JPH07232915A - Method for recovering fluorine in waste water - Google Patents

Method for recovering fluorine in waste water

Info

Publication number
JPH07232915A
JPH07232915A JP4194327A JP19432792A JPH07232915A JP H07232915 A JPH07232915 A JP H07232915A JP 4194327 A JP4194327 A JP 4194327A JP 19432792 A JP19432792 A JP 19432792A JP H07232915 A JPH07232915 A JP H07232915A
Authority
JP
Japan
Prior art keywords
exchange resin
fluorine
weakly basic
ion
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4194327A
Other languages
Japanese (ja)
Inventor
Hiromi Kawamoto
宏実 河本
Junichi Ikuta
淳一 幾田
Toshio Tateno
稔夫 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Nomura Micro Science Co Ltd
Original Assignee
Morita Kagaku Kogyo Co Ltd
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd, Nomura Micro Science Co Ltd filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP4194327A priority Critical patent/JPH07232915A/en
Publication of JPH07232915A publication Critical patent/JPH07232915A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To recover F ion in a waste water as the reutilizable concnd. fluorine by bringing a weakly basic ion-exchange resin having adsorbed the F ion into contact with ammonium hydroxide and eluting the F ion. CONSTITUTION:A waste water contg. F ion is introduced into an active-carbon tower 2 from its storage tank 1 to remove impurities and then sent to a strongly acidic cation-exchange resin tower 3 to exchange the dissolved neutral salt of hydrofluoric acid for hydrofluoric acid. The waste water is then passed alternately through the first and second weakly basic ion-exchange resin towers 4 and 5 to saturation-adsorb the F ion on the weakly basic ion-exchange resin. The eluate contg. ammonium hydroxide is passed through the weakly basic ion-exchange resin to elute the F ion as ammonium fluoride and sent to a storage tank 7. The aq. ammonium fluoride soln. is then concentrated and recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ酸を含む廃水中か
らフッ素を再利用可能な形態で濃縮して回収する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating and recovering fluorine from waste water containing hydrofluoric acid in a reusable form.

【0002】[0002]

【従来の技術】従来から半導体製造工程においてはエッ
チング液としてフッ酸が多量に用いられており、このた
め半導体製造工場のエッチング工程から出る廃水中には
少量のフッ酸が含まれている。このような廃水はフッ酸
を含んだまま排出させることができないため、従来から
フッ酸を除去した後に放出することが行われている。従
来、廃水中に含まれるフッ酸を除去する方法としては、
廃水中に水酸化カルシウムを添加してフッ素イオンを難
溶性のCaF2 として沈殿させ汚泥として処理する方法
や、イオン交換樹脂にフッ素イオンを吸着させ、水酸化
ナトリウム水溶液で溶離して回収する方法が採られてい
た。
2. Description of the Related Art Conventionally, a large amount of hydrofluoric acid is used as an etching solution in the semiconductor manufacturing process, and therefore, a small amount of hydrofluoric acid is contained in the waste water discharged from the etching process of a semiconductor manufacturing factory. Since such waste water cannot be discharged while containing hydrofluoric acid, it has been conventionally discharged after removing hydrofluoric acid. Conventionally, as a method for removing hydrofluoric acid contained in wastewater,
There is a method of adding calcium hydroxide to waste water to precipitate fluoride ions as sparingly soluble CaF 2 and treating as sludge, or a method of adsorbing fluoride ions on an ion exchange resin and eluting with a sodium hydroxide aqueous solution to recover. It was taken.

【0003】しかしながら、水酸化カルシウムを用いる
方法では回収したCaF2 は産業廃棄物として廃棄され
るため廃棄処理に制限を受け、再利用するためには再度
高温で電気分解しなければならないため再生コストが非
常に高くなってしまうという問題がある。
However, in the method using calcium hydroxide, the recovered CaF 2 is discarded as industrial waste, so that the disposal process is limited, and since it must be electrolyzed again at high temperature in order to be reused, the regeneration cost is high. There is a problem that becomes very high.

