JPH10251014A - Method for removing sulfate ion in aqueous alkali metallic chloride solution - Google Patents

Method for removing sulfate ion in aqueous alkali metallic chloride solution

Info

Publication number
JPH10251014A
JPH10251014A JP7042797A JP7042797A JPH10251014A JP H10251014 A JPH10251014 A JP H10251014A JP 7042797 A JP7042797 A JP 7042797A JP 7042797 A JP7042797 A JP 7042797A JP H10251014 A JPH10251014 A JP H10251014A
Authority
JP
Japan
Prior art keywords
sulfate ions
adsorbent
zirconium hydroxide
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7042797A
Other languages
Japanese (ja)
Inventor
Mikito Sugiyama
幹人 杉山
Kenji Nonomura
健二 野々村
Kazuhiko Katayama
和彦 片山
Motomu Yoshino
求 吉野
Koji Saiki
幸治 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP7042797A priority Critical patent/JPH10251014A/en
Priority to PCT/JP1997/000870 priority patent/WO1998039252A1/en
Priority to TW086103543A priority patent/TW332194B/en
Publication of JPH10251014A publication Critical patent/JPH10251014A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • C01D3/16Purification by precipitation or adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove sulfate ions in an aq. alkali metallic chloride soln. at a low cost of equipment without causing deterioration to a slurried state or requiring a special filter for solid-liq. separation and its maintenance by using coarse zirconium hydroxide as a sulfate ion adsorbent in a fixed bed system. SOLUTION: When sulfate ions in an aq. alkali metallic chloride soln. are adsorbed and removed with zirconium hydroxide, fine powdery zirconium hydroxide is granulated to 0.1-3mm diameter with a proper binder and the granulated zirconium hydroxide is used as an adsorbent in a fixed bed system. In a process for adsorbing and removing sulfate ions, the alkali metallic chloride soln. is adjusted to pH1-3 and fed at 3-30hr<-1> space velocity. In a process for desorbing the adsorbed sulfate ions, an aq. alkali soln. for desorption is adjusted to pH10-13 and fed at 3-30hr<-1> space velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ金属塩化
物水溶液中の硫酸イオンの除去方法に関し、更に詳しく
は、水酸化ジルコニウムを用いアルカリ金属塩化物水溶
液から硫酸イオンを経済的に且つ効率よく除去する方法
に関する。本発明は、特にイオン交換膜法食塩電解にお
ける塩水中の不純物である硫酸イオンの除去に極めて好
適に適用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing sulfate ions from an alkali metal chloride aqueous solution, and more particularly, to economically and efficiently removing sulfate ions from an alkali metal chloride aqueous solution using zirconium hydroxide. On how to do it. INDUSTRIAL APPLICABILITY The present invention can be very suitably applied particularly to removal of sulfate ions, which are impurities in salt water in ion exchange membrane method salt electrolysis.

【0002】[0002]

【従来の技術】アルカリ金属塩化物水溶液から硫酸イオ
ンを除去する方法については、バリウム塩法等がある
が、原料が有毒且つ高価である、固形の産業廃棄物処理
及びコストアップとなる等の問題のために、これに代わ
る方法が種々検討されている。例えば、水酸化ジルコニ
ウムを使用して、酸性で吸着しアルカリ性で脱着する方
法が提案され、また実用化もされている(特公平6−2
1032)。この方法は粒子径1〜20μm、含水率3
〜40重量%の水酸化ジルコニウムをスラリー状態で酸
性硫酸イオン含有塩水、アルカリ性水と順次接触させる
方法であり、少量の吸着剤で極めて経済的かつ効果的に
硫酸イオンを除去することができる。また、重合状ジル
コニウム含水酸化物を担持したマクロポーラスな陽イオ
ン交換樹脂を使用して、酸性で吸着し、アルカリ性で脱
着する方法も提案されている(特開昭60−4403
6)。
2. Description of the Related Art As a method for removing sulfate ions from an aqueous alkali metal chloride solution, there is a barium salt method and the like. However, such a method is problematic in that raw materials are toxic and expensive, solid industrial waste treatment and cost increase. For this reason, various alternative methods have been studied. For example, a method of using zirconium hydroxide to adsorb acidic and desorb alkaline has been proposed and put into practical use (Japanese Patent Publication No. 6-2).
1032). This method has a particle diameter of 1 to 20 μm and a water content of 3
This is a method in which 4040% by weight of zirconium hydroxide is sequentially brought into contact with salt water containing acidic sulfate ions and alkaline water in a slurry state, and sulfate ions can be removed very economically and effectively with a small amount of adsorbent. Further, a method has been proposed in which a macroporous cation exchange resin carrying a polymerized zirconium hydrate is used to adsorb acidicly and desorb it alkalinely (JP-A-60-4403).
6).

