WO2017130654A1 - Photovoltaic element - Google Patents

Photovoltaic element Download PDF

Info

Publication number
WO2017130654A1
WO2017130654A1 PCT/JP2017/000224 JP2017000224W WO2017130654A1 WO 2017130654 A1 WO2017130654 A1 WO 2017130654A1 JP 2017000224 W JP2017000224 W JP 2017000224W WO 2017130654 A1 WO2017130654 A1 WO 2017130654A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous semiconductor
type amorphous
semiconductor layer
type
layer
Prior art date
Application number
PCT/JP2017/000224
Other languages
French (fr)
Japanese (ja)
Inventor
公一 橋本
Original Assignee
長州産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長州産業株式会社 filed Critical 長州産業株式会社
Publication of WO2017130654A1 publication Critical patent/WO2017130654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device.
  • solar cells have attracted particular attention as clean power generation means that does not generate CO 2 or other greenhouse gases, or as power generation means with high operational safety that can replace nuclear power generation.
  • One type of solar cell is a heterojunction solar cell with high power generation efficiency.
  • a heterojunction solar cell for example, a first intrinsic amorphous semiconductor layer and a p-type amorphous semiconductor layer are stacked in this order on one surface side of an n-type crystal semiconductor substrate, A second intrinsic amorphous semiconductor layer and an n-type amorphous semiconductor layer are stacked in this order on the other surface side of the n-type crystal semiconductor substrate.
  • a photovoltaic device having an n-type amorphous semiconductor layer side as a light incident surface has been proposed (Japanese Patent Application Laid-Open No. 2014-216334). And Japanese Unexamined Patent Application Publication No. 2014-216335).
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a photovoltaic device that has low temperature dependence of output characteristics and can maintain good characteristics even at high temperatures. is there.
  • the present invention which has been made to solve the above problems, includes an n-type crystal semiconductor substrate, an n-type amorphous semiconductor layer stacked on the light incident surface side of the n-type crystal semiconductor substrate, and the n-type crystal semiconductor substrate.
  • a photovoltaic device comprising a p-type amorphous semiconductor layer laminated on the side opposite to the light incident surface side, wherein the semiconductor material forming the n-type amorphous semiconductor layer is an n-type It is characterized by being amorphous silicon oxide.
  • the temperature dependence of the output characteristics can be reduced because the n-type amorphous semiconductor layer is formed of amorphous silicon oxide.
  • the amorphous silicon oxide is preferably represented by Si 1-x O x (0.01 ⁇ x ⁇ 0.12). Since the n-type amorphous semiconductor layer is formed of amorphous silicon oxide having such an oxygen content, output characteristics such as conversion efficiency can be improved.
  • the semiconductor material forming the p-type amorphous semiconductor layer is preferably p-type amorphous silicon oxide.
  • the p-type amorphous semiconductor layer on the back side is also formed of amorphous silicon oxide, thereby making the temperature dependence of the output characteristics of the photovoltaic device more It can be reduced.
  • a second intermediate layer interposed between the n-type crystal semiconductor substrate and the p-type amorphous semiconductor layer is further provided, and the second intermediate layer is formed of an intrinsic amorphous semiconductor. Providing such a second intermediate layer also suppresses carrier recombination and can further enhance output characteristics.
  • amorphous in an amorphous semiconductor means not only a completely amorphous body but also one having microcrystals in the amorphous body.
  • an amorphous semiconductor including a microcrystal may be simply referred to as “amorphous semiconductor” or the like.
  • “Intrinsic” in an intrinsic amorphous semiconductor layer means that impurities are not intentionally doped, and includes impurities that are originally contained in raw materials or impurities that are unintentionally mixed in the manufacturing process. Meaning.
  • Amorphous silicon oxide as a semiconductor material refers to an amorphous compound having semiconductor characteristics formed by oxygen atoms and silicon atoms, and the ratio of oxygen atoms to silicon atoms is specified. It is not meant to be limited to those of the ratio.
  • the photovoltaic device of the present invention it is possible to provide a photovoltaic device that has low temperature dependence of output characteristics and can maintain good characteristics even at high temperatures.
  • FIG. 1 is a schematic cross-sectional view of a photovoltaic device according to an embodiment of the present invention. It is a graph which shows the conversion efficiency of the photovoltaic device in an Example. It is a graph which shows the external quantum efficiency, internal quantum efficiency, and reflectance of the power generation element which shines in an Example.
  • the photovoltaic element 10 in FIG. 1 includes an n-type crystal semiconductor substrate 11, a first intermediate layer 12 stacked in the following order on one surface side (upper side in FIG. 1) of the n-type crystal semiconductor substrate 11, and an n-type crystal.
  • a second intermediate layer 15 laminated on the amorphous semiconductor layer 13 and the first transparent conductive film 14 on the other surface side (lower side in FIG. 1) of the n-type crystal semiconductor substrate 11 in the following order, p-type An amorphous semiconductor layer 16 and a second transparent conductive film 17 are provided.
  • the photovoltaic device 10 includes a plurality of linear collector electrodes 18 disposed on the outer surface of the first transparent conductive film 14 and the outer surface of the second transparent conductive film 17.
  • the “outer surface” refers to the surface opposite to the n-type crystal semiconductor substrate 11 with the n-type crystal semiconductor substrate 11 as the center.
  • the “inner surface” refers to a surface on the n-type crystal semiconductor substrate 11 side.
  • the upper side in FIG. 1, that is, the first transparent conductive film 14 side is the light incident surface.
  • the photovoltaic element 10 has at least the first transparent conductive film 14 side as a light incident surface, and may be designed so that light can be incident also from the second transparent conductive film 17 side. That is, the photovoltaic device 10 can be configured such that light is incident from both sides.
  • the n-type crystal semiconductor substrate 11 is formed from an n-type crystal semiconductor.
  • An n-type crystal semiconductor is usually a crystal formed by adding a trace amount of a pentavalent element to a semiconductor such as silicon.
  • Examples of the crystal semiconductor constituting the n-type crystal semiconductor substrate 11 include SiC and SiGe in addition to silicon (Si), but silicon is preferable from the viewpoint of productivity.
  • the n-type crystal semiconductor substrate 11 may be a single crystal or a polycrystal.
  • a pyramidal fine concavo-convex structure is formed on both surfaces of the n-type crystal semiconductor substrate 11.
  • the height and size of the uneven structure may be uneven, and adjacent uneven parts may overlap.
  • a vertex and a trough part may be roundish.
  • the height of the unevenness is about several ⁇ m to several tens of ⁇ m.
  • Such a concavo-convex structure can be obtained, for example, by immersing the substrate material in an etching solution containing about 1 to 5% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.
  • the average thickness of the n-type crystal semiconductor substrate 11 is not particularly limited.
  • the upper limit of the average thickness is, for example, 300 ⁇ m, and preferably 200 ⁇ m. Moreover, as this minimum, it can be set as 50 micrometers, for example.
  • the first intermediate layer 12 is a layer interposed between the n-type crystal semiconductor substrate 11 and the n-type amorphous semiconductor layer 13 and functions as a passivation layer that suppresses carrier recombination.
  • the first intermediate layer 12 is formed from an intrinsic amorphous semiconductor or an n-type amorphous semiconductor.
  • the first intermediate layer 12 is preferably a lightly doped n-type amorphous semiconductor layer having a smaller doping amount than the n-type amorphous semiconductor layer 13.
  • the first intermediate layer 12 is formed of an intrinsic amorphous semiconductor
  • silicon is usually preferable as the intrinsic amorphous semiconductor.
  • the first intermediate layer 12 is preferably an amorphous layer obtained by adding a trace amount of a pentavalent element to silicon.
  • the first intermediate layer 12 (low-doped n-type amorphous semiconductor layer) formed of a low-doped n-type amorphous semiconductor layer is added with a pentavalent element from the n-type amorphous semiconductor layer 13. The amount (dope amount) is small.
  • the first intermediate layer 12 is a lightly doped n-type amorphous semiconductor layer can be confirmed by the density and concentration of the dopant (pentavalent element), the electrical resistance value, and the like.
  • the electron density and the like of the dopant can be measured by a known method. Further, as will be described in detail later, the doping amount depends on the flow rate of the doping gas. Therefore, a lightly doped n-type amorphous semiconductor can be formed by relatively reducing the flow rate of the doping gas. .
  • a first intermediate layer 12 intrinsic amorphous semiconductor layer or n-type amorphous semiconductor layer
  • carrier recombination can be suppressed and output characteristics can be improved.
  • middle layer 12 it can be set as 1 nm or more and 10 nm or less, for example.
  • the n-type amorphous semiconductor layer 13 is disposed on the light incident surface side of the n-type crystal semiconductor substrate 11 via the first intermediate layer 12.
  • the semiconductor material forming the n-type amorphous semiconductor layer 13 is n-type amorphous silicon oxide.
  • the amorphous silicon oxide as a semiconductor material for forming the n-type amorphous semiconductor layer 13 is amorphous silicon doped with oxygen atoms.
  • the n-type amorphous semiconductor layer 13 is an amorphous layer obtained by adding a trace amount of a pentavalent element to such amorphous silicon oxide. That is, the n-type amorphous semiconductor layer 13 is formed of silicon doped with oxygen atoms and pentavalent elements.
  • the n-type amorphous semiconductor layer 13 disposed on the light incident surface side is formed of n-type amorphous silicon oxide, and thus has excellent output characteristics. However, the temperature dependence can be reduced.
  • the amorphous silicon oxide forming the n-type amorphous semiconductor layer 13 is preferably represented by Si 1-x O x (0.01 ⁇ x ⁇ 0.12).
  • the band gap of the amorphous silicon oxide becomes an appropriate value and the transparency becomes high.
  • output characteristics such as the conversion efficiency of the said photovoltaic device 10, and a maximum output, can be improved more.
  • the lower limit of the oxygen content (x) is more preferably 0.02, further preferably 0.03, still more preferably 0.04, and particularly preferably 0.05.
