US20110190356A1 - Compositions and Methods of Using (R)- Pramipexole - Google Patents

Compositions and Methods of Using (R)- Pramipexole Download PDF

Info

Publication number
US20110190356A1
US20110190356A1 US13/059,713 US200913059713A US2011190356A1 US 20110190356 A1 US20110190356 A1 US 20110190356A1 US 200913059713 A US200913059713 A US 200913059713A US 2011190356 A1 US2011190356 A1 US 2011190356A1
Authority
US
United States
Prior art keywords
pramipexole
component
inhibitors
combinations
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/059,713
Other languages
English (en)
Inventor
Michael E. Bozik
Valentin Gribkoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knopp Biosciences LLC
Original Assignee
Knopp Neurosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knopp Neurosciences Inc filed Critical Knopp Neurosciences Inc
Priority to US13/059,713 priority Critical patent/US20110190356A1/en
Assigned to KNOPP NEUROSCIENCES, INC reassignment KNOPP NEUROSCIENCES, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRIBKOFF, VALENTIN
Assigned to KNOPP NEUROSCIENCES, INC. reassignment KNOPP NEUROSCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOZIK, MICHAEL E., GRIBKOFF, VALENTIN
Publication of US20110190356A1 publication Critical patent/US20110190356A1/en
Assigned to KNOPP BIOSCIENCES LLC reassignment KNOPP BIOSCIENCES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNOPP NEUROSCIENCES INC.
Assigned to KOPPER, RACHEL reassignment KOPPER, RACHEL SECURITY INTEREST Assignors: KNOPP BIOSCIENCES LLC
Assigned to KNOPP BIOSCIENCES LLC reassignment KNOPP BIOSCIENCES LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: KOPPER, RACHEL
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • Various embodiments of the invention are directed to a multi-component therapeutic including a first component comprising a therapeutically effective amount of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and a second component comprising a therapeutically effective amount of one or more secondary therapeutic agents.
  • the second component may be dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl protein inducers, histone deacetylase (HDAC) mediators, glial modulators, mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof.
  • MOAB monoamine oxidase type B
  • HDAC histone deacetylase
  • Various other embodiments of the invention are directed to a method of treating a neurodegenerative disease in a patient including the steps of administering a first component comprising a therapeutically effective amount of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine to the patient and administering adjunctively a second component comprising a therapeutically effective amount of one or more secondary therapeutic agents to the patient.
  • the second component may be selected from dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl protein inducers, histone deacetylase (HDAC) mediators, glial modulators, mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof.
  • AMPA ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
  • HDAC histone deacetylase
  • the neurodegenerative disease may be selected from Huntington's Chorea, metabolically induced neurological damage, senile dementia of Alzheimer's type, age associated cognitive dysfunction, vascular dementia, multi-infarct dementia, Lewy body dementia, neurodegenerative dementia, neurodegenerative movement disorder, ataxia, Friedreich's ataxia, multiple sclerosis, spinal muscular atrophy, primary lateral sclerosis, seizure disorders, motor neuron disorder or disease, inflammatory demyelinating disorder, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, hepatic encephalopathy, and chronic encephalitis.
  • Huntington's Chorea metabolically induced neurological damage
  • senile dementia of Alzheimer's type age associated cognitive dysfunction
  • vascular dementia multi-infarct dementia
  • Lewy body dementia neurodegenerative dementia
  • neurodegenerative dementia neurodegenerative movement disorder
  • ataxia Friedreich's ataxia
  • multiple sclerosis spinal muscular atrophy
  • primary lateral sclerosis seizure disorders
  • FIG. 1 depicts the mean plasma (R)-pramipexole concentrations after oral administration of single 50 mg, 150 mg, and 300 mg doses to healthy volunteers under fasted conditions.
  • FIG. 2 depicts mean plasma (R)-pramipexole concentrations after oral administration of single 150 mg doses to healthy volunteers under fasted and fed conditions.
  • FIG. 3 depicts mean plasma (R)-pramipexole concentrations on Days 1 and 7 during oral administration of 50 mg and 100 mg doses on Day 1, Q12H on Days 3 through 6, and a single dose on Day 7 to healthy volunteers under fasted conditions.
  • FIG. 4 depicts an exposure (AUC) vs. dose (mg/m 2 ) for male and female rats and humans (both genders).
  • FIG. 5 depicts mean exposure (AUC) vs. dose (mg/m 2 ) for male and female minipigs and humans (both genders).
  • the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
  • administering when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient whereby the therapeutic positively impacts the tissue to which it is targeted.
  • administering a composition may be accomplished by oral administration, injection, infusion, absorption or by any method in combination with other known techniques. Such combination techniques include heating, radiation and ultrasound.
  • target refers to the material for which either deactivation, rupture, disruption or destruction or preservation, maintenance, restoration or improvement of function or state is desired.
  • diseased cells, pathogens, or infectious material may be considered undesirable material in a diseased subject and may be a target for therapy.
  • tissue refers to any aggregation of similarly specialized cells which are united in the performance of a particular function.
  • improves is used to convey that the present invention changes either the appearance, form, characteristics and/or physical attributes of the tissue to which it is being provided, applied or administered. “Improves” may also refer to the overall physical state of an individual to whom an active agent has been administered. For example, the overall physical state of an individual may “improve” if one or more symptoms of a neurodegenerative disorder are alleviated by administration of an active agent.
  • terapéutica means an agent utilized to treat, combat, ameliorate or prevent an unwanted condition or disease of a patient.
  • terapéuticaally effective amount or “therapeutic dose” as used herein are interchangeable and may refer to the amount of an active agent or pharmaceutical compound or composition that elicits a biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • a biological or medicinal response may include, for example, one or more of the following: (1) preventing a disease, condition or disorder in an individual that may be predisposed to the disease, condition or disorder but does not yet experience or display pathology or symptoms of the disease, condition or disorder, (2) inhibiting a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptoms of the disease, condition or disorder or arresting further development of the pathology and/or symptoms of the disease, condition or disorder, and (3) ameliorating a disease, condition or disorder in an individual that is experiencing or exhibiting the pathology or symptoms of the disease, condition or disorder or reversing the pathology and/or symptoms experienced or exhibited by the individual.
  • unit dose may be taken to indicate a discrete amount of the therapeutic composition which comprises a predetermined amount of the active compound.
  • the amount of the active ingredient is generally equal to the dosage of the active ingredient which may be administered once per day, or may be administered several times a day (e.g. the unit dose is a fraction of the desired daily dose).
  • the unit dose may also be taken to indicate the total daily dose, which may be administered once per day or may be administered as a convenient fraction of such a dose (e.g. the unit dose is the total daily dose which may be given in fractional increments, such as, for example, one-half or one-third the dosage).
  • neuroprotectant refers to any agent that may prevent, ameliorate or slow the progression of neuronal degeneration and/or neuronal cell death.
  • treating may be taken to mean prophylaxis of a specific disorder, disease or condition, alleviation of the symptoms associated with a specific disorder, disease or condition and/or prevention of the symptoms associated with a specific disorder, disease or condition.
  • patient generally refers to any living organism to which to compounds described herein are administered and may include, but is not limited to, any non-human mammal, primate or human. Such “patients” may or may not be exhibiting the signs, symptoms or pathology of the particular diseased state.
  • the terms “enantiomers”, “stereoisomers” and “optical isomers” may be used interchangeably and refer to molecules which contain an asymmetric or chiral center and are mirror images of one another. Further, the terms “enantiomers”, “stereoisomers” or “optical isomers” describe a molecule which, in a given configuration, cannot be superimposed on its mirror image.
  • optical isomerically pure may be taken to indicate that a composition contains at least 99.95% of a single optical isomer of a compound.
  • entantiomerically enriched may be taken to indicate that at least 51% of a composition is a single optical isomer or enantiomer.
  • entantiomeric enrichment refers to an increase in the amount of one entantiomer as compared to the other.
  • a “racemic” mixture is a mixture of equal amounts of (6R) and (6S) enantiomers of a chiral molecule.
  • pramipexole or “(S)-pramipexole” will refer to (6S) enantiomer of 2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole unless otherwise specified, and (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine will be referred to as “(R)-pramipexole” or “RPPX.”
  • composition shall mean a composition including at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, without limitation, a human).
  • a pharmaceutical composition may, for example, contain pramipexole or a pharmaceutically acceptable salt of pramipexole as the active ingredient.
  • a pharmaceutical composition may contain (R)-pramipexole or a pharmaceutically acceptable salt of (R)-pramipexole as the active ingredient.
  • a “salt” is any acid addition salt, preferably a pharmaceutically acceptable acid addition salt, including but not limited to, halogenic acid salts such as hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid salt; an inorganic acid salt such as, for example, nitric, perchloric, sulfuric and phosphoric acid salt; an organic acid salt such as, for example, sulfonic acid salts (methanesulfonic, trifluoromethan sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid salts; and an amino acid salt such as aspartic or glutamic acid salt.
  • halogenic acid salts such as hydrobromic, hydrochloric, hydroflu
  • the acid addition salt may be a mono- or di-acid addition salt, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric or di-organic acid salt.
  • the acid addition salt is used as an achiral reagent which is not selected on the basis of any expected or known preference for interaction with or precipitation of a specific optical isomer of the products of this disclosure.
  • “Pharmaceutically acceptable salt” is meant to indicate those salts which are, within the scope of sound medical judgment; suitable for use in contact with the tissues of a patient without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. (1977) J. Pharm. Sciences, Vol 6. 1-19, describes pharmaceutically acceptable salts in detail.
  • the term “comparative binding affinity ratio” refers to the binding affinity at the D 2 or D 3 dopamine receptors (IC 50 value) of (R)-pramipexole divided by the binding affinity at the D 2 or D 3 dopamine receptors (IC 50 value) of (S)-pramipexole.
  • the comparative binding affinity ratio refers to the ratio of the IC 50 values at the D 2 receptor.
  • the comparative binding affinity ratio refers to the ratio of the IC 50 values at the D 3 receptor.
  • the term “comparative ratio” refers one of the following: 1) the ratio of the IC 50 values at the D 2 or D 3 receptors for (R)-pramipexole to (S)-pramipexole; 2); the ratio of MTD amounts for (R)-pramipexole to (S)-pramipexole; or 3) the ratio of NOAEL dose amounts for (R)-pramipexole to (S)-pramipexole.
  • the term “daily dose amount” refers to the amount of pramipexole per day that is administered or prescribed to a patient. This amount can be administered in multiple unit doses or in a single unit dose, in a single time during the day or at multiple times during the day.
  • DAE dopaminergic activity equivalent
  • a “dose amount” as used herein, is generally equal to the dosage of the active ingredient which may be administered once per day, or may be administered several times a day (e.g. the unit dose is a fraction of the desired daily dose).
  • a non-effective dose amount of 0.5 mg/day of (S)-pramipexole may be administered as 1 dose of 0.5 mg, 2 doses of 0.25 mg each or 4 doses of 0.125 mg.
  • the term “unit dose” as used herein may be taken to indicate a discrete amount of the therapeutic composition which comprises a predetermined amount of the active compound.
  • the amount of the active ingredient is generally equal to the dosage of the active ingredient which may be administered once per day, or may be administered several times a day (e.g.
  • the unit dose is a fraction of the desired daily dose).
  • the unit dose may also be taken to indicate the total daily dose, which may be administered once per day or may be administered as a convenient fraction of such a dose (e.g. the unit dose is the total daily dose which may be given in fractional increments, such as, for example, one-half or one-third the dosage).
  • the terms “enantiomers”, “stereoisomers” and “optical isomers” may be used interchangeably, and refer to molecules which contain an asymmetric or chiral center and are non-superimposable mirror images of one another.
  • the term “chirally pure” or “enantiomerically pure” may be taken to indicate that the compound contains at least 99.95% of a single optical isomer.
  • the term “enantiomerically enriched”, unless a number is mentioned, may be taken to indicate that at least 51% of the material is a single enantiomer.
  • the term “enantiomeric enrichment” as used herein refers to an increase in the amount of one enantiomer as compared to the other.
  • a “racemic” mixture is a mixture of equal amounts of (R)- and (S)-enantiomers of a chiral molecule.
  • a “kit” refers to one or more pharmaceutical compositions and instructions for administration or prescription of the one or more compositions.
  • the instructions may consist of product insert, instructions on a package of one or more pharmaceutical compositions, or any other instruction.
  • rapex® refers to tablets containing (S)-pramipexole dihydrochloride, which has the chemical name, (S)-2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole dihydrochloride monohydrate.
  • the term “na ⁇ ve patient” refers to a patient that has not previously received pramipexole treatment (either (R)-pramipexole or (S)-pramipexole) or who has not received a titration regimen of pramipexole previous to receiving a starting dose of pramipexole.
  • starting daily dose amount refers to the amount of pramipexole per day that is administered or prescribed to a patient beginning pramipexole treatment, who has not previously been subjected to a titration regimen of pramipexole. This amount can be administered in multiple unit doses or in a single unit dose, in a single time during the day or at multiple times during the day.
  • each individual pharmaceutical composition may further include one or more pharmaceutically acceptable excipients or carriers.
  • Trituration may be taken to indicate a method of solidifying a chemical compound. Trituration involves agitating the compound by stirring, beating or a method of the like until the chemical compound forms a crystalline solid or precipitate. This solid may act to seed the remaining chemical compound in solution, causing it to precipitate or crystallize from solution.
  • (R)-pramipexole is an enantiomer of the active pharmaceutical ingredient of the approved Parkinson's disease (PD) and restless legs syndrome (RLS) treatment Mirapex (pramipexole; (S)-pramipexole).
  • Mirapex® is a high-affinity (low nM IC 50 ) agonist at human and rodent recombinant dopamine D 2 and D 3 receptors, a property that is the pharmacological basis of its efficacy in these disorders. Both the (R)- and the (S)-enantiomers have been shown preclinically to possess neuroprotective properties that are independent of dopamine receptor affinity.
  • the maximum allowable single starting dose for Mirapex® is 0.125 mg, given three times a day (t.i.d.); and the maximum allowable dose for Mirapex is 1.5 mg t.i.d., providing a maximum daily dose of 4.5 mg of Mirapex® after 7-8 weeks of titration.
  • (R)-pramipexole possesses similar neuroprotective potency, but lower affinity for dopamine receptors. Accordingly, it has been advanced as a potentially more useful compound for treatment of neurodegenerative disorders.
  • dopamine receptor affinity difference for the (R)-pramipexole compared to (S)-pramipexole would still impose clinically important dose limitations and would still require dose-titration and dose-limitations to avoid dopamine-related side effects.
  • Various embodiments of the invention presented herein are directed to a multi-component system including (R)-pramipexole and one or more secondary agents, pharmaceutical compositions including (R)-pramipexole and one or more secondary agents, and methods for treating a disease in a subject including the steps of administering (R)-pramipexole and one or more secondary agents.
  • the components of the multi-component system may be administered individually or in combined into a single dosage formula. Therefore, some embodiments of the invention are directed to a pharmaceutical compositions including (R)-pramipexole and one or more secondary agents and a pharmaceutically acceptable excipient or carrier and methods for using such pharmaceutical compositions.
  • the secondary agents of embodiments may be any agent that when combined with (R)-pramipexole produces a beneficial effect.
  • the secondary agent may include one or more dopaminergic agonists, catechol-O-methyl transferase (COMT) inhibitors, monoamine oxidase (MOA) inhibitors, excitatory amino acid antagonists and combinations thereof.
  • the secondary agent may include growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, B-cell lymphoma (Bcl) inducers, histone deacetylase (HDAC) inhibitors, glial modulators, mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof.
  • MOAB monoamine oxidase type B
  • Bcl B-cell lymphoma
  • HDAC histone deacetylase
  • glial modulators mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof.
  • Embodiments of the invention are not
  • exemplary dopamine agonists may include, but are not limited to, apomorphine, carbidopa/levodopa, bromocriptine, lisuride, cabergoline and piribedel, and in particular embodiments, the dopamine agonists may be D2/D3 agonists such as, but nor limited to pramipexole ((6S)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) (e.g., Mirapex®), ropinirole (e.g., Requip®), carbidopa, levodopa, entacapone (e.g., COMtan®), carbidopa/levodopa (e.g., Sinemet®), carbidopa/levodopa/entacapone (e.g.
  • pramipexole ((6S)-4,5,6,7-tetrahydro
  • (R)-pramipexole may exert a neuroprotective effect while a D2/D3 agonists may activate dopamine receptors.
  • exemplary dopaminergic agonists may include, but are not limited to, ropinirole, rotigotine, pergolide, amantadine.
  • exemplary COMT inhibitors may include, but are not limited to, entacapone and tolcapone.
  • exemplary MOA inhibitors may include, but are not limited to, selegiline, rasagiline moclobemide, isocarboxazid, phenelzine, tranylcypromine, nialamide, iproniazid, iproclozide, toloxatone, linezolid, dextroamphetamine, EVT 302 (Evotec, Inc.), Ro 19-6491 (Hoffman-La Roche, Inc.), Ro 19-6327 (Hoffman-La Roche, Inc.), deprenyl, pargyline and ladostigil (TV-3326), and in yet other embodiments, exemplary excitatory amino acid antagonists may include, but are not limited to, talampanel.
  • exemplary growth factors and neurotrophic factors may include, but are not limited to, insulin-like growth factor-1 (IGF-1), IGF-1 AAV, IPLEX, glial cell line-derived neurotrophic factor (GDNF), hepatocyte growth factor (HGF), and granulocyte colony stimulating factor (G-CSF).
  • IGF-1 insulin-like growth factor-1
  • IGF-1 AAV IGF-1 AAV
  • IPLEX IPLEX
  • GDNF glial cell line-derived neurotrophic factor
  • HGF hepatocyte growth factor
  • G-CSF granulocyte colony stimulating factor
  • exemplary antioxidants, anti-inflammatories, and immunomodulators may include, but are not limited to, AEOL 10150, cefriaxone, celastrol, coenzyme Q10, copaxone, cox-2 inhibitors (including nimesulide), cyclosporin, ebselen, edaravone (radicut), promethazine, tamoxifen, thalidomide, vitamin E and VP025, and in other embodiments, exemplary AMPA receptor antagonists may include, but are not limited to, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX) and talampanel.
  • NBQX 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide
  • exemplary heat shock protein inducers/protein disaggregators and downregulators include, but are not limited to, arimoclomol, ISIS 333611, lithium, misfolded SOD-1 antibodies, rhHSP70, TDP-43 antagonists and trehalose, and in yet other embodiments, exemplary MOAB inhibitors may include, but are not limited to rasagiline [R(+)N-propargyl-1-aminoindan].
  • exemplary multi-target agents may include, but are not limited to, 4-[2(aminomethyl)-1,3-thiazol-4-yl]-2,6 di-tert-butylphenol, and in some embodiments, exemplary kinase inhibitors may include, but are not limited to, olomoucine, quinolin-2(1H)-one derivatives, roscovitine, tamoxifen and combinations thereof.
  • exemplary Bcl inducers include, but are not limited to, ginsenoside Rb1 and Rg1, G3139, oblimersen and combinations thereof, and in further embodiments, exemplary HDAC mediators may include, but are not limited to, phenylbutyrate, scriptaid, valproic acid and combinations thereof.
  • exemplary glial modulators include, but are not limited to, ONO-2506, and in yet other embodiments, exemplary mitochondrial energy promoter agents may include, but are not limited to, resveratrol, creatine, erythropoietin, cholest-4-en-3-One, and oxime (TRO-19622).
  • exemplary myostatin inhibitors may include, but are not limited to, ACE-031, MYO-029 and combinations thereof, and in certain embodiments, exemplary caspase inhibitors may include, but are not limited to, ESPA-1002, IDN-6556, pralnacasan and combinations thereof.
  • the secondary agent may be a dopamine agonist.
  • the dopamine agonist may be ropinirole (Requip®), and in another exemplary embodiment, the dopamine agonist may be carbidopa/levodopa (Sinemet®).
  • the secondary agent may be an anti-glutamatergic.
  • the secondary agent may be riluzole (Rilutek®).
  • the secondary agent may be an excitatory amino acid.
  • the secondary agent may be talampanel.
  • the secondary agent may be a growth factor.
  • the secondary agent may be IPLEX.
  • the secondary agent may be a caspase inhibitor.
  • an effective amount of (R)-pramipexole and an effective amount of one or more of the secondary agents described above may be provided adjunctively in separate pharmaceutical compositions or in a single dose pharmaceutical composition in which the (R)-pramipexole and one or more secondary agent are combined.
  • each separate pharmaceutical composition or a single dose pharmaceutical composition may further include a pharmaceutically acceptable excipient or carrier.
  • the compound 2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole is a synthetic aminobenzothiazole derivative, having two enantiomers.
  • the (S) enantiomer is a potent agonist of the D 2 family of dopamine receptors, with particular affinity for the D 3 receptor subtype.
  • the (S)-pramipexole stereoisomer is a potent agonist of dopamine, with only small daily doses required and indeed tolerated by patients.
  • Both enantiomers are thought to confer neuroprotective effects by their ability to accumulate in the brain, the spinal cord and mitochondria, and independent of the dopamine agonist activity, presumably through inhibition of lipid peroxidation, normalization of mitochondrial function and/or detoxification of oxygen radicals. As such, these compounds may have utility as inhibitors of the cell death cascades and loss of cell viability observed in neurodegenerative diseases.
  • the degree to which dosing of a molecule has demonstrable phenotypic activity resulting from affinity to particular receptors or other pharmaco-effective proteins, even when the activity results from affinities to unknown targets, can be operationally defined in terms of whether this activity contributes in a positive way (‘on-target’ activity) or a negative way (‘off-target’ activity) to a specific and desired therapeutic effect.
  • On-target activity a positive way
  • off-target activity a negative way
  • a number of ‘off-target’ activities can theoretically be identified, but ‘on-target’ activity is restricted to the desired therapeutic effect.
  • an index of activity can be generated for each of these categories (the ‘activity equivalent’, or AE), and one or more ratios generated to compare ‘off-target’ to ‘on-target’ activities, useful to compare potential risk-benefit ratios between molecules.
  • the ‘off-target’ activity for (R)-pramipexole in neurodegenerative disorders (other than Parkinson's disease) would be the ‘on-target’ activity for its enantiomer (S)-pramipexole, used to treat PD and restless legs syndrome.
  • (R)-pramipexole two activities can be defined in this context.
  • the first which is agonist activity at a subset of human dopamine receptors and the resulting behavioral/toxicological phenotype, is ‘off-target’ activity for most neurodegenerative disorders. This activity results in dose-limiting side effects due to dopamine receptor agonist activity, and for the purposes of the current discussion can be defined to be the dopamine activity equivalent, or DAE.
  • DAE dopaminergic activity equivalent
  • DAE dopaminergic activity equivalent
  • a dosage of (R)-pramipexole having a DAE of 0.01 would have activity at the dopamine receptors which is equivalent to the activity of 0.01 mg of (S)-pramipexole.
  • the DAE can also be related to a variety of pharmaceutical terms, including maximum tolerated dose (MTD), no observable adverse effect level (NOAEL), and non-effective dose amount.
  • MTD maximum tolerated dose
  • NOAEL no observable adverse effect level
  • non-effective dose amount for (S)-pramipexole is most preferably below 0.05 mg. This, in turn, corresponds to a DAE of below 0.05.
  • DAE is determined by measuring the binding affinity (IC 50 ) or activity (EC 50 ) at the D 2 and/or D 3 receptors relative to the same parameter for 1 mg of (S)-pramipexole.
  • DAE may be determined by a suitable in vitro assay such as an IC 50 binding affinity assay for the D 2 or D 3 receptor such as those described by Schneider, C.
  • the other activity of (R)-pramipexole and (S)-pramipexole is neuroprotection.
  • Neuroprotection is a phenomenon independent of mechanism, and hence qualifies as a category of activity.
  • the neuroprotective activity of (R)-pramipexole and (S)-pramipexole is measurable and approximately equivalent in both enantiomers.
  • the neuroprotective activity can be defined in relative terms as the neuroprotective activity equivalent (NAE).
  • Neuroprotective activity equivalent (NAE) refers to the neuroprotective activity inherent in 1 mg of (S)-pramipexole.
  • NAE can be determined, for example, by measuring the neuroprotective activity in a standard in vitro neuroprotective assay relative to the activity of 1 mg of (S)-pramipexole.
  • the neuroprotective activity is determined by measuring cell death in the presence of MPP+ and/or rotenone in dopaminergic and/or non-dopaminergic cells (as a non-limiting example, see the assay in M. Gu, Journal of Neurochemistry, 91:1075-1081 (2004)).
  • DAE Unlike the DAE, NAE has been shown to be equal in both pramipexole enantiomers in a number of in vitro tests. However, a larger dose of a pramipexole enantiomer is required to elicit neuroprotective activity in vivo, and because dosages of (S)-pramipexole are limited by the dopaminergic activity of the (S) enantiomer, which can lead to adverse side effects at dosages above the “No Observable Adverse Effect Level” (NOAEL dose amount), DAE is seen as a unit measure of the potential for adverse effects when describing neuroprotection, while the NAE is seen as a unit measure of the potential for therapeutic benefit.
  • NOAEL dose amount No Observable Adverse Effect Level
  • a NOAEL dose as used herein refers to an amount of active compound or pharmaceutical agent that produces no statistically or biologically significant increases in the frequency or severity of adverse effects between an exposed population and its appropriate control; some effects may be produced at this level, but they are not considered as adverse, or as precursors to adverse effects.
  • embodiments of the invention including the administration of (R)-pramipexole provide for significantly greater NAE levels and greater NAE/DAE levels than previously believed possible by administration of (S)-pramipexole thereby maximizing the probability that a therapeutically effective amount of (R)-pramipexole can be administered to a patient to provide neuroprotection.
  • the NAE and the DAE may be useful in terms of a ratio, particularly as a ratio of beneficial to adverse effects, and useful to define a range over which a particular composition may be administered.
  • (S)-pramipexole has a high DAE/NAE ratio, due to the high dopamine affinity, while the corresponding ratio for (R)-pramipexole is significantly lower.
  • exemplary adverse events are dizziness, hallucination, nausea, hypotension, somnolence, constipation, headache, tremor, back pain, postural hypotension, hypertonia, depression, abdominal pain, anxiety, dyspepsia, flatulence, diarrhea, rash, ataxia, dry mouth, extrapyramidal syndrome, leg cramps, twitching, pharyngitis, sinusitis, sweating, rhinitis, urinary tract infection, vasodilatation, flu syndrome, increased saliva, tooth disease, dyspnea, increased cough, gait abnormalities, urinary frequency, vomiting, allergic reaction, hypertension, pruritis, hypokinesia, nervousness, dream abnormalities, chest pain, neck pain, paresthesia, tachycardia, vertigo, voice alteration, conjunctivitis, paralysis, tinnitus, lacrimation, mydriasis and diplopia.
  • a dose of 1.5 mg of (S)-pramipexole has been shown to cause somnolence in human subjects ( Public Statement on Mirapex®, Sudden Onset of Sleep from the European Agency for the Evaluation of Medicinal Products; Boehringer Ingelheim product insert for Mirapex® which indicates that the drug is administered as three doses per day).
  • studies performed in dogs, as presented herein, indicate that the NOAEL dose may be as low as 0.00125 mg/kg, which is equivalent to a human dose of 0.0007 mg/kg or 0.05 mg for a 70 kg individual.
  • a NOAEL dose amount may be an amount below 1.5 mg, below 0.50 mg, or more preferably below 0.05 mg.
  • a NOAEL dose may have a DAE of below 1.5, below 0.5, or more preferably below 0.05.
  • non-effective dose amount refers to an amount of active compound or pharmaceutical agent that elicits a biological or medicinal response similar to the biological or medicinal response of a placebo as observed in a tissue, system, animal, individual or human that is being treated by a researcher, veterinarian, medical doctor or other clinician.
  • a “non-effective dose amount” may therefore elicit no discernable difference from placebo in positive effects as observed in a tissue, system, animal, individual or human that is being treated by a researcher, veterinarian, medical doctor or other clinician.
  • the “non-effective dose amount” is not expected to (1) prevent a disease; for example, preventing a disease, condition or disorder in an individual that may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibit the disease; for example, inhibiting a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting or slowing further development of the pathology and/or symptomatology), or (3) ameliorate the disease; for example, ameliorating a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing or reducing the pathology and/or symptomatology).