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、特公平6
−21032号で提案されている方法は、粒子径1〜2
0μmという微細な水酸化ジルコニウムを用いるため、
塩水処理後の固液分離のために目の細かい濾布を用いた
特別な濾過装置を使用するので濾布交換等の保全作業が
必要であり、また設備が高価となるという問題があっ
た。また、特開昭60−44056号で提案されている
方法は、重合状ジルコニウム含水酸化物を担持したマク
ロポーラスな陽イオン交換樹脂の硫酸イオン吸着容量が
20g/リットル−陽イオン交換樹脂未満と低く、また
設備が大型となるという問題があった。
[Problems to be solved by the invention]
The method proposed in US Pat.
In order to use fine zirconium hydroxide of 0 μm,
Since a special filtration device using a fine filter cloth is used for solid-liquid separation after the salt water treatment, maintenance work such as replacement of the filter cloth is required, and the equipment becomes expensive. Further, the method proposed in Japanese Patent Application Laid-Open No. 60-44056 discloses a method in which a macroporous cation exchange resin supporting a polymerized zirconium hydrate has a low sulfate ion adsorption capacity of less than 20 g / liter-cation exchange resin. In addition, there is a problem that the equipment becomes large.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決せんとして鋭意研究を重ねた結果、粒子径0.1〜
3mmの水酸化ジルコニウムを実質的に流動・攪拌を行わ
ない固定状態で吸着剤として使用する方法を見出し、本
発明に到達した。すなわち、本発明は、水酸化ジルコニ
ウムを用いてアルカリ金属塩化物水溶液中の硫酸イオン
を吸着除去するに際し、粒子径0.1〜3mmの水酸化ジ
ルコニウムを吸着剤として使用するとともに、水酸化ジ
ルコニウムを固定床方式で使用することを特徴とする硫
酸イオンの除去方法を内容とする。また、本発明の好ま
しい態様においては、アルカリ金属塩化物水溶液中から
硫酸イオンを吸着除去させる吸着工程におけるアルカリ
金属塩化物水溶液のpHを1〜3及び反応空間速度SV
を3〜30Hr-1の範囲に制御し、吸着剤に吸着された硫
酸イオンを吸着剤から脱離させる脱着工程におけるアル
カリ水のpHを10〜13及び反応空間速度SVを3〜
30Hr-1の範囲に制御する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the particle diameter is 0.1 to 0.1.
The present inventors have found a method of using 3 mm of zirconium hydroxide as an adsorbent in a fixed state without substantially flowing and stirring, and reached the present invention. In other words, the present invention uses zirconium hydroxide having a particle diameter of 0.1 to 3 mm as an adsorbent when zirconium hydroxide is used to adsorb and remove sulfate ions in an alkali metal chloride aqueous solution. The method includes a method for removing sulfate ions, which is characterized by using a fixed bed method. In a preferred embodiment of the present invention, the pH of the aqueous alkali metal chloride solution in the adsorption step of adsorbing and removing sulfate ions from the aqueous alkali metal chloride solution is adjusted to 1 to 3 and a reaction space velocity SV.
In the range of 3 to 30 Hr -1 , the pH of the alkaline water in the desorption step of desorbing the sulfate ions adsorbed by the adsorbent from the adsorbent is 10 to 13, and the reaction space velocity SV is 3 to 30 hr.
It is controlled within the range of 30 hr- 1 .

【0005】[0005]

【発明の実施の形態】本発明を図面に基づいて説明す
る。図1は、本発明の実施態様の一例を示すものであ
る。同図において、1は耐酸耐アルカリ性の反応塔であ
り、例えばゴムライニング容器である。反応塔1の中に
は硫酸イオン吸着剤である粒状の水酸化ジルコニウムが
投入されている。硫酸イオンを含んだ塩水4をpH調整
槽2に加えて塩酸5により所定の酸性pHに調節した
後、反応塔1に所定の流速で導入し吸着反応をワンパス
方式、循環方式又は一部リサイクル方式で行わせ、硫酸
イオンを吸着剤に吸着させる。吸着イオンの全部または
一部を吸着剤に吸着して除去された塩水は抜き出し口1
0より抜き出す。続いて、水6を反応塔1に導入して吸
着剤を洗浄し、吸着剤に付着した塩等を除去し、洗浄し
た水を抜き出し口9より抜き出す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. FIG. 1 shows an example of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an acid- and alkali-resistant reaction tower, for example, a rubber-lined vessel. In the reaction tower 1, granular zirconium hydroxide as a sulfate ion adsorbent is charged. Salt water 4 containing sulfate ions is added to the pH adjusting tank 2 and adjusted to a predetermined acidic pH with hydrochloric acid 5 and then introduced into the reaction tower 1 at a predetermined flow rate to carry out the adsorption reaction in a one-pass system, a circulation system or a partial recycling system. And adsorb the sulfate ions to the adsorbent. The salt water removed by adsorbing all or a part of the adsorbed ions to the adsorbent is taken out from the outlet 1
Extract from 0. Subsequently, water 6 is introduced into the reaction tower 1 to wash the adsorbent, salts and the like adhering to the adsorbent are removed, and the washed water is extracted from the outlet 9.

