power supply V 1 as described above.
  • a diode 114 is inserted between the reference input terminal (1) of the comparator 106 and the C terminal.
  • the output terminal of transistor 115 is connected to the connection point of resistors 112 and 113, and the base terminal of transistor 115 is connected to the IG terminal via resistor 116. It is connected.
  • the output terminal of another transistor 117 is connected to the base terminal of the transistor 115, and the base terminal of the transistor 117 is connected to the C terminal via a zener diode 119 and a resistor 118. It is connected.
  • the control device 1A changes the reference voltage Vref by changing the voltage dividing ratio by the resistors 111 to 113 according to the control signal supplied from the external control unit 5 to the C terminal.
  • the power generation voltage is adjusted in response to the control signal.
  • the transistors 1 15 and 1 17 function as switching elements for changing the voltage dividing ratio of the resistors 1 1 to 1 13, and the resistors 1 16 and 1 18 and the Zener diode 1 1 9 are connected to the transistor 1 It functions as a circuit element for turning ON and OFF of 15 and 1 17.
  • the transistor 104 is turned ON / OFF by the ON / OFF output of the comparator 106 and the power MOSFET 101 is turned ON / OFF by the ON / OFF output of the comparator 106, and the field current decreases / increases.
  • the generated voltage of the generator 2 is controlled to be constant.
  • the division ratio of the reference voltage V ref (divided voltage) set at the reference input terminal (1) is a constant value determined only by the constant power supply voltage VI. Instead, it changes in three stages according to the input signal from the C terminal.
  • control signal input from the C terminal is a “ground signal (ground voltage)”, that is, the control circuit 503 in the external control unit 5 turns off the transistor 501 by FF (interruption), and When 502 is turned on (N), the reference input terminal (1) side of the comparator 106 is grounded via the diode 114.
  • the reference voltage V ref becomes 0 [V], so that the transistor 104 is always in the ON (conductive) state, and the power MOS FET 101 is always in the OFF (cut-off) state. Therefore, the generator 2 is in the power generation stop state, and the generated voltage becomes 0 [V].
  • the control signal input from the terminal c is an “open signal”, that is, the transistors 501 and 502 are both turned off by the control circuit 503 in the external control unit 5.
  • the reference voltage Vrei is not a ground signal.
  • the Zener diode 119 is turned off (cut off), the transistor 117 is also turned off (cut off), and the transistor 115 is turned on, so that the reference input terminal (1) of the comparator 106 has a resistor.
  • the reference voltage V ref 1 determined by the voltage dividing ratio of the units 111 and 112 is applied.
  • the divided voltage of the S terminal voltage (battery voltage) is applied to the comparison input terminal (+) side of the comparator 1 ⁇ 6, thereby detecting the battery voltage.
  • the comparator 106 compares the divided voltage value of the battery voltage with the reference voltage V ref 1 (the divided value of the power supply voltage V 1 by the resistors 1 1 1 and 1 1 2) to turn on the power MOSFET 101. By repeating / OFF (intermittent), the generated voltage of generator 2 is controlled to a constant voltage. At this time, the generated voltage controlled based on the reference voltage Vref1 is referred to as a first control voltage.
  • control signal input from the C terminal is a pull-up signal (high voltage)
  • the control circuit 503 in the external control unit 5 turns on (conducts) the transistor 501 and turns on the transistor 502.
  • the C terminal voltage rises to almost the battery voltage.
  • the zener diode 119 is turned on (conducting), and the transistor 117 is also turned on (conducting), so that the transistor 115 is turned off (disconnected). Therefore, the reference voltage Vref2 determined by the voltage dividing ratio between the resistor 111 and the resistors 112 and 113 in series with the resistor 111 is applied to the reference input terminal (1) of the comparator 106.
  • the reference voltage Vref 2 has a higher divided voltage than the reference voltage Vref 1, and therefore, the generated voltage controlled based on the reference voltage Vref 2 (second Is a voltage value higher than the first control voltage.
  • the generated voltage of the generator 2 is controlled to be constant at the second control voltage.
  • FIG. 2 is an explanatory diagram showing an example of the switching operation of the generated voltages (first and second control voltages) based on the reference voltages V ref 1 and V ref 2. The values are shown in relation to the ⁇ NZ ⁇ FF operations of 01 and 502.
  • the horizontal axis indicates the ON / OFF state (control signal) of the transistors 501 and 502, and the vertical axis indicates the S terminal voltage VS.
  • the input signal at the C terminal corresponds to the control signal, and the S terminal voltage V S corresponds to the battery voltage.
  • the power generation voltage for the ground signal (ground voltage) is set to 0 [V]
  • the first control voltage is set to 14.5 [V]
  • the second control voltage is set to 15.5 [V]. It shows the case where it was done.
  • the power generation voltage is set to 0 [V] and 14.5 according to the control signal input from the external control unit 5 through the single C terminal provided in the control device 1A.
  • [V] (first control voltage) and 15.5 [V] (second control voltage) can be controlled in three stages, so that the configuration of the control device 1A is not complicated. Absent.
  • the control signals generated by the external control unit 5 are only three types, that is, a ground signal, an open signal, and a pull-up (high) signal. This simplifies the configuration of the control device 1A, thereby increasing costs. It can be easily realized without inducing.
  • control device 1A is configured by a circuit using bipolar transistors, it is hardly affected by noise and the like, and can reliably execute the control operation.
  • the voltage detection circuit in the control device 1A has three types of control signals.
  • the reference voltage V ref supplied to the reference input terminal (1) of the comparator 106 can be changed in three ways (0 V, 14.5 V, 15.5 V) Although the switching is set so as to correspond to the control voltage, the detection voltage of the battery voltage supplied to the comparison input terminal (+) of the comparator 106 may be set to be switched.
  • the voltage detection circuit in the control device divides the battery voltage into a detection voltage.
  • the control device includes a voltage detection resistor for conversion, and the control device adjusts a generated voltage in response to the control signal by changing a resistance ratio of the voltage detection resistor according to a control signal supplied from the external control unit 5. Will do.
  • the comparator 106 is provided in the control device 1A, and the divided voltage value (reference voltage) on the reference input terminal (1) side is changed according to the control signal (C terminal voltage).
