JPH0595126A - Thin film solar battery and manufacturing method thereof - Google Patents

Thin film solar battery and manufacturing method thereof

Info

Publication number
JPH0595126A
JPH0595126A JP3252640A JP25264091A JPH0595126A JP H0595126 A JPH0595126 A JP H0595126A JP 3252640 A JP3252640 A JP 3252640A JP 25264091 A JP25264091 A JP 25264091A JP H0595126 A JPH0595126 A JP H0595126A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
light incident
incident side
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3252640A
Other languages
Japanese (ja)
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3252640A priority Critical patent/JPH0595126A/en
Publication of JPH0595126A publication Critical patent/JPH0595126A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce a light absorption loss through laminated cells and improve conversion efficiency in a thin film solar battery, by using given amorphous silicon oxide as a material for p and n layers, each located on the rear side, opposed to the light incident side, of every pin junction-structured i layer except a pin junction-structured layer at the most distant place from the light incident side. CONSTITUTION:A plurality of pin junction structures mainly made of amorphous silicon oxide are deposited. In this case, amorphous silicon oxide, a-Si(1-x)Ox, where x is less than 0.2, is used as a material for p and n layers 5 and 6, each located on the rear side, opposed to the light incident side, of each pin junction- structured i layer except a pin junction-structured layer at the most distant place from the light incident side. Moreover, the amorphous silicon oxide is formed in a chemical decomposition step, such as a glow discharging decomposition step with the use of a mixed gas of monosilane, carbon dioxide, hydrogen, and doping impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
(以下a−Siと略す) を主材料としたpin接合構造を
複数積層してなる薄膜太陽電池およびその製造方法に関
する。
FIELD OF THE INVENTION The present invention relates to amorphous silicon.
The present invention relates to a thin-film solar cell in which a plurality of pin-junction structures containing (hereinafter abbreviated as a-Si) as a main material are laminated and a method for manufacturing the same.

【0002】[0002]

【従来の技術】シラン系ガスを用いてプラズマCVD法
や光CVD法により形成されるa−Si太陽電池は薄膜、
大面積化が容易という特長をもち、低コスト太陽電池と
して期待されている。一方、a−Si太陽電池には長期間
の光照射で特性が劣化する、いわゆる "光劣化現象" が
あり、実用化の上で大きな問題となっている。この問題
を解決する一つの方法として、図1に示すようにpin
接合構造を二層積層化することがあげられる。この太陽
電池は二層タンデムセルと呼ばれ、通常のpin接合の
一つからなるシングルセルと比べて光劣化が半分程度に
抑えられる。二層タンデムセルは以下のように作製され
る。
2. Description of the Related Art An a-Si solar cell formed by a plasma CVD method or a photo CVD method using a silane-based gas is a thin film,
It is expected to be used as a low-cost solar cell because it has the characteristic that it can be easily enlarged. On the other hand, the a-Si solar cell has a so-called "photodegradation phenomenon" in which the characteristics are deteriorated by long-term light irradiation, which is a big problem in practical use. As one method of solving this problem, as shown in FIG.
The joining structure may be a two-layer structure. This solar cell is called a two-layer tandem cell, and photodegradation can be suppressed to about half that of a single cell composed of one ordinary pin junction. The two-layer tandem cell is manufactured as follows.