【0004】また、イオン交換樹脂にフッ素イオンを吸
着させ水酸化ナトリウム水溶液で溶離させる方法では、
フッ素イオンはNaFとして回収されるがNaFの溶解
度は4.15g/100 g水(25℃)と非常に低く、これ以上
NaFの濃度を高くするとイオン交換樹脂塔内で沈殿が
析出してイオン交換容量を下げたり、通水時の圧損を大
きくするという問題があり高濃度での回収は不可能であ
る。また、水酸化カリウム水溶液を溶離液として用いれ
ば水酸化ナトリウムの場合よりも濃度の高い回収液を得
ることが可能であるが、水酸化カリウムは比重が大きい
ため溶離液の濃度を高くするとイオン交換樹脂が溶離液
中で浮遊してしまうという操業上の問題があり、結果的
に溶離液の濃度を低くしなければならないため、濃度の
低い状態でしか回収できないという問題がある。
Further, in the method of adsorbing fluorine ions on an ion exchange resin and eluting with a sodium hydroxide aqueous solution,
Fluorine ions are recovered as NaF, but the solubility of NaF is very low at 4.15 g / 100 g water (25 ° C). If the concentration of NaF is further increased, precipitation will occur in the ion exchange resin tower and the ion exchange capacity will be increased. It is impossible to collect at high concentration because there is a problem of lowering the pressure and increasing the pressure loss during water flow. In addition, if an aqueous solution of potassium hydroxide is used as an eluent, it is possible to obtain a recovered liquid having a higher concentration than that of sodium hydroxide. However, since potassium hydroxide has a large specific gravity, increasing the concentration of the eluent causes ion exchange. There is a problem in operation that the resin floats in the eluent, and as a result, the concentration of the eluent must be lowered, so that there is a problem that it can be recovered only in a low concentration state.

【0005】また、フッ酸のアルカリ塩の用途は限られ
ているため、再利用の範囲を広げるためにはフッ素を分
離するための別工程を必要とし、再生コストが非常に高
くなってしまうという問題があった。
Further, since the use of the alkali salt of hydrofluoric acid is limited, a separate step for separating fluorine is required in order to expand the range of reuse, and the cost of regeneration becomes very high. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたもので、廃水中のフッ素イオン
を、高濃度の再利用可能な形態で回収することのできる
廃水中のフッ素回収方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and fluorine ions in waste water capable of recovering fluorine ions in waste water in a highly concentrated and reusable form can be obtained. The purpose is to provide a recovery method.

【0007】[0007]

【課題を解決するための手段】本発明者等は、かかる従
来の問題を解消すべく研究をすすめたところ、弱塩基性
イオン交換樹脂塔を用いる方法において、溶離液として
水酸化アンモニウム溶液を用いた場合に、水酸化アンモ
ニウム水溶液の密度は他のアルカリ水溶液より小さく、
吸着イオンを溶離する際にもイオン交換樹脂の浮遊の問
題が生じるようなことがなく、また、フッ化アンモニウ
ムの溶解度は84.8g/100 g水(25℃)で、高濃度溶液
として回収することができ、しかもこのような高濃度の
フッ化アンモニウム水溶液はセメント製造業界等でその
まま利用可能であることを発見した。
Means for Solving the Problems The inventors of the present invention have conducted research to solve such conventional problems and found that an ammonium hydroxide solution was used as an eluent in a method using a weakly basic ion exchange resin tower. The aqueous ammonium hydroxide solution has a lower density than other alkaline solutions,
Even when eluting adsorbed ions, the problem of floating ion exchange resin does not occur, and the solubility of ammonium fluoride is 84.8 g / 100 g water (25 ° C) and should be collected as a high-concentration solution. It has been discovered that such a high-concentration ammonium fluoride aqueous solution can be used as it is in the cement manufacturing industry and the like.