  • a circuit composed of a resistor, a Zener diode, and a transistor may be used.
  • FIG. 3 is an explanatory diagram showing a gradually increasing (or gradually decreasing) switching operation of each control voltage based on duty control according to the second embodiment of the present invention.
  • FIG. 4 is a circuit configuration diagram showing a control system for a vehicle generator according to Embodiment 2 of the present invention.
  • a transistor 501 is formed by using a circuit composed of a resistor, a Zener diode and a transistor.
  • the case where the duty switching operation of the base voltage of the transistor 502 (see FIG. 3) is realized is shown.
  • FIG. 4 the same components as those described above (see FIG. 1) are denoted by the same reference numerals as those described above, or are denoted by “B” after the reference numerals, and detailed description thereof is omitted.
  • the control device 1B includes a Zener diode 120 in place of the comparator 106 described above.
  • the force side of the Zener diode 120 is connected to the S terminal via the resistor 121. And grounded through resistors 122, 123 and transistor 124.
  • the base terminal of the transistor 124 is connected to the C terminal via the resistor 127 and to the IG terminal via the resistors 127 and 126.
  • the connection point of the resistors 122 and 123 is grounded via a transistor 125, the base terminal of the transistor 125 is connected to the C terminal via a zener diode 128, and the zener diodes 128 and 123 are connected.
  • control circuit 5B in the external control unit 5B changes the base voltage of the transistor 501 or 502 when switching the control signal in accordance with the increase or decrease of the battery voltage and the operating state, as shown in FIG. By doing so, it gradually increases or decreases.
  • the control circuit 5B responds to the three types (0 [V], 14.5 [V], 15.5 [V]) of the S terminal voltage VS (control voltage) by the arrow ( Corresponding to the four kinds of increase / decrease switching shown in a) to (d), the base voltage waveform can be gradually increased and decreased by four kinds of duty control shown in (a) to (d).
  • the control device 1B switches the change in the control voltage for adjusting the generated voltage in a linear manner according to the C terminal voltage (duty signal).
  • the operating state is stabilized by avoiding a sudden change in the field current.
  • VS 0 [V]).
  • the base voltages of the transistors 501 and 502 in the external control unit 5B are duty-controlled as follows. That is, in the base voltage waveform (a) corresponding to the arrow (a), the base voltage ON duty ratio of the transistor 502 is gradually decreased while the OFF state of the transistor 501 is maintained, and the transistor 502 is shifted to the OFF state. . In the base voltage waveform (b) corresponding to the arrow (b), while maintaining the OFF state of the transistor 502, the base voltage ON duty ratio of the transistor 501 is gradually increased to bring the transistor 501 into the ⁇ N state.
  • the base voltage ON duty ratio of the transistor 501 is gradually reduced while the OFF state of the transistor 502 is maintained, so that the transistor 501 is set to the OFF state. Transition.
  • the base voltage ON duty ratio of the transistor 502 is gradually increased while the OFF state of the transistor 501 is maintained, and the transistor 502 is turned on. Let it.
  • the control circuit 503B controls the duty of the base voltage when the transistor 501 or the transistor 502 is switched from conduction to interruption or from interruption to conduction by the input signal from the C terminal.
  • the determined partial pressure ratio of one input side of the comparator 106 is also gradually reduced or gradually increased.
  • the gradual increase and decrease control can be performed without changing the configuration of the control device 1B.
  • control device 1B The other operations of the control device 1B are the same as described above, and the power MOSFET 101 is turned ON / OFF by the ON / OFF of the transistor 104, whereby the field current decreases (or By increasing and decreasing the field current, the generated voltage of the generator 2 is controlled to be constant.
  • the control is performed by changing the divided voltage value V s of the S terminal voltage VS determined according to the control signal input from the C terminal without passing through the comparator 106 (see FIG. 1). The voltage is changed.
  • the Zener diode 120 is turned on, and the transistor 104 is always turned on, so that the power MOSFET 101 is always cut off and the generated voltage becomes 0 [V].
  • the Zener diode 128 When the control signal is an “open signal”, the Zener diode 128 is cut off, the transistor 125 is cut off, and the transistor 124 is turned on by the divided voltage value of the battery voltage by the resistors 126 and 127. I do.
  • the divided voltage value of the battery voltage by the resistors 126 and 127 should be set lower than the break voltage of the Zener diode 128 and higher than the voltage value enough to make the transistor 124 conduct. Needless to say.
  • the divided voltage Vs of the S terminal voltage VS is determined by the voltage dividing ratio between the resistance value of the resistor 121 and the series resistance value of the resistors 122 and 123.
  • the transistor 104 is turned on (conducted).
  • the generated voltage of the generator 2 is controlled to be constant.
  • the control voltage determined by the divided voltage Vs is referred to as a first control voltage, as described above.
  • the divided voltage V s is determined by the division ratio of the resistors 121 and 122.
  • the control voltage determined by the divided voltage Vs is the same as described above. Is referred to as a second control voltage.
  • control signal from the external control unit 5B is composed of only one system, and three levels of power generation voltage control can be performed.
  • the control device 1B and the control circuit 50 3 The configuration of B is simplified.
  • the switching is performed by the duty control of the base voltage of the transistor 501 or 502 by the control circuit 503B in the external control unit 5B without particularly changing the circuit configuration in the control device 1B.
  • the control voltage at the time can be gradually increased or decreased, and the operating state can be stabilized by avoiding a sudden change in the target value of the generated voltage. Further, by gradually increasing or decreasing the generated voltage based on the duty control, stable engine rotation can be realized even when the battery 4 is rapidly charged or in an operating state where the engine speed is low.
  • the control device 1B can continue the control of the normal power generation voltage.
  • the voltage detection circuit (Zener diode 120) in the control device 1B uses the divided voltage Vs of the S terminal voltage VS as the detection voltage of the battery voltage. Is also good.
  • the voltage detection terminal (S terminal) can be omitted, and the cost can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

