TW200405857A - Lamination of liquid crystal polymer dielectric films - Google Patents
Lamination of liquid crystal polymer dielectric films Download PDFInfo
- Publication number
- TW200405857A TW200405857A TW092120018A TW92120018A TW200405857A TW 200405857 A TW200405857 A TW 200405857A TW 092120018 A TW092120018 A TW 092120018A TW 92120018 A TW92120018 A TW 92120018A TW 200405857 A TW200405857 A TW 200405857A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- liquid crystal
- crystal polymer
- dielectric material
- sub
- Prior art date
Links
- 229920000106 Liquid crystal polymer Polymers 0.000 title claims abstract description 144
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 title claims abstract description 143
- 238000003475 lamination Methods 0.000 title description 44
- 239000003989 dielectric material Substances 0.000 claims abstract description 144
- 238000000034 method Methods 0.000 claims abstract description 64
- 230000007704 transition Effects 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 68
- 239000004973 liquid crystal related substance Substances 0.000 claims description 41
- 229920000642 polymer Polymers 0.000 claims description 41
- 230000008569 process Effects 0.000 claims description 37
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 2
- 240000002834 Paulownia tomentosa Species 0.000 claims 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 claims 1
- 239000012790 adhesive layer Substances 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 190
- 238000010030 laminating Methods 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000010408 film Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 241001620634 Roger Species 0.000 description 4
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- -1 amino compound Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000002305 electric material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical group N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical compound OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012932 thermodynamic analysis Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4632—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B2037/0092—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/34—Inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/55—Liquid crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/204—Di-electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
- B32B2307/5825—Tear resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/02—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/0046—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0141—Liquid crystal polymer [LCP]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0195—Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/0929—Conductive planes
- H05K2201/09318—Core having one signal plane and one power plane
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4641—Manufacturing multilayer circuits by laminating two or more circuit boards having integrally laminated metal sheets or special power cores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
200405857 玖、發明說明: 【發明所屬之技術領域】 本發明係關於液晶高分子介電薄膜的層壓以形成多 層層壓結構。 【先前技術】200405857 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to the lamination of liquid crystal polymer dielectric films to form a multi-layer laminated structure. [Prior art]
至少包含多層層壓結構之有機基板已持續發展在許 多應用上。然而,能降低成本及無效率製造多層層壓結構 技術仍是當前業界的目標。 【發明内容】 於第一實施例中,本發明係提供一種多層結構,其至 少包含: 第一層;以及Organic substrates including at least a multilayer laminate structure have been continuously developed for many applications. However, the technology that can reduce costs and produce multilayer laminate structures inefficiently is still the current industry goal. SUMMARY OF THE INVENTION In a first embodiment, the present invention provides a multi-layer structure including at least: a first layer; and
第二層,其中該第一層至少包含一第一液晶高分子 (LCP)介電材料,且其中該第一層係結合第二層以使該第一 液晶高分子介電材料可於不需外加黏結材料的情況下直接 與該第二層結合。 於第二實施例中,本發明提供一種製造多層結構的方 法,該方法至少包含以下步驟: 形成一包含堆疊N層基板之頁層,其係按規律次序堆 疊以使N至少為2,其中每對緊鄰之副結構的一第一副結 構至少包含一欲與該對緊鄰之副結構的一第二副結構結合 之液晶高分子;以及 3 200405857 使該頁層處於較該頁層内該液晶高分子介電材料之 最低相列至等向轉變溫度為低之一溫度一段時間,並處於 一經升高且足以使該頁層内所有液晶高分子介電材料可塑 性變形之壓力下,並以不需將任何外加黏結層置於每對緊 鄰的副結構之該第一副結構及該第二副結構間的方式直接 層壓每對緊鄰的副結構。 本發明有效的在製造多層結構上減少製程時間、製造 成本’並減低介電材料層的厚度。 【實施方式】 液晶高分子(LCP)介電材料形成介電層有許多優勢, 包括良好的介電特性、低成本以及良好機械特性。 古 日日向 分子介電材料具有一些類似聚亞醯胺(高分子)的特性,如 良好抗裂性、抗展性,使液晶高分子可適用在非常薄層的 製程中(如電鍍等)。液晶高分子介電薄膜可提供較聚亞醯 胺薄膜為優的介電特性、較佳的防水性、尺 4嗎又性並降 低成本。然而,無論以液晶高分子介電材料合 〜a阿分子形 成之多層結構通常都需要使用黏結介電層。本發明揭露如 何在不需外加介於其間的黏結層以將液晶高分子介電2料 黏結另一材料層(如一金屬層或介電層),以降低層厚、製 程時間和材料成本。此外,此型式之液晶高分子介電薄膜 在不用添加齒素添加劑即具阻燃性。以此箄介 t "蕙材料的製 成的多層合成物也不用使用自素便具有阻燃性。 目前已上市而可用於本發明的液晶高分子介電材料 4 200405857 是可表現出熱向性特徵的BIAC向熱性液晶高分手, 由 W.L.Gore&Associates,Inc.公司以片狀或滾狀方式力 製造而付’關於該BIAC液晶南分子的資訊可壬2 王从卜網址 查尋:http//www· gore· com/electronics。另外一上市且 u 用於本發明的液晶高分子介電材料是可表現出熱向性特徵 的ZYVEX LCP向熱性液晶高分子,其係由⑴ Corporation公司以滾狀方式加工製造而得。一般而言,任 何液晶高分子介電材料取決於應用的所需材料特性,都可 能適用於本發明。 美國專利案號第627424290(由〇nodera等人於2〇〇1 年所取得,下文簡稱〇n〇dera ‘242專利),其全部内容係 合併於此作參考,該專利係揭示一種製造液晶高分子薄臈 的方法,其中包括周知的向熱性液晶聚酯以及向熱性液晶 聚酯氨基化合物。該液晶高分子薄膜係由〇n〇dera ‘ 242專 利中示於* 1至表4的四個化合物級別所配製而成。合成 之液晶南分子結構單元之例示係得自於〇n〇dera ‘242專利 中不於表5之該四個化合物級別。揭示於〇n〇dera ‘242專 利中之該液晶高分子介電材料僅為例示性,其它的液晶高 分子介電材料仍屬本發明之範圍Μ。一般而言,任何熟習 該項技術者所知的方法均可用於製造該液晶高分子介電材 料。 液晶高分子介電材料可於三相之一中存在:液態結晶 相(如向列、矩歹卜扭層)、等向相以及化學不穩態相其 中每一相對應三種溫度區’即液態結晶溫度區、等向溫度 5 200405857 區、化學不穩態度區。 在液態結晶相或液態結晶溫度區,藉著製程可使包含 高分子鏈之液晶兩分子介電材料的局部分子區域或範圍可 方向性的排列(亦即非等向分佈)。在液態結晶相,不同分 子區域可能會有不同的方向性排列,且許多分子區域僅有 一些或無方向性排列,這些高分子鏈一般較不易f曲。上 述具方向性排列的局部分子區域可包括區域分子和鄰近分 子群,使得該局部分子區域的空間範圍可達數千或數百埃 或更少。 液晶高分子介電材料的巨觀材料特性(如熱膨脹係數 (CTE)、介電常數、熱傳導等)對局部分子區域的方向性排 列很敏感,且液晶高分子介電材料的材料特性也符合方向 性排列為非等向性。液晶高分子介電材料的巨觀材料特性 也取決於局部分子區域的形狀、尺寸、形狀分佈以及尺寸 分佈。 液晶高分子介電材料是藉熟習該項技術者所熟知的 技術形成方向性排列以提供液態結晶相中所欲之特性。該 等技術可以包含··以指定的溫度與速度將液晶高分子介電 材料展開並以法、或透過薄膜擠壓或以滾筒方 向或垂直於滾筒方向伸展以將液晶高分子介電材料進行二 維切變,該切變也可選擇地以強極化電場進行。 該液晶高分子介電材料將保持液態結晶相若其严产 位於液態結晶溫層範圍,亦即低於一稱為向列 土寻向轉變 溫度(TNI)。因此,Tni代表一液晶高分子介電材料由液熊 200405857 結晶 子介 方向 有實 特性 為其 電材 引力 塑性 準壓 所導 料在 等), 介電 特徵 壓力 面特 效果 昇至 至一 致使 性。 液晶 相轉換為等向相轉換溫度。Tni的數值依照液晶高分 電材料之特性而定。此外,該液晶高分子介電材料的 性排列及巨觀材料特性在液態結晶溫層範圍内將不會 質上的改變,也不會超出該液晶溫度範圍。巨觀材料 在液態結晶溫層範圍内的溫度變化下並不會改變,因 液態結晶溫層内沒有足夠的熱能去適應液晶高分子介 料之高分子鏈的方向性,換言之,即克服内部分子的 〇 液晶高分子介電材料在液態結晶相内受到高壓時會 變形例如’在製造鏈結時’高壓可能是因所施的標 力及局部不規則幾何(諸如粗M表s m通道等 致的應力集中)的結合。因此,如果液晶高分子介電材 高壓下被層壓至一材料層(至少包含介電材料、金屬 且溫度被提昇至液態結晶相的範圍内,則液晶高分子 材料將會發生塑性變形並符合材料層表面的巨觀幾何 以及表面特徵(如通道)。液晶高分子介電材料在足夠 下且在製程期間的I態結晶相㈣鄰近層%表面及表 徵的塑性變形能力透過本發明的實驗會有意想不到的 ’其亦為本發明之基礎。藉由本發明,藉由將溫度提 液態結晶溫度範圍内,⑨晶高分子π電材料將可層壓 材料層的鄰接表Φ,且S足夠壓力了可引發塑性變形 其與鄰接表面發生黏結,同時保留其巨觀的材料特 ^樣的塑性黏結製程並不需要將外加的黏結層結合至 高分子介電材料以與鄰接層結合。 200405857 第1圖為根據本發明較佳:實施例描述一等向型液態 結晶相内具有方位指向高分子鏈之局部分子範圍200,範 圍200包含具有方向性之高分子鏈201至208,高分子鏈 201至208平均方位指向以及整合角度大致如方位21〇。該 角度的整合可藉執行習知方法的任一種而得(如已知不同 組合之高分子鏈可以角度整合的方式作調整)。然而,不管 這些特殊定義如何定義平均角度,其方位指向的角度分佈The second layer, wherein the first layer includes at least a first liquid crystal polymer (LCP) dielectric material, and wherein the first layer is combined with the second layer to make the first liquid crystal polymer dielectric material unnecessary In the case of adding a bonding material, it is directly bonded to the second layer. In a second embodiment, the present invention provides a method for manufacturing a multi-layer structure. The method includes at least the following steps: forming a page layer including stacked N substrates, which are stacked in a regular order so that N is at least 2, wherein each A first secondary structure of the adjacent secondary structure includes at least a liquid crystal polymer to be combined with a second secondary structure of the adjacent secondary structure; and 3 200405857 so that the page layer is higher than the liquid crystal in the page layer The minimum phase sequence of the molecular dielectric material is one of the lower isotropic transition temperatures, and it is under a pressure that is high enough to plastically deform all the liquid crystal polymer dielectric materials in the page layer, and does not require Each pair of adjacent secondary structures is directly laminated by placing any additional adhesive layer between the first secondary structure and the second secondary structure of each pair of adjacent secondary structures. The invention effectively reduces the manufacturing time, the manufacturing cost 'and reduces the thickness of the dielectric material layer in manufacturing the multilayer structure. [Embodiments] Liquid crystal polymer (LCP) dielectric materials have many advantages in forming a dielectric layer, including good dielectric properties, low cost, and good mechanical properties. Ancient and daily molecular dielectric materials have some properties similar to polyimide (polymer), such as good crack resistance and spread resistance, making liquid crystal polymers suitable for very thin layer processes (such as electroplating). The liquid crystal polymer dielectric film can provide better dielectric properties, better water resistance, better performance and lower cost than polyimide films. However, regardless of the multilayer structure formed by the liquid crystal polymer dielectric material, a bonding dielectric layer is usually required. The invention discloses how to eliminate the need to add an intervening adhesive layer to bond the liquid crystal polymer dielectric 2 to another material layer (such as a metal layer or a dielectric layer), so as to reduce the layer thickness, process time, and material cost. In addition, this type of liquid crystal polymer dielectric film is flame retardant without the addition of tooth additives. Multilayer composites made from this material are flame retardant without the use of self-produced materials. The liquid crystal polymer dielectric material 4 which is currently available for use in the present invention 4 200405857 is a BIAC thermotropic liquid crystal high breakup that can exhibit thermal anisotropy characteristics. It was produced by WLGore & Associates, Inc. in a sheet or roll form. Information on the South molecule of the BIAC liquid crystal can be made 2 Wang Wang searched from the website: http // www · gore · com / electronics. Another liquid crystal polymer dielectric material that is on the market and is used in the present invention is a ZYVEX LCP thermotropic liquid crystal polymer that can exhibit thermal anisotropy characteristics, which is manufactured by ⑴ Corporation in a rolling manner. In general, any liquid crystal polymer dielectric material may be suitable for the present invention depending on the required material characteristics of the application. US Patent No. 627424290 (obtained by Onodera et al. In 2001, hereinafter referred to as Onodera '242 patent), the entire contents of which are incorporated herein by reference, this patent discloses a method for manufacturing liquid crystal The method of molecular thin film includes a known thermotropic liquid crystal polyester and a thermotropic liquid crystal polyester amino compound. The liquid crystal polymer film is prepared from four compound grades shown in * 1 to Table 4 in ONODERA '242 patent. An illustration of the synthesized liquid crystal south molecular structural unit is derived from the four compound levels in Table 5 of the Ondera '242 patent. The liquid crystal polymer dielectric material disclosed in Onodera '242 patent is merely exemplary, and other liquid crystal polymer dielectric materials still fall within the scope of the present invention. In general, any method known to those skilled in the art can be used for manufacturing the liquid crystal polymer dielectric material. Liquid crystal polymer dielectric materials can exist in one of three phases: a liquid crystal phase (such as a nematic, a torsion layer), an isotropic phase, and a chemically unstable phase, each of which corresponds to three temperature zones. Crystallization temperature zone, isotropic temperature zone 5 200405857, chemically unstable attitude zone. In the liquid crystal phase or liquid crystal temperature region, the local molecular regions or ranges of liquid crystal two-molecule dielectric materials containing polymer chains can be directionally arranged (that is, anisotropic