【0008】本発明は、かかる知見に基づいてなされた
もので、フッ素イオンを含む廃水を弱塩基性イオン交換
樹脂塔に通水して該廃液中のフッ素イオンを該弱塩基性
イオン交換樹脂塔内の弱塩基性イオン交換樹脂に実質的
に飽和吸着させる工程と、前記弱塩基性イオン交換樹脂
塔に水酸化アンモニウムを含む溶離液を通液させて、前
記弱塩基性イオン交換樹脂に吸着されたフッ素イオンを
該溶離液中に濃縮回収する工程とを含むことを特徴とす
る廃水中のフッ素回収方法である。
The present invention has been made on the basis of such findings, and waste water containing fluorine ions is passed through a weakly basic ion exchange resin tower to remove the fluorine ions in the waste liquid from the weakly basic ion exchange resin tower. In the step of substantially saturated adsorption to the weakly basic ion-exchange resin, an eluent containing ammonium hydroxide is passed through the weakly basic ion-exchange resin tower to be adsorbed to the weakly basic ion-exchange resin. And a step of concentrating and recovering fluorine ions in the eluent, and a method of recovering fluorine in wastewater.

【0009】本発明によればフッ素イオン濃度が100 p
pmから 5%程度までの廃水からフッ素を回収する方法
として利用することが可能である。
According to the present invention, the fluorine ion concentration is 100 p
It can be used as a method for recovering fluorine from wastewater of pm to about 5%.

【0010】また、廃水中にフッ素イオンが中性塩の形
で溶解している場合には、中性塩は弱塩基性イオン交換
樹脂塔では捕集できないので、この廃水を、一旦強酸性
カチオン交換樹脂塔に通水して中性塩をフッ酸にした
後、弱塩基性イオン交換樹脂塔に通水することにより会
収率を高めることが可能である。
Further, when the fluorine ion is dissolved in the waste water in the form of a neutral salt, the neutral salt cannot be collected by the weakly basic ion exchange resin tower. By passing water through the exchange resin tower to convert the neutral salt into hydrofluoric acid, water can be passed through the weakly basic ion exchange resin tower to increase the yield.

【0011】本発明における弱塩基性イオン交換樹脂塔
は、1段で用いてもよいが、回収率を高くするため2段
直列させて使用することが好ましい。このように、弱塩
基性イオン交換樹脂塔を2段直列に使用した場合には、
1段目がフッ素イオンにより飽和吸着される前にフッ素
イオンの一部が漏出するようなことがあっても2段目の
弱塩基性イオン交換樹脂塔により捕集することができ、
かつ、1段目が飽和吸着したときは、廃液の通水を2段
目に切り替えて、2段目で吸着を行いながら1段目に溶
離液を通液して吸着フッ素イオンを回収することができ
るので、回収率が向上するとともに、連続処理が可能と
なる。
The weakly basic ion exchange resin column in the present invention may be used in one stage, but it is preferable to use two stages in series in order to increase the recovery rate. Thus, when the weak basic ion exchange resin tower is used in two-stage series,
Even if some of the fluorine ions leak out before the first stage is saturatedly adsorbed by the fluorine ions, they can be collected by the second-stage weakly basic ion exchange resin tower,
When the first stage is saturated and adsorbed, the flow of waste liquid is switched to the second stage, and while adsorbing in the second stage, the eluent is passed in the first stage to collect the adsorbed fluorine ions. As a result, the recovery rate is improved and continuous processing is possible.

【0012】さらに、高濃度のフッ化アンモニウム溶液
として回収するためには、水酸化アンモニウムを含む溶
離液を弱塩基性イオン交換樹脂塔に通液したとき、フッ
素イオン濃度の低い初期溶離液はフッ素イオンを含む配
送を収容する廃水槽へ還流させ、フッ素イオン濃度があ
る程度高くなった後のフッ素イオン濃度の高い溶離液を
回収液槽に回収するようにし、イオン交換樹脂に吸着さ
れたフッ素イオンの溶離が進んで溶離液中のフッ素イオ
ン濃度が再び低くなったときには、その後の後期溶離液
は水酸化アンモニウムを含む溶離液を収容する溶離液槽
へ還流させるようにすることが望ましい。
Further, in order to recover a high-concentration ammonium fluoride solution, when an eluent containing ammonium hydroxide is passed through a weakly basic ion exchange resin column, the initial eluent having a low fluorine ion concentration is fluorine. Reflux to the waste water tank that contains the ion-containing delivery, and collect the eluent with a high fluorine ion concentration after the fluorine ion concentration has risen to a certain level in the recovery liquid tank to remove the fluorine ions adsorbed on the ion exchange resin. When the elution progresses and the fluorine ion concentration in the eluent becomes low again, it is desirable that the subsequent eluent is returned to the eluent tank containing the eluent containing ammonium hydroxide.