車両用発電機の制御システム 技術分野
この発明は、 発電機の発電電圧を調整する制御装置において、 外部端子からの 制御信号を 3種類のみとすることにより、 回路構成の簡略化およびコストダウン を実現した車両用発電機の制御システムに関するものである。
明 背景田技術
図 5は従来の車両用発電機の制御システムを示す回路構成図である。
図 5において、 従来の車両用発電機の制御システムは、 車両に搭載されて発電 電圧を調整するための制御装置 1と、 界磁コイル 201、 電機子コイスレ 202お よび整流器 203を有する車載の発電機 2と、 車両運転時に ONされるキースィ ツチ 3と、 電機子コイル 202から整流器 203を介して出力される 電電圧に よって充電される車載のバッテリ 4と、 を備えている。
制御装置 1は、 バッテリ 4の端子電圧 (以下、 「バッテリ電圧」 とレヽう) を検 出する電圧検出回路を有し、 バッテリ電圧に応じて界磁コイル 201に供給する 界磁電流を断続制御することにより、 発電電圧を所定電圧に調整する。
このため、 制御装置 1は、 バッテリ 4に接続された出力端子 B (以下、 「B端 子」 という) 、 バッテリ電圧検出用の入力端子 S (以下、 「S端子」 という) と、 キースィッチ 3を介してバッテリ 4に接続された電源入力端子 I G (以下、 Γ I G端子」 という) と、 を備えている。
また、 制御装置 1は、 界磁コィノレ 201に接続されたパヮ一 M〇 S F ET 10
1と、 パワー MOSFET 101の出力端子に接続された逆流防止用のダイォー ド 102と、 パワー MOSFET 101を ON/OFFするためのトランジスタ
104と、 I G端子に接続された抵抗器 103および 105と、 トランジスタ 1
04を ON/OF Fするためのコンパレータ 106と、 S端子 (外部雷圧検出端 子) に接続された抵抗器 107および可変抵抗器 108と、 I G端子に接続され た抵抗器 109およびツエナーダイオード 1 10と、 を備えている。
抵抗器 103および 105の接続点は、 トランジスタ 104の出力端子および パワー MO S F ET 101のゲート端子に接続されている。
コンパレータ 106、 抵抗器 107および可変抵抗器 108は、 バッテリ電圧 を検出するための電圧検出回路を構成している。
すなわち、 抵抗器 107および可変抵抗器 108は、 バッテリ電圧を分圧して 検出電圧を生成し、 検出電圧をコンパレータ 106に入力している。
抵抗器 107および可変抵抗器 108の接続点は、 コンパレータ 106の比較 入力端子 (+ ) に接続され、 コンパレータ 106の基準入力端子 (一) には、 基 準電圧 Vr e f が印加されている。
図 5において、 車両の始動時にキースィッチ 3が ON (閉成) されると、 パヮ 一 MOSFET 10 1のゲート電圧は、 抵抗器 103および 105の分圧比によ るバッテリ電圧の分圧値となり、 パワー MOSFET 101が導通状態となるの で、 界磁コイル 201に界磁電流が供給されて、 発電機 2は発電可能な状態とな る。
—方、 抵抗器 109を介してバッテリ電圧が供給されるツエナーダイォード 1 10は、 バッテリ電圧に基づく定電圧電源 VIを構成する。 また、 定電圧電源 V 1に基づいて、 コンパレータ 106における基準電圧 V r e f (バッテリ電圧に 対する比較基準) が生成される。
車両の機関始動により発電機 2が発電を開始すると、 制御装置 1内の電圧検出 回路 107、 108は、 S端子からバッテリ電圧を検出して、 コンパレータ 10 6の比較入力端子 (+ ) に入力する。
この検出電圧が基準入力端子 (一) に設定された所定電圧 V r e ίよりも高く なると、 コンパレータ 106の ON出力により トランジスタ 104が導通し、 パ ヮ一 MO SFET 101が遮断することにより、 界磁電流が減少して発電機 2の 発電電圧が低下する。
一方、 バッテリ電圧の検出電圧が基準電圧 V r e f よりも低くなると、 コンパ レータ 106の OF F出力により トランジスタ 104が遮断され、 パワー MO S
FET 101が導通することにより、 界磁電流が増加して発電機 2の発電電圧が 上昇する。
このように、 界磁電流の断続を繰り返すことにより、 発電機 2の発電電圧が一 定の所定電圧に制御される。
しかし、 自動車用発電機を駆動する場合には、 車両の運転状態に応じて、 発電 電圧を抑制してエンジン負荷を軽減させることや、 逆に、 発電電圧を促進させて バッテリを急速に充電させることが必要となるため、 発電電圧を 3種類以上に設 定可能にする必要がある。
そこで、 外部コント口一ルュニットからの制御信号に応じて、 制御装置による 調整電圧を変化させるシステムが提案されている。
この種の車両用発電機の制御システムは、 たとえば、 特開昭 6 2 - 1 0 7 6 4 3号公報に参照されるが、 この場合、 発電電圧を 3段設定するために、 2本の外 部入力端子が必要となり、 制御装置の配線が多くなるという問題点があつた。 また、 外部コントロールユニットからの入力端子を 1本のみ設けて、 任意に制 御電圧を調整する制御システムとして、 たとえば、 特許第 3 1 0 2 9 8 1号があ げられるが、 この場合は、 外部入力信号を判定するための回路を制御装置内に設 ける必要があり、 制御装置の構成が非常に複雑となるので、 コストアップを回避 することができないという問題点があった。 発明の開示
この発明は、 上記のような問題点を解決するためになされたものであり、 外部 から制御信号を取り込むための専用の制御端子を単一で構成し、 システム全体を 簡略化してコストダウンを実現するとともに、 制御信号を 3種類 (接地信号、 開 放信号およびプルアップ信号) で構成した車両用発電機の制御システムを得るこ とを目的とする。
この発明に係る車両用発電機の制御システムは、 車両に搭載されて電機子コィ ルぉよぴ界磁コィルを有する発電機と、 車両に搭載されて電機子コィルから出力 される発電電圧によって充電されるバッテリと、 バッテリの端子電圧を検出する 電圧検出回路を有し、 バッテリの端子電圧に応じて界磁コイルに供給する界磁電 流を断続制御することにより、 発電電圧を所定電圧に調整する制御装置とを備え た車両用発電機の制御システムにおいて、 制御装置に単一の制御端子を設けると ともに、 制御端子に外部コント口一ルュニットを接続し、 外部コント口一ルュニ ットは、 バッテリの端子電圧および車両の運転状態に応じて、 制御端子に対して, 接地信号、 開放信号およびプルアップ信号のうちのいずれか 1つを制御信号とし て供給し、 制御装置は、 制御端子に供給される接地信号に応答して、 界磁電流を 遮断することにより発電機を発電停止状態にし、 制御端子に供給される開放信号 に応答して、 界磁電流を断続制御することにより発電電圧を通常時の第 1の制御 電圧に調整し、 制御端子に供給されるプルアップ信号に応答して、 界磁電流を断 続制御することにより、 発電電圧を第 1の制御電圧よりも高い第 2の制御電圧に 調整するものである。 図面の簡単な説明