  • the upper limit of the oxygen content (x) is more preferably 0.1 and even more preferably 0.08.
  • this oxygen content rate (x) can be adjusted with the composition ratio of the raw material gas at the time of forming into a film by plasma CVD method so that it may mention later.
  • the average thickness of the n-type amorphous semiconductor layer 13 is not particularly limited, but can be, for example, 1 nm or more and 20 nm or less.
  • the second intermediate layer 15 is a layer interposed between the n-type crystal semiconductor substrate 11 and the p-type amorphous semiconductor layer 16 and functions as a passivation layer that suppresses carrier recombination.
  • the second intermediate layer 15 is formed from an intrinsic amorphous semiconductor such as silicon. Such a second intermediate layer 15 (intrinsic amorphous semiconductor layer) can suppress carrier recombination and improve output characteristics.
  • middle layer 15 it is 1 nm or more and 10 nm or less, for example.
  • the p-type amorphous semiconductor layer 16 is disposed on the side opposite to the light incident surface side of the n-type crystal semiconductor substrate 11 via the second intermediate layer 15.
  • the p-type amorphous semiconductor layer 16 is an amorphous layer formed by adding a trace amount of a trivalent element to a semiconductor.
  • the semiconductor material for forming the p-type amorphous semiconductor layer 16 may be p-type amorphous silicon, but is preferably p-type amorphous silicon oxide.
  • the amorphous silicon oxide as a semiconductor material for forming the p-type amorphous semiconductor layer 16 is amorphous silicon doped with oxygen atoms.
  • the preferable p-type amorphous semiconductor layer 16 is an amorphous layer obtained by adding a trace amount of a trivalent element to such amorphous silicon oxide. That is, the p-type amorphous semiconductor layer 16 can be formed of silicon doped with oxygen atoms and trivalent elements. In addition to the n-type amorphous semiconductor layer 13, the p-type amorphous semiconductor layer 16 on the back side is also formed of amorphous silicon oxide, so that the output characteristics of the photovoltaic device 10 depend on temperature. The property can be further reduced.
  • the amorphous silicon oxide forming the p-type amorphous semiconductor layer 16 is preferably represented by Si 1-y O y (0.01 ⁇ y ⁇ 0.12).
  • the lower limit of the oxygen content (y) is more preferably 0.02, more preferably 0.03, still more preferably 0.04, and particularly preferably 0.05.
  • the upper limit of the oxygen content (y) is more preferably 0.1 and even more preferably 0.08.
  • this oxygen content rate (y) can be adjusted with the composition ratio of the raw material gas at the time of forming into a film by plasma CVD method, for example.
  • the lower limit of the content of the trivalent element in the p-type amorphous semiconductor layer 16 is preferably 1 ⁇ 10 20 atm / cm 3 and more preferably 2.5 ⁇ 10 20 atm / cm 3 .
  • the upper limit of this content is preferably 10 ⁇ 10 20 atm / cm 3 , more preferably 5 ⁇ 10 20 atm / cm 3 .
  • boron is preferable as the trivalent element doped into the p-type amorphous semiconductor layer 16.
  • the average thickness of the p-type amorphous semiconductor layer 16 can be, for example, 1 nm or more and 20 nm or less.
  • the first transparent conductive film 14 is laminated on the outer surface side of the n-type amorphous semiconductor layer 13.
  • the second transparent conductive film 17 is laminated on the outer surface side of the p-type amorphous semiconductor layer 16.
  • the transparent conductive material constituting the first transparent conductive film 14 and the second transparent conductive film 17 include indium tin oxide (ITO), indium tungsten oxide (IWO), and indium cerium oxide (ICO). be able to. Although it does not restrict
  • Each collector electrode 18 has a plurality of bus bar electrodes formed in parallel to each other, and a plurality of finger electrodes formed orthogonal to these bus bar electrodes and in parallel with each other.
  • the bus bar electrode and the finger electrode are each linear or strip-like, and are made of a conductive material.
  • a conductive adhesive such as a silver paste or a metal wire such as a copper wire can be used.
  • These collector electrodes 18 may have a layer structure.
  • the width of each bus bar electrode is, for example, about 0.5 mm to 2 mm. Further, the width of each finger electrode is, for example, about 10 ⁇ m or more and 300 ⁇ m or less. The interval between the finger electrodes is, for example, about 0.5 mm to 4 mm.
  • the photovoltaic elements 10 are usually used by connecting a plurality of them in series. By using a plurality of photovoltaic elements 10 connected in series, the generated voltage can be increased.
  • the method for manufacturing the photovoltaic device 10 is not particularly limited.
  • the step of laminating the first intermediate layer 12 on one surface side of the n-type crystal semiconductor substrate 11 and the n-type amorphous semiconductor layer 13 are further laminated.
  • a step of further laminating the second transparent conductive film 17 and a step of laminating the collector electrode 18 on each outer surface of the first transparent conductive film and the second transparent conductive film will not be specifically limited as long as it is the order which can obtain the layer structure of the photovoltaic device 10.
  • each amorphous semiconductor layer can be performed by a known method such as chemical vapor deposition.
  • chemical vapor deposition include plasma CVD and catalytic CVD (also called hot wire CVD).
  • a mixed gas of, for example, SiH 4 and H 2 can be used as a source gas.
  • a mixed gas of SiH 4 , H 2, and PH 3 can be used as the source gas.
  • the first intermediate layer 12 formed of an n-type amorphous semiconductor with a small amount of doping is formed by reducing the flow rate (flow rate ratio) of the dopant gas as compared with the n-type amorphous semiconductor layer 13. be able to.
  • the first intermediate layer is formed by forming PH 3 as a dopant based on SiH 4 at 1000 ppm or less.
  • Layer 12 can be obtained.
  • the amount (concentration) of PH 3 introduced when forming the first intermediate layer 12 is 1 / of the amount introduced (concentration) when forming the n-type amorphous semiconductor layer 13 described later. It can be set to 100 or more and 1/5 or less.
  • the n-type amorphous semiconductor layer 13 formed from amorphous silicon oxide having a high oxygen content can be obtained by increasing the mixing ratio of CO 2 .
  • the lower limit of the ratio of the flow rate of CO 2 of SiH 4 to the flow rate (sccm) (sccm) (CO 2 / SiH 4) preferably 0.1, 0.4 is more preferable.
  • the upper limit of this ratio is preferably 2, and more preferably 1.
  • N 2 O or the like can be used instead of CO 2 for doping oxygen atoms.
  • the source gas for example, a mixed gas of SiH 4 , H 2 , B 2 H 6 and CO 2 is used as the source gas.
  • the upper limit of this ratio is preferably 2, and more preferably 1.
  • N 2 O or the like can be used instead of CO 2 for doping oxygen atoms.
  • a mixed gas of SiH 4 , H 2 and B 2 H 6 can be used as the source gas.
  • Examples of the method of laminating the first transparent conductive film 14 and the second transparent conductive film 17 include a sputtering method, a vacuum vapor deposition method, an ion plating method (reactive plasma vapor deposition method), and the like. It is preferable to use an ion plating method.
  • the sputtering method is excellent in film thickness controllability and the like, and can be performed at a lower cost than the ion plating method.
  • the ion plating method film formation in which generation of defects is suppressed can be performed.
  • the arrangement of the collecting electrode 18 can be performed by a known method.
  • a conductive adhesive is used as the material of the collector electrode 18, it can be formed by a printing method such as screen printing or gravure offset printing.
  • a metal lead is used for the collector electrode 18, it can be fixed on the first transparent conductive film 14 or the second transparent conductive film 17 with a conductive adhesive or a low melting point metal (solder or the like).
  • the collector electrode on the back side of the collector electrodes on both sides may be formed of a metal or the like laminated on the entire surface.
  • the first intermediate layer and the second intermediate layer may not be provided.
  • a transparent conductive film may be formed at least on the incident surface side, and the transparent conductive film may not be formed on the back surface side, and may be a metal film, for example.
  • a transparent conductive film by stacking a transparent conductive film on the outer surface of the p-type amorphous semiconductor layer on the back side, generation of defect levels can be suppressed and conversion efficiency can be increased.
  • Example 1 Layer structure comprising first transparent conductive film / n-type amorphous semiconductor layer / first intermediate layer / n-type crystal semiconductor substrate / second intermediate layer / p-type amorphous semiconductor layer / second transparent conductive film was made.
  • n-type crystal semiconductor substrate a single crystal silicon substrate having a fine concavo-convex structure (texture structure) having innumerable pyramid shapes on both surfaces was used. This concavo-convex structure was formed by immersing the substrate material in an etching solution containing about 3% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.
  • n-type amorphous semiconductor layer SiH 4 , H 2 , PH 3 , and CO 2
  • First intermediate layer low-doped n-type amorphous semiconductor layer
  • Second intermediate layer intrinsic amorphous semiconductor layer
  • SiH 4 and H 2 p-type amorphous semiconductor layer SiH 4 , H 2 , B 2 H 6 , and CO 2
  • the flow rate of SiH 4 was 5 sccm, and the flow rate of CO 2 was 0.9 sccm.
  • the flow rate of SiH 4 was 5 sccm, and the flow rate of CO 2 was 4.1 sccm.
  • the atomic density of boron was 3.5 ⁇ 10 20 atm / cm 3 .
  • the first intermediate layer was formed as a low-doped n-type amorphous semiconductor layer by forming the PH 3 flow rate as 1/10 of the n-type amorphous semiconductor layer based on SiH 4 .
  • Each transparent conductive film was laminated by sputtering using indium oxide containing 3% by mass of tin oxide.
  • Examples 2 to 4 Comparative Example 1>
  • the photovoltaic elements of Examples 2 to 4 and Comparative Example 1 were prepared in the same manner as in Example 1 except that the flow rate of CO 2 was as shown in Table 1. Obtained.