  • a non-effective dose amount may be an amount below 1.0 mg/day, below 0.75 mg/day, below 0.5 mg/day, below 0.25 mg/day, or preferably below 0.125 mg/day.
  • a non-effective dose amount per day may have a DAE per day below 1.0, below 0.75, below 0.5, below 0.25, or preferably below 0.125.
  • MRTD maximum recommended therapeutic dose
  • MRTD refers to the dosages compiled by the FDA's Center for Drug Evaluation and Research, Office of Pharmaceutical Science, Informatics and Computational Safety Analysis Staff's Maximum Recommended Therapeutic Dose and as described in Matthews, et al., “Assessment of the Health Effects of Chemicals in Humans: I. QSAR Estimation of the Maximum Recommended Therapeutic Dose (MRTD) and No Effect Level (NOEL) of Organic Chemicals Based on Clinical Trial Data,”, Current Drug Discovery Technologies, 2004, 1:61-76).
  • the FDA's MRTD database cites a MRTD for S-pramipexole of 0.1 mg/kg/day or 7.0 mg/day for a 70 lb. person.
  • Matthews estimates that a NOEL (no adverse effect level) usually is about one-tenth of the MRTD, which corresponds to 0.01 mg/kg or about 0.7 mg/day for a 70 lb. person.
  • (S)-pramipexole must be titrated over the course of weeks to reach these dosages without dose limiting adverse effects (such as that documented in Boehringer Ingelheim product insert for Mirapex®).
  • the recommended starting daily dose amount of Mirapex® is 0.125 mg taken once daily 2-3 hours before bedtime.
  • the daily dose may be increased to 0.25 mg over 4 to 7 day period and then to 0.5 mg over a second 4 to 7 day period.
  • the package insert recommends the following titration schedule for Mirapex®:
  • Week Dosage (mg) Total daily dose (mg) 1 0.125 tid 0.375 2 0.25 tid 0.75 3 0.5 tid 1.5 4 0.75 tid 2.25 5 1.0 tid 3.0 6 1.25 tid 3.75 7 1.5 tid 4.5
  • a “maximum tolerated dose” refers to an amount of active compound or pharmaceutical agent which elicits significant toxicity in a tissue, system, animal, individual or human that is being treated by a researcher, veterinarian, medical doctor or other clinician.
  • Single dose toxicity of (S)-pramipexole after oral administration has been studied in rodents, dogs, monkeys and human. In rodents, deaths occurred at doses of 70-105 mg/kg and above ( Initial Scientific Discussion for the Approval of Mirapex from the European Agency for the Evaluation of Medicinal Products). This is equivalent to a human dose of 7-12 mg/kg, or approximately 500-850 mg for a 70 kg individual.
  • the starting daily dosage for administration to a na ⁇ ve patient is a 0.125 mg dose administered three times per day and a seven-week titration schedule is recommended to reach a 1.5 mg dose administered three times daily.
  • All species showed signs of toxicity related to exaggerated pharmacodynamic responses to (S)-pramipexole. For example, behavioral changes including hyperactivity were common and led to a number of secondary effects, such as reduced body weight and other stress-induced symptoms.
  • (S)-pramipexole moderately affected cardiovascular parameters.
  • the potent prolactin-inhibitory effect of pramipexole affected reproductive organs e.g.
  • MTD amount of (S)-pramipexole for a human subject may be an amount below 4.5 mg/day, preferably below 1.5 mg/day. Further, the MTD amount for a human subject may be an amount below 0.3 mg/dose based on results of studies disclosed herein, and preferably below 0.2 mg/dose (see Table 11). With reference to DAE, the MTD amount may have a DAE of below 1.5, below 0.3, or below 0.2.
  • the MTD of (S)-pramipexole after a seven week titration regimen is 4.5 mg, or 1.5 mg three times a day, which is equivalent to a 4.5 DAE in a day or 1.5 DAE in a single dose.
  • the NOAEL dose amount for (S)-pramipexole is below 1.5 mg, preferably below 0.50 mg, or more preferably below 0.05 mg, which are each equivalent to 1.5 DAE, 0.5 DAE, and 0.05 DAE, respectively.
  • an aspect of the present invention involves unexpectedly high chiral purities that have been attained. These purities have led to MTDs or NOAELs for (R)-pramipexole which are higher than previously appreciated based on the literature derived comparative binding affinities.
  • pharmaceutical compositions, starting doses, method of treatment, and kits including (R)-pramipexole of high chiral purity are provided. Pursuant the discussion above, a 25 mg dosage with a similar chiral purity of 99.95% would be predicted to be well above the MTD or NOAEL for (S)-pramipexole and, therefore, result in observable adverse side effects.
  • the MTD for the (R)-enantiomer has been shown to be equivalent to about 3,000 mg for a 70 kg human subject, while the equivalent MTD for the (S)-enantiomer would be equivalent to only 0.30 mg for that same subject (Table 1A). That is a difference of 10,000-fold.
  • the NOAEL dose for the (R)-enantiomer is 20,000-fold greater than for the (S)-enantiomer (Table 1A).
  • the (R)-pramipexole compositions used in these studies must be at least 99.99% pure if one were to assume that the observed side effects stemmed only from contamination by the (S)-enantiomer.
  • compositions and methods including (R)-pramipexole in higher dosages and higher chiral purities than could be achieved using (S)-pramipexole without eliciting adverse effects.
  • synthetic ratios Based on the chiral purity and the in vitro comparative binding affinity ratios, clinical NOAEL dose ratios, or clinical MTD dose ratios (herein “comparative ratios”), it may be possible to predict the DAE for a given dosage of (R)-pramipexole.
  • Table 1 shows the DAE for a 25 mg dose of (R)-pramipexole as a function of comparative ratio and chiral purity.
  • Table 1 attempts to illustrate the importance of both purity and affinity on even a 25 mg single oral dosage. Assumptions regarding dopaminergic activity of the (R)-pramipexole at the dopamine receptors would seemingly preclude even a high purity (even 100% pure) 25 mg (R)-pramipexole tablet. Based upon the disclosure of the present invention one can immediately envisage numerous tables to illustrate the point. Tables 1A and 1B below are intended to illustrate the importance of purity for a single oral dosage form of (R)-pramipexole by illustrating the impact of even the smallest contamination of the composition by (S)-pramipexole
  • Table 2 shows DAE as a function of a dosage of (R)-pramipexole (left hand column) and the comparative ratio (top row).
  • a unit dose can be chosen which allows for an amount of (R)-pramipexole having DAE which is equal to the non-effective amount of (S)-pramipexole.
  • a DAE would be avoided or minimized in a pharmaceutical composition.
  • any single dose greater than 25 milligrams would not be expected to avoid off-target activity and would be expressly avoided by one skilled in the art. This is not true if, as in present invention, the comparative ratios exceed 200. This is best illustrated by Table 2.
  • Table 3 shows DAE as a function of a dosage of (R)-pramipexole (left hand column) and the comparative ratio (top row).
  • a unit dose can be chosen which allows for an amount of (R)-pramipexole having a DAE equal to the NOAEL dose amount of (S)-pramipexole. While 0.125 avoids unwanted effects, less than 0.05 avoids NOAEL. The difference in literature report and actual results is even more striking in Table 3.
  • Table 4 shows DAE as a function of a dosage of (R)-pramipexole (left hand column) and the comparative ratio (top row).
  • a unit dose can be chosen which allows a dose amount of (R)-pramipexole having a particular DAE.
  • the neuroprotective effect of the compositions of the present invention may derive at least in part from the ability of the (R)-pramipexole to prevent neural cell death by at least one of three mechanisms: (1) the (R)-pramipexole may be reduce the formation of reactive oxygen species in cells with impaired mitochondrial energy production; (2) (R)-pramipexole may partially restore the reduced mitochondrial membrane potential that has been correlated with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis diseases; and (3) (R)-pramipexole may block the cell death pathways which are produced by pharmacological models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis diseases and mitochondrial impairment.
  • compositions that include an effective amount of (R)-pramipexole and an effective amount of one or more secondary agents.
  • the effective amount of (R)-pramipexole and the effective amount of one or more secondary agents may be provided adjunctively in separate pharmaceutical compositions or in a single dose pharmaceutical composition.
  • Each composition may further include a pharmaceutically acceptable excipient or carrier.
  • compositions of the invention may include (R)-pramipexole having a chiral purity at least greater that 96%.
  • the chiral purity may be at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9%, least 99.95%, or preferably at least 99.99%.
  • the composition may have a chiral purity for (R)-pramipexole of 99.90% or greater, and in other embodiments, the composition has a chiral purity for (R)-pramipexole of 99.95% or greater.
  • the composition has a chiral purity for (R)-pramipexole of 99.99% or greater, and in certain embodiments, the chiral purity for (R)-pramipexole is 100%.
  • the high chiral purity of the (R)-pramipexole used herein may allow for therapeutic compositions that have a wide individual and daily dose range.
  • the amount of (R)-pramipexole may be from about 0.01 mg/kg/day to about 10,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 0.1 mg/kg/day to about 1,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 1,000 mg/kg/day to about 10,000 mg/kg/day, or from about 1 mg/kg/day to about 100 mg/kg/day.
  • the amount of (R)-pramipexole may be from about 3 mg/kg/day to about 70 mg/kg/day. In still other embodiments, amount of (R)-pramipexole may be from about 7 mg/kg/day to about 40 mg/kg/day. In yet other embodiments, the amount of (R)-pramipexole may be from about 3 mg/kg/day to about 50 mg/kg/day. In further embodiments, the dosage may be 10 mg/day to 1,500 mg/day, more preferably 100 mg/day to 600 mg/day.
  • the amount of (R)-pramipexole in the compositions may preferably be about 25 mg to about 5,000 mg, about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, from about 500 mg to about 1,000 mg.
  • the amount of (R)-pramipexole in the compositions may be about from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg, to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg to about 1,000 mg, from about 600 mg to about 1,000 mg, or from 450 mg to about 1,000 mg.
  • the amount of (R)-pramipexole is from about 600 mg to about 900 mg. This dose may be administered as a single daily dose, or may be divided into several doses administered throughout the day, for example, 1 to 5 doses, preferably two or three doses per day. In some embodiments, the amount of (R)-pramipexole is from about 50 mg to about 5000 mg. In some embodiments, the amount of (R)-pramipexole is from about 100 mg to about 3000 mg. In some embodiments, the amount of (R)-pramipexole is from about 300 mg to about 1500 mg. In some embodiments, the amount of (R)-pramipexole is from about 500 mg to about 1000 mg. In some embodiments, the composition is suitable for oral administration. In some embodiments, the composition is a solid oral dosage form.
  • one or more secondary therapeutic agents such as, for example, dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl inducers, histone deacetylase (HDAC) mediators, glial modulators, mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • MOAB monoamine oxidase type B
  • HDAC histone deacetylase
  • Exemplary dopamine agonists include, but are not limited to, apomorphine, carbidopa/levodopa, bromocriptine, lisuride, cabergoline and piribedel.
  • Exemplary dopaminergic agonists include, but are not limited to, ropinirole, rotigotine, pergolide, amantadine.
  • Exemplary COMT inhibitors include, but are not limited to entacapone and tolcapone.
  • MOA inhibitors include, but are not limited to, selegiline, rasagiline moclobemide, isocarboxazid, phenelzine, tranylcypromine, nialamide, iproniazid, iproclozide, toloxatone, linezolid, dextroamphetamine, EVT 302 (Evotec, Inc.), Ro 19-6491 (Hoffman-La Roche, Inc.), Ro 19-6327 (Hoffman-La Roche, Inc.), deprenyl, pargyline and ladostigil (TV-3326).
  • Exemplary excitatory amino acid antagonists include, but are not limited to, talampanel.
  • one or more secondary agents that are dopamine agonists may be adjunctively administered with (R)-pramipexole.
  • the (R)-pramipexole exert neuroprotective effects while the D2/D3 agonists activate dopamine receptors.
  • the invention is not limited to any particular dopamine agonist, and any dopamine agonist or combination of dopamine agonists known in the art may be used in combination with (R)-pramipexole in embodiments of the invention.
  • useful D2/D3 agonists may include, but are not limited to, pramipexole ((6S)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) (e.g., Mirapex®), ropinirole (e.g., Requip®), carbidopa, levodopa, entacapone (e.g., COMtan®), carbidopa/levodopa (e.g., Sinemet®), carbidopa/levodopa/entacapone (e.g.
  • the secondary agent may have a DAE that is substantially greater that (R)-pramipexole.
  • the combination of (R)-pramipexole and one or more dopamine agonists may result in a multi-component system or a pharmaceutical composition that provides both a high NAE and a high DAE and elicits both good neuroprotective effects and improved dopamine activity.
  • daily dosages of a dopamine agonist administered adjunctively with (R)-pramipexole may a therapeutically effective amount, for example, from about 2 mg to about 6 mg of apomorphine, up to about 1000 mg of levodopa, up to about 1000 mg of levodopa in combination with carbidopa, wherein the ratio of carbidopa/levodopa is 1:4 or 1:10, from about 2 mg to about 24 mg of ropinorole, froth about 2 mg to about 6 mg of rotigotine, from about 0.05 mg to about 5 mg of pergolide, from about 100 to about 400 mg of amantadine, from about 200 mg to about 1600 mg of entacapone, from about 300 mg to about 600 mg of tolcapone, about 10 mg of selegiline, from about 0.5 mg to about 1 mg of rasagiline.
  • a therapeutically effective amount for example, from about 2 mg to about 6 mg of apomorphine, up to about 1000 mg of
  • the dopamine agonists of embodiments may provided in any suitable dose that is therapeutically effective.
  • (S)-pramipexole may be provided an amount that does not exceed about 1.0 mg.
  • the non-effective dose amount of (S)-pramipexole is an amount that does not exceed about 0.75 mg, about 0.5 mg, about 0.25 mg, or about 0.125 mg. In some embodiments, the non-effective dose amount of (S)-pramipexole is less than about 0.125 mg.
  • an effective amount of one or more growth factors and/or neurotrophic factors such as, but are not limited to, insulin-like growth factor-1 (IGF-1), IGF-1 adenoviral-associated virus (IGF-1 AAV), mecasermin rinfabate (IPLEX), glial cell line-derived neurotrophic factor (GDNF), hepatocyte growth factor (HGF), granulocyte colony stimulating factor (G-CSF), or combination thereof may be adjunctively administered with (R)-pramipexole.
  • IGF-1 insulin-like growth factor-1
  • IGF-1 AAV IGF-1 adenoviral-associated virus
  • IPLEX mecasermin rinfabate
  • GDNF glial cell line-derived neurotrophic factor
  • HGF hepatocyte growth factor
  • G-CSF granulocyte colony stimulating factor
  • pharmaceutical compositions that include an effective amount of (R)-pramipexole and an effective amount of IGF-1.
  • the effective amount of (R)-pramipexole and the effective amount of IGF-1 may be provided adjunctively in separate pharmaceutical compositions or in a single dose pharmaceutical composition wherein each composition may further include a pharmaceutically acceptable excipient or carrier.
  • the IGF-1 system includes three structurally related ligands (IGF-1, IGF-2 and insulin), their respective receptors, and at least six IGF-1 binding proteins (IGFBP), and IGF-1 may exert multiple actions within the peripheral and central nervous systems.
  • IGF-1 structurally related ligands
  • IGF-2 and insulin their respective receptors
  • IGFBP IGF-1 binding proteins
  • IGF-1 may exert multiple actions within the peripheral and central nervous systems.
  • the majority of circulating IGF-1 is bound and sequestered by IGFBPs, thereby extending the half-life of IGF-1, regulating its distribution, and controlling its bioavailability in various tissues.
  • IGF-1 functions are mediated via the IGF-1R, a hetero-tetramer having two extracellular ⁇ -subunits which contain the ligand binding site and two transmembrane ⁇ -subunits which have tyrosine kinase activity upon ligand binding and catalyze the auto-phosphorylation of tyrosine residues on the intracellular domain of the ⁇ -subunit.
  • Auto-phosphorylation of the receptor causes recruitment of the adaptor molecules insulin receptor substrate 1 and 2 (IRS1 and IRS2).
  • the IRS proteins activate signaling pathways including the PI3K/Akt and p44/42 MAPK pathways.
  • IGF-1 signaling Additional pathways linked to IGF-1 signaling include the JNK, p38 MAPK, and mTOR signaling pathways. Signaling pathways activated by IGF-1 result in a wide range of cellular effects including cellular proliferation, differentiation and inhibition of apoptosis.
  • the neuroprotective properties of IGF-1 have been addressed in many models of neuronal degeneration. For example, Sakowski et al., 1 Amyotrophic Lateral Sclerosis, 1-11 (2008) have shown a beneficial effects of IGF-1 in neuronal cell types including human neuroblastoma cells, dorsal root ganglion cells and motor neurons.
  • IGF-1 may have neuroprotective properties in ALS models.
  • primary embryonic rat spinal motor neurons which express IGF-IR and respond to exogenous IGF-1 treatment.
  • Studies using primary motor neuron cultures demonstrate that IGF-1 prevents glutamate-induced caspase-3 cleavage, DNA fragmentation and cell death.
  • the window for the protective effects of IGF-1 in these studies was small following exposure to glutamate and implies that the effects of IGF-1 might impact early events in the activation of cell death.
  • Adenoviral-associated viral (AAV)-mediated expression of IGF-1 in SH-SY5Y neurons and primary motor neurons also causes significant protection against glutamate-induced toxicity.
  • Neighboring neurons without AAV-IGF-1 expression were also protected against glutamate-induced toxicity, indicating that this delivery method produces biologically active IGF-1 which is released from transfected cells.
  • IPLEX is a hybrid protein complex of human insulin-like growth factor-1 (rhlGF-1) and human insulin-like growth factor-binding protein-3 (rhlGFBP-3) which is for the treatment of growth failure in children with severe primary IGF-1 deficiency and which may be provide therapy for neurodegenerative diseases such as ALS and muscular dystrophy.
  • Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival and differentiation of dopaminergic and motor neurons.
  • Hepatocyte growth factor (HGF) is a paracrine cellular growth, motility and morphogenic factor that is secreted by mesenchymal cells and targets and acts primarily upon epithelial and endothelial cells.
  • HGF regulates cell growth, cell motility, and morphogenesis by activating a tyrosine kinase signaling cascade after binding to the proto-oncogene c-Met receptor and has a major role in embryonic organ development, in adult organ regeneration and in wound healing. Its ability to stimulate mitogenesis, cell motility, and matrix invasion may provide HGF with a central role in angiogenesis and tissue regeneration.
  • Granulocyte-colony stimulating factor is a neurotrophic factor that has been shown to protect cultured motoneurons from apoptosis that has been shown to increase survival of motoneurons and decreases muscular denervation atrophy in ALS mice. G-CSF is clinically well tolerated and crosses the intact blood-brain barrier.
  • an effective amount of one or more antioxidants, anti-inflammatories, and immunomodulators such as, but are not limited to, AEOL 10150, cefriaxone, celastrol, coenzyme Q10, copaxone, cox-2 inhibitors (including nimesulide), cyclosporin, ebselen, edaravone (radicut), promethazine, tamoxifen, thalidomide, vitamin E, VP025, or combination thereof may be adjunctively administered with (R)-pramipexole.
  • AEOL 10150 cefriaxone
  • celastrol coenzyme Q10
  • copaxone cox-2 inhibitors (including nimesulide), cyclosporin, ebselen, edaravone (radicut), promethazine, tamoxifen, thalidomide, vitamin E, VP025, or combination thereof
  • cox-2 inhibitors including nimesulide
  • AEOL-10150 a small-molecule antioxidant analogous to the catalytic site of superoxide dismutase, is a potential treatment for ALS, stroke, spinal cord injury, lung inflammation and mucositis that appears to be safe and well-tolerated in both a single and a multi-dose.
  • Ceftriaxone is a beta-lactam antibiotic that acts to inhibit bacterial synthetic pathways that has been shown to be a potent stimulator of glutamate receptor (GLT1), a principal excitatory neurotransmitter in the nervous system whose activation is handled by the glutamate transporter (GLT1).
  • Ceftriaxone increases expression of GLT1 in brain and up-regulates biochemical and functional activity of GLT-1 and appears to delay the loss of neurons and muscle strength and increase survival in the mouse model of ALS.
  • Glutamine is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including ALS, stroke, brain tumors and epilepsy.
  • Celastrol is a potent anti-inflammatory compound that significantly improves weight loss, motor performance and delays the onset of disease in the mouse model of ALS.
  • Celastrol treatment Coenzyme Q10 (CoQ10) is a mitochondrial cofactor and a powerful antioxidant that has been shown to naturally accumulate at low levels in number of conditions including Parkinson's disease, heart disease and cancer. It has recently been reported that CoQ10 may extend the survival in mouse models of several neurodegenerative disorders such as ALS.
  • T cells may damage motor neurons by cell-cell contact or cytokine secretion, or contribute indirectly to motor neuron damage through activation of microglia and macrophages.
  • T cell infiltration may be an epiphenomenon related to clearance of dead motor neurons.
  • Animal models of neuroinflammation and neurodegeneration indicate that T cell response can be neuroprotective or even enhance neurogenesis. Therefore, it is possible that T cells can be induced to slow motor neuron destruction and facilitate repair in ALS.
  • Copaxone glatiramer acetate
  • is an immunomodulator that appears to induce CD8 T cell response has shown promising results in treatment of ALS in animal models.
  • Cox-2 inhibitors such as nimesulide
  • NSAID non-steroidal anti-inflammatory drug
  • prophylactic dietary supplementation with nimesulide resulted in a significant delay in the onset of motor impairment and reduced cox-2-mediated induction of pro-inflammatory prostaglandin in the cervical spinal cord toward normal levels which provides evidence for the therapeutic use of cox-2 inhibitors in ALS.
  • Cyclosporin is an inhibitor of the mitochondrial permeability pore and an anti-anti-inflammatory/immunosuppressant that has been shown increase survival in animal models of ALS.
  • Ebselen has appears to affect multiple pathways including modulation of NMDA function via the NMDA redox site and inhibition of several kinases including p38MAPK and JNK that may prevent binding of certain transcription factors such as AP-1.
  • Edaravone is a free-radical scavenger for treatment of cerebral ischemia that may slow symptom progression and motor neuron degeneration in the ALS model mice.
  • Promethazine is a H1 receptor antagonist antihistamine and antiemetic that has been shown to delay the onset of ALS in mice.
  • Tamoxifen is a selective estrogen receptor modulator used in the treatment of breast cancer. Recently, tamoxifen has been implicated as a protein kinase C inhibitor with anti-glutamate activity that may reduce the toxic effect of excess of glutamate on motor neurons in ALS. Thalidomide, a small molecule drug, inhibits TNF-alpha protein synthesis that can readily cross the blood-brain barrier that may reduce inflammation. TNF-alpha plays a major role in central nervous system neuroinflammation-mediated cell death, and thalidomide may reduce the neuroinflammation associated with TNF-alpha that is secreted by the brain-resident marcophages (the microglial cell) in response to various stimuli.
  • VP025 inhibits neuro-inflammation and appear to slow the progression of ALS through interaction with immune cells leading to the modulation of cytokines.
  • the antioxidant vitamin E alpha-tocopherol
  • the antioxidant vitamin E has been shown to slow down the onset and progression of the paralysis in transgenic mice expressing a mutation in the superoxide dismutase gene found in certain forms of familial ALS.
  • effective amount of one or more anti-glutamatergics and ion channel blockers such as, but are not limited to, FP-0011, memantine, N-acetylated-a-linked acidic dipeptidease (NAALADase) inhibitors, nimodipine, riluzole or combination thereof may be adjunctively administered with (R)-pramipexole.
  • NALADase N-acetylated-a-linked acidic dipeptidease
  • FP0011 is an antiglutamatergic compound that may reduce presynaptic glutamate levels and shows strong neuroprotective properties.
  • Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been shown to protect neurons against NMDA or glutamate-induced toxicity in vitro and in animal models of neurodegenerative diseases.
  • NMDA N-methyl-d-aspartate
  • NAALADase N-Acetylated-Alpha-Linked-Acidic-Dipeptidase converts N-Acetyl-Aspartyl-Glutamate into glutamate during neuronal damage and may represent a new approach to block the release of excess glutamate without interfering with normal brain function in treatment of neurodegenerative disorders.
  • Nimodipine is a dihydropyridine calcium channel blocker which may antagonize excitatory amino acid receptor activation decreasing calcium entry into damaged neurons and might help to slow or reverse ALS.
  • Riluzole is an anti-convulsant and a neuroprotective agent that specifically blocks sodium channels in their inactivated states. Riluzole has been shown to significantly prolong survival in the bulbar-onset group of the overall population.
  • an effective amount of one or more AMPA receptor antagonists such as, but are not limited to, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), talampanel, or combination thereof may be adjunctively administered with (R)-pramipexole.
  • AMPA antagonists have shown clear beneficial effect in mouse models of ALS, including prolonged survival and maintained or improved motor function.
  • NBQX 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide
  • NBQX is an AMPA receptor antagonist that may reduce excitotoxicity which has been implicated in the selective motor neuron loss in ALS.
  • Talampanel is a selective AMPA receptor antagonist that prevents glutamate excitotoxicity which may trigger motor neuron death. Talampanel has been studied in a small group of human subjects with ALS, showing a positive trend in the ALS Functional Rating Scale as compared to those treated with placebo.
  • an effective amount of one or more heat shock protein inducers, protein disaggregators or protein downregulators such as, but are not limited to, arimoclomol, ISIS 333611, lithium, misfolded SOD-1 antibodies, rhHSP70, TDP-43 antagonists and trehalose or combinations thereof may be adjunctively administered with (R)-pramipexole.
  • Arimoclomol has been shown to protect motor nerves subjected to physical trauma and accelerate the regeneration of previously damaged nerves in animals by amplifying “molecular chaperone” proteins thereby enhancing a cell's natural ability to mend damaged, misfolded proteins.
  • Arimoclomol may provide cellular protection from misfolded, toxic proteins that are believed to cause many neurodegenerative diseases and may have broad application profile in various neurodegenerative diseases including, for example, ALS.
  • ISIS 333611 inhibits Cu/Zn superoxide dismutase (SOD1) a molecule associated with the familial form of ALS, and delivery of ISIS 333611 directly to the cerebral spinal fluid significantly decreases production of the mutant protein in neurons and surrounding cells and has been shown to prolong the lifetime of rats that show features of ALS.
  • Lithium has been shown to possess neuroprotective properties in a variety of disease models such as brain ischemic and kainite toxicity and appears to have the ability to promote autophagy through the inhibition of inositol-monophosphatase 1. In disease models of ALS, lithium delays disease onset and augments life span through the activation of autophagy, increasing in the number of mitochondria in motor neurons and suppressing reactive astrogliosis.
  • SOD1 exposed dimer interface (SEDI) antibody recognizes only those SOD1 conformations in which the native dimer is disrupted or misfolded, and by binding specifically to the misfolded protein, SEDI has been shown to ameliorate mutant protein deposition in the cytoplasm and augment life span.
  • HSP70 recombinant human HSP70
  • TDP-43 ubiquitinated TAR DNA binding protein
  • TDP-43 inclusions have been shown to play a role in the pathogenesis of ALS. Therefore, TDP-43 antagonists may have a therapeutic effect on neurodegenerative diseases.
  • Trehalose is a natural alpha-linked disaccharide formed by an ⁇ , ⁇ -1,1-glucoside bond between two ⁇ -glucose units that may inhibit polyglutamine-induced protein aggregation in vitro and in vivo in Huntington's disease models.
  • an effective amount of one or more MOAB inhibitor such as, but are not limited to, R(+)N-propargyl-1-aminoindan (rasagiline) may be adjunctively administered with (R)-pramipexole.
  • Rasagiline is an irreversible inhibitor of MOAB that has been shown to have a significant dose-dependent therapeutic effect on both preclinical and clinical motor function and survival in neurodegenerative disorders.
  • BN82451 4-[2(aminomethyl)-1,3-thiazol-4-yl]-2,6 di-tert-butylphenol (BN82451) may be adjunctively administered with (R)-pramipexole.
  • BN82451 belongs to a family of small molecules designated as multi-targeting or hybrid molecules that is orally active, penetrates central nervous system, and elicits potent neuronal protection, due to Na+ channel blockade, antioxidant properties, and mitochondria-protecting activity, and anti-inflammatory properties due to inhibition of cyclooxygenases.
  • an effective amount of one or more kinase inhibitors such as, but are not limited to, olomoucine, quinolin-2(1H)-one derivatives, roscovitine, tamoxifen and combinations thereof may be adjunctively administered with (R)-pramipexole. Misfolding of SOD1 leads to protein aggregation which has been observed in animal models of ALS as well as in human sporadic and familial ALS patients and is one of the earliest measurable events in the mouse.
  • the protein aggregates may also impair or alter the function of the proteasome, the cell's protein degradation machinery, which, in turn, may alter the half-life of key cell cycle regulatory proteins including, for example, cyclin dependent kinases (CDKs) which control the cell's division cycle.
  • CDKs cyclin dependent kinases
  • astrocytes and microglia raise the possibility that generalized, non-specific inflammation and release of proliferative factors can directly cause aberrant cell cycle reentry and apoptosis in neurons as a result of increased CDK2 concentrations. Therefore, inhibition of cell cycle re-entry by inhibiting kinases such as, for example, CDK2, CDK4, and CDK6 could protect neurons from apoptosis, and might protect against astrocyte and microglial proliferation.
  • Olomoucine is a known inhibitor of CDK2 and CDK5 that has been shown to arrests cells both in late G1 and at the G2/M transition (prophase/metaphase) of the cell cycle.
  • Quinolin-2(1H)-one derivatives selectively inhibit cyclin-dependent kinase 5 (CDK5) which has been implicated in a number of neurodegenerative disorders such as, for example, Alzheimer's disease, ALS, and ischemic stroke.
  • Roscovitine is a potent inhibitor of CDK1, CDK2, and CDK5 that has been shown to mediates neuropathology in Nieman's Pick Type C disease (a fatal neurodegenerative disorder).
  • Tamoxifen has been widely used as a selective estrogen receptor modulator in the treatment of breast cancer, and a new mode of action for tamoxifen has been discovered which implicates it as a protein kinase C inhibitor with anti-glutamate activity. Excess of glutamate is believed to play a role in ALS due to its toxic effect on motor neurons.