図 1はこの発明の実施の形態 1による車両用発電機の制御システムを示す回路 構成図である。
図 2はこの発明の実施の形態 1による制御信号に応じた第 1および第 2の制御 電圧の切替動作の一例を示す説明図である。
図 3はこの発明の実施の形態 2による外部コントロールュニットのデューティ 制御に基づく第 1および第 2の制御電圧の漸増 (漸減) 切替制御動作の一例を示 す説明図である。
図 4はこの発明の実施の形態 2による車両用発電機の制御システムを示す回路 構成図である。
図 5は従来の車両用発電機の制御システムを示す回路構成図である。 発明を実施するための最良の形態
実施の形態 1 .
図 1はこの発明の実施の形態 1による車両用発電機の制御システムを示す回路 構成図であり、 図 1において、 前述 (図 5参照) と同様の構成については、 前述 と同一符号を付して、 または符号の後に 「A」 を付して詳述を省略する。
なお、 制御装置 1 A内の電源回路を構成する抵抗器 1 0 9およびツユナーダイ オード 1 1 0は、 図面の煩雑さを回避するために、 ここでは省略されている。 この場合、 前述の構成に加えて、 外部コントロールユニット 5が設けられてい る。
また、 制御装置 1 Aには、 単一の制御端子 C (以下、 「C端子」 という) が設 けられており、 C端子には、 外部コント口一ルュニット 5が接続されて、 外部コ ントロールュニット 5からの制御信号が入力される。
外部コントロールュニット 5は、 バッテリ電圧および車両の運転状態に応じて、 C端子に対して、 接地信号 (グランド電圧) 、 開放信号およびプルアップ信号 ( h i g h電圧) のうちのいずれか 1つを制御信号として供給するようになって いる。
また、 制御装置 1 Aは、 C端子に供給される接地信号に応答して、 界磁電流を 遮断することにより発電機 2を発電停止状態にし、 C端子に供給される開放信号 に応答して、 界磁電流を断続制御することにより発電電圧を通常時の第 1の制御 電圧に調整し、 C端子に供給されるプルアップ信号に応答して、 界磁電流を断続 制御することにより、 発電電圧を第 1の制御電圧よりも高い第 2の制御電圧に調 整する。
図 1において、 外部コント口一ルュニット 5は、 C端子に接続されたトランジ スタ 5 0 1および 5 0 2と、 C端子に供給される制御信号 (C端子の入力状態) を決定するためにトランジスタ 5 0 1および 5 0 2を O N/O F F制御する制御 回路 5 0 3とを有する。
また、 制御装置 1 Aにおいては、 前述と同様の回路素子 1 0 1〜1 0 8に加え て、 コンパレータ 1 0 6の基準入力端子 (一) の分圧比を決定する抵抗器 1 1 1、 1 1 2および 1 1 3を有する。
制御装置 1 A内において電圧検出回路を構成する抵抗器 1 1 1〜1 1 3は、 前 述のように、 定電圧電源 V 1から基準電圧 V r e f を生成する。
コンパレータ 1 0 6の基準入力端子 (一) と C端子との間には、 ダイオード 1 1 4が挿入されている。
抵抗器 1 1 2および 1 1 3の接続点には、 トランジスタ 1 1 5の出力端子が接 続され、 卜ランジスタ 1 1 5のベース端子は、 抵抗器 1 1 6を介して I G端子に 接続されている。 また、 トランジスタ 1 1 5のベース端子には、 別のトランジス タ 1 17の出力端子が接続され、 トランジスタ 1 1 7のベース端子は、 ツエナー ダイオード 1 1 9および抵抗器 1 18を介して C端子に接続されている。
制御装置 1 Aは、 外部コント口ールュニット 5から C端子に供給される制御信 号に応じて、 抵抗器 1 1 1〜1 1 3による分圧比を変更して基準電圧 Vr e f を 変更することにより、 制御信号に応答して発電電圧を調整するようになっている。
トランジスタ 1 1 5および 1 1 7は、 抵抗器 1 1 1~1 13の分圧比を変更す るためのスイッチング素子として機能し、 抵抗器 1 16, 1 18およびツエナー ダイオード 1 1 9は、 トランジスタ 1 1 5および 1 1 7を ONZOF Fさせるた めの回路素子として機能する。
次に、 図 1に示したこの発明の実施の形態 1による具体的な制御動作について 説明する。
通常運転時においては、 前述と同様に、 コンパレータ 106の ON/OF F出 力により トランジスタ 104が ON/OFFされ、 パワー MOS F E T 101力 S OF FZONされて界磁電流が減少/増大し、 この界磁電流の断続を繰り返すこ とによつて発電機 2の発電電圧が一定に制御される。
ただし、 制御装置 1 A内のコンパレータ 106において、 基準入力端子 (一) 側で設定される基準電圧 V r e f (分圧電圧) の分圧比は、 定電源電圧 VIのみ によつて決定される一定値ではなく、 C端子からの入力信号に応じて 3段階に変 化する。
まず、 C端子から入力される制御信号が 「接地信号 (グランド電圧) 」 であつ た場合、 つまり、 外部コントロールユニット 5内の制御回路 503により、 トラ ンジスタ 501が〇FF (遮断) され、 且つトランジスタ 502が〇N (導通) された場合には、 コンパレータ 106の基準入力端子 (一) 側は、 ダイオード 1 14を介して接地される。
これにより、 基準電圧 V r e f が 0 [V] となるので、 トランジスタ 104は 常に ON (導通) 状態となり、 パワー MOS FET 1 01は、 常に OF F (遮 断) 状態となる。 したがって、 発電機 2は発電停止状態となり、 発電電圧は 0 [V] になる。 また、 c端子から入力される制御信号が 「開放信号」 であった場合、 つまり、 外部コントロールュニッ 卜 5内の制御回路 503により、 トランジスタ 501お よび 502が両方とも OF F (遮断) された場合には、 基準電圧 Vr e iは接地 信号ではなくなる。 し力、し、 電原電圧 VIをツエナーダイオード 1 1 9のブレイ ク電圧よりも低い電圧に設定しておくことにより、 基準電圧 V r e f もツエナー ダイオード 1 1 9のブレイク電圧よりも低くなる。
これにより、 ツエナーダイオード 1 1 9が OFF (遮断) され、 トランジスタ 1 17も OFF (遮断) されて、 トランジスタ 1 15が導通するので、 コンパレ ータ 106の基準入力端子 (一) 側には、 抵抗器 1 1 1および 1 1 2の分圧比に よって決定された基準電圧 V r e f 1が印加される。
一方、 コンパレータ 1◦ 6の比較入力端子 (+ ) 側には、 S端子電圧 (バッテ リ電圧) の分圧電圧が印加されており、 これにより、 バッテリ電圧を検出してい る。
したがって、 コンパレータ 1 06は、 バッテリ電圧の分圧値と基準電圧 V r e f 1 (抵抗器 1 1 1および 1 1 2による電源電圧 V 1の分圧値) とを比較して、 パワー MOSFET 101の ON/OFF (断続) を繰り返すことにより、 発電 機 2の発電電圧を一定電圧に制御する。 このとき、 基準電圧 Vr e f 1に基づい て制御される発電電圧を、 第 1の制御電圧と称する。