【0006】次に、吸着剤に吸着された硫酸イオンの脱
着を行う。即ち、水8をpH調整槽3に加えて水酸化ナ
トリウム7により所定のアルカリpHに調節した後、反
応塔1に所定の流速で導入し、脱着反応をワンパス方式
及び循環方式で行わせ吸着剤から硫酸イオンを脱着させ
る。硫酸イオンを含有した水は抜き出し口11より抜き
出す。しかる後、水6を反応塔1に導入して吸着剤を洗
浄し、吸着剤に付着したアルカリ分、硫酸イオン等を除
去し、洗浄した水を抜き出し口9より抜き出す。以下、
上記吸着・脱着の操作を繰り返し行う。
Next, the sulfate ions adsorbed by the adsorbent are desorbed. That is, water 8 is added to the pH adjusting tank 3 and adjusted to a predetermined alkaline pH with sodium hydroxide 7, then introduced into the reaction tower 1 at a predetermined flow rate, and the desorption reaction is carried out in a one-pass system and a circulation system. Desorb sulfate ions from Water containing sulfate ions is extracted from the extraction port 11. Thereafter, water 6 is introduced into the reaction tower 1 to wash the adsorbent, alkalis, sulfate ions and the like adhering to the adsorbent are removed, and the washed water is extracted from the outlet 9. Less than,
The above adsorption / desorption operation is repeated.

【0007】アルカリ金属塩化物の濃度については特に
制限はなく、濃厚水溶液、例えば5mol/リットル程度の
食塩水溶液中の硫酸イオンを効率的に除去することがで
きる。硫酸イオンの濃度についても特に制限はないが、
例えば0.1〜20g/リットル程度の濃度のものを処
理でき、温度も特に制限はないが、室温〜90℃程度の
水溶液を処理できる。
[0007] The concentration of the alkali metal chloride is not particularly limited, and sulfate ions in a concentrated aqueous solution, for example, a saline solution of about 5 mol / liter can be efficiently removed. There is no particular limitation on the sulfate ion concentration,
For example, a solution having a concentration of about 0.1 to 20 g / liter can be treated, and the temperature is not particularly limited.

【0008】吸着剤としては、水酸化ジルコニウム(別
名水和酸化ジルコニウム)を使用する。化学式ではZrO
(OH)2・nH2O(n=0.5〜3.0)で表される化合物が
特に好適である。1000℃乾燥重量減少は、50〜6
0%程度である。本化合物は通常、10μm程度の微粉
状態であり、この粉体を適当な結着材で、粒径0.1〜
3.0mm、好ましくは0.5〜2mmに造粒して本発明に
使用する。粒径0.1mm未満では流動化し易く、またス
ラリー状態に劣化し、塩水処理後容易に固液分離でき
ず、特別な濾過装置を用いる必要があり、保全作業や再
利用が困難である。一方、3.0mmを越えると硫酸イオ
ンの吸着能力が低下する。
As the adsorbent, zirconium hydroxide (also called hydrated zirconium oxide) is used. ZrO in chemical formula
Compounds represented by (OH) 2 .nH 2 O (n = 0.5 to 3.0) are particularly preferred. 1000 ° C dry weight loss is 50-6
It is about 0%. The present compound is usually in the form of a fine powder of about 10 μm, and this powder is mixed with a suitable binder to a particle size of 0.1 to 0.1 μm.
It is granulated to 3.0 mm, preferably 0.5 to 2 mm and used in the present invention. When the particle size is less than 0.1 mm, the material is easily fluidized, deteriorates to a slurry state, cannot be easily separated into solid and liquid after salt water treatment, requires a special filtration device, and is difficult to maintain and reuse. On the other hand, if it exceeds 3.0 mm, the ability to adsorb sulfate ions decreases.