  • an effective amount of one or more agents Bcl inducers such, but are not limited to, ginsenoside Rb1, ginsenoside Rg1, G3139, oblimersen, and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • Ginsenosides Rb1 and ginsenoside Rg1 are extracted from ginseng root and appear to protect spinal neurons from excitotoxicity induced by glutamate and kainic acid, as well as oxidative stress, by stimulating Bcl expression.
  • G3139 (oblimersen) is an 18-mer phosphorothioate oligo deoxy ribonucleotide antisense molecule, which is targeted to the initiation codon region of the Bcl-2 mRNA and effectively inhibits Bcl-2 transcription.
  • Bcl-2 is a predominately integral membrane protein that is found in the outer mitochondrial membrane, endoplasmic reticulum, or outer nuclear membrane that is capable of forming ion channels in artificial membranes and can block the release of cytochrome c into the cytosol at least in part by correcting a defect in ATP/ADP exchange across the mitochondrial membrane. Cytochrome c forms an “apoptosome” complex with ATP, Apaf-1, and pro-caspase 9, which leads to the cleavage of the latter into an active peptide.
  • an effective amount of one or more histone deacetylase (HDAC) inhibitors such as, but are not limited to, phenylbutyrate, scriptaid, valproic acid, and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • HDAC inhibitors can “desilence” a genome, allowing expression of genes that under normal situations would not be expressed thereby reversing this dysregulation.
  • Sodium phenylbutyrate is an HDAC inhibitor that improves transcription and post-transcriptional pathways and promotes cell survival in a mouse model of motor neuron disease.
  • Scriptaid is an HDAC inhibitor that changes the expression profile of protein factors that are involved in the recognition and binding of protein aggregates by the dynactin complex.
  • Sodium valproate is an HDAC inhibitor that has been demonstrated to inhibit microglial cells hyperactivity and production of inflammatory mediators, appears to have protective effects in the superoxide dismutase (SOD) in mouse model of ALS, and stimulates stem cell activity, which may allow for regeneration of damaged motor neurons.
  • an effective amount of one or more glial modulators such as, but are not limited to, ONO-2506 may be adjunctively administered with (R)-pramipexole.
  • ONO-2506 lowers the potential for glutamate excitotoxicity by increasing the activity of glutamate transporters in astrocytes and has been shown to inhibit expansion of cerebral infarction by modulating the function of astrocytes.
  • Early studies suggest that ONO-2506 may exhibit a neuroprotective effect by preventing irreversible injury to neurons in the brain.
  • an effective amount of one or more mitochondrial energy promoters such as, but are not limited to, resveratrol, creatine, erythropoietin, cholest-4-en-3-One, oxime (TRO-19622) and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • Resveratrol is a powerful antioxidant found in red grape skins that has been found to suppress the influx of calcium into cells associated with glutamate-induced cell toxicity. Creatine aids in the formation of ATP, the primary source of cellular energy in the body, and has been shown to provide protective mechanisms against neurodegenerative disorders by stabilizing cellular membranes and mitochondrial energy-transfer complexes which may reduce motor neuron death by improving mitochondrial function.
  • Creatine may also reduce oxidative stress and increase glutamate uptake and may help reduce the loss of muscle strength in ALS patients.
  • Erythropoietin is a glycoprotein hormone that controls erythropoiesis, red blood cell production that has recently been identified as a cytokine with various neuroprotective effects, including, for example, reduction of inflammation, enhancement of survival signals, and prevention of neuronal cell death.
  • Cholest-4-en-3-one, oxime (TRO-19622) is a low molecular-weight compound shown to enhance motor neuron survival and growth by interacting with protein components of the mitochondrial permeability transition pore and that may rescue motor neuron cell bodies from axonomy-induced cell death in vivo.
  • an effective amount of one or more myostatin inhibitors such as, but are not limited to, ACE-031, MYO-029 and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • Myostatin is a negative regulator of muscle mass and inhibiting myostatin the body may be free to rebuild muscle tissue.
  • the functional improvement of dystrophic muscle by myostatin blockade may provide a novel pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD and ALS.
  • ACE-031 is a myostatin inhibitor that was developed to treat diseases involving the loss of muscle mass, strength and function in diseases including muscular dystrophy, ALS, and cancer-related muscle loss.
  • MYO-029 is a recombinant human antibody designed to bind to and inhibit the activity of myostatin.
  • an effective amount of one or more caspase inhibitors such as, but are not limited to, ESPA-1002, IDN-6556, pralnacasan, and combinations thereof may be adjunctively administered with (R)-pramipexole.
  • Caspases are the mammalian cell death effector proteins that appear to be up-regulated in ALS. Apoptosis, programmed cell death, has been demonstrated to occur in the CNS, following both acute injury and during chronic neurodegenerative conditions such as ALS, and caspase inhibition has been demonstrated to be therapeutically effective in moderating excessive apoptosis. Therefore, targeted inhibition of caspases may represent a potential therapeutic option for treatment of neurodegenerative disorders.
  • ESPA-1002 is a specific inhibitor of caspase 8 and caspase 9.
  • IDN-6556 is a caspase inhibitor that has been shown to slow progression of ALS.
  • Pralnacasan is an inhibitor of the inflammatory caspase interleukin-1-converting enzyme (ICE) and has been shown to significantly slow symptom progression of ALS.
  • ICE caspase interleukin-1-converting enzyme
  • Various embodiments of the invention are directed to multi-component therapeutics, multi-component systems, and pharmaceutical compositions in which (R)-pramipexole and one or more secondary therapeutic agents such as, for example, those listed above are provided in separate unit doses that are administered to a patient in need of treatment in separate, individual pharmaceutical compositions.
  • Various other embodiments are directed to multi-component therapeutics, multi-component systems, and pharmaceutical compositions the include (R)-pramipexole and one or more secondary therapeutic agents such as those listed above in a single unit dose form that can be administered to a patient in need of treatment in a single pharmaceutical composition.
  • the separate, individual pharmaceutical compositions and the single pharmaceutical composition including both (R)-pramipexole and one or more secondary therapeutic agents may include one or more pharmaceutically acceptable adjuvant, carrier or excipient.
  • the secondary agent may be a dopamine agonist.
  • the dopamine agonist may be ropinirole (Requip®), and in another exemplary embodiment, the dopamine agonist may be carbidopa/levodopa (Sinemet®).
  • the secondary agent may be an anti-glutamatergic.
  • the secondary agent may be riluzole (Rilutek®).
  • the secondary agent may be an excitatory amino acid.
  • the secondary agent may be talampanel.
  • the secondary agent may be a growth factor.
  • the secondary agent may be IPLEX.
  • the secondary agent may be a caspase inhibitor.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may generally be used as neuroprotectants or to provide neuroprotection in a patient to which the compositions are administered.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may be useful in the treatment of diseases related to neuronal degeneration or neuronal cell death or to alleviate the symptoms of such diseases by the action of a neuroprotectant.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may additionally be useful for restoring or improving neuronal, retinal and muscle function in patients, to treat neurodegenerative diseases, or diseases associated with mitochondrial dysfunction or increased oxidative stress, and in particular embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may be used to treat neurodegenerative dementias, neurodegenerative movement disorders, ataxia, seizure disorders, motor neuron disorders or diseases, and inflammatory demyelinating disorders in patients.
  • Embodiments of the invention are not limited to a particular mode of action.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may be effective as inhibitors of oxidative stress or lipid peroxidation and may be useful in detoxification of oxygen radicals and normalization of mitochondrial function which may be useful in the treatment of numerous diseases.
  • increases in reactive oxygen species and other free radicals have been associated with ALS and at least in some cases may be the result of mutations in the SOD-1 gene which destroys superoxide radicals.
  • the SOD-1 enzyme may play a pivotal role in the pathogenesis and progression of familial amyotrophic lateral sclerosis (FALS) which make up about 10% of all ALS patients are familial cases and of which 20% have mutations in the SOD-1 gene.
  • FALS familial amyotrophic lateral sclerosis
  • recent studies have linked premature neuronal death associated with ALS to mutated mitochondrial genes which lead to abnormalities in functioning of the energy production pathways in mitochondria.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may be effective as treatment for impaired motor function in, for example, cardiac and striated muscle and retinal tissues which is associated with various degenerative diseases and neurodegenerative diseases such as ALS, Parkinson's disease, Alzheimer's disease, and macular degeneration.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may be used in the treatment of age related macular degeneration.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions suitable for systemic administration, ocular administration or topical administration to the eye may be prepared. Therefore, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions including (R)-pramipexole and the secondary agents provided above may be well suited for treatment of ALS, Parkinson's Disease, Alzheimer's disease, and macular degeneration.
  • Any listing of disorders or diseases provided in discussion of the invention embodied herein is for exemplary purposes only and is not limiting in any way. Therefore, the compositions of the invention may be useful in the treatment of numerous unlisted disorders.
  • Further embodiments of the invention are directed methods of ameliorating the symptoms associated with degenerative and neurodegenerative diseases such as, for example, ALS, Parkinson's Disease, Alzheimer's disease, and macular degeneration by administering (R)-pramipexole and one or more secondary therapeutic agents such as dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl protein inducers, histone deacetylase (HDAC) mediators, glial modulators, mitochondrial energy promoting agents, myostat
  • compositions of various embodiments may be suitable for oral administration, and in some embodiments, may be in a solid oral dosage form such as, for example, a tablet or a capsule.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may include at least about 25 mg of (R)-pramipexole and less than about 1.5 dopaminergic activity equivalents (“DAE”).
  • DAE dopaminergic activity equivalents
  • the chiral purity of the (R)-pramipexole in the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of various embodiments of the invention may be at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9%, at least 99.95%, or in particular embodiments, at least 99.99%.
  • the chiral purity for (R)-pramipexole may be 100% or as close to 100% as can be measured.
  • the composition has a chiral purity for (R)-pramipexole of 99.9% or greater.
  • the composition has a chiral purity for (R)-pramipexole of 99.95% or greater. In still other embodiments, the composition has a chiral purity for (R)-pramipexole of 99.99% or greater.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may include less than about 0.5 dopaminergic activity equivalents (DAE). In other embodiments, the multi-component therapeutics, multi-component systems, and the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention of the invention may include less than about 0.05 DAE. These DAE values are derived from the no observable adverse effect levels of (R)-pramipexole as discussed above.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention has a DAE which is less than the DAE as calculated from the maximum tolerated dose (MTD) amount or non-effective dose amounts of (S)-pramipexole.
  • MTD maximum tolerated dose
  • the DAE does not exceed about 1.0, does not exceed about 0.75, does not exceed about 0.5, does not exceed about 0.25, or does not exceed about 0.125.
  • MTD amount the composition may have a DAE of below 1.5, below 0.3, or below 0.2.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 50 mg of (R)-pramipexole. In other embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 75 mg of (R)-pramipexole. In still other embodiments, multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 125 mg of (R)-pramipexole. In yet other embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 150 mg of (R)-pramipexole.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 200 mg of (R)-pramipexole. In yet further embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 250 mg of (R)-pramipexole. In still further embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 300 mg of (R)-pramipexole. In some embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 400 mg of (R)-pramipexole.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 500 mg of (R)-pramipexole. In still other embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 600 mg of (R)-pramipexole. In yet other embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 750 mg of (R)-pramipexole. In some embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may include at least about 1000 mg of (R)-pramipexole.
  • the amount of (R)-pramipexole (mg) administered per kg body weight of the patient per day through the course of treatment using the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may be from about 0.01 mg/kg/day to about 10,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 0.1 mg/kg/day to about 1,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 1,000 mg/kg/day to about 10,000 mg/kg/day, or from about 1 mg/kg/day to about 100 mg/kg/day.
  • the amount of (R)-pramipexole may be from about 3 mg/kg/day to about 70 mg/kg/day. In some embodiments, the amount of (R)-pramipexole may be from about 7 mg/kg/day to about 40 mg/kg/day. In some embodiment, the amount of (R)-pramipexole may be from about 3 mg/kg/day to about 50 mg/kg/day. In some embodiments, the dosage may be 10 mg/day to 1,500 mg/day, more preferably 100 mg/day to 600 mg/day.
  • the amount of (R)-pramipexole in the compositions may be about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, from about 500 mg to about 1,000 mg. In some embodiments, the amount of (R)-pramipexole in the compositions may be about from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg, to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400
  • the amount of (R)-pramipexole is from about 600 mg to about 900 mg. In some embodiments, the amount of (R)-pramipexole is from about 50 mg to about 5000 mg. In some embodiments, the amount of (R)-pramipexole is from about 100 mg to about 3000 mg. In some embodiments, the amount of (R)-pramipexole is from about 300 mg to about 1500 mg. In some embodiments, the amount of (R)-pramipexole is from about 500 mg to about 1000 mg.
  • a starting daily dose of (R)-pramipexole may be equal to the daily dose of (R)-pramipexole administered throughout the course of treatment.
  • the starting daily dose may be 5000 mg per day, and this daily dose may be maintained throughout treatment.
  • (R)-pramipexole may be titrated such that the starting daily dose may of (R)-pramipexole may be less than 5000 mg, for example, 500 mg or 100 mg, and the daily dose may be increased every day, every other day, or per week until the required daily dose of, for example, 5000 mg is reached.
  • the starting daily dose may vary.
  • the starting daily dose may be at least about 25 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 50 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 75 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 125 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 150 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 200 mg of (R)-pramipexole.
  • the starting daily dose may be at least about 300 mg of (R)-pramipexole. In some embodiments, the starting daily dose may be at least about 400 mg of (R)-pramipexole. In some embodiments, the starting daily dose may be at least about 500 mg of (R)-pramipexole. In some embodiments, the starting daily dose may be at least about 600 mg of (R)-pramipexole. In some embodiments, the starting daily dose may be at least about 750 mg of (R)-pramipexole. In some embodiments, the starting daily dose may be at least about 1000 mg of (R)-pramipexole.
  • the starting daily dose may be from about 600 mg to about 900 mg of (R)-pramipexole.
  • the a starting daily dose of (R)-pramipexole may be greater than the daily dose of (R)-pramipexole administered throughout the course of treatment.
  • the starting daily dose may be about 5000 mg and the daily dose may be decreased every day, every other day, or per week until the required daily dose of, for example, 500 or 100 mg is reached.
  • the starting daily dose amount of (R)-pramipexole in the compositions may preferably be about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, from about 500 mg to about 1,000 mg.
  • the starting daily dose amount of (R)-pramipexole in the compositions may be about from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg, to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about
  • the starting daily dose amount of (R)-pramipexole is from about 600 mg to about 900 mg. This dose may be administered as a single daily dose, or may be divided into several doses administered throughout the day, for example, 1 to 5 doses per day, preferably two to three doses per day. In some embodiments, the starting daily dose amount of (R)-pramipexole is from about 50 mg to about 5000 mg. In some embodiments, the starting daily dose amount of (R)-pramipexole is from about 100 mg to about 3000 mg. In some embodiments, the starting daily dose amount of (R)-pramipexole is from about 300 mg to about 1500 mg. In some embodiments, the starting daily dose amount of (R)-pramipexole is from about 500 mg to about 1000 mg.
  • the starting daily dose amount of (R)-pramipexole may be from about 0.01 mg/kg/day to about 10,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 0.1 mg/kg/day to about 1,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 1,000 mg/kg/day to about 10,000 mg/kg/day, or from about 1 mg/kg/day to about 100 mg/kg/day. In some embodiments, the starting daily dose amount of (R)-pramipexole may be from about 3 mg/kg/day to about 70 mg/kg/day.
  • the starting daily dose amount of (R)-pramipexole may be from about 7 mg/kg/day to about 40 mg/kg/day. In some embodiment, the starting daily dose amount of (R)-pramipexole may be from about 3 mg/kg/day to about 50 mg/kg/day. In some embodiments, the starting daily dose amount may be 10 mg/day to 1,500 mg/day, more preferably 100 mg/day to 600 mg/day.
  • the amount of each, individual secondary agent of the one or more secondary agents in the pharmaceutical compositions of the invention may vary depending on, for example, the secondary agent utilized.
  • the amount of the one or more secondary agent in the pharmaceutical composition may be the amount suggested by the manufacture as a daily dose, starting daily dose, or dose per kg patient weight, per day.
  • the amount of each, individual secondary agent of the one or more secondary agents in the compositions of various embodiments of the invention may be from about 2 mg to about 5,000 mg, from about 10 mg to about 3,000 mg, from about 30 mg to about 1,500 mg, from about 50 mg to about 1,000 mg.
  • the amount of each, individual secondary agent of the one or more secondary agents in such compositions may be about from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg, to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg to about 1,000 mg, from about 600 mg to about 1,000 mg, or from 450 mg to about 1,000 mg.
  • the amount of each, individual secondary agent of the one or more secondary agents may be from about 600 mg to about 900 mg. In some embodiments, the amount of each, individual secondary agent of the one or more secondary agents may be from about 50 mg to about 5000 mg. In some embodiments, the amount of each, individual secondary agent of the one or more secondary agents may be from about 100 mg to about 3000 mg. In some embodiments, the amount of each, individual secondary agent of the one or more secondary agents may be from about 300 mg to about 1500 mg. In some embodiments, the amount of each, individual secondary agent of the one or more secondary agents may be from about 500 mg to about 1000 mg.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of various embodiments of the invention may include, for example, microcrystalline cellulose, mannitol, croscarmellose sodium, magnesium stearate, or combination thereof.
  • certain embodiments of the invention include a pharmaceutical formulation including (R)-pramipexole and, in some embodiments, one or more secondary agents, about 20% to about 50% by weight of the formulation of one or more microcrystalline cellulose; about 10% to about 30% by weight mannitol; about 2% to about 6% crospovidone; and about 0.01% to about 2% magnesium stearate.
  • the pharmaceutical composition may include a diluent in an amount from about 20% to about 50% by weight of the formulation, and in certain embodiments, the formulation may include about 10% to about 30% by weight of a second diluent. In still other embodiments, the formulation may include about 2% to about 6% of a disintegrant and in yet other embodiments, about 0.01% to about 2% of a lubricant.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions such as those described above may be suitable for oral administration, and in particular embodiments, the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may be a solid oral dosage form.
  • the (R)-pramipexole may have a chiral purity of at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9%, preferably at least 99.95%, or at least 99.99%.
  • the chiral purity for (R)-pramipexole may be about 100%.
  • (R)-pramipexole may have a chiral purity of 99.9% or greater, 99.95% or greater, or 99.99% or greater.
  • the amount of (R)-pramipexole in such formulations may be about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, from about 500 mg to about 1,000 mg.
  • the starting daily dose amount of (R)-pramipexole in the formulation may be about from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg, to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg
  • (R)-pramipexole may be from about 600 mg to about 900 mg.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may include (R)-pramipexole having about 25 neuroprotective activity equivalents and less than about 1.5 dopaminergic activity equivalents.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may have less than about 0.5 dopaminergic activity equivalents or less than about 0.05 dopaminergic activity equivalents.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may have at least about 50, at least about 75, at least about 125, at least about 150, at least about 200, at least about 300, at least-about 400, at least about 500, at least about 750, at least about 750, or at least about 100 neuroprotective activity equivalents.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions may have from about 50 to about 5,000, from about 100 to about 3,000, from about 300 to about 1,500, from about 500 to about 1,000, from about 25 to about 5,000, from about 100 to about 5,000, from about 200 to about 5,000, from about 250 to about 5,000, from about 300 to about 5,000, from about 400 to about 5,000, from 450 to about 5,000, from about 200, to about 3,000, from about 250 to about 3,000, from about 300 to about 3,000, from about 400 to about 3,000, from 450 to about 3,000, from about 100 to about 1,000, from about 200 to about 1,000, from about 250 to about 1,000, from about 300 to about 1,000, from about 400 to about 1,000, from about 600 to about 1,000, from 450 to about 1,000, or from about 600 to about 900 neuroprotective activity equivalents.
  • neuroprotective activity equivalents dopaminergic activity equivalents
  • dosage forms in the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention which are described herein separately for the sake of brevity, can be joined in any suitable combination.
  • Embodiments of the invention further provide methods for treating a neurodegenerative disease by administering a therapeutically effective amount of (R)-pramipexole and a therapeutically effective amount of one or more secondary agents.
  • (R)-pramipexole and, in some embodiments, one or more secondary agents may be formulated as a pharmaceutical or therapeutic composition by combining with one or more pharmaceutically acceptable carriers.
  • Embodiments include pharmaceutical or therapeutic compositions that may be administered orally, preferably as a solid oral dose, and more preferably as a solid oral dose that may be a capsule or tablet. In a preferred embodiment, the pharmaceutical or therapeutic composition may be formulated in tablet or capsule form for use in oral administration routes.
  • compositions and amounts of non-active ingredients in such a formulation may depend on the amount of the active ingredient, and on the size and shape of the tablet or capsule. Such parameters may be readily appreciated and understood by one of skill in the art.
  • the therapeutically effective amount of (R)-pramipexole may be effective as an inhibitor of oxidative stress, an inhibitor of lipid peroxidation or in detoxification of oxygen radicals.
  • Exemplary neurodegenerative disorders which may be treated using the methods of various embodiments, include, for example, Parkinson' disease or symptoms thereof and ALS or symptoms thereof.
  • Parkinson's disease and/or symptoms thereof are treated with the combination of (R)-pramipexole and one or more secondary agents wherein the (R)-pramipexole and one or more secondary agents may be administered in a single or multiple formulations.
  • a daily (R)-pramipexole may be administered in combination with one or more secondary agents.
  • (R)-pramipexole may be administered to a patient in need of treatment simultaneously with one or more secondary agents.
  • the (R)-pramipexole and the one or more secondary agents may be combined in a single unit dosage form, or separate unit dosages of (R)-pramipexole and the one or more secondary agents may be administered simultaneously or within a relatively short amount of time.
  • (R)-pramipexole may be administered alone in a unit dosage and one or more secondary agents may be administered in a separate unit dosage at different times.
  • (R)-pramipexole may be administered to a patient in need of treatment and a separate unit dose of one or more secondary agent may be administered one or more hour later than administration or (R)-pramipexole.
  • (R)-pramipexole may be administered in combination with one or more secondary agents and alone during the same course of treatment.
  • a unit dose of (R)-pramipexole combined with one or more secondary agents may be administered, and at various other times throughout a 24 hour period, individual unit doses of (R)-pramipexole or the one or more secondary agents may be administered separately.
  • Such embodiments may accommodate any treatment schedule required to administer an effective daily dose of (R)-pramipexole and/or the one or more secondary agents in multiple or divided doses.
  • a course of treatment may include a schedule of administrations wherein (R)-pramipexole and/or one or more secondary therapeutic agents are administered one or more times in a 24-hour period for, for example, 5 days or more.
  • a course of treatment may include repeating administering (R)-pramipexole and/or administering one or more secondary therapeutic agents one or more times in a 24-hour period for, for example, 5 days to one or more years.
  • a course of treatment include repeated administration of (R)-pramipexole and/or one or more secondary therapeutic agents may be carried out indefinitely, or for the lifetime of the patient who is undergoing the course of treatment.
  • one course of treatment may be followed by another course of treatment.
  • a first course of treatment in which (R)-pramipexole is administered in a first therapeutically effective amount and one or more secondary therapeutic agents administered at a therapeutically effective amount may be carried out for a period of time such as, for example, 5 days to one or more months or one or more year.
  • a second course of treatment may carried out a the conclusion of the first course of treatment, and the second course of treatment may include, for example, a second therapeutically effective amount of (R)-pramipexole that is different than the first therapeutically effective amount, a therapeutically effective amount of one or more secondary therapeutic agents that is different than the therapeutically effective amount administered in the first course of treatment, one or more secondary therapeutic agents that are different than the one or more secondary therapeutic agents administered in the first course of treatment, or a combination thereof.
  • Differences in the first and second courses of treatment may vary depending on the subject to whom the courses of treatment is administered and may depend, for example, on the subject's reaction to the treatment or changes in the symptoms or severity of symptoms exhibit by the subject as a result of the treatment. The skilled artisan may observe such variations and alter the course of treatment appropriately for each individual subject.
  • Further embodiments of the invention are directed to methods of decreasing the rate of cell death associated with neurodegenerative disorders such as, for example, Parkinson's disease and/or ALS using the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention by administering (R)-pramipexole and one or more secondary therapeutic agents such as, for example, dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl inducers, histone deacetylase (HDAC) mediators,
  • the (R)-pramipexole of such embodiments may have a chiral purity of at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9%, at least 99.95% and at least 99.99%, and in certain embodiments, the R-pramipexole may have a chiral purity of about 100%.
  • a therapeutically effective amount of (R)-pramipexole may be administered to effectuate treatment and such a therapeutically effective amount may be from about 0.01 mg/kg/day to about 10,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 0.1 mg/kg/day to about 1,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 1,000 mg/kg/day to about 10,000 mg/kg/day, or from about 1 mg/kg/day to about 100 mg/kg/day.
  • the therapeutically effective amount of (R)-pramipexole may be from about 3 mg/kg/day to about 70 mg/kg/day.
  • the therapeutically effective amount of (R)-pramipexole may be from about 7 mg/kg/day to about 40 mg/kg/day. In some embodiment, the therapeutically effective amount of (R)-pramipexole may be from about 3 mg/kg/day to about 50 mg/kg/day. In some embodiments, the dosage may be 10 mg/day to 1,500 mg/day, more preferably 100 mg/day to 600 mg/day. In some embodiments, the therapeutically effective amount of (R)-pramipexole may be from about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, preferably from about 300 mg to about 1,500 mg, or more preferably from about 500 mg to about 1,000 mg.
  • the therapeutically effective amount of (R)-pramipexole may be from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg to about 1,000 mg, from about 600 mg to about 1,000 mg, or from 450 mg to about 1,000 mg.
  • the therapeutically effective amount of (R)-pramipexole is from about 600 mg to about 900 mg.
  • This dose may be administered as a single daily dose, or may be divided into several doses administered throughout the day, for example, 1 to 5 doses per day, preferably two to three doses per day.