次に、 C端子から入力される制御信号がプルアップ信号 (h i g h電圧) の場 合、 つまり、 外部コントロールユニット 5内の制御回路 503により、 トランジ スタ 501が ON (導通) され、 且つトランジスタ 502が OFF (遮断) され た場合には、 C端子電圧は、 ほぼバッテリ電圧まで上昇する。
これにより、 ツエナーダイオード 1 1 9が ON (導通) し、 トランジスタ 1 1 7も ON (導通) するので、 トランジスタ 1 15が OFF (遮断) される。 したがって、 コンパレータ 106の基準入力端子 (一) 側には、 抵抗器 1 1 1 と直列の抵抗器 1 12および 1 1 3との分圧比によって決定された基準電圧 V r e f 2が印加される。
このときの基準電圧 Vr e f 2は、 上記基準電圧 Vr e f 1よりも高い分圧値 となり、 したがって、 基準電圧 Vr e f 2に基づいて制御される発電電圧 (第 2 の制御電圧) は、 上記第 1の制御電圧よりも高い電圧値となる。 以下、 前述と同 様に、 発電機 2の発電電圧は、 第 2の制御電圧に一定に制御される。
,図 2は基準電圧 V r e f 1および V r e f 2に基づく発電電圧 (第 1および第 2の制御電圧) の切替動作の一例を示す説明図であり、 外部コント口一ルュニッ ト 5内のトランジスタ 5 0 1および 5 0 2の〇NZ〇F F動作と関連付けて示し ている。
図 2において、 横軸はトランジスタ 5 0 1および 5 0 2の O N/O F F状態 (制御信号) を示し、 縦軸は S端子電圧 V Sを示している。 C端子の入力信号は 制御信号に相当し、 S端子電圧 V Sは、 バッテリ電圧に相当している。
ここでは、 接地信号 (グランド電圧) の場合の発電電圧が 0 [V] 、 第 1の制 御電圧が 1 4 . 5 [V] 、 第 2の制御電圧が 1 5 . 5 [V] に設定された場合を 示している。
このように、 制御装置 1 Aに設けられた単一の C端子を介して、 外部コント口 ールユニット 5から入力される制御信号に応じて、 発電電圧を、 0 [V] と、 1 4 . 5 [V] (第 1の制御電圧) と、 1 5 . 5 [V] (第 2の制御電圧) との 3 段階に制御することができるので、 制御装置 1 Aの構成が複雑化することはない。 また、 外部コントロールュニット 5において生成される制御信号は、 接地信号、 開放信号、 プルアップ (h i g h ) 信号の 3種類のみであり、 制御装置 1 Aの構 成が簡略化されるので、 コストアップを招くことなく容易に実現することができ る。
また、 制御装置 1 Aは、 バイポーラトランジスタを用いた回路により構成され ているので、 ノイズなどによる影響を受けにくく、 確実に制御動作を実行するこ とができる。
なお、 図 1において、 制御装置 1 A内の電圧検出回路は、 3通りの制御信号
( C端子電圧) に応答して、 コンパレータ 1 0 6の基準入力端子 (一) 側に供給 される基準電圧 V r e f を、 3通り (0 V、 1 4 . 5 V、 1 5 . 5 V) の制御電 圧に対応するように切替設定したが、 コンパレータ 1 0 6の比較入力端子 (+ ) 側に供給されるバッテリ電圧の検出電圧を切替設定してもよい。
この場合、 制御装置内の電圧検出回路は、 バッテリ電圧を分圧して検出電圧に 変換する電圧検出抵抗器を含み、 制御装置は、 外部コントロールユニット 5から 供給される制御信号に応じて、 電圧検出抵抗器の抵抗比を変更することにより、 制御信号に応答した発電電圧の調整を行うことになる。
この場合も、 前述と同等の作用効果を奏することは言うまでもない。
また、 コンパレータ 1 0 6の比較入力端子 (+ ) 側において、 S端子電圧 V S を検出したが、 B端子電圧を検出電圧としても同等の作用効果を奏する。 実施の形態 2 .
なお、 上記実施の形態 1では、 特に言及しなかったが、 各制御電圧 (発電電 圧) の切替時 (図 2参照) においては、 発電機 2内の界磁コイル 2 0 1に対する 界磁電流 (励磁電流) の急激な変化によって、 エンジン回転が不安定になり易い ので、 これを回避するために、 デューティ制御を適用して、 各制御電圧 (発電電 圧: S端子電圧 V S ) を漸増 (または、 漸減) 制御により切替えることが望まし い。
また、 上記実施の形態 1では、 制御装置 1 A内にコンパレータ 1 0 6を設け、 制御信号 (C端子電圧) に応じて基準入力端子 (一) 側の分圧値 (基準電圧) を 変更したが、 コンパレータ 1 0 6の代わりに、 抵抗器、 ツエナーダイオードおよ びトランジスタにより構成された回路を用いてもよレ、。
図 3はこの発明の実施の形態 2によるデューティ制御に基づく各制御電圧の漸 増 (または、 漸減) 切替動作を示す説明図である。
また、 図 4はこの発明の実施の形態 2による車両用発電機の制御システムを示 す回路構成図であり、 抵抗器、 ツエナーダイオードおよびトランジスタにより構 成された回路を用いて、 トランジスタ 5 0 1またはトランジスタ 5 0 2のベース 電圧のデューティ切替動作 (図 3参照) を実現した場合を示している。
図 4において、 前述 (図 1参照) と同様のものについては、 前述と同一符号を 付して、 または符号の後に 「B」 を付して詳述を省略する。
制御装置 1 Bは、 前述のコンパレータ 1 0 6に代えて、 ツエナーダイオード 1 2 0を備えている。
また、 ツエナーダイオード 1 2 0の力ソード側は、 抵抗器 1 2 1を介して S端 子に接続されるとともに、 抵抗器 1 22, 1 23およびトランジスタ 1 24を介 して接地されている。
トランジスタ 1 24のベース端子は、 抵抗器 1 27を介して C端子に接続され るとともに、 抵抗器 127および 1 26を介して I G端子に接続されている。 抵抗器 1 22および 1 23の接続点は、 トランジスタ 125を介して接地され ており、 トランジスタ 1 25のベース端子は、 ツエナーダイオード 1 28を介し て C端子に接続されるとともに、 ツエナーダイオード 1 28および抵抗器 1 26 を介して I G端子に接続されている。
一方、 外部コントロールユニット 5 B内の制御回路 5 Bは、 バッテリ電圧の増 減および運転状態に応じた制御信号の切替時において、 トランジスタ 501また は 502のベース電圧を、 図 3のようにデューティ信号にすることにより、 漸増 または漸減させるようになつている。
すなわち、 制御回路 5 Bは、 図 3において、 3通り (0 [V] 、 1 4. 5 [V] 、 1 5. 5 [V] ) の S端子電圧 VS (制御電圧) に対し、 矢印 (a) 〜 (d) で示す 4通りの増減切替に対応して、 ベース電圧波形 (a) 〜 (d) で示 す 4通りのデューティ制御によるベース電圧の漸増および漸減制御を可能にして いる。
これにより、 制御装置 1 Bは、 制御信号の切替時において、 C端子電圧 (デュ 一ティ信号) に応じて、 発電電圧を調整するための制御電圧の変化をリニア (直 線的) に切替え、 界磁電流の急変を回避して運転状態を安定化させる。