【0013】回収される捕集液の最低フッ素イオン濃度
は、再利用される用途によっても異なるが通常フッ素イ
オン濃度が 3%以上、好ましくは 5%以上の溶離液のみ
を回収することが望ましい。
The minimum fluorine ion concentration of the collected liquid to be collected varies depending on the purpose of reuse, but it is usually desirable to collect only the eluent having a fluorine ion concentration of 3% or more, preferably 5% or more.

【0014】本発明に使用される溶離液の水酸化アンモ
ニウム濃度は、高いほど高濃度の回収液が得られるが、
通常 4規定程度のものが使用される。
The higher the ammonium hydroxide concentration of the eluent used in the present invention is, the higher the concentration of the recovered liquid is obtained.
Usually about 4 regulations are used.

【0015】[0015]

【作用】本発明によれば、フッ素イオンを含む廃水は、
弱塩基性イオン交換樹脂塔に通水され、溶存しているフ
ッ素イオンが弱塩基性イオン交換樹脂に吸着される。そ
して、この後、水酸化アンモニウムを含む溶離液を通液
することにより、イオン交換樹脂に吸着されていたフッ
素イオンは溶離液中に高濃度で濃縮回収される。 この
ようにして回収された高濃度のフッ化アンモニウム水溶
液は、そのままセメント業界その他の用途に再利用可能
である。
According to the present invention, the wastewater containing fluoride ions is
Water is passed through the weakly basic ion exchange resin tower, and dissolved fluorine ions are adsorbed by the weakly basic ion exchange resin. Then, after that, by passing an eluent containing ammonium hydroxide, the fluorine ions adsorbed on the ion-exchange resin are concentrated and recovered in the eluent at a high concentration. The high-concentration ammonium fluoride aqueous solution thus recovered can be reused as it is in the cement industry and other applications.

【0016】[0016]

【実施例】次に、本発明の実施例を、図面を参照しなが
ら説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図1は、本発明の一実施例のフローであ
る。
FIG. 1 is a flow chart of an embodiment of the present invention.

【0018】この実施例の装置は、希フッ酸を含む廃水
を収容する希フッ酸廃水貯槽1、活性炭塔2、強酸性カ
チオン交換樹脂塔3、第1弱塩基性イオン交換樹脂塔
4、第2弱塩基性イオン交換樹脂塔5および処理水槽6
が直列に配置されている。また、強酸性カチオン交換樹
脂塔3には35%塩酸水溶液からなる再生液が供給される
ようになっており、第1弱塩基性イオン交換樹脂塔4お
よび第2弱塩基性イオン交換樹脂塔5には14%水酸化ア
ンモニウム水溶液からなる溶離液が供給され、溶離され
たフッ化アンモニウム水溶液はフッ化アンモニウム水溶
液貯槽7に送られるようになっている(溶離系は第1弱
塩基性イオン交換樹脂塔4についてだけ図示)。そし
て、処理水槽6中の処理水は、それぞれ再生用の処理水
として活性炭塔2、強酸性カチオン交換樹脂塔3、第1
弱塩基性イオン交換樹脂塔4、第2弱塩基性イオン交換
樹脂塔5に供給可能とされ、その再生廃液は再生廃液槽
8に送られるようになっている。
The apparatus of this embodiment comprises a dilute hydrofluoric acid waste water storage tank 1 for storing waste water containing dilute hydrofluoric acid, an activated carbon tower 2, a strongly acidic cation exchange resin tower 3, a first weakly basic ion exchange resin tower 4, and 2 Weakly basic ion exchange resin tower 5 and treated water tank 6
Are arranged in series. Further, the strongly acidic cation exchange resin tower 3 is adapted to be supplied with a regenerant liquid comprising a 35% hydrochloric acid aqueous solution, and the first weakly basic ion exchange resin tower 4 and the second weakly basic ion exchange resin tower 5 are provided. Is supplied with an eluent consisting of 14% ammonium hydroxide aqueous solution, and the eluted ammonium fluoride aqueous solution is sent to the ammonium fluoride aqueous solution storage tank 7 (the elution system is the first weakly basic ion exchange resin). (Only shown for Tower 4). The treated water in the treated water tank 6 is used as treated water for regeneration, respectively, such as the activated carbon tower 2, the strongly acidic cation exchange resin tower 3, and the first treated water.
It can be supplied to the weakly basic ion exchange resin tower 4 and the second weakly basic ion exchange resin tower 5, and the recycled waste liquid thereof is sent to the recycled waste liquid tank 8.

【0019】この実施例においては、まず、希フッ酸廃
水貯槽1に貯留された0.1 %のフッ素イオンを含む廃液
が、活性炭塔2に送られ、ここで各種の不純物が除去さ
れる。次に、不純物の除去されたフッ酸を含む廃水は、
強酸性カチオン交換樹脂塔3に送られ溶存するフッ酸の
中性塩がイオン交換されてフッ酸にされる。そして、フ
ッ酸を含む廃水は、第1弱塩基性イオン交換樹脂塔4、
第2弱塩基性イオン交換樹脂塔5を通過する過程で溶存
するフッ素イオンが弱塩基性イオン交換樹脂に吸着さ
れ、フッ素イオンを含まない処理水が処理水槽6に貯留
され、この処理水は純水装置等へ供給されて使用され
る。
In this embodiment, first, the waste liquid containing 0.1% of fluorine ions stored in the dilute hydrofluoric acid waste water storage tank 1 is sent to the activated carbon tower 2 where various impurities are removed. Next, the wastewater containing hydrofluoric acid from which impurities have been removed is
The neutral salt of hydrofluoric acid which is sent to the strongly acidic cation exchange resin tower 3 is ion-exchanged to hydrofluoric acid. Then, the wastewater containing hydrofluoric acid is fed to the first weakly basic ion exchange resin tower 4,
Fluorine ions dissolved in the process of passing through the second weakly basic ion exchange resin tower 5 are adsorbed by the weakly basic ion exchange resin, and treated water containing no fluorine ions is stored in the treated water tank 6, and the treated water is pure. It is used by being supplied to a water device.

【0020】そして、第1の弱塩基性イオン交換樹脂塔
4がフッ素イオンを飽和吸着すると、配管系が切り替え
られて活性炭塔3からの給水は第2の弱塩基性イオン交
換樹脂塔に直接送られるようになり、一方、第1の弱塩
基性イオン交換樹脂塔4には14%水酸化アンモニウム水
溶液からなる溶離液が供給されて吸着されたフッ素イオ
ンがフッ化アンモニウムとして溶離され、フッ化アンモ
ニウム水溶液貯槽7に送られる。
When the first weakly basic ion exchange resin tower 4 saturates and adsorbs fluorine ions, the piping system is switched and the feed water from the activated carbon tower 3 is directly sent to the second weakly basic ion exchange resin tower. On the other hand, the first weakly basic ion-exchange resin tower 4 is supplied with an eluent composed of a 14% ammonium hydroxide aqueous solution, and the adsorbed fluorine ions are eluted as ammonium fluoride, so that ammonium fluoride is dissolved. It is sent to the aqueous solution storage tank 7.