  • the daily dose amount of (R)-pramipexole in such methods may be from about 0.01 mg/kg/day to about 10,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 0.1 mg/kg/day to about 1,000 mg/kg/day, from about 1 mg/kg/day to about 1,000 mg/kg/day, from about 1,000 mg/kg/day to about 10,000 mg/kg/day, or from about 1 mg/kg/day to about 100 mg/kg/day. In some embodiments, the daily dose amount of (R)-pramipexole may be from about 3 mg/kg/day to about 70 mg/kg/day.
  • the daily dose amount of (R)-pramipexole may be from about 7 mg/kg/day to about 40 mg/kg/day. In some embodiment, the daily dose amount of (R)-pramipexole may be from about 3 mg/kg/day to about 50 mg/kg/day. In some embodiments, the daily dose amount may be 10 mg/day to 1,500 mg/day, more preferably 100 mg/day to 600 mg/day. In some embodiments, the daily dose amount of (R)-pramipexole is from about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, or from about 500 mg to about 1,000 mg.
  • the daily dose amount of (R)-pramipexole is from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg to about 1,000 mg, from about 600 mg to about 1,000 mg, or from 450 mg to about 1,000 mg.
  • the daily dose amount of (R)-pramipexole may be from about 600 mg to about 900 mg. In some embodiments, the daily dose amount may be from about 500 mg to about 1,000 mg of (R)-pramipexole. In some embodiments, daily dose amount may be from about 50 mg to about 5,000 mg of (R)-pramipexole. In some embodiments, the daily dose amount may be from about 100 mg to about 3,000 mg of (R)-pramipexole. In some embodiments, daily dose amount may be from about 200 mg to about 3,000 mg of (R)-pramipexole.
  • daily dose amount may be from about 300 mg to about 1,500 mg of (R)-pramipexole. In some embodiments, daily dose amount may be from about 500 mg to about 1,000 mg of (R)-pramipexole. This dose may be administered as a single daily dose, or may be divided into several doses administered throughout the day, for example, 1 to 5 doses per day, preferably two to three doses per day.
  • the daily dose amount may further include an amount of (S)-pramipexole that produces no observable adverse effect.
  • a no observable effective dose amount of (S)-pramipexole may be below 1.5 mg, below 0.5 mg, or below 0.05 mg per day.
  • the daily dose amount may further include a non-effective dose amount of (S)-pramipexole.
  • a non-effective dose amount of (S)-pramipexole may be an amount not exceeding 1.0 mg per day.
  • the non-effective dose amount of (S)-pramipexole may be an amount that does not exceed 0.75 mg/day, 0.5 mg/day, 0.25 mg/day, or 0.125 mg/day.
  • the daily dose amount of (R)-pramipexole may be about 100 mg to about 3,000 mg and the chiral purity of the (R)-pramipexole may be 99.95% or greater. In other embodiments, the daily dose amount of (R)-pramipexole may be about 200 to about 3,000 mg and the chiral purity of the (R)-pramipexole may be 99.95% or greater. In still other embodiments, the daily dose amount of (R)-pramipexole may be about 300 to about 1,500 mg and the chiral purity of the (R)-pramipexole may be 99.95% or greater. In yet other embodiments of the methods, the daily dose amount of (R)-pramipexole may be from about 500 mg to about 1,000 mg and the chiral purity of the (R)-pramipexole may be 99.95% or greater.
  • the daily dose amount of (R)-pramipexole may be from about 100 mg to about 3,000 mg and the daily dose amount may include less than about 0.05 mg of (S)-pramipexole. In some embodiments, the daily dose amount of (R)-pramipexole may be from about 200 mg to about 3,000 mg and the daily dose amount may include less than about 0.05 mg of (S)-pramipexole. In other embodiments, the daily dose amount of (R)-pramipexole may be from about 300 to about 1,500 mg, and the daily dose amount may include less than about 0.05 mg of (S)-pramipexole. In yet other embodiments, the daily dose amount of (R)-pramipexole may be from about 500 mg to about 1,000 mg and the daily dose amount may include less than about 0.05 mg of (S)-pramipexole.
  • kits may include the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention including (R)-pramipexole and one or more secondary therapeutic agents such as, for example, dopamine agonists, dopaminergic agonists, COMT inhibitors, MOA inhibitors, excitatory amino acid antagonists, growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, immunomodulators, anti-glutamatergics, ion channel blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, heat shock protein inducers/protein disaggregators and downregulators, monoamine oxidase type B (MOAB) inhibitors, multi-target agents, kinase inhibitors, Bcl inducers, histone deacetylase (HDAC) mediators, glial modulators, mitochondrial energy promoting agents, myostatin inhibitors, caspase inhibitors and combinations thereof, and instructions
  • secondary therapeutic agents such as
  • kits may include one or more pharmaceutical compositions such as those described in any of the embodiments of the compositions described herein, or any combination thereof, and instructions for administering or prescribing to a patient the one or more pharmaceutical compositions such as, for example, a direction to administer or prescribe the one or more pharmaceutical compositions or any combination thereof.
  • the (R)-pramipexole for use in the kits of the invention may have a chiral purity of at least 99.5%, preferably at least 99.6%, preferably at least 99.7%, preferably at least 99.8%, preferably at least 99.9%, preferably at least 99.95% and more preferably at least 99.99%.
  • the chiral purity for the R-pramipexole may be 100%.
  • (R)-pramipexole may have a chiral purity of 99.9% or greater, 99.95% or greater, or 99.99% or greater.
  • the instructions may include an instruction to administer or prescribe to a patient in need of treatment the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention in accordance with the embodiments described above at a starting daily dose of (R)-pramipexole of from about 0.1 mg/kg/day to about 1,000 mg/kg/day or from about 1 mg/kg/day to about 100 mg/kg/day.
  • the instructions may include an instruction to administer or prescribe to a patient the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention at a starting daily dose of (R)-pramipexole of from about 3 mg/kg/day to about 70 mg/kg/day or from about 7 mg/kg/day to about 40 mg/kg/day.
  • the instructions may include an instruction to administer or prescribe to a patient the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention at a starting daily dose of (R)-pramipexole of from about 50 mg to about 5,000 mg, from about 100 mg to about 3,000 mg, from about 300 mg to about 1,500 mg, or from about 500 mg to about 1,000 mg.
  • the instructions may include a direction to administer or prescribe to a patient the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention at a starting daily dose of (R)-pramipexole of from about 25 mg to about 5,000 mg, from about 50 mg to about 5,000 mg, from about 100 mg to about 5,000 mg, from about 200 mg to about 5,000 mg, from about 250 mg to about 5,000 mg, from about 300 mg to about 5,000 mg, from about 400 mg to about 5,000 mg, from 450 mg to about 5,000 mg, from about 200 mg to about 3,000 mg, from about 250 mg to about 3,000 mg, from about 300 mg to about 3,000 mg, from about 400 mg to about 3,000 mg, from 450 mg to about 3,000 mg, from about 100 mg to about 1,000 mg, from about 200 mg to about 1,000 mg, from about 250 mg to about 1,000 mg, from about 300 mg to about 1,000 mg, from about 400 mg to about 1,000 mg, from about 600 mg to about 1,000 mg, or from 450 mg to about 1,000 mg.
  • R starting daily
  • the starting daily dose amount of (R)-pramipexole may be from about 600 mg to about 900 mg.
  • the doses described above may be administered as a single daily dose, or may be divided into several doses administered throughout the day, for example, 1 to 5 doses per day, preferably two to three doses per day, and the instructions of various embodiments may describe such divided administrations.
  • the instructions comprise a direction to administer or prescribe the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention in an amount sufficient to result in administration of a starting daily dose of from about 100 mg to about 3,000 mg of (R)-pramipexole to a patient.
  • instructions may include a direction to administer or prescribe the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention in an amount sufficient to result in administration of a starting daily dose of from about 200 mg to about 3,000 mg of (R)-pramipexole to a patient.
  • the instructions comprise a direction to administer or prescribe the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention in an amount sufficient to result in administration of from about 300 to about 1,500 mg of (R)-pramipexole to a patient.
  • the instructions comprise a direction to administer or prescribe the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention in an amount sufficient to result in administration of a starting daily dose of from about 500 to about 1,000 mg of (R)-pramipexole to a patient.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention of the invention may be prepared, packaged, sold in bulk, as a single unit dose, or as multiple unit doses.
  • the various compositions associated with the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may be formulated to be administered orally, ophthalmically, intravenously, intramuscularly, intra-arterially, intramedularry, intrathecally, intraventricularly, transdermally, subcutaneously, intraperitoneally, intravesicularly, intranasally, enterally, topically, sublingually, or rectally.
  • the various compositions of the invention may be administered orally, preferably as a solid oral dose, and more preferably as a solid oral dose that may be a capsule or tablet. In some embodiments, the compositions of the invention may be formulated as tablets for oral administration.
  • the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention can be administered in the conventional manner by any route where they are active. Administration can be systemic, topical, or oral. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, intravesicularly, by inhalation, by depot injections, or by implants.
  • modes of administration for the compounds of the present invention can be, but are not limited to, sublingual, injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly), or by use of vaginal creams, suppositories, pessaries, vaginal rings, rectal suppositories, intrauterine devices, and transdermal forms such as patches and creams.
  • the doses of the (R)-pramipexole and one or more second therapeutic agents which may be administered to a patient in need thereof in the multi-component therapeutics, multi-component systems, and pharmaceutical compositions of the invention may range between about 0.1 mg/kg per day and about 1,000 mg/kg per day. This dose may be administered as a single daily dose, or may be divided into several doses which are administered throughout the day, such as 1 to 5 doses, or two to three doses per day.
  • the route of administration may include oral, sublingual, transdermal, rectal, or any accessible parenteral route.
  • One of ordinary skill in the art will understand and appreciate the dosages and timing of the dosages to be administered to a patient in need thereof.
  • the doses and duration of treatment may vary, and may be based on assessment by one of ordinary skill in the art based on monitoring and measuring improvements in neuronal and non-neuronal tissues. This assessment may be made based on outward physical signs of improvement, such as increased muscle control, or on internal physiological signs or markers.
  • the doses may also depend on the condition or disease being treated, the degree of the condition or disease being treated and further on the age and weight of the patient.
  • Specific modes of administration will depend on the indication.
  • the selection of the specific route of administration and the dose regimen or course of treatment may be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response.
  • the amount of compound to be administered may be that amount which is therapeutically effective.
  • the dosage to be administered may depend on the characteristics of the subject being treated, e.g., the particular animal or human subject treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).
  • compositions containing the various compounds of the invention and a suitable carrier may also be any number of solid dosage forms which include, but are not limited to, tablets, capsules, cachets, pellets, pills, powders and granules; topical dosage forms which include, but are not limited to, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, ointments, pastes, creams, gels and jellies, and foams; and parenteral dosage forms which include, but are not limited to, solutions, suspensions, emulsions, and dry powder; comprising an effective amount of a polymer or copolymer of the present invention.
  • the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like.
  • pharmaceutically acceptable diluents fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like.
  • the means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics , Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) can be
  • the route of administration of the compositions of the invention may be oral, with a more preferable route being in the form of tablets, capsules, lozenges and the like.
  • the compositions of the present invention may be formulated as tablets for oral administration.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, lubricating, surface active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • the tablets may be uncoated or they may be coated by known techniques, optionally to delay disintegration and absorption in the gastrointestinal tract and thereby providing a sustained action over a longer period.
  • the coating may be adapted to release the active compound in a predetermined pattern (e.g., in order to achieve a controlled release formulation) or it may be adapted not to release the active compound until after passage of the stomach (enteric coating).
  • the coating may be a sugar coating, a film coating (e.g., based on hydroxypropyl methylcellulose, methylcellulose, methyl hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, acrylate copolymers, polyethylene glycols and/or polyvinylpyrrolidone), or an enteric coating (e.g., based on methacrylic acid copolymer, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, polyvinyl acetate phthalate, shellac, and/or ethylcellulose).
  • a film coating e.g., based on hydroxypropyl methylcellulose, methylcellulose, methyl hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, acrylate copolymers, polyethylene glycols and/or polyvinylpyrrolidone
  • an enteric coating e.g.,
  • a time delay material such as, e.g., glyceryl monostearate or glyceryl distearate may be employed.
  • the solid tablet compositions may include a coating adapted to protect the composition from unwanted chemical changes, (e.g., chemical degradation prior to the release of the active drug substance).
  • the compounds can be formulated readily by combining these compounds with pharmaceutically acceptable carriers well known in the art.
  • Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
  • Pharmaceutical preparations for oral use can be obtained by adding a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • Suitable excipients include, but are not limited to, fillers such as sugars, including, but not limited to, lactose, sucrose, mannitol, and sorbitol; cellulose preparations such as, but not limited to, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and polyvinylpyrrolidone (PVP).
  • disintegrating agents can be added, such as, but not limited to, the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores can be provided with suitable coatings.
  • suitable coatings can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • compositions which can be used orally include, but are not limited to, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as, e.g., lactose, binders such as, e.g., starches, and/or lubricants such as, e.g., talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.
  • compositions can take the form of tablets, flash melts or lozenges formulated in any conventional manner.
  • the compounds of the present invention can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • the compounds can be administered by continuous infusion over a period of about 15 minutes to about 24 hours.
  • Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or
  • the compounds of the present invention can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds of the present invention can also be formulated as a depot preparation.
  • Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Depot injections can be administered at about 1 to about 6 months or longer intervals.
  • the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • the compounds of the present invention for example, can be applied to a plaster, or can be applied by transdermal, therapeutic systems that are consequently supplied to the organism.
  • compositions of the compounds also can comprise suitable solid or gel phase carriers or excipients.
  • suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as, e.g., polyethylene glycols.
  • the compounds of the present invention can also be administered in combination with other active ingredients, such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
  • active ingredients such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
  • the pramipexole salt reaction product displays a high chemical purity and an increased optical purity over the reactants, which may be due to limited solubility of the pramipexole salt in the polar solvents of the reaction mixture.
  • Purification of the final pramipexole synthesis product from the reaction mixture thus involves simple trituration and washing of the precipitated pramipexole salt in a volatile solvent such as an alcohol or heptane, followed by vacuum drying.
  • the (R)-pramipexole is prepared by dissolving a diamine of formula 2,6 diamino-4,5,6,7-tetrahydro-benzothiazole in an organic solvent, reacting the diamine with a propyl sulfonate or a propyl halide under conditions sufficient to generate and precipitate the pramipexole salt, and recovering the pramipexole salt.
  • the propyl sulfonate may be propyl tosylate.
  • the propyl halide may be propyl bromide.
  • the increased optical purity may be due to limited solubility of the pramipexole salt reaction product in the polar solvents of the reaction mixture.
  • Purification of the final pramipexole reaction product from the reaction mixture thus involves simple trituration and washing of the precipitated pramipexole salt in a volatile solvent such as an alcohol or heptane, followed by vacuum drying.
  • the diamine may be an R(+) diamine, or a mixture of the R(+) and an S diamine.
  • the chemical purity of the final pramipexole salt may be at least about 97% or greater, preferably 98% or greater, more preferably 99% or greater.
  • the R(+) enantiomers of the pramipexole salt generated using this process are generated from starting diamines which may be at least 55% optically pure, preferably 70% optically pure, and more preferably greater than 90% optically pure.
  • the final pramipexole product may be enriched to 99.6% optical purity or greater, 99.7% optical purity or greater, preferably 99.8% optically purity or greater, and more preferably 99.9% optical purity or greater, 99.95% optical purity or greater, 99.99% optical purity or greater.
  • the optical purity may be 100%.
  • the organic solvent may be a polar aprotic solvent such as tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, or hexamethylphosphoric triamide.
  • the organic solvent may also be a low molecular weight alcohol such as ethanol, 1-propanol, or n-butanol.
  • the organic solvent may be any combination of the polar aprotic solvents and low molecular weight alcohols.
  • the organic solvent may have a water content of from about 0 to about 10 volume percent.
  • the solvents used in the practice of this invention are standard ACS grade solvents.
  • the propyl sulfonate or a propyl halide may be added at about 1.0 to about 2.0 molar equivalents of the diamine.
  • the conditions sufficient to generate and precipitate the pramipexole salt may comprise heating the dissolved diamine at an elevated temperature, adding the propyl sulfonate or propyl halide which may be dissolved in di-isoproplyethylamine and an organic solvent to form a mixture, and stirring the mixture for about 4 hours.
  • the di-isoproplyethylamine may be added to the reaction with the diamine, and the propyl sulfonate or propyl halide may be dissolved in an organic solvent to form a mixture, which may be added to the reaction with stirring over about 4 hours.
  • the elevated temperature of the reaction may be below the boiling temperature of the reaction, specifically, below the boiling temperature of the organic solvent(s) of the reaction mixture.
  • the elevated temperature may be lower than about 125° C., preferably lower than about 100° C., and more preferably about 95° C. or lower.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature.
  • the conditions sufficient to generate and precipitate the pramipexole salt may comprise using dimethylformamide as the organic solvent, heating the dissolved diamine at an elevated temperature, adding the propyl sulfonate or propyl halide which is dissolved in dimethylformamide to form a mixture, and stirring the mixture for about 4 hours.
  • the elevated temperature of the reaction may be below the boiling temperature of the reaction, specifically, below the boiling temperature of the organic solvent(s) of the reaction mixture.
  • the elevated temperature may be lower than about 125° C., preferably lower than about 100° C., and more preferably about 75° C. or lower.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature.
  • the conditions sufficient to generate and precipitate the pramipexole salt comprise using dimethylformamide as the organic solvent and heating the dissolved diamine at an elevated temperature.
  • the di-isoproplyethylamine may be added to the reaction with the diamine, and the propyl sulfonate or propyl halide may be dissolved in dimethylformamide to form a mixture, which may be added to the reaction with stirring for about 4 hours.
  • the elevated temperature of the reaction may be below the boiling temperature of the reaction, specifically, below the boiling temperature of the organic solvent(s) of the reaction mixture.
  • the elevated temperature may be lower than about 125° C., preferably lower than about 100° C., and more preferably about 65° C. or lower.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature.
  • Embodiments of the process further comprise cooling the reaction to a temperature of about room temperature, about 25° C., and stirring the reaction for about 2 hours.
  • the process may further involve filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol, and drying the precipitate under vacuum.
  • the pramipexole salt reaction product of this process may display an increased optical purity over the reactants.
  • the pramipexole sulfonate or halide salt can be reacted with concentrated HCl in an organic solvent, such as an alcohol, at a temperature of from about 0 to about 5° C.
  • an organic solvent such as methyl tert-butyl ether (MTBE)
  • MTBE methyl tert-butyl ether
  • the (R)-pramipexole dihydrochloride product may be recovered from the reaction mixture by filtering, washing with an alcohol and vacuum drying.
  • the reaction condition which may be sufficient to generate the pramipexole product may include heating the dissolved diamine of formula II to an elevated temperature with continuous stirring.
  • the elevated temperature is preferably less than the melting point of the chosen organic solvent, lower than about 125° C., preferably lower than about 100° C., and more preferably about 95° C.
  • a solution of propyl sulfonate or propyl halide, which is dissolved in di-isoproplyethylamine and an organic solvent to form a mixture is added slowly over a period of several hours. This reaction mixture may then be stirred at temperature for an additional period of time such as, for example, about 4 hours.
  • the times necessary for the reaction may vary with the identities of the reactants and solvent system, and with the chosen temperature, and would be understood by one of skill in the art.
  • the di-isoproplyethylamine may be added to the reaction with the diamine, and the propyl sulfonate or propyl halide may be dissolved in an organic solvent to form a mixture, which may be added to the reaction with stirring over a period of several hours.
  • This reaction mixture may then be stirred at temperature for an additional period of time such as, for example, at least 4 hours.
  • the time necessary for the reaction to run to completion may vary with the identities of the reactants and solvent system, and with the chosen temperature, and would be understood by one of skill in the art.
  • the reaction conditions which are sufficient to generate the pramipexole product may include using dimethylformamide as the organic solvent, and heating the dissolved diamine of formula II to an elevated temperature with continuous stirring.
  • the elevated temperature is preferably less than the melting point of the chosen organic solvent, lower than about 125° C., preferably lower than about 100° C., and more preferably about 75° C.
  • a solution of propyl sulfonate or propyl halide, which is dissolved in dimethylformamide, may be added slowly over a period of several hours. This reaction mixture may then be stirred at temperature for an additional period of time such as, for example, about 4 hours.
  • the time necessary for the reaction to run to completion may vary with the identities of the reactants and solvent system, and with the chosen temperature, and would be understood by one of skill in the art.
  • the reaction includes using dimethylformamide as the organic solvent for dissolution of the diamine.
  • the diamine of formula II may then be heated to an elevated temperature with continuous stirring.
  • the elevated temperature is preferably less than the melting point of the chosen organic solvent, lower than about 125° C., preferably lower than about 100° C., and more preferably about 65° C.
  • a solution of propyl sulfonate or propyl halide, preferably about 1.25 molar equivalents may be dissolved in dimethylformamide, preferably about 10 volumes, and di-isoproplyethylamine, preferably about 1.25 molar equivalents, to form a mixture.
  • This mixture may be added slowly over a period of several hours to the heated diamine. This reaction mixture may then be stirred at temperature for an additional period of time such as, for example, about 4 hours.
  • the di-isoproplyethylamine may be added to the reaction with the diamine, and the propyl sulfonate or propyl halide may be dissolved in dimethylformamide to form a mixture, which may be added to the reaction with stirring over a period of several hours.
  • This reaction mixture may then be stirred at temperature for an additional period of time such as, for example, about 4 hours.
  • the time necessary for the reaction to run to completion may vary with the identities of the reactants and solvent system, and with the chosen temperature, and would be understood by one of skill in the art.
  • Purification of the final pramipexole product may include cooling the reactions disclosed above to a temperature of about 25° C., and stirring the reactions for a period of time such as, for example, about 2 hours.
  • the purification may further include filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol, and drying the precipitate under vacuum.
  • the final products of the reaction may be analyzed by high pressure liquid chromatography (HPLC) for chemical and chiral purity.
  • 1 H NMR and 13 C NMR may be used to confirm the structure of the product pramipexole.
  • Results of example syntheses using each of the several conditions which are embodiments of the present disclosure are listed in Table 7.
  • Examples 5-7 Several example syntheses of pramipexole using conditions A and C of the present disclosure are detailed in Examples 5-7.
  • the sulfonate or halide salts of pramipexole may be converted to an HCl salt using a concentrated solution of HCl in ethanol.
  • a p-TSA pramipexole salt may be re-dissolved in an alcohol, such as ethanol, and the mixture may be cooled to between about 0 and about 5° C. with continuous stirring.
  • a concentrated HCl may then be added, followed by a solvent such as methyl tert-butyl ether (MTBE), and the mixture may be stirred for an hour at between about 0 and about 5° C.
  • the reaction mixture may then be filtered, washed with an MTBE/alcohol solution, and dried under vacuum.
  • the final product is pramipexole dihydrochloride.
  • a detailed example of this synthesis may be found in Example 8.
  • An alternate method for conversion of the sulfonate or halide salts of pramipexole to an HCl salt involves the use of a concentrated solution of HCl and isopropyl acetate (IPAC).
  • IPAC isopropyl acetate
  • a sulfonate or halide salt of pramipexole may be taken up in IPAC and cooled to 15° C.
  • HCl (gas) may be bubbled into the slurry for about 1 hour, after which the mixture may be filtered, washed with IPAC and dried under vacuum at room temperature to afford a pramipexole dihydrochloride salt.
  • a detailed example of this synthesis may be found in Example 9.
  • the sulfonate or halide salts of pramipexole may alternatively be converted to the free base form of pramipexole.
  • a p-TSA pramipexole salt may be dissolved in dichloromethane (DCM) and water. The resulting solution may then by brought to a pH of about 11-12 using NaOH. Two phases may be generated, and the aqueous phase may be extracted with DCM, dried over magnesium sulfate (MgSO 4 ), filtered over Celite® and concentrated. The concentrated residue may be re-dissolved in MTBE and stirred as a slurry for several hours. The solids may then be filtered, washed with MTBE, and dried under vacuum at a temperature of about 35° C. The final product is pramipexole free base. A detailed example of this synthesis may be found in Example 10.
  • the sulfonate or halide salts of pramipexole may alternatively be converted to the free base form of pramipexole by a second process.
  • the p-TSA salt of pramipexole is dissolved in water and cooled to a temperature of about 10° C. This slurry is basified by addition of NaOH, diluted with brine, and extracted several times in DCM. The combined organic phases are then washed with brine, dried over MgSO 4 , filtered and concentrated to dryness.
  • a detailed example of this synthesis may be found in Example 11.
  • the free base form of pramipexole may be converted to pramipexole dihydrochloride by bubbling HCl gas into a cooled solution of the pramipexole free base in IPAC.
  • the free base form of pramipexole may be converted to pramipexole dihydrochloride by mixing with concentrated HCl at room temperature overnight.
  • Detailed examples of the aforementioned synthesis schemes may be found in Examples 12 and 13, respectively.
  • the free base form of pramipexole may be converted to pramipexole fumarate by the addition of 2 molar equivalents of fumaric acid.
  • the alternative process for preparing an enantiomerically pure pramipexole from a mixture of (R)-pramipexole and (S)-pramipexole involves using acid addition and trituration (precipitation) of an enantiomerically pure pramipexole based on insolubility of the enantiomers (R(+) and S( ⁇ )) in the resulting achiral salt solution.
  • enantiomerically pure pramipexole is triturated from an acid addition solution based on the insolubility of the enantiomers in the resulting achiral salt reagents.
  • a process for preparing an enantiomerically pure pramipexole comprises dissolving an enantiomerically enriched pramipexole in an organic solvent at an elevated temperature, adding a selected acid, cooling the reaction to room temperature, stirring the cooled reaction at room temperature for an extended time and recovering enantiomerically pure (R)-pramipexole.
  • the selected acid may be added at from about 1 molar equivalent to about 2 molar equivalents of the enantiomerically enriched pramipexole.
  • the selected acid is p-toluenesulfonic acid (p-TSA) and the organic solvent is ethanol.
  • the elevated temperature may be from about 65° C. to about 85° C. and the cooling occurs at a rate of about 25° C. per hour.
