JP2011009372A - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
JP2011009372A
JP2011009372A JP2009150108A JP2009150108A JP2011009372A JP 2011009372 A JP2011009372 A JP 2011009372A JP 2009150108 A JP2009150108 A JP 2009150108A JP 2009150108 A JP2009150108 A JP 2009150108A JP 2011009372 A JP2011009372 A JP 2011009372A
Authority
JP
Japan
Prior art keywords
electrode layer
semiconductor substrate
bonding
semiconductor device
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009150108A
Other languages
Japanese (ja)
Other versions
JP5272922B2 (en
Inventor
Akira Ouchi
明 大内
Hideaki Saito
英彰 斎藤
Yusuke Yamada
裕介 山田
Masaki Tago
雅基 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009150108A priority Critical patent/JP5272922B2/en
Publication of JP2011009372A publication Critical patent/JP2011009372A/en
Application granted granted Critical
Publication of JP5272922B2 publication Critical patent/JP5272922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for enhancing the reliability of a semiconductor device having a structure where semiconductor substrates having a fine electrode pitch are connected to each other.SOLUTION: The semiconductor device has a first semiconductor substrate 110 equipped with a first multilayer wiring structure 111, and a second semiconductor substrate 120 equipped with a second multilayer wiring structure 121. The first semiconductor substrate has a first electrode layer 112 for bonding which consists of a part of an electrode layer constituting the first multilayer wiring structure, and the second semiconductor substrate has a second electrode layer 122 for bonding which consists of a part of an electrode layer constituting the second multilayer wiring structure. The first electrode layer for bonding is equipped with a first dishing part 113, and the second electrode layer for bonding is equipped with a second dishing part 123. A bonding member 130 is interposed between the first dishing part and the second dishing part, and the first electrode layer for bonding and the second electrode layer for bonding are bonded by the bonding member.

Description

本発明は、半導体装置及びそれらの製造方法に関し、特に、互いに接続された複数の半導体基板を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device having a plurality of semiconductor substrates connected to each other and a manufacturing method thereof.

電子機器の急速な発達に伴い、半導体装置にはこれまで以上に高機能が求められている。半導体装置の高機能・多機能化に伴い半導体装置の入出力端子数は増加し、また、半導体装置を高速動作させるために配線長の短縮化が求められている。こうした要求を実現するために開発された実装方法の一つにフリップチップ実装がある。フリップチップ実装では、半導体基板の配線面のエリア上に接続パッドを設けることができるため多ピン化に適している。また、ワイヤボンディングやテープオートメイティッドボンディングなどの他の半導体基板の実装方法と比較した場合、引き出し線を必要としないため配線長の短縮化が可能である。   With the rapid development of electronic devices, semiconductor devices are required to have higher functions than ever. As the functions and functions of semiconductor devices increase, the number of input / output terminals of the semiconductor devices increases, and in order to operate the semiconductor devices at high speed, a reduction in wiring length is required. One of the mounting methods developed to meet these requirements is flip chip mounting. Flip chip mounting is suitable for increasing the number of pins because a connection pad can be provided on the area of the wiring surface of the semiconductor substrate. Further, when compared with other semiconductor substrate mounting methods such as wire bonding and tape automated bonding, the length of the wiring can be shortened because no lead wire is required.

フリップチップ実装では、突起電極であるバンプの高さが確保されれば、半導体基板の平坦性に問題がある場合でも、バンプの変形等により高さのバラツキを相殺することができ、良好な接続が得られるという利点がある。しかし、電極ピッチの微細化が進むと、良好な接続を得るために十分な高さのバンプを形成することが困難となるため、微細化には限界があるという問題がある。   In flip chip mounting, if the bump height, which is a protruding electrode, is secured, even if there is a problem with the flatness of the semiconductor substrate, variations in height can be offset by bump deformation, etc. There is an advantage that can be obtained. However, as the electrode pitch becomes finer, it becomes difficult to form a bump having a height high enough to obtain a good connection.

電極ピッチの微細化に対応可能であり、さらに配線を短くした実装構造を有する半導体装置の一例が特許文献1に記載されている。図8に示すように、特許文献1の半導体装置300は互いに接続された第1の半導体基板310と第2の半導体基板320とからなる。第1の半導体基板310と第2の半導体基板320の多層配線表面は化学機械研磨(Chemical Mechanical Polishing、以下、CMPという)により平坦化されている。このCMP工程ではスルーホール内の導電体である導電体スルーホール311、321の表面に皿状に窪んだディッシング部312、322が生じる。この導電体スルーホール311、321の周囲の絶縁体313、323はディッシング部312、322の底部の高さ以下になるまでエッチング等により加工されている。その後に、導電体スルーホール311と導電体スルーホール321を固相接合することによって第1の半導体基板310と第2の半導体基板320が接続された構造となっている。特許文献1の半導体装置では、電極パッドやバンプを形成する必要がないため、微細な電極ピッチを有する半導体基板同士の接続が可能になるとされている。   Patent Document 1 describes an example of a semiconductor device that can cope with miniaturization of electrode pitch and has a mounting structure in which wiring is further shortened. As shown in FIG. 8, the semiconductor device 300 of Patent Document 1 includes a first semiconductor substrate 310 and a second semiconductor substrate 320 that are connected to each other. The multilayer wiring surfaces of the first semiconductor substrate 310 and the second semiconductor substrate 320 are planarized by chemical mechanical polishing (hereinafter referred to as CMP). In this CMP process, dishing portions 312 and 322 that are dish-shaped are formed on the surfaces of the conductor through holes 311 and 321 which are conductors in the through holes. The insulators 313 and 323 around the conductor through holes 311 and 321 are processed by etching or the like until the height of the bottoms of the dishing portions 312 and 322 is reduced. Thereafter, the first semiconductor substrate 310 and the second semiconductor substrate 320 are connected by solid-phase bonding the conductor through hole 311 and the conductor through hole 321. In the semiconductor device of Patent Document 1, since it is not necessary to form electrode pads or bumps, it is supposed that semiconductor substrates having a fine electrode pitch can be connected to each other.

特開2002−026123号公報(段落「0020」〜「0028」、図3)JP 2002-026123 A (paragraphs “0020” to “0028”, FIG. 3)

上述した特許文献1に記載された半導体装置においては、第1および第2の半導体基板のディッシング部同士が直接接続するため、ディッシング部の形状から点接触となりやすい。そのため、微細な電極ピッチを有する半導体基板同士の接続状態が不安定であり、半導体装置の信頼性が低いという問題点があった。   In the semiconductor device described in Patent Document 1 described above, since the dishing portions of the first and second semiconductor substrates are directly connected to each other, the shape of the dishing portion tends to cause point contact. Therefore, there is a problem that the connection state between semiconductor substrates having a fine electrode pitch is unstable and the reliability of the semiconductor device is low.

本発明の目的は、上述した課題である、微細な電極ピッチで形成された半導体基板が互いに接続された構造を有する半導体装置の信頼性が低いという課題を解決する半導体装置及びその製造方法を提供することにある。   An object of the present invention is to provide a semiconductor device that solves the above-described problem that the reliability of a semiconductor device having a structure in which semiconductor substrates formed with a fine electrode pitch are connected to each other is low, and a method for manufacturing the same. There is to do.