【0003】まず、ガラス基板1の上に、SnO2 等の透
明電極2を形成し、その上にSiH4、CH4 を主ガスと
し、H2 を希釈ガス、B2 6 をドーピングガスとして
アモルファスシリコンカーバイド (a−SiC) の第一p
層3を100 〜150 Åの厚さに形成する。つづいてSiH4
を主ガス、H2 を希釈ガスとしてa−Siの第一i層4を
500 〜800 Åの厚さに形成し、さらにSiH4 を主ガス、
2 を希釈ガス、PH 3 をドーピングガスとしてa−Si
の第一n層5を100 〜150 Åの厚さに形成する。次に、
第二p、i、n層6、7、8を同じ要領でそれぞれ、10
0 〜150 Å、3000〜5000Å、100 〜150 Åの厚さに形成
し、裏面電極12を形成することにより作製される。ま
た、二つのセル間のn/p接合部がオーミック接合にな
るように、第一n層5と第二p層6の間に、必要に応じ
てnあるいはp型のマイクロクリスタルシリコン (μc
−Si) 層が形成される。
First, SnO is formed on the glass substrate 1.2Etc.
The bright electrode 2 is formed, and SiH is formed on it.Four, CHFourWith the main gas
And H2The diluent gas, B2H6As a doping gas
Amorphous silicon carbide (a-SiC) first p
Form layer 3 to a thickness of 100-150Å. Continued SiHFour
The main gas, H2Is used as a diluting gas for the first i-layer 4 of a-Si.
Formed to a thickness of 500 to 800 Å, and further SiHFourThe main gas,
H2The diluent gas, PH 3Is used as a doping gas for a-Si
The first n-layer 5 is formed to a thickness of 100 to 150Å. next,
The second p, i, n layers 6, 7 and 8 are respectively
Formed to a thickness of 0 to 150 Å, 3000 to 5000 Å, 100 to 150 Å
Then, it is manufactured by forming the back surface electrode 12. Well
Also, the n / p junction between the two cells becomes an ohmic junction.
Between the first n layer 5 and the second p layer 6 as necessary.
N or p type micro crystal silicon (μc
-Si) layer is formed.

【0004】[0004]

【発明が解決しようとする課題】a−Si太陽電池ではp
層およびn層はデッドレイヤになっており、これらの層
における光吸収は発電ロスにつながる。このため、窓層
にあたるp層の光学ギャップを大きくして光吸収を小さ
くすることが考えられ、例えば特開昭56−64476号公報
で公知のように、p層にa−SiCを適用し、光吸収ロス
の低減を図っている。二層タンデムセルの場合、このほ
かにセル間のn/p接合部での光吸収ロスが生じる。こ
の部分はシングルセルの金属電極側のn層とは異なり、
通過する光の強度が入射光の半分程度あることから光吸
収が大きな問題になっていた。n層中での短絡電流密度
Jscのロスに換算して3〜5%もあることがシミュレ
ーションによりわかっている。
In a-Si solar cells, p
The layers and the n layer are dead layers, and light absorption in these layers leads to power generation loss. Therefore, it is conceivable to increase the optical gap of the p layer corresponding to the window layer to reduce the light absorption. For example, as known from JP-A-56-64476, a-SiC is applied to the p layer, We are trying to reduce light absorption loss. In the case of a two-layer tandem cell, in addition to this, light absorption loss occurs at the n / p junction between cells. This part is different from the n layer on the metal electrode side of the single cell,
Since the intensity of light passing through is about half that of incident light, light absorption has been a major problem. It has been found by simulation that the loss of the short circuit current density Jsc in the n layer is 3 to 5%.

【0005】本発明の目的は、上述の問題を解決し、積
層されるセルの中間での光吸収ロスを低減した薄膜太陽
電池およびその製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a thin film solar cell in which light absorption loss in the middle of stacked cells is reduced and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、a−Siを主材料としてpin接合構造
を複数積層してなる薄膜太陽電池において、光の入射す
る側から最も遠くにあるpin接合構造を除く各pin
接合構造のi層の反光入射側にあるp層あるいはn層
が、一般式a−Si(1-x) x で表わされ、xが0.2 未満
であるアモルファスシリコンオキサイドからなるものと
する。そして、i層の反光入射側にあるa−SiO層の光
学ギャップが1.9eV ないし2.1eV の範囲にあるか、ある
いはその光導電率が1×10-6s/cm以上であることが有
効である。また、本発明は、a−Siを主材料としたpi
n接合構造を複数積層する薄膜太陽電池の製造方法にお
いて、光の入射する側から最も遠いpin接合構造を除
く各pin接合のi層の反光入射側にあるp層あるいは
n層を、SiH4 、CO2 、H2 およびドーピング用の不
純物を含むガスの混合ガスを分解することにより生ずる
a−SiOで形成するものとする。そして、分解をグロー
放電分解によることが有効である。
In order to achieve the above object, the present invention provides a thin-film solar cell in which a-Si is used as a main material and a plurality of pin-junction structures are laminated, and the thin-film solar cell is most suitable from the light incident side. Each pin except for the distant pin junction structure
P layer or n-layer on the anti-light incident side of the i layer of the junction structure is represented by the general formula a-Si (1-x) O x, x is assumed to consist of amorphous silicon oxide is less than 0.2. Then, it is effective that the optical gap of the a-SiO layer on the side opposite to the light incident side of the i layer is in the range of 1.9 eV to 2.1 eV, or its photoconductivity is 1 × 10 −6 s / cm or more. is there. Further, the present invention is based on pi containing a-Si as a main material.
In a method for manufacturing a thin-film solar cell in which a plurality of n-junction structures are laminated, a p-layer or an n-layer on the anti-light incident side of the i-layer of each pin junction except for the pin junction structure farthest from the light incident side is replaced with SiH 4 , It is formed of a-SiO generated by decomposing a mixed gas of CO 2 , H 2 and a gas containing impurities for doping. Then, it is effective to decompose by glow discharge decomposition.