  • the elevated temperature may also be a temperature lower than 125° C., preferably lower than 100° C., and more preferably about 75° C.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature, and may be easily appreciated by one of skill in the art.
  • recovering enantiomerically pure pramipexole comprises cooling the reaction to a temperature of about 25° C. and stirring the reaction for at least about 2 hours. The recovery may further comprise filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol and drying the precipitate under vacuum.
  • the organic solvent may include, but is not limited to, acetonitrile, acetone, ethanol, ethyl acetate, methyl tert-butyl ether, methyl ethyl ketone, isopropyl acetate and isopropyl alcohol.
  • the organic solvent is ethanol.
  • the acid may include, but is not limited to, halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid; inorganic acids such as, for example, nitric, perchloric, sulfuric and phosphoric acid; organic acids such as, for example, sulfonic acids (methanesulfonic, trifluoromethan sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid; and aminoacids such as aspartic or glutamic acid.
  • halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid
  • inorganic acids such as, for example, nitric,
  • the acid may be a mono- or di-acid, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric or di-organic acid.
  • the acid is used as an achiral reagent which is not selected on the basis of any expected or known preference for interaction with or precipitation of a specific optical isomer of the products of this disclosure.
  • the selected acid is p-toluenesulfonic acid.
  • the final chiral purity for an R(+) enantiomer of the pramipexole salt may be greater than 99% when the starting mixture contains pramipexole which is at least 55% optically pure for the R(+) enantiomer, preferably 80% optically pure for the R(+) enantiomer, preferably 85% optically pure for the R(+) enantiomer, more preferably 90% optically pure for the R(+) enantiomer and most preferably 95% optically pure for the R(+) enantiomer.
  • the final chiral purity for an S( ⁇ ) enantiomer of the pramipexole salt may be greater than 99% when the starting mixture contains pramipexole which is at least 55% optically pure for the S( ⁇ ) enantiomer, preferably 80% optically pure for the S( ⁇ ) enantiomer, preferably 85% optically pure for the S( ⁇ ) enantiomer, more preferably 90% optically pure for the S( ⁇ ) enantiomer and most preferably 95% optically pure for the S( ⁇ ) enantiomer.
  • the chiral purity of the final pramipexole salt may preferably be 99.6% or greater, 99.7% or greater, preferably 99.8% or greater, and more preferably 99.9% or greater. In some embodiments, the chiral purity of the final pramipexole salt may be 100%.
  • the reaction may be cooled to room temperature at a rate of about 25° C./hour.
  • the enantiomerically pure pramipexole may then be recovered from the reaction solution by stirring the reaction for at least about 2 hours, filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol and drying the precipitate under vacuum.
  • the rates of cooling and the time required for the additional stirring may vary with the chosen organic solvent and acid, and may be easily appreciated by one skilled in the art.
  • the reaction volumes may dictate the degree of optical purification and the overall yield of the final pramipexole product. These volumes would be understood and appreciated by one of skill in the art. Examples of specific times, temperatures and volumes which enable the practice of this invention are given in the Examples.
  • the chiral purity of the pramipexole salt product for the R(+) enantiomer may be greater than 99% when the chiral purity of the starting pramipexole mixture for the R(+) enantiomer is greater than 55%, preferably greater than 70%, or more preferably greater than 90%.
  • the chiral purity of the final pramipexole salt may be 99.6% or greater, 99.7% or greater, preferably 99.8% or greater, and more preferably 99.9% or greater, more preferably 99.95% or greater, even more preferably 99.99% or greater.
  • the chiral purity of the final pramipexole salt may be 100%.
  • Chirally pure pramipexole also may be prepared by the process of trituration of a single enantiomer of pramipexole from a mixture of R(+) and (S)-pramipexole by acid addition, based on insolubility of the enantiomers in the resulting achiral salt solution.
  • the process comprises dissolving an enantiomerically enriched pramipexole in an organic solvent at an elevated temperature, adding from about 1.05 molar equivalents to about 2.05 molar equivalents of a selected acid, cooling the reaction to room temperature, stirring the cooled reaction at room temperature for an extended time and recovering enantiomerically pure pramipexole.
  • the elevated temperature of the reaction may be below the boiling temperature of the reaction, specifically, below the boiling temperature of the organic solvent(s) of the reaction mixture.
  • the elevated temperature may be lower than about 125° C., more preferably lower than about 100° C., and more preferably about 75° C.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature, and would be appreciated by one of skill in the art.
  • the organic solvent may include, but is not limited to, acetonitrile, acetone, ethanol, ethyl acetate, methyl tert-butyl ether, methyl ethyl ketone, isopropyl acetate and isopropyl alcohol.
  • the organic solvent is ethanol.
  • the acid may include, but is not limited to, halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid; inorganic acids such as, for example, nitric, perchloric, sulfuric and phosphoric acid; organic acids such as, for example, sulfonic acids (methanesulfonic, trifluoromethan sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid; and aminoacids such as aspartic or glutamic acid.
  • halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid
  • inorganic acids such as, for example, nitric,
  • the acid may be a mono- or di-acid, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric or di-organic acid.
  • the acid is used as an achiral reagent which is not selected on the basis of any expected or known preference for interaction with or precipitation of a specific optical isomer of the products of this disclosure.
  • the selected acid is p-toluenesulfonic acid.
  • the reaction may be cooled to room temperature at a rate of about 25° C./hour.
  • the chirally pure pramipexole may then be recovered from the reaction solution by stirring the reaction for at least about 2 hours, filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol and drying the precipitate under vacuum.
  • the rates of cooling and the time required for the additional stirring may vary with the chosen organic solvent and acid, and would be appreciated by one skilled in the art.
  • the reaction volumes may dictate the degree of optical purification and the overall yield of the final pramipexole product. These volumes would be understood and appreciated by one of skill in the art. Examples of specific times, temperatures and volumes which enable the practice of this invention are given in the Examples.
  • the chiral purity for the R(+) enantiomer of the recovered pramipexole salt may be greater than 99% when the starting pramipexole material has a chiral purity for the R(+) enantiomer of greater than 55%, preferably greater than 70%, or more preferably greater than 90%.
  • the chiral purity of the final pramipexole salt for the R(+) enantiomer may be 99.6% or greater, 99.7% or greater, preferably 99.8% or greater, and more preferably 99.9% or greater, more preferably 99.95% or greater, even more preferably 99.99% or greater.
  • the chiral purity of the final pramipexole salt for the R(+) enantiomer may be 100%.
  • the process may include dissolving an enantiomerically enriched pramipexole in an organic solvent at an elevated temperature, adding from about 1.05 equivalents to about 2.05 equivalents of a selected acid, cooling the reaction to room temperature, stirring the cooled reaction at room temperature for an extended period of time and recovering enantiomerically pure pramipexole of formula I.
  • the selected acid is p-toluenesulfonic acid (p-TSA) and the organic solvent is ethanol.
  • the elevated temperature may be from about 65° C. to about 85° C. and the cooling occurs at a rate of about 25° C. per hour.
  • the elevated temperature may also be a temperature lower than 125° C., preferably lower than 100° C., and more preferably about 75° C.
  • the times necessary for the reaction may vary with the identities of the reactants, the solvent system and with the chosen temperature, and may be easily appreciated by one of skill in the art.
  • recovering enantiomerically pure pramipexole comprises cooling the reaction to a temperature of about 25° C. and stirring the reaction for at least about 2 hours. The recovery may further comprise filtering the reaction to isolate a solid precipitate, washing the precipitate with an alcohol and drying the precipitate under vacuum.
  • the organic solvent may include, but is not limited to, acetonitrile, acetone, ethanol, ethyl acetate, methyl tert-butyl ether, methyl ethyl ketone, isopropyl acetate and isopropyl alcohol.
  • the organic solvent is ethanol.
  • the acid may include, but is not limited to, halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid; inorganic acids such as, for example, nitric, perchloric, sulfuric and phosphoric acid; organic acids such as, for example, sulfonic acids (methanesulfonic, trifluoromethan sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid; and aminoacids such as aspartic or glutamic acid.
  • halogenic acids such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid
  • inorganic acids such as, for example, nitric,
  • the acid may be a mono- or di-acid, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric or di-organic acid.
  • the acid is used as an achiral reagent which is not selected on the basis of any expected or known preference for interaction with or precipitation of a specific optical isomer of the products of this disclosure.
  • the selected acid is p-toluenesulfonic acid.
  • the final chiral purity for an R(+) enantiomer of the pramipexole salt may be greater than 99% when the starting mixture contains pramipexole which is at least 55% optically pure for the R(+) enantiomer, preferably 80% optically pure for the R(+) enantiomer, preferably 85% optically pure for the R(+) enantiomer, more preferably 90% optically pure for the R(+) enantiomer and most preferably 95% optically pure for the R(+) enantiomer.
  • the final chiral purity for an S( ⁇ ) enantiomer of the pramipexole salt may be greater than 99% when the starting mixture contains pramipexole which is at least 55% optically pure for the S( ⁇ ) enantiomer, preferably 80% optically pure for the S( ⁇ ) enantiomer, preferably 85% optically pure for the S( ⁇ ) enantiomer, more preferably 90% optically pure for the S( ⁇ ) enantiomer and most preferably 95% optically pure for the S( ⁇ ) enantiomer.
  • the chiral purity of the final pramipexole salt may preferably be 99.6% or greater, 99.7% or greater, preferably 99.8% or greater, and more preferably 99.9% or greater. In a more preferred embodiment, the chiral purity of the final pramipexole salt may be 100%.
  • the chemical and chiral purity of the preparations of (R)-pramipexole may be verified with at least HPLC, 13 C-NMR, 1 H-NMR and FTIR.
  • the (R)-pramipexole may be synthesized by the method described above, which yields enantiomerically pure material.
  • the (R)-pramipexole may be purified from mixtures of R(+) and (S)-pramipexole using a purification scheme which is disclosed in copending U.S. Provisional Application No. 60/894,829 entitled “Methods of Synthesizing and Purifying R(+) and (S)-pramipexole”, filed on Mar. 14, 2007, and U.S. Provisional Application No. 60/894,814 entitled “Methods of Enantiomerically Purifying Chiral Compounds”, filed on Mar. 14, 2007, which are incorporated herein by reference in their entireties.
  • the solubility of (R)-pramipexole and (S)-pramipexole may be the same in the trituration step of the synthesis and purification processes.
  • a synthesis process is carried out with 90 grams of the R(+) diamine and 10 grams of the S( ⁇ )diamine, and the solubility of the final pramipexole product is 10 grams for either enantiomer, then 80 grams of the (R)-pramipexole product and 0 grams of the (S)-pramipexole product would precipitate (assuming a 100% chemical conversion from the diamine and no change in molecular weight in going to the pramipexole product).
  • Condition C The reaction is performed in 10 volumes of DMF and 1.25 equivalents of propyl tosylate at 65-67° C. The reaction is then cooled to room temperature and diluted with 8 volumes of MTBE.
  • Condition D The reaction is performed in 18 volumes of DMF and 1.25 equivalents of propyl tosylate at 65-67° C. The reaction is then cooled to room temperature and diluted with 8 volumes of MTBE.
  • Condition E The reaction is performed in 10 volumes of DMF and 1.25 equivalents of propyl tosylate at 65-67° C. The reaction is then cooled to room temperature with no dilution in MTBE.
  • condition E is the same as condition C, except that the recovery step does not incorporate dilution in MTBE.
  • the MTBE is observed to increase pramipexole recovery (yield) from the synthesis reaction, but may reduce the overall chiral purity. This is born out by a comparison of the results for trials carried out in an 85:15 ratio of R(+):S( ⁇ ) diamine, which produced a pramipexole product having a 86.8% chiral purity for the R(+) enantiomer when the reaction included the MTBE organic solvent and a 99.9% chiral purity for the R(+) enantiomer when the reaction did not include the MTBE organic solvent.
  • the chemical yield was reduced by exclusion of the MTBE dilution in the recovery step; a 43% yield in condition C as opposed to a 39% yield in condition E.
  • the chirally pure (R)-pramipexole prepared by any of the above methods may be converted to a pharmaceutically acceptable salt of (R)-pramipexole.
  • (R)-pramipexole dihydrochloride is a preferred pharmaceutical salt due its high water solubility.
  • (R)-pramipexole dihydrochloride may be prepared from other salts of (R)-pramipexole in a one step method comprising reacting the (R)-pramipexole, or (R)-pramipexole salt, with concentrated HCl in an organic solvent, such as an alcohol, at a reduced temperature.
  • the reduced temperature is a temperature of from about 0° C.
  • the (R)-pramipexole dihydrochloride product may be recovered from the reaction mixture by filtering, washing with an alcohol and vacuum drying.
  • each of the methods disclosed herein for the manufacture and purification of (R)-pramipexole or a pharmaceutically acceptable salt thereof may be scalable to provide industrial scale quantities and yields, supplying products with both high chemical and chiral purity.
  • the enantiomerically pure (R)-pramipexole may be manufactured in large batch quantities as may be required to meet the needs of a large scale pharmaceutical use.
  • the S( ⁇ ) enantiomer of pramipexole has historically been characterized as a high affinity dopamine receptor ligand at the D 2 (both the S and L isoforms), D 3 and D 4 receptors, although the highest affinity is seen for the D 3 receptor subtype.
  • the dopamine receptor ligand affinity of (S)-pramipexole and of (R)-pramipexole from journal publications has been tabulated (data are reproduced in Table 10). Although the conditions under which each study or experiment was carried out are slightly different, and different radio-ligands were used, the data show comparable affinities for the various dopamine receptors.
  • the (R)-pramipexole and (S)-pramipexole were supplied as dry powder to our contract research partner Cerep by the manufacturer AMRI. Solutions of (R)-pramipexole and (S)-pramipexole were prepared from stock solutions in DMSO. Eight concentrations of (R)-pramipexole or (S)-pramipexole (0.01 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 mM, 10 mM and 100 mM) were used to displace standard reference radiolabeled dopamine agonists.
  • a NOAEL was established at a dose level of 25 mg/kg for the R(+) enantiomer when administered to non-na ⁇ ve dogs, while a dose level of 75 mg/kg may be considered an MTD in non-na ⁇ ve dogs.
  • a NOAEL of 0.00125 mg/kg and an MTD of 0.0075 mg/kg was found in non-na ⁇ ve dogs.
  • the NOAEL was found to be 0.25 mg/kg, which corresponds to a dose of 00125 mg/kg of the S( ⁇ ) enantiomer, while the MTD is 1.5 mg/kg, which corresponds to a dose of 0.0075 mg/kg of the S( ⁇ ) enantiomer.
  • the MTD of pramipexole was reduced from 75 mg/kg for the R(+) enantiomer to a total dose of 1.5 mg/kg of the mixed composition (a factor of 50), and the NOAEL was reduced from 25 mg/kg to 0.25 mg/kg, respectively (a factor of 100). Since the shift in MTD and NOAEL may be predicted by the dose of the S( ⁇ ) enantiomer of pramipexole in the mixture, the shift for any unknown mixture may be calculated based on the percentage contamination of the (R)-pramipexole by the S( ⁇ ) enantiomer, relative to the MTD and NOAEL for (S)-pramipexole. This indicates that any contamination of an (R)-pramipexole dosing solution with (S)-pramipexole will have a measurable effect on these indicators of dose tolerability.
  • (R)-pramipexole may be safely administered (1) at starting doses that are at least 2400-fold higher than the Mirapex® starting dose and (2) at steady state doses that are at least 44-fold higher than the highest recommended dose of Mirapex®.
  • the form of (R)-pramipexole was (R)-pramipexole dihydrochloride monohydrate.
  • the mean steady state AUC in humans at a dose of 100 mg Q12H (200 mg total daily dose) was 2,574 h*ng/mL.
  • the drug has been safe, well-tolerated, and free of clinically significant adverse events in healthy adult subjects at single doses up to 300 mg and at multiple doses up to 100 mg Q12H, and the projected human exposure associated with a daily dose of 250 mg Q12H is expected to be greater than 13-fold lower than exposures seen at the NOAEL in male minipigs and approximately 9-fold lower than exposures seen at the NOAEL in male and female rats after 13 weeks of dosing.
  • results of this study demonstrate that single oral doses of 50, 150, and 300 mg (R)-pramipexole are safe and well-tolerated.
  • the drug is orally bioavailable and the pharmacokinetics are linear. Absorption and elimination are not affected by a high fat/high calorie meal.
  • the second panel was administered a singe dose of 100 mg, followed 48 hours later by 41 ⁇ 2 days of multiple dosing (twice daily) at 100 mg Q12 hours.
  • Safety observations included vital signs, physical examination, clinical laboratory tests, ECGs, and adverse event reporting.
  • Blood samples were collected pre-dose on Day 1 and serially for 48 hours post-dose to assess the single-dose pharmacokinetics. Blood samples were collected pre-dose on Days 5, 6, and 7 to confirm steady-state was achieved, and serially through 72 hours post-dose on Day 7 to assess the steady-state pharmacokinetics of (R)-pramipexole.
  • Urine samples were collected for 12 hours after dosing on Day 7 to assess urinary excretion.
  • C max and AUC (0-12) increased 37% and 40%, respectively from Day 1 to Day 7 for subjects receiving 50 mg Q12H, with essentially no change in T.
  • Mean exposure AUC (0-12) at Day 7 was 1449 h*ng/mL for the 50 mg Q12H dose group.
  • C max and AUC (0-12) increased 24% and 38%, respectively from Day 1 to Day 7 for subjects receiving 100 mg Q12H, with essentially no change in T max .
  • Mean exposure AUC (0-12) at Day 7 was 2465 h*ng/mL for the 100 mg Q12H dose group. Results of this study demonstrate that multiple oral doses of 50 and 100 mg (R)-pramipexole administered twice daily are safe and well-tolerated. The drug is orally bioavailable and the pharmacokinetics are linear at steady state, with no significant accumulation.
  • the results of the 3-month study contain some target organ toxicity by histopathology examination at the highest dose (300 mg/kg) with no test article related deaths and no significant clinical observations outside of several incidences of convulsions in high dose rats lasting approximately 2 minutes. The animals' health did not appear to be otherwise adversely affected by these convulsions. Test article-related microscopic changes were observed in the liver (minimal grade cholestasis correlating with increased total bilirubin), ileal small intestine (minimal grade mineralization), and thymus (minimal grade lymphoid depletion correlating with lower group thymus weights compared to controls).
  • the NOAEL for the 3-month study in rats is considered to be 100 mg/kg.
  • the NOAEL for the 2-week study was considered to be greater than or equal to 75 mg/kg.
  • 3-, and 6-, and 9-month repeat dose studies of (R)-pramipexole in minipigs were initiated at dose levels of 7.5, 25 and 75 mg/kg.
  • dose levels were reduced to 7.5, 25 and 50 mg/kg due to mortalities at the 75 mg/kg level.
  • the 3- and 6-month repeat dose studies have now been completed at the 7.5, 25 and 50 mg/kg dose levels and the 9-month repeat dose study is ongoing. No target organ toxicity by histopathology examination was identified at any dose level following animal sacrifice after 3 months of exposure.
  • the NOAEL for the 3-month study in minipigs is considered to be 50 mg/kg.
  • Systemic exposure (AUC0-24) at week 13 at the NOAEL dose of 50 mg/kg/day was 91,812 h*ng/mL in males and 131,731 h*ng/mL in females.
  • the in-life phase of the 6-month toxicology study in minipigs was recently completed and histopatholgic examinations are pending. There were no mortalities attributed to test article or significant clinical observations at any dose level between the 13-week and 26-week sacrifices.
  • the ongoing 9-month toxicology studies in minipigs have now passed month 7 and no deaths attributed to test article or significant clinical observations have occurred at any dose level.
  • the projected steady-state exposure of (R)-pramipexole at a total daily dose of 500 mg administered as 250 mg Q12H is approximately 7,000 h*ng/mL, which is greater than 13-fold lower than exposures seen at the NOAEL in male minipigs and approximately 9-fold lower than exposures seen at the NOAEL in male and female rats after 13 weeks of dosing.
  • FIGS. 4 and 5 are plots of exposure vs. dose for rats and minipigs, respectively, compared with humans.
  • Each graph displays the relationship between exposure as expressed by AUC (h*ng/mL) and dose as expressed by body surface area (mg/m2) at every dose level administered to each species in both the 2-week and 13-week assessments. Individual data points with error bars are the mean ⁇ SD.
  • the dashed horizontal line at the bottom of both charts illustrates the extrapolated steady state AUC (7,000 h*ng/mL) in humans at 250 mg Q12H.
  • Table 17A and Table 17B are an integrated summary of all human pharmacokinetic estimates obtained in the two Phase I studies.
  • Exposure at steady state in rats, minipigs, and humans is linear across all doses studied. After 3 months of dosing, the NOAEL in rats has been determined to be 100 mg/kg; and the NOAEL in minipigs has been determined to be 50 mg/kg.
  • the mean AUC in rats at the NOAEL was 61,299 and 61,484 h*ng/mL for males and females, respectively, and for minipigs was 91,812 and 131,731 h*ng/mL for males and females, respectively.
  • the mean AUC in humans at steady state at a dose of 100 mg Q12H (200 mg total daily dose) was 2,574 h*ng/mL.
  • Capsules with (R)-pramipexole (R)-(+)-pramipexole dihydrochloride monohydrate is filled in hard gelatin capsules with no excipients.
  • the capsules used for the drug product are #00 blue opaque gelatin capsules from Hawkins Chemical Group. Dose strengths of 50 and 500 mg are produced. Matching placebo capsules are filled with microcrystalline cellulose.
  • Capsules are prepared by weighing individual empty capsules and recording the weight (W e ). Specified amount of active drug substance are individually weighed and hand-filled into a capsule bottom using a Torpac® filling funnel.
  • Capsule tops are joined with the filled capsule bottom.
  • the filled capsules are then weighed, and the weight is recorded (W f ).
  • the calculated weight of the drug substance in the capsule (W f ⁇ W e ) is recorded. If this calculated weight is within +/ ⁇ 5% of the nominal weight, then the capsule is cleaned, polished, and placed into and appropriately labeled container. If the calculated weight is outside of the specified range, the capsule is discarded.
  • the free-base weight per capsule (free-base weight per mg of capsule contents multiplied by fill weight) is 90% to 100% of the calculated label claim. Total impurities are ⁇ 2%.
  • the appearance is a blue capsule containing white to off-white powder.
  • Capsules with 125 mg dose strength are prepared with the composition shown in Table 17. Capsules are generally prepared under conditions of 60 to 74° F. and a relative humity of 30 to 60%. Microcrystalline cellulose, mannitol, crospovidone, magnesium stearate, and (R)-pramipexole (milled) are weighed out in the amounts shown in the column “Quantity/batch” in Table 14.
  • microcrystalline cellulose, mannitol, crospovidone, and (R)-pramipexole are then hand screened through a #20 mesh stainless steel screen and transferred to a Maxiblend V-blender with a 4 quart shell.
  • the materials are then mixed using the Maxiblend V-blender for 10 minutes.
  • the magnesium stearate is then screened using a 30 mesh stainless steel hand screen and transferred to the blender.
  • the powders are then mixed for five minutes.
  • the final blend is then emptied into a labeled, double PE-lined drum and the gross, tare, and net weights are recorded.
  • Tablets are prepared using a Minipress II B with 5 stations of 3 ⁇ 8′′ round, standard, concave tooling and gravity feed frame. The final blend is placed in the hopper and the tablet press set up is run according to the specifications in Table 15.
  • A 0.5% TFA in water
  • B 0.5% TFA in methanol
  • a gradient of 5% B to 80% B was used to separate the diamine and pramipexole peaks.
  • a detection wavelength of 265 nm was used for both HPLC analyses.
  • a 2.0 liter, three-necked flask was equipped with an overhead stirrer, a temperature probe, a heating mantle, a claisen joint, a reflux condenser, and a 500 ml addition funnel.
  • the flask was charged with 45 grams of R(+)-2,6 diamino-4,5,6,7-tetrahydro-benzothiazole, followed by 750 ml of n-propanol. Under continuous stirring, the mixture was heated to a temperature of 95° C. over 15 minutes generating a clear solution.
  • the addition funnel was charged with a solution of 74 grams propyl tosylate and 60 ml diisopropylethyleamine in 250 ml n-propanol. This solution was added dropwise to the 2.0 liter flask with continuous stirring over a period of 4 hours. The reaction was continued with stirring for an additional 8 hours at 95° C., after which the solution was brought to room temperature, and stirring was continued for an additional 4
  • Racemic pramipexole p-TSA salt Condition A: A 250 ml, three necked flask was equipped with a magnetic stirrer, a temperature probe, a heating mantle, a claisen joint, a reflux condenser, and a 100 ml addition funnel. The flask was charged with 5 grams of racemic 2,6 diamino-4,5,6,7-tetrahydro-benzothiazole, followed by 80 ml of n-propanol. Under continuous stirring, the mixture was heated to a temperature of 95° C. over 15 minutes generating a clear solution.
  • the addition funnel was charged with a solution of 10.12 grams propyl tosylate and 8.2 ml diisopropylethyleamine in 28 ml n-propanol. This solution was added dropwise to the 250 ml flask with continuous stirring over a period of 2 hours. The reaction was continued with stirring for an additional 6 hours at 95° C., after which the solution was brought to room temperature, and stirring was continued for an additional 6 hours.
  • the addition funnel was charged with a solution of 386.6 grams propyl tosylate (1.25 molar equivalents) and 322 ml diisopropylethyleamine (1.25 molar equivalents) in 500 ml DMF. This solution was added to the 12 L flask dropwise over a period of 2.0 hours. The reaction was monitored by analysis on HPLC.
  • the reaction was continued at 65° C. for an additional 5 hours, after which the solution was gradually cooled to room temperature and stirred overnight.
  • the solution was diluted with 2 L MTBE and stirred for an additional 0.5 hours.
  • the precipitated material was collected by filtration and washed with 500 ml MTBE, followed by 3 washes of 500 ml each reagent alcohol. The washed precipitated cake was dried under high vacuum.
  • the final weight of the dried product was 317.6 grams, representing a 56% yield.
  • HPLC was used to determine the chemical purity of the R(+)-2,6-diamino-4,5,6,7-tetrahydro-benzothiazole ((S)-pramipexole) as 98.4% and the chiral purity as greater than 99.8%.
  • (R)-pramipexole p-TSA salt 50 grams; 0.13 mol was taken into 150 ml absolute ethanol and cooled to between 0 and 5° C. with continuous stirring. Concentrated HCl (33 ml) was slowly added to the reaction while maintaining the temperature at between 0 and 5° C., and the mixture was stirred for an additional 15 minutes. MTBE (200 ml) was added to the mixture, and stirring was continued for an additional 1.5 hours at temperature.
  • (R)-pramipexole p-TSA salt (R)-pramipexole p-TSA salt (10 grams; 0.026 mol) was dissolved in 200 ml IPAC and cooled to 15° C. with continuous stirring. HCl gas was bubbled into the slurry for 1 hour. The mixture was then filtered, washed with IPAC, and dried overnight under vacuum at room temperature. The final product was 6.8 grams of (R)-pramipexole dihydrochloride, indicative a of 92% yield, and a 97% chemical purity as determined by HPLC.
  • (R)-pramipexole p-TSA salt (25 grams; 0.065 mol) was dissolved in 200 ml DCM and mixed into a slurry. 10 ml of water was added and the mixture was basified with 12 ml of 6N NaOH to a pH of 11-12. The two phases were split, and the aqueous was extracted with 200 ml of DCM. The combined organic phases were dried over MgSO 4 , filtered over Celite® and concentrated. The residue was dissolved in 100 ml MTBE and slurried for several hours.
  • the reaction mixture was diluted with 500 ml of brine (sodium chloride dissolved in water) and extracted with 3 ⁇ 1 L of dichloromethane. The combined organic phases were washed with 1.0 L of brine, dried over MgSO 4 , filtered and concentrated to dryness. The residue was triturated with 1 L of 1:1 IPAC:Heptane, the resulting slurry was stirred for 1 hour, filtered and the filter cake was washed with 2 ⁇ 250 ml of 1:1 mixture of IPAC:Heptane. The filter cake was collected and dried at 40° C. under high vacuum for 24 hours to give 94.1 grams (R)-pramipexole (85.5%) as a white solid.
  • brine sodium chloride dissolved in water
  • the wet solids which contain the R(+) enantiomer of the diamine, were charged to the reactor followed by 54 L of water, and the mixture was heated to a temperature of about 70° C. to 75° C. for 2 hours. The mixture was allowed to cool to a temperature of about 20° C. to 25° C. and stirred for 17 hours. The mixture was then filtered and the solids were washed 2 ⁇ with water (4.5 L each wash). The wet solids were transferred to a jacketed reactor and the reactor was charged with 8.1 L of water. The mixture was cooled to a temperature of about 0° C. to 5° C. and cautiously charged with concentrated 1.625 L of HCl, followed by 1.155 L of 50% NaOH to achieve a pH of about 9-10.
  • the mother liquors of the initial resolution step which contain the S( ⁇ ) enantiomer of the diamine, were concentrated to afford diamine with a 95.5% yield for the S( ⁇ ) enantiomer.
  • the present invention provides evidence that the dopamine receptor affinity of (R)-pramipexole is actually much lower than previously appreciated.
  • the functional separation between the (S)-pramipexole and (R)-pramipexole enantiomers (10,000-20,000 fold) is much greater than previously expected.
  • contamination of the composition of pure (R)-pramipexole with small, known amounts of (S)-pramipexole results in a predictable shift in the MTD of the composition.
  • compositions comprising the mixture of known amounts of pure (R)- and (S)-enantiomers for use in neurodegenerative disorders amenable to both dopamine receptor agonist treatment and neuroprotection, such as PD.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Psychology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Medicinal Preparation (AREA)
US13/059,713 2008-08-19 2009-08-19 Compositions and Methods of Using (R)- Pramipexole Abandoned US20110190356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/059,713 US20110190356A1 (en) 2008-08-19 2009-08-19 Compositions and Methods of Using (R)- Pramipexole