【0021】このとき水第1の弱塩基性イオン交換樹脂
塔4から放出される処理液中のフッ素イオンとアンモニ
ウムイオンの濃度は図2のように変化するので(図中
B.Vは樹脂容量あたりの通液寮)、フッ素イオン濃
度、アンモニウムイオン濃度の低い初期溶離液は希フッ
酸廃水貯槽1へ還流させ、フッ素イオン濃度が 3%以上
に高くなった後の溶離液をフッ化アンモニウム貯槽7に
回収するようにする。そして、イオン交換樹脂に吸着さ
れたフッ素イオンの溶離が進んで溶離液のフッ素イオン
濃度が再び 3%より低くなったときには、その後の後期
溶離液は溶離液貯槽へ還流させるようにする。
At this time, the concentrations of fluorine ions and ammonium ions in the treatment solution discharged from the water first weakly basic ion exchange resin tower 4 change as shown in FIG. 2 (B.V in the figure is the resin capacity). Permeate dormitory), the initial eluent with a low fluoride ion concentration and ammonium ion concentration is returned to the dilute hydrofluoric acid wastewater storage tank 1, and the eluent after the fluoride ion concentration becomes 3% or higher is stored in the ammonium fluoride storage tank. Collect at 7. Then, when the elution of the fluorine ions adsorbed on the ion exchange resin progresses and the fluorine ion concentration of the eluent becomes lower than 3% again, the subsequent eluent in the subsequent period is returned to the eluent storage tank.

【0022】このようにして第1弱塩基性イオン交換樹
脂塔4からフッ化イオンを溶離した後、第1弱塩基性イ
オン交換樹脂塔4を処理水で洗浄した後、第1の弱塩基
性イオン交換樹脂塔4が第2の弱塩基性イオン交換樹脂
塔5の後段となり第1の弱塩基性イオン交換樹脂塔4か
ら処理水槽6に処理水が送られるように配管系を切り替
えて処理を続行する。この後、第1弱塩基性イオン交換
樹脂塔4で行ったと同様の方法により、第2弱塩基性イ
オン交換樹脂塔5についても配管系の切り替えを繰り返
し、連続的に処理を行う。
In this way, after the fluoride ions are eluted from the first weakly basic ion exchange resin tower 4, the first weakly basic ion exchange resin tower 4 is washed with treated water, and then the first weakly basic ion exchange resin tower 4 is washed. The ion exchange resin tower 4 becomes the latter stage of the second weakly basic ion exchange resin tower 5, and the treatment is performed by switching the piping system so that the treated water is sent from the first weakly basic ion exchange resin tower 4 to the treated water tank 6. continue. After that, the pipe system is repeatedly switched for the second weak basic ion exchange resin tower 5 by the same method as in the first weak basic ion exchange resin tower 4, and the treatment is continuously performed.