distribution) through the process. In the liquid crystal phase, different molecular regions may have different directional arrangements, and many molecular regions have only some or non-directional arrangements. These polymer chains are generally less prone to f-curves. The directionally arranged local molecular regions may include regional molecules and adjacent molecular groups, so that the spatial range of the local molecular regions may reach thousands or hundreds of angstroms or less. The macroscopic material properties of liquid crystal polymer dielectric materials (such as the coefficient of thermal expansion (CTE), dielectric constant, and thermal conductivity) are sensitive to the directional arrangement of local molecular regions, and the material characteristics of liquid crystal polymer dielectric materials also conform to the direction Sexuality is anisotropic. The macroscopic material properties of liquid crystal polymer dielectric materials also depend on the shape, size, shape distribution, and size distribution of local molecular regions. The liquid crystal polymer dielectric material is formed into a directional arrangement by a technique familiar to those skilled in the art to provide desired characteristics in a liquid crystal phase. These technologies can include: unrolling the liquid crystal polymer dielectric material at a specified temperature and speed, and extruding the liquid crystal polymer dielectric material through the film, or extruding through the film, or stretching in the direction of the roller or perpendicular to the roller, Dimensional shearing, which can also optionally be performed with a strongly polarized electric field. The liquid crystal polymer dielectric material will maintain the liquid crystal phase if its strict production is located in the liquid crystal temperature layer, that is, lower than what is called a nematic soil seeking transition temperature (TNI). Therefore, Tni represents a liquid crystal polymer dielectric material, which has a solid characteristic in the direction of liquid crystal 200405857, and its material is guided by gravity, plasticity, quasi-pressure, etc.), the dielectric characteristic pressure surface effect rises to uniformity. The liquid crystal phase transitions to an isotropic phase transition temperature. The value of Tni depends on the characteristics of the liquid crystal high-discharge material. In addition, the liquid crystal polymer dielectric material's sexual arrangement and macroscopic material characteristics will not change qualitatively within the liquid crystal temperature range, nor will it exceed the liquid crystal temperature range. The macroscopic material will not change under the temperature change of the liquid crystal temperature layer, because there is not enough thermal energy in the liquid crystal temperature layer to adapt to the directionality of the polymer chain of the liquid crystal polymer medium, in other words, to overcome the internal molecules 〇The liquid crystal polymer dielectric material is deformed when subjected to high pressure in the liquid crystal phase. For example, 'when manufacturing a link', the high voltage may be caused by the applied standard force and local irregular geometry (such as a coarse M surface sm channel, etc.) Stress concentration). Therefore, if the liquid crystal polymer dielectric material is laminated to a material layer (at least containing dielectric materials, metals, and the temperature is raised to a range of liquid crystal phase under high pressure), the liquid crystal polymer material will undergo plastic deformation and conform to The macroscopic geometry and surface features (such as channels) of the surface of the material layer. The liquid crystal polymer dielectric material is in a sufficient state and in the I state during the manufacturing process. The adjacent layer% surface and the characteristic plastic deformation ability are passed through the experimental meeting of the present invention. Unexpectedly, it is also the basis of the present invention. With the present invention, by raising the temperature to the liquid crystal temperature range, the crystalline polymer π electric material will be the adjacency table Φ of the lamination material layer, and S is enough pressure A plastic deformation process that can cause plastic deformation to adhere to adjacent surfaces while retaining its macroscopic characteristics does not require the additional adhesive layer to be bonded to the polymer dielectric material to combine with the adjacent layer. 200405857 Figure 1 is Preferred according to the present invention: The examples describe a local molecular range of 200 in the direction of a polymer chain with azimuth orientation in an isotropic liquid crystal phase. Contains directional polymer chains 201 to 208. The average azimuth direction and integration angle of polymer chains 201 to 208 are roughly the same as orientation 21. The integration of this angle can be obtained by performing any of the conventional methods (if known different The combined polymer chain can be adjusted in the manner of angular integration. However, regardless of how these special definitions define the average angle, the angular distribution of its azimuth
都呈異向性使得較佳的指向係為方位2 1 0或接近方位2 1 0。 在這張圖解中,每一條高分子鏈201至208係呈現剛 性以及半彈性結構交替的線性鏈結。例如,高分子鏈2 〇 5 至少包含連續的結構2 2 1至2 2 6,其中結構2 2 1、2 2 3以及 225為剛性結構,結構222、224以及226為半彈性結構。 在例子中的剛性結構是指一種反復替代之芳香徑環(如 苯、聯苯、臭樟腦等),如揭示於於美國專利案號第 6274242(由0nodera#人中請,參見第1表至第5表)以及 美國專利案號第59〇〇292(由Moriya等人申請,參見分子 式1至4)。該剛性結構可具有反應性官能團(如氫氧根、 銨基冑S曼基、及其化合物等)。例示的半彈性結構是指一Both are anisotropic so that the preferred pointing system is azimuth 2 10 or close to azimuth 2 10. In this illustration, each of the polymer chains 201 to 208 shows linear links with alternating rigid and semi-elastic structures. For example, the polymer chain 2 05 includes at least continuous structures 2 2 1 to 2 2 6, wherein the structures 2 2 1, 2 2 3, and 225 are rigid structures, and the structures 222, 224, and 226 are semi-elastic structures. The rigid structure in the example refers to an aromatic ring (such as benzene, biphenyl, camphor, etc.) that is repeatedly replaced, as disclosed in US Patent No. 6274242 (by 0nodera #, please refer to Table 1 to Table 5) and US Patent No. 5900292 (applied by Moriya et al., See Formulas 1 to 4). The rigid structure may have a reactive functional group (such as a hydroxide, an ammonium group, a S group, and a compound thereof). The exemplified semi-elastic structure refers to a
包含重複單元之脂肪段(如氧甲基單元、氧化乙烯單元、乙 烯驗單元、石夕氧燒化合物單元等)的高分子主鏈結構。該半 :性結構可具有化學官能團(如氫氧根、胺基、氰酸基、羧 酸以及其化合物等”上述高分子可由兩種方式製備。第一 種,鄰接 形成酯類 之剛性及半彈性結構 之末端可以化學彼此耦接以 、鍵類、氨基化合物等 並連接於高分子鏈上。 200405857 ,目同,但鏈接或連接段(酯類、醚類、氨基化合 物等)將只能為半彈性結構。A polymer backbone structure that contains repeating fatty units (such as oxymethyl units, ethylene oxide units, ethylene test units, and oxocell units). The semi-sexual structure may have chemical functional groups (such as hydroxide, amine, cyano, carboxylic acid, and compounds thereof, etc.) The above-mentioned polymers can be prepared in two ways. The first is the rigidity and semi-adjacentness of adjacent esters. The ends of the elastic structure can be chemically coupled to each other, bonds, amino compounds, etc. and connected to the polymer chain. 200405857, the same purpose, but the link or linking segments (esters, ethers, amino compounds, etc.) will only be Semi-elastic structure.
第1圖中顯示每一條高分子鏈201至2〇8呈線性鏈般 之剛f生以及半彈性結構交替鏈結,任何線性鏈般之剛性以 及半彈性結構(如非連續交替之剛性以及半彈性結構)均位 在局部分子區域内。第丨圖中顯示每一條線性鏈般之高分 子鍵201至208’任何高分子鏈均在局部分子區域内。例 如’一個局部分子區域也可或者包含一鏈性結構,且其包 含一或多條支鏈連結至一線性鏈。同時第丨圖顯示二維的 線性鏈,該局部分+區域一般係呈三維空間指向之鏈結 構。例如,任何高分子鏈201至208中的一部份可延伸於 第1圖所描述之平面上或下。因此,第1圖亦可視為三維 局部分子區域投射於二維表面,且該等鏈結係可延伸於該 描述平面之上或下。Figure 1 shows that each of the polymer chains 201 to 208 is a linear chain with rigid and semi-elastic structures alternately linked. Any linear chain-like rigid and semi-elastic structure (such as discontinuous alternating rigidity and semi-elastic structure) Elastic structure) are evenly located in local molecular regions. Figure 丨 shows that each of the high molecular bonds 201 to 208 ', like a linear chain, is in any local molecular region. For example, 'a local molecular region may or may contain a chain structure, and it contains one or more branched chains linked to a linear chain. At the same time, figure 丨 shows a two-dimensional linear chain. The local part + area is generally a three-dimensional space-oriented chain structure. For example, a portion of any of the polymer chains 201 to 208 may extend above or below the plane described in FIG. Therefore, Figure 1 can also be regarded as a three-dimensional local molecular region projected on a two-dimensional surface, and the chain links can extend above or below the description plane.
在等向相或等向溫度區中’處於專向列至等向轉變溫 度(TNI)或之上的溫度係有足夠之熱能可允許高分子於該 譯經高分子介電材料内擴散或移動以改變其方向性。因此 當溫度由TNI下升至ΤΝι上時,將使方向性以及方位指向 變的更隨機。因此,如先前所描述’由於巨觀材料特性對 液晶高分子介電材料内之高分子鏈的方位指向更敏感,故 溫度由T.N I下升至T NI上時一般巨觀材料特性都會有所變 化。當於等向溫層範圍内將液晶高分子介電材料層壓至— 材料層時,該液晶高分子介電材料會變的柔軟並液化而成 為該材料層表面及巨觀幾何表面的特徵’這都取決於隨後 9 200405857 冷卻及方向性的處理而變化 當於液態結晶溫層範圍内以 料層壓至材料層時,液晶冑 而會於該材料層巨觀幾何表 徵。本發明係教示僅於液態 介電材料層壓至材料層之方 留其材料層巨觀幾何表面以 。相反的,亦如先前所解釋, 足夠壓力將液晶高分子介電材 分子介電材料並不會流動,反 面以及表面出現塑性變形的特 結晶溫層範圍内將液晶高分子 法,並教示於層壓製成期間保 及表面之特徵。液態結晶溫層 中較低之溫度範圍可降低材料熔化或大區域分子重新取向In the isotropic phase or isotropic temperature zone, the temperature at or above the specific nematic to isotropic transition temperature (TNI) is sufficient thermal energy to allow the polymer to diffuse or move within the translated polymer dielectric material. To change its directionality. Therefore, when the temperature rises from TNI to Tm, the directivity and azimuth will become more random. Therefore, as previously described, “because the macroscopic material characteristics are more sensitive to the orientation of the polymer chains in the liquid crystal polymer dielectric material, the general macroscopic material characteristics will be somewhat different when the temperature rises from TN I to T NI. Variety. When the liquid crystal polymer dielectric material is laminated to the material layer in the isotropic layer range, the liquid crystal polymer dielectric material becomes soft and liquefied to become a feature of the surface of the material layer and the macroscopic geometric surface. This all depends on the subsequent cooling and directional treatment of 9 200405857. When the material is laminated to the material layer within the temperature range of the liquid crystal temperature layer, the liquid crystal will be characterized by the macroscopic geometry of the material layer. The present invention teaches that only the liquid dielectric material is laminated to the material layer, leaving the macroscopic geometric surface of the material layer. On the contrary, as explained earlier, the liquid crystal polymer dielectric material will not flow under sufficient pressure, and the liquid crystal polymer method will be taught in the range of the special crystal temperature layer with plastic deformation on the reverse surface and the surface. Preserved surface characteristics during pressing. Lower temperature range in the liquid crystal warming layer can reduce material melting or large-area molecular reorientation
的風險。另外的優點則是不需外加的黏結層即可將液晶高 分子介電材料層壓至材料層。 第 2圖根據本發明較佳實施例描述等向相中具一些 或沒有方向性高分子鏈之局部分子區域250,該區域250 包含具有方向性之高分子鏈251至260,以使其平均方位 指向以及整合角度除以高分子鏈201-208的方位指向大致 為零,亦即區域25〇内並沒有較佳的方向或方位角。risks of. Another advantage is that the liquid crystal high-molecular dielectric material can be laminated to the material layer without an additional bonding layer. FIG. 2 illustrates a local molecular region 250 with some or no directional polymer chains in an isotropic phase according to a preferred embodiment of the present invention. The region 250 contains directional polymer chains 251 to 260 to make it average orientation. The direction and integration angle divided by the azimuth direction of the polymer chain 201-208 is approximately zero, that is, there is no better direction or azimuth in the area 25 °.