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9009408P 2008-08-19 2008-08-19
US11368008P 2008-11-12 2008-11-12
US13/059,713 US20110190356A1 (en) 2008-08-19 2009-08-19 Compositions and Methods of Using (R)- Pramipexole
PCT/US2009/054292 WO2010022140A1 (en) 2008-08-19 2009-08-19 Compositions and methods of using (r)-pramipexole

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/054292 A-371-Of-International WO2010022140A1 (en) 2008-08-19 2009-08-19 Compositions and methods of using (r)-pramipexole

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/878,581 Continuation US9849116B2 (en) 2008-08-19 2015-10-08 Compositions and methods of using (R)-pramipexole

Publications (1)

Publication Number Publication Date
US20110190356A1 true US20110190356A1 (en) 2011-08-04

Family

ID=41707440

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/059,713 Abandoned US20110190356A1 (en) 2008-08-19 2009-08-19 Compositions and Methods of Using (R)- Pramipexole
US14/878,581 Active US9849116B2 (en) 2008-08-19 2015-10-08 Compositions and methods of using (R)-pramipexole
US15/849,943 Abandoned US20180110758A1 (en) 2008-08-19 2017-12-21 Compositions and methods of using (r)-pramipexole

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/878,581 Active US9849116B2 (en) 2008-08-19 2015-10-08 Compositions and methods of using (R)-pramipexole
US15/849,943 Abandoned US20180110758A1 (en) 2008-08-19 2017-12-21 Compositions and methods of using (r)-pramipexole

Country Status (7)

Country Link
US (3) US20110190356A1 (de)
EP (1) EP2334185A4 (de)
JP (1) JP2012500283A (de)
KR (1) KR20110071064A (de)
CN (1) CN102186350A (de)
CA (1) CA2734491A1 (de)
WO (1) WO2010022140A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445474B2 (en) 2006-05-16 2013-05-21 Knopp Neurosciences, Inc. Compositions of R(+) and S(−) pramipexole and methods of using the same
US8518926B2 (en) 2006-04-10 2013-08-27 Knopp Neurosciences, Inc. Compositions and methods of using (R)-pramipexole
US8524695B2 (en) 2006-12-14 2013-09-03 Knopp Neurosciences, Inc. Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US9381249B2 (en) 2012-06-05 2016-07-05 Neuroderm, Ltd. Compositions comprising apomorphine and organic acids and uses thereof
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US9512096B2 (en) 2011-12-22 2016-12-06 Knopp Biosciences, LLP Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US9642840B2 (en) 2013-08-13 2017-05-09 Knopp Biosciences, Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9763918B2 (en) 2013-08-13 2017-09-19 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
US9849116B2 (en) 2008-08-19 2017-12-26 Knopp Biosciences Llc Compositions and methods of using (R)-pramipexole
US10179774B2 (en) 2007-03-14 2019-01-15 Knopp Biosciences Llc Synthesis of chirally purified substituted benzothiazole diamines
US10383857B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
CN110719778A (zh) * 2017-04-24 2020-01-21 才思治疗公司 用于治疗抑郁的组合物和方法
US12138249B2 (en) 2023-03-06 2024-11-12 Areteia Therapeutics, Inc. Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2542541A1 (de) * 2010-03-03 2013-01-09 Knopp Neurosciences Synthese von chiral reinen substituierten benzothiazoldiaminen
EP2560629B1 (de) 2010-04-23 2020-06-03 Massachusetts Eye & Ear Infirmary Verfahren und zusammensetzungen zur konservierung von fotorezeptor- und retinapigment-epithelzellen
US20140024598A1 (en) 2010-11-01 2014-01-23 Demetrios Vavvas Methods and compositions for preserving retinal ganglion cells
WO2012092299A1 (en) * 2010-12-27 2012-07-05 Brown University Therapeutic and diagnostic methods involving biglycan and utrophin
CA2888805C (en) * 2011-10-21 2020-07-14 Massachusetts Eye And Ear Infirmary Methods and compositions for promoting axon regeneration and nerve function
WO2013096870A1 (en) * 2011-12-22 2013-06-27 Knopp Neurosciences Inc Compositions and methods for treating amyotrophic lateral sclerosis
JP6243351B2 (ja) * 2012-01-12 2017-12-06 ファーマ ツゥ ビー リミテッド パーキンソン病の固定投与量薬剤組合せ治療
CN104147027A (zh) * 2014-08-20 2014-11-19 安树君 一种白藜芦醇衍生物的新用途
WO2016120402A1 (en) * 2015-01-30 2016-08-04 Ligalli B.V. Vaginal drug delivery device
WO2016144830A1 (en) 2015-03-06 2016-09-15 Concert Pharmaceuticals, Inc. Deuterated emricasan
CN109689042B (zh) * 2016-08-24 2022-07-12 北京生命科学研究所 用于治疗黄斑变性的与恩他卡朋相关的化合物
US11602538B2 (en) 2017-03-31 2023-03-14 The Florey Institute Of Neuroscience And Mental Health Prophylaxis and treatment of cognitive dysfunction and decline
WO2018187282A2 (en) * 2017-04-04 2018-10-11 The Trustees Of Columbia University In The City Of New York Therapeutic sigma 1 receptor agonists for treating long qt syndrome type 1, type 6, type 8 and related channelopathies
US11234961B2 (en) 2017-08-17 2022-02-01 Zi-Qiang Gu Pamoate salt of monoamine anti-Parkinson's agents, method of preparation and use thereof
CA3133735A1 (en) 2019-03-18 2020-09-24 Alteron Therapeutics, Inc. Modulators of tdp-43
CN112858527B (zh) * 2021-03-08 2022-11-01 成都倍特药业股份有限公司 盐酸普拉克索缓释片有关物质的检测方法
CN113082024A (zh) * 2021-03-17 2021-07-09 复旦大学 双鸟苷酸环化酶抑制剂在抑制革兰氏阴性菌药物中的应用及抑菌药物