【0023】このようにして、得られたフッ化アンモニ
ウム水溶液は、精製された後、所望の用途で再利用され
る。
The thus obtained aqueous solution of ammonium fluoride is purified and then reused for a desired purpose.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
廃水中のフッ素イオンを、高濃度の再利用可能な形態で
回収することができる。
As described above, according to the present invention,
Fluoride ions in wastewater can be recovered in high concentration in reusable form.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のフロー図。FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】本発明の一実施例における水酸化アンモニウム
を含む溶離液の流量とフッ素イオン濃度、アンモニウム
イオン濃度の関係を示すグラフ。 1……希フッ酸廃水貯槽、2……活性炭塔、3……強酸
性カチオン交換樹脂塔、4……第1弱塩基性イオン交換
樹脂塔、5……第2弱塩基性イオン交換樹脂塔、6……
処理水槽、7……水溶液貯槽、8……再生廃液槽。
FIG. 2 is a graph showing the relationship between the flow rate of an eluent containing ammonium hydroxide and the fluorine ion concentration and ammonium ion concentration in one example of the present invention. 1 ... dilute hydrofluoric acid waste water storage tank, 2 ... activated carbon tower, 3 ... strong acid cation exchange resin tower, 4 ... first weakly basic ion exchange resin tower, 5 ... second weakly basic ion exchange resin tower , 6 ...
Treated water tank, 7 ... Aqueous solution storage tank, 8 ... Recycled waste liquid tank.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/42 CDG E ZAB // B08B 3/14 2119−3B (72)発明者 立野 稔夫 大阪府大阪市中央区高麗橋2丁目6番10号 森田化学工業株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C02F 1/42 CDG E ZAB // B08B 3/14 2119-3B (72) Inventor Toshio Tateno Osaka City Central Osaka 2-6-10 Koraibashi, Ward Morita Chemical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素イオンを含む廃水を弱塩基性イオ
ン交換樹脂塔に通水して該廃液中のフッ素イオンを該弱
塩基性イオン交換樹脂塔内の弱塩基性イオン交換樹脂に
実質的に飽和吸着させる工程と、前記弱塩基性イオン交
換樹脂塔に水酸化アンモニウムを含む溶離液を通液させ
て、前記弱塩基性イオン交換樹脂に吸着されたフッ素イ
オンを該溶離液中に濃縮回収する工程とを含むことを特
徴とする廃水中のフッ素回収方法。
1. Waste water containing fluorine ions is passed through a weakly basic ion-exchange resin tower, and fluorine ions in the waste liquid are substantially transferred to the weakly basic ion-exchange resin in the weakly basic ion-exchange resin tower. Saturating adsorption step, and passing an eluent containing ammonium hydroxide through the weakly basic ion exchange resin tower, and collecting and collecting the fluorine ions adsorbed by the weakly basic ion exchange resin in the eluent. A method for recovering fluorine in wastewater, comprising the steps of:
【請求項2】 前記弱塩基性イオン交換樹脂塔から放出
されるフッ素イオン濃度の低い初期溶離液をフッ素イオ
ンを含む廃水を収容する廃水槽へ還流させ、フッ素イオ
ン濃度の低い後期溶離液は水酸化アンモニウムを含む溶
離液を収容する溶離液槽へ還流させ、フッ素イオン濃度
の高い中期溶離液のみを回収する請求項1記載の廃水中
のフッ素回収方法。
2. The initial eluent having a low fluorine ion concentration released from the weakly basic ion exchange resin tower is refluxed to a waste water tank containing waste water containing fluorine ions, and the latter eluent having a low fluorine ion concentration is water. The method for recovering fluorine in wastewater according to claim 1, wherein the eluent containing ammonium oxide is refluxed to an eluent tank to recover only the medium-term eluent having a high fluorine ion concentration.
【請求項3】 前記フッ素イオンを含む廃水は、中性塩
のフッ素イオンを含む廃液を強酸性カチオン交換樹脂塔
に通水して前記中性塩をフッ酸としてなる廃液である請
求項1または2記載の廃水中のフッ素回収方法。
3. The waste water containing the fluorine ion is a waste solution containing the neutral salt as the hydrofluoric acid by passing the waste solution containing the fluorine ion of a neutral salt through a strongly acidic cation exchange resin tower. 2. The method for recovering fluorine in wastewater according to 2.
JP4194327A 1992-07-21 1992-07-21 Method for recovering fluorine in waste water Withdrawn JPH07232915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194327A JPH07232915A (en) 1992-07-21 1992-07-21 Method for recovering fluorine in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194327A JPH07232915A (en) 1992-07-21 1992-07-21 Method for recovering fluorine in waste water

Publications (1)

Publication Number Publication Date
JPH07232915A true JPH07232915A (en) 1995-09-05

Family

ID=16322750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194327A Withdrawn JPH07232915A (en) 1992-07-21 1992-07-21 Method for recovering fluorine in waste water

Country Status (1)