【0009】吸着反応は酸性条件下で行われ、低pHほ
ど吸着容量は大きくなる。極端な低pH条件下になると
吸着剤の溶解が始まり、また高pHでは吸着能が低下す
るので好ましくない。よって、pH1〜3の範囲が好適
である。酸の必要量は次の反応式に従う。ZrO(OH)2+2H
+ +SO4 2- →ZrOSO4+2H2O吸着容量は吸着剤の粒径に依
存するが、本発明の粒径範囲では、例えばpH2で1kg
の吸着剤は20〜50gの硫酸イオンを吸着することが
できる。反応空間速度SVは好ましくは3〜30Hr-1
より好ましくは5〜30Hr-1の範囲である。3Hr-1未満
では処理速度が遅く不効率であり、一方、30Hr-1を越
えると吸着能が低下するので好ましくない。反応温度
は、上記したように室温〜90℃程度の温度範囲で好適
に行うことができる。温度が90℃を越えると、吸着剤
が破砕しやすくなるので好ましくない。
The adsorption reaction is carried out under acidic conditions, and the lower the pH, the larger the adsorption capacity. Under extremely low pH conditions, the dissolution of the adsorbent starts, and at a high pH, the adsorptive capacity decreases, which is not preferable. Therefore, the range of pH 1 to 3 is preferable. The required amount of acid follows the following reaction formula. ZrO (OH) 2 + 2H
+ + SO 4 2- → ZrOSO 4 + 2H 2 O The adsorption capacity depends on the particle size of the adsorbent, but within the particle size range of the present invention, for example, 1 kg at pH 2
Can adsorb 20 to 50 g of sulfate ions. The reaction space velocity SV is preferably 3 to 30 Hr -1 ,
More preferably, it is in the range of 5 to 30 Hr- 1 . If it is less than 3 Hr -1 , the treatment speed is slow and inefficient, while if it exceeds 30 Hr -1 , the adsorptive capacity is undesirably reduced. The reaction can be suitably performed at a temperature ranging from room temperature to about 90 ° C. as described above. If the temperature exceeds 90 ° C., the adsorbent is easily crushed, which is not preferable.

【0010】硫酸イオンを吸着した吸着剤から硫酸イオ
ンを脱着させるための脱着反応は、該吸着剤をアルカリ
性の水溶液と接触させることによっておこなわれ、これ
により該吸着剤は硫酸イオンを放出し、再び吸着可能な
形態に再生される。ZrOSO4+2NaOH →ZrO(OH)2+ 2Na+
+SO4 2-適切なpHは10〜13の範囲で、適切な反応
空間速度SVは3〜30Hr-1の範囲である。pH10未
満では反応が遅く、またpH13を越えるとアルカリが
無駄になる傾向がある。反応空間速度が3Hr-1未満では
処理速度が遅く不効率であり、一方、30Hr-1を越える
と脱着能が低下するので好ましくない。適切な温度は室
温〜90℃の範囲である。温度が90℃を越えると、前
記した如く、吸着剤が破砕しやすくなるので好ましくな
い。
[0010] A desorption reaction for desorbing sulfate ions from the adsorbent having adsorbed sulfate ions is carried out by bringing the adsorbent into contact with an alkaline aqueous solution, whereby the adsorbent releases sulfate ions, and the sulfate ions are released again. Regenerated to a form that can be adsorbed. ZrOSO 4 + 2NaOH → ZrO (OH) 2 + 2Na +
+ SO 4 2-A suitable pH is in the range of 10-13 and a suitable reaction space velocity SV is in the range of 3-30 Hr- 1 . When the pH is lower than 10, the reaction is slow, and when the pH is higher than 13, alkali tends to be wasted. If the reaction space velocity is less than 3 Hr -1 , the treatment speed is slow and inefficient, while if it exceeds 30 Hr -1 , the desorption ability is undesirably reduced. Suitable temperatures range from room temperature to 90 ° C. When the temperature exceeds 90 ° C., as described above, the adsorbent is easily crushed, which is not preferable.

【0011】上記したように本発明で使用される吸着剤
は、pH1未満では溶解の危険性がある。一方、吸着能
力はpHが低いほど高くなる。この相反する条件設定を
解決する方法として、硫酸イオンを吸着除去済みの塩水
を反応塔の入口へ、一部再循環する方法が好ましい。こ
の方法により、同一のpHであっても硫酸イオン濃度に
対する水素イオン濃度比を高めることが可能になり、結
果的に硫酸イオン除去率を高めることが可能となる。反
応塔から流出する塩水の0〜80%を再循環することが
できる。これ以上を再循環すると、SVが大きくなりす
ぎ実用的でない。
As described above, the adsorbent used in the present invention has a risk of dissolution at a pH of less than 1. On the other hand, the adsorption capacity increases as the pH decreases. As a method of solving this conflicting condition setting, a method of partially recirculating the salt water from which the sulfate ions have been removed by adsorption to the inlet of the reaction tower is preferable. According to this method, even at the same pH, the ratio of the hydrogen ion concentration to the sulfate ion concentration can be increased, and as a result, the sulfate ion removal rate can be increased. 0 to 80% of the salt water flowing out of the reaction tower can be recycled. Recirculation beyond this would make the SV too large and impractical.