每一個高分子鏈251至260已表示係為剛性以及半彈 性結構交替組成的線性鏈。例如,高分子鏈259由連續結 構271至277組成高分子體,其中,271、273、275以及 277為半彈性結構,且其中272、274及276為剛性結構。 第2圖之剛性以及半彈性結構之高分子鏈分別類似於第1 圖中之剛.性以及半彈性結構,且參照第1圖有關於先前所 討論之剛性以及半彈性結構的例示亦同樣適用於第2圖之 剛性及半彈性結構。 第2圖中顯示每一條高分子鍵25i至260均由剛性以 10 200405857 及半彈性結構交替之線性鏈結,任何剛性以及半彈性結構 之線性鏈結(如非連續交替之剛性以及半彈性結構)亦位於 局部分子區域内。同時第2圖中也顯示每一條線性鏈結構 之高分子鏈2 5 1至2 6 0,任何高分子鏈結構均位於局部分 子區域内。舉例,一傭局部分子區域也/或可能包含一鏈性 結構,其具有一或許多支鏈連結至一線性鏈。第2圖係一 二維的線性鏈表示,該局部分子區域一般具有呈三維空間 指向的鏈性結構。例如,高分子鏈25 1至260中的任一部 份均可延伸於第2圖所描述平面之上或下。因此,第2圖 亦可視為是三維局部分子區域投射於二維表面,且該等鏈 結係可延伸於該描述平面之上或下。 在化學不穩定相或化學不穩定溫度範圍中,即發生於 溫度較向列至等相轉變溫度(Tni)為高的溫度,其有足夠之 熱能以使液晶高分子介電質内產生化學分解。該化學不穩 定相與本發明關係並不大。 本發明係揭示一種用以將液晶高分子介電材料層壓 到材料層上(如介電層、金屬層或其結合)之方法。如本發 明之發明背景所述,下文將討論本發明之執行試驗。直至 1 994年的測試,本發明曾以習知技術方法進行液晶高分子 的溶融以建立一多層.結· ’其利用精確的溫度控;;=熔 點溫度(亦即Tni)之上或之下層壓該等材料,且該溶點溫度 係以微差掃描熱量儀或以平板流變計所決定出。這些實驗 之特色在於反覆進行所導致的黏結、層壓厚度邊緣擠出 等’重要的是該些層壓的物理特性。應特別注意的是這些 11 υυ^5857 反 性 方 降 性 且 量 同 大 進 亦 於 該 用 加 接 時 因 包 要 是 溫 4進行所造成熱膨脹係數的變化,顯然該基底層壓的特 已經改供 , λ & ’破壞了使用時的功效,因此需要使用黏結層 能形成多層材料。 ;2〇〇2年6到9月間的實驗已證明在將溫度 低至 Τ、 1、/ «ΤΓ Μ 下將可達到黏結而不會改變基底層壓的特 ―例如也可以利用Gero BIAC材料,其厚度為〇 〇〇2mil 邊都有15μιη厚之銅包覆。將其銅蝕刻後,發明者 冽其熱膨脹係數約為2〇至25ppmrc,與廠商所提供相Each of the polymer chains 251 to 260 has been shown as a linear chain consisting of alternating rigid and semi-elastic structures. For example, the polymer chain 259 is composed of continuous structures 271 to 277. Among them, 271, 273, 275, and 277 are semi-elastic structures, and 272, 274, and 276 are rigid structures. The polymer chains of the rigid and semi-elastic structures in Figure 2 are similar to the rigid and semi-elastic structures in Figure 1, respectively, and the illustrations of the rigid and semi-elastic structures discussed earlier with reference to Figure 1 also apply. The rigid and semi-elastic structure in Figure 2. Figure 2 shows that each polymer bond 25i to 260 is a linear link with rigidity alternating with 10 200405857 and semi-elastic structure. Any rigid and semi-elastic structural linear link (such as discontinuous alternating rigidity and semi-elastic structure) ) Is also located in the local molecular region. At the same time, the polymer chains of each linear chain structure 2 51 to 2 60 are also shown in Figure 2. Any polymer chain structure is located in the local sub-region. For example, a local molecular region may also / or may contain a chain structure with one or more branch chains linked to a linear chain. Figure 2 is a two-dimensional linear chain representation. The local molecular region generally has a three-dimensionally oriented chain structure. For example, any part of the polymer chain 25 1 to 260 may extend above or below the plane described in FIG. 2. Therefore, Figure 2 can also be regarded as a three-dimensional local molecular region projected on a two-dimensional surface, and the link systems can extend above or below the description plane. In a chemically unstable phase or chemically unstable temperature range, that is, a temperature that is higher than the nematic to isophase transition temperature (Tni), which has sufficient thermal energy to cause chemical decomposition in the liquid crystal polymer dielectric . This chemically unstable phase has little to do with the present invention. The invention discloses a method for laminating a liquid crystal polymer dielectric material on a material layer (such as a dielectric layer, a metal layer, or a combination thereof). As described in the background of the invention, the implementation tests of the invention will be discussed below. Until the test of 1994, the present invention used conventional techniques to melt the liquid crystal polymer to establish a multilayer. The junction uses' accurate temperature control; it is equal to or above the melting point temperature (that is, Tni). These materials are laminated below, and the melting point temperature is determined by a differential scanning calorimeter or a plate rheometer. The characteristics of these experiments are the sticking caused by repeated iterations, the extrusion of the thickness of the edges of the laminate, etc. 'What is important is the physical characteristics of the laminates. It should be particularly noted that these 11 υυ ^ 5857 are anti-reflective and have the same amount of change. When the connection is used, the thermal expansion coefficient caused by the temperature of the package is 4. Obviously, the characteristics of the substrate laminate have been changed. , λ & 'The use efficiency is destroyed, so the use of an adhesive layer can form a multilayer material. ; Experiments between June and September 2002 have proven that at temperatures as low as T, 1, / «ΤΓ Μ will achieve adhesion without changing the characteristics of substrate lamination-for example, Gero BIAC materials can also be used, Its thickness is 002mil and the sides are covered with 15μm thick copper. After the copper is etched, the inventor has a thermal expansion coefficient of about 20 to 25 ppmrc, which is in line with that provided by the manufacturer.
熱機分析儀係用於判定一平板上(經量測約13M8英吋 不同位置之熱膨脹係數。該熱膨脹於X、Y軸兩方向 仃量測(該兩方向係與BIAC材料層厚方向呈直角,且其 彼此垂直)。薄膜纖維結構及更常見之接觸式探針均 此量測中。 〜α〜μ ,工ί又 町衣爾多層層The thermomechanical analyzer is used to determine the thermal expansion coefficient on a flat plate (measured at about 13M8 inches at different positions. The thermal expansion is measured in the X and Y directions (the two directions are at right angles to the thickness of the BIAC material layer). And they are perpendicular to each other.) Both the film fiber structure and the more common contact probes are being measured. ~ Α ~ μ, Gong Yi You Yier multilayer
辑壓包含四層到六層使用G〇re BIAC的材料,其中 之銅已被蝕刻掉。以每分鐘15°F的加溫速度製程將 到56〇°F以進行層壓,並於該溫度停留約2〇到3〇分 著以母分鐘約2〇°F速度冷卻至室溫。此處所定義的 間’包括在申請專利範圍内者,在層壓製程期間内 時間間隔而使層墨製程期間的部分實驗、所有層壓 括所有製程步驟達到最高溫度(由於統計誤差以及 的變異,此最高溫度仍落於一合理溫度内)^應、、主 ’該最咼溫度5 60〇F仍低於Gore BIAC材料之液曰 度63 5 °F(假設此處係等同於τΝΙ)。該層壓係使用電 12 200405857 鋼板進行平板壓,整個製程中壓力 七雖持在2500psi。 用不鏽鋼壓板以及銅釋放薄片, 龙使用四氟化聚乙烯 (PTFE)及銅的插入層以於工具上或 〜 方行成壓板。在移除 這些壓力後,發明者並未發現任何介 、 電材料於層壓中溢出 邊緣。 X、Y兩方向的熱膨 化。在執行黏結測試 直至内層黏結強度測 不停重複熱力學上的分析並判定 脹係數以層壓製程處理後並未發生變 後’以180度方向每分鐘拉1英吁,Compression consists of four to six layers of material using GO BIAC, of which copper has been etched away. The process was performed at a heating rate of 15 ° F per minute to 56 ° F for lamination, and the temperature was maintained at about 20 to 30 minutes while cooling to room temperature at a rate of about 20 ° F per minute. The interval defined here includes those within the scope of the patent application, the time interval during the lamination process, so that some of the experiments during the lamination process, all laminations, and all process steps reach the highest temperature (due to statistical errors and variations, This maximum temperature still falls within a reasonable temperature), the main temperature should be 5 60 ° F is still lower than the liquid degree of Gore BIAC material 63 5 ° F (assuming here is equivalent to τΝΙ). The lamination system uses electric 12 200405857 steel plate for flattening, and the pressure is maintained at 2500 psi throughout the entire process. Use stainless steel pressure plate and copper release sheet. Long uses tetrafluoride polyethylene (PTFE) and copper insert layer to form a pressure plate on the tool or ~. After removing these pressures, the inventors did not find any dielectric or electrical materials overflowing the edges in the lamination. Thermal expansion in X and Y directions. After performing the adhesion test until the inner layer adhesion strength was measured, the thermodynamic analysis was repeated and determined. The expansion coefficient was not changed after the lamination process was processed. ′ Pulled 1 inch per minute at 180 degrees.
得超過6碎/英对。Get more than 6 pieces / British pair.
相同的層壓製程係不段重複以評估能容納實際可行 的電路特徵為止。此處使用一種介電層R〇ger 28〇〇 (PTFE/Si〇2填料),且該介電層R〇ger28〇〇表面特徵包括 12μιη厚的銅形成寬度30至5〇μιη之電路線。G〇re BIAC LCP (5 Ομπι厚)係置於該R0ger 2800介電層表面上並以先前 描述的條件進行層壓。在移除並及隨後的十字切塊部分 中’發現該電路特徵已完全被包覆住。如同先前般,並沒 有任何介電材料於層壓中溢出邊緣。黏結測試證明液晶高 分子和Roger 2800介電材料間的内層黏結強度係超過4磅 /英对。 於另一實驗中,係將標準微影技術應用在銅覆蓋的液 晶高分子.(亦即將15μιη的銅覆蓋於Gore BIAC LCP)以於 該銅之一表面上形成50至500 μπι直徑寬的孔洞圖案。Gore BIAC LCP的第二薄片(銅已移除)將置靠於該具有孔洞的 第一薄片上。如先前所描述,在重複層壓製程後,將其部 13 200405857 份進行十字切移並判定該此 ‘子L洞P —The same lamination process is not repeated until the actual circuit characteristics can be evaluated. A dielectric layer Roger 2800 (PTFE / SiO 2 filler) is used here, and the surface characteristics of the dielectric layer Roger 2800 include 12 μm thick copper to form circuit lines with a width of 30 to 50 μm. Gore BIAC LCP (50 μm thick) was placed on the surface of the Roger 2800 dielectric layer and laminated under the previously described conditions. It was found in the removed and subsequent cross-cut sections that the circuit features were completely covered. As before, no dielectric material overflowed the edges in the laminate. Adhesion tests have proven that the inner layer adhesion strength between the liquid crystal polymer and the Roger 2800 dielectric material exceeds 4 pounds per inch. In another experiment, standard lithography technology was applied to a liquid crystal polymer covered with copper. (That is, 15 μm of copper is covered by Gore BIAC LCP) to form a 50-500 μm wide hole in one of the copper surfaces. pattern. The second sheet of Gore BIAC LCP (copper removed) will rest on the first sheet with holes. As described previously, after repeating the lamination process, cross-cut the 13 200405857 parts of it and determine the ‘child L-hole P —
電材料。同時也再次發現未 匕元全充滿BIAC LCP 邊緣,且該板的黏結力 任何介電材料於層壓中溢出 乜都一致。 層壓實驗初次是在4/, X ,, 噸壓力機於非真空下推— 4的平板尺寸上以電熱式7」 丹工仃,該 有限公司所製S,將所俨4 熱式壓力機係由PHI股份 壓力進行使之效果加倍,最、真二下以125噸Wabash 機層壓為13〃 X18〃的規格再以600嘴電熱式TMP壓力电 材料。 Electric materials. At the same time, it was found again that the edge of the BIAC LCP was completely filled, and the adhesion of the board was consistent with any dielectric material overflowing in the lamination. For the first time, the lamination experiment was carried out on a 4 /, X ,, ton press with a non-vacuum push-down—the flat plate size of 4 was electro-thermal 7 ″ Dan Gongye, the company ’s S, made the 4 heat press. The effect is doubled by the pressure of PHI shares. The most and the real two are laminated with 125 tons of Wabash machine to 13〃 X18〃 specifications and then 600-mouth electrothermal TMP pressure.
實際製造時平板尺寸上的黏^此等較大的樣本係用於制定 、,°均勻、洞填充以及物理特性。 取决於先刚的實驗以及輔 八爺U+ 甩助77析,其將與液晶高分子 J電材料的方向次序特性模一 曰 # 、、、 致(如先前所述),即在該 液日日及荨向中的方向會有所 ^ t| 〇 t吳。本發明將液晶高分子介 電材料層壓至一材料層(如介 丨電層、金屬層、化合層)之基 本技術係執行在完全沒有落 、田 ^ ’洛入荨向溫度範圍内之液態結晶 -又範圍内的/皿度τ(即T<TNI),充分的加壓一段時間以使 該液晶高分子彳電材料能有效的層a至該材料層。These larger samples are used to formulate the uniform size, hole filling, and physical properties of the plate when actually manufactured. Depends on the experiment by Xiangang and the analysis of the auxiliary Uye U + to help 77 analysis, it will be the same as the directional order characteristic of the liquid crystal polymer J electric material # ,,, and (as described earlier), that is, in the liquid day And the direction of the net will be ^ t | 〇t Wu. The basic technology of laminating a liquid crystal polymer dielectric material to a material layer (such as a dielectric layer, a metal layer, and a compound layer) of the present invention is implemented in a liquid state in a temperature range that does not fall at all. Crystallization / Range τ (i.e., T < TNI), sufficient pressure for a period of time to enable the liquid crystal polymer electroluminescent material to effectively layer a to the material layer.