本発明の半導体装置は、第1の多層配線構造を備えた第1の半導体基板と、第2の多層配線構造を備えた第2の半導体基板とを有し、第1の半導体基板は第1の多層配線構造を構成する電極層の一部からなる第1の接合用電極層を有し、第2の半導体基板は第2の多層配線構造を構成する電極層の一部からなる第2の接合用電極層を有し、第1の接合用電極層は第1のディッシング部を備え、第2の接合用電極層は第2のディッシング部を備え、第1のディッシング部と第2のディッシング部との間に接合部材が配置され、接合部材を介して第1の接合用電極層と第2の接合用電極層が接合される。   The semiconductor device of the present invention has a first semiconductor substrate having a first multilayer wiring structure and a second semiconductor substrate having a second multilayer wiring structure, and the first semiconductor substrate is a first semiconductor substrate. A first bonding electrode layer comprising a part of the electrode layer constituting the multilayer wiring structure, and the second semiconductor substrate comprising a second electrode comprising a part of the electrode layer constituting the second multilayer wiring structure. A bonding electrode layer, the first bonding electrode layer including a first dishing portion, the second bonding electrode layer including a second dishing portion, the first dishing portion and the second dishing; A joining member is disposed between the first joining electrode layer and the second joining electrode layer via the joining member.

本発明の半導体装置の製造方法は、第1の多層配線構造を備えた第1の半導体基板に、第1の多層配線構造を構成する電極層の一部からなる第1の接合用電極層を形成し、第2の多層配線構造を備えた第2の半導体基板に、第2の多層配線構造を構成する電極層の一部からなる第2の接合用電極層を形成し、第1の接合用電極層に第1のディッシング部を形成し、第2の接合用電極層に第2のディッシング部を形成し、第1のディッシング部または第2のディッシング部の少なくとも一方に接合部材を配置し、接合部材を介して第1の接合用電極層と第2の接合用電極層とを接合する。   According to a method of manufacturing a semiconductor device of the present invention, a first bonding electrode layer formed of a part of an electrode layer constituting a first multilayer wiring structure is provided on a first semiconductor substrate having the first multilayer wiring structure. Forming a second bonding electrode layer formed of a part of the electrode layer constituting the second multilayer wiring structure on the second semiconductor substrate having the second multilayer wiring structure, and forming the first bonding Forming a first dishing portion on the electrode layer for forming, forming a second dishing portion on the second electrode layer for bonding, and disposing a bonding member on at least one of the first dishing portion or the second dishing portion. The first bonding electrode layer and the second bonding electrode layer are bonded via the bonding member.

本発明の半導体装置は、電極ピッチが微細であっても信頼性が高いという効果を有する。   The semiconductor device of the present invention has an effect of high reliability even when the electrode pitch is fine.

本発明の第1の実施形態に係る半導体装置の断面図である。1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る別の半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of another semiconductor device which concerns on the 2nd Embodiment of this invention. 関連する半導体装置の断面図である。It is sectional drawing of a related semiconductor device.

以下に、図面を参照しながら、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る半導体装置100の断面図である。半導体装置100は、第1の多層配線構造111を備えた第1の半導体基板110と、第2の多層配線構造121を備えた第2の半導体基板120とを有する。第1の半導体基板110は第1の多層配線構造111を構成する電極層の一部からなる第1の接合用電極層112を有し、第2の半導体基板120は第2の多層配線構造121を構成する電極層の一部からなる第2の接合用電極層122を有している。第1の接合用電極層112は第1のディッシング部113を備え、第2の接合用電極層122は第2のディッシング部123を備え、第1のディッシング部113と第2のディッシング部123との間に接合部材130が配置され、接合部材130を介して第1の接合用電極層112と第2の接合用電極層122が接合されている。本実施形態によれば、半導体基板の間に接合部材による接続面が形成されるので、電極ピッチが微細であっても信頼性が高い半導体装置を得ることができる。
[First Embodiment]
FIG. 1 is a cross-sectional view of a semiconductor device 100 according to the first embodiment of the present invention. The semiconductor device 100 includes a first semiconductor substrate 110 that includes a first multilayer wiring structure 111 and a second semiconductor substrate 120 that includes a second multilayer wiring structure 121. The first semiconductor substrate 110 has a first bonding electrode layer 112 made of a part of the electrode layers constituting the first multilayer wiring structure 111, and the second semiconductor substrate 120 has a second multilayer wiring structure 121. The second bonding electrode layer 122 is formed of a part of the electrode layer constituting the electrode. The first bonding electrode layer 112 includes a first dishing portion 113, and the second bonding electrode layer 122 includes a second dishing portion 123, and the first dishing portion 113, the second dishing portion 123, The bonding member 130 is disposed between the first bonding electrode layer 112 and the second bonding electrode layer 122 via the bonding member 130. According to this embodiment, since the connection surface by the bonding member is formed between the semiconductor substrates, a highly reliable semiconductor device can be obtained even if the electrode pitch is fine.

ここでディッシングとは、銅(Cu)配線プロセスにおいて、銅(Cu)メッキ後のCMPによる配線部のへこみ(凹部)のことを言う。第1の多層配線構造111および第2の多層配線構造121に用いられる電極の材料は特に限定されず、一般的に使用されている銅(Cu)、アルミニウム(Al)等を用いることができる。   Here, dishing refers to a dent (concave portion) in a wiring portion by CMP after copper (Cu) plating in a copper (Cu) wiring process. The material of the electrodes used for the first multilayer wiring structure 111 and the second multilayer wiring structure 121 is not particularly limited, and commonly used copper (Cu), aluminum (Al), or the like can be used.

接合部材130は、第1のディッシング部113および第2のディッシング部123の全領域にわたって配置され、接合部材130の頂点部が第1の多層配線構造111および第2の多層配線構造121を構成する最表面層よりも突出して配置されることが望ましい。このとき接合部材130は、第1の半導体基板110と第2の半導体基板120を接続する際の加熱加圧により変形し、良好な接続面が形成される。すなわち、接合部材130が溶融せず変形することだけで接続している場合であっても、第1の接合用電極層112あるいは第2の接合用電極層122と同等程度の投影面積を有する一様な接続界面が接合部材130によって形成される。このとき接続強度を確保するため、接続界面における接合部材の少なくとも一部は金属拡散によって接続していることが望ましい。   The joining member 130 is disposed over the entire area of the first dishing portion 113 and the second dishing portion 123, and the apex portion of the joining member 130 constitutes the first multilayer wiring structure 111 and the second multilayer wiring structure 121. It is desirable to be disposed so as to protrude from the outermost surface layer. At this time, the bonding member 130 is deformed by heat and pressure when the first semiconductor substrate 110 and the second semiconductor substrate 120 are connected, and a good connection surface is formed. That is, even when the bonding member 130 is not melted but connected only by deformation, the bonding member 130 has a projected area equivalent to that of the first bonding electrode layer 112 or the second bonding electrode layer 122. Such a connection interface is formed by the bonding member 130. At this time, in order to ensure the connection strength, it is desirable that at least a part of the joining member at the connection interface is connected by metal diffusion.