【0012】[0012]

【実施例】以下、本発明を実施例に基づき更に具体的に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。以下の実施例、比較例において、図1に示す
装置を使用した。 実施例1 イオン交換膜法食塩電解工程の電解槽出口からの硫酸イ
オンを含む塩水4を約5リットルpH調整槽2に供給し
た。塩水のNaCl濃度は201g/リットル、SO4 2- 濃度
は5.5g/リットルであった。塩酸5を0.11mol/
リットル加えてpH調整槽2内のpHを1に制御して、
予めアルカリ性の水で洗浄しアルカリ型に変えた粒径
1.25mmの吸着剤500g(500ml)を充填した反
応塔1内に2.5リットル/Hrで導入し、反応塔内50
〜60℃でワンパス処理し、硫酸イオン吸着除去後の塩
水を抜き出し口10より流出させた。吸着反応終了後、
反応塔1内の残存塩水を抜き出し口9より抜き出し、水
6を反応塔1内に導入して吸着剤を洗浄し抜き出し口9
より抜き出した。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the apparatus shown in FIG. 1 was used. Example 1 About 5 liters of brine 4 containing sulfate ions was supplied to the pH adjusting tank 2 from the outlet of the electrolytic cell in the salt electrolysis step of the ion exchange membrane method. The NaCl concentration of the salt water was 201 g / liter, and the SO 4 2− concentration was 5.5 g / liter. 0.11 mol / of hydrochloric acid 5
Add 1 liter and control the pH in the pH adjustment tank 2 to 1.
2.5 l / hr was introduced into the reaction tower 1 which was previously filled with 500 g (500 ml) of an adsorbent having a particle size of 1.25 mm, which had been washed with alkaline water and changed to an alkaline type.
The solution was subjected to a one-pass treatment at 、 60 ° C., and the salt water from which the sulfate ions had been adsorbed and removed was discharged from the outlet 10. After the end of the adsorption reaction,
The salt water remaining in the reaction tower 1 is withdrawn from the outlet 9, water 6 is introduced into the reaction tower 1 to wash the adsorbent, and the outlet 9.
I extracted more.

【0013】次に、水8を5リットルをpH調整槽3に
加えて水酸化ナトリウム7を0.22mol/リットルを加
えてpH調整槽3内のpHを13に制御して、反応塔1
内に1.8リットル/Hrで導入し、反応塔内室温(15
〜20℃)でワンパス処理し、脱着した硫酸イオンを含
有した水を抜き出し口11より流出させた。脱着反応終
了後、反応塔1内の残存水を抜き出し口9より抜き出
し、水6を反応塔1内に導入して吸着剤を洗浄し抜き出
し口9より抜き出した。各硫酸イオンの分析値は表1、
表2のとおりであった。
Next, 5 liters of water 8 was added to the pH adjusting tank 3 and 0.22 mol / liter of sodium hydroxide 7 was added to control the pH in the pH adjusting tank 3 to 13 so that the reaction column 1
At a rate of 1.8 liter / Hr, and the room temperature (15
-20 ° C.), and the water containing the desorbed sulfate ions was drained from the outlet 11. After the completion of the desorption reaction, the remaining water in the reaction tower 1 was withdrawn from the outlet 9, water 6 was introduced into the reaction tower 1 to wash the adsorbent, and withdrawn from the outlet 9. Table 1 shows the analytical values of each sulfate ion.
As shown in Table 2.

【0014】[0014]

【表1】 表1から明かな如く、除去率73%で、且つ吸着剤の溶
解は極めて少量であった。
[Table 1] As is clear from Table 1, the removal rate was 73%, and the dissolution of the adsorbent was extremely small.

【0015】[0015]

【表2】 表2から明かな如く、脱着率は92%で、また吸着剤の
溶解は少量であった。
[Table 2] As is apparent from Table 2, the desorption rate was 92% and the dissolution of the adsorbent was small.

【0016】実施例2 実施例2においては、吸着剤1kg(1リットル)により
硫酸イオン除去された処理塩水を再度pH調整槽2へ戻
す循環方式にて吸着反応をおこなった。供試塩水量は
7.8リットル、流量は21.6リットル/Hrとした。
また、塩酸5によりpH調整槽2内のpHを1.5に制
御し、吸着反応温度は50〜60℃とした。
Example 2 In Example 2, an adsorption reaction was carried out by a circulation system in which the treated salt water from which sulfate ions had been removed by 1 kg (1 liter) of the adsorbent was returned to the pH adjusting tank 2 again. The amount of test salt water was 7.8 liters, and the flow rate was 21.6 liters / Hr.
The pH in the pH adjusting tank 2 was controlled to 1.5 with hydrochloric acid 5, and the adsorption reaction temperature was 50 to 60 ° C.