對於Gore BIAC LCP材料而言,向列至等向轉變溫度 勺為63 5 0F。對Gore BIA LCP材料而言,最大的層壓溫 :a】於635 °F,然而,由於溫度的不確定以及環境變化, 最大的製程溫度約可約為620°F ,而典型層壓溫度範圍尤For Gore BIAC LCP materials, the nematic to isotropic transition temperature is 63 5 0F. For Gore BIA LCP materials, the maximum lamination temperature: a] is 635 ° F. However, due to temperature uncertainty and environmental changes, the maximum process temperature can be about 620 ° F, and the typical lamination temperature range especially
八匕括· 540〇F到620oF以及545〇F到580°F。對於ZYVEX L C P 从 付料而言,向列至等向轉變溫度大約為536〇F,且其 最高層壓溫度應小於536〇F;然而,由於溫度的不確定以 及裏&變化,最高製程溫度可約為520°F,而典型層壓溫 14 200405857 度範jg女、# 印九*包括:44〇0F到520°F以及465〇F到590°F。 雖然在之前實驗中壓力係執行在25 OOpsi的壓力下, 」本發明使用1000到3 000p si的壓力範圍亦可獲較好的黏Eight daggers: 540F to 620oF and 545F to 580 ° F. For ZYVEX LCP, the nematic to isotropic transition temperature is about 536 ° F, and its maximum lamination temperature should be less than 536 ° F; however, due to the uncertainty of the temperature and the change in temperature, the highest process temperature It can be about 520 ° F, and the typical lamination temperature is 14 200405857 degrees. Fan Jg female, # 印 九 * include: 4400F to 520 ° F and 4650F to 590 ° F. Although the pressure was performed at a pressure of 25 OOpsi in the previous experiment, the present invention can obtain better viscosity using a pressure range of 1000 to 3 000 p si.
結度。"4^ D D 也缸明均勻度的改善係與壓力的增加成比例。該壓 力的有效性取決於層壓製程中必須填滿之特徵的深寬比。 日月 jfer1 rttl jli 可所執行的實驗也指出2000到25 OOpsi的壓力範圍 效果特別好,這在實作上以及使用經濟上也適用在傳統製 衣境下。過度壓力則會有縮短施壓工具及平板壽命的缺 … 發明者所使用的製程時間包括將液晶高分子介電 ㈣以-最高溫度施壓持續最少2到5分鐘,最長則到6〇 分鐘。也發現長時間下雖然某些黏結均句性會有改善,但 也並未發現任何邊界壓出或溢流現象。因&,最大的製程 時間對溫度和壓六而山 , 鲛力而δ —般至少為2分鐘,且較可行的製 程時間範圍尤其白紅.。t 、括· 2到6〇分鐘以及15到30分鐘。所 需最短的製程時問必、須& 須確⑽&度的均勻性。然而增加製程 時間對填滿該此特徵的σ▲ 一特徵的口口質應較有幫助。另一方面, 的時間對於製造而言是較方栖从 ^ 。疋較方便的,並且較短的製程時 反應達成經濟的目的。鈇 的然而,由層壓所得特性的優點來看 製程時間並未看到有任何上限。 健占來看 重複執行層壓 變層壓壓力中的所得物 ”度並藉者改 仏a 1开轉18 0 ),使低點變成高點, 將使黏、、,口均勻度更佳,特别 .、 1特別是延著邊緣的部分。 .根據液晶兩分子介雷 料的时論並測試進行將液晶 200405857 ==材料層壓至材料層相關之層壓技術中,用於本 其係因二晶…介電材料:為經排整之液晶高分子, 部份係以# # + 電材枓的製造期間 (亦即方::域方向性為指 點是在1以:欠序)也可“現。耗前面討論焦 適 4赞明之層壓黏結製程亦 微粒二 的液晶高分子㈣,諸如陶…機物、Knot degree. " 4 ^ D D The improvement in cylinder uniformity is proportional to the increase in pressure. The effectiveness of this pressure depends on the aspect ratio of the features that must be filled during the lamination process. The experiments performed by sun and moon jfer1 rttl jli have also pointed out that the pressure range of 2000 to 25 OOpsi is particularly effective, which is also practical and economically applicable in the traditional clothing environment. Excessive pressure will have the disadvantage of shortening the life of the pressure tool and the plate ... The process time used by the inventor includes applying the liquid crystal polymer dielectric at a maximum temperature for a minimum of 2 to 5 minutes and a maximum of 60 minutes. It was also found that although the syntactic properties of some bonds would improve over time, no boundary extrusion or overflow phenomenon was found. Because of &, the maximum process time is dependent on temperature and pressure, and the pressure is usually at least 2 minutes, and the more feasible process time range is especially white and red. t, including 2 to 60 minutes and 15 to 30 minutes. The shortest process is required, and the & must be uniform. However, increasing the processing time is more helpful for filling the σ ▲ feature of this feature. On the other hand, the time for manufacturing is relatively square.疋 It is more convenient and has shorter processing time to achieve economic goals. However, judging from the advantages of the characteristics obtained by lamination, there is no upper limit on the processing time. From the point of view of Jianzhang, the results obtained by repeatedly performing the lamination and lamination pressure are changed by changing the value of a 1 and turning 18 0), so that the low point becomes the high point, which will make the sticky, uniform, and mouth uniformity better. In particular, 1, especially the part that extends along the edge. According to the theory and test of liquid crystal two-molecule dielectric materials, the liquid crystal 200405857 == material is laminated to the material layer related lamination technology for its own reasons Dimorph ... Dielectric material: It is a sorted liquid crystal polymer, partly based on the production of ## + 电 材 枓 (that is, square :: domain directionality is pointed at 1 to: under order). Now. Consuming the previous discussion, Jiao Shi 4 praised the lamination and bonding process is also a particle of liquid crystal polymer ㈣, such as ceramics ...
作λ ===維者、或甚至是金屬粒子。再者,經擴展之PTF£ '' 门77子"電材料之強化層亦屬於本發明之範圍。 在本發明中,液晶高分子介電材料的所欲特性係有應 用屬性的,對於不同的應用而言,材料特性可包含:平面 二y脹係數(亦即垂直於液晶高分子介電層厚度方向的熱 =脹係數)約為10到25ppm/〇c ;介電常數約2 5到3 〇, θ气’、數勺3到6 GPa ’消散因子約少於0.003,濕度於 及2atm下約少〇 2%。該液晶高分子介電層厚度 可根據夕層内結構的所欲表現特性而有不同設計,上述厚Make λ === dimension, or even metal particles. Furthermore, the reinforced layer of the PTF £ 77 gate " electrical material is also within the scope of the present invention. In the present invention, the desired properties of the liquid crystal polymer dielectric material have application properties. For different applications, the material properties may include: a planar two-y expansion coefficient (that is, perpendicular to the thickness of the liquid crystal polymer dielectric layer) Directional heat = expansion coefficient) is about 10 to 25 ppm / 〇c; dielectric constant is about 25 to 30, θ gas, 3 to 6 GPa, the dissipation factor is less than 0.003, and the humidity is about 2 atm. 〇2% less. The thickness of the liquid crystal polymer dielectric layer can be differently designed according to the desired performance characteristics of the inner layer structure.
十表現上的要求’亦可為均等的。對製造效率而 言,層壓一般係以一包含多頁層(multiple pages)之「冊板 (book)」來執行。 接下的#論將揭露兩種執行多層層壓内結合結構(稱 為頁層)的方法,稱為平板式層壓器(參見第3圖至第4圖) 以及壓力鍋層壓器(參見第5圖)。 第3及第4圖係描述根據本發明之較佳實施例之一種 用於層壓包含液晶高分子介電材料之數個堆疊層的平板式 16 200405857Ten performance requirements' can also be equal. In terms of manufacturing efficiency, lamination is generally performed with a "book" containing multiple pages. The following #theory will reveal two methods of performing a multi-layer laminated internal bonding structure (called a ply), called a flat laminator (see Figures 3 to 4) and a pressure cooker laminator (see Figure Figure 5). Figures 3 and 4 describe a flat plate type for laminating several stacked layers containing a liquid crystal polymer dielectric material according to a preferred embodiment of the present invention. 16 200405857
層壓器,在第3圖中,係包括一以支架302作結構支撐的 平板式層壓器300,其具有一上平台支撐體3 04、一中間平 台支撐體308、一下平台支撐體306、一上平板3 22、兩個 中平板324以及326、一下平板328、數個冊板311至313、 導桿320、液壓系統329、真空幫浦340、真空供應器342。 該等平板322、324、326、328以及冊板311至313可藉該 中間平台支撐體308由下方支撐,且並以上方平台支標體 3 04由上方限制住。該等平板322、324、326以及328係 橫向支撐並以導桿320作垂直引導。液壓系統329包含一 個液壓缸322、液壓流體334、一活塞330以及一幫浦(未 示出),該幫浦係藉由一耦接至幫浦之供應線來循環該液壓 流體334。該液壓流體334被用來提供壓力至該等平板。 該液壓流體334典型的操作壓力係於接近5000psi之範圍 内。該等施於冊板的壓力係取決於該冊板相關尺寸對於液 壓活塞3 3 0的直徑。本發明中,其尤其係將約1 〇〇〇到 3 0 00p si的壓力範圍施於冊板内的產物層。亦可藉由真空 幫浦340和真空供應器342來使處理室壓力形成真空,以 降低層壓製程中的氧化及空孔。或者,於層壓操作期間亦 可省略真空幫浦340或關掉不使用。此處並未顯示用於平 板之加熱或冷卻系統(其可電熱式或液體加熱式或流體冷 卻式)之供應通道或供應線^ 冊板311係置於上平板322和中間平板324間,冊板 312係置於中間平板324及中間平板326之間,冊板313 係置於中間平板3 2 6和下平板3 2 8間。同時第3圖亦顯示 17 200405857The laminator, in FIG. 3, includes a flat-bed laminator 300 supported by a bracket 302 as a structure, which has an upper platform support 304, an intermediate platform support 308, a lower platform support 306, An upper plate 3 22, two middle plates 324 and 326, a lower plate 328, several book plates 311 to 313, a guide rod 320, a hydraulic system 329, a vacuum pump 340, and a vacuum supplier 342. The flat plates 322, 324, 326, 328, and book plates 311 to 313 can be supported by the middle platform support body 308 from below, and restrained from above by the upper platform support body 304. The flat plates 322, 324, 326, and 328 are laterally supported and vertically guided by the guide rod 320. The hydraulic system 329 includes a hydraulic cylinder 322, a hydraulic fluid 334, a piston 330, and a pump (not shown). The pump circulates the hydraulic fluid 334 through a supply line coupled to the pump. The hydraulic fluid 334 is used to provide pressure to the plates. The hydraulic fluid 334 typically has an operating pressure in the range of approximately 5000 psi. The pressure applied to the plate depends on the size of the plate relative to the diameter of the hydraulic piston 3 3 0. In the present invention, it is a product layer in a booklet that is applied with a pressure range of about 1,000 to 3,000 p si. A vacuum pump 340 and a vacuum supplier 342 can also be used to form a vacuum in the processing chamber pressure to reduce oxidation and voids in the lamination process. Alternatively, the vacuum pump 340 can be omitted or turned off during the laminating operation. The supply channels or supply lines for the heating or cooling system of the plate (which can be electrically or liquid-heated or fluid-cooled) are not shown here. The book plate 311 is placed between the upper plate 322 and the middle plate 324. The plate 312 is placed between the middle plate 324 and the middle plate 326, and the booklet plate 313 is placed between the middle plate 3 2 6 and the lower plate 3 2 8. Figure 3 also shows 17 200405857
冊板311至313、該平板式層壓器300可處理至少該等冊 板之一者以及該上支撐體3 04以及中支撐體308間與許多 可幾何安配般多的冊板,考慮到平板及冊板在310方向的 厚度。冊板311至313之每一者至少包含一或多個頁層, 且每一頁層至少包含多層及/或多層結構,該等多層及/或 多層結構欲一起透過活塞330在310方向的移動以使得每 一冊板係於該等接觸冊板兩側之平板間被壓縮(例如冊板 312係壓縮於平板3 24和326間)。每一個頁層之多層或多 層結構至少包含一個或多個液晶高分子介電層。在施壓行 動中,活塞330係於310方向上升,使該等平板322、324、 326、328開始與冊板311至313接觸。於層壓製程期間, 該等接觸冊板之平板不但以表面壓縮該等冊板,也會以熱 源將每一冊板内之頁層内的液晶高分子介電層的溫度提 昇,這將於下文中進行討論。The book plates 311 to 313, the flat-bed laminator 300 can handle at least one of the book plates, and between the upper support body 304 and the middle support body 308, and as many book plates as possible can be installed geometrically. Plate and booklet thickness in the 310 direction. Each of the book plates 311 to 313 includes at least one or more page layers, and each page layer includes at least a multi-layer and / or multi-layer structure, which are to be moved in the 310 direction through the piston 330 together So that each book plate is compressed between the flat plates on both sides of the contact book plates (for example, the book plate 312 is compressed between the flat plates 3 24 and 326). The multi-layer or multi-layer structure of each page layer includes at least one or more liquid crystal polymer dielectric layers. During the pressing operation, the piston 330 is raised in the 310 direction, so that the flat plates 322, 324, 326, 328 come into contact with the plates 311 to 313. During the lamination process, the flat plates contacting the book plates not only compress the book plates by the surface, but also raise the temperature of the liquid crystal polymer dielectric layer in the page layer in each book plate by a heat source. Discussed below.