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598123A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3731683A (en) * 1971-06-04 1973-05-08 Alza Corp Bandage for the controlled metering of topical drugs to the skin
US3797494A (en) * 1969-04-01 1974-03-19 Alza Corp Bandage for the administration of drug by controlled metering through microporous materials
US4031894A (en) * 1975-12-08 1977-06-28 Alza Corporation Bandage for transdermally administering scopolamine to prevent nausea
US4144317A (en) * 1975-05-30 1979-03-13 Alza Corporation Device consisting of copolymer having acetoxy groups for delivering drugs
US4201211A (en) * 1977-07-12 1980-05-06 Alza Corporation Therapeutic system for administering clonidine transdermally
US4314557A (en) * 1980-05-19 1982-02-09 Alza Corporation Dissolution controlled active agent dispenser
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4379454A (en) * 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
US4435180A (en) * 1982-05-25 1984-03-06 Alza Corporation Elastomeric active agent delivery system and method of use
US4568343A (en) * 1984-10-09 1986-02-04 Alza Corporation Skin permeation enhancer compositions
US4573995A (en) * 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
US4588580A (en) * 1984-07-23 1986-05-13 Alza Corporation Transdermal administration of fentanyl and device therefor
US4645502A (en) * 1985-05-03 1987-02-24 Alza Corporation Transdermal delivery of highly ionized fat insoluble drugs
US4725272A (en) * 1981-06-29 1988-02-16 Alza Corporation Novel bandage for administering beneficial drug
US4731374A (en) * 1984-12-22 1988-03-15 Dr. Karl Thomae Gmbh Tetrahydro-benzthiazoles, the preparation thereof and their use as intermediate products or as pharmaceuticals
US4806341A (en) * 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4816258A (en) * 1987-02-26 1989-03-28 Alza Corporation Transdermal contraceptive formulations
US4849226A (en) * 1981-06-29 1989-07-18 Alza Corporation Method for increasing oxygen supply by administering vasodilator
US4904475A (en) * 1985-05-03 1990-02-27 Alza Corporation Transdermal delivery of drugs from an aqueous reservoir
US4908027A (en) * 1986-09-12 1990-03-13 Alza Corporation Subsaturated transdermal therapeutic system having improved release characteristics
US4917895A (en) * 1987-11-02 1990-04-17 Alza Corporation Transdermal drug delivery device
US4938759A (en) * 1986-09-02 1990-07-03 Alza Corporation Transdermal delivery device having a rate controlling adhesive
US4943435A (en) * 1987-10-05 1990-07-24 Pharmetrix Corporation Prolonged activity nicotine patch
US5004610A (en) * 1988-06-14 1991-04-02 Alza Corporation Subsaturated nicotine transdermal therapeutic system
US5024843A (en) * 1989-09-05 1991-06-18 Alza Corporation Oral hypoglycemic glipizide granulation
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US5091190A (en) * 1989-09-05 1992-02-25 Alza Corporation Delivery system for administration blood-glucose lowering drug
US5112842A (en) * 1989-11-09 1992-05-12 Boehringer Ingelheim Kg Transdermal administration of 2-amino-6-n-propylamino-4,5,6,7-tetrahydrobenzothiazole
US5122382A (en) * 1990-10-29 1992-06-16 Alza Corporation Transdermal contraceptive formulations, methods and devices
US5141750A (en) * 1986-06-13 1992-08-25 Alza Corporation Delayed onset transdermal delivery device
US5314694A (en) * 1990-10-29 1994-05-24 Alza Corporation Transdermal formulations, methods and devices
US5342623A (en) * 1986-09-12 1994-08-30 Alza Corporation Subsaturated transdermal therapeutic system having improved release characteristics
US5411740A (en) * 1992-05-13 1995-05-02 Alza Corporation Transdermal administration of oxybutynin
US5591454A (en) * 1989-09-05 1997-01-07 Alza Corporation Method for lowering blood glucose
US5635203A (en) * 1994-09-29 1997-06-03 Alza Corporation Transdermal device having decreased delamination
US5650420A (en) * 1994-12-15 1997-07-22 Pharmacia & Upjohn Company Pramipexole as a neuroprotective agent
US5719060A (en) * 1993-05-28 1998-02-17 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US5912268A (en) * 1995-05-22 1999-06-15 Alza Corporation Dosage form and method for treating incontinence
US6043251A (en) * 1995-10-26 2000-03-28 Sanofi Use of 1-(2-naphth-2-ylethyl)-4-(3-trifluoromethylphenyl)-1,2,3,6-tetrahydropyr idine for preparing drugs for treating amyotrophic lateral sclerosis
US6187802B1 (en) * 1997-03-15 2001-02-13 Knoll Aktiengesellschaft Substituted 4-arylmethylene-2-imino-2,3-dihydrothiazoles and derivatives and their pharmaceutical use
US6197339B1 (en) * 1997-09-30 2001-03-06 Pharmacia & Upjohn Company Sustained release tablet formulation to treat Parkinson's disease
US6228398B1 (en) * 1998-11-02 2001-05-08 Elan Corporation, Plc Multiparticulate modified release composition
US6255329B1 (en) * 1998-07-07 2001-07-03 Boehringer Ingelheim Pharma Kg Combined use of pramipexole and sertraline for the treatment of depression
US6262115B1 (en) * 1995-05-22 2001-07-17 Alza Coporation Method for the management of incontinence
US20030013120A1 (en) * 2001-07-12 2003-01-16 Patz Edward F. System and method for differential protein expression and a diagnostic biomarker discovery system and method using same
US20030049318A1 (en) * 2000-04-28 2003-03-13 Davis Robert D. Sustained release formulations of guaifenesin and additional drug ingredients
US6541486B1 (en) * 1999-06-04 2003-04-01 Elan Pharma International Ltd. Bis-benzimidazole compounds and analogs thereof for inhibiting cell death
US20030166696A1 (en) * 2002-01-24 2003-09-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pramipexole for the treatment of HIV dementia
US6675104B2 (en) * 2000-11-16 2004-01-06 Ciphergen Biosystems, Inc. Method for analyzing mass spectra
US20040033530A1 (en) * 2002-04-08 2004-02-19 Awrey Donald E. High throughput purification, characterization and identification of recombinant proteins
US20040031667A1 (en) * 2000-08-02 2004-02-19 Emil Dinkel Arrangement of operator control elements
US20040067991A1 (en) * 2000-07-06 2004-04-08 Greig Nigel H Tetrahydrobenzothiazole analogues as neuroprotective agents
US6727367B2 (en) * 2000-09-18 2004-04-27 Synthon Bv Process for resolution of 2-amino-6-propylamino-4,5,6,7-tetrahydrobenzthiazole and compounds therefor
US6750235B1 (en) * 1999-09-30 2004-06-15 The General Hospital Corporation Pramipexole as a treatment for cocaine craving
US20050032856A1 (en) * 2001-12-11 2005-02-10 Bennett James P Use of pramipexole to treat amyotrophic lateral sclerosis
US20050053649A1 (en) * 2003-09-08 2005-03-10 Anne-Marie Chalmers Medication delivery device
US20050059717A1 (en) * 2003-07-25 2005-03-17 Van Eupen Jacobus T.H. Pramipexole acid addition salts
US20050070715A1 (en) * 2003-07-15 2005-03-31 Laxminarayan Bhat Methods for synthesis of acyloxyalkyl compounds
US20050074865A1 (en) * 2002-08-27 2005-04-07 Compound Therapeutics, Inc. Adzymes and uses thereof
US20050089575A1 (en) * 2002-01-16 2005-04-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
US20050148026A1 (en) * 2003-10-23 2005-07-07 University Of Pittsburgh Of The Commonwealth System Of Higher Education Biomarkers for amyotrophic lateral sclerosis
US6919373B1 (en) * 1996-11-12 2005-07-19 Alza Corporation Methods and devices for providing prolonged drug therapy
US7005255B2 (en) * 2000-04-14 2006-02-28 Metabolon, Inc. Methods for drug discovery, disease treatment, and diagnosis using metabolomics
US20060046967A1 (en) * 2004-08-26 2006-03-02 Apparao Satyam Prodrugs containing novel bio-cleavable linkers
US20060051419A1 (en) * 2004-08-13 2006-03-09 Boehringer Ingelheim International Gmbh Extended release pellet formulation containing pramipexole or a pharmaceutically acceptable salt thereof
US20060069263A1 (en) * 2004-09-30 2006-03-30 Irina Gribun Process for the reduction of (S)-2-amino-6-propionamido-4,5,6,7-tetrahydrobenzo-thiazole
US20060099257A1 (en) * 2001-07-19 2006-05-11 Langridge John R Controlled drug delivery systems providing variable release rates
US20060106224A1 (en) * 2002-09-17 2006-05-18 Gupta Ashwini K Process for the preparation of 2-amino-4,5,6,7-tetrahydro-6-aminobenzothiazoles from cyclohexanes and cyclohexanones as intermediates
US20060110450A1 (en) * 2004-11-05 2006-05-25 Boehringer Ingelheim International Gmbh Bilayer tablet of telmisartan and amlodipine
US20060121619A1 (en) * 2004-12-02 2006-06-08 University Of Pittsburgh Of The Commonwealth System Of Higher Education Protein biomarkers and therapeutic targets in an animal model for amyotrophic lateral sclerosis
US20060141037A1 (en) * 2004-12-29 2006-06-29 J. B. Chemicals & Pharmaceuticals Ltd. Bilayer tablets of oxcarbazepine for controlled delivery and a process of preparation thereof
US20060148866A1 (en) * 2004-12-30 2006-07-06 Chemagis Ltd. Novel process for preparing pramipexole and its optical isomeric mixture by reduction with sodium triacetoxyborohydride
US20070087410A1 (en) * 2001-12-28 2007-04-19 Syngenta Participations Ag Microbially-expressed thermotolerant phytase for animal feed
WO2007046347A1 (ja) * 2005-10-18 2007-04-26 Ono Pharmaceutical Co., Ltd. 筋萎縮性側索硬化症患者の運動神経保護用医薬
US20080014259A1 (en) * 2006-05-16 2008-01-17 Knopp Neurosciences, Inc. Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same
US20080020028A1 (en) * 2003-08-20 2008-01-24 Euro-Celtique S.A. Transdermal dosage form comprising an active agent and a salt and a free-base form of an adverse agent
US20080026043A1 (en) * 2004-09-13 2008-01-31 Walter Mueller Transdermal Therapeutic System Comprising an Adhesive Layer Method for Siliconizing the Back Layer or the System and Use of Said Back Layer
US7344733B2 (en) * 2001-07-28 2008-03-18 Hexal Ag Matrix controlled transdermal therapeutic system for the use of pramipexole and ropinirole
US20080081041A1 (en) * 2006-09-29 2008-04-03 Jeffrey Nemeth Method of Using IL6 Antagonists with Mitoxantrone for Prostate Cancer
US20080096939A1 (en) * 2004-07-03 2008-04-24 Andreas Keil Process For Preparation Of Pramipexole By Chiral Chromatography
US20090042956A1 (en) * 2006-04-10 2009-02-12 Knopp Neurosciences, Inc. Compositions and methods of using (r)-pramipexole
US20090054504A1 (en) * 2006-12-14 2009-02-26 Knopp Neurosciences, Inc. Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same
US20090105483A1 (en) * 2005-12-29 2009-04-23 Instytut Farmaceutyczny Process for the preparation of pramipexole base and/or its salts
US7741490B2 (en) * 2004-03-19 2010-06-22 Dipharma S.P.A. Intermediates for the preparation of pramipexole
US20110009460A1 (en) * 2009-06-19 2011-01-13 Valentin Gribkoff Compositions and methods for treating amyotrophic lateral sclerosis
US8186890B2 (en) * 1997-05-20 2012-05-29 Adc Telecommunications, Inc. Fiber connector and adapter
US8192091B2 (en) * 2009-05-01 2012-06-05 Advanced Connectek Inc. Optical fiber connector adapter
US20130079526A1 (en) * 2010-03-03 2013-03-28 Knopp Neurosciences Inc. Synthesis of Chirally Purified Substituted Benzothiazole Diamines
US8408815B2 (en) * 2009-06-18 2013-04-02 Senko Advanced Components, Inc. Optical fiber connector and adapter
US20130116292A1 (en) * 2005-08-15 2013-05-09 University Of Virginia Patent Foundation Neurorestoration with r(+) pramipexole
US20130123312A1 (en) * 2006-04-10 2013-05-16 Knopp Neurosciences Inc. Compositions and Methods of Using R(+) Pramipexole

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286592A (en) 1980-02-04 1981-09-01 Alza Corporation Therapeutic system for administering drugs to the skin
US4395859A (en) 1980-06-05 1983-08-02 State Of Illinois, Department Of Transportation Method and apparatus for securing an object to a support structure
US4559222A (en) 1983-05-04 1985-12-17 Alza Corporation Matrix composition for transdermal therapeutic system
US4612008A (en) 1983-05-11 1986-09-16 Alza Corporation Osmotic device with dual thermodynamic activity
US4783337A (en) 1983-05-11 1988-11-08 Alza Corporation Osmotic system comprising plurality of members for dispensing drug
US4704282A (en) 1984-06-29 1987-11-03 Alza Corporation Transdermal therapeutic system having improved delivery characteristics
US4626539A (en) 1984-08-10 1986-12-02 E. I. Dupont De Nemours And Company Trandermal delivery of opioids
DE3447075A1 (de) 1984-12-22 1986-07-03 Dr. Karl Thomae Gmbh, 7950 Biberach Tetrahydro-benzthiazole, deren herstellung und deren verwendung als zwischenprodukte oder als arzneimittel
US4698062A (en) 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
US4788062A (en) 1987-02-26 1988-11-29 Alza Corporation Transdermal administration of progesterone, estradiol esters, and mixtures thereof
US5071656A (en) 1987-03-05 1991-12-10 Alza Corporation Delayed onset transdermal delivery device
US4781924A (en) 1987-11-09 1988-11-01 Alza Corporation Transdermal drug delivery device
DE3830468A1 (de) 1988-09-08 1990-03-15 Henkel Kgaa Polyurethanhaltige spinnpraeparationen
DE69009540T2 (de) 1989-03-15 1994-09-29 Nitto Denko Corp Arzneimittel enthaltendes Heftpflaster.
US5069909A (en) 1990-06-20 1991-12-03 Cygnus Therapeutic Systems Transdermal administration of buprenorphine
FR2688138B1 (fr) 1992-03-06 1995-05-05 Rhone Poulenc Rorer Sa Application de l'amino-2 trifluoromethoxy-6 benzothiazole pour obtenir un medicament destine au traitement de la sclerose laterale amyotrophique.
US5792664A (en) 1992-05-29 1998-08-11 The Rockefeller University Methods for producing and analyzing biopolymer ladders
EP1130399B1 (de) 1992-05-29 2009-04-01 The Rockefeller University Verfahren zur Bestimmung der Folge von Peptiden unter Verwendung eines Massenspektrometers
US6566386B2 (en) 1993-08-09 2003-05-20 Nippon Zoki Pharmaceutical Co., Ltd. Immunomodulating and antiinflammatory agent
US5442117A (en) 1993-12-13 1995-08-15 Albemarle Corporation Enantiomeric resolution
US6156777A (en) 1994-12-15 2000-12-05 Pharmacia & Upjohn Company Use of pramipexole as a neuroprotective agent
US5674895A (en) 1995-05-22 1997-10-07 Alza Corporation Dosage form comprising oxybutynin
US6929801B2 (en) * 1996-02-19 2005-08-16 Acrux Dds Pty Ltd Transdermal delivery of antiparkinson agents
US5804215A (en) 1997-03-21 1998-09-08 L. Perrigo Company Transdermal patch disposal system and method
NZ516848A (en) 1997-06-20 2004-03-26 Ciphergen Biosystems Inc Retentate chromatography apparatus with applications in biology and medicine
EP1018144A1 (de) 1997-09-23 2000-07-12 Ciphergen Biosystems, Inc. Sekundärionengeneratordetektor für flugzeitmassenspektrometrie
CA2327095A1 (en) * 1998-04-02 1999-10-14 Avicena Group, Inc. Compositions containing a combination of a creatine compound and a second agent
PE20000728A1 (es) 1998-06-26 2000-08-21 Cocensys Inc Heterociclos 4-bencil piperidina alquilsulfoxido y su uso como antagonistas receptores subtipo-selectivo nmda
CA2301899C (en) 1998-07-27 2008-11-18 Boehringer Ingelheim Pharma Kg Agent with an antidepressant activity
US6322819B1 (en) 1998-10-21 2001-11-27 Shire Laboratories, Inc. Oral pulsed dose drug delivery system
US6776984B1 (en) 1999-08-20 2004-08-17 George R. Schwartz Induced regeneration and repair of damaged neurons and nerve axon myelin
DE19938825A1 (de) 1999-08-19 2001-04-26 Boehringer Ingelheim Pharma Wirkstoffkombination mit Clonidin
US6480820B1 (en) 1999-09-20 2002-11-12 Advanced Cochlear Systems, Inc. Method of processing auditory data
AU7620600A (en) 1999-09-30 2001-04-30 General Hospital Corporation, The Use of pramipexole as a treatment for cocaine craving
TWI292316B (en) * 1999-10-11 2008-01-11 Sod Conseils Rech Applic Pharmaceutical composition of thiazole derivatives intended to inhibit mao and/or lipidic peroxidation and/or to act as modulators of sodium channels and the use thereof
US20040132788A1 (en) 1999-10-11 2004-07-08 Chabrier De Lassauniere Pierre-Etienne Derivatives of heterocycles with 5 members, their preparation and their use as medicaments
US6443976B1 (en) 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature
JP2003523741A (ja) * 2000-02-01 2003-08-12 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Bcl−2様ポリヌクレオチド、ポリペプチドおよび抗体
PE20011074A1 (es) 2000-02-23 2001-10-04 Upjohn Co Uso de pramipexol en el tratamiento de trastornos de adiccion
US20020151526A1 (en) 2000-10-06 2002-10-17 Gallop Mark A. Bile-acid prodrugs of L-dopa and their use in the sustained treatment of parkinsonism
US6618138B2 (en) 2000-10-12 2003-09-09 Jed Khoury Scanning fluorescent systems for various diagnostic
US20020177626A1 (en) 2001-01-19 2002-11-28 Cook Graham D. Treatment of sleep disturbances
WO2002080957A1 (en) * 2001-04-09 2002-10-17 Neurosearch A/S Adenosine a2a receptor antagonists combined with neurotrophic activity compounds in the treatment of parkinson's disease
US20060281797A1 (en) * 2001-12-11 2006-12-14 University Of Virginia Patent Foundation Neurorestoration with R(+) Pramipexole
AU2003219803B8 (en) * 2002-02-15 2005-08-25 Sloan-Kettering Institute For Cancer Research Method of treating TRX mediated diseases
WO2003077902A1 (en) 2002-02-19 2003-09-25 Xenoport, Inc. Methods for synthesis of prodrugs from 1-acyl-alkyl derivatives and compositions thereof
WO2003077897A1 (en) 2002-03-15 2003-09-25 Cypress Bioscience, Inc. Ne and 5-ht reuptake inhibitors for treating visceral pain syndromes
DE10213571A1 (de) * 2002-03-26 2003-10-23 Lichtwer Pharma Ag Pflanzenextrakte und deren Anwendung
WO2003103583A2 (en) * 2002-06-10 2003-12-18 Oklahoma Medical Research Foundation A method for using tethered bis(polyhydroxyphenyls) and o-alkyl derivatives thereof in treating inflammatory conditions of the central nervous system
KR100505260B1 (ko) 2002-06-28 2005-07-29 노건웅 알레르기를 유발하는 특정 물질에 대한 내성 유도 방법,내성 유도용 키트 및 이들을 이용한 내성 획득 방법
PE20040134A1 (es) 2002-07-25 2004-03-06 Pharmacia Corp Forma de dosificacion de una vez al dia de pramipexol
US20050226926A1 (en) 2002-07-25 2005-10-13 Pfizer Inc Sustained-release tablet composition of pramipexole
JP2006502188A (ja) * 2002-09-17 2006-01-19 ニューヨーク ユニバーシティ 年齢関連記憶欠陥(aami)、中程度認識欠陥(mci)、および痴呆を細胞周期インヒビターで処置する方法
US20040121010A1 (en) 2002-10-25 2004-06-24 Collegium Pharmaceutical, Inc. Pulsatile release compositions of milnacipran
GB2394951A (en) 2002-11-04 2004-05-12 Cipla Ltd One pot synthesis of 2,6-diamino-4,5,6,7-tetrahydro-benzothiazole
WO2004050034A2 (en) 2002-12-02 2004-06-17 Massachusetts Institute Of Technology Prolonged suppression of electrical activity in excitable tissues
UA79182C2 (en) 2002-12-13 2007-05-25 Basf Ag Method for the production of benzophenones
AU2003301109B2 (en) 2002-12-23 2009-06-25 Merck Frosst Company Pharmaceutical compositions and method of treating Parkinson's disease
SI1610791T1 (sl) * 2003-03-31 2011-05-31 Titan Pharmaceuticals Inc Implantibilna polimerna naprava za zadržano sproščanje dopaminskega agonista
EP2112920B1 (de) 2003-06-26 2018-07-25 Intellipharmaceutics Corp. Protonenpumpeninhibitoren enthaltende kapseln, die verschieden aufgebaute untereinheiten zur verzögerten wirkstofffreisetzung enthalten
DE10333393A1 (de) 2003-07-23 2005-02-24 Lts Lohmann Therapie-Systeme Ag Transdermales Therapeutisches System mit dem Wirkstoff Pramipexol
US7273980B2 (en) 2004-01-13 2007-09-25 Wardle Scott A Position and velocity transducer using a phonograph disc and turntable
US20120253047A1 (en) 2004-03-19 2012-10-04 Dipharma S.P.A. Process for the preparation of (r)-pramipexole
US20050220877A1 (en) 2004-03-31 2005-10-06 Patel Ashish A Bilayer tablet comprising an antihistamine and a decongestant
US7539203B2 (en) 2004-05-26 2009-05-26 Intel Corporation Multiple channel flow control with first-in-first-out (FIFO) read/write random access memory (RAM)
US20090035315A1 (en) 2004-06-17 2009-02-05 Stephan Christgau Method of Improving Treatments in Rheumatic and Arthritic Diseases
WO2006012277A2 (en) 2004-06-30 2006-02-02 Amr Technology, Inc. Biocatalytic process for preparing enantiomerically enriched pramipexole
EA201001083A1 (ru) 2004-08-13 2011-08-30 Бёрингер Ингельхайм Интернациональ Гмбх Композиция таблетки пролонгированного высвобождения, содержащая прамипексол или его фармацевтически приемлемую соль, способ ее изготовления и ее применение
WO2006043532A1 (ja) * 2004-10-19 2006-04-27 Ono Pharmaceutical Co., Ltd. パーキンソン病治療剤
JP2006143708A (ja) * 2004-10-19 2006-06-08 Ono Pharmaceut Co Ltd 神経変性疾患治療用医薬
US7572596B2 (en) 2004-12-02 2009-08-11 University Of Pittsburgh Of The Commonwealth System Of Higher Education Modulation of the neuroendoctrine system as a therapy for motor neuron disease
CA2595159A1 (en) * 2005-01-13 2006-07-20 Sirtris Pharmaceuticals, Inc. Novel compositions for preventing and treating neurodegenerative and blood coagulation disorders
CA2605078C (en) 2005-04-15 2013-01-08 Human Matrix Sciences, Llc Plant-derived elastin binding protein ligands and methods of using the same
CN101203242A (zh) * 2005-04-22 2008-06-18 健泰科生物技术公司 用cd20抗体治疗痴呆或阿耳茨海默氏病的方法
WO2006119295A2 (en) * 2005-05-02 2006-11-09 Combinatorx, Incorporated Compositions and methods for the treatment of neurodegenerative diseases
ES2264378B1 (es) 2005-05-09 2007-11-01 Ragactives, S.L. Procedimiento para la resolucion de 2-amino-6propilamino-4,5,6,7-tetrahidrobenzotiazol y compuestos intermedios.
US20070203209A1 (en) * 2005-08-18 2007-08-30 Wilmin Bartolini Useful indole compounds
US20080262053A1 (en) 2005-10-18 2008-10-23 Juergen Reess Use of Pramipexole for Treating Moderate to Severe Restless Legs Syndrome (Rls)
BRPI0620316A2 (pt) * 2005-12-21 2011-11-08 Wyeth Corp formulações de proteìnas com viscosidades reduzida e seus usos
WO2007090882A2 (en) 2006-02-10 2007-08-16 Boehringer Ingelheim International Gmbh Pharmaceutical extended release compositions comprising pramipexole
EP2497472A1 (de) 2006-05-16 2012-09-12 Knopp Neurosciences, Inc. Therapeutisch wirksame Mengen von R(+)- und S(-)-Pramipexol zur Verwendung bei der Behandlung von Parkinson und pharmazeutische Zusammensetzungen davon
CA2661616A1 (en) 2006-08-24 2008-02-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing pramipexole dihydrochloride tablets
WO2008041240A1 (en) 2006-10-03 2008-04-10 Cadila Healthcare Limited Process for preparing (s)-pramipexole and its intermediates
CL2007003130A1 (es) * 2006-10-30 2008-05-30 Boehringer Ingelheim Int Uso de una formulacion de liberacion inmediata con un ingrediente activo seleccionado de pramipexol, hidrocloruro de pramipexol, dihidrocloruro de pramipexol monohidrato o una sal farmaceuticamente aceptable de este, para el tratamiento de la enferme
PT2101766T (pt) 2006-12-14 2016-12-28 Knopp Biosciences Llc Composições e métodos de utilização de (r)-pramipexole
WO2008104847A2 (en) 2007-02-26 2008-09-04 Wockhardt Research Centre Processes for the preparation of pramipexole and salts thereof
WO2008113003A1 (en) 2007-03-14 2008-09-18 Knopp Neurosciences, Inc. Modified release formulations of (6r)-4,5,6,7-tetrahydro-n6-propyl-2,6-benzothiazole-diamine and methods of using the same
CN101715443A (zh) 2007-03-14 2010-05-26 诺普神经科学股份有限公司 手性纯化的取代的苯并噻唑二胺的合成
US20110189167A1 (en) 2007-04-20 2011-08-04 Flynn Daniel L Methods and Compositions for the Treatment of Myeloproliferative Diseases and other Proliferative Diseases
US20100130569A1 (en) 2007-05-11 2010-05-27 Saten Pharmaceutical Co., Ltd. Prophylactic or therapeutic agent for posterior ocular disease comprising non-ergot selective d2 receptor agonist as active ingredient
RU2519227C2 (ru) 2007-05-14 2014-06-10 Медиммун, Ллк Способы снижения числа эозинофилов
WO2009120927A2 (en) 2008-03-28 2009-10-01 Smithkline Beecham Corporation Methods of treatment
WO2010022140A1 (en) 2008-08-19 2010-02-25 Knopp Neurosciences, Inc. Compositions and methods of using (r)-pramipexole
EP2451787B1 (de) 2009-07-06 2013-04-24 Boehringer Ingelheim International GmbH Polymorph von [4,6-bis(dimethylamino)-2-(4-{[4-(trifluormethyl)benzoyl]amino}benzyl)pyrimidin-5-yl]
CA2770023A1 (en) 2009-08-06 2011-02-10 Neuraltus Pharmaceuticals, Inc. Treatment of macrophage-related disorders
WO2011150221A2 (en) 2010-05-26 2011-12-01 Knopp Neurosciences, Inc. Compounds and methods of modulating mitochondrial bioenergetic efficiency through an interaction with atp synthase (complex v) and its subunits
JP2013544850A (ja) 2010-12-03 2013-12-19 ユーシミクス バイオサイエンス,インク. モノアミン神経伝達物質によって影響を受ける病態の処置における(+)−1−(3,4−ジクロロフェニル)−3−アザビシクロ[3.1.0]ヘキサンの調製および使用
US20130059801A1 (en) 2011-08-31 2013-03-07 Catabasis Pharmaceuticals, Inc. Fatty acid amides, compositions and methods of use
WO2013034173A1 (en) 2011-09-06 2013-03-14 Synthon Bv Pramipexole extended release tablets
WO2013096870A1 (en) 2011-12-22 2013-06-27 Knopp Neurosciences Inc Compositions and methods for treating amyotrophic lateral sclerosis
US9512096B2 (en) 2011-12-22 2016-12-06 Knopp Biosciences, LLP Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
EP2872144A4 (de) 2012-07-11 2015-12-02 Nimbus Iris Inc Irak-inhibitor und verwendungen davon
WO2014134569A1 (en) 2013-02-28 2014-09-04 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
JP6329717B2 (ja) 2013-07-12 2018-05-23 ノップ バイオサイエンシーズ エルエルシー 高好酸球値および/または高好塩基球値の治療
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
DE102013108610A1 (de) 2013-08-06 2015-02-12 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
HUE055850T2 (hu) 2013-08-13 2022-01-28 Knopp Biosciences Llc Készítmények és módszerek a krónikus urticaria (csalánkiütés) kezelésére
AU2014306683B2 (en) 2013-08-13 2017-10-12 Knopp Biosciences Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598123A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3797494A (en) * 1969-04-01 1974-03-19 Alza Corp Bandage for the administration of drug by controlled metering through microporous materials
US3598122B1 (de) * 1969-04-01 1982-11-23
US3731683A (en) * 1971-06-04 1973-05-08 Alza Corp Bandage for the controlled metering of topical drugs to the skin
US4144317A (en) * 1975-05-30 1979-03-13 Alza Corporation Device consisting of copolymer having acetoxy groups for delivering drugs
US4031894A (en) * 1975-12-08 1977-06-28 Alza Corporation Bandage for transdermally administering scopolamine to prevent nausea
US4201211A (en) * 1977-07-12 1980-05-06 Alza Corporation Therapeutic system for administering clonidine transdermally
US4314557A (en) * 1980-05-19 1982-02-09 Alza Corporation Dissolution controlled active agent dispenser
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4379454A (en) * 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
US4725272A (en) * 1981-06-29 1988-02-16 Alza Corporation Novel bandage for administering beneficial drug
US4849226A (en) * 1981-06-29 1989-07-18 Alza Corporation Method for increasing oxygen supply by administering vasodilator
US4435180A (en) * 1982-05-25 1984-03-06 Alza Corporation Elastomeric active agent delivery system and method of use
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US4588580A (en) * 1984-07-23 1986-05-13 Alza Corporation Transdermal administration of fentanyl and device therefor
US4588580B2 (en) * 1984-07-23 1999-02-16 Alaz Corp Transdermal administration of fentanyl and device therefor
US4588580B1 (de) * 1984-07-23 1989-01-03
US4573995A (en) * 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
US4568343A (en) * 1984-10-09 1986-02-04 Alza Corporation Skin permeation enhancer compositions
US4731374A (en) * 1984-12-22 1988-03-15 Dr. Karl Thomae Gmbh Tetrahydro-benzthiazoles, the preparation thereof and their use as intermediate products or as pharmaceuticals
US4843086A (en) * 1984-12-22 1989-06-27 Boehringer Ingelheim Kg Tetrahydro-benzthiazoles, the preparation thereof and their use as intermediate products or as pharmaceuticals
US4806341A (en) * 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4904475A (en) * 1985-05-03 1990-02-27 Alza Corporation Transdermal delivery of drugs from an aqueous reservoir
US4645502A (en) * 1985-05-03 1987-02-24 Alza Corporation Transdermal delivery of highly ionized fat insoluble drugs
US5141750A (en) * 1986-06-13 1992-08-25 Alza Corporation Delayed onset transdermal delivery device
US5284660A (en) * 1986-06-13 1994-02-08 Alza Corporation Delayed onset transdermal delivery device
US4938759A (en) * 1986-09-02 1990-07-03 Alza Corporation Transdermal delivery device having a rate controlling adhesive
US4908027A (en) * 1986-09-12 1990-03-13 Alza Corporation Subsaturated transdermal therapeutic system having improved release characteristics
US5342623A (en) * 1986-09-12 1994-08-30 Alza Corporation Subsaturated transdermal therapeutic system having improved release characteristics
US4816258A (en) * 1987-02-26 1989-03-28 Alza Corporation Transdermal contraceptive formulations
US4943435A (en) * 1987-10-05 1990-07-24 Pharmetrix Corporation Prolonged activity nicotine patch
US4917895A (en) * 1987-11-02 1990-04-17 Alza Corporation Transdermal drug delivery device
US5004610A (en) * 1988-06-14 1991-04-02 Alza Corporation Subsaturated nicotine transdermal therapeutic system
US5024843A (en) * 1989-09-05 1991-06-18 Alza Corporation Oral hypoglycemic glipizide granulation
US5091190A (en) * 1989-09-05 1992-02-25 Alza Corporation Delivery system for administration blood-glucose lowering drug
US5591454A (en) * 1989-09-05 1997-01-07 Alza Corporation Method for lowering blood glucose
US5112842A (en) * 1989-11-09 1992-05-12 Boehringer Ingelheim Kg Transdermal administration of 2-amino-6-n-propylamino-4,5,6,7-tetrahydrobenzothiazole
US5122382A (en) * 1990-10-29 1992-06-16 Alza Corporation Transdermal contraceptive formulations, methods and devices
US5314694A (en) * 1990-10-29 1994-05-24 Alza Corporation Transdermal formulations, methods and devices
US5411740A (en) * 1992-05-13 1995-05-02 Alza Corporation Transdermal administration of oxybutynin
US5719060A (en) * 1993-05-28 1998-02-17 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US5635203A (en) * 1994-09-29 1997-06-03 Alza Corporation Transdermal device having decreased delamination
US5650420A (en) * 1994-12-15 1997-07-22 Pharmacia & Upjohn Company Pramipexole as a neuroprotective agent
US6262115B1 (en) * 1995-05-22 2001-07-17 Alza Coporation Method for the management of incontinence
US5912268A (en) * 1995-05-22 1999-06-15 Alza Corporation Dosage form and method for treating incontinence
US6919092B2 (en) * 1995-05-22 2005-07-19 Alza Corporation Method for the management of incontinence
US6043251A (en) * 1995-10-26 2000-03-28 Sanofi Use of 1-(2-naphth-2-ylethyl)-4-(3-trifluoromethylphenyl)-1,2,3,6-tetrahydropyr idine for preparing drugs for treating amyotrophic lateral sclerosis
US6919373B1 (en) * 1996-11-12 2005-07-19 Alza Corporation Methods and devices for providing prolonged drug therapy
US6187802B1 (en) * 1997-03-15 2001-02-13 Knoll Aktiengesellschaft Substituted 4-arylmethylene-2-imino-2,3-dihydrothiazoles and derivatives and their pharmaceutical use
US8186890B2 (en) * 1997-05-20 2012-05-29 Adc Telecommunications, Inc. Fiber connector and adapter
US6197339B1 (en) * 1997-09-30 2001-03-06 Pharmacia & Upjohn Company Sustained release tablet formulation to treat Parkinson's disease
US6255329B1 (en) * 1998-07-07 2001-07-03 Boehringer Ingelheim Pharma Kg Combined use of pramipexole and sertraline for the treatment of depression
US6730325B2 (en) * 1998-11-02 2004-05-04 Elan Corporation, Plc Multiparticulate modified release composition
US6228398B1 (en) * 1998-11-02 2001-05-08 Elan Corporation, Plc Multiparticulate modified release composition
US6902742B2 (en) * 1998-11-02 2005-06-07 Elan Corporation, Plc Multiparticulate modified release composition
US6541486B1 (en) * 1999-06-04 2003-04-01 Elan Pharma International Ltd. Bis-benzimidazole compounds and analogs thereof for inhibiting cell death
US6750235B1 (en) * 1999-09-30 2004-06-15 The General Hospital Corporation Pramipexole as a treatment for cocaine craving
US7005255B2 (en) * 2000-04-14 2006-02-28 Metabolon, Inc. Methods for drug discovery, disease treatment, and diagnosis using metabolomics
US20030049318A1 (en) * 2000-04-28 2003-03-13 Davis Robert D. Sustained release formulations of guaifenesin and additional drug ingredients
US20040067991A1 (en) * 2000-07-06 2004-04-08 Greig Nigel H Tetrahydrobenzothiazole analogues as neuroprotective agents
US20040031667A1 (en) * 2000-08-02 2004-02-19 Emil Dinkel Arrangement of operator control elements
US6727367B2 (en) * 2000-09-18 2004-04-27 Synthon Bv Process for resolution of 2-amino-6-propylamino-4,5,6,7-tetrahydrobenzthiazole and compounds therefor
US6675104B2 (en) * 2000-11-16 2004-01-06 Ciphergen Biosystems, Inc. Method for analyzing mass spectra
US20030013120A1 (en) * 2001-07-12 2003-01-16 Patz Edward F. System and method for differential protein expression and a diagnostic biomarker discovery system and method using same
US20060099257A1 (en) * 2001-07-19 2006-05-11 Langridge John R Controlled drug delivery systems providing variable release rates
US7344733B2 (en) * 2001-07-28 2008-03-18 Hexal Ag Matrix controlled transdermal therapeutic system for the use of pramipexole and ropinirole
US7157480B2 (en) * 2001-12-11 2007-01-02 University Of Virginia Patent Foundation Use of pramipexole to treat amyotrophic lateral sclerosis
US20130172394A1 (en) * 2001-12-11 2013-07-04 University Of Virginia Patent Foundation Use of pramipexole to treat amyotrophic lateral sclerosis
US20050032856A1 (en) * 2001-12-11 2005-02-10 Bennett James P Use of pramipexole to treat amyotrophic lateral sclerosis
US20070087410A1 (en) * 2001-12-28 2007-04-19 Syngenta Participations Ag Microbially-expressed thermotolerant phytase for animal feed
US20050089575A1 (en) * 2002-01-16 2005-04-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
US20030166696A1 (en) * 2002-01-24 2003-09-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pramipexole for the treatment of HIV dementia
US20040033530A1 (en) * 2002-04-08 2004-02-19 Awrey Donald E. High throughput purification, characterization and identification of recombinant proteins
US20050074865A1 (en) * 2002-08-27 2005-04-07 Compound Therapeutics, Inc. Adzymes and uses thereof
US20060106224A1 (en) * 2002-09-17 2006-05-18 Gupta Ashwini K Process for the preparation of 2-amino-4,5,6,7-tetrahydro-6-aminobenzothiazoles from cyclohexanes and cyclohexanones as intermediates
US20050070715A1 (en) * 2003-07-15 2005-03-31 Laxminarayan Bhat Methods for synthesis of acyloxyalkyl compounds
US20050059717A1 (en) * 2003-07-25 2005-03-17 Van Eupen Jacobus T.H. Pramipexole acid addition salts
US20080020028A1 (en) * 2003-08-20 2008-01-24 Euro-Celtique S.A. Transdermal dosage form comprising an active agent and a salt and a free-base form of an adverse agent
US20050053649A1 (en) * 2003-09-08 2005-03-10 Anne-Marie Chalmers Medication delivery device
US20050148026A1 (en) * 2003-10-23 2005-07-07 University Of Pittsburgh Of The Commonwealth System Of Higher Education Biomarkers for amyotrophic lateral sclerosis
US7741490B2 (en) * 2004-03-19 2010-06-22 Dipharma S.P.A. Intermediates for the preparation of pramipexole
US20080096939A1 (en) * 2004-07-03 2008-04-24 Andreas Keil Process For Preparation Of Pramipexole By Chiral Chromatography
US20060051419A1 (en) * 2004-08-13 2006-03-09 Boehringer Ingelheim International Gmbh Extended release pellet formulation containing pramipexole or a pharmaceutically acceptable salt thereof
US20060046967A1 (en) * 2004-08-26 2006-03-02 Apparao Satyam Prodrugs containing novel bio-cleavable linkers
US20080026043A1 (en) * 2004-09-13 2008-01-31 Walter Mueller Transdermal Therapeutic System Comprising an Adhesive Layer Method for Siliconizing the Back Layer or the System and Use of Said Back Layer
US20060069263A1 (en) * 2004-09-30 2006-03-30 Irina Gribun Process for the reduction of (S)-2-amino-6-propionamido-4,5,6,7-tetrahydrobenzo-thiazole
US20060110450A1 (en) * 2004-11-05 2006-05-25 Boehringer Ingelheim International Gmbh Bilayer tablet of telmisartan and amlodipine
US20060121619A1 (en) * 2004-12-02 2006-06-08 University Of Pittsburgh Of The Commonwealth System Of Higher Education Protein biomarkers and therapeutic targets in an animal model for amyotrophic lateral sclerosis
US20060141037A1 (en) * 2004-12-29 2006-06-29 J. B. Chemicals & Pharmaceuticals Ltd. Bilayer tablets of oxcarbazepine for controlled delivery and a process of preparation thereof
US20060148866A1 (en) * 2004-12-30 2006-07-06 Chemagis Ltd. Novel process for preparing pramipexole and its optical isomeric mixture by reduction with sodium triacetoxyborohydride
US20130116292A1 (en) * 2005-08-15 2013-05-09 University Of Virginia Patent Foundation Neurorestoration with r(+) pramipexole
WO2007046347A1 (ja) * 2005-10-18 2007-04-26 Ono Pharmaceutical Co., Ltd. 筋萎縮性側索硬化症患者の運動神経保護用医薬
US20090149518A1 (en) * 2005-10-18 2009-06-11 Ono Pharmaceutical Co., Ltd. Pharmaceutical for protection of motor nerve in patient with amyotrophic lateral sclerosis
US20090105483A1 (en) * 2005-12-29 2009-04-23 Instytut Farmaceutyczny Process for the preparation of pramipexole base and/or its salts
US20090042956A1 (en) * 2006-04-10 2009-02-12 Knopp Neurosciences, Inc. Compositions and methods of using (r)-pramipexole
US20130123312A1 (en) * 2006-04-10 2013-05-16 Knopp Neurosciences Inc. Compositions and Methods of Using R(+) Pramipexole
US20080014259A1 (en) * 2006-05-16 2008-01-17 Knopp Neurosciences, Inc. Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same
US20080081041A1 (en) * 2006-09-29 2008-04-03 Jeffrey Nemeth Method of Using IL6 Antagonists with Mitoxantrone for Prostate Cancer
US20090054504A1 (en) * 2006-12-14 2009-02-26 Knopp Neurosciences, Inc. Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same
US8192091B2 (en) * 2009-05-01 2012-06-05 Advanced Connectek Inc. Optical fiber connector adapter
US8408815B2 (en) * 2009-06-18 2013-04-02 Senko Advanced Components, Inc. Optical fiber connector and adapter
US20110009460A1 (en) * 2009-06-19 2011-01-13 Valentin Gribkoff Compositions and methods for treating amyotrophic lateral sclerosis
US20130079526A1 (en) * 2010-03-03 2013-03-28 Knopp Neurosciences Inc. Synthesis of Chirally Purified Substituted Benzothiazole Diamines

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518926B2 (en) 2006-04-10 2013-08-27 Knopp Neurosciences, Inc. Compositions and methods of using (R)-pramipexole
US8445474B2 (en) 2006-05-16 2013-05-21 Knopp Neurosciences, Inc. Compositions of R(+) and S(−) pramipexole and methods of using the same
US8524695B2 (en) 2006-12-14 2013-09-03 Knopp Neurosciences, Inc. Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US10179774B2 (en) 2007-03-14 2019-01-15 Knopp Biosciences Llc Synthesis of chirally purified substituted benzothiazole diamines
US9849116B2 (en) 2008-08-19 2017-12-26 Knopp Biosciences Llc Compositions and methods of using (R)-pramipexole
US10208003B2 (en) 2011-12-22 2019-02-19 Knopp Biosciences Llc Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US9512096B2 (en) 2011-12-22 2016-12-06 Knopp Biosciences, LLP Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US9381249B2 (en) 2012-06-05 2016-07-05 Neuroderm, Ltd. Compositions comprising apomorphine and organic acids and uses thereof
US9999674B2 (en) 2012-06-05 2018-06-19 Neuroderm, Ltd. Compositions comprising apomorphine and organic acids and uses thereof
US10525134B2 (en) 2012-06-05 2020-01-07 Neuroderm, Ltd. Compositions comprising apomorphine and organic acids and uses thereof
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US10285981B2 (en) 2013-02-28 2019-05-14 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9956206B2 (en) 2013-02-28 2018-05-01 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US10980783B2 (en) 2013-07-12 2021-04-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US11026928B2 (en) 2013-07-12 2021-06-08 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US11612589B2 (en) 2013-07-12 2023-03-28 Areteia Therapeutics, Inc. Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10383856B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US10383857B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10828284B2 (en) 2013-07-12 2020-11-10 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US9642840B2 (en) 2013-08-13 2017-05-09 Knopp Biosciences, Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US10456381B2 (en) 2013-08-13 2019-10-29 Knopp Biosciences Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US10195183B2 (en) 2013-08-13 2019-02-05 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
US10028940B2 (en) 2013-08-13 2018-07-24 Knopp Biosciences Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US9763918B2 (en) 2013-08-13 2017-09-19 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
CN110719778A (zh) * 2017-04-24 2020-01-21 才思治疗公司 用于治疗抑郁的组合物和方法
US12138249B2 (en) 2023-03-06 2024-11-12 Areteia Therapeutics, Inc. Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils

Also Published As

Publication number Publication date
KR20110071064A (ko) 2011-06-28
EP2334185A4 (de) 2011-09-21
CA2734491A1 (en) 2010-02-25
WO2010022140A1 (en) 2010-02-25
US9849116B2 (en) 2017-12-26
EP2334185A1 (de) 2011-06-22
US20160030397A1 (en) 2016-02-04
JP2012500283A (ja) 2012-01-05
US20180110758A1 (en) 2018-04-26
CN102186350A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
US9849116B2 (en) Compositions and methods of using (R)-pramipexole
US20200155516A1 (en) Compositions and methods of using (r)-pramipexole
EP2101766B1 (de) Zusammensetzungen und verfahren zur verwendung von (r)-pramipexol
US8524695B2 (en) Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
EP2508181A1 (de) Zusammensetzungen und Verfahren zur Verwendung von (R)-Pramipexol
AU2008224869A1 (en) Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US20070259930A1 (en) Compositions and methods of using r(+) pramipexole
EP2026803B1 (de) Zusammensetzungen aus r(+)- und s(-)-pramipexol sowie verfahren zu ihrer anwendung
AU2016210640B2 (en) Compositions and methods of using (r)-pramipexole
JP2022548787A (ja) 治療用製剤およびその使用
AU2013209376B2 (en) Compositions and methods of using (r)-pramipexole
AU2012205273A1 (en) Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: KNOPP NEUROSCIENCES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOZIK, MICHAEL E.;GRIBKOFF, VALENTIN;REEL/FRAME:026095/0346

Effective date: 20110131

Owner name: KNOPP NEUROSCIENCES, INC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRIBKOFF, VALENTIN;REEL/FRAME:026095/0292

Effective date: 20110131

AS Assignment

Owner name: KNOPP BIOSCIENCES LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KNOPP NEUROSCIENCES INC.;REEL/FRAME:032551/0311

Effective date: 20131122

AS Assignment

Owner name: KOPPER, RACHEL, PENNSYLVANIA

Free format text: SECURITY INTEREST;ASSIGNOR:KNOPP BIOSCIENCES LLC;REEL/FRAME:032992/0899

Effective date: 20140522

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: KNOPP BIOSCIENCES LLC, PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KOPPER, RACHEL;REEL/FRAME:048455/0727

Effective date: 20190220