【0017】脱着反応にておいても吸着反応と同様に循
環方式にておこなった。アルカリ水量は5.0リット
ル、流量は吸着反応条件と同様に21.6リットル/Hr
とした。また、水酸化ナトリウム7によりpH調整槽3
内のpHを13に制御し、脱着反応温度は50〜60℃
とした。
The desorption reaction was carried out by a circulation system in the same manner as the adsorption reaction. The amount of alkaline water is 5.0 liters, and the flow rate is 21.6 liters / Hr as in the adsorption reaction conditions.
And In addition, the pH adjustment tank 3 is controlled by sodium hydroxide 7.
PH is controlled to 13 and the desorption reaction temperature is 50-60 ° C
And

【0018】[0018]

【表3】 表3から明かな如く、除去率は82%で、また吸着反応
条件であるpHを1.5に制御すると、吸着剤の溶解が
皆無であった。
[Table 3] As is clear from Table 3, when the removal rate was 82% and the pH, which is the adsorption reaction condition, was controlled at 1.5, there was no dissolution of the adsorbent.

【0019】[0019]

【表4】 表4から明かな如く、脱着率は86%で、吸着剤の溶解
は皆無であった。
[Table 4] As is clear from Table 4, the desorption rate was 86%, and the adsorbent did not dissolve at all.

【0020】実施例3 実施例3においては、吸着剤1kg(1リットル)により
硫酸イオン除去された処理塩水を再度pH調整槽2へ一
定量のみ戻す一部リサイクル方式として吸着反応をおこ
なった。供試塩水流量は3.3リットル/Hrとし、一部
リサイクルする流量は6.7リットル/Hrとした。また
塩酸5により反応塔入口pHを1.5に制御し、吸着反
応温度は50〜60℃とした。
Example 3 In Example 3, an adsorption reaction was performed as a partial recycling method in which only a fixed amount of the treated salt water from which sulfate ions had been removed by 1 kg (1 liter) of the adsorbent was returned to the pH adjustment tank 2 again. The flow rate of the test salt water was 3.3 liters / Hr, and the flow rate of partly recycled was 6.7 liters / Hr. The pH at the inlet of the reaction tower was controlled to 1.5 with hydrochloric acid 5, and the adsorption reaction temperature was 50 to 60 ° C.

【0021】実施例2と同様に循環方式として脱着反応
をおこなった。ただし供試アルカリ水流量は、5リット
ル/Hrとした。また、水酸化ナトリウム7によりpH調
整槽3内のpHを13に制御し、脱着反応温度は室温
(10〜20℃)とした。
A desorption reaction was carried out in the same manner as in Example 2 using a circulation system. However, the flow rate of the test alkaline water was 5 liter / Hr. The pH in the pH adjusting tank 3 was controlled to 13 with sodium hydroxide 7, and the desorption reaction temperature was set to room temperature (10 to 20 ° C).

【0022】[0022]

【表5】 表5から明かな如く、除去率は61%で、吸着剤の溶解
は少量であった。
[Table 5] As is clear from Table 5, the removal rate was 61%, and the dissolution of the adsorbent was small.

【0023】[0023]

【表6】 表6から明かな如く、脱着率は86%で、吸着剤の溶解
は皆無であった。
[Table 6] As is clear from Table 6, the desorption rate was 86% and the adsorbent was not dissolved at all.

【0024】実施例4 実施例1と同様の操作において吸着反応をおこなった。
ただし、供試塩水流量は20.0リットル/Hrとした。
また、塩酸5を0.15mol/リットル加えてpH調整槽
2内のpHを0.8に制御した。
Example 4 An adsorption reaction was carried out in the same manner as in Example 1.
However, the test salt water flow rate was 20.0 liter / Hr.
Also, 0.15 mol / l of hydrochloric acid 5 was added to control the pH in the pH adjusting tank 2 to 0.8.

【0025】実施例1と同様の操作において吸着反応を
おこなった。ただし、供試アルカリ水流量は20.0リ
ットル/Hrとした。また、水酸化ナトリウム7によりp
H調整槽3内のpHを9に制御した。
An adsorption reaction was performed in the same manner as in Example 1. However, the test alkaline water flow rate was 20.0 liter / Hr. In addition, sodium hydroxide 7
The pH in the H adjustment tank 3 was controlled at 9.

【0026】[0026]

【表7】 表7から明かな如く、吸着剤の硫酸イオン吸着能力が低
下し、吸着剤の溶解が認められた。
[Table 7] As is clear from Table 7, the adsorbent had a reduced ability to adsorb sulfate ions, and dissolution of the adsorbent was observed.

【0027】[0027]

【表8】 表8から明かな如く、脱着率も低下した。[Table 8] As is clear from Table 8, the desorption rate also decreased.

【0028】比較例1 粒子径0.01mmの吸着剤を用いて、実施例1と同様の
操作により吸着反応をおこなった。ただし、供試塩水流
量は3.9リットル/Hrとした。また、塩酸5を0.1
3mol/リットル加えてpH調整槽2内のpHを1に制御
した。
Comparative Example 1 Using an adsorbent having a particle diameter of 0.01 mm, an adsorption reaction was carried out in the same manner as in Example 1. However, the flow rate of the test salt water was 3.9 liter / Hr. Also, hydrochloric acid 5 was added to 0.1
The pH in the pH adjustment tank 2 was controlled to 1 by adding 3 mol / l.

【0029】[0029]

【表9】 表9から明かな如く、吸着剤の溶解が顕著で、吸着剤は
スラリー状態に劣化し再利用不可能であった。
[Table 9] As is clear from Table 9, the dissolution of the adsorbent was remarkable, and the adsorbent deteriorated to a slurry state and could not be reused.

【0030】比較例2 粒子径5.0mmの吸着剤を用いて、実施例1と同様の操
作において吸着反応をおこなった。ただし、供試塩水流
量は3.9リットル/Hrとした。また、塩酸5を0.1
3mol/リットル加えてpH調整槽2内のpHを1に制御
した。
Comparative Example 2 Using an adsorbent having a particle diameter of 5.0 mm, an adsorption reaction was carried out in the same manner as in Example 1. However, the flow rate of the test salt water was 3.9 liter / Hr. Also, hydrochloric acid 5 was added to 0.1
The pH in the pH adjustment tank 2 was controlled to 1 by adding 3 mol / l.

【0031】[0031]

【表10】 表10から明かな如く、吸着剤の硫酸イオン吸着能力は
殆ど認められなかった。
[Table 10] As is apparent from Table 10, almost no sulfate ion adsorption ability of the adsorbent was recognized.

【0032】[0032]

【発明の効果】叙上のとおり、本発明は、従来用いられ
ていた、硫酸イオン吸着剤(粒子径1〜20μmの水酸
化ジルコニウム)に代えて粒子径0.1〜3mmの大粒径
水酸化ジルコニウムを使用するとともに、固定床方式で
使用することにより、スラリー状態への劣化がなく、従
来法における固液分離のための濾布を用いた特別な濾過
装置、濾過装置に伴う保全作業及び攪拌設備が不要とな
り、再利用も容易である。また設備費も大巾に安価とな
るので、その有用性は頗る大である。
As described above, the present invention provides a large particle size water having a particle size of 0.1 to 3 mm instead of the conventionally used sulfate ion adsorbent (zirconium hydroxide having a particle size of 1 to 20 μm). By using zirconium oxide and using a fixed bed method, there is no deterioration to the slurry state, special filtration equipment using filter cloth for solid-liquid separation in the conventional method, maintenance work associated with the filtration equipment and No stirring equipment is required, and reuse is easy. In addition, the facility cost is greatly reduced, and its usefulness is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するために用いられる装置の一例
を示す概略図である。
FIG. 1 is a schematic diagram showing an example of an apparatus used to carry out the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 pH調
整槽 3 pH調整槽 4 硫酸イ
オン含有塩水 5 塩酸 6 水 7 水酸化ナトリウム 8 水 9 残存塩水又は硫酸イオンを含む洗浄水の抜き出し口 10 硫酸イオン吸着除去後の塩水抜き出し口 11 脱着した硫酸イオンを含む水の抜き出し口
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 pH adjustment tank 3 pH adjustment tank 4 Sulfate ion-containing salt water 5 Hydrochloric acid 6 Water 7 Sodium hydroxide 8 Water 9 Extraction port of washing water containing residual saline or sulfate ion 10 Extraction port of salt water after removal of sulfate ion adsorption 11 Water outlet containing desorbed sulfate ions

フロントページの続き (72)発明者 吉野 求 兵庫県加古川市東神吉町神吉608の259 (72)発明者 斎木 幸治 大阪府豊中市北条町4−6−1−815Continued on the front page (72) Inventor Motoyoshi Yoshino 608-259 Kamiyoshi, Higashikamiyoshicho, Kakogawa, Hyogo (72) Inventor Koji Saiki 4-6-1-815 Hojo-cho, Toyonaka-shi, Osaka