  • Example 5 Example 3 except that a mixed gas of SiH 4 , H 2 and B 2 H 6 was used as the source gas for the p-type amorphous semiconductor layer, and the p-type amorphous semiconductor layer was formed of p-type silicon.
  • the photovoltaic device of Example 5 was obtained.
  • the atomic density of boron was 3.5 ⁇ 10 20 atm / cm 3 .
  • Example 3 in which the n-type amorphous semiconductor layer was formed of amorphous silicon oxide, the decrease in output characteristics was small even at a high temperature of 45 ° C.
  • Example 3 in which both the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer are formed of amorphous silicon oxide, the output characteristics are very low even under an environment of 70 ° C.
  • the photovoltaic device of this invention it turns out that the fall of an output characteristic can be suppressed also under high temperature.
  • the conversion efficiency and the like can be increased by forming the n-type amorphous semiconductor layer with amorphous silicon oxide having a predetermined range of oxygen content.
  • FIG. 3 shows the external quantum efficiency (EQE), the internal quantum efficiency (IQE), and the reflectance (Reflectance) of the photovoltaic devices of Comparative Example 1, Example 2, and Example 3 obtained.
  • Examples 2 and 3 in which the n-type amorphous semiconductor layer is formed of amorphous silicon oxide are different from Comparative Example 1 in which the n-type amorphous semiconductor layer is formed of silicon.
  • the external quantum efficiency and the internal quantum efficiency at 300 to 600 nm are high. This shows that n-type amorphous silicon oxide has higher transparency than n-type amorphous silicon.
  • the photovoltaic device of the present invention has good output characteristics, has low temperature dependency, can maintain good characteristics even at high temperatures, and can be suitably used for photovoltaic power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a photovoltaic element of which the output characteristics are less temperature dependent and which is capable of maintaining fine characteristics even at a high temperature. A photovoltaic element (10) according to the present invention is provided with: an n-type crystal semiconductor substrate (11); an n-type amorphous semiconductor layer (13) stacked on the light incident surface side of the n-type crystal semiconductor substrate; and a p-type amorphous semiconductor layer (16) stacked on the surface side opposite to the light incident surface side of the n-type crystal semiconductor substrate, and is characterized in that a semiconductor material forming the n-type amorphous semiconductor layer (13) is an n-type amorphous silicon oxide. The amorphous silicon oxide is preferably represented by Si1-xOx (0.01≤x≤0.12). A semiconductor material forming the p-type amorphous semiconductor layer (16) is preferably a p-type amorphous silicon oxide.

Description

光発電素子Photovoltaic element
 本発明は、光発電素子に関する。 The present invention relates to a photovoltaic device.
 CO等の温室効果ガスを発生しないクリーンな発電手段として、あるいは原子力発電に代わる操業安全性の高い発電手段として、太陽電池が近年特に注目されている。太陽電池の一つとして、発電効率の高いヘテロ接合型の太陽電池がある。 In recent years, solar cells have attracted particular attention as clean power generation means that does not generate CO 2 or other greenhouse gases, or as power generation means with high operational safety that can replace nuclear power generation. One type of solar cell is a heterojunction solar cell with high power generation efficiency.
 ヘテロ接合型の太陽電池(光発電素子)は、例えばn型結晶半導体基板の一方の面側に第1の真性非晶質系半導体層及びp型非晶質系半導体層がこの順に積層され、上記n型結晶半導体基板の他方の面側に第2の真性非晶質系半導体層及びn型非晶質系半導体層がこの順に積層された構造を有する。このようなヘテロ接合型の光発電素子において、出力特性をより向上させるために、n型非晶質系半導体層側を光入射面とする光発電素子が提案されている(特開2014-216334号公報及び特開2014-216335号公報参照)。 In a heterojunction solar cell (photovoltaic element), for example, a first intrinsic amorphous semiconductor layer and a p-type amorphous semiconductor layer are stacked in this order on one surface side of an n-type crystal semiconductor substrate, A second intrinsic amorphous semiconductor layer and an n-type amorphous semiconductor layer are stacked in this order on the other surface side of the n-type crystal semiconductor substrate. In such a heterojunction type photovoltaic device, in order to further improve output characteristics, a photovoltaic device having an n-type amorphous semiconductor layer side as a light incident surface has been proposed (Japanese Patent Application Laid-Open No. 2014-216334). And Japanese Unexamined Patent Application Publication No. 2014-216335).
 一方、太陽光発電における生産性等を鑑みると、大規模な発電施設であるメガソーラー等は、日照量の多い地域へ建設することが望ましい。そのため、将来的には、日照量の多い砂漠地帯や赤道付近等へのメガソーラーの建設が進むことが予想される。しかし、光発電素子の変換効率は温度依存性を有し、高温下では発電効率が低下する。従って、砂漠地帯等への建設を考慮し、温度依存性が小さく、高温下でも発電効率が低下しにくい光発電素子の開発が期待されている。 On the other hand, considering the productivity of solar power generation, it is desirable to construct mega-solar power generation facilities in areas with a lot of sunlight. Therefore, in the future, it is expected that mega solar construction will proceed in desert areas with a lot of sunlight and in the vicinity of the equator. However, the conversion efficiency of the photovoltaic device has temperature dependence, and the power generation efficiency decreases at high temperatures. Therefore, in consideration of construction in a desert area, etc., development of a photovoltaic device that is less dependent on temperature and is unlikely to decrease power generation efficiency even at high temperatures is expected.
特開2014-216334号公報JP 2014-216334 A 特開2014-216335号公報JP 2014-216335 A
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、出力特性の温度依存性が小さく、高温下でも良好な特性を保つことができる光発電素子を提供することである。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a photovoltaic device that has low temperature dependence of output characteristics and can maintain good characteristics even at high temperatures. is there.
 上記課題を解決するためになされた本発明は、n型結晶半導体基板、このn型結晶半導体基板の光入射面側に積層されるn型非晶質系半導体層、及び上記n型結晶半導体基板の光入射面側とは反対面側に積層されるp型非晶質系半導体層を備える光発電素子であって、上記n型非晶質系半導体層を形成する半導体材料が、n型の非晶質系酸化ケイ素であることを特徴とする。 The present invention, which has been made to solve the above problems, includes an n-type crystal semiconductor substrate, an n-type amorphous semiconductor layer stacked on the light incident surface side of the n-type crystal semiconductor substrate, and the n-type crystal semiconductor substrate. A photovoltaic device comprising a p-type amorphous semiconductor layer laminated on the side opposite to the light incident surface side, wherein the semiconductor material forming the n-type amorphous semiconductor layer is an n-type It is characterized by being amorphous silicon oxide.
 当該光発電素子によれば、n型非晶質半導体層が非晶質系酸化ケイ素により形成されていることで、出力特性の温度依存性を低減することができる。 According to the photovoltaic device, the temperature dependence of the output characteristics can be reduced because the n-type amorphous semiconductor layer is formed of amorphous silicon oxide.
 上記非晶質系酸化ケイ素が、Si1-x(0.01≦x≦0.12)で表されることが好ましい。上記n型非晶質系半導体層がこのような酸素含有率の非晶質系酸化ケイ素により形成されていることで、変換効率等の出力特性を高めることができる。 The amorphous silicon oxide is preferably represented by Si 1-x O x (0.01 ≦ x ≦ 0.12). Since the n-type amorphous semiconductor layer is formed of amorphous silicon oxide having such an oxygen content, output characteristics such as conversion efficiency can be improved.
 上記p型非晶質系半導体層を形成する半導体材料が、p型の非晶質系酸化ケイ素であることが好ましい。n型非晶質系半導体層に加えて、裏面側のp型非晶質系半導体層も非晶質系酸化ケイ素により形成されることで、当該光発電素子の出力特性の温度依存性をより低減することなどができる。 The semiconductor material forming the p-type amorphous semiconductor layer is preferably p-type amorphous silicon oxide. In addition to the n-type amorphous semiconductor layer, the p-type amorphous semiconductor layer on the back side is also formed of amorphous silicon oxide, thereby making the temperature dependence of the output characteristics of the photovoltaic device more It can be reduced.
 上記n型結晶半導体基板とn型非晶質系半導体層との間に介在する第1中間層をさらに備え、上記第1中間層が、真性非晶質系半導体、又はn型非晶質系半導体から形成されていることが好ましい。さらに、上記第1中間層が、上記n型非晶質系半導体層よりもドープ量が少ないn型非晶質系半導体層であることが好ましい。このような第1中間層を設けることにより、キャリアの再結合が抑制され、出力特性をより高めることができる。 A first intermediate layer interposed between the n-type crystal semiconductor substrate and the n-type amorphous semiconductor layer, wherein the first intermediate layer is an intrinsic amorphous semiconductor or an n-type amorphous semiconductor layer; It is preferably formed from a semiconductor. Furthermore, it is preferable that the first intermediate layer is an n-type amorphous semiconductor layer having a smaller doping amount than the n-type amorphous semiconductor layer. By providing such a first intermediate layer, recombination of carriers is suppressed and output characteristics can be further improved.
 上記n型結晶半導体基板とp型非晶質系半導体層との間に介在する第2中間層をさらに備え、上記第2中間層が、真性非晶質系半導体から形成されていることが好ましい。このような第2中間層を設けることによっても、キャリアの再結合が抑制され、出力特性をより高めることができる。 Preferably, a second intermediate layer interposed between the n-type crystal semiconductor substrate and the p-type amorphous semiconductor layer is further provided, and the second intermediate layer is formed of an intrinsic amorphous semiconductor. . Providing such a second intermediate layer also suppresses carrier recombination and can further enhance output characteristics.