【0007】[0007]

【作用】a−Si膜中の酸素の量を増加させることにより
光学ギャップEgが1.9eV 以上に大きくなりi層を出た光
の次のp−i−n接合へ入るまでの吸収ロスが減少し、
短絡電流が増大する。しかし、さらに酸素量が増加し、
a−Si(1-x) x のxが0.16を超え、0.21に近くなると
a−SiO膜の光導電率σphが低下によりバルク抵抗が大
きくなり、直列抵抗成分が増加して、フィルファクタが
低下する。そこでσphを1×10-6s/cm以上の範囲にす
ることが有効でその際Egは2.1eV になる。そして、SiH
4 、CO2 、H2 の混合ガスの分解により形成されるa
−SiO膜は、SiH4 、O2 等によりa−SiO膜を形成す
るときのようにSiH4 とO2 の激しい反応のために膜に
欠陥が生ずることがないため、良質の膜が得られる。
[Function] By increasing the amount of oxygen in the a-Si film, the optical gap Eg becomes larger than 1.9 eV and the absorption loss of the light exiting the i-layer to the next pin junction is reduced. Then
Short circuit current increases. However, the amount of oxygen increases further,
When x of a-Si (1-x) O x exceeds 0.16 and becomes close to 0.21, the photoconductivity σ ph of the a-SiO film lowers, the bulk resistance increases, the series resistance component increases, and the fill factor increases. Is reduced. Therefore, it is effective to set σ ph in the range of 1 × 10 -6 s / cm or more, and Eg becomes 2.1 eV in that case. And SiH
A formed by decomposition of a mixed gas of 4 , CO 2 and H 2
-SiO film, there is no a defect occurs in the film, good quality films are obtained for the violent reaction of SiH 4 and O 2 as when forming the a-SiO film by SiH 4, O 2, etc. ..

【0008】[0008]

【実施例】図1の構造をもつ本発明の一実施例の薄膜太
陽電池を次のようにして製造した。まずガラス基板1の
上に、SnO2 等の透明電極2を形成し、その上にa−Si
Cからなる第一p層3、a−Siからなる第一i層4およ
びa−SiOからなる第一n層5をそれぞれ120 Å、700
Å、100 Åの厚さに形成した。つづいてa−SiCからな
る第二p層6、a−Siからなる第二i層7および第二n
層8をそれぞれ120Å、3000Å、150 Åの厚さに形成
し、Ag等の金属電極12を形成した。このうち、本発明に
よる第一n層5は以下の方法で成膜される。
EXAMPLE A thin-film solar cell of an example of the present invention having the structure of FIG. 1 was manufactured as follows. On a glass substrate 1 First, a transparent electrode 2 of SnO 2 or the like, a-Si thereon
The first p-layer 3 made of C, the first i-layer 4 made of a-Si, and the first n-layer 5 made of a-SiO are respectively 120 Å, 700
Å, formed to a thickness of 100 Å. Then, a second p layer 6 made of a-SiC, a second i layer 7 made of a-Si and a second n layer.
Layer 8 was formed to a thickness of 120Å, 3000Å and 150Å respectively, and a metal electrode 12 of Ag or the like was formed. Of these, the first n-layer 5 according to the present invention is formed by the following method.