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ジルコニウムを用いてアルカリ金
属塩化物水溶液中の硫酸イオンを吸着除去するに際し、
粒子径0.1〜3mmの水酸化ジルコニウムを吸着剤とし
て使用するとともに、水酸化ジルコニウムを固定床方式
で使用することを特徴とする硫酸イオンの除去方法。
1. A method for adsorbing and removing sulfate ions in an aqueous alkali metal chloride solution using zirconium hydroxide,
A method for removing sulfate ions, wherein zirconium hydroxide having a particle diameter of 0.1 to 3 mm is used as an adsorbent and zirconium hydroxide is used in a fixed bed system.
【請求項2】 アルカリ金属塩化物水溶液中から硫酸イ
オンを吸着除去させる吸着工程におけるアルカリ金属塩
化物水溶液のpHを1〜3及び反応空間速度SVを3〜
30Hr-1の範囲に制御し、吸着剤に吸着された硫酸イオ
ンを吸着剤から脱離させる脱着工程におけるアルカリ水
のpHを10〜13及び反応空間速度SVを3〜30Hr
-1の範囲に制御する請求項1記載の硫酸イオンの除去方
法。
2. The pH of the aqueous alkali metal chloride solution and the reaction space velocity SV of 3 to 3 in the adsorption step of adsorbing and removing sulfate ions from the aqueous alkali metal chloride solution.
Controlled in the range of 30Hr -1, 3~30Hr the pH to 10-13 and the reaction space velocity SV of alkaline water in the desorption step of desorbing sulfate ions adsorbed on the adsorbent from the adsorbent
2. The method for removing sulfate ions according to claim 1, wherein the control is performed within a range of -1 .
【請求項3】 吸着工程において、硫酸イオンを吸着除
去したアルカリ金属塩化物水溶液の一部を吸着工程の入
口へ再循環させる請求項1又は2記載の硫酸イオンの除
去方法。
3. The method for removing sulfate ions according to claim 1, wherein in the adsorption step, a part of the alkali metal chloride aqueous solution from which the sulfate ions have been adsorbed and removed is recycled to the inlet of the adsorption step.
JP7042797A 1995-09-19 1997-03-07 Method for removing sulfate ion in aqueous alkali metallic chloride solution Pending JPH10251014A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7042797A JPH10251014A (en) 1997-03-07 1997-03-07 Method for removing sulfate ion in aqueous alkali metallic chloride solution
PCT/JP1997/000870 WO1998039252A1 (en) 1997-03-07 1997-03-18 Method of removing sulfate ions from aqueous solution of alkali metal chloride
TW086103543A TW332194B (en) 1995-09-19 1997-03-19 Method of removing sulfate ions from an aqueous solution of alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7042797A JPH10251014A (en) 1997-03-07 1997-03-07 Method for removing sulfate ion in aqueous alkali metallic chloride solution

Publications (1)

Publication Number Publication Date
JPH10251014A true JPH10251014A (en) 1998-09-22

Family

ID=13431181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7042797A Pending JPH10251014A (en) 1995-09-19 1997-03-07 Method for removing sulfate ion in aqueous alkali metallic chloride solution

Country Status (2)

Country Link
JP (1) JPH10251014A (en)
WO (1) WO1998039252A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044056A (en) * 1983-08-04 1985-03-08 ザ ダウ ケミカル カンパニ− Removal of sulfate ion from brine
JPH0621032B2 (en) * 1989-11-09 1994-03-23 鐘淵化学工業株式会社 Method for removing sulfate ion from alkali metal chloride aqueous solution
JPH0683789B2 (en) * 1991-05-09 1994-10-26 鐘淵化学工業株式会社 Sulfate ion removal method with inorganic ion exchanger
FR2710857B1 (en) * 1993-10-06 1995-11-17 Atochem Elf Sa Process for the elimination of sulphate ions contained in saline solutions.

Also Published As

Publication number Publication date
WO1998039252A1 (en) 1998-09-11

Similar Documents

Publication Publication Date Title
CN111727171B (en) Method for recovering lithium from brine
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
TWI594950B (en) A process, method and plant for recovering scandium
JP7550246B2 (en) How to recover lithium from brine
JP2004142986A (en) Method for manufacturing lithium concentrated liquid from lithium-containing aqueous solution
EP0427256A1 (en) Method for removing sulfate ions from aqueous solution of alkali metal chloride
KR101814304B1 (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution
CN113439070B (en) Method for recovering lithium from brine by adding alkali
JP3334142B2 (en) Treatment method for fluorine-containing water
JP3227760B2 (en) Fluorine-containing water treatment method
JP2003305458A (en) Method for treating fluorine-containing waste water
JP3203745B2 (en) Fluorine-containing water treatment method
JP7518481B2 (en) How lithium hydroxide is produced
JPH10251014A (en) Method for removing sulfate ion in aqueous alkali metallic chloride solution
JPH07232915A (en) Method for recovering fluorine in waste water
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP2001104807A (en) Method for recovering boron
JPH04334553A (en) Removal of sulfate ion by inorganic ion exchanger
JP3364308B2 (en) Wastewater treatment method and apparatus
JP2003334458A (en) Anion exchange resin, its manufacturing method, and manufacturing method for purified hydrogen peroxide solution using the resin
JP2687194B2 (en) Purification method of hydrogen peroxide solution
RU2343120C1 (en) Method of sewage water purification from hexacyanoferrates
JPH04338110A (en) Method for removing sulfate ion from aqueous alkali metal chloride solution
JPH0986922A (en) Removal of sulfate ion from aqueous solution of alkali metal chloride
JP2000051714A (en) Method for removing sulfate ion in aqueous solution of alkali metal chloride