接合部材130の材料は、導電性を有するものであれば特に制限されないが、第1の接合用電極層112または第2の接合用電極層122よりも、弾性率が低い材料が望ましい。それは第1の半導体基板110と第2の半導体基板120を接続する際の加熱加圧により、接合部材130が選択的に変形することにより、一様な接続面を有する良好な金属拡散接続が得られるからである。例えば、第1の接合用電極層112または第2の接合用電極層122の材料として銅(Cu)を用いた場合には、接合部材130として金(Au)を用いることが出来る。   The material of the bonding member 130 is not particularly limited as long as it has conductivity, but a material having a lower elastic modulus than the first bonding electrode layer 112 or the second bonding electrode layer 122 is desirable. This is because the bonding member 130 is selectively deformed by heat and pressure when the first semiconductor substrate 110 and the second semiconductor substrate 120 are connected to each other, thereby obtaining a good metal diffusion connection having a uniform connection surface. Because it is. For example, when copper (Cu) is used as the material of the first bonding electrode layer 112 or the second bonding electrode layer 122, gold (Au) can be used as the bonding member 130.

また接合部材130の材料として、第1の接合用電極層112または第2の接合用電極層122を構成する材料の融点よりも低い融点を有する材料を用いることとしてもよい。この場合には、第1の半導体基板110と第2の半導体基板120を接続する際に、接合部材130の融点以上の温度とすることによって接合部材を溶融し、融着接続することで良好な接続が可能となる。例えば、第1の接合用電極層112または第2の接合用電極層122の材料として銅(Cu)を用いた場合には、接合部材130として半田を用いることができる。半田材料の例としては、Sn/Pb、Sn/Ag、Sn/Cu、Sn/Zn、Sn/Bi、およびこれらの材料に特定の添加元素をさらに加えた材料等があり、これらを適宜用いることができる。   Further, as the material of the bonding member 130, a material having a melting point lower than that of the material forming the first bonding electrode layer 112 or the second bonding electrode layer 122 may be used. In this case, when the first semiconductor substrate 110 and the second semiconductor substrate 120 are connected, the bonding member is melted by being set to a temperature equal to or higher than the melting point of the bonding member 130, and it is preferable that the connection is performed by fusion bonding. Connection is possible. For example, when copper (Cu) is used as the material of the first bonding electrode layer 112 or the second bonding electrode layer 122, solder can be used as the bonding member 130. Examples of solder materials include Sn / Pb, Sn / Ag, Sn / Cu, Sn / Zn, Sn / Bi, and materials obtained by further adding specific additive elements to these materials. Use these appropriately. Can do.

また、本実施形態によれば、第1の接合用電極層112および第2の接合用電極層122には、第1のディッシング部113および第2のディッシング部123がそれぞれ形成されているので、第1の半導体基板110と第2の半導体基板120の接続を生産性よく行うことができる。すなわち、接合用電極層が平坦な場合には、半導体基板の接続時の荷重が過大であると、変形あるいは溶融した接合部材が接合面よりはみ出しやすく、電極間でショートが生じる等の問題を引き起こす可能性がある。それに対して本実施形態によれば、ディッシング形状の効果によりディッシング部のくぼみに接合部材が残りやすく、接合部材の供給量の調整が容易になる。したがって、半導体基板の良好な接続を実現するための条件範囲を拡大することができ、半導体基板を接続する際の生産性を向上させることができる。   In addition, according to the present embodiment, the first dishing portion 113 and the second dishing portion 123 are formed in the first joining electrode layer 112 and the second joining electrode layer 122, respectively. The first semiconductor substrate 110 and the second semiconductor substrate 120 can be connected with high productivity. That is, when the bonding electrode layer is flat, if the load at the time of connecting the semiconductor substrate is excessive, the deformed or melted bonding member easily protrudes from the bonding surface, causing problems such as short-circuiting between the electrodes. there is a possibility. On the other hand, according to the present embodiment, the joining member tends to remain in the recess of the dishing portion due to the effect of the dishing shape, and the supply amount of the joining member can be easily adjusted. Therefore, the range of conditions for realizing good connection of the semiconductor substrate can be expanded, and productivity when connecting the semiconductor substrate can be improved.

第1のディッシング部113および第2のディッシング部123に接合部材を配置するために、例えばリフトオフ法を用いることができる。ここでは、接合部材として金(Au)を形成する場合について説明する。まず、リフトオフレジスト(Lift−Off Resist:LOR)をスピンコート法等により第1の半導体基板110または第2の半導体基板120の表面に塗布する。さらに、ポジ型電子ビームレジストであるPMMA(Poly methyl methacrylate)レジストを塗布する。レジスト塗布後にベーキングを行い、続いて電子ビーム露光法を用いてPMMAレジストによる電極パターンを形成する。PMMAの現像にはメチルイソブチルケトン(Methyl Isobutyl Ketone:MIBK)とイソプロピルアルコール(Isopropyl Alcohol:IPA)の混合溶液を使用し、パターニングされたPMMAをマスクにLORをエッチングする。なお、LORレジストを除去した場所に残渣が残る場合があるが、この残渣は接合部材の接合用電極層への密着性を下げる原因となり、また、電気抵抗を上げる原因となるため取り除く必要がある。レジスト残渣の除去には酸素プラズマ中でのアッシング処理を用いることができる。   In order to dispose the joining members in the first dishing portion 113 and the second dishing portion 123, for example, a lift-off method can be used. Here, a case where gold (Au) is formed as a joining member will be described. First, a lift-off resist (LOR) is applied to the surface of the first semiconductor substrate 110 or the second semiconductor substrate 120 by a spin coating method or the like. Further, a PMMA (Poly methyl methacrylate) resist, which is a positive electron beam resist, is applied. Baking is performed after the resist application, and then an electrode pattern is formed by a PMMA resist using an electron beam exposure method. For the development of PMMA, a mixed solution of methyl isobutyl ketone (MIBK) and isopropyl alcohol (Isopropyl Alcohol: IPA) is used, and the LOR is etched using the patterned PMMA as a mask. In addition, although a residue may remain in the place where the LOR resist has been removed, this residue causes a decrease in the adhesion of the bonding member to the bonding electrode layer and also causes an increase in electrical resistance. . An ashing process in oxygen plasma can be used to remove the resist residue.

次に電子ビーム蒸着法により金(Au)を堆積させる。接合用電極層との密着性を確保するため、金(Au)を蒸着する前にチタンを堆積させることとしてもよい。電子ビーム蒸着の後、アセトンへ浸してレジストを溶解させ、レジスト上に堆積した金をリフトオフさせる。最後に、エタノールに浸してアセトンを除去し、水洗処理を施すことによりリフトオフ工程が終了する。本実施形態では電子ビーム蒸着法を用いることとしたが、これに限らず、スパッタ法またはパルスレーザー蒸着法などの堆積方法を用いることとしてもよい。   Next, gold (Au) is deposited by electron beam evaporation. In order to secure adhesion with the bonding electrode layer, titanium may be deposited before vapor deposition of gold (Au). After electron beam evaporation, the resist is dissolved by immersing in acetone, and the gold deposited on the resist is lifted off. Finally, the lift-off process is completed by immersing in ethanol to remove acetone and performing a water washing treatment. In this embodiment, the electron beam evaporation method is used. However, the present invention is not limited to this, and a deposition method such as a sputtering method or a pulsed laser evaporation method may be used.