Country Link
JP (1) JPH07232915A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190637B1 (en) 1998-04-08 2001-02-20 Nihon Medi-Physics Co., Ltd. Method for preparing [F-18-]fluoride ion
EP1713567A2 (en) * 2004-01-16 2006-10-25 The Boc Group, Inc. Fluorine removal by ion exchange
JP2009184913A (en) * 2009-02-20 2009-08-20 Shibaura Institute Of Technology Recovering method of glass material
CN102965114A (en) * 2011-08-29 2013-03-13 日本爱纳克株式会社 Hydrofluoric acid-containing process liquid regeneration method and regeneration device
WO2014073839A1 (en) * 2012-11-07 2014-05-15 대림산업 주식회사 Method for treating waste water containing fluorine component
KR20150138461A (en) * 2014-05-29 2015-12-10 방산테크놀로지(주) Method for recovering flourine of comprising in waste water as etching process
CN113200519A (en) * 2021-05-24 2021-08-03 聊城氟尔新材料科技有限公司 Method for removing fluorine in high-concentration fluorine-containing hydrochloric acid and application
CN114149131A (en) * 2021-12-18 2022-03-08 江苏电科环保有限公司 Treatment method of fluorine-containing etching waste liquid for controlling COD concentration

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190637B1 (en) 1998-04-08 2001-02-20 Nihon Medi-Physics Co., Ltd. Method for preparing [F-18-]fluoride ion
US7470413B2 (en) 1999-12-03 2008-12-30 Edwards Vacuum, Inc. Fluorine removal by ion exchange
EP1713567A2 (en) * 2004-01-16 2006-10-25 The Boc Group, Inc. Fluorine removal by ion exchange
EP1713567A4 (en) * 2004-01-16 2007-03-28 Boc Group Inc Fluorine removal by ion exchange
KR101148558B1 (en) * 2004-01-16 2012-05-24 에드워즈 배큠 인코포레이티드 Fluorine removal by ion exchange
JP2009184913A (en) * 2009-02-20 2009-08-20 Shibaura Institute Of Technology Recovering method of glass material
CN102965114A (en) * 2011-08-29 2013-03-13 日本爱纳克株式会社 Hydrofluoric acid-containing process liquid regeneration method and regeneration device
WO2014073839A1 (en) * 2012-11-07 2014-05-15 대림산업 주식회사 Method for treating waste water containing fluorine component
CN104768878A (en) * 2012-11-07 2015-07-08 大林产业株式会社 Method for treating waste water containing fluorine component
US9969630B2 (en) 2012-11-07 2018-05-15 Daelim Industrial Co., Ltd. Method for treating waste water containing fluorine component
KR20150138461A (en) * 2014-05-29 2015-12-10 방산테크놀로지(주) Method for recovering flourine of comprising in waste water as etching process
CN113200519A (en) * 2021-05-24 2021-08-03 聊城氟尔新材料科技有限公司 Method for removing fluorine in high-concentration fluorine-containing hydrochloric acid and application
CN113200519B (en) * 2021-05-24 2023-02-21 聊城氟尔新材料科技有限公司 Method for removing fluorine in high-concentration fluorine-containing hydrochloric acid and application
CN114149131A (en) * 2021-12-18 2022-03-08 江苏电科环保有限公司 Treatment method of fluorine-containing etching waste liquid for controlling COD concentration
CN114149131B (en) * 2021-12-18 2023-07-04 江苏电科环保有限公司 Treatment method of fluorine-containing etching waste liquid for controlling COD concentration

Similar Documents

Publication Publication Date Title
JP3671644B2 (en) Photoresist developing waste liquid recycling method and apparatus
US5545309A (en) Method of processing organic quaternary ammonium hydroxide-containing waste liquid
US6998054B2 (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
JPH11190907A (en) Regenerating method of photoresist developer waste liquid
JPH07232915A (en) Method for recovering fluorine in waste water
GB2088850A (en) Treatment of N methyl pyrrolidone
US5512182A (en) Process for removing trace amounts of ammonia-containing compounds from aqueous streams
JP3334142B2 (en) Treatment method for fluorine-containing water
US7371326B2 (en) Water treatment/remediation system
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
US4049772A (en) Process for the recovery of chromic acid solution from waste water containing chromate ions
JP3203745B2 (en) Fluorine-containing water treatment method
TWI423836B (en) Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP3364308B2 (en) Wastewater treatment method and apparatus
JPH11142380A (en) Method for recycling photoresist developer waste solution
JPH08281256A (en) Recovering method of semiconductor washing waste water
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPH0839059A (en) Recovery of semiconductor washing waste water containing organic alkali
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005