【0009】すでに透明電極2、第一p層3、第一i層
4を形成したガラス基板1を収容した成膜室に原料ガス
としてシラン (SiH4 ),二酸化炭素 (CO2 ) 、水素
(H2 ) およびドーピングガスとしてのホスフィン (P
3 ) を導入する。各ガスは、流量比でH2 /SiH4
20、CO2 /SiH4 =0.1 〜4、PH3 /SiH4 =0.01
となるように混合し、ガス全体の圧力を0.5 Torrにす
る。基板温度を150 ℃に保ち、高周波電力を電極間に印
加してグロー放電分解によりa−SiO膜を形成する。a
−SiO膜の組成はSiH4 およびCO2 のガス比を変える
ことにより、変化させることができる。ここで、a−Si
(1-x) x で表わしたn層の膜組成xを変化させたとき
の光学ギャップEgと導電率σph、さらに、その膜を適用
して作製した二層タンデムセルの太陽電池特性を表1に
示す。n層の膜組成はX線光電子分光法 (XPS) によ
り分析した値であり、太陽電池特性は、AM1.5 、100mW
/cm2の擬似太陽光下で測定した値である。
Silane (SiH 4 ), carbon dioxide (CO 2 ), hydrogen as raw material gas is placed in a film forming chamber containing a glass substrate 1 on which a transparent electrode 2, a first p layer 3 and a first i layer 4 are already formed.
(H 2 ) and phosphine (P
H 3 ) is introduced. The flow rate of each gas is H 2 / SiH 4 =
20, CO 2 / SiH 4 = 0.1 to 4, PH 3 / SiH 4 = 0.01
And the total gas pressure is 0.5 Torr. The substrate temperature is kept at 150 ° C., high frequency power is applied between the electrodes, and an a-SiO film is formed by glow discharge decomposition. a
The composition of the —SiO film can be changed by changing the gas ratio of SiH 4 and CO 2 . Where a-Si
The optical gap Eg and the electrical conductivity σ ph when the film composition x of the n layer represented by (1-x) O x was changed, and the solar cell characteristics of the two-layer tandem cell produced by applying the film were shown. It shows in Table 1. The film composition of the n-layer is the value analyzed by X-ray photoelectron spectroscopy (XPS), and the solar cell characteristics are AM1.5, 100mW.
It is a value measured under simulated sunlight of / cm 2 .

【0010】[0010]

【表1】 [Table 1]

【0011】表1からわかるように、膜中酸素量を増加
させることにより光学ギャップEgが増加し、これにとも
ない短絡電流密度Jscが向上している。Jscの向上は最
大で約3%となっており、シミュレーションの結果と良
い対応が得られている。一方、フィルファクタFFに着
目するとX≦0.16の範囲でほぼ一定になっているが、そ
れよりも大きくなると減少することがわかる。これは、
光導電率σphの低下により、n層のバルク抵抗が増加
し、直列抵抗成分が増加したためである。従って、σph
≧1×10-6s/cmの範囲のa−SiO膜をn層に用いれ
ば、FFが低下することなくJscが向上し、変換効率η
が向上することが分かった。
As can be seen from Table 1, the optical gap Eg is increased by increasing the amount of oxygen in the film, and the short circuit current density Jsc is improved accordingly. The maximum improvement in Jsc is about 3%, which shows good correspondence with the simulation results. On the other hand, focusing on the fill factor FF, it is found that it is almost constant in the range of X ≦ 0.16, but it decreases when it becomes larger than that. this is,
This is because the decrease in photoconductivity σ ph increases the bulk resistance of the n layer and increases the series resistance component. Therefore, σ ph
When an a-SiO film in the range of ≧ 1 × 10 −6 s / cm is used for the n layer, Jsc is improved without lowering FF and the conversion efficiency η
Was found to improve.

【0012】図2は本発明の別の実施例の三層タンデム
セルを示し、図1と共通の部分には同一の符号が付され
ている。この場合は、第二のn/p接合を作る第二n層
8もσph≧1×106 s/cmの条件を満たすa−SiOによ
って形成して二層タンデムセルと同様の効果を得た。な
お、第三p層9をa−SiCにより、第三n層11をa−Si
により形成することは、図1における第二層セルと同様
であるが、第三i層10にアモルファスシリコンゲルマニ
ウムを適用して長波長感度の向上を図っている。
FIG. 2 shows a three-layer tandem cell of another embodiment of the present invention, and the same parts as those in FIG. 1 are designated by the same reference numerals. In this case, the second n layer 8 forming the second n / p junction is also formed of a-SiO satisfying the condition of σ ph ≧ 1 × 10 6 s / cm, and the same effect as the two-layer tandem cell is obtained. It was The third p layer 9 is made of a-SiC and the third n layer 11 is made of a-Si.
However, amorphous silicon germanium is applied to the third i layer 10 to improve the long wavelength sensitivity.