以上述べたように、本実施形態による半導体装置においては、半導体基板の多層配線構造を構成する電極層の一部からなる接合用電極層に接合部材が配置されており、この接合部材を介して第1の半導体基板と第2の半導体基板が接合される。そのため、電極パッドやバンプを形成する必要がないので、微細な電極ピッチを有する半導体基板同士の接合が可能となる。   As described above, in the semiconductor device according to the present embodiment, the bonding member is disposed on the bonding electrode layer formed of a part of the electrode layer constituting the multilayer wiring structure of the semiconductor substrate. The first semiconductor substrate and the second semiconductor substrate are bonded. Therefore, it is not necessary to form electrode pads or bumps, so that semiconductor substrates having a fine electrode pitch can be joined together.

また、本実施形態による半導体装置においては、多層配線構造の表面平坦化工程であるCMP工程において発生した接合用電極層のディッシング部に接合部材が配置される。そして、接合部材として接合用電極層を構成する材料よりも低い弾性率または低い融点を有する材料を好適に用いることができる。この場合には、半導体基板を接合する際に、接合部材が容易に変形することにより良好な接続面が得られるので、半導体基板を接続する際の生産性を向上させることができる。   In the semiconductor device according to the present embodiment, the bonding member is disposed in the dishing portion of the bonding electrode layer generated in the CMP process which is the surface planarization process of the multilayer wiring structure. A material having a lower elastic modulus or lower melting point than the material constituting the bonding electrode layer can be suitably used as the bonding member. In this case, when the semiconductor substrates are bonded, the bonding member is easily deformed, so that a good connection surface can be obtained. Therefore, productivity when the semiconductor substrates are connected can be improved.

さらに、本実施形態による半導体装置においては、ディッシング部を有するので、ディッシング形状の効果によりディッシング部のくぼみに接合部材が残留しやすく、接合部材の供給量の調整を容易に行うことができる。また、より好ましくは、接合部材がディシング部の全領域にわたって配置され、接合部材の頂点部が多層配線構造を構成する最表面層よりも突出した構造とすることができる。この場合には、半導体基板同士を接合するための荷重が接合部材に確実に印加され、接合部材の高さのバラツキは接合部材の変形によって吸収される。そのため、接合部材の全領域にわたって良好な接続状態が得られるので、信頼性の高い接続構造を実現することができる。   Furthermore, since the semiconductor device according to the present embodiment has the dishing portion, the joining member tends to remain in the recess of the dishing portion due to the effect of the dishing shape, and the supply amount of the joining member can be easily adjusted. More preferably, the joining member is disposed over the entire area of the dishing portion, and the apex portion of the joining member can protrude from the outermost surface layer constituting the multilayer wiring structure. In this case, a load for joining the semiconductor substrates is reliably applied to the joining member, and the variation in the height of the joining member is absorbed by the deformation of the joining member. Therefore, since a good connection state can be obtained over the entire region of the joining member, a highly reliable connection structure can be realized.

これに対して特許文献1に記載された関連する半導体装置300には、以下の問題があった。すなわち、ディッシング部312、322の底部まで確実に接続させる場合には、半導体基板310、320の接合時の荷重等により、ディッシング形状を変形させる必要がある。そのため、導電体スルーホール311、321および接地配線層314、324を構成する材料には、低電気抵抗が要求されるのみならず低弾性である必要があり、材料の選定が困難であった。また、高荷重を付加できる実装装置等が必要となり、設備に多大な費用がかかるという問題があった。   On the other hand, the related semiconductor device 300 described in Patent Document 1 has the following problems. That is, in order to securely connect the bottoms of the dishing portions 312 and 322, it is necessary to change the dishing shape due to a load at the time of joining the semiconductor substrates 310 and 320. For this reason, the material constituting the conductor through-holes 311 and 321 and the ground wiring layers 314 and 324 is required not only to have low electrical resistance but also to have low elasticity, and it is difficult to select the material. In addition, a mounting device or the like that can apply a high load is required, and there is a problem that the equipment is expensive.

さらに特許文献1に記載された関連する半導体装置では、接地配線層314、324も同時に接続することにより接続強度を確保する構成としているため、接続する箇所の面積が増大し、実装時に必要な荷重が増加することから、生産性がさらに悪化するという問題があった。   Further, in the related semiconductor device described in Patent Document 1, since the connection strength is ensured by connecting the ground wiring layers 314 and 324 at the same time, the area of the connection portion is increased, and the load necessary for mounting is increased. As a result, the productivity is further deteriorated.

次に、本実施形態による半導体装置100の製造方法について、図2を用いてさらに詳細に説明する。   Next, the method for fabricating the semiconductor device 100 according to the present embodiment will be described in further detail with reference to FIG.

図2(a)に示すように、まず、第2のディッシング部123に接合部材130が配置された第2の半導体基板120を実装装置の実装ステージ(図示せず)に吸着等により固定する。このとき第2の半導体基板120の裏面は実装ステージに接しており、第2の多層配線構造121の表面は上面方向を向いている。なお、この実装ステージは吸着固定機能、平面(x−y)駆動機能、加熱機能、接合面高さ調整機能等を有していることが望ましい。次に、第1の半導体基板110を実装装置の実装ヘッド(図示せず)に吸着固定する。ここで第1の半導体基板110の第1のディッシング部113にも接合部材130を配置した。このとき実装ヘッドは第1の半導体基板110の裏面に接しており、第1の多層配線構造111の表面は下面方向を向いている。なお、この実装ヘッドはチップ吸着固定機能、θ駆動機能、加熱機能、接合高さ調整機能等を有していることが望ましい。   As shown in FIG. 2A, first, the second semiconductor substrate 120 in which the bonding member 130 is disposed in the second dishing portion 123 is fixed to a mounting stage (not shown) of the mounting apparatus by suction or the like. At this time, the back surface of the second semiconductor substrate 120 is in contact with the mounting stage, and the surface of the second multilayer wiring structure 121 faces the top surface direction. The mounting stage preferably has a suction fixing function, a plane (xy) driving function, a heating function, a bonding surface height adjusting function, and the like. Next, the first semiconductor substrate 110 is sucked and fixed to a mounting head (not shown) of the mounting apparatus. Here, the bonding member 130 is also disposed in the first dishing portion 113 of the first semiconductor substrate 110. At this time, the mounting head is in contact with the back surface of the first semiconductor substrate 110, and the front surface of the first multilayer wiring structure 111 faces the bottom surface. The mounting head preferably has a chip suction fixing function, a θ driving function, a heating function, a bonding height adjusting function, and the like.

次に、第1の半導体基板110と第2の半導体基板120の位置合わせを行う。位置合わせ工程では、まず、第1および第2の半導体基板の位置合わせに必要なアライメントマークの撮像を行う。アライメントマークは配線作製工程において作製することが望ましく、一般的には半導体基板の対角線上の角部付近の2箇所に設けられる。続いて、認識した2箇所のアライメントマークの座標データを用いて、第1の半導体基板110と第2の半導体基板120の位置合わせを行う。   Next, the first semiconductor substrate 110 and the second semiconductor substrate 120 are aligned. In the alignment step, first, an alignment mark necessary for alignment of the first and second semiconductor substrates is imaged. The alignment marks are preferably produced in the wiring production process, and are generally provided at two locations near the corners on the diagonal line of the semiconductor substrate. Subsequently, the first semiconductor substrate 110 and the second semiconductor substrate 120 are aligned using the coordinate data of the two recognized alignment marks.

次に、第1の半導体基板110を第2の半導体基板120に搭載する(図2(a)の矢印)。その後、半導体基板を加熱加圧することにより接合部材130を変形または溶融させ、第1の半導体基板110と第2の半導体基板120を電気的に接続する。接合部材130として金(Au)を用いた場合、実装時の加熱加圧による金(Au)の拡散接合によって電気的接続が可能となる。また、接合部材130として半田を用いた場合、半田が融着することにより電気的接続が可能となる。以上の工程により、図2(b)に示す本実施形態による半導体装置100が完成する。なお本実施形態では、第1の半導体基板110の第1のディッシング部113および第2の半導体基板120の第2のディッシング部123の両方に接合部材を配置することとしたが、これに限らず、第1のディッシング部または第2のディッシング部の少なくとも一方に接合部材が配置されていればよい。   Next, the first semiconductor substrate 110 is mounted on the second semiconductor substrate 120 (arrow in FIG. 2A). Thereafter, the bonding member 130 is deformed or melted by heating and pressurizing the semiconductor substrate, and the first semiconductor substrate 110 and the second semiconductor substrate 120 are electrically connected. When gold (Au) is used as the bonding member 130, electrical connection is possible by diffusion bonding of gold (Au) by heat and pressure during mounting. In addition, when solder is used as the joining member 130, the solder can be fused to make electrical connection. Through the above steps, the semiconductor device 100 according to the present embodiment shown in FIG. 2B is completed. In the present embodiment, the bonding member is disposed in both the first dishing portion 113 of the first semiconductor substrate 110 and the second dishing portion 123 of the second semiconductor substrate 120. However, the present invention is not limited to this. The joining member only needs to be disposed in at least one of the first dishing portion and the second dishing portion.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。図3は、本実施形態による半導体装置200の断面図である。本実施形態では図3に示すように、第1の半導体基板210と第2の半導体基板220の間の領域に封止材料として絶縁樹脂240が配置されており、第1の半導体基板210と第2の半導体基板220との間を封止した構成となっている。その他の構成は、第1の実施形態による半導体装置100と同様である。この絶縁樹脂240によって、第1の多層配線構造211を構成する最表面層と第2の多層配線構造221を構成する最表面層が接着される。さらに、第1の半導体基板210と第2の半導体基板220を電気的に接続している接合部材230の周囲を、絶縁樹脂240が包み込んで保護することとなるため、第1の半導体基板210と第2の半導体基板220との接続の信頼性がさらに向上する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 3 is a sectional view of the semiconductor device 200 according to the present embodiment. In the present embodiment, as shown in FIG. 3, an insulating resin 240 is disposed as a sealing material in a region between the first semiconductor substrate 210 and the second semiconductor substrate 220. In this configuration, the space between the two semiconductor substrates 220 is sealed. Other configurations are the same as those of the semiconductor device 100 according to the first embodiment. By this insulating resin 240, the outermost surface layer constituting the first multilayer wiring structure 211 and the outermost surface layer constituting the second multilayer wiring structure 221 are bonded. Further, since the insulating resin 240 wraps and protects the periphery of the bonding member 230 that electrically connects the first semiconductor substrate 210 and the second semiconductor substrate 220, The reliability of connection with the second semiconductor substrate 220 is further improved.

絶縁樹脂240としては、例えば、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂等を用いることができる。これに限らず、これらの2種以上を組み合わせて用いることとしてもよいし、また、絶縁樹脂の熱膨張係数や弾性率等の物性値を調整するためにシリカ等の無機充填剤等を混合したものを用いてもよい。   As the insulating resin 240, for example, an epoxy resin, a polyimide resin, a silicone resin, or the like can be used. However, the present invention is not limited to this, and two or more of these may be used in combination. In addition, an inorganic filler such as silica may be mixed in order to adjust physical properties such as the thermal expansion coefficient and elastic modulus of the insulating resin. A thing may be used.

次に、本実施形態による半導体装置200の製造方法について説明する。樹脂封止の工程には、第1の半導体基板210と第2の半導体基板220の間に毛細管現象を利用して液状の樹脂を充填し、充填後に樹脂を硬化させる工程からなる一般的な方法を用いることができる。この場合、充填時に重要となる樹脂の粘度物性等を考慮すると、エポキシ樹脂を好適に用いることができる。また、上記方法で樹脂封止を行う場合、樹脂を充填する前に多層配線構造を構成する最表面層の樹脂充填領域をプラズマ処理等により改質し、樹脂に対する濡れ性を高めておくことにより、樹脂の充填性を向上させることができる。また、真空中で樹脂を充填した後に、大気圧を利用して樹脂充填を促進させる方法や、加圧しながら樹脂硬化を行うことで樹脂の充填性を向上させることとしてもよい。樹脂を充填させた後に加熱処理を施し、樹脂を硬化させることにより本実施形態による半導体装置200が完成する。エポキシ樹脂を用いる場合には、約100℃〜約200℃程度の加熱処理により樹脂を硬化させることができる。   Next, the method for manufacturing the semiconductor device 200 according to the present embodiment will be explained. The resin sealing step is a general method including a step of filling a liquid resin between the first semiconductor substrate 210 and the second semiconductor substrate 220 using a capillary phenomenon and curing the resin after the filling. Can be used. In this case, an epoxy resin can be suitably used in consideration of the viscosity physical property of the resin, which is important at the time of filling. In addition, when resin sealing is performed by the above method, the resin filling region of the outermost surface layer constituting the multilayer wiring structure is modified by plasma treatment or the like before filling the resin, thereby increasing the wettability to the resin. The filling property of the resin can be improved. Alternatively, after filling the resin in a vacuum, the filling of the resin may be improved by a method of promoting the filling of the resin using atmospheric pressure or by curing the resin while applying pressure. The semiconductor device 200 according to the present embodiment is completed by applying a heat treatment after filling the resin and curing the resin. When an epoxy resin is used, the resin can be cured by a heat treatment at about 100 ° C. to about 200 ° C.