第4圖係表示第3圖中冊板312和平板3 24以及326 依據本發明較佳實施例之詳細結構。冊板3 1 2至少包含可 替換順序的數個平板層以及壓墊3 62以及3 64間的數個頁 層。尤其是,該冊板3 1 2至少包含可交換順序的··平板層 37〇、頁層357、平板層380、頁層358以及平板層390。 平板層370至少包含一位於釋放片371以及373間的壓平 板372。該壓平板372有助於壓平該頁層357。在選擇壓平 板372的材料有許多考量,包括其厚度、尺寸、熱膨脹特 性。在許多應用中,壓平板3 72可以包含數片不銹鋼。該 等釋放片371和373應該包含一材料(例如銅)以讓該等可 18 200405857 於層壓製程後易使平板層容易自頁層分離。該平板層380 包含一位於釋放片381和383間的壓平板382,且該壓平 板382和該等釋放片381和383分別類似壓平板372和釋 放片371和373。該平板層390包含一位於釋放片391和 393間的壓平板392,且該壓平板392和釋放片391和393 分別類似壓平板372和釋放片371和373。該等壓熱墊362 和364可包含一補強材料,以藉由補償該等頁層及釋放片 中空間厚度不均勻的方式以進行更均勻的層壓。 平板324以及326係是類似的結構。在平板324中, 加熱元件354 —般可用任何該領域所熟知的方式為之,例 如以數個電阻式加熱器或一經加熱之循環流體(如油)等來 加熱。導入管351和導出管352係用以使循環流體(如空 氣、水等)通過平板324以進行冷卻。平板324也包含熱耦 合埠353以利用熱耦來量測平板324之溫度。平板324係 以包覆平板3 55捆覆以在壓平該冊板312時可平坦該冊板 3 12。該包覆平板355係為熱導體,並將由加熱元件354 所生成的熱傳遞至冊板312。該等包覆平板應有更良 子的"、、傳導1± ’且在—些應用上亦可包含更堅硬的鋼。 第5圖為根據本發明較佳實施例描述用於層壓包含 液晶高分子介電材料之堆疊層的壓力鍋層壓器。在第5圖 中,一層·壓壓力鍋400包含以圍牆4〇2環繞的槽體4〇4。 該槽體404包含一個由彈性膜418封住真空袋419。一冊 板410被放置於該真空袋419内。該真空袋々Η内可有不 同的結構,但必須完全包覆該冊板4丨〇,並具有一些彈性 19 200405857 以使真空袋419能適應抽真空時的冊板4ι〇(描述於 infra)。該真空袋419和該冊板41〇被隨即置於槽體4〇4 後並接著岔封。該真空袋419也包含氣體通道4〇9以使真 空袋419利於將該真空袋419抽成真空,真空袋419以及 所包含的冊板410係以一托盤412支撐。彈性膜418具有 壓力限度,以與該彈性膜418外的槽體4〇4内的加壓、加 熱氣體(如氮)交界。藉著真空幫浦4〇6經由一真空供應線 4 0 8以將真空袋4 1 9内的空氣排出,以控制彈性膜4丨8外 表面和真空袋419間的壓力差。該經加壓、加熱的氣體42〇 係藉一氣體源414通過氣體入口管路416以供應至槽體 404内。因此’該氣體42〇係通過該經升溫及升壓之冊板 410之媒介,以將_些頁層層壓至冊板41〇内。所得之層 壓係與以平板層壓式所得之結果相似,皆可達到垂直於冊 板41 0的壓縮應力。然而,由於冊板4丨〇外表面缺乏剪應 力,一般係使用該壓力鍋400來改善壓力均勻性。雖然第 5圖僅顯示一真空袋,但本發明範圍亦同樣包括數個可位 於槽體404内的真空袋。 對於平板式層壓器和層壓壓力鍋而言,溫度、壓力以 及製程時間都可依據所需以將一或多層液晶高分子介電材 料層壓至其他材料層(將於下文進行討論)。因此於層壓製 程中,該一經高分子介電材料應於等向溫度範圍内之液態 結晶溫度範圍内的溫度T(即T<TNI)下,充分加壓一段時間 以使該液晶高分子介電材料能有效的層壓至該材料層。對 於許多應用上,壓力在1 000到3 000psi將有很好的黏結效 20 200405857 果。對最高溫度及壓力的製程時間而言…般至少為兩分 釦且適合的反應溫度尤其包括:2到6 0分鐘以及丨5到 3 0分鐘。 該熟習該領域者均知層壓習知熱穩定介電層(如環氧 基,預玻璃)’其比較結果(如黏結性和流性)均可在降低麼 力下獲得。這暗示在液晶高分子中,降低壓力(也可能會有 兩個因素)也許更有效’且更可降低以層壓壓力鋼所進行的 花費。 力鍋可用於將堆疊 其它該領域所熟知 、製程時間的條件 除了對於平板式層壓器和層壓壓 之液晶高分手介電層層壓至材料層外, 的層壓壓力硬體在依照前述溫度、壓力 下亦可進行上述層壓。 s壓製程可用於將經堆叠之液晶高分子介電材料 電材料層(無論是液晶高分子介電材料或非液晶 分子介電材料)、4金屬層(如信號層、電源層、基層等) 及其信號層等。於#搂认地具占 、乂樣的堆疊中,應注意層與層之間的 準。每一個銅覆介雷 是)丨電材枓中心均有參考(基準的)洞以FIG. 4 shows the detailed structure of the book plate 312 and the flat plates 3 24 and 326 in FIG. 3 according to the preferred embodiment of the present invention. The book plate 3 1 2 includes at least a plurality of plate layers in a replaceable order and a plurality of page layers between the pressure pads 3 62 and 3 64. In particular, the book plate 3 1 2 includes at least the exchangeable plate plate 37, the page layer 357, the plate layer 380, the page layer 358, and the plate layer 390. The flat plate layer 370 includes at least a flattening plate 372 located between the release sheets 371 and 373. The platen 372 helps to flatten the sheet layer 357. There are many considerations in selecting the material for the flattening plate 372, including its thickness, size, and thermal expansion characteristics. In many applications, the platen 3 72 may include several pieces of stainless steel. The release sheets 371 and 373 should contain a material (such as copper) so that the plate layer can be easily separated from the sheet layer after the lamination process. The plate layer 380 includes a platen 382 located between the release plates 381 and 383, and the platen 382 and the release plates 381 and 383 are similar to the platen 372 and the release plates 371 and 373, respectively. The plate layer 390 includes a platen 392 located between the release plates 391 and 393, and the platen 392 and the release plates 391 and 393 are similar to the platen 372 and the release plates 371 and 373, respectively. The autoclaving pads 362 and 364 may include a reinforcing material for more uniform lamination by compensating for uneven thicknesses of the sheets and the space in the release sheet. The flat plates 324 and 326 have similar structures. In the flat plate 324, the heating element 354 can generally be heated in any manner well known in the art, such as heating with several resistance heaters or a heated circulating fluid such as oil. The inlet pipe 351 and the outlet pipe 352 are used to pass circulating fluid (such as air, water, etc.) through the flat plate 324 for cooling. The plate 324 also includes a thermal coupling port 353 to measure the temperature of the plate 324 using the thermal coupling. The plate 324 is bundled with a covering plate 3 55 so as to flatten the book plate 3 12 when the book plate 312 is flattened. The covering plate 355 is a heat conductor, and transfers heat generated by the heating element 354 to the book plate 312. These cladding plates should have a more good ", conduct 1 ± ' and may also include harder steel in some applications. Figure 5 illustrates a pressure cooker laminator for laminating stacked layers containing a liquid crystal polymer dielectric material according to a preferred embodiment of the present invention. In FIG. 5, the one-layer pressure cooker 400 includes a groove 404 surrounded by a surrounding wall 402. The tank 404 includes a vacuum bag 419 enclosed by an elastic film 418. A volume plate 410 is placed in the vacuum bag 419. The vacuum bag 々Η can have different structures, but it must completely cover the booklet 4 丨 〇 and have some flexibility 19 200405857 so that the vacuum bag 419 can adapt to the booklet 4ιo when vacuuming (described in infra) . The vacuum bag 419 and the booklet plate 41 were then placed behind the tank body 404 and then sealed. The vacuum bag 419 also includes a gas channel 409 to facilitate vacuuming the vacuum bag 419. The vacuum bag 419 and the included plate 410 are supported by a tray 412. The elastic film 418 has a pressure limit and interfaces with the pressurized and heated gas (e.g., nitrogen) in the groove body 404 outside the elastic film 418. The vacuum pump 4106 is used to exhaust the air in the vacuum bag 4 19 through a vacuum supply line 4 08 to control the pressure difference between the outer surface of the elastic film 4 丨 8 and the vacuum bag 419. The pressurized and heated gas 420 is supplied into the tank 404 through a gas inlet line 416 through a gas source 414. Therefore, 'the gas 42o passes through the medium of the heated and boosted booklet 410 to laminate some of the sheet layers into the booklet 41o. The obtained laminations are similar to those obtained by flat lamination, and both can reach compressive stress perpendicular to the plate 410. However, due to the lack of shear stress on the outer surface of the plate 4, the pressure cooker 400 is generally used to improve the pressure uniformity. Although FIG. 5 shows only one vacuum bag, the scope of the present invention also includes several vacuum bags that can be located in the tank 404. For flat laminators and laminating pressure cookers, temperature, pressure, and process time can be used to laminate one or more liquid crystal polymer dielectric materials to other material layers (discussed below). Therefore, during the lamination process, the polymer dielectric material should be sufficiently pressurized for a period of time at a temperature T (i.e., T < TNI) within the liquid crystal temperature range within the isotropic temperature range to make the liquid crystal polymer dielectric The electrical material can be efficiently laminated to the material layer. For many applications, pressures between 1 000 and 3 000 psi will have very good adhesion. 20 200405857 For the maximum temperature and pressure process time ... generally at least two points and suitable reaction temperatures include: 2 to 60 minutes and 5 to 30 minutes. The person skilled in the art knows that the conventional thermally stable dielectric layers (such as epoxy-based, pre-glass) can be laminated, and the comparison results (such as adhesion and fluidity) can be obtained with reduced strength. This suggests that in liquid crystal polymers, reducing the pressure (there may be two factors) may be more effective ' and it may reduce the cost of laminating pressure steel. The pressure cooker can be used to stack other well-known conditions in the field and the process time. Except for the flat laminator and the laminated high-pressure liquid crystal high-splitting dielectric layer to the material layer, the lamination pressure hardware is in accordance with the foregoing. The lamination can be performed under temperature and pressure. The s pressing process can be used to stack stacked liquid crystal polymer dielectric materials (either liquid crystal polymer dielectric materials or non-liquid crystal molecular dielectric materials), 4 metal layers (such as signal layers, power layers, base layers, etc.) And its signal layer. In # 搂 cognition floor occupancy, this kind of stack should pay attention to the standard between layers. Each copper-clad medium mine is) 丨 Electric material center has reference (reference) hole to
械銷可提供層對層&I_ 層的對準。該微影步驟所形成的電路 以及該層壓製程均 寸Mechanical pins can provide layer-to-layer & I_ layer alignment. The circuit formed by this lithography step and the pressing process of this layer
J r利用廷樣的參考洞。可使用包含I 對應孔洞且可容細如 、、銷之平板的特殊工具,此於介電材料 心之參考.洞可於料旦/ 、 衫乂驟前先形成以作為參考,或者可 微影步驟後再參考雷狄Μ犯 可電路特徵進行鑽孔。這樣的技巧允 計算來確定銷洞的 ot q理想位置,以補償微影工程期間的 扭曲或尺寸改變(牿别ββ ^ V符別疋薄層)。更或者,可使用光學 21 200405857 的技術,藉其可檢測出位於中心的電路特徵,並接著於層 壓製程中’在不依靠任何銷的情況下將該等層進行定位。 接下來的圖係描述具一或多層液晶高分子介電層之 層壓:第6A圖至第6B圖(合 至第7B圖(合稱為「第7圖」 為「第8圖」);第9A圖至第 第10A圖至第10B圖(合稱為 第11B圖(合稱為「第U圖」 壓以及配合第12圖至第13 言,係將所有介電層層壓於一 至少包含一液晶高分子介電材 稱為「第6圖」);第7A圖 );第8A圖至第8B圖(合稱 9B圖(合稱為「第9圖」); 「第!〇圖」);第11A圖至 )°對於第6圖至11圖之層 圖之層壓(將描述於下文)而 鄰接表面上,其中該介電層 料’其係執行於等向溫度範J r uses a court-like reference hole. You can use special tools that contain holes corresponding to I and can be as thin as pins. This is a reference for the core of dielectric materials. Holes can be formed before the material denting, as a reference, or can be lithographic After the step, reference the characteristics of the RadiM circuit to drill holes. Such a technique allows calculations to determine the ot q ideal position of the pinhole to compensate for distortions or dimensional changes during the lithography process (牿 by ββ ^ V and 符 by 疋 thin layer). Alternatively, the technology of Optics 21 200405857 can be used, by which the central circuit feature can be detected, and then in the lamination process, the layers are positioned without relying on any pins. The following figures describe the lamination with one or more liquid crystal polymer dielectric layers: Figures 6A to 6B (to Figure 7B (collectively referred to as "Figure 7" is "Figure 8"); Figures 9A to 10A to 10B (collectively referred to as Figure 11B (collectively referred to as "Figure U") and the combination of Figures 12 to 13 is to laminate all dielectric layers on at least one Containing a liquid crystal polymer dielectric material is called "Figure 6"); Figure 7A); Figures 8A to 8B (collectively referred to as Figure 9B (collectively referred to as "Figure 9"); "Figure! 0" ”); Figures 11A to) ° For the lamination of the layer diagrams of Figures 6 to 11 (to be described below) but adjacent to the surface, the dielectric layer material 'is implemented in an isotropic temperature range
圍内之液態結晶溫度範圍内的溫度T (即τ < T n I),充分的加 壓(如1000到3000psi)—段時間以使該液晶高分子介電材 料能有效的層壓至該材料層。對於最高溫度以及壓力而言 該製程時間一般應至少為2分鐘,較適合的製程時間尤其 包含:2到60分鐘以及1 5到3 0分鐘。如果多層液晶高分 子介電材料層及/或多層液晶高分子介電層副結構被同時 層壓至互相鄰接之面,則滿足T<TNI的TNI值將會是所有 介電材料,包含前述之多層液晶高分子介電材料以及液晶 高分子介電層副結構的最低值。所有的介電層假定包含& 晶高分子介電材料,結合先前溫度、壓力以及製程時間的 條件都將於下文中稱為「發明的TPD條件」。 第13圖顯示一符合本發明之各種作為層壓之建構_ 的副結構。 22 200405857 在第13圖中,副結構5〇〇 θ 構,其係包含用任一種已熟知、·疋 「D型」介電層副結 機介電材料、陶瓷介電材料、;該領域的介電材料(例如有 晶高分子介電材料等)。若副鈇乂曰曰兩分子介電材料、非液 電材料,則副結構500便為〜、冓500包含一液晶高分子介 如果副結構500不包含液晶高=曰曰向分子「D型」副結構。 便非一液晶高分子「D型 子介電材料,則副結構5〇〇 一 」岣結構。 副結構5 1 0是一「Ρ型 _ 其係一連續導體層(例如金屬、則^結構,也稱為「電源層」, 體層内包含一或多個孔洞(未Q金等)’也可在該連續導 所熟知的任一種技術(例如化與出),該等孔洞係以該销域 副結構520是-「DS/:刻、雷射錢孔等)形成之》 副結構521於一信號層522上 」W結構,其包含一「D型 田 办人, -D型」副結構521 l 疋一包含任何該領域已熟知 1上 上女施人奋 ;丨電材料類型的介電層^ 如有機介電材料、陶瓷介電材 ,(例 1 /Ή'、液晶高分子介電材料 非液晶高分子介電材料等)。传 啊乜唬層的特徵在於包含導電電 路圖層。副結構520可用任何習知方式形成。舉例,它可 以習知方式將一連續金屬薄片(例如銅包覆介電材料)層壓 至「D型」副結構5 2 1至或者將該連續金屬薄片電鍍(或其 他沉積方式)於該「D型」副結構521上。接著該副結構 5 20可藉微影技術將該金屬薄片圖樣化,並化學蝕刻該金 屬薄片以形成信號層522的電路線。 副結構53 0是一「SDS型」副結構,其至少包含信號 層5 3 2以及5 3 3,並位於「D型」副結構5 3 1的相對面。 該 Φ 23 200405857 該副 (例如 料、 一種 於該 藉微 片以 號層 之間 含任 介電 等)。 種可 副結 結構 層表 高分 文配 壓於 副結 有機 液晶 、、、口構5 3 1疋一包含任何已知種類介電材料之介電声 有機介電材料、陶瓷介電材料、液晶高分子介電材 作液晶高分子介電材料等)。該副結構530可以習知任 技術形成。例如,該等金屬薄片可以習知的技術電鍍 「D型」副結構531的相對面。接著該副結構53〇可 影技術圖樣化該等金屬薄片,隨後化學 形成信號層532和533 β 屬薄 副結構540是一「DSD型」副結才籌,其至少包含一信 54\介,「D型」副結構54丨和「D型」副結構54°2 。該等「D型」副結構541和542每一者皆為至少包 一種習知介電材料之介電層(例如有機介電材料、陶瓷 材料、液晶高分子介電材料、非液晶高分子介電材料 該副結構540可以任何習知技術形成。例如,其中一 以該DS型副結構為起始(例如先前描述之「DS型」 構520),接著將「D型」副結構層壓於該「ds型」副 以使該「D型」副結構層壓於該「DS」副結構的信號 面若D型」副結構541和542之至少一者為液晶 子介電層,則副結構540可以本發明之方式形成(如下 合第7圖所將描述者)。 副結構550是一「pD型」副結構,其至少包含一層 「P型」副結構5 5 2之「D型」副結構5 5 1。該「D型」 構551是一包含任一種習知介電材料之介電層(例如 介電材料,陶瓷介電材料,液晶高分子介電材料,非 高分子介電材料等)。該副結構550可以任何已知的技 24 200405857 術形成。例如,它可以購置該副結構5 5 0方式形成。如其 它例子,它也可能如習知方式,電鍍一連續金屬薄片於該 「D型」副結構5 5 1上。The temperature T (that is, τ < T n I) within the liquid crystal temperature range within the range, sufficient pressure (such as 1000 to 3000 psi) for a period of time to enable the liquid crystal polymer dielectric material to be effectively laminated to the Material layer. For the highest temperature and pressure, the process time should generally be at least 2 minutes, and more suitable process times include: 2 to 60 minutes and 15 to 30 minutes. If the multi-layer liquid crystal polymer dielectric material layer and / or the multi-layer liquid crystal polymer dielectric layer substructure are simultaneously laminated to adjacent surfaces, the TNI value satisfying T < TNI will be all dielectric materials, including the foregoing The minimum value of the multilayer liquid crystal polymer dielectric material and the secondary structure of the liquid crystal polymer dielectric layer. All dielectric layers are assumed to contain & crystalline polymer dielectric materials, and the conditions of previous temperature, pressure, and process time will be referred to as "invented TPD conditions" hereinafter. FIG. 13 shows various substructures as laminated constructions according to the present invention. 22 200405857 In Figure 13, the substructure 500oθ structure, which consists of any of the well-known, "D-type" dielectric layer subjunction dielectric materials, ceramic dielectric materials, Dielectric materials (such as crystalline polymer dielectric materials, etc.). If the secondary structure is a two-molecule dielectric material or a non-hydraulic material, the secondary structure 500 is ~, and the secondary structure 500 contains a liquid crystal polymer. If the secondary structure 500 does not contain a liquid crystal, the molecular structure is "D type". Vice structure. This is a non-liquid crystal polymer "D-type sub-dielectric material, and the substructure is 500". The secondary structure 5 1 0 is a "P-type_ which is a continuous conductor layer (such as a metal structure, also known as a" power layer ", and the body layer contains one or more holes (not Q gold, etc.). In any of the techniques well known in the continuous guide (for example, transformation and extraction), the holes are formed by the pin domain substructure 520-"DS /: engraved, laser money hole, etc." The "W" structure on the signal layer 522, which includes a "D-type field manager, -D-type" substructure 521 l, which includes any dielectric layer that is already well-known in the field; ^ Such as organic dielectric materials, ceramic dielectric materials, (Example 1 / Ή ', liquid crystal polymer dielectric materials, non-liquid crystal polymer dielectric materials, etc.). The pass-through layer is characterized by containing a conductive circuit layer. The secondary structure 520 may be formed in any conventional manner. For example, it can conventionally laminate a continuous metal sheet (such as a copper-clad dielectric material) to a "D" substructure 5 2 1 to or electroplating (or other deposition method) the continuous metal sheet onto the " D-type "substructure 521. Then, the sub-structure 520 can pattern the metal sheet by lithography technology, and chemically etch the metal sheet to form the circuit lines of the signal layer 522. The sub-structure 53 0 is an "SDS-type" sub-structure, which includes at least the signal layers 5 3 2 and 5 3 3 and is located on the opposite side of the "D-type" sub-structure 5 31. The Φ 23 200405857 the pair (such as materials, a kind of dielectric between the borrowed microchip and the layer). A kind of subjunction structure layer surface pressure can be matched to the subjunction organic liquid crystal, and the structure 5 3 1 1-a dielectric acoustic organic dielectric material containing any known type of dielectric material, ceramic dielectric material, liquid crystal Polymer dielectric materials for liquid crystal polymer dielectric materials, etc.). This sub-structure 530 can be formed by conventional techniques. For example, the metal flakes can be plated on the opposite side of the "D-type" substructure 531 using conventional techniques. Next, the secondary structure 53 can be patterned by the metal thin film, and then the signal layers 532 and 533 are chemically formed. The thin secondary structure 540 is a "DSD-type" secondary junction, which contains at least one letter 54 \ mediation. "D-type" substructure 54 丨 and "D-type" substructure 54 ° 2. Each of these "D-type" substructures 541 and 542 is a dielectric layer including at least one conventional dielectric material (such as organic dielectric materials, ceramic materials, liquid crystal polymer dielectric materials, non-liquid crystal polymer dielectrics). The sub-structure 540 of the electrical material can be formed by any conventional technique. For example, one of them starts with the DS-type sub-structure (such as the “DS-type” structure 520 described previously), and then the “D-type” sub-structure is laminated on The "ds-type" sub-structure is such that the "D-type" sub-structure is laminated on the signal surface of the "DS" sub-structure. If at least one of the D-type sub-structures 541 and 542 is a liquid crystal dielectric layer, the sub-structure 540 can be formed in the manner of the present invention (as described below with reference to Figure 7). The sub-structure 550 is a "pD-type" sub-structure that includes at least one "P-type" sub-structure 5 5 2 "D-type" sub-structure Structure 5 51. The "D-type" structure 551 is a dielectric layer containing any conventional dielectric material (such as dielectric materials, ceramic dielectric materials, liquid crystal polymer dielectric materials, non-polymer dielectric materials). Etc.). The secondary structure 550 can be formed by any known technique 24 200405857. For example, it In the acquisition of the sub-structure 550 is formed. Examples of it as it, as it may in conventional manner, a continuous plated metal sheet in the "D-type" sub-structure 551.
副結構560是一「DPD型」副結構,其至少包含一 Ρ 型副結構562介於「D型」副結構561和「D型」副結構 5 63之間。該「D型」副結構561和563每一者均為包含 任一種習知技術形成之介電材料的介電層(例如有機介電 材料、陶瓷介電材料、液晶高分子介電材料、非液晶高分 子介電材料等)。該副結構560可以任一種習知的技術形 成。例如,以一 PD型副結構為起始(例如先前描述之「PD 型」副結構5 50),將D型副結構561層壓於Ρ型副結構 5 62的第一表面,另一種方式可將D型副結構563層壓於 Ρ型副結構562的第二表面,亦即相對於Ρ型副結構562 的第一表面。The sub-structure 560 is a "DPD-type" sub-structure, and includes at least one P-type sub-structure 562 between the "D-type" sub-structure 561 and the "D-type" sub-structure 5 63. Each of the "D-type" substructures 561 and 563 is a dielectric layer (such as an organic dielectric material, a ceramic dielectric material, a liquid crystal polymer dielectric material, Liquid crystal polymer dielectric materials, etc.). The secondary structure 560 can be formed by any conventional technique. For example, starting with a PD-type secondary structure (such as the “PD-type” secondary structure 5 50 described previously), laminating the D-type secondary structure 561 on the first surface of the P-type secondary structure 5 62, another way may be The D-type secondary structure 563 is laminated on the second surface of the P-type secondary structure 562, that is, opposite to the first surface of the P-type secondary structure 562.