 ここで、非晶質系半導体における「非晶質系」とは、完全な非晶質体のみならず、非晶質中に微結晶が存在するものも含む意味である。但し、本明細書中において、微結晶を含む非晶質系半導体を単に「非晶質半導体」等と言うこともある。真性非晶質系半導体層における「真性」とは、不純物が意図的にドープされていないことをいい、原料に本来含まれる不純物や製造過程において非意図的に混入した不純物が存在するものも含む意味である。また、半導体材料としての「非晶質系酸化ケイ素」とは、酸素原子とケイ素原子とで形成される半導体特性を有する非晶質系の化合物をいい、酸素原子とケイ素原子との比が特定の比のものに限定する意味では無い。 Here, “amorphous” in an amorphous semiconductor means not only a completely amorphous body but also one having microcrystals in the amorphous body. However, in this specification, an amorphous semiconductor including a microcrystal may be simply referred to as “amorphous semiconductor” or the like. “Intrinsic” in an intrinsic amorphous semiconductor layer means that impurities are not intentionally doped, and includes impurities that are originally contained in raw materials or impurities that are unintentionally mixed in the manufacturing process. Meaning. “Amorphous silicon oxide” as a semiconductor material refers to an amorphous compound having semiconductor characteristics formed by oxygen atoms and silicon atoms, and the ratio of oxygen atoms to silicon atoms is specified. It is not meant to be limited to those of the ratio.
 本発明の光発電素子によれば、出力特性の温度依存性が小さく、高温下でも良好な特性を保つことができる光発電素子を提供することができる。 According to the photovoltaic device of the present invention, it is possible to provide a photovoltaic device that has low temperature dependence of output characteristics and can maintain good characteristics even at high temperatures.
図1は、本発明の一実施形態に係る光発電素子の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a photovoltaic device according to an embodiment of the present invention. 実施例における光発電素子の変換効率を示すグラフである。It is a graph which shows the conversion efficiency of the photovoltaic device in an Example. 実施例における光る発電素子の外部量子効率、内部量子効率及び反射率を示すグラフである。It is a graph which shows the external quantum efficiency, internal quantum efficiency, and reflectance of the power generation element which shines in an Example.
 以下、適宜図面を参照にしつつ、本発明の一実施形態に係る光発電素子について詳説する。 Hereinafter, a photovoltaic device according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 図1の光発電素子10は、n型結晶半導体基板11と、n型結晶半導体基板11の一方の面側(図1における上側)に以下の順で積層される第1中間層12、n型非晶質系半導体層13及び第1透明導電膜14と、n型結晶半導体基板11の他方の面側(図1における下側)に以下の順で積層される第2中間層15、p型非晶質系半導体層16及び第2透明導電膜17とを備える。さらに、光発電素子10は、第1透明導電膜14の外面及び第2透明導電膜17の外面に配設される複数の線状の集電極18を備える。なお「外面」とは、n型結晶半導体基板11を中心とし、n型結晶半導体基板11と反対側の面をいう。また、「内面」とは、n型結晶半導体基板11側の面をいう。 The photovoltaic element 10 in FIG. 1 includes an n-type crystal semiconductor substrate 11, a first intermediate layer 12 stacked in the following order on one surface side (upper side in FIG. 1) of the n-type crystal semiconductor substrate 11, and an n-type crystal. A second intermediate layer 15 laminated on the amorphous semiconductor layer 13 and the first transparent conductive film 14 on the other surface side (lower side in FIG. 1) of the n-type crystal semiconductor substrate 11 in the following order, p-type An amorphous semiconductor layer 16 and a second transparent conductive film 17 are provided. Furthermore, the photovoltaic device 10 includes a plurality of linear collector electrodes 18 disposed on the outer surface of the first transparent conductive film 14 and the outer surface of the second transparent conductive film 17. The “outer surface” refers to the surface opposite to the n-type crystal semiconductor substrate 11 with the n-type crystal semiconductor substrate 11 as the center. The “inner surface” refers to a surface on the n-type crystal semiconductor substrate 11 side.
 当該光発電素子10においては、図1における上側、すなわち第1透明導電膜14側が光入射面となる。なお、当該光発電素子10においては、少なくとも第1透明導電膜14側を光入射面とするものであり、第2透明導電膜17側からも光の入射可能に設計されていてもよい。すなわち、当該光発電素子10は両面から光が入射されるようにすることもできる。 In the photovoltaic element 10, the upper side in FIG. 1, that is, the first transparent conductive film 14 side is the light incident surface. Note that the photovoltaic element 10 has at least the first transparent conductive film 14 side as a light incident surface, and may be designed so that light can be incident also from the second transparent conductive film 17 side. That is, the photovoltaic device 10 can be configured such that light is incident from both sides.
 n型結晶半導体基板11は、n型結晶半導体から形成されている。n型の基板を用いることで、p型の基板に特有の光劣化現象を回避することができる。n型結晶半導体とは、通常、シリコン等の半導体に微量の5価の元素が添加されてなる結晶体である。n型結晶半導体基板11を構成する結晶半導体としては、シリコン(Si)の他、SiC、SiGe等を挙げることができるが、生産性等の点からシリコンが好ましい。n型結晶半導体基板11は、単結晶体であってもよいし、多結晶体であってもよい。 The n-type crystal semiconductor substrate 11 is formed from an n-type crystal semiconductor. By using the n-type substrate, it is possible to avoid the light deterioration phenomenon peculiar to the p-type substrate. An n-type crystal semiconductor is usually a crystal formed by adding a trace amount of a pentavalent element to a semiconductor such as silicon. Examples of the crystal semiconductor constituting the n-type crystal semiconductor substrate 11 include SiC and SiGe in addition to silicon (Si), but silicon is preferable from the viewpoint of productivity. The n-type crystal semiconductor substrate 11 may be a single crystal or a polycrystal.
 n型結晶半導体基板11の両面には、ピラミッド状の微細な凹凸構造が形成されている。このような構造により、光の閉じ込め機能を高めることができる。この凹凸構造(テクスチャー構造)の高さや大きさは不揃いであってよく、隣り合う凹凸の一部が重なっていてもよい。また、頂点や谷部が丸みを帯びていてもよい。この凹凸の高さとしては、数μm以上数十μm以下程度である。このような凹凸構造は、例えば、約1~5質量%の水酸化ナトリウムを含むエッチング液に基板材料を浸漬し、基板材料の(100)面を異方性エッチングすることにより得ることができる。 On both surfaces of the n-type crystal semiconductor substrate 11, a pyramidal fine concavo-convex structure is formed. With such a structure, the light confinement function can be enhanced. The height and size of the uneven structure (texture structure) may be uneven, and adjacent uneven parts may overlap. Moreover, a vertex and a trough part may be roundish. The height of the unevenness is about several μm to several tens of μm. Such a concavo-convex structure can be obtained, for example, by immersing the substrate material in an etching solution containing about 1 to 5% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.
 n型結晶半導体基板11の平均厚さとしては特に制限されない。この平均厚さの上限としては、例えば300μmであり、200μmが好ましい。また、この下限としては、例えば50μmとすることができる。このようにn型結晶半導体基板11を薄型化することにより、光発電素子10自体の小型化、低コスト化等を図ることができる。 The average thickness of the n-type crystal semiconductor substrate 11 is not particularly limited. The upper limit of the average thickness is, for example, 300 μm, and preferably 200 μm. Moreover, as this minimum, it can be set as 50 micrometers, for example. By reducing the thickness of the n-type crystal semiconductor substrate 11 in this way, the photovoltaic device 10 itself can be reduced in size and cost.
 第1中間層12は、n型結晶半導体基板11とn型非晶質系半導体層13との間に介在する層であり、キャリアの再結合を抑制するパッシベーション層として機能する。第1中間層12は、真性非晶質系半導体、又はn型非晶質系半導体から形成されている。第1中間層12としては、n型非晶質系半導体層13よりもドープ量が少ない低ドープn型非晶質系半導体層であることが好ましい。このような低ドープn型非晶質系半導体層を第1中間層12として設けることによって、光発電素子10の出力特性をより高めることなどができる。 The first intermediate layer 12 is a layer interposed between the n-type crystal semiconductor substrate 11 and the n-type amorphous semiconductor layer 13 and functions as a passivation layer that suppresses carrier recombination. The first intermediate layer 12 is formed from an intrinsic amorphous semiconductor or an n-type amorphous semiconductor. The first intermediate layer 12 is preferably a lightly doped n-type amorphous semiconductor layer having a smaller doping amount than the n-type amorphous semiconductor layer 13. By providing such a low-doped n-type amorphous semiconductor layer as the first intermediate layer 12, the output characteristics of the photovoltaic element 10 can be further improved.
 第1中間層12が真性非晶質系半導体から形成されている場合、この真性非晶質系半導体としては、通常、シリコンが好ましい。第1中間層12がn型非晶質系半導体から形成されている場合、第1中間層12は、シリコンに微量の5価の元素が添加されてなる非晶質層であることが好ましい。低ドープのn型非晶質系半導体から形成される第1中間層12(低ドープn型非晶質系半導体層)は、n型非晶質系半導体層13より、5価の元素の添加量(ドープ量)が少ない。第1中間層12が低ドープn型非晶質系半導体層であることは、ドーパント(5価の元素)の密度や濃度、電気抵抗値等によって確認することができる。ドーパントの電子密度等は公知の方法により測定することができる。また、ドープ量は、後に詳述するように、ドーピングガスの流量に依存するため、ドーピングガスの流量を相対的に少なくすることで、低ドープn型非晶質系半導体を形成することができる。このような第1中間層12(真性非晶質系半導体層又はn型非晶質系半導体層)により、キャリアの再結合を抑制し、出力特性を高めることができる。なお、第1中間層12の平均厚さとしては、例えば1nm以上10nm以下とすることができる。 When the first intermediate layer 12 is formed of an intrinsic amorphous semiconductor, silicon is usually preferable as the intrinsic amorphous semiconductor. When the first intermediate layer 12 is formed of an n-type amorphous semiconductor, the first intermediate layer 12 is preferably an amorphous layer obtained by adding a trace amount of a pentavalent element to silicon. The first intermediate layer 12 (low-doped n-type amorphous semiconductor layer) formed of a low-doped n-type amorphous semiconductor layer is added with a pentavalent element from the n-type amorphous semiconductor layer 13. The amount (dope amount) is small. That the first intermediate layer 12 is a lightly doped n-type amorphous semiconductor layer can be confirmed by the density and concentration of the dopant (pentavalent element), the electrical resistance value, and the like. The electron density and the like of the dopant can be measured by a known method. Further, as will be described in detail later, the doping amount depends on the flow rate of the doping gas. Therefore, a lightly doped n-type amorphous semiconductor can be formed by relatively reducing the flow rate of the doping gas. . With such a first intermediate layer 12 (intrinsic amorphous semiconductor layer or n-type amorphous semiconductor layer), carrier recombination can be suppressed and output characteristics can be improved. In addition, as average thickness of the 1st intermediate | middle layer 12, it can be set as 1 nm or more and 10 nm or less, for example.