第1の半導体基板210と第2の半導体基板220の間隔が狭い場合は、樹脂の流動抵抗が高くなるので、毛細管現象による絶縁樹脂の充填が困難となる。この場合には図4に示すように、接合部材230が配置された第1の半導体基板210の最表面層に絶縁樹脂240をあらかじめ形成し、接合部材230による接続と絶縁樹脂240による封止を同時に行うことが望ましい。絶縁樹脂240は第1の半導体基板210または第2の半導体基板220のいずれの表面に形成してもよく、第1の半導体基板および第2の半導体基板の双方に形成することとしてもよい。絶縁樹脂240の形成には、フィルム上に加工した絶縁樹脂をラミネータによりチップ表面に供給する方法、または液状の樹脂をスピンコート法あるいは印刷法により供給し仮硬化する方法、などを用いることができる。   When the distance between the first semiconductor substrate 210 and the second semiconductor substrate 220 is narrow, the flow resistance of the resin becomes high, so that it is difficult to fill the insulating resin by capillary action. In this case, as shown in FIG. 4, an insulating resin 240 is formed in advance on the outermost surface layer of the first semiconductor substrate 210 on which the bonding member 230 is disposed, and the connection by the bonding member 230 and the sealing by the insulating resin 240 are performed. It is desirable to do it simultaneously. The insulating resin 240 may be formed on any surface of the first semiconductor substrate 210 or the second semiconductor substrate 220, or may be formed on both the first semiconductor substrate and the second semiconductor substrate. For the formation of the insulating resin 240, a method of supplying an insulating resin processed on the film to the chip surface by a laminator, a method of supplying a liquid resin by a spin coating method or a printing method, and temporarily curing the resin can be used. .

絶縁樹脂240を形成した後に、図5に示すように、供給時の余剰な樹脂を除去し接合部材230の表面を露出させることとしてもよい。これにより、第1の半導体基板と第2の半導体基板との電気的な接続性の向上を図ることができる。余剰な樹脂の除去および接合部材表面の露出には、例えば、精密加工が可能なバイトを使用した機械加工法を用いることができる。   After forming the insulating resin 240, as shown in FIG. 5, excess resin at the time of supply may be removed to expose the surface of the bonding member 230. Thereby, the electrical connectivity between the first semiconductor substrate and the second semiconductor substrate can be improved. For example, a machining method using a tool capable of precision machining can be used to remove excess resin and expose the surface of the joining member.

図6に、接合部材230の表面を露出させた場合の本実施形態による半導体装置200の製造方法を示す。図6(a)は第1の半導体基板210と第2の半導体基板220の双方に絶縁樹脂240を形成し、接合部材230を露出させた場合である。絶縁樹脂240を形成する工程と接合部材230を露出させる工程以外は第1の実施形態による製造方法(図2)と同様である。第1の半導体基板210と第2の半導体基板220を接合した後に絶縁樹脂240を約100℃〜約200℃程度で硬化させることにより、本実施形態による半導体装置200が完成する(図6(b))。   FIG. 6 shows a method for manufacturing the semiconductor device 200 according to the present embodiment when the surface of the bonding member 230 is exposed. FIG. 6A shows a case where the insulating resin 240 is formed on both the first semiconductor substrate 210 and the second semiconductor substrate 220 and the bonding member 230 is exposed. Except for the step of forming the insulating resin 240 and the step of exposing the bonding member 230, the manufacturing method (FIG. 2) according to the first embodiment is the same. After bonding the first semiconductor substrate 210 and the second semiconductor substrate 220, the insulating resin 240 is cured at about 100 ° C. to about 200 ° C., thereby completing the semiconductor device 200 according to the present embodiment (FIG. 6B). )).

また、図7に示すように、接合部材の表面を露出することなく第1の半導体基板210と第2の半導体基板220を接続することとしてもよい。図7(a)では、第1の半導体基板210の表面にのみ絶縁樹脂240を形成する場合を示したが、これに限らず、第2の半導体基板220の表面にのみ絶縁樹脂240を形成してもよいし、第1の半導体基板210と第2の半導体基板220の双方に絶縁樹脂240を形成することとしてもよい。ここで、第1の半導体基板210および第2の半導体基板220に形成された接合部材230のいずれも、それぞれの半導体基板の表面より突出した凸形状に形成される。これにより、凸形状同士の接合部材230が接触した後に変形するので、絶縁樹脂240が接合部材230の間に噛みこむことがなく、良好な電気的接続が実現される(図7(b))。この場合、接合部材230による電気的接続と絶縁樹脂240による封止が同時に行われる。そのため接合部材による電気的接続が、融着による接続または金属拡散による接続ではなく、単なる接触のみによる場合であっても、半導体基板の搭載時における加圧および絶縁樹脂の硬化収縮時における応力により、信頼性の高い電気的接続を確保することができる。   Further, as shown in FIG. 7, the first semiconductor substrate 210 and the second semiconductor substrate 220 may be connected without exposing the surface of the bonding member. Although FIG. 7A shows the case where the insulating resin 240 is formed only on the surface of the first semiconductor substrate 210, the present invention is not limited to this, and the insulating resin 240 is formed only on the surface of the second semiconductor substrate 220. Alternatively, the insulating resin 240 may be formed on both the first semiconductor substrate 210 and the second semiconductor substrate 220. Here, each of the bonding members 230 formed on the first semiconductor substrate 210 and the second semiconductor substrate 220 is formed in a convex shape protruding from the surface of each semiconductor substrate. Thereby, since it deform | transforms after the joining members 230 of convex shape contact, the insulating resin 240 does not bite between the joining members 230, and favorable electrical connection is implement | achieved (FIG.7 (b)). . In this case, electrical connection by the bonding member 230 and sealing by the insulating resin 240 are performed simultaneously. Therefore, even if the electrical connection by the joining member is not a connection by fusion or a connection by metal diffusion, but only by contact, due to pressure at the time of mounting the semiconductor substrate and stress at the time of curing shrinkage of the insulating resin, A highly reliable electrical connection can be ensured.

以上述べたように、本実施形態による半導体装置およびその製造方法によれば、第1の半導体基板と第2の半導体基板を接合する前に、あらかじめ半導体基板表面に絶縁樹脂が供給され、接合部材による電気的接続と半導体基板間の樹脂封止が同時に行われる。そのため、接合部材からなる電気的接続部分が封止樹脂により保護されるので、半導体基板間の接続の信頼性が向上した半導体装置が得られる。また、接合部材の形状により絶縁樹脂が電極接続部へ噛み込む現象を抑制することができ、しかも低荷重で容易に半導体基板を接続することが可能となる。そのため、互いに接続された複数の半導体基板を有する半導体装置において、生産性及び信頼性の高い接続構造を形成することができる。   As described above, according to the semiconductor device and the manufacturing method thereof according to the present embodiment, the insulating resin is supplied to the surface of the semiconductor substrate in advance before the first semiconductor substrate and the second semiconductor substrate are bonded, and the bonding member The electrical connection by and the resin sealing between the semiconductor substrates are performed simultaneously. Therefore, since the electrical connection portion made of the joining member is protected by the sealing resin, a semiconductor device having improved connection reliability between the semiconductor substrates can be obtained. Further, the phenomenon that the insulating resin bites into the electrode connection portion can be suppressed by the shape of the joining member, and the semiconductor substrate can be easily connected with a low load. Therefore, in a semiconductor device having a plurality of semiconductor substrates connected to each other, it is possible to form a connection structure with high productivity and reliability.