副結構570為一「PDS型」副結構,其至少包含一「Ρ 型」副結構5 71層壓於一包含信號層5 73置於「D型」副 結構572上之「DS型」副結構。該「Ρ型」副結構571是 層壓於該「D型」副結構572表面,其中該表面未包含信 號層573。該「D型」副結構572係一包含任一已知之介 電材料的介電層(例如有機介電材料、陶瓷介電材料、液晶 高分子介電材料、非液晶高分子介電材料等)。該副結構 5 70可以任何一種已知的技術形成。例如,以一「PD型」 副結構為起始,將電源層5 71層壓至「D型」副結構5 7 2 之第一表面,另一種方式可將信號層5 73型層於「D型」 25 200405857 副結構572之表面574,如同先前所描述並配合於該「DS 型」副結構520中形成信號線522。 副結構5 80是一「SDPDS型」副結構,其至少包含: 信號層5 8 5於「D型」副結構5 8 3上、信號層5 8 4於「D 型」副結構5 8 1上以及「D型」副結構5 81及5 8 3分別層 壓於P副結構5 82之相對面,如圖所示。該「D型」副結 構5 8 1以及5 8 3均為一包含任一種習知介電材料之介電層 (例如有機介電材料、陶瓷介電材料、液晶高分子介電材 料、非液晶高分子介電材料等)。該副結構5 8 0可以任何習 知技術形成。例如,以「DPD型」副結構為起始,將P型 副結構5 8 2設於「D型」副結構5 8 1和5 8 3之間,另一種 方式係分別形成一信號層5 8 4以及5 8 5於「D型」副結構 581以及582之表面586以及587,如先前所描述並配合於 該「DS型」副結構520中形成信號線522。 第6圖至第11圖係描述包含一或多層液晶高分子介 電層之層壓結構: 第6A圖至第6B圖係描述將一液晶高分子介電層10 層壓於「D型」副結構11以形成一副結構12,其係根據 該發明的TPD條件形成之一實施例。該介電層1 1可包含 任一種習知之介電材料(例如有機介電材料、陶瓷介電材 料、液晶高分子介電材料、非液晶高分子介電材料等)。 第7A圖至第7B圖係描述將一液晶高分子介電層13 層壓於「DS型」副結構14以形成副結構1 7,其係根據發 明的TPD條件形成之一實施例。該「DS」副結構14至少 26 200405857 包含一信號層15於一介電層16。該介電層16可包含習知 任-種介電材料(例如有機介電材料、陶变介電材料、液晶 高分子介電材料、非液晶高分子介電材料等)。應注意的是 該副結構17是一「DSD型」副結構(見第13圖/心 第8A圖至第8B圖係描述將一液晶高分子介電層2〇 層壓於電源層21以形成副結構22,其係根據發明的TpD 條件形成之一實施例。應注意的是該副結構22是一「pD 型」副結構(見第1 3圖)。 第9A圖至第9B圖係描述將一液晶高分子介電層23 層壓於具孔洞25穿通之電源層24以形成副結構26,其係 根據發明的T P D條件形成之一實施例。第9圖係顯示經層 壓製程所導致的孔洞25,並以介電材料填充以形成液晶高 分子介電層23。應注意的是該副結構26是一「j>d裂」副 結構(見第1 3圖)。 第10A圖至第10B圖係描述將一液晶高分子介電層 3 1和3 3層壓到電源層3 2之相對面以形成副結構3 4,其係 根據發明的TPD條件形成之實施例。應注意的是該副結構 34是一 「DPD型」副結構(見第I3圖)。 第11A圖至第llB圖係描述將液晶高分子介電層41 和43共同層壓到具孔洞44穿通其中之電源層42的相對 面,以形成副結構45,其係根據發明之TPD條件形成之 一實施例。第11圖顯系該層壓製程所導致之孔洞44,並 以介電材料填充以形成介電層41、介電層43或其組合。 應注意的是該副結構45是一「DPD型」副結構(見第13 27 200405857The substructure 570 is a "PDS type" substructure, which includes at least one "P type" substructure 5 71 laminated on a "DS type" substructure including a signal layer 5 73 placed on a "D type" substructure 572 . The "P-type" substructure 571 is laminated on the surface of the "D-type" substructure 572, wherein the surface does not include the signal layer 573. The "D-type" substructure 572 is a dielectric layer containing any known dielectric material (such as organic dielectric materials, ceramic dielectric materials, liquid crystal polymer dielectric materials, non-liquid crystal polymer dielectric materials, etc.) . The secondary structure 5 70 can be formed by any known technique. For example, starting with a "PD-type" substructure, the power supply layer 5 71 is laminated to the first surface of the "D-type" substructure 5 7 2. In another way, the signal layer 5 73 type layer can be placed on the "D" The surface 574 of the "type" 25 200405857 sub-structure 572, as described previously, fits into the "DS-type" sub-structure 520 to form a signal line 522. The sub-structure 5 80 is a "SDPDS type" sub-structure, which includes at least: a signal layer 5 8 5 on the "D-type" sub-structure 5 8 3, and a signal layer 5 8 4 on the "D-type" sub-structure 5 8 1 And "D-type" substructures 5 81 and 5 8 3 are laminated on the opposite sides of the P substructure 5 82 as shown in the figure. The "D-type" substructures 5 8 1 and 5 8 3 are each a dielectric layer containing any conventional dielectric material (such as organic dielectric materials, ceramic dielectric materials, liquid crystal polymer dielectric materials, non-liquid crystals). Polymer dielectric materials, etc.). The secondary structure 580 can be formed by any conventional technique. For example, starting with a "DPD-type" substructure and setting a P-type substructure 5 8 2 between the "D-type" substructure 5 8 1 and 5 8 3, the other way is to form a signal layer 5 8 4 and 5 8 5 form signal lines 522 on the surfaces 586 and 587 of the “D-type” substructure 581 and 582, as described previously, and cooperate with the “DS-type” substructure 520. Figures 6 to 11 illustrate a laminated structure including one or more liquid crystal polymer dielectric layers: Figures 6A to 6B illustrate a liquid crystal polymer dielectric layer 10 laminated on a "D" sub-layer The structure 11 forms an auxiliary structure 12, which is an embodiment formed according to the TPD conditions of the present invention. The dielectric layer 11 may include any conventional dielectric material (such as an organic dielectric material, a ceramic dielectric material, a liquid crystal polymer dielectric material, a non-liquid crystal polymer dielectric material, etc.). Figures 7A to 7B illustrate the lamination of a liquid crystal polymer dielectric layer 13 on a "DS-type" substructure 14 to form a substructure 17 which is an embodiment formed according to the TPD conditions of the invention. The "DS" substructure 14 includes at least 26 200405857 a signal layer 15 and a dielectric layer 16. The dielectric layer 16 may include conventional dielectric materials (such as organic dielectric materials, ceramic dielectric materials, liquid crystal polymer dielectric materials, non-liquid crystal polymer dielectric materials, etc.). It should be noted that the sub-structure 17 is a "DSD-type" sub-structure (see Fig. 13 / Fig. 8A to Fig. 8B). A liquid crystal polymer dielectric layer 20 is laminated on the power source layer 21 to form The secondary structure 22 is an embodiment formed according to the TpD conditions of the invention. It should be noted that the secondary structure 22 is a "pD-type" secondary structure (see Fig. 13). Figs. 9A to 9B are descriptions A liquid crystal polymer dielectric layer 23 is laminated on the power supply layer 24 with holes 25 to pass through to form a secondary structure 26, which is an embodiment formed according to the TPD conditions of the invention. Figure 9 shows the result of the lamination process. The hole 25 is filled with a dielectric material to form a liquid crystal polymer dielectric layer 23. It should be noted that the secondary structure 26 is a "j &d; d-crack" secondary structure (see Figure 13). Figures 10A to FIG. 10B is a diagram illustrating an embodiment in which a liquid crystal polymer dielectric layer 3 1 and 3 3 are laminated to opposite sides of the power source layer 32 to form a substructure 34, according to the TPD conditions of the invention. It should be noted The sub-structure 34 is a "DPD-type" sub-structure (see Fig. I3). Figs. 11A to 11B describe the high score of the liquid crystal. The dielectric layers 41 and 43 are collectively laminated to the opposite side of the power supply layer 42 with the holes 44 penetrating therethrough to form the substructure 45, which is an embodiment formed according to the TPD conditions of the invention. Figure 11 shows the laminate The hole 44 caused by the process is filled with a dielectric material to form a dielectric layer 41, a dielectric layer 43, or a combination thereof. It should be noted that the substructure 45 is a "DPD type" substructure (see section 13 27 200405857
第12圖係根據本發明較佳實施例描述順序堆疊n層 副結構S!,s2,s3,Sn_.. _ 2)以形成一層壓頁層二每一 =N層副結構均由第13圖所列示之任一種副結構代表, 或者任一可藉層壓列示於第1 3圖之結構組合所形成副結 構為代表,並滿足下列條件:該N層副結構之每—對鄰接 副結構的第一副結構至少包含液晶高分子(Lcp)介電材 料,需與每一對鄰接副結構的第二副結構相結合。接著該 頁層至少包含:依據發明之TPD條件之實施例層壓該順序 堆疊之N層副結構。 應注意的是製造該等結構或副結構可包括一額外的 製程步驟’尤其如:以該領域已熟知的技術鑽或電鍍盲孔 (blind vi as)或通孔,而該等特徵如電鍍盲孔及通孔等是為 了層對層的電性連接。 雖然本發明之較佳實施例已揭露於此以作說明,其他 潤飾或改變應可為熟習該項技術人士所瞭解。因此,附加 之申請專利範圍均可於不悖離本發明範圍之精神下涵蓋該 等潤飾或改變。 【圖式簡單說明] 第1圖係描述依據本發明較佳實施例之一液晶高分 子(LPC)介電材料之液態結晶相具有方向性高分子鏈的局 部分子區域圖。 第2圖係描述依據本發明較佳實施例之一液晶高分 28 200405857 子介電材料之等向相不具有方向性高分子鏈的局步分子區 域圖。 第3圖以及第4圖係說明依據本發明較佳實施例之一 用於層壓包含液晶高分子介電材料堆疊層的平層壓器。 第5圖為說明依據本發明較佳實施例之一種用於層 壓包含液晶高分子介電材料堆疊層的層壓壓力鍋。 第6A圖至第6B圖係描述依據本發明之較佳實施例 將一液晶高分子介電層層壓至另一液晶高分子介電層。FIG. 12 illustrates the sequential stacking of n-layer substructures S !, s2, s3, Sn_ .. _ 2) according to a preferred embodiment of the present invention to form a laminate page layer. Each = N-layer substructure is shown in FIG. 13 Any of the listed sub-structure representatives, or any sub-structure that can be formed by laminating the structure combination shown in Figure 13 as a representative, and meets the following conditions: each of the N-layer sub-structures-a pair of adjacent sub-structures The first sub-structure of the structure includes at least a liquid crystal polymer (Lcp) dielectric material, which needs to be combined with the second sub-structure of each pair of adjacent sub-structures. Then the page layer includes at least: the N-layer sub-structures of the sequential stack are laminated according to the embodiment of the TPD condition of the invention. It should be noted that manufacturing such structures or sub-structures may include an additional process step 'especially such as drilling or blind vias or through-holes using techniques well known in the art, and such features as plated blind Holes and vias are used for layer-to-layer electrical connections. Although the preferred embodiments of the present invention have been disclosed herein for illustration, other retouching or changes should be understood by those skilled in the art. Therefore, the scope of the appended patents may cover such modifications or changes without departing from the spirit of the scope of the present invention. [Brief Description of the Drawings] FIG. 1 is a partial subregional diagram illustrating a liquid crystal phase of a liquid crystal polymer (LPC) dielectric material having a directional polymer chain according to a preferred embodiment of the present invention. FIG. 2 is a diagram illustrating a localized molecular region of an isotropic phase of a sub-dielectric material having no directional polymer chain according to one of the preferred embodiments of the present invention. 3 and 4 illustrate a flat laminator for laminating a stacked layer of a liquid crystal polymer dielectric material according to one of the preferred embodiments of the present invention. Figure 5 illustrates a laminated pressure cooker for laminating a stacked layer of a liquid crystal polymer dielectric material according to a preferred embodiment of the present invention. Figures 6A to 6B illustrate laminating a liquid crystal polymer dielectric layer to another liquid crystal polymer dielectric layer according to a preferred embodiment of the present invention.
第7A圖至第7B圖係描述依據本發明之較佳實施例 將一液晶高分子介電層層壓至另一 DS型副結構。 第8A圖至第8B圖係描述依據本發明之較佳實施例 將一液晶高分子介電層層壓至另一電源層。 第9A圖至第9B圖係描述依據本發明之較佳實施例 將一液晶高分子介電層層壓至另一具有穿孔之電源層。Figures 7A to 7B illustrate laminating a liquid crystal polymer dielectric layer to another DS-type secondary structure according to a preferred embodiment of the present invention. Figures 8A to 8B illustrate lamination of a liquid crystal polymer dielectric layer to another power supply layer according to a preferred embodiment of the present invention. Figures 9A to 9B illustrate the lamination of a liquid crystal polymer dielectric layer to another power supply layer having a perforation according to a preferred embodiment of the present invention.