図 3において、 矢印 (a) は発電停止状態 (VS = 0 [V] ) から第 1の制御 電圧 (VS= 14. 5 [V] ) への漸增制御、 矢印 (b) は第 1の制御電圧 (V S= 14. 5 [V] ) から第 2の制御電圧 (VS= 1 5. 5 [V] ) への漸増制 御、 (c) は第 2の制御電圧 (VS= 1 5. 5 [V] ) から第 1の制御電圧 (V S= 14. 5 [V] ) への漸減制御、 (d) は第 1の制御電圧 (VS= 14. 5 [V] ) から発電停止状態 (VS = 0 [V] ) への漸減制御である。
上記矢印 (a) 〜 (d) で示す各切替動作に対して、 外部コントロールュニッ ト 5 B内のトランジスタ 501、 502のベース電圧は、 以下のようにデューテ ィ制御される。 すなわち、 矢印 (a) に対応したベース電圧波形 (a) においては、 トランジ スタ 501の OF F状態を保持したまま、 トランジスタ 502のベース電圧 ON デューティ比を漸減させてトランジスタ 502を OFF状態に移行させる。 また、 矢印 (b) に対応したベース電圧波形 (b) においては、 トランジスタ 502の OF F状態を保持したまま、 トランジスタ 501のベース電圧 ONデュ 一ティ比を漸増させてトランジスタ 501を〇N状態に移行させる
また、 矢印 (c) に対応したベース電圧波形 (c) においては、 トランジスタ 502の OF F状態を保持したまま、 トランジスタ 501のベース電圧 ONデュ —ティ比を漸減させてトランジスタ 501を OF F状態に移行させる。
さらに、 矢印 (d) に対応したベース電圧波形 (d) においては、 トランジス タ 501の OF F状態を保持したまま、 トランジスタ 502のベース電圧 ONデ ユーティ比を漸増させてトランジスタ 502を ON状態に移行させる。
このように、 制御回路 503 Bにより、 トランジスタ 501またはトランジス タ 502の導通から遮断への切替時、 または遮断から導通への切替時に、 ベース 電圧をデューティ制御することで、 C端子からの入力信号により決定されるコン パレータ 106の一入力側の分圧比も漸減または漸増制御されることになる。 よ つて、 制御装置 1 Bの構成を変えることなく漸増および漸減制御が可能となる。 また、 図 4のように、 制御装置 1 B内に、 抵抗器 1 21〜1 23、 126、 1 27と、 ツエナーダイォード 1 20、 1 28と、 トランジスタ 124、 1 25と により構成された回路を用いることにより、 コンパレータ 106 (図 1参照) を 用いることなく、 同様の制御電圧切替動作を実現することができる。
なお、 制御装置 1 Bの他の動作については、 前述と同様であり、 トランジスタ 104の ON/OF Fによってパワー MO S F ET 101が OF F/ONされ、 これにより、 界磁電流が減少 (または、 増大) し、 この界磁電流の断続を繰り返 すことにより、 発電機 2の発電電圧が一定に制御される。
ただし、 図 4においては、 コンパレータ 106 (図 1参照) を介さずに、 C端 子から入力される制御信号に応じて決定される S端子電圧 VSの分圧値 V sの変 化により、 制御電圧が変更される。
次に、 図 4を参照しながら、 制御装置 1 Bによる具体的な制御電圧の切替動作 について説明する。
図 4において、 まず、 制御信号が 「接地信号」 の場合には、 トランジスタ 1 2 4および 125にベース電流が供給されないので、 トランジスタ 124、 125 は両方とも OFF状態となり、 S端子電圧 VSの分圧値 V sは、 バッテリ電圧そ のものとなる。
したがって、 ツエナーダイオード 1 20が導通されて、 トランジスタ 104が 常に ON状態となるので、 パワー MOSFET 101は常に遮断となり、 発電電 圧は 0 [V] になる。
また、 制御信号が 「開放信号」 の場合には、 抵抗器 1 26および 1 27による バッテリ電圧の分圧値により、 ツエナーダイオード 128が遮断されてトランジ スタ 125が遮断され、 且つ、 トランジスタ 124が導通する。
このとき、 抵抗器 1 26および 127によるバッテリ電圧の分圧値は、 ツエナ 一ダイオード 128のブレイク電圧よりも低く、 且つ、 トランジスタ 1 24を導 通させるのに十分な電圧値以上に設定されることは、 言うまでもない。
これにより、 S端子電圧 VSの分圧電圧 V sは、 抵抗器 121の抵抗値と抵抗 器 122および 1 23の直列抵抗値との分圧比により決定される。
ここで、 分圧電圧 Vsが、 トランジスタ 104を導通させるベース電圧と、 ッ ェナーダイオード 1 20のプレイク電圧との和よりも大きい電圧値になると、 ト ランジスタ 104が ON (導通) される。
一方、 分圧電圧 V sが、 トランジスタ 104を導通させるベース電圧と、 ツエ ナーダイオード 1 20のブレイク電圧との和よりも低い場合には、 トランジスタ 104が OFF (遮断) される。
このように、 界磁電流の導通の断続を繰り返すことにより、 発電機 2の発電電 圧が一定に制御される。 このとき、 分圧電圧 V sによって決定される制御電圧は、 前述と同様に、 第 1の制御電圧と称される。
また、 制御信号が 「プルアップ信号」 の場合には、 C端子電圧がほぼバッテリ 電圧まで上昇するので、 ツエナーダイオード 128が導通し、 トランジスタ 1 2
5も導通して、 分圧電圧 V sは、 抵抗器 1 21および 1 22の分圧比によって決 定される。 このとき、 分圧電圧 V sによって決定される制御電圧は、 前述と同様 に、 第 2の制御電圧と称される。
以上のように、 外部コントロールュニット 5 Bからの制御信号を 1系統のみで 構成して、 3段階の発電電圧制御が可能となるので、 前述と同様に、 制御装置 1 Bおよび制御回路 5 0 3 Bの構成が簡略化される。
また、 制御装置 1 B内の回路構成を特に変更することなく、 外部コントロール ュニット 5 B内の制御回路 5 0 3 Bによるトランジスタ 5 0 1または 5 0 2のべ ース電圧のデューティ制御により、 切替時の制御電圧を漸増または漸減すること ができ、 発電電圧の目標値の急変を回避して運転状態を安定化することができる。 また、 デューティ制御に基づく発電電圧の漸増または漸減制御により、 バッテ リ 4の急速充電時や、 エンジン回転数の低い運転状態においても、 安定したェン ジン回転を実現することができる。
また、 第 1の制御電圧を通常の発電電圧に設定しておくことにより.、 たとえば、 C端子が断線した場合でも、 制御装置 1 Bは通常の発電電圧の制御を継続するこ とができる。
なお、 制御装置 1 B内の電圧検出回路 (ツエナーダイオード 1 2 0 ) は、 バッ テリ電圧の検出電圧として、 S端子電圧 V Sの分圧電圧 V sを用いているが、 B 端子電圧を用いてもよい。
この場合、 電圧検出端子 (S端子) を省略することができ、 さらにコストダウ ンを実現することができる。

Claims

請 求 の 範 囲
1 . 車両に搭载されて電機子コィルぉよび界磁コイルを有する発電機と、 前記車両に搭載されて前記電機子コイルから出力される発電電圧によって充電 されるバッテリと、
前記バッテリの端子電圧を検出する電圧検出回路を有し、 前記バッテリの端子 電圧に応じて前記界磁コイルに供給する界磁電流を断続制御することにより、 前 記発電電圧を所定電圧に調整する制御装置と
を備えた車両用発電機の制御システムにおいて、
前記制御装置に単一の制御端子を設けるとともに、
前記制御端子に外部コント口一ルュニットを接続し、
前記外部コント口一ルュニットは、 前記バッテリの端子電圧および前記車両の 運転状態に応じて、 前記制御端子に対して、 接地信号、 開放信号およびプルアツ プ信号のうちのいずれか 1つを制御信号として供給し、
前記制御装置は、
前記制御端子に供給される前記接地信号に応答して、 前記界磁電流を遮断する ことにより前記発電機を発電停止状態にし、
前記制御端子に供給される前記開放信号に応答して、 前記界磁電流を断続制御 することにより前記発電電圧を通常時の第 1の制御電圧に調整し、
前記制御端子に供給される前記ブルアップ信号に応答して、 前記界磁電流を断 続制御することにより、 前記発電電圧を前記第 1の制御電圧よりも高い第 2の制 御電圧に調整することを特徴とする車両用発電機の制御システム。
2 . 前記電圧検出回路は、 前記バッテリの端子電圧に対する比較基準となる基 準電圧を生成する抵抗器を有し、
前記制御装置は、 前記外部コントロールュニットから供給される前記制御信号 に応じて、 前記抵抗器による分圧比を変更して前記基準電圧を変更することによ り、 前記制御信号に応答した前記発電電圧の調整を行うことを特徴とする請求項 1に記載の車両用発電機の制御システム。
3 . '前記電圧検出回路は、 前記バッテリの端子電圧を分圧して検出電圧に変換 する電圧検出抵抗器を有し、
前記制御装置は、 前記外部コントロールュ-ットから供給される前記制御信号 に応じて、 前記電圧検出抵抗器の抵抗比を変更することにより、 前記制御信号に 応答した前記発電電圧の調整を行うことを特徴とする請求項 1に記載の車両用発 電機の制御システム。
4 . 前記外部コント口一ルュニットは、 前記制御信号の切替時に、 前記制御信 号をデューティ信号とし、 - 前記制御装置は、 前記制御信号の切替時において、 前記デューティ信号により、 前記発電電圧を調整するための制御電圧の変化をリニァに切替えることを特徴と する請求項 1から請求項 3までのいずれか 1項に記載の車両用発電機の制御シス テム。
PCT/JP2003/016253 2003-12-18 2003-12-18 車両用発電機の制御システム WO2005062459A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2003/016253 WO2005062459A1 (ja) 2003-12-18 2003-12-18 車両用発電機の制御システム
EP03780886.2A EP1696553B1 (en) 2003-12-18 2003-12-18 System for controlling generator for vehicle
US10/543,404 US7129594B2 (en) 2003-12-18 2003-12-18 System for controlling generator for vehicle
JP2005510031A JP4316568B2 (ja) 2003-12-18 2003-12-18 車両用発電機の制御システム
CNB2003801093499A CN1328845C (zh) 2003-12-18 2003-12-18 车辆用发电机的控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016253 WO2005062459A1 (ja) 2003-12-18 2003-12-18 車両用発電機の制御システム

Publications (1)

Publication Number Publication Date
WO2005062459A1 true WO2005062459A1 (ja) 2005-07-07

Family

ID=34708583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016253 WO2005062459A1 (ja) 2003-12-18 2003-12-18 車両用発電機の制御システム

Country Status (5)

Country Link
US (1) US7129594B2 (ja)
EP (1) EP1696553B1 (ja)
JP (1) JP4316568B2 (ja)
CN (1) CN1328845C (ja)
WO (1) WO2005062459A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921744A4 (en) * 2005-08-31 2015-03-04 Mitsubishi Electric Corp CONTROL OF THE GENERATOR FOR A VEHICLE
CN110785915A (zh) * 2017-06-20 2020-02-11 法雷奥电机设备公司 用于旋转电机的电刷架