 n型非晶質系半導体層13は、n型結晶半導体基板11の光入射面側に、第1中間層12を介して配設されている。このn型非晶質系半導体層13を形成する半導体材料は、n型の非晶質系酸化ケイ素である。このn型非晶質系半導体層13を形成する半導体材料としての非晶質系酸化ケイ素は、酸素原子がドープされた非晶質系ケイ素であると換言することができる。n型非晶質系半導体層13は、このような非晶質系酸化ケイ素にさらに微量の5価の元素が添加されてなる非晶質層である。すなわち、n型非晶質系半導体層13は、酸素原子と5価の元素とがドープされたケイ素により形成されている。当該光発電素子10によれば、光入射面側に配設されるn型非晶質系半導体層13がn型の非晶質系酸化ケイ素により形成されることで、良好な出力特性を有しつつ、その温度依存性を低減することができる。 The n-type amorphous semiconductor layer 13 is disposed on the light incident surface side of the n-type crystal semiconductor substrate 11 via the first intermediate layer 12. The semiconductor material forming the n-type amorphous semiconductor layer 13 is n-type amorphous silicon oxide. In other words, the amorphous silicon oxide as a semiconductor material for forming the n-type amorphous semiconductor layer 13 is amorphous silicon doped with oxygen atoms. The n-type amorphous semiconductor layer 13 is an amorphous layer obtained by adding a trace amount of a pentavalent element to such amorphous silicon oxide. That is, the n-type amorphous semiconductor layer 13 is formed of silicon doped with oxygen atoms and pentavalent elements. According to the photovoltaic device 10, the n-type amorphous semiconductor layer 13 disposed on the light incident surface side is formed of n-type amorphous silicon oxide, and thus has excellent output characteristics. However, the temperature dependence can be reduced.
 このn型非晶質系半導体層13を形成する非晶質系酸化ケイ素は、Si1-x(0.01≦x≦0.12)で表されることが好ましい。n型非晶質系半導体層13をこのような酸素含有率の非晶質系酸化ケイ素により形成することにより、非晶質系酸化ケイ素のバンドギャップが適当な値となり、透明性が高くなる。これにより、当該光発電素子10の変換効率、最大出力等の出力特性をより高めることができる。上記特性をより高めるためには、この酸素含有率(x)の下限としては、0.02がより好ましく、0.03がさらに好ましく、0.04がよりさらに好ましく、0.05が特に好ましい。一方、この酸素含有率(x)の上限としては、0.1がより好ましく、0.08がさらに好ましい。なお、この酸素含有率(x)は、後述するように、例えばプラズマCVD法により製膜する際の原料ガスの組成比などにより調整することができる。 The amorphous silicon oxide forming the n-type amorphous semiconductor layer 13 is preferably represented by Si 1-x O x (0.01 ≦ x ≦ 0.12). By forming the n-type amorphous semiconductor layer 13 with amorphous silicon oxide having such an oxygen content, the band gap of the amorphous silicon oxide becomes an appropriate value and the transparency becomes high. Thereby, output characteristics, such as the conversion efficiency of the said photovoltaic device 10, and a maximum output, can be improved more. In order to further enhance the above characteristics, the lower limit of the oxygen content (x) is more preferably 0.02, further preferably 0.03, still more preferably 0.04, and particularly preferably 0.05. On the other hand, the upper limit of the oxygen content (x) is more preferably 0.1 and even more preferably 0.08. In addition, this oxygen content rate (x) can be adjusted with the composition ratio of the raw material gas at the time of forming into a film by plasma CVD method so that it may mention later.
 n型非晶質系半導体層13の平均厚さとしては特に制限されないが、例えば1nm以上20nm以下とすることができる。 The average thickness of the n-type amorphous semiconductor layer 13 is not particularly limited, but can be, for example, 1 nm or more and 20 nm or less.
 第2中間層15は、n型結晶半導体基板11とp型非晶質系半導体層16との間に介在する層であり、キャリアの再結合を抑制するパッシベーション層として機能する。第2中間層15は、シリコン等の真性非晶質系半導体から形成されている。このような第2中間層15(真性非晶質系半導体層)により、キャリアの再結合を抑制し、出力特性を高めることができる。なお、第2中間層15の平均厚さとしては、例えば1nm以上10nm以下とすることができる。 The second intermediate layer 15 is a layer interposed between the n-type crystal semiconductor substrate 11 and the p-type amorphous semiconductor layer 16 and functions as a passivation layer that suppresses carrier recombination. The second intermediate layer 15 is formed from an intrinsic amorphous semiconductor such as silicon. Such a second intermediate layer 15 (intrinsic amorphous semiconductor layer) can suppress carrier recombination and improve output characteristics. In addition, as average thickness of the 2nd intermediate | middle layer 15, it is 1 nm or more and 10 nm or less, for example.
 p型非晶質系半導体層16は、n型結晶半導体基板11の光入射面側とは反対面側に、第2中間層15を介して配設されている。p型非晶質系半導体層16は、半導体に微量の3価の元素が添加されてなる非晶質層である。p型非晶質系半導体層16を形成する半導体材料としては、p型の非晶質系シリコン等であってもよいが、p型の非晶質系酸化ケイ素であることが好ましい。このp型非晶質系半導体層16を形成する半導体材料としての非晶質系酸化ケイ素は、酸素原子がドープされた非晶質系ケイ素であると換言することができる。この好ましいp型非晶質系半導体層16は、このような非晶質系酸化ケイ素にさらに微量の3価の元素が添加されてなる非晶質層である。すなわち、p型非晶質系半導体層16は、酸素原子と3価の元素とがドープされたケイ素により形成することができる。n型非晶質系半導体層13に加えて、裏面側のp型非晶質系半導体層16も非晶質系酸化ケイ素により形成されることで、当該光発電素子10の出力特性の温度依存性をより低減することなどができる。 The p-type amorphous semiconductor layer 16 is disposed on the side opposite to the light incident surface side of the n-type crystal semiconductor substrate 11 via the second intermediate layer 15. The p-type amorphous semiconductor layer 16 is an amorphous layer formed by adding a trace amount of a trivalent element to a semiconductor. The semiconductor material for forming the p-type amorphous semiconductor layer 16 may be p-type amorphous silicon, but is preferably p-type amorphous silicon oxide. In other words, the amorphous silicon oxide as a semiconductor material for forming the p-type amorphous semiconductor layer 16 is amorphous silicon doped with oxygen atoms. The preferable p-type amorphous semiconductor layer 16 is an amorphous layer obtained by adding a trace amount of a trivalent element to such amorphous silicon oxide. That is, the p-type amorphous semiconductor layer 16 can be formed of silicon doped with oxygen atoms and trivalent elements. In addition to the n-type amorphous semiconductor layer 13, the p-type amorphous semiconductor layer 16 on the back side is also formed of amorphous silicon oxide, so that the output characteristics of the photovoltaic device 10 depend on temperature. The property can be further reduced.
 このp型非晶質系半導体層16を形成する非晶質系酸化ケイ素は、Si1-y(0.01≦y≦0.12)で表されることが好ましい。p型非晶質系半導体層16をこのような酸素含有率の非晶質系酸化ケイ素により形成することにより、高温下での特性低下をより低減させることができる。上記特性をより高めるためには、この酸素含有率(y)の下限としては、0.02がより好ましく、0.03がさらに好ましく、0.04がよりさらに好ましく、0.05が特に好ましい。一方、この酸素含有率(y)の上限としては、0.1がより好ましく、0.08がさらに好ましい。なお、この酸素含有率(y)は、例えばプラズマCVD法により製膜する際の原料ガスの組成比などにより調整することができる。 The amorphous silicon oxide forming the p-type amorphous semiconductor layer 16 is preferably represented by Si 1-y O y (0.01 ≦ y ≦ 0.12). By forming the p-type amorphous semiconductor layer 16 with amorphous silicon oxide having such an oxygen content, deterioration in characteristics at high temperatures can be further reduced. In order to further enhance the above characteristics, the lower limit of the oxygen content (y) is more preferably 0.02, more preferably 0.03, still more preferably 0.04, and particularly preferably 0.05. On the other hand, the upper limit of the oxygen content (y) is more preferably 0.1 and even more preferably 0.08. In addition, this oxygen content rate (y) can be adjusted with the composition ratio of the raw material gas at the time of forming into a film by plasma CVD method, for example.
 p型非晶質系半導体層16における3価の元素の含有量の下限としては、1×1020atm/cmが好ましく、2.5×1020atm/cmがより好ましい。一方、この含有量の上限としては、10×1020atm/cmが好ましく、5×1020atm/cmがより好ましい。また、p型非晶質系半導体層16にドープされる3価の元素としては、ホウ素が好ましい。 The lower limit of the content of the trivalent element in the p-type amorphous semiconductor layer 16 is preferably 1 × 10 20 atm / cm 3 and more preferably 2.5 × 10 20 atm / cm 3 . On the other hand, the upper limit of this content is preferably 10 × 10 20 atm / cm 3 , more preferably 5 × 10 20 atm / cm 3 . Further, as the trivalent element doped into the p-type amorphous semiconductor layer 16, boron is preferable.
 p型非晶質系半導体層16の平均厚さとしては、例えば1nm以上20nm以下とすることができる。 The average thickness of the p-type amorphous semiconductor layer 16 can be, for example, 1 nm or more and 20 nm or less.