【0013】[0013]

【発明の効果】本発明によれば、タンデムセルのセル間
にあるn/pあるいはp/n接合部の光入射側の層に酸
素量を調整したa−SiOを適用することにより、i層の
背後にあるn層あるいはp層での光吸収ロスが減少し、
短絡電流密度の向上が達せられる。これによって、従来
の方法により製造されたタンデムセルよりも高い変換効
率を示す薄膜太陽電池を得ることができた。
According to the present invention, by applying a-SiO whose oxygen content is adjusted to the layer on the light incident side of the n / p or p / n junction between the cells of the tandem cell, the i-layer is formed. The light absorption loss in the n-layer or p-layer behind the
An improvement in short circuit current density can be achieved. As a result, it was possible to obtain a thin-film solar cell exhibiting higher conversion efficiency than the tandem cell manufactured by the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施される二層のタンデムセルの断面
FIG. 1 is a cross-sectional view of a two-layer tandem cell embodying the present invention.

【図2】本発明の実施される三層タンデムセルの断面図FIG. 2 is a cross-sectional view of a three-layer tandem cell embodying the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 第一p層 4 第一i層 5 第一n層 6 第二p層 7 第二i層 8 第二n層 9 第三p層 10 第三i層 11 第三n層 12 金属電極 1 glass substrate 2 transparent electrode 3 first p layer 4 first i layer 5 first n layer 6 second p layer 7 second i layer 8 second n layer 9 third p layer 10 third i layer 11 third n Layer 12 Metal electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アモルファスシリコンを主材料としてpi
n接合構造を複数積層してなるものにおいて、光の入射
する側から最も遠くにあるpin接合構造を除く各pi
n接合構造のi層の反光入射側にあるp層あるいはn層
が、一般式a−Si(1-x) x で表わされ、xが0.2 未満
であるアモルファスシリコンオキサイドからなることを
特徴とする薄膜太陽電池。
1. Amorphous silicon as a main material
In a structure in which a plurality of n-junction structures are laminated, each pi except the pin-junction structure farthest from the light incident side.
p layer or n-layer on the anti-light incident side of the i layer of the n junction structure is represented by the general formula a-Si (1-x) O x, characterized in that x is made of amorphous silicon oxide is less than 0.2 Thin film solar cell.
【請求項2】i層の反光入射側にあるアモルファスシリ
コンオキサイド層の光学ギャップが1.9eV ないし2.1eV
の範囲にある請求項1記載の薄膜太陽電池。
2. The optical gap of the amorphous silicon oxide layer on the anti-incidence side of the i layer is 1.9 eV to 2.1 eV.
The thin film solar cell according to claim 1, which is in the range of.
【請求項3】i層の反光入射側にあるアモルファスシリ
コンオキサイド層の光導電率が1×10-6s/cm以上であ
る請求項1あるいは2記載の薄膜太陽電池。
3. The thin film solar cell according to claim 1, wherein the amorphous silicon oxide layer on the side of the i layer opposite to the light incident side has a photoconductivity of 1 × 10 −6 s / cm or more.
【請求項4】アモルファスシリコンを主材料としたpi
n接合構造を複数積層する薄膜太陽電池の製造方法にお
いて、光の入射する側から最も遠いpin接合構造を除
く各pin接合構造のi層の反光入射側にあるp層ある
いはn層を、モノシラン、二酸化炭素、水素およびドー
ピング用の不純物を含むガスの混合ガスを分解すること
により生ずるアモルファスシリコンオキサイドで形成す
ることを特徴とする薄膜太陽電池の製造方法。
4. A pi containing amorphous silicon as a main material.
In a method for manufacturing a thin-film solar cell in which a plurality of n-junction structures are stacked, a p-layer or an n-layer on the anti-light incident side of the i-layer of each pin junction structure except for the pin junction structure farthest from the light incident side is replaced with monosilane A method for manufacturing a thin-film solar cell, which comprises forming with amorphous silicon oxide generated by decomposing a mixed gas of carbon dioxide, hydrogen and a gas containing impurities for doping.
【請求項5】分解をグロー放電分解による請求項4記載
の薄膜太陽電池の製造方法。
5. The method for manufacturing a thin film solar cell according to claim 4, wherein the decomposition is performed by glow discharge decomposition.
JP3252640A 1991-10-01 1991-10-01 Thin film solar battery and manufacturing method thereof Pending JPH0595126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3252640A JPH0595126A (en) 1991-10-01 1991-10-01 Thin film solar battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3252640A JPH0595126A (en) 1991-10-01 1991-10-01 Thin film solar battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0595126A true JPH0595126A (en) 1993-04-16

Family

ID=17240166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3252640A Pending JPH0595126A (en) 1991-10-01 1991-10-01 Thin film solar battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0595126A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507881A (en) * 1991-09-30 1996-04-16 Fuji Electric Co., Ltd. Thin-film solar cell and method of manufacturing same
WO2005011001A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Stacked photoelectric converter
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
WO2007074683A1 (en) * 2005-12-26 2007-07-05 Kaneka Corporation Stacked photoelectric transducer
CN100420039C (en) * 2003-07-24 2008-09-17 株式会社钟化 Stacked photoelectric converter
WO2010104041A1 (en) * 2009-03-12 2010-09-16 三菱電機株式会社 Thin film solar cell and production method thereof
EP2834856A4 (en) * 2012-04-03 2015-12-09 Lg Electronics Inc Thin film solar cell
US9640955B2 (en) 2013-08-09 2017-05-02 Autonetworks Technologies, Ltd. Wire harness and connector
US9698523B2 (en) 2013-08-09 2017-07-04 Autonetworks Technologies, Ltd. Connector and wire harness
WO2017130654A1 (en) * 2016-01-25 2017-08-03 長州産業株式会社 Photovoltaic element
JP2020505786A (en) * 2017-01-18 2020-02-20 エネル グリーン パワー エス.ピー.エー.Enel Green Power S.P.A. Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507881A (en) * 1991-09-30 1996-04-16 Fuji Electric Co., Ltd. Thin-film solar cell and method of manufacturing same
WO2005011001A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Stacked photoelectric converter
CN100420039C (en) * 2003-07-24 2008-09-17 株式会社钟化 Stacked photoelectric converter
US7550665B2 (en) 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
JP5180590B2 (en) * 2005-12-26 2013-04-10 株式会社カネカ Stacked photoelectric conversion device
WO2007074683A1 (en) * 2005-12-26 2007-07-05 Kaneka Corporation Stacked photoelectric transducer
US7851695B2 (en) 2005-12-26 2010-12-14 Kaneka Corporation Stacked-type photoelectric conversion device
WO2010104041A1 (en) * 2009-03-12 2010-09-16 三菱電機株式会社 Thin film solar cell and production method thereof
JP5197845B2 (en) * 2009-03-12 2013-05-15 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
EP2834856A4 (en) * 2012-04-03 2015-12-09 Lg Electronics Inc Thin film solar cell
US9640955B2 (en) 2013-08-09 2017-05-02 Autonetworks Technologies, Ltd. Wire harness and connector
US9698523B2 (en) 2013-08-09 2017-07-04 Autonetworks Technologies, Ltd. Connector and wire harness
WO2017130654A1 (en) * 2016-01-25 2017-08-03 長州産業株式会社 Photovoltaic element
JP2020505786A (en) * 2017-01-18 2020-02-20 エネル グリーン パワー エス.ピー.エー.Enel Green Power S.P.A. Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same

Similar Documents

Publication Publication Date Title
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JP4257332B2 (en) Silicon-based thin film solar cell
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US4638111A (en) Thin film solar cell module
US8648251B2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
AU2005200023B2 (en) Photovoltaic device
JPS6249672A (en) Amorphous photovoltaic element
JPS59205770A (en) Photovoltaic device
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JPH06151916A (en) Multijunction photoelectric device and its manufacture
JPH0738454B2 (en) Solar cell
US5419783A (en) Photovoltaic device and manufacturing method therefor
JPH11317538A (en) Photoconductive thin film and photovoltaic device
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JPH065765B2 (en) Photoelectric conversion device
JPH11274527A (en) Photovoltaic device
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JP2003142705A (en) Photovoltaic element
JP2000150935A (en) Photovoltaic element
JPWO2005093856A1 (en) Method for manufacturing thin film photoelectric conversion device
JPH0685291A (en) Semiconductor device and its manufacture
JPS6284571A (en) Multilayer structure type amorphous solar cell