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166669B2 (ja) * 2003-10-28 2008-10-15 三菱電機株式会社 車両用電力制御装置
JP4461824B2 (ja) * 2004-02-13 2010-05-12 トヨタ自動車株式会社 自動車、自動車の制御方法、制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4239991B2 (ja) * 2005-03-15 2009-03-18 株式会社デンソー 発電制御装置
JP4449882B2 (ja) * 2005-10-14 2010-04-14 株式会社デンソー 車両用発電制御装置
JP2008167541A (ja) * 2006-12-27 2008-07-17 Denso Corp 充電線異常検出方式
JP4270279B2 (ja) * 2007-01-05 2009-05-27 株式会社デンソー 車両用交流発電機の制御装置
US8089790B2 (en) * 2007-06-13 2012-01-03 Samsung Electronics Co., Ltd. Power supply input device
US8098054B2 (en) * 2007-10-10 2012-01-17 John Alexander Verschuur Optimal load controller method and device
FR2980319B1 (fr) * 2011-09-20 2015-03-20 Valeo Equip Electr Moteur Procede et systeme de controle de la charge progressive d'un alternateur de vehicule automobile, et alternateur de vehicule automobile comprenant un tel systeme
WO2014147904A1 (ja) 2013-03-21 2014-09-25 本田技研工業株式会社 発電電動ユニット、および発電電動機の制御方法
CN103199783A (zh) * 2013-04-02 2013-07-10 清华大学 一种基于脉宽调制的汽车发电机电压控制器及控制方法
DE102014106218B4 (de) 2013-05-09 2021-11-25 Denso Corporation Drehende elektrische Maschine für ein Fahrzeug
JP6089942B2 (ja) * 2013-05-09 2017-03-08 株式会社デンソー 車両用回転電機
CN106394436A (zh) * 2016-11-02 2017-02-15 安徽华菱汽车有限公司 一种车辆电源安全优化方法及装置
CN108429463B (zh) * 2018-03-23 2021-01-08 南京航空航天大学 一种变频三级式发电机数字电压调节方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066698A (ja) * 1983-09-21 1985-04-16 Nippon Denso Co Ltd 車両充電発電機用制御装置
EP0161791A1 (en) 1984-04-10 1985-11-21 Bridgestone Corporation Low fuel consumption tire with all weather performances
JPS62107643A (ja) 1985-11-04 1987-05-19 株式会社デンソー 車両充電発電機用制御装置
JPH06351173A (ja) * 1993-06-07 1994-12-22 Nippondenso Co Ltd 車両用発電機の電圧制御装置
EP0740396A2 (en) 1995-04-28 1996-10-30 Nippondenso Co., Ltd. Voltage regulator of vehicle alternator
JP3102981B2 (ja) 1993-12-28 2000-10-23 三菱電機株式会社 車両用交流発電機の出力制御装置
US20020057074A1 (en) * 2000-11-10 2002-05-16 Denso Corporation Method for controlling a vehicular generator, an external controller and a vehicular power generation controlling device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359792B2 (ja) * 1995-09-06 2002-12-24 三菱電機株式会社 車両用交流発電機の制御装置
JP3519905B2 (ja) * 1997-05-13 2004-04-19 三菱電機株式会社 車両用発電機の制御装置
JP3625789B2 (ja) * 2001-08-10 2005-03-02 本田技研工業株式会社 車両の電源装置
JP3827980B2 (ja) * 2001-09-21 2006-09-27 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3750608B2 (ja) * 2002-01-23 2006-03-01 トヨタ自動車株式会社 車両における蓄電装置の制御装置
JP3879650B2 (ja) * 2002-10-15 2007-02-14 日産自動車株式会社 車両の制御装置
JP2004204682A (ja) * 2002-12-20 2004-07-22 Aisin Aw Co Ltd 車輌の制御装置
JP2004340055A (ja) * 2003-05-16 2004-12-02 Honda Motor Co Ltd ハイブリッド方式の駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066698A (ja) * 1983-09-21 1985-04-16 Nippon Denso Co Ltd 車両充電発電機用制御装置
EP0161791A1 (en) 1984-04-10 1985-11-21 Bridgestone Corporation Low fuel consumption tire with all weather performances
JPS62107643A (ja) 1985-11-04 1987-05-19 株式会社デンソー 車両充電発電機用制御装置
JPH06351173A (ja) * 1993-06-07 1994-12-22 Nippondenso Co Ltd 車両用発電機の電圧制御装置
JP3102981B2 (ja) 1993-12-28 2000-10-23 三菱電機株式会社 車両用交流発電機の出力制御装置
EP0740396A2 (en) 1995-04-28 1996-10-30 Nippondenso Co., Ltd. Voltage regulator of vehicle alternator
US20020057074A1 (en) * 2000-11-10 2002-05-16 Denso Corporation Method for controlling a vehicular generator, an external controller and a vehicular power generation controlling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1696553A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921744A4 (en) * 2005-08-31 2015-03-04 Mitsubishi Electric Corp CONTROL OF THE GENERATOR FOR A VEHICLE
CN110785915A (zh) * 2017-06-20 2020-02-11 法雷奥电机设备公司 用于旋转电机的电刷架

Also Published As

Publication number Publication date
EP1696553A4 (en) 2011-07-27
US7129594B2 (en) 2006-10-31
JP4316568B2 (ja) 2009-08-19
CN1328845C (zh) 2007-07-25
CN1745513A (zh) 2006-03-08
EP1696553A1 (en) 2006-08-30
US20060139012A1 (en) 2006-06-29
EP1696553B1 (en) 2013-10-02
JPWO2005062459A1 (ja) 2007-08-23

Similar Documents

Publication Publication Date Title
WO2005062459A1 (ja) 車両用発電機の制御システム
US8704556B2 (en) Integrated circuit-based drive circuit for driving voltage-controlled switching device and method of manufacturing the drive circuit
JP4151642B2 (ja) 車両用発電制御システム
WO2016125412A1 (ja) リニア電源及びこれを用いた電子機器
US9063558B2 (en) Current limiting circuit configured to limit output current of driver circuit
KR100376923B1 (ko) 차량용 교류발전기의 제어장치
US7545127B2 (en) Power supply controller
US6359410B1 (en) Apparatus and method for motor current protection through a motor controller
JPH0732941A (ja) 自動車用照明装置の保護回路
US10879894B2 (en) Driver circuit, corresponding device and method
US6756770B2 (en) AC generator control system for vehicle
US7639055B2 (en) PWM signal generator
US20180302083A1 (en) Switching driving circuit, switching circuit, and power supply device
JP3140270B2 (ja) 自動車用発電電圧調整装置
KR100729074B1 (ko) 차량용 발전기의 제어 시스템
KR100340874B1 (ko) 차량용 배터리의 충전 제어회로
JPH0739200A (ja) 車両用発電機の電圧制御装置
US7173398B2 (en) System for controlling a vehicular generator
JP3711893B2 (ja) 電源回路装置
WO2003065542A1 (en) High voltage generator using inductor-based charge pump for automotive alternator voltage regulator
JPWO2007026422A1 (ja) 車両用発電機の制御装置
US20050194950A1 (en) Pulse-width-modulated signal to direct-current voltage converting unit
JP2576639B2 (ja) スイッチ素子の駆動回路
JP2002204600A (ja) 車両用発電制御装置
JP3531605B2 (ja) 定電圧回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005510031

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057011739

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003780886

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

ENP Entry into the national phase

Ref document number: 2006139012

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543404

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A93499

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057011739

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003780886

Country of ref document: EP