 第1透明導電膜14は、n型非晶質系半導体層13の外面側に積層されている。また、第2透明導電膜17は、p型非晶質系半導体層16の外面側に積層されている。第1透明導電膜14及び第2透明導電膜17を構成する透明導電性材料としては、例えばインジウムスズ酸化物(ITO)、インジウムタングステン酸化物(IWO)、インジウムセリウム酸化物(ICO)等を挙げることができる。第1透明導電膜14及び第2透明導電膜17の平均膜厚としては特に制限されないが、例えばそれぞれ40nm以上200nm以下とすることができる。 The first transparent conductive film 14 is laminated on the outer surface side of the n-type amorphous semiconductor layer 13. The second transparent conductive film 17 is laminated on the outer surface side of the p-type amorphous semiconductor layer 16. Examples of the transparent conductive material constituting the first transparent conductive film 14 and the second transparent conductive film 17 include indium tin oxide (ITO), indium tungsten oxide (IWO), and indium cerium oxide (ICO). be able to. Although it does not restrict | limit especially as an average film thickness of the 1st transparent conductive film 14 and the 2nd transparent conductive film 17, For example, it is 40 nm or more and 200 nm or less, respectively.
 各集電極18は、互いに平行に形成される複数のバスバー電極、及びこれらのバスバー電極に直交し、互いに平行に形成される複数のフィンガー電極を有する。 Each collector electrode 18 has a plurality of bus bar electrodes formed in parallel to each other, and a plurality of finger electrodes formed orthogonal to these bus bar electrodes and in parallel with each other.
 バスバー電極及びフィンガー電極は、それぞれ線状又は帯状であり、導電性材料から形成されている。この導電性材料としては、銀ペースト等の導電性接着剤や、銅線等の金属線を用いることができる。これらの集電極18は、層構造を有していてもよい。各バスバー電極の幅としては、例えば0.5mm以上2mm以下程度である。また、各フィンガー電極の幅としては、例えば10μm以上300μm以下程度である。各フィンガー電極間の間隔としては、例えば0.5mm以上4mm以下程度である。 The bus bar electrode and the finger electrode are each linear or strip-like, and are made of a conductive material. As the conductive material, a conductive adhesive such as a silver paste or a metal wire such as a copper wire can be used. These collector electrodes 18 may have a layer structure. The width of each bus bar electrode is, for example, about 0.5 mm to 2 mm. Further, the width of each finger electrode is, for example, about 10 μm or more and 300 μm or less. The interval between the finger electrodes is, for example, about 0.5 mm to 4 mm.
 当該光発電素子10は、通常、複数を直列に接続して使用される。複数の光発電素子10を直列接続して使用することで、発電電圧を高めることができる。 The photovoltaic elements 10 are usually used by connecting a plurality of them in series. By using a plurality of photovoltaic elements 10 connected in series, the generated voltage can be increased.
 光発電素子10の製造方法は、特に限定されないが、例えばn型結晶半導体基板11の一方の面側に第1中間層12を積層する工程、さらにn型非晶質系半導体層13を積層する工程、さらに第1透明導電膜14を積層する工程、n型結晶半導体基板11の他方の面側に第2中間層15を積層する工程、さらにp型非晶質系半導体層16を積層する工程、さらに第2透明導電膜17を積層する工程、並びに第1透明導電膜及び第2透明導電膜の各外面に集電極18を積層する工程を備える。なお、各工程の順は、光発電素子10の層構造を得ることができる順である限り特に限定されるものではない。 The method for manufacturing the photovoltaic device 10 is not particularly limited. For example, the step of laminating the first intermediate layer 12 on one surface side of the n-type crystal semiconductor substrate 11 and the n-type amorphous semiconductor layer 13 are further laminated. A step, a step of further laminating the first transparent conductive film 14, a step of laminating the second intermediate layer 15 on the other surface side of the n-type crystal semiconductor substrate 11, and a step of laminating the p-type amorphous semiconductor layer 16 And a step of further laminating the second transparent conductive film 17 and a step of laminating the collector electrode 18 on each outer surface of the first transparent conductive film and the second transparent conductive film. In addition, the order of each process will not be specifically limited as long as it is the order which can obtain the layer structure of the photovoltaic device 10. FIG.
 各非晶質系半導体層の積層は、化学気相成長法などの公知の方法により行うことができる。化学気相成長法としては、例えばプラズマCVD法や触媒CVD法(別名ホットワイヤCVD法)等が挙げられる。 The lamination of each amorphous semiconductor layer can be performed by a known method such as chemical vapor deposition. Examples of chemical vapor deposition include plasma CVD and catalytic CVD (also called hot wire CVD).
 プラズマCVD法による場合、真性非晶質系半導体層としての第1中間層12及び第2中間層15の積層においては、原料ガスとしては例えばSiHとHとの混合ガスを用いることができる。また、第1中間層12をn型非晶質系半導体から形成する場合は、原料ガスとしては、例えばSiHとHとPHとの混合ガスを用いることができる。なお、ドープ量の少ないn型非晶質系半導体から形成される第1中間層12は、n型非晶質系半導体層13よりもドーパントガスの流量(流量比)を少なくすることにより形成することができる。例えば、SiHとPHとを含む混合ガスを用いたプラズマCVD法により形成する場合、SiHを基準としたドーパントとしてのPHの導入量を1000ppm以下として製膜することにより、第1中間層12を得ることができる。また、この第1中間層12を製膜する際の上記PHの導入量(濃度)は、後述するn型非晶質系半導体層13を製膜する際の導入量(濃度)の1/100以上1/5以下とすることができる。 In the case of the plasma CVD method, in the lamination of the first intermediate layer 12 and the second intermediate layer 15 as intrinsic amorphous semiconductor layers, a mixed gas of, for example, SiH 4 and H 2 can be used as a source gas. . Further, when the first intermediate layer 12 is formed of an n-type amorphous semiconductor, for example, a mixed gas of SiH 4 , H 2, and PH 3 can be used as the source gas. The first intermediate layer 12 formed of an n-type amorphous semiconductor with a small amount of doping is formed by reducing the flow rate (flow rate ratio) of the dopant gas as compared with the n-type amorphous semiconductor layer 13. be able to. For example, in the case of forming by a plasma CVD method using a mixed gas containing SiH 4 and PH 3 , the first intermediate layer is formed by forming PH 3 as a dopant based on SiH 4 at 1000 ppm or less. Layer 12 can be obtained. Further, the amount (concentration) of PH 3 introduced when forming the first intermediate layer 12 is 1 / of the amount introduced (concentration) when forming the n-type amorphous semiconductor layer 13 described later. It can be set to 100 or more and 1/5 or less.
 n型非晶質系半導体層13(n型非晶質系酸化ケイ素層)の積層においては、原料ガスとしては例えばSiH、H、PH及びCOの混合ガスを用いることができる。なお、この場合、COの混合比率を高めることで、酸素含有率の高い非晶質系酸化ケイ素から形成されるn型非晶質系半導体層13を得ることができる。このn型非晶質系酸化ケイ素層の形成の際、SiHの流量(sccm)に対するCOの流量(sccm)の比(CO/SiH)の下限としては、0.1が好ましく、0.4がより好ましい。一方、この比の上限としては、2が好ましく、1がより好ましい。また、酸素原子をドープするためのCOの代わりに、NO等を用いることもできる。 In the lamination of the n-type amorphous semiconductor layer 13 (n-type amorphous silicon oxide layer), for example, a mixed gas of SiH 4 , H 2 , PH 3 and CO 2 can be used as a source gas. In this case, the n-type amorphous semiconductor layer 13 formed from amorphous silicon oxide having a high oxygen content can be obtained by increasing the mixing ratio of CO 2 . During formation of the n-type amorphous-based silicon oxide layer, the lower limit of the ratio of the flow rate of CO 2 of SiH 4 to the flow rate (sccm) (sccm) (CO 2 / SiH 4), preferably 0.1, 0.4 is more preferable. On the other hand, the upper limit of this ratio is preferably 2, and more preferably 1. Further, N 2 O or the like can be used instead of CO 2 for doping oxygen atoms.
 p型非晶質系半導体層16(p型非晶質系酸化ケイ素層)の積層においては、原料ガスとしては例えばSiH、H、B及びCOの混合ガスを用いることができる。このp型非晶質系酸化ケイ素層の形成の際、SiHの流量(sccm)に対するCOの流量(sccm)の比(CO/SiH)の下限としては、0.1が好ましく、0.4がより好ましい。一方、この比の上限としては、2が好ましく、1がより好ましい。また、酸素原子をドープするためのCOの代わりに、NO等を用いることもできる。なお、p型非晶質系半導体層16をp型非晶質系シリコン層とする場合は、原料ガスとしては、例えばSiH、H及びBの混合ガスを用いることができる。 In the lamination of the p-type amorphous semiconductor layer 16 (p-type amorphous silicon oxide layer), for example, a mixed gas of SiH 4 , H 2 , B 2 H 6 and CO 2 is used as the source gas. it can. In this case the p-type amorphous-based silicon oxide layer formation, the lower limit of the ratio of the flow rate of CO 2 to the flow rate of SiH 4 (sccm) (sccm) (CO 2 / SiH 4), preferably 0.1, 0.4 is more preferable. On the other hand, the upper limit of this ratio is preferably 2, and more preferably 1. Further, N 2 O or the like can be used instead of CO 2 for doping oxygen atoms. When the p-type amorphous semiconductor layer 16 is a p-type amorphous silicon layer, for example, a mixed gas of SiH 4 , H 2 and B 2 H 6 can be used as the source gas.
 第1透明導電膜14及び第2透明導電膜17を積層する方法としては、例えばスパッタリング法、真空蒸着法、イオンプレーティング法(反応性プラズマ蒸着法)等を挙げることができるが、スパッタリング法及びイオンプレーティング法によることが好ましい。スパッタリング法は、膜厚制御性等に優れ、また、イオンプレーティング法等に比べて低コストで行うことができる。一方、イオンプレーティング法によれば、欠陥の発生を抑制した製膜を行うことができる。 Examples of the method of laminating the first transparent conductive film 14 and the second transparent conductive film 17 include a sputtering method, a vacuum vapor deposition method, an ion plating method (reactive plasma vapor deposition method), and the like. It is preferable to use an ion plating method. The sputtering method is excellent in film thickness controllability and the like, and can be performed at a lower cost than the ion plating method. On the other hand, according to the ion plating method, film formation in which generation of defects is suppressed can be performed.
 集電極18の配設は、公知の方法で行うことができる。集電極18の材料として導電性接着剤が用いられている場合、スクリーン印刷やグラビアオフセット印刷等の印刷法により形成することができる。また、集電極18に金属導線を用いる場合、導電性接着剤や低融点金属(半田等)により第1透明導電膜14や第2透明導電膜17上に固定することができる。 The arrangement of the collecting electrode 18 can be performed by a known method. When a conductive adhesive is used as the material of the collector electrode 18, it can be formed by a printing method such as screen printing or gravure offset printing. Further, when a metal lead is used for the collector electrode 18, it can be fixed on the first transparent conductive film 14 or the second transparent conductive film 17 with a conductive adhesive or a low melting point metal (solder or the like).
 本発明は上述した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。例えば、両面の集電極のうちの裏面側の集電極は、全面積層された金属等で形成されていてもよい。また、第1中間層や第2中間層は配設されていなくてもよい。さらに、少なくとも入射面側に透明導電膜を形成すればよく、裏面側は透明導電膜が形成されていなくてもよく、例えば金属膜等であってもよい。但し、裏面側のp型非晶質系半導体層外面に透明導電膜を積層することにより、欠陥準位の発生を抑制し、変換効率を高めることができる。 The present invention is not limited to the above-described embodiment, and the configuration can be changed without changing the gist of the present invention. For example, the collector electrode on the back side of the collector electrodes on both sides may be formed of a metal or the like laminated on the entire surface. Further, the first intermediate layer and the second intermediate layer may not be provided. Furthermore, a transparent conductive film may be formed at least on the incident surface side, and the transparent conductive film may not be formed on the back surface side, and may be a metal film, for example. However, by stacking a transparent conductive film on the outer surface of the p-type amorphous semiconductor layer on the back side, generation of defect levels can be suppressed and conversion efficiency can be increased.
 以下、実施例及び比較例を挙げて、本発明の内容をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to a following example.
<実施例1>
 第1透明導電膜/n型非晶質系半導体層/第1中間層/n型結晶半導体基板/第2中間層/p型非晶質系半導体層/第2透明導電膜からなる層構造体を作製した。n型結晶半導体基板は、両面に無数のピラミッド形状を有する微細な凹凸構造(テクスチャー構造)が形成された単結晶シリコン基板を用いた。この凹凸構造は、約3質量%の水酸化ナトリウムを含むエッチング液に基板材料を浸漬し、基板材料の(100)面を異方性エッチングすることにより形成した。
<Example 1>
Layer structure comprising first transparent conductive film / n-type amorphous semiconductor layer / first intermediate layer / n-type crystal semiconductor substrate / second intermediate layer / p-type amorphous semiconductor layer / second transparent conductive film Was made. As the n-type crystal semiconductor substrate, a single crystal silicon substrate having a fine concavo-convex structure (texture structure) having innumerable pyramid shapes on both surfaces was used. This concavo-convex structure was formed by immersing the substrate material in an etching solution containing about 3% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.
 上記核非晶質系半導体層及び中間層は、以下の原料ガスを用いたプラズマCVD法により積層した。
n型非晶質系半導体層:SiH、H、PH、及びCO
第1中間層(低ドープn型非晶質系半導体層):SiH、H、及びPH
第2中間層(真性非晶質系半導体層):SiH、及びH
p型非晶質系半導体層:SiH、H、B、及びCO
The nuclear amorphous semiconductor layer and the intermediate layer were laminated by a plasma CVD method using the following source gas.
n-type amorphous semiconductor layer: SiH 4 , H 2 , PH 3 , and CO 2
First intermediate layer (low-doped n-type amorphous semiconductor layer): SiH 4 , H 2 , and PH 3
Second intermediate layer (intrinsic amorphous semiconductor layer): SiH 4 and H 2
p-type amorphous semiconductor layer: SiH 4 , H 2 , B 2 H 6 , and CO 2
 n型非晶質系半導体層の製膜において、SiHの流量は5sccm、COの流量は0.9sccmとした。p型非晶質系半導体層の製膜において、SiHの流量は5sccm、COの流量は4.1sccmとした。なお、得られたp型非晶質系半導体層において、ホウ素の原子密度は、3.5×1020atm/cmであった。また、第1中間層は、PHの流量をSiH基準でn型非晶質系半導体層の1/10として製膜することで、低ドープn型非晶質系半導体層とした。各透明導電膜は、酸化錫を3質量%含有した酸化インジウムを用い、スパッタリングにより積層した。 In the formation of the n-type amorphous semiconductor layer, the flow rate of SiH 4 was 5 sccm, and the flow rate of CO 2 was 0.9 sccm. In the formation of the p-type amorphous semiconductor layer, the flow rate of SiH 4 was 5 sccm, and the flow rate of CO 2 was 4.1 sccm. In the obtained p-type amorphous semiconductor layer, the atomic density of boron was 3.5 × 10 20 atm / cm 3 . Further, the first intermediate layer was formed as a low-doped n-type amorphous semiconductor layer by forming the PH 3 flow rate as 1/10 of the n-type amorphous semiconductor layer based on SiH 4 . Each transparent conductive film was laminated by sputtering using indium oxide containing 3% by mass of tin oxide.
 次いで、各透明導電膜の外面に、集電極として、平行な複数のバスバー電極と、このバスバー電極にそれぞれ直交する複数のフィンガー電極を形成した。この集電極は、銀ペーストを用いてスクリーン印刷により形成した。これにより実施例1の光発電素子を得た。 Next, a plurality of parallel bus bar electrodes and a plurality of finger electrodes respectively orthogonal to the bus bar electrodes were formed as collector electrodes on the outer surface of each transparent conductive film. This collector electrode was formed by screen printing using a silver paste. This obtained the photovoltaic device of Example 1.
<実施例2~4、比較例1>
 n型非晶質系半導体層の製膜において、COの流量を表1のとおりとしたこと以外は実施例1と同様にして、実施例2~4及び比較例1の各光発電素子を得た。
<Examples 2 to 4, Comparative Example 1>
In the formation of the n-type amorphous semiconductor layer, the photovoltaic elements of Examples 2 to 4 and Comparative Example 1 were prepared in the same manner as in Example 1 except that the flow rate of CO 2 was as shown in Table 1. Obtained.
<実施例5>
 p型非晶質系半導体層の原料ガスとしてSiH、H及びBの混合ガスを用いて、p型非晶質系半導体層をp型シリコンにより形成したこと以外は実施例3と同様にして、実施例5の光発電素子を得た。なお、得られたp型非晶質系半導体層において、ホウ素の原子密度は、3.5×1020atm/cmであった。
<Example 5>
Example 3 except that a mixed gas of SiH 4 , H 2 and B 2 H 6 was used as the source gas for the p-type amorphous semiconductor layer, and the p-type amorphous semiconductor layer was formed of p-type silicon. In the same manner as described above, the photovoltaic device of Example 5 was obtained. In the obtained p-type amorphous semiconductor layer, the atomic density of boron was 3.5 × 10 20 atm / cm 3 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価> <Evaluation>
[出力特性(曲線因子)の温度依存性]
 得られた比較例1、実施例3及び実施例5の各光発電素子の出力特性の温度依存性を評価した。25℃、45℃及び70℃の環境下で、曲線因子(FF)を測定した。なお、上記第1透明導電膜側を光入射面として測定を行った。結果を表2に示す。なお、各測定値は、25℃における各光発電素子の実測値を基準(100%)とした相対値として示している。
[Temperature dependence of output characteristics (curve factor)]
The temperature dependence of the output characteristics of the photovoltaic elements of Comparative Example 1, Example 3 and Example 5 obtained was evaluated. The fill factor (FF) was measured at 25 ° C, 45 ° C and 70 ° C. In addition, it measured by making the said 1st transparent conductive film side into a light-incidence surface. The results are shown in Table 2. In addition, each measured value is shown as a relative value based on an actual measured value of each photovoltaic device at 25 ° C. (100%).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示されるように、n型非晶質系半導体層を非晶質系酸化ケイ素により形成した実施例3、5は、45℃の高温下でも出力特性の低下が小さいことがわかる。特に、n型非晶質系半導体層及びp型非晶質系半導体層を共に非晶質系酸化ケイ素により形成した実施例3は、70℃の環境下でも出力特性の低下が非常に小さい。このように、本発明の光発電素子によれば、高温下においても、出力特性の低下を抑えることができることがわかる。 As shown in Table 2 above, it can be seen that in Examples 3 and 5 in which the n-type amorphous semiconductor layer was formed of amorphous silicon oxide, the decrease in output characteristics was small even at a high temperature of 45 ° C. In particular, in Example 3 in which both the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer are formed of amorphous silicon oxide, the output characteristics are very low even under an environment of 70 ° C. Thus, according to the photovoltaic device of this invention, it turns out that the fall of an output characteristic can be suppressed also under high temperature.
[出力特性(変換効率)]
 得られた実施例1~4及び比較例1の各光発電素子の変換効率(Efficiency)を計測した。なお、上記第1透明導電膜側を光入射面として測定を行った。結果を図2に示す。図2の横軸は、各光発電素子のn型非晶質系半導体層を形成する非晶質系酸化ケイ素における酸素含有率としている。この酸素含有率は、PHI社の「QuanteraSXM」を用いたXPS測定により行った。上記酸素含有率は、上記表1にも示している。また、縦軸の各測定値は、比較例1を基準とした相対値として示している。
[Output characteristics (conversion efficiency)]
The conversion efficiency (Efficiency) of each of the photovoltaic devices of Examples 1 to 4 and Comparative Example 1 obtained was measured. In addition, it measured by making the said 1st transparent conductive film side into a light-incidence surface. The results are shown in FIG. The horizontal axis in FIG. 2 represents the oxygen content in the amorphous silicon oxide forming the n-type amorphous semiconductor layer of each photovoltaic device. This oxygen content was measured by XPS measurement using “Quantera SXM” manufactured by PHI. The oxygen content is also shown in Table 1 above. Each measured value on the vertical axis is shown as a relative value based on Comparative Example 1.
 図2に示されるように、n型非晶質系半導体層を所定範囲の酸素含有率の非晶質系酸化ケイ素により形成することで、変換効率等を高めることができることがわかる。 As shown in FIG. 2, it can be seen that the conversion efficiency and the like can be increased by forming the n-type amorphous semiconductor layer with amorphous silicon oxide having a predetermined range of oxygen content.
 得られた比較例1、実施例2及び実施例3の光発電素子の外部量子効率(EQE)、内部量子効率(IQE)及び反射率(Reflectance)を図3に示す。図3に示されるように、n型非晶質系半導体層を非晶質系酸化ケイ素で形成した実施例2、3は、n型非晶質系半導体層をケイ素で形成した比較例1と比べて300~600nmにおける外部量子効率及び内部量子効率が高い。これより、n型非晶質系酸化ケイ素は、n型非晶質ケイ素に比べて、透明性が高いことがわかる。 FIG. 3 shows the external quantum efficiency (EQE), the internal quantum efficiency (IQE), and the reflectance (Reflectance) of the photovoltaic devices of Comparative Example 1, Example 2, and Example 3 obtained. As shown in FIG. 3, Examples 2 and 3 in which the n-type amorphous semiconductor layer is formed of amorphous silicon oxide are different from Comparative Example 1 in which the n-type amorphous semiconductor layer is formed of silicon. In comparison, the external quantum efficiency and the internal quantum efficiency at 300 to 600 nm are high. This shows that n-type amorphous silicon oxide has higher transparency than n-type amorphous silicon.
 本発明の光発電素子は、良好な出力特性を有し、かつその温度依存性が小さく、高温下でも良好な特性を保つことができ、太陽光発電に好適に用いることができる。 The photovoltaic device of the present invention has good output characteristics, has low temperature dependency, can maintain good characteristics even at high temperatures, and can be suitably used for photovoltaic power generation.
 10 光発電素子
 11 n型結晶半導体基板
 12 第1中間層
 13 n型非晶質系半導体層
 14 第1透明導電膜
 15 第2中間膜
 16 p型非晶質系半導体層
 17 第2透明導電膜
 18 集電極
DESCRIPTION OF SYMBOLS 10 Photovoltaic element 11 N-type crystal semiconductor substrate 12 1st intermediate | middle layer 13 n-type amorphous semiconductor layer 14 1st transparent conductive film 15 2nd intermediate film 16 p-type amorphous semiconductor layer 17 2nd transparent conductive film 18 Current collector

Claims (6)

  1.  n型結晶半導体基板、このn型結晶半導体基板の光入射面側に積層されるn型非晶質系半導体層、及び上記n型結晶半導体基板の光入射面側とは反対面側に積層されるp型非晶質系半導体層を備える光発電素子であって、
     上記n型非晶質系半導体層を形成する半導体材料が、n型の非晶質系酸化ケイ素であることを特徴とする光発電素子。
    An n-type crystal semiconductor substrate, an n-type amorphous semiconductor layer stacked on the light incident surface side of the n-type crystal semiconductor substrate, and a surface opposite to the light incident surface side of the n-type crystal semiconductor substrate are stacked. A photovoltaic device comprising a p-type amorphous semiconductor layer,
    A photovoltaic element, wherein the semiconductor material forming the n-type amorphous semiconductor layer is n-type amorphous silicon oxide.
  2.  上記非晶質系酸化ケイ素が、Si1-x(0.01≦x≦0.12)で表される請求項1に記載の光発電素子。 The photovoltaic device according to claim 1, wherein the amorphous silicon oxide is represented by Si 1-x O x (0.01 ≦ x ≦ 0.12).
  3.  上記p型非晶質系半導体層を形成する半導体材料が、p型の非晶質系酸化ケイ素である請求項1又は請求項2に記載の光発電素子。 3. The photovoltaic device according to claim 1, wherein the semiconductor material forming the p-type amorphous semiconductor layer is p-type amorphous silicon oxide.
  4.  上記n型結晶半導体基板とn型非晶質系半導体層との間に介在する第1中間層をさらに備え、
     上記第1中間層が、真性非晶質系半導体、又はn型非晶質系半導体から形成されている請求項1、請求項2又は請求項3に記載の光発電素子。
    A first intermediate layer interposed between the n-type crystal semiconductor substrate and the n-type amorphous semiconductor layer;
    The photovoltaic device according to claim 1, wherein the first intermediate layer is formed of an intrinsic amorphous semiconductor or an n-type amorphous semiconductor.
  5.  上記第1中間層が、上記n型非晶質系半導体層よりもドープ量が少ないn型非晶質系半導体層である請求項4に記載の光発電素子。 The photovoltaic element according to claim 4, wherein the first intermediate layer is an n-type amorphous semiconductor layer having a smaller doping amount than the n-type amorphous semiconductor layer.
  6.  上記n型結晶半導体基板とp型非晶質系半導体層との間に介在する第2中間層をさらに備え、
     上記第2中間層が、真性非晶質系半導体から形成されている請求項1から請求項5のいずれか1項に記載の光発電素子。
     
    A second intermediate layer interposed between the n-type crystal semiconductor substrate and the p-type amorphous semiconductor layer;
    The photovoltaic device according to any one of claims 1 to 5, wherein the second intermediate layer is formed of an intrinsic amorphous semiconductor.
PCT/JP2017/000224 2016-01-25 2017-01-06 Photovoltaic element WO2017130654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016011586 2016-01-25
JP2016-011586 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017130654A1 true WO2017130654A1 (en) 2017-08-03

Family

ID=59398099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000224 WO2017130654A1 (en) 2016-01-25 2017-01-06 Photovoltaic element

Country Status (2)

Country Link
TW (1) TW201801339A (en)
WO (1) WO2017130654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736151A (en) * 2021-01-08 2021-04-30 上海交通大学 Back junction silicon heterojunction solar cell based on wide band gap window layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595126A (en) * 1991-10-01 1993-04-16 Fuji Electric Co Ltd Thin film solar battery and manufacturing method thereof
JPH05152592A (en) * 1991-09-30 1993-06-18 Fuji Electric Co Ltd Thin film solar cell and its manufacture
JPH07130661A (en) * 1993-11-04 1995-05-19 Fuji Electric Co Ltd Method of forming amorphous silicon oxide thin film
JP2013077685A (en) * 2011-09-30 2013-04-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
WO2015118935A1 (en) * 2014-02-10 2015-08-13 シャープ株式会社 Photoelectric conversion element and solar cell module provided with same
WO2015122257A1 (en) * 2014-02-13 2015-08-20 シャープ株式会社 Photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152592A (en) * 1991-09-30 1993-06-18 Fuji Electric Co Ltd Thin film solar cell and its manufacture
JPH0595126A (en) * 1991-10-01 1993-04-16 Fuji Electric Co Ltd Thin film solar battery and manufacturing method thereof
JPH07130661A (en) * 1993-11-04 1995-05-19 Fuji Electric Co Ltd Method of forming amorphous silicon oxide thin film
JP2013077685A (en) * 2011-09-30 2013-04-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
WO2015118935A1 (en) * 2014-02-10 2015-08-13 シャープ株式会社 Photoelectric conversion element and solar cell module provided with same
WO2015122257A1 (en) * 2014-02-13 2015-08-20 シャープ株式会社 Photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736151A (en) * 2021-01-08 2021-04-30 上海交通大学 Back junction silicon heterojunction solar cell based on wide band gap window layer
CN112736151B (en) * 2021-01-08 2022-11-15 上海交通大学 Back junction silicon heterojunction solar cell based on wide band gap window layer

Also Published As

Publication number Publication date
TW201801339A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
US10707367B2 (en) Contact for silicon heterojunction solar cells
KR101444980B1 (en) Solar cell and method for manufacturing the same
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
EP2386124B1 (en) Solar cell
EP2224491A2 (en) Solar cell and method of fabricating the same
AU2014239715A1 (en) Photovoltaic device
JPWO2014050304A1 (en) Photoelectric conversion element and manufacturing method thereof
JP5948148B2 (en) Photoelectric conversion device
JP6976101B2 (en) Crystalline silicon solar cell
WO2014148499A1 (en) Photovoltaic element and manufacturing method therefor
JP2013093543A (en) Photoelectric conversion device
US20140007934A1 (en) Thin film solar cell and method of fabricating the same
JP2015073058A (en) Photovoltaic element
WO2015050082A1 (en) Photovoltaic element and method for producing same
EP2413384A2 (en) Photovoltaic device
JP6564767B2 (en) Photoelectric conversion device
WO2017130654A1 (en) Photovoltaic element
JP5987127B1 (en) Photovoltaic power generation element and manufacturing method thereof
KR20150071553A (en) Flexible solar cell having layer for diffusion barrier comprising transparent conducting oxide
WO2015050083A1 (en) Photovoltaic element
JP2017152604A (en) Solar cell element and solar cell module
WO2015050161A1 (en) Photovoltaic element
JP2005191024A (en) Photovoltaic power device and its manufacturing method
JP5307280B2 (en) Thin film photoelectric conversion element
TW201244133A (en) Thin film solar cell and fabricating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP