JPH065765B2 - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH065765B2
JPH065765B2 JP57228159A JP22815982A JPH065765B2 JP H065765 B2 JPH065765 B2 JP H065765B2 JP 57228159 A JP57228159 A JP 57228159A JP 22815982 A JP22815982 A JP 22815982A JP H065765 B2 JPH065765 B2 JP H065765B2
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
boron
junction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228159A
Other languages
Japanese (ja)
Other versions
JPS59115575A (en
Inventor
舜平 山崎
晃 間瀬
克彦 柴田
一男 浦田
久人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57228159A priority Critical patent/JPH065765B2/en
Priority to GB08334251A priority patent/GB2135510B/en
Publication of JPS59115575A publication Critical patent/JPS59115575A/en
Publication of JPH065765B2 publication Critical patent/JPH065765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は、水素またはハロゲン元素が添加された非単
結晶半導体特に珪素を主成分とする非単結晶半導体を用
いたPIN接合を有する光電変換装置(以下単にPVCとい
う)に関する。
The present invention relates to a photoelectric conversion device (hereinafter simply referred to as PVC) having a PIN junction using a non-single-crystal semiconductor to which hydrogen or a halogen element is added, particularly a non-single-crystal semiconductor containing silicon as a main component. Regarding

本発明はかかるPVCにおいて、その変換効率を向上し、
さらに光照射による劣化を少なくするため、I型半導体
層(以下単にI層という)におけるホウ素の添加を連続
的に変化させた濃度こうばいを有せしめることを目的と
している。
The present invention improves the conversion efficiency of such PVC,
Further, in order to reduce deterioration due to light irradiation, the purpose is to have a concentration gradient in which the addition of boron in the I-type semiconductor layer (hereinafter simply referred to as the I layer) is continuously changed.

本発明はPIN接合を有するPVCにおいて、特にプラズマ気
相法(PCVD法という)または減圧気相法(LPCVD法)を
用い、基板上にP層、I層およびN層を順次積層してPI
N接合を有せしめるに際し、このI層巾の形成工程にお
いて、被膜作製の時、ホウ素用の反応性気体例えばシラ
ン(SinH2n+2)に同時にホウ素化物例えばジボラン(B2
H6)を0〜5PPM添加し、かつその添加量をP型半導体側
は2×1015〜2×1017cm-3好ましくは1〜4×1016cm-3
とし、ホウ素の濃度量を漸減させることにより、N型半
導体層側では5×1013〜4×1016cm-3と連続減少分布を
有する構造にしたものである。
The present invention relates to a PVC having a PIN junction, in particular, using a plasma vapor deposition method (referred to as PCVD method) or a low pressure vapor deposition method (LPCVD method) to sequentially stack a P layer, an I layer, and an N layer on a substrate to form a PI layer.
In providing the N-junction, in the step of forming the I-layer width, at the time of film formation, a reactive gas for boron such as silane (SinH 2n + 2 ) and a boride such as diborane (B 2
H 6) was added 0~5PPM, and the amount P type semiconductor side 2 × 10 15 ~2 × 10 17 cm -3 , preferably 1~4 × 10 16 cm -3
By gradually reducing the concentration of boron, the N-type semiconductor layer side has a structure having a continuous decrease distribution of 5 × 10 13 to 4 × 10 16 cm −3 .

本発明はかくの如くに透光性基板上に透光性導電膜(CT
Fという)を用いた第1の電極上に、SixC1-x(0<x<1)に
よるP型半導体層を形成し、さらにその上にシランにジ
ボランを0.05(2×1015cm-3に対応)〜5PPM(2×1017cm-3
に対応)の濃度に添加し、加えてNI接合面側/PI接合面
側1/5好ましくは1/10〜1/30の濃度差を有し、かつその
変化は連続的な直線的または概略直線的な変化を有せし
めることを目的としている。
As described above, according to the present invention, a transparent conductive film (CT) is formed on a transparent substrate.
F) is used to form a P-type semiconductor layer of SixC 1-x (0 <x <1) on the first electrode, and 0.05 (2 × 10 15 cm -3 of diborane is added to silane on the P-type semiconductor layer. 5 PPM (2 × 10 17 cm -3
In addition to the above, there is a concentration difference of 1/5, preferably 1/10 to 1/30, on the NI joint surface side / PI joint surface side, and the change is continuous linear or approximate. The purpose is to have a linear change.

かかる濃度こうばいを有せしめることにより、光により
励起されたキャリアである電子またはホールは、ホール
はP型半導体層側に、また電子はN型半導体側に内部電
界を有せしめてドリフトさせやすくさせることができ
る。その結果、光電変換装置において、その出力電流を
10〜20%も増加させることができる。即ちI層内部での
空乏層を実質的により深い領域にまで作ることができ
る。
By having such a concentration gradient, electrons or holes that are carriers excited by light have an internal electric field on the P-type semiconductor layer side for the holes and an electron on the N-type semiconductor side for the electrons to facilitate drift. be able to. As a result, the output current of the photoelectric conversion device is
It can be increased by 10-20%. That is, the depletion layer inside the I layer can be formed substantially deeper.

さらに光照射面側の空乏層は、光照射効果(ステブラ・
ロンスキー効果ともいう。ここではPIEという)に関す
る劣化特性のため短くなる。その結果、変換効率が10〜
30%も劣化してしまうことが一般に知られている。しか
し本発明構造においては、かかる劣化特性がみられず、
むしろ逆に最初のうちは効率が+5%程度向上し、その後
0〜-5%程度に劣化し、1000時間照射させても±10%以内
の変化量しかないという高信頼性特性を有してもいると
いう他の特徴を有する。
Furthermore, the depletion layer on the light irradiation surface side has a light irradiation effect (step
Also called the Ronsky effect. It is shortened due to the deterioration characteristics related to PIE). As a result, conversion efficiency is 10 ~
It is generally known that it deteriorates by 30%. However, in the structure of the present invention, such deterioration characteristics are not observed,
Rather, on the contrary, the efficiency is improved by about + 5% at first, then deteriorates by about 0 to -5%, and even if irradiated for 1000 hours, there is only a change within ± 10%, which is a highly reliable characteristic. It also has the other feature of being

従来PVCは第1図(A)にそのたて断面図の概要を示してい
るが、透光性基板(1)ここではガラス基板上に酸化スズ
を主成分とする第1の電極を構成する透光性導電膜(CT
F)(2)さらにP型の約100Åの厚さの非単結晶半導体例え
ばSixC1-x(0<x<1)さらに珪素を主成分とする約0.5μの
厚さのI型半導体(4)さらに微結晶化した珪素を主成分
とするN型半導体(6)さらに裏面電極が設けられてい
る。しかしこの本発明の特徴であるI層(4)における不
純物濃度分布を検討すると、第1図(B)の如くなってい
る。即ちP型半導体中のホウ素(13)、I型半導体層中の
一定の濃度のホウ素(17)、N型半導体層中のリン(15)が
示されている。
A conventional PVC is shown in Fig. 1 (A) with an outline of its vertical cross section. A transparent substrate (1) Here, the first electrode mainly composed of tin oxide is formed on a glass substrate. Translucent conductive film (CT
F) (2) Further, a P-type non-single crystal semiconductor with a thickness of about 100Å, such as SixC 1-x (0 <x <1) and an I-type semiconductor containing silicon as a main component and having a thickness of about 0.5μ (4 ) Further, an N-type semiconductor (6) whose main component is microcrystallized silicon and a back electrode are provided. However, when the impurity concentration distribution in the I layer (4), which is a feature of the present invention, is examined, it is as shown in FIG. 1 (B). That is, boron (13) in the P-type semiconductor, boron (17) with a constant concentration in the I-type semiconductor layer, and phosphorus (15) in the N-type semiconductor layer are shown.

またP層I層N層をそれぞれ独立した反応炉で形成する
場合は(13)は(13′)の分布を有し、すべてを同一の反応
容器で形成する場合は(13″)の分布が知られている。
When P layer, I layer, and N layer are formed in independent reactors, (13) has a distribution of (13 '), and when they are all formed in the same reaction vessel, a distribution of (13 ") is obtained. Are known.

(13)(17)の曲線はいずれにおいても連続であるが、その
機能において(13)の斜線領域は不純物濃度が多くむし
ろ空乏層を作らせない作用をしてしまう。このためかか
る(13)の領域がない(13′)の濃度分布がすぐれている
としている。
The curves of (13) and (17) are continuous in all cases, but in the function, the shaded region of (13) has a large impurity concentration and rather acts so as not to form a depletion layer. For this reason, it is said that the concentration distribution of (13 ') without such region (13) is excellent.

このことよりPI接合界面またはその近傍においては、不
純物濃度は急しゅんであることが重要であるため、従来
においては、ホウ素の分布は曲線(13),(13′),(17)であ
ることが重要とされていた。しかし本発明はかかる従来
の考え方がI層内部のドリフト電界を発生させるには不
十分であるとの結論に達した。
From this, it is important that the impurity concentration is abrupt at or near the PI junction interface.Therefore, in the past, the distribution of boron was curves (13), (13 '), and (17). Was considered important. However, the present invention has concluded that such a conventional idea is insufficient to generate a drift electric field inside the I layer.

第1図(C)は第1図(B)における(13),(13′),(17)のホウ
素分布を有している時のエネルギバンド構造を示してい
る。
FIG. 1 (C) shows the energy band structure when boron distributions (13), (13 ′) and (17) in FIG. 1 (B) are present.

即ち、CTF(2)、P層(3)、I層(4)、N層(5)、裏面電極
(6)を第1図(A)に対応して有している。さらにこのI層
はPI接合による空乏層(55)NI接合による空乏層(57)を有
しているが、それぞれが互いに連結することはなく、中
央部に内部電界を有さない平坦なエネルギバンドを有す
るドリフト電界を有さない領域(56)があることが判明し
た。このためかかる内部電界のない領域(56)をなくし、
2つの空乏層(55),(57)を連結せしめることが光照射に
より発生するキャリアをすみやかに2つの電極に分離さ
せるために重要であることが判明した。
That is, CTF (2), P layer (3), I layer (4), N layer (5), back electrode
It has (6) corresponding to FIG. 1 (A). Furthermore, this I layer has a depletion layer (55) by the PI junction and a depletion layer (57) by the NI junction, but they are not connected to each other and have a flat energy band that does not have an internal electric field in the central part. It has been found that there is a region (56) that has no drift field with. Therefore, eliminate the area (56) without such internal electric field,
It was found that connecting the two depletion layers (55) and (57) is important for promptly separating the carriers generated by light irradiation into the two electrodes.

本発明はかかる目的のためになされたものである。The present invention has been made for such a purpose.

以下に本発明を記す。The present invention will be described below.

第2図は本発明のPVCおよびI層中の不純物濃度分布を
示す。
FIG. 2 shows the impurity concentration distributions in the PVC and I layers of the present invention.

第2図において、(A)は本発明の光電変換装置のたて断
面図を示す。即ち透光性基板(1)例えばガラスと該基板
上の第1の電極を構成するCTF(2)、約100Åの厚さのP
層(3)、3000〜8000Åここでは5000Åの厚さのI層(4)、
100〜300Åの厚さのN層(5)、第2の電極を構成するCTF
(6)、反射用裏面電極(6)を積層して設けている。第1の
電極を構成するCTFは1000〜2000Åの厚さのハロゲン元
素が添加された酸化スズまたは1000〜2000Åの厚さのIT
O(酸化スズが10重量%以上添加された酸化インジュー
ム)および200〜400Åの厚さの酸化スズの2層膜よりな
っている。このCTF中の特にP層近傍にホウ素を添加し
ておいてもよい。このCTFはEB(電子ビーム蒸着法)ま
たはPCVD法またはLPCVD法により作製した。
In FIG. 2, (A) shows a vertical sectional view of the photoelectric conversion device of the present invention. That is, a transparent substrate (1), for example, glass and CTF (2) constituting the first electrode on the substrate, P having a thickness of about 100Å
Layer (3), 3000-8000Å Here, I layer (4) with a thickness of 5000Å,
N-layer (5) with a thickness of 100-300Å, CTF that constitutes the second electrode
(6) and the back electrode for reflection (6) are laminated. The CTF composing the first electrode is tin oxide added with a halogen element with a thickness of 1000 to 2000Å or IT with a thickness of 1000 to 2000Å
It consists of a two-layer film of O (indium oxide containing 10% by weight or more of tin oxide) and tin oxide with a thickness of 200 to 400Å. Boron may be added particularly in the vicinity of the P layer in this CTF. This CTF was produced by EB (electron beam evaporation method), PCVD method or LPCVD method.

次にこの図面では1つのPIN接合を有するPVCであるた
め、P層,I層,N層用の反応炉をそれぞれ独立に設
け、互いに連結したマルチチャンバー方式のPCVD法を用
いた。その詳細は後記するが、P層はSixC1-x(0<x<1 x=
0.8)の非単結晶半導体を用い、その中のホウ素の不純物
濃度はピーク値において1×1019〜6×1020cm-3とした。
さらにI層中には2×1015〜2×1017cm-3の不純物濃度を
PI接合近傍に有するとともに、NI接合近傍においては5
×1013〜4×1016cm-3またはP層側の濃度の1/5以下好ま
しくは1/20〜1/40としてその間は連続的に漸減せしめ、
内部電界が均質な一定の電界強度を有するようにした。
さらにN層(5)にシラン/H2=1/30、PH3/シラン=1%と
して微結晶化させN層での光の吸収損失を少なくせしめ
た。これらP、I、N層をそれぞれ独立した反応炉によ
り形成した。珪化物気体としては、シラン(SiHまたはS
inH2n+2n22)を用いた。モノシランまたはジシランを用
いたPCVD(グロー放電用の電気エネルギ供給は10〜30
W、13.56MHz、200〜300Cを用いた。この出力、周波数は
さらに装置によって最適化させることが好ましい)法ま
たはジボランを用いた。400±50゜CにおけるLPCVD法を用
いてもよい。
Next, in this drawing, since the PVC has one PIN junction, the reactors for the P layer, the I layer, and the N layer were independently provided, and the multi-chamber PCVD method was used in which they were connected to each other. Although the details will be described later, the P layer has SixC 1-x (0 <x <1 x =
0.8) non-single crystal semiconductor was used, and the impurity concentration of boron in the semiconductor was set at 1 × 10 19 to 6 × 10 20 cm −3 in peak value.
Further, an impurity concentration of 2 × 10 15 to 2 × 10 17 cm −3 is contained in the I layer.
It has 5 near the NI junction as well as near the PI junction.
× 10 13 to 4 × 10 16 cm -3 or 1/5 or less of the concentration on the P layer side, preferably 1/20 to 1/40, and gradually decreased during that period,
The internal electric field had a uniform and constant electric field strength.
Further, the N layer (5) was microcrystallized with silane / H 2 = 1/30 and PH 3 / silane = 1% to reduce the light absorption loss in the N layer. These P, I and N layers were formed by independent reaction furnaces. As the silicide gas, silane (SiH or S
inH 2n + 2 n22) was used. PCVD using monosilane or disilane (electrical energy supply for glow discharge is 10-30
W, 13.56MHz, 200-300C was used. It is preferable that the output and frequency are further optimized by a device) method or diborane. The LPCVD method at 400 ± 50 ° C may be used.

裏面電極は900〜1300Å好ましくは1050Åの厚さのITOを
第2の電極を構成するCTFとして設け、さらにその上面
に必要に応じてアルミニューム(銀でもよい)を主成分
とする金属を真空蒸着法により形成した。
The back electrode is provided with ITO with a thickness of 900 to 1300Å, preferably 1050Å as the CTF that constitutes the second electrode, and the top surface thereof is vacuum-deposited with a metal containing aluminum (may be silver) as a main component, if necessary. Formed by the method.

かくすることにより、P層は光学的Egを2eV以上有する
広いエネルギバンド巾(σ10-5(Ωcm)-1)を有し、また
I層は1.7〜1.8eVを有し、このPI接合をヘテロ接合とせ
しめることができた。さらにN層はマイクロクリスタル
または多結晶構造(σ=100〜102(Ωcm)-1)とした。
As a result, the P layer has a wide energy band width (σ 10 -5 (Ωcm) -1 ) having an optical Eg of 2 eV or more, and the I layer has 1.7 to 1.8 eV. I was able to make a joint. Further, the N layer has a microcrystal or polycrystal structure (σ = 10 0 to 10 2 (Ωcm) −1 ).

さらにI層(4)は珪素を主成分とし、この中に2〜20原
子%の水素を再結合中心中和用に添加したものである。
このI層をSiFまたはSiHとSiFとの混合気体を出発珪化
物気体として用いると、さらにフッ素を0.1〜5原子%
添加することが可能である。
Further, the I layer (4) contains silicon as a main component, and 2 to 20 atomic% of hydrogen is added to this for neutralizing recombination centers.
When this I layer is used as a starting silicide gas of SiF or a mixed gas of SiH and SiF, 0.1 to 5 atomic% of fluorine is further added.
It is possible to add.

さらにここにジボランを用いた。ここでは珪化物気体と
して100%の濃度のモノシランを20cc/分加え、さらに
ジボランを20PPM(水素希釈)とし、このジボランを0.0
5〜5PPM即ち0.05cc/分〜5cc/分をPI接合界面近傍のI
層中に添加した。例えば1cc/分の濃度で加えた。この
場合は1PPM(B2H6/SiH4=20×10-6×1(cc/分)/20(cc/分))
となる。さらにこのジボランの濃度を直線的に減少させ
ていった。1PPM添加した場合、形成された珪素中のホウ
素の量をカメカ社製のIMA(イオン・マイクロ・アナラ
イザー)にて測定したところ、サンプルによりばらつき
を有し、2〜5×1016cm-3例えば約3×1016cm-3になって
いた。
Furthermore, diborane was used here. Here, 100 cc of monosilane was added as a silicide gas at 20 cc / min, and diborane was adjusted to 20 PPM (diluted with hydrogen).
5 to 5 PPM, that is, 0.05 cc / min to 5 cc / min, I near the PI bonding interface
Added in layers. For example, it was added at a concentration of 1 cc / min. In this case, 1PPM (B 2 H 6 / SiH 4 = 20 × 10 -6 × 1 (cc / min) / 20 (cc / min))
Becomes Further, the concentration of this diborane was linearly decreased. When 1PPM was added, the amount of boron in the formed silicon was measured by IMA (Ion Micro Analyzer) manufactured by Kameca Co., Ltd., and it was found that there was variation depending on the sample, and 2-5 × 10 16 cm -3 It was about 3 × 10 16 cm -3 .

第2図(B)は第1図(A)でのI層中のホウ素の分布を示し
たものである。
FIG. 2 (B) shows the distribution of boron in the I layer in FIG. 1 (A).

第2図(B)において、曲線(14)はI層中のホウ素の不純
物濃度を示し、さらにそれに対応してB2H6/SiH4をPPM
単位で示したものである。
In Fig. 2 (B), curve (14) shows the impurity concentration of boron in the I layer, and B 2 H 6 / SiH 4 was added to the PPM correspondingly.
It is shown in units.

さらに第2図(B)において、(13)はP層でのホウ素の量
を示し、(15)はN層でのリンの濃度を示している。
Further, in FIG. 2 (B), (13) shows the amount of boron in the P layer, and (15) shows the concentration of phosphorus in the N layer.

さらにこの第2図(C)は従来例のエネルギバンド図とき
わめて異なったものである。
Further, FIG. 2 (C) is very different from the energy band diagram of the conventional example.

第2図(C)において、第1のCTF(2)、P層(3)、I層
(4)、N層(5)、裏面電極の第2のCTF(6)、反射用電極
(6)よりなっている。図面において明らかなように、PN
接合の空乏層(55)とNI接合による空乏層(57)はI層(4)
内で連続しており、第1図の平坦なエネルギバンドを有
する領域(56)が中央部に存在していないことがわかる。
このため光照射により発生した電子(67)ホール(68)は単
調にN層(5)、P層(3)にそれぞれ内部電界(このバンド
のこうばいに対応する)に従ってドリフトするドリフト
電界が形成されていることがわかる。
In FIG. 2 (C), the first CTF (2), P layer (3), I layer
(4), N layer (5), second CTF of backside electrode (6), reflective electrode
It consists of (6). As can be seen in the drawing, PN
The depletion layer (55) of the junction and the depletion layer (57) of the NI junction are the I layer (4)
It can be seen that the region (56) which is continuous inside and has a flat energy band in FIG. 1 does not exist in the central portion.
Therefore, the electron (67) hole (68) generated by the light irradiation monotonically forms a drift electric field in the N layer (5) and the P layer (3) in accordance with the internal electric field (corresponding to the confinement of this band). You can see that it is done.

即ち本発明は従来例に示される如く、単にホウ素をI層
がN化したのを中和するという意味のみではなく、さら
に加えてドリフト電界を有効に発生させることを目的と
している。
That is, as shown in the conventional example, the present invention aims not only to neutralize the conversion of boron into N in the I layer, but also to effectively generate a drift electric field.

第3図は本発明によって得られた1つのPIN接合を有す
るPVCの特性を示す。
FIG. 3 shows the properties of PVC with one PIN junction obtained according to the invention.

第3図において曲線(58)は参考までに第1図の構造の従
来例の特性である。さらに本発明構造においては曲線(5
9)が得られている。PVCとしての特性は以下の通りであ
った。
In FIG. 3, a curve (58) is a characteristic of the conventional example of the structure of FIG. 1 for reference. Further, in the structure of the present invention, the curve (5
9) has been obtained. The characteristics as PVC were as follows.

従来例 本発明 開放電圧(Voc)(V) 0.89 0.92 短絡電流(Isc)(mA/cm2) 16.0 19.5 曲線因子(FF)(%) 61 68 変換効率(η)(%) 8.7 12.2 上記特性は3.5mm×3cmの面積(1.05cm2)においてAM1(100
mW/cm2)を照射した時の値である。
Conventional example Present invention Open circuit voltage (Voc) (V) 0.89 0.92 Short circuit current (Isc) (mA / cm 2 ) 16.0 19.5 Fill factor (FF) (%) 61 68 Conversion efficiency (η) (%) 8.7 12.2 The characteristics above are for AM1 (100 mm) in an area (1.05 cm 2 ) of 3.5 mm × 3 cm.
It is the value when irradiated with mW / cm 2 ).

このことより明らかなように、本発明のドリフト型のPV
Cは変換効率において3.5%もの差を有して高い値とする
ことができるという特徴を有していることがわかった。
As is clear from this, the drift type PV of the present invention is
It was found that C has a feature that it can be set to a high value with a difference of 3.5% in conversion efficiency.

さらに第4図はPIFに関する信頼性テストの結果であ
る。即ち第3図のPVCに対しAM1の光を照射しつづけたと
ころ、従来例においては照射時間10時間において15%も
効率が減少してしまい100時間では20%近く減少してしま
っている。これは第1図(C)におけるPI接合での空乏層
(55)がその接合界面でよりその界面強度が急しゅんであ
るため、結果としてPIEによりこの空乏層の巾が薄くな
り平坦領域(56)がますます広がってしまったことによ
る。さらにPI接合近傍でのホウ素の不純物濃度を2×10
17cm-3以上とすると、このPI接合近傍で十分低い空乏層
ができず、逆に効率が0.5〜2%も減少してしまった。ま
た1×1015cm-3以下においても、十分なドリフトが期待
できなかった。
Furthermore, Figure 4 shows the results of the reliability test for PIF. That is, when the light of AM1 was continuously irradiated to the PVC shown in FIG. 3, in the conventional example, the efficiency decreased by 15% at the irradiation time of 10 hours and decreased by nearly 20% at 100 hours. This is the depletion layer at the PI junction in Fig. 1 (C).
This is because the interface strength of (55) is steeper than that at the junction interface, and as a result, the width of this depletion layer is thinned by PIE and the flat region (56) is further expanded. Furthermore, the impurity concentration of boron in the vicinity of the PI junction is 2 × 10
Above 17 cm -3 , a sufficiently low depletion layer was not formed near this PI junction, and conversely the efficiency decreased by 0.5 to 2%. In addition, sufficient drift could not be expected even below 1 × 10 15 cm -3 .

この実施例においてはI層中のリンおよび酸素の濃度を
バックグラウンドレベルで1〜10×1014cm-3および1〜
10×1018cm-3を有しており、この濃度をさらに1/10〜1/
100にすることにより、ホウ素の添加必要量を2×1015cm
-3よりさらに1/5程度に下げることは可能である。
In this example, the concentration of phosphorus and oxygen in the I layer was 1 to 10 × 10 14 cm −3 and 1 to 10 at background level.
It has 10 × 10 18 cm -3 , and this concentration is further reduced to 1/10 ~ 1 /
By adjusting to 100, the required amount of boron added is 2 × 10 15 cm
It is possible to further reduce it to about 1/5 from -3 .

以上においては、1つのPIN接合を有せしめたPVCを示し
た。しかしこれをPINPIN・・・・PINとしそれらの少なくと
も1つのI層に対し本発明を適用することは同様に可能
である。
In the above, PVC with one PIN junction is shown. However, it is likewise possible to call it PINPIN ... PIN and apply the invention to at least one of these I layers.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の光電変換装置のたて断面図である。不純
物濃度分布、エネルギバンド図を示す。 第2図は本発明の光電変換装置のたて断面図、不純物濃
度分布、エネルギバンド図を示す。 第3図、第4図は本発明および従来例の光電変換装置の
特性を示す。
FIG. 1 is a vertical sectional view of a conventional photoelectric conversion device. An impurity concentration distribution and an energy band diagram are shown. FIG. 2 shows a vertical sectional view, an impurity concentration distribution, and an energy band diagram of the photoelectric conversion device of the present invention. 3 and 4 show the characteristics of the photoelectric conversion device of the present invention and the conventional example.

フロントページの続き (72)発明者 篠原 久人 東京都世田谷区北烏山7丁目21番21号 株 式会社半導体エネルギ−研究所内 審判の合議体 審判長 遠藤 政明 審判官 左村 義弘 審判官 岡 和久 (56)参考文献 特開 昭57−187972(JP,A) 特開 昭56−4287(JP,A) 特開 昭58−106876(JP,A)Front page continuation (72) Inventor Hisato Shinohara 7-21-21 Kitakarasuyama, Setagaya-ku, Tokyo Semiconductor Energy Laboratory Co., Ltd. Judgment panel for referee, Masaaki Endo Judge, Yoshihiro Samura, Kazuhisa Oka ( 56) References JP 57-187972 (JP, A) JP 56-4287 (JP, A) JP 58-106876 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透光性基板上に設けられた透光性導電膜よ
りなる、第1の電極と該電極上にP型半導体層とI型半
導体層とN型半導体層とによりPIN接合を少なくとも
1つ有する非単結晶半導体層と該半導体層上の第2の電
極を有する光電変換装置において、水素またはハロゲン
元素が添加された珪素を主成分とする、前記I型半導体
中のPI接合近傍でのホウ素の濃度に対する、前記I型
半導体中のIN接合近傍でのホウ素の濃度が1/5〜1
/40の範囲を有し、かつ、前記I型半導体中にホウ素
がその濃度を連続的に変えて存在することを特徴とする
光電変換装置。
1. A first electrode made of a transparent conductive film provided on a transparent substrate and a PIN junction formed on the electrode by a P-type semiconductor layer, an I-type semiconductor layer and an N-type semiconductor layer. In a photoelectric conversion device having a non-single crystal semiconductor layer having at least one and a second electrode on the semiconductor layer, the vicinity of a PI junction in the I-type semiconductor containing silicon to which hydrogen or a halogen element is added as a main component. The boron concentration in the vicinity of the IN junction in the I-type semiconductor is 1/5 to 1 with respect to the boron concentration in
A photoelectric conversion device having a range of / 40, and boron being present in the I-type semiconductor by continuously changing its concentration.
JP57228159A 1982-12-23 1982-12-23 Photoelectric conversion device Expired - Lifetime JPH065765B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57228159A JPH065765B2 (en) 1982-12-23 1982-12-23 Photoelectric conversion device
GB08334251A GB2135510B (en) 1982-12-23 1983-12-22 Photoelectric conversion devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228159A JPH065765B2 (en) 1982-12-23 1982-12-23 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS59115575A JPS59115575A (en) 1984-07-04
JPH065765B2 true JPH065765B2 (en) 1994-01-19

Family

ID=16872151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228159A Expired - Lifetime JPH065765B2 (en) 1982-12-23 1982-12-23 Photoelectric conversion device

Country Status (2)

Country Link
JP (1) JPH065765B2 (en)
GB (1) GB2135510B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8423469U1 (en) * 1984-08-07 1986-01-30 Siemens AG, 1000 Berlin und 8000 München Solar cell with a semiconductor body consisting of amorphous silicon and having the layer sequence pin
JPS6188570A (en) * 1984-10-05 1986-05-06 Fuji Electric Co Ltd Manufacture of amorphous silicon solar cell
US4609771A (en) * 1984-11-02 1986-09-02 Sovonics Solar Systems Tandem junction solar cell devices incorporating improved microcrystalline p-doped semiconductor alloy material
EP0200874A1 (en) * 1985-04-19 1986-11-12 Siemens Aktiengesellschaft Process for making a surface grating having a specified operating constant on a recessed surface of a mesa structure
DE3850157T2 (en) * 1987-03-23 1995-02-09 Hitachi Ltd Photoelectric conversion device.
US4816082A (en) * 1987-08-19 1989-03-28 Energy Conversion Devices, Inc. Thin film solar cell including a spatially modulated intrinsic layer
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
JP5583196B2 (en) * 2011-12-21 2014-09-03 パナソニック株式会社 Thin film solar cell and manufacturing method thereof
CN106057929B (en) * 2016-05-31 2018-03-23 西安工程大学 A kind of silicon carbide-based PIN structural near infrared photodiode and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217148A (en) * 1979-06-18 1980-08-12 Rca Corporation Compensated amorphous silicon solar cell
JPS571272A (en) * 1980-06-02 1982-01-06 Fuji Electric Co Ltd Manufacture of amorphous silicon solar cell
JPS57187972A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Manufacture of solar cell

Also Published As

Publication number Publication date
JPS59115575A (en) 1984-07-04
GB2135510A (en) 1984-08-30
GB2135510B (en) 1987-09-23
GB8334251D0 (en) 1984-02-01

Similar Documents

Publication Publication Date Title
US5032884A (en) Semiconductor pin device with interlayer or dopant gradient
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JP3218320B2 (en) Multi-junction photoelectric device and method of manufacturing the same
US6242686B1 (en) Photovoltaic device and process for producing the same
US8258596B2 (en) Stacked photoelectric conversion device and method for producing the same
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
US20080000522A1 (en) Photovoltaic device which includes all-back-contact configuration; and related processes
US20140238476A1 (en) Photoelectric conversion device and manufacturing method thereof, and photoelectric conversion module
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
JPH1074969A (en) Manufacture of solar cell by surface preparation for accelerating formation of nuclei of microcrystalline silicon on heterogeneous substrate
JPS6249672A (en) Amorphous photovoltaic element
JPH065765B2 (en) Photoelectric conversion device
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPS62256481A (en) Semiconductor device
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JP3291435B2 (en) Photovoltaic element
JPH05102505A (en) Multilayer solar cell
JPH04299576A (en) Photovoltaic element and its manufacture
JPH10144942A (en) Amorphous semiconductor solar cell