これに対して特許文献1に記載された関連する半導体装置には、以下の問題があった。すなわち、半導体基板が微細な電極構造を有する場合、半導体基板の接続部を樹脂封止することによって接続強度を確保することが困難であった。これは、半導体基板間の隙間が狭くなるため樹脂の流動抵抗が大きくなり、毛細管現象により半導体基板間の隙間に樹脂を充填することが困難になるからである。一方、接合するそれぞれの半導体基板の表面にあらかじめ樹脂を供給し、半導体基板同士の接続と同時に樹脂封止することとしても、ディッシング部のくぼみに樹脂が残りやすいため、接続部に樹脂が噛み込み、良好な接続ができないという問題があった。   On the other hand, the related semiconductor device described in Patent Document 1 has the following problems. That is, when the semiconductor substrate has a fine electrode structure, it is difficult to ensure the connection strength by resin-sealing the connection portion of the semiconductor substrate. This is because the flow resistance of the resin increases because the gap between the semiconductor substrates becomes narrow, and it becomes difficult to fill the gap between the semiconductor substrates due to the capillary phenomenon. On the other hand, even if resin is supplied in advance to the surface of each semiconductor substrate to be joined and resin sealing is performed simultaneously with the connection between the semiconductor substrates, the resin tends to remain in the dishing recess, so the resin bites into the connection part. There was a problem that a good connection could not be made.

本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.

100、200 半導体装置
110、210、310 第1の半導体基板
111、211 第1の多層配線構造
112 第1の接合用電極層
113 第1のディッシング部
120、220、320 第2の半導体基板
121、221 第2の多層配線構造
122 第2の接合用電極層
123 第2のディッシング部
130、230 接合部材
240 絶縁樹脂
300 関連する半導体装置
311、321 導電体スルーホール
312、322 ディッシング部
313、323 絶縁体
100, 200 Semiconductor device 110, 210, 310 First semiconductor substrate 111, 211 First multilayer wiring structure 112 First bonding electrode layer 113 First dishing portion 120, 220, 320 Second semiconductor substrate 121, 221 Second multilayer wiring structure 122 Second bonding electrode layer 123 Second dishing portion 130, 230 Bonding member 240 Insulating resin 300 Related semiconductor device 311, 321 Conductor through hole 312, 322 Dishing portion 313, 323 Insulation body

Claims (9)

第1の多層配線構造を備えた第1の半導体基板と、第2の多層配線構造を備えた第2の半導体基板とを有し、
前記第1の半導体基板は前記第1の多層配線構造を構成する電極層の一部からなる第1の接合用電極層を有し、前記第2の半導体基板は前記第2の多層配線構造を構成する電極層の一部からなる第2の接合用電極層を有し、
前記第1の接合用電極層は第1のディッシング部を備え、前記第2の接合用電極層は第2のディッシング部を備え、
前記第1のディッシング部と前記第2のディッシング部との間に接合部材が配置され、
前記接合部材を介して前記第1の接合用電極層と前記第2の接合用電極層が接合された半導体装置。
A first semiconductor substrate having a first multilayer wiring structure and a second semiconductor substrate having a second multilayer wiring structure;
The first semiconductor substrate has a first bonding electrode layer formed of a part of an electrode layer constituting the first multilayer wiring structure, and the second semiconductor substrate has the second multilayer wiring structure. A second joining electrode layer comprising a part of the constituting electrode layer;
The first bonding electrode layer includes a first dishing portion; the second bonding electrode layer includes a second dishing portion;
A joining member is disposed between the first dishing portion and the second dishing portion;
A semiconductor device in which the first bonding electrode layer and the second bonding electrode layer are bonded via the bonding member.
前記接合部材は前記第1のディッシング部または前記第2のディッシング部の全領域に配置され、前記接合部材の頂点部が前記第1の多層配線構造または前記第2の多層配線構造を構成する最表面層よりも突出していることを特徴とする請求項1に記載の半導体装置。 The joining member is disposed in the entire region of the first dishing portion or the second dishing portion, and the apex portion of the joining member constitutes the first multilayer wiring structure or the second multilayer wiring structure. The semiconductor device according to claim 1, wherein the semiconductor device protrudes from the surface layer. 前記第1の半導体基板と前記第2の半導体基板の間の少なくとも一部の領域に封止材料を有することを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a sealing material is included in at least a part of a region between the first semiconductor substrate and the second semiconductor substrate. 前記接合部材の弾性率は、前記第1の接合用電極層または前記第2の接合用電極層の弾性率よりも小さいことを特徴とする請求項1から3のいずれか一項に記載の半導体装置。 4. The semiconductor according to claim 1, wherein an elastic modulus of the bonding member is smaller than an elastic modulus of the first bonding electrode layer or the second bonding electrode layer. 5. apparatus. 前記接合部材の融点は、前記第1の接合用電極層または前記第2の接合用電極層の融点よりも低いことを特徴とする請求項1から4のいずれか一項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein a melting point of the bonding member is lower than a melting point of the first bonding electrode layer or the second bonding electrode layer. 6. 前記接合部材は、金(Au)またはスズ(Sn)を含み、前記第1の接合用電極層または前記第2の接合用電極層は銅(Cu)を含むことを特徴とする請求項1から5のいずれか一項に記載の半導体装置。 The bonding member includes gold (Au) or tin (Sn), and the first bonding electrode layer or the second bonding electrode layer includes copper (Cu). The semiconductor device according to any one of 5. 第1の多層配線構造を備えた第1の半導体基板に、前記第1の多層配線構造を構成する電極層の一部からなる第1の接合用電極層を形成し、
第2の多層配線構造を備えた第2の半導体基板に、前記第2の多層配線構造を構成する電極層の一部からなる第2の接合用電極層を形成し、
前記第1の接合用電極層に第1のディッシング部を形成し、
前記第2の接合用電極層に第2のディッシング部を形成し、
前記第1のディッシング部または前記第2のディッシング部の少なくとも一方に接合部材を配置し、
前記接合部材を介して前記第1の接合用電極層と前記第2の接合用電極層とを接合する
ことを特徴とする半導体装置の製造方法。
Forming a first bonding electrode layer comprising a part of an electrode layer constituting the first multilayer wiring structure on a first semiconductor substrate having the first multilayer wiring structure;
Forming a second bonding electrode layer comprising a part of an electrode layer constituting the second multilayer wiring structure on a second semiconductor substrate having the second multilayer wiring structure;
Forming a first dishing portion on the first bonding electrode layer;
Forming a second dishing portion on the second bonding electrode layer;
Disposing a joining member on at least one of the first dishing portion or the second dishing portion;
A method for manufacturing a semiconductor device, comprising: bonding the first bonding electrode layer and the second bonding electrode layer through the bonding member.
前記第1の半導体基板または前記第2の半導体基板の少なくとも一方の表面に封止材料を形成し、
前記接合部材を介して前記第1の接合用電極層と前記第2の接合用電極層とを接合した後に、前記封止材料を硬化する
ことを特徴とする請求項7に記載の半導体装置の製造方法。
Forming a sealing material on at least one surface of the first semiconductor substrate or the second semiconductor substrate;
The semiconductor device according to claim 7, wherein the sealing material is cured after the first bonding electrode layer and the second bonding electrode layer are bonded via the bonding member. Production method.
前記第1の半導体基板または前記第2の半導体基板の少なくとも一方の表面に封止材料を形成し、
前記接合部材の少なくとも一部を前記封止材料から露出させ、
前記接合部材を介して前記第1の接合用電極層と前記第2の接合用電極層とを接合した後に、前記封止材料を硬化する
ことを特徴とする請求項7に記載の半導体装置の製造方法。
Forming a sealing material on at least one surface of the first semiconductor substrate or the second semiconductor substrate;
Exposing at least a portion of the joining member from the sealing material;
The semiconductor device according to claim 7, wherein the sealing material is cured after the first bonding electrode layer and the second bonding electrode layer are bonded via the bonding member. Production method.
JP2009150108A 2009-06-24 2009-06-24 Semiconductor device and manufacturing method thereof Active JP5272922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150108A JP5272922B2 (en) 2009-06-24 2009-06-24 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150108A JP5272922B2 (en) 2009-06-24 2009-06-24 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011009372A true JP2011009372A (en) 2011-01-13
JP5272922B2 JP5272922B2 (en) 2013-08-28

Family

ID=43565701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150108A Active JP5272922B2 (en) 2009-06-24 2009-06-24 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5272922B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009489A (en) * 2009-06-26 2011-01-13 Sony Corp Method for manufacturing semiconductor device, semiconductor device, and solid-state image pickup device
CN103426849A (en) * 2012-05-18 2013-12-04 台湾积体电路制造股份有限公司 Three-dimensional chip stack and method of forming the same
CN104425437A (en) * 2013-09-03 2015-03-18 台湾积体电路制造股份有限公司 Three-dimensional chip stack and method of forming the same
JP2015099885A (en) * 2013-11-20 2015-05-28 ローム株式会社 Semiconductor device and method of manufacturing semiconductor device
US9704915B2 (en) 2010-07-09 2017-07-11 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
CN110164786A (en) * 2019-06-17 2019-08-23 德淮半导体有限公司 The method and semiconductor structure of thermal expansion after improving metal bonding
WO2023079751A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Semiconductor chip stack, electronic component device, and production method for semiconductor chip stack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431442B2 (en) * 2015-03-17 2018-11-28 東芝メモリ株式会社 Semiconductor device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162240A (en) * 1995-12-13 1997-06-20 Hitachi Ltd Semiconductor device
JPH10150254A (en) * 1996-11-20 1998-06-02 Kyocera Corp Connection structure between semiconductor device and circuit board
JP2001210779A (en) * 2000-01-24 2001-08-03 Rohm Co Ltd Semiconductor chip and method of manufacturing semiconductor chip
JP2002026123A (en) * 2000-07-05 2002-01-25 Tadatomo Suga Semiconductor device and method of manufacturing the same
JP2004014706A (en) * 2002-06-05 2004-01-15 Tokyo Seimitsu Co Ltd Method and apparatus for working substrate
JP2010114165A (en) * 2008-11-04 2010-05-20 Nikon Corp Semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device
JP2010287802A (en) * 2009-06-13 2010-12-24 Philtech Inc 300 mm WAFER STUCK WITH THROUGH-ELECTRODE AND SEMICONDUCTOR DEVICE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162240A (en) * 1995-12-13 1997-06-20 Hitachi Ltd Semiconductor device
JPH10150254A (en) * 1996-11-20 1998-06-02 Kyocera Corp Connection structure between semiconductor device and circuit board
JP2001210779A (en) * 2000-01-24 2001-08-03 Rohm Co Ltd Semiconductor chip and method of manufacturing semiconductor chip
JP2002026123A (en) * 2000-07-05 2002-01-25 Tadatomo Suga Semiconductor device and method of manufacturing the same
JP2004014706A (en) * 2002-06-05 2004-01-15 Tokyo Seimitsu Co Ltd Method and apparatus for working substrate
JP2010114165A (en) * 2008-11-04 2010-05-20 Nikon Corp Semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device
JP2010287802A (en) * 2009-06-13 2010-12-24 Philtech Inc 300 mm WAFER STUCK WITH THROUGH-ELECTRODE AND SEMICONDUCTOR DEVICE

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009489A (en) * 2009-06-26 2011-01-13 Sony Corp Method for manufacturing semiconductor device, semiconductor device, and solid-state image pickup device
US9704915B2 (en) 2010-07-09 2017-07-11 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US10263034B2 (en) 2010-07-09 2019-04-16 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US10651231B2 (en) 2010-07-09 2020-05-12 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US11545519B2 (en) 2010-07-09 2023-01-03 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
CN103426849A (en) * 2012-05-18 2013-12-04 台湾积体电路制造股份有限公司 Three-dimensional chip stack and method of forming the same
KR101539491B1 (en) * 2012-05-18 2015-07-24 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Three-dimensional chip stack and method of forming the same
CN104425437A (en) * 2013-09-03 2015-03-18 台湾积体电路制造股份有限公司 Three-dimensional chip stack and method of forming the same
JP2015099885A (en) * 2013-11-20 2015-05-28 ローム株式会社 Semiconductor device and method of manufacturing semiconductor device
CN110164786A (en) * 2019-06-17 2019-08-23 德淮半导体有限公司 The method and semiconductor structure of thermal expansion after improving metal bonding
WO2023079751A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Semiconductor chip stack, electronic component device, and production method for semiconductor chip stack

Also Published As

Publication number Publication date
JP5272922B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272922B2 (en) Semiconductor device and manufacturing method thereof
US8198140B2 (en) Wiring substrate for mounting semiconductors, method of manufacturing the same, and semiconductor package
TWI549204B (en) Manufacturing method of semiconductor device
TWI496259B (en) Flip chip package assembly and process for making same
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
JP2009158593A (en) Bump structure and method of manufacturing the same
JPH0945805A (en) Wiring board, semiconductor device, method for removing the semiconductor device from wiring board, and manufacture of semiconductor device
KR20030019187A (en) Semiconductor device and manufacturing method thereof
JP6004441B2 (en) Substrate bonding method, bump forming method, and semiconductor device
JP2008112995A (en) Circuit board, and manufacturing method thereof
JPWO2007096946A1 (en) Mounted body and manufacturing method thereof
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
US8179686B2 (en) Mounted structural body and method of manufacturing the same
KR20110036450A (en) Manufacturing method of substrate for flip chip and substrate for flip chip using the same
JP2003007916A (en) Method of manufacturing circuit device
JP4151136B2 (en) Substrate, semiconductor device and manufacturing method thereof
JP2004363573A (en) Semiconductor chip mounted body and its manufacturing method
JP2000277649A (en) Semiconductor and manufacture of the same
JP6656836B2 (en) Mounting structure and method of manufacturing the same
JP5560713B2 (en) Electronic component mounting method, etc.
TWI814524B (en) Electronic package and manufacturing method thereof, and electronic structure and manufacturing method thereof
US8168525B2 (en) Electronic part mounting board and method of mounting the same
JP4100685B2 (en) Semiconductor device
JP4440494B2 (en) Manufacturing method of semiconductor device
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150