第10A圖至第10B圖係描述依據本發明之較佳實施 例將第一及第二液晶高分子介電層層壓至一電源層之兩 側。 第11 A圖至第11 B圖係描述依據本發明之較佳實施 例將第一及第二液晶高分子介電層層壓至具一穿孔之電源 層的兩側。 第1.2圖係描述依據本發明較佳實施例之一經次序堆 疊的副結構。 第1 3圖係描述本發明較佳實施例之一副結構表。 29 200405857 【元件代表符號簡單說明】 10、 11、 13、 16、 20、 23、 33、 31、 43、 41、 521、 531、 541、 542、 551、 563、 561、 572、 5 8 1、5 8 3 液晶高分子介電層 1 2、2 6、4 5 副結構 14、520、587、586、574 DS 型副結構 15、522、532、533、543、573、Figures 10A to 10B illustrate lamination of the first and second liquid crystal polymer dielectric layers on both sides of a power supply layer according to a preferred embodiment of the present invention. 11A to 11B illustrate lamination of the first and second liquid crystal polymer dielectric layers to both sides of a power supply layer having a perforation according to a preferred embodiment of the present invention. Figure 1.2 illustrates a sequentially stacked secondary structure according to one of the preferred embodiments of the present invention. FIG. 13 is a sub-structure table describing a preferred embodiment of the present invention. 29 200405857 [Simple description of component representative symbols] 10, 11, 13, 16, 20, 23, 33, 31, 43, 41, 521, 531, 541, 542, 551, 563, 561, 572, 5 8 1, 5 8 3 Liquid crystal polymer dielectric layer 1 2, 2 6, 4 5 Substructure 14, 520, 587, 586, 574 DS type substructure 15, 522, 532, 533, 543, 573,
584、585 信號層 1 7、5 4 0 D S D 畐》J 結構 21、24、32、42、552、562、 5 7 1、5 8 2 電源層 2 2、5 5 0 P D型副結構 2 5、4 4 孔洞 3 4、5 6 0 D P D型副結構 200、250 部份分子範圍584, 585 Signal layer 1 7, 5 4 0 DSD 畐 '' J structure 21, 24, 32, 42, 552, 562, 5 7 1, 5 8 2 Power supply layer 2 2, 5 5 0 PD-type substructure 2 5, 4 4 Holes 3 4, 5 6 0 DPD-type substructure 200, 250 Partial molecular range
201、202、203、204、205、206、207、2 0 8、 251 、252、253、25 4、255、256、257、25 8、 259、260、2 6 1 高分子鏈 2 10 向量 2 2 1、2 2 .3、2 2 5、2 7 2、2 7 4、2 7 6 剛性結構 222、224、226、271、273、275、277 半彈性結構 300 平板式層壓器 3 0 2 支架 30 200405857 3 0 4 上平台支撐體 306 下平台支撐體 308 中間平台支撐體 3 10 層壓方向 311-313 冊板 3 2 0 導桿 322 上平板 324、326 中平板201, 202, 203, 204, 205, 206, 207, 2 0 8, 251, 252, 253, 25 4, 255, 256, 257, 25 8, 259, 260, 2 6 1 Polymer chain 2 10 Vector 2 2 1, 2 2 .3, 2 2 5, 2 7 2, 2 7 4, 2 7 6 Rigid structure 222, 224, 226, 271, 273, 275, 277 Semi-elastic structure 300 Flat laminator 3 0 2 Bracket 30 200405857 3 0 4 Upper platform support 306 Lower platform support 308 Intermediate platform support 3 10 Lamination direction 311-313 Booklet 3 2 0 Guide bar 322 Upper plate 324, 326 Middle plate
328 下平板 329 液壓系統 3 3 0 活塞 3 3 2 液壓缸 334 液壓流體 340 真空幫浦 342 真空供應器 3 5 1 導入管328 Lower plate 329 Hydraulic system 3 3 0 Piston 3 3 2 Hydraulic cylinder 334 Hydraulic fluid 340 Vacuum pump 342 Vacuum supply 3 5 1 Inlet pipe
352 導出管 3 5 3 熱耦合埠 354 加熱元件 355 包覆平板 3 5 7、3 5.8 頁層 362、 364 壓墊 370、 380、390 板層 371、 373、381、383、391、393 釋放片 31 200405857 372、382、392 壓平板 400 層壓壓力鍋 4 0 2 圍牆 4 0 4 槽體 406 真空幫浦 408 真空供應管線 409 氣體通道 4 10 冊板352 Outlet tube 3 5 3 Thermal coupling port 354 Heating element 355 Cover plate 3 5 7, 3 5.8 Page layer 362, 364 Pressure pad 370, 380, 390 Plate layer 371, 373, 381, 383, 391, 393 Release sheet 31 200405857 372, 382, 392 pressure plate 400 laminated pressure cooker 4 0 2 fence 4 0 4 tank 406 vacuum pump 408 vacuum supply line 409 gas channel 4 10 volume plate
4 12 托盤 4 14 氣體源 416 氣體入口管路 4 18 彈性膜 4 19 真空袋 420 加熱之氣體 5 0 0 D型副結構 5 10 P型副結構4 12 Tray 4 14 Gas source 416 Gas inlet line 4 18 Elastic membrane 4 19 Vacuum bag 420 Heating gas 5 0 0 D-type substructure 5 10 P-type substructure
5 3 0 S D S型副結構 5 7 0 P D S型副結構 5 8 0 S D P D S型副結構 325 3 0 S D S-type secondary structure 5 7 0 P D S-type secondary structure 5 8 0 S D P D S-type secondary structure 32
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/263,851 US6819373B2 (en) | 2002-10-03 | 2002-10-03 | Lamination of liquid crystal polymer dielectric films |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200405857A true TW200405857A (en) | 2004-04-16 |
TWI287507B TWI287507B (en) | 2007-10-01 |
Family
ID=32042090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092120018A TWI287507B (en) | 2002-10-03 | 2003-07-22 | Lamination of liquid crystal polymer dielectric films |
Country Status (4)
Country | Link |
---|---|
US (2) | US6819373B2 (en) |
JP (1) | JP4204938B2 (en) |
KR (1) | KR100546978B1 (en) |
TW (1) | TWI287507B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003034798A1 (en) * | 2001-10-12 | 2003-04-24 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing circuit formed substrate |
US7453143B2 (en) * | 2003-03-05 | 2008-11-18 | Banpil Photonics, Inc. | High speed electronics interconnect and method of manufacture |
KR100878069B1 (en) * | 2004-06-25 | 2009-01-13 | 인텔 코오퍼레이션 | Dielectric film with low coefficient of thermal expansion ??? using liquid crystalline resin |
WO2008144667A1 (en) * | 2007-05-18 | 2008-11-27 | Dynaco Corporation | Method and apparatus for forming plated liquid crystalline polymer substrate |
US8263862B2 (en) * | 2009-02-07 | 2012-09-11 | Linden Photonics, Inc. | Hermetic electrical ports in liquid crystal polymer packages |
US20100300734A1 (en) * | 2009-05-27 | 2010-12-02 | Raytheon Company | Method and Apparatus for Building Multilayer Circuits |
EP2555280B1 (en) * | 2011-08-05 | 2016-11-02 | Optimum Battery Co., Ltd. | Improved electrode board having security device and power battery system using same |
JP2016212177A (en) * | 2015-05-01 | 2016-12-15 | セイコーエプソン株式会社 | Transmission type display device |
WO2021000330A1 (en) * | 2019-07-04 | 2021-01-07 | Southern University Of Science And Technology | Ligand mediated luminescence enhancement in cyclometalated rhodium(iii) complexes and their applications in highly efficient organic light-emitting devices |
CN113939115B (en) * | 2021-12-15 | 2022-05-27 | 深圳市信维通信股份有限公司 | Processing method of multilayer LCP substrate |
CN116552075A (en) * | 2023-05-30 | 2023-08-08 | 深圳聚源新材科技有限公司 | Composite material containing material with adjustable thermal expansion coefficient and application thereof |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3737922A1 (en) | 1987-11-07 | 1989-05-18 | Basf Ag | COMPOSITE MATERIAL FROM HIGH-TEMPERATURE-RESISTANT POLYMERS AND DIRECTLY APPLIED METAL LAYERS |
US5538789A (en) | 1990-02-09 | 1996-07-23 | Toranaga Technologies, Inc. | Composite substrates for preparation of printed circuits |
JP3245437B2 (en) * | 1991-04-05 | 2002-01-15 | 株式会社クラレ | Manufacturing method of laminate |
TW210422B (en) | 1991-06-04 | 1993-08-01 | Akzo Nv | |
US5367764A (en) | 1991-12-31 | 1994-11-29 | Tessera, Inc. | Method of making a multi-layer circuit assembly |
US5259110A (en) | 1992-04-03 | 1993-11-09 | International Business Machines Corporation | Method for forming a multilayer microelectronic wiring module |
US5346747A (en) | 1992-12-24 | 1994-09-13 | Granmont, Inc. | Composite printed circuit board substrate and process for its manufacture |
JP2962459B2 (en) * | 1993-02-25 | 1999-10-12 | ジャパンゴアテックス株式会社 | Liquid crystal polymer film and method for producing the same |
US5677045A (en) | 1993-09-14 | 1997-10-14 | Hitachi, Ltd. | Laminate and multilayer printed circuit board |
UA26362C1 (en) | 1994-01-26 | 1999-08-30 | Амп-Акцо Ліhлем Воф | METHOD OF MANUFACTURE OF COMPOSITE LAYERED STRUCTURE, LINING FOR BOARD WITH PRINTED MOUNT AND MULTILAYER BOARD WITH PRINTED PRINTED |
US6016598A (en) | 1995-02-13 | 2000-01-25 | Akzo Nobel N.V. | Method of manufacturing a multilayer printed wire board |
US5670262A (en) | 1995-05-09 | 1997-09-23 | The Dow Chemical Company | Printing wiring board(s) having polyimidebenzoxazole dielectric layer(s) and the manufacture thereof |
US6549261B1 (en) * | 1995-12-04 | 2003-04-15 | Minolta Co., Ltd. | Liquid crystal reflective display |
EP0865905B1 (en) | 1997-03-19 | 2004-09-15 | Sumitomo Chemical Company, Limited | Laminate of liquid crystal polyester resin composition |
US6323436B1 (en) | 1997-04-08 | 2001-11-27 | International Business Machines Corporation | High density printed wiring board possessing controlled coefficient of thermal expansion with thin film redistribution layer |
KR100247640B1 (en) * | 1997-06-27 | 2000-03-15 | 김영환 | Lcd device and manufacturing method |
JP2000044797A (en) | 1998-04-06 | 2000-02-15 | Kuraray Co Ltd | Liquid crystalline polymer film and laminate, preparation of them, and multilayered mounting circuit base board |
US6163957A (en) | 1998-11-13 | 2000-12-26 | Fujitsu Limited | Multilayer laminated substrates with high density interconnects and methods of making the same |
JP4138995B2 (en) * | 1999-03-31 | 2008-08-27 | 株式会社クラレ | Circuit board and manufacturing method thereof |
US6329603B1 (en) | 1999-04-07 | 2001-12-11 | International Business Machines Corporation | Low CTE power and ground planes |
US6532046B1 (en) * | 1999-10-25 | 2003-03-11 | Hitachi Maxell, Ltd. | Liquid crystal display material, liquid crystal display method and liquid crystal display device |
JP2001181463A (en) * | 1999-12-24 | 2001-07-03 | Du Pont Mitsui Fluorochem Co Ltd | Thermomeltable fluororesin composite |
JP2001239585A (en) * | 2000-02-28 | 2001-09-04 | Kuraray Co Ltd | Metal-clad laminate and manufacturing method therefor |
US6923919B2 (en) * | 2000-07-18 | 2005-08-02 | 3M Innovative Properties Company | Liquid crystal polymers for flexible circuits |
-
2002
- 2002-10-03 US US10/263,851 patent/US6819373B2/en not_active Expired - Fee Related
-
2003
- 2003-07-22 TW TW092120018A patent/TWI287507B/en not_active IP Right Cessation
- 2003-09-25 JP JP2003334370A patent/JP4204938B2/en not_active Expired - Fee Related
- 2003-10-02 KR KR1020030068541A patent/KR100546978B1/en not_active IP Right Cessation
-
2004
- 2004-08-25 US US10/925,021 patent/US6967705B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20040066478A1 (en) | 2004-04-08 |
JP2004136671A (en) | 2004-05-13 |
TWI287507B (en) | 2007-10-01 |
US6967705B2 (en) | 2005-11-22 |
KR20040031603A (en) | 2004-04-13 |
US6819373B2 (en) | 2004-11-16 |
US20050019527A1 (en) | 2005-01-27 |
KR100546978B1 (en) | 2006-01-31 |
JP4204938B2 (en) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200405857A (en) | Lamination of liquid crystal polymer dielectric films | |
CN104145332B (en) | Thermal interface material | |
US7981245B2 (en) | Multi-layered interconnect structure using liquid crystalline polymer dielectric | |
JP4009258B2 (en) | Multilayer laminate and method for producing the same | |
JP3882213B2 (en) | Liquid crystal polymer film processing method | |
US10186472B2 (en) | Apparatus and methods for processing exfoliated graphite materials | |
TWI470010B (en) | A heat-conductive sheet, a method for manufacturing the same, and a heat radiating device using a heat-conducting sheet | |
TW426608B (en) | Coating method utilizing a polymer film and method of making metal-polymer laminates | |
WO2011028924A2 (en) | Porous thermoplastic foams as heat transfer materials | |
WO2007013705A9 (en) | Thermally improve conductive carbon sheet base on mixed carbon material of expanded graphite powder and carbon nano tube powder | |
TWI344807B (en) | Laminated multi-layer circuit board | |
CN107564874B (en) | A kind of flexible heat sink film and preparation method thereof and composite and flexible radiate film | |
JP2001315244A (en) | Heat conductive sheet, method for manufacturing same and radiation structure using heat conductive sheet | |
TW201021655A (en) | Laminated product and production method thereof, and circuit substrate using the same | |
CN101707853A (en) | Metal matrix copper-clad laminate | |
TWI290444B (en) | Method of producing heat-resistant flexible laminate | |
JPH11302417A (en) | Polymer film and its manufacture | |
JP5401741B2 (en) | Multilayer heat transfer plate and manufacturing method thereof | |
JPH11348178A (en) | Coating method using polymer film and manufacture of metal foil laminated body | |
JP2001239585A (en) | Metal-clad laminate and manufacturing method therefor | |
TWI756536B (en) | Manufacturing method of modified liquid crystal polymer, liquid crystal polymer composite and method for modifying melting point of liquid crystal polymer | |
JP4064018B2 (en) | Method for producing film laminate | |
JP2004358678A (en) | Method for manufacturing laminate | |
CN114083841A (en) | High-thermal-conductivity graphite film temperature-equalizing plate and preparation method thereof | |
TW201037024A (en) | Thermo-conductive polyimide liquid precursor, heat conduction type polyimide film, thermo-conductive polyimide/substrate laminated material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |