JP2004363573A - Semiconductor chip mounted body and its manufacturing method - Google Patents

Semiconductor chip mounted body and its manufacturing method Download PDF

Info

Publication number
JP2004363573A
JP2004363573A JP2004141893A JP2004141893A JP2004363573A JP 2004363573 A JP2004363573 A JP 2004363573A JP 2004141893 A JP2004141893 A JP 2004141893A JP 2004141893 A JP2004141893 A JP 2004141893A JP 2004363573 A JP2004363573 A JP 2004363573A
Authority
JP
Japan
Prior art keywords
semiconductor chip
plating
electrode
wiring board
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141893A
Other languages
Japanese (ja)
Inventor
Takahide Ono
恭秀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Technology and Industry Foundation
Original Assignee
Kumamoto Technology and Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Technology and Industry Foundation filed Critical Kumamoto Technology and Industry Foundation
Priority to JP2004141893A priority Critical patent/JP2004363573A/en
Priority to PCT/JP2004/006878 priority patent/WO2004102663A1/en
Priority to US10/556,335 priority patent/US20060231927A1/en
Publication of JP2004363573A publication Critical patent/JP2004363573A/en
Priority to US12/219,211 priority patent/US20090014897A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device body with semiconductor chips mounted thereon, in which electrical connection between a wiring board and a semiconductor chip or that between semiconductor chips is uniform and reliable and electrical resistance is low. <P>SOLUTION: A semiconductor chip 20 having a projected electrode (bump) 23 as an extraction electrode is mounted on a wiring board 10 and a semiconductor chip 30 is mounted on the semiconductor chip 20. A wiring layer 12 of the wiring board 10 and the projected electrode 23, as well as projected electrodes of the semiconductor chips 20 and 30, are electrically connected by electrolytic plating. The wiring layer 12 and the projected electrode 23, as well as the projected electrodes of the semiconductor chips 20 and 30, are stably connected by plated films 24 and 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の半導体チップがフリップチップ接続された半導体チップ実装体およびその製造方法に関する。   The present invention relates to a semiconductor chip package in which a plurality of semiconductor chips are flip-chip connected, and a method for manufacturing the same.

電子機器の小型化、軽量化の社会的要求に応えてLSI(Large Scale Integrated circuit) などの半導体装置では、小型化および高密度化が進んでいる。このような小型化および高密度化のひとつの手法として半導体チップの積層化が行われている。   Semiconductor devices such as LSIs (Large Scale Integrated circuits) have been reduced in size and increased in density in response to social demands for smaller and lighter electronic devices. As one method of such miniaturization and high density, lamination of semiconductor chips is performed.

従来、このような半導体チップの積層化は、図2に示したように、配線基板100上に搭載された大きなサイズの半導体チップ101上にサイズの小さな半導体チップ102を接着材等により搭載し、配線基板100、半導体チップ101,102間をボンディングワイヤ103によって電気的に接続したのち、樹脂封止することにより行われている。より小型化および高密度化を図るためには、半導体チップのサイズを小さくすると共に、各チップを薄くする必要がある。   Conventionally, as shown in FIG. 2, such semiconductor chips are stacked by mounting a small-sized semiconductor chip 102 on a large-sized semiconductor chip 101 mounted on a wiring board 100 with an adhesive or the like, This is performed by electrically connecting the wiring substrate 100 and the semiconductor chips 101 and 102 with the bonding wires 103 and then sealing the resin. In order to achieve further miniaturization and higher density, it is necessary to reduce the size of the semiconductor chip and to make each chip thinner.

しかしながら、上記のような方法で積層した半導体チップ実装体は、以下のような問題を有していた。まず、ボンディングワイヤ103で半導体チップ101と配線基板100上の基板電極とを電気的に接続しているために、特に高周波動作においてボンディングワイヤ103がインダクタンス成分となって、円滑な動作を阻害する要因となる。また、ボンディングワイヤ103が半導体チップ101,102の上面から突出しており、かつワイヤボンディングするための領域を確保しなければならないために、半導体チップの薄型化が充分できないという問題があった。更に、ボンディングワイヤ103は一般に金ワイヤが使用されるため、コスト増加の要因ともなる。また、ワイヤボンディングは、その接合時において、下段に積層されている半導体チップ101に掛かる荷重が大きく、それによって薄い半導体チップ101では破壊される虞がある。   However, the semiconductor chip mounted bodies stacked by the above method have the following problems. First, since the semiconductor chip 101 and the substrate electrode on the wiring board 100 are electrically connected by the bonding wire 103, the bonding wire 103 becomes an inductance component particularly in a high frequency operation, and a factor that hinders a smooth operation. It becomes. Further, since the bonding wires 103 protrude from the upper surfaces of the semiconductor chips 101 and 102 and a region for wire bonding must be secured, there is a problem that the semiconductor chip cannot be sufficiently thinned. Further, since gold wire is generally used for the bonding wire 103, it causes a cost increase. In the wire bonding, a large load is applied to the semiconductor chip 101 stacked at the lower stage during the bonding, and the thin semiconductor chip 101 may be broken.

このようなことから、最近、ワイヤボンディング法に代わる方法として下記のような半導体チップをフリップチップ接続するタイプのCSP(Chip Size Package;チップサイズパッケージ)が提案されている(特許文献1〜5)。フリップチップ法では、上記ワイヤボンディング法とは異なり、半導体チップの全面を利用して接続を行うことができると共に、突起電極(バンプ)をによって接続を行うために、非常に微細なチップの接合を行うことができ、高密度実装が可能になる。しかしながら、これらについても以下のような問題があった。   For these reasons, a CSP (Chip Size Package) of the type in which semiconductor chips are flip-chip connected as described below has recently been proposed as an alternative to the wire bonding method (Patent Documents 1 to 5). . In the flip chip method, unlike the wire bonding method described above, connection can be made using the entire surface of the semiconductor chip, and since connection is made by using protruding electrodes (bumps), bonding of very fine chips can be performed. And high-density mounting becomes possible. However, these also have the following problems.

例えば、特許文献1〜3では、積層する半導体チップと配線基板とを位置合わせし、半田により接合したのち、次に積層する半導体チップを位置合わせし、半田接合している。このように半田を電気的な接着剤として使用する場合には、多段積層時の一括リフローはセルフアライメントの効果が期待できないため、半導体チップごとに順次半田接合を実施することになる。しかしながら、このような場合、最初に積層した接合部には、最後に積層するまでに数回の半田接合時による熱が負荷され、一段目と最終段目の接合部との間では構造が異なってくること、また、繰り返しの加熱で信頼性が低下することなどが懸念される。   For example, in Patent Literatures 1 to 3, a semiconductor chip to be stacked and a wiring board are aligned and joined by soldering, and then a semiconductor chip to be stacked next is aligned and soldered. When the solder is used as the electrical adhesive as described above, the self-alignment effect cannot be expected in the batch reflow at the time of the multi-stage lamination, so that the solder bonding is sequentially performed for each semiconductor chip. However, in such a case, the heat generated by soldering several times before the last lamination is applied to the first lamination, and the structure differs between the first lamination and the last lamination. And reliability may be reduced by repeated heating.

一方、特許文献4,5では半導体チップと配線基板とを導電性接着剤を用いて電気的に接合している。しかしながら、導電性接着剤は導電性の点で劣り、かつ接着強度が低いため、経時変化する半導体では、その使用年数が経過するにつれて、電気的特性が低下する虞がある。
特開2002−203874号公報 特開2002−170919号公報 特開平10−135272号公報 特開2001−338949号公報 特開平7−263493号公報
On the other hand, in Patent Documents 4 and 5, a semiconductor chip and a wiring board are electrically joined using a conductive adhesive. However, since the conductive adhesive is inferior in conductivity and has low adhesive strength, there is a possibility that the electrical characteristics of a semiconductor that changes over time may deteriorate as the number of years of use thereof elapses.
JP 2002-203874 A JP-A-2002-170919 JP-A-10-135272 JP 2001-338949 A JP-A-7-263493

本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、高密度実装が可能であり、かつ、半導体チップの突起電極と配線基板の配線層との間,および半導体チップの突起電極同士の電気的接続状態が均一であり、信頼性の高い半導体チップ実装体を提供することにある。   The present invention has been made in view of such a problem, and a first object of the present invention is to enable high-density mounting, and furthermore, between a projecting electrode of a semiconductor chip and a wiring layer of a wiring board, and of a semiconductor chip. An object of the present invention is to provide a highly reliable semiconductor chip mounting body in which the electrical connection between the protruding electrodes is uniform.

本発明の第2の目的は、上記信頼性の高い高密度の半導体チップ実装体を容易にかつ低コストで製造できる半導体チップ実装体の製造方法を提供することにある。   It is a second object of the present invention to provide a method of manufacturing a semiconductor chip mounted body capable of easily and at low cost manufacturing the highly reliable and high-density semiconductor chip mounted body.

本発明による半導体チップ実装体は、表面に配線層を有する配線基板と、突起電極を有すると共に前記配線基板上に搭載され、前記突起電極と配線層とが接触し、かつめっき膜により電気的に接続された第1の半導体チップと、突起電極を有すると共に前記第1の半導体チップ上に順次積層して搭載され、対向する互いの突起電極同士がめっきにより電気的に接続された1または2以上の第2の半導体チップとを備えた構成を有するものである。   A semiconductor chip mounting body according to the present invention has a wiring substrate having a wiring layer on the surface, a projection electrode, and a projection substrate, and the projection substrate and the wiring layer are mounted on the wiring substrate. A connected first semiconductor chip, one or two or more having a protruding electrode and being sequentially stacked and mounted on the first semiconductor chip, and opposing protruding electrodes electrically connected by plating; And a second semiconductor chip.

めっき膜は、具体的には、電解めっきにより形成されたものであり、例えば銅(Cu),ニッケル(Ni),金(Au),錫(Sn)またはこれら金属の合金により構成されている。   The plating film is specifically formed by electrolytic plating, and is made of, for example, copper (Cu), nickel (Ni), gold (Au), tin (Sn), or an alloy of these metals.

本発明の半導体チップ実装体としては、半導体チップが、その両面を貫通する貫通孔内に導電性材料を埋設して形成された貫通電極を有し、その貫通電極の端部に外部引出電極を有し、外部引出電極に突起電極が形成されている態様のものが好ましい。また、第2半導体チップおよび配線基板にも、第1の半導体チップの貫通電極に対向する位置に貫通電極を設け、複数の貫通電極を突起電極を介して電気的に接続させることにより、電気的接続部を一直線状に配置する態様とすることが望ましい。   As the semiconductor chip mounted body of the present invention, the semiconductor chip has a through electrode formed by embedding a conductive material in a through hole penetrating both surfaces thereof, and an external lead electrode is provided at an end of the through electrode. It is preferable that the projection electrode is provided on the external extraction electrode. Also, the second semiconductor chip and the wiring board are provided with a through electrode at a position facing the through electrode of the first semiconductor chip, and the plurality of through electrodes are electrically connected via the protruding electrodes, thereby providing an electrical connection. It is desirable that the connecting portions be arranged in a straight line.

本発明による半導体チップ実装体の製造方法は、表面に配線層を有する配線基板の表面に、突起電極を有する第1の半導体チップを前記突起電極が配線層上の接続箇所に接触するように位置合わせを行うと共に、第1の半導体チップ上に、突起電極を有する1または2以上の第2の半導体チップを互いの突起電極同士が接触するように位置合わせをして積層する工程と、第1の半導体チップの突起電極と配線基板の配線層の接続箇所との間、および第1の半導体チップおよび第2の半導体チップの各突起電極同士をそれぞれめっきにより電気的に接続させる工程とを含むものである。   In the method for manufacturing a semiconductor chip mounted body according to the present invention, a first semiconductor chip having a projecting electrode is positioned on a surface of a wiring substrate having a wiring layer on the surface such that the projecting electrode contacts a connection portion on the wiring layer. Aligning and stacking one or more second semiconductor chips having projecting electrodes on the first semiconductor chip such that the projecting electrodes are in contact with each other; Electrically connecting the protruding electrodes of the semiconductor chip and the connecting portions of the wiring layer of the wiring board and the protruding electrodes of the first semiconductor chip and the second semiconductor chip by plating. .

めっき法としては、好ましくは、電解めっきまたは溶射めっきが用いられる。   As the plating method, electrolytic plating or thermal spray plating is preferably used.

なお、めっきに際しては、めっき液が収容されためっき槽の壁面に超音波振動を加えつつめっき膜を形成する、または、第1および第2の半導体チップが実装された配線基板をめっき槽内に配置し、内部を減圧したのちめっき液をめっき層内に収容することによってめっき膜を形成することが望ましい。あるいは、めっき槽に収容されためっき液を加圧しつつめっき膜を形成するようにしてもよい。このような方法により、めっきが促進され、安定しためっき膜を形成することができる。   At the time of plating, a plating film is formed while applying ultrasonic vibration to the wall surface of the plating tank containing the plating solution, or the wiring board on which the first and second semiconductor chips are mounted is placed in the plating tank. It is desirable to form a plating film by disposing the inside, reducing the pressure inside, and then housing the plating solution in the plating layer. Alternatively, the plating film may be formed while pressurizing the plating solution contained in the plating tank. By such a method, plating is promoted, and a stable plating film can be formed.

本発明の半導体チップ実装体およびその製造方法によれば、半導体チップの突起電極と配線基板の配線層との間、および半導体チップの突起電極同士を、それぞれめっき膜により電気的に接続させるようにしたので、接合箇所においてめっき膜が均一、かつ安定して付着し、ばらつきのない接合強度が得られると共に、接合作業を迅速に行うことができ、これにより生産性が向上する。また、リードと半導体チップとの間隔を充分に取れるため、高度集積が可能となり、小型で極めて信頼性の高い半導体チップ実装体を提供することができる。   According to the semiconductor chip mounting body and the method of manufacturing the same of the present invention, the bump electrodes of the semiconductor chip and the wiring layer of the wiring board, and the bump electrodes of the semiconductor chip are electrically connected to each other by the plating film. As a result, the plating film is uniformly and stably adhered at the joining portion, and a uniform joining strength can be obtained, and the joining operation can be performed quickly, thereby improving the productivity. Further, since a sufficient space is provided between the lead and the semiconductor chip, high integration is possible, and a small and extremely reliable semiconductor chip mounting body can be provided.

特に、本発明の半導体チップ実装体およびその製造方法は、65nm以下の微細配線を有し、電極パッドの下層の層間絶縁膜の材質が比較的脆い構造の半導体チップと配線基板との多層接続に有効である。   In particular, the semiconductor chip mounting body and the method of manufacturing the same according to the present invention provide a multilayer connection between a semiconductor chip having a fine wiring of 65 nm or less and a material of an interlayer insulating film below an electrode pad being relatively brittle and a wiring board. It is valid.

また、本発明の半導体チップ実装体では、第1の半導体チップ、第2の半導体チップおよび配線基板にそれぞれ貫通電極を設け、これら貫通電極を突起電極を介して電気的に接続させることにより、電気的接続部を一直線状に配置する態様とすることが望ましい。これにより、ギガヘルツ(GHz)の周波数の信号伝達を高速に行うことができる。   Further, in the semiconductor chip mounted body of the present invention, the first semiconductor chip, the second semiconductor chip, and the wiring board are provided with through electrodes, respectively, and these through electrodes are electrically connected through the protruding electrodes, thereby providing electric connection. It is desirable to adopt a mode in which the dynamic connection portions are arranged in a straight line. Thereby, signal transmission at a frequency of gigahertz (GHz) can be performed at high speed.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る半導体チップ実装体1の断面構成を表すものである。この半導体チップ実装体1は、例えばポリイミド樹脂からなる配線基板10の上に、多層構造(ここでは2層)の半導体チップ20、30を積層して搭載したものである。   FIG. 1 shows a cross-sectional configuration of a semiconductor chip package 1 according to one embodiment of the present invention. The semiconductor chip mounting body 1 is formed by stacking semiconductor chips 20 and 30 having a multilayer structure (here, two layers) on a wiring board 10 made of, for example, a polyimide resin.

配線基板10には貫通孔(電極形成孔)11が設けられると共に表面に配線層12による電子回路が形成されている。電極形成孔11には、貫通電極11Aを形成する。外部電極11Aは、例えばニッケル(Ni)を1〜150μm程度めっきすることにより形成することができる。他の方法として、めっきの後、半田をリフローさせることにより電極を作ることも可能である。   A through hole (electrode formation hole) 11 is provided in the wiring board 10, and an electronic circuit by a wiring layer 12 is formed on the surface. In the electrode forming hole 11, a through electrode 11A is formed. The external electrode 11A can be formed, for example, by plating nickel (Ni) with a thickness of about 1 to 150 μm. Alternatively, the electrodes can be made by reflowing the solder after plating.

基板10の裏面には電極形成孔11に対応する位置に例えば半田からなるボール電極13が形成されており、このボール電極13と表面の配線層12とが貫通孔11を介して電気的に接続されている。ボール電極13には図示しないが、さらに、外部のプリント基板に電気的に接続されている。   A ball electrode 13 made of, for example, solder is formed at a position corresponding to the electrode forming hole 11 on the back surface of the substrate 10, and the ball electrode 13 and the wiring layer 12 on the front surface are electrically connected through the through hole 11. Have been. Although not shown, the ball electrode 13 is further electrically connected to an external printed circuit board.

配線基板10は、例えばポリイミド樹脂により形成されており、その表面の電気回路は公知のフォトリソグラフィ技術により作成されたものである。フォトリソグラフィ法では基板をレジスト膜で覆い、このレジスト膜をパターンが形成されたマスクで覆う。マスクとする膜全体を感光性の樹脂で形成し、その露光および感光によりパターニングして電極形成孔を形成するようにしてもよい。レジスト膜としては、紫外線により硬化する樹脂、例えばアクリル系の感光性剥離タイプ或いはエポキシアクリル系の樹脂を用いることができる。レジスト膜は、例えばスピンコート法により基板に被覆され、次いでこのレジスト膜を露光、現像によりパターニングしてマスクを形成し、このマスクを用いて基板をエッチングやめっき処理することにより配線層を形成することができる。   The wiring substrate 10 is formed of, for example, a polyimide resin, and the electric circuit on the surface is formed by a known photolithography technique. In the photolithography method, a substrate is covered with a resist film, and the resist film is covered with a mask on which a pattern is formed. The entire film to be used as a mask may be formed of a photosensitive resin, and may be patterned by exposure and exposure to form an electrode forming hole. As the resist film, a resin curable by ultraviolet rays, for example, an acrylic photosensitive release type or epoxy acrylic resin can be used. The resist film is coated on the substrate by, for example, a spin coating method, and then, the resist film is patterned by exposure and development to form a mask, and the wiring layer is formed by etching or plating the substrate using the mask. be able to.

配線層12は、例えば銅(Cu)によりめっきで形成するのが導電性が優れているため好ましい。配線層12の幅は、例えば5〜30μm程度である。   The wiring layer 12 is preferably formed by plating with, for example, copper (Cu) because of its excellent conductivity. The width of the wiring layer 12 is, for example, about 5 to 30 μm.

下側の半導体チップ20(第1の半導体チップ)には貫通孔(スルーホール)21が設けられ、この貫通孔21には導電材料例えば銅(Cu)が充填され、プラグ21Aが形成されている。このプラグ21Aの下端部には外部引き出し電極22が設けられている。外部引き出し電極22にはその表面に突起電極(金属バンプ)23が設けられ、この突起電極23が配線基板10側の配線層12の電極部分と接触している。半導体チップ20側の外部引き出し電極22と配線基板10側の配線層12との間は突起電極23の表面全体を含めて、導電性のめっき膜24により覆われている。このめっき膜24により、突起電極23と配線層12とが全面にわたって均一に接続され、電気的な接続不良が解消されている。   A through hole (through hole) 21 is provided in the lower semiconductor chip 20 (first semiconductor chip), and the through hole 21 is filled with a conductive material, for example, copper (Cu), and a plug 21A is formed. . An external lead electrode 22 is provided at the lower end of the plug 21A. A projecting electrode (metal bump) 23 is provided on the surface of the external lead electrode 22, and the projecting electrode 23 is in contact with an electrode portion of the wiring layer 12 on the wiring substrate 10 side. The space between the external lead electrode 22 on the semiconductor chip 20 side and the wiring layer 12 on the wiring substrate 10 is covered with a conductive plating film 24 including the entire surface of the bump electrode 23. By this plating film 24, the protruding electrode 23 and the wiring layer 12 are uniformly connected over the entire surface, and the electrical connection failure is eliminated.

半導体チップ20の表面には、配線パターン(図示せず)が形成されている。この配線パターンは例えばモリブデン(Mo)、タングステン(W)、タングステンシリサイド(WSi2 )などのシリサイド、金(Au)または銅(Cu)等の導電性の良好な金属をめっきしたのち、リソグラフィ法で金属層をエッチングして部分的に除去することにより設けられたものである。 On the surface of the semiconductor chip 20, a wiring pattern (not shown) is formed. This wiring pattern is formed by plating a silicide such as molybdenum (Mo), tungsten (W) or tungsten silicide (WSi 2 ), or a metal having good conductivity such as gold (Au) or copper (Cu), and then by lithography. This is provided by etching and partially removing the metal layer.

外部引き出し電極22は、例えば貫通孔21に微小半田ボールをリフローさせることにより、あるいはCVD(Chemical Vapor Deposition:化学的気相成長 )法、スパッタリング等のPVD(Physical Vapor Deposition:物理的気相成長 )法などにより形成することができる。   The external lead-out electrode 22 is formed by, for example, reflowing a small solder ball in the through hole 21 or by CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition) such as sputtering, or the like. It can be formed by a method or the like.

突起電極23は、配線基板10や積層された他の半導体との電気的接合を容易にするためのものであり、例えばめっきにより形成されたものである。めっき金属としては、めっき接合金属と同種の金属とすることが好ましいが、これに限定するものでなく、導電性、密着性等を考慮し、例えば銅(Cu),ニッケル(Ni),金(Au),錫(Sn)およびこれら金属の合金などから選択することができる。突起電極23の高さは100μm以下、特に2〜50μmの範囲とすることが好ましい。   The protruding electrode 23 is for facilitating electrical connection with the wiring substrate 10 and another laminated semiconductor, and is formed, for example, by plating. The plating metal is preferably a metal of the same type as the plating bonding metal, but is not limited to this. For example, copper (Cu), nickel (Ni), gold ( Au), tin (Sn) and alloys of these metals. The height of the protruding electrode 23 is preferably 100 μm or less, particularly preferably in the range of 2 to 50 μm.

上側の半導体チップ30(第2の半導体チップ)にも、同じく貫通孔31が設けられ、この貫通孔31にも例えば銅(Cu)が充填されてプラグ31Aが形成されている。このプラグ31Aの下端部には突起電極(金属バンプ)32が設けられ、この突起電極32が下側の半導体チップ20側のプラグ21Aと接触している。突起電極32の表面も例えばニッケル(Ni)からなるめっき膜33により覆われ、このめっき膜33により半導体チップ20側のプラグ21Aと半導体チップ30側のプラグ31Aとの電気的な接続が確保されている。その他は、半導体チップ20と同様である。   The upper semiconductor chip 30 (second semiconductor chip) is also provided with a through-hole 31. The through-hole 31 is filled with, for example, copper (Cu) to form a plug 31 </ b> A. A projecting electrode (metal bump) 32 is provided at the lower end of the plug 31A, and the projecting electrode 32 is in contact with the plug 21A on the lower semiconductor chip 20 side. The surface of the protruding electrode 32 is also covered with a plating film 33 made of, for example, nickel (Ni), and the plating film 33 ensures electrical connection between the plug 21A on the semiconductor chip 20 side and the plug 31A on the semiconductor chip 30 side. I have. Others are the same as the semiconductor chip 20.

なお、半導体チップ20,30を構成する材料としては、例えばゲルマニウム(Ge),シリコン(Si),ガリウムヒ素(GaAs),ガリウム・リン(GaP)などが挙げられるが、実装製品が小型化できるよう、各チップはできるだけ薄いことが望ましい。このようなチップのためのウェハは例えば、上記材料からなる単結晶を薄くスライスすることにより製造することができる。   In addition, as a material forming the semiconductor chips 20 and 30, for example, germanium (Ge), silicon (Si), gallium arsenide (GaAs), gallium phosphorus (GaP), and the like can be given. It is desirable that each chip is as thin as possible. A wafer for such a chip can be manufactured by, for example, thinly slicing a single crystal made of the above material.

次に、上記半導体チップ実装体1の製造方法について説明する。この方法は、「位置合わせ工程」と「めっきによる接合工程」とからなり、必要に応じて更に「樹脂封止工程」を含むものである。   Next, a method for manufacturing the semiconductor chip mounted body 1 will be described. This method includes a “positioning step” and a “joining step by plating”, and further includes a “resin sealing step” as necessary.

位置合わせ工程では、配線基板11の表面に、突起電極23を有する半導体チップ20を、突起電極23が配線基板11上の配線層12の電極接合部に当接するように位置合わせを行う。次いで、半導体チップ20上に、第2の半導体チップ30を互いの突起電極同士が接触するように位置合わせを行う。なお、半導体チップ20,30間には電気的短絡を防ぐために、必要に応じて絶縁フィルムや絶縁塗料のような絶縁層を設けておいてもよい。   In the positioning step, the semiconductor chip 20 having the protruding electrodes 23 is positioned on the surface of the wiring board 11 so that the protruding electrodes 23 contact the electrode joints of the wiring layer 12 on the wiring board 11. Next, the second semiconductor chip 30 is positioned on the semiconductor chip 20 such that the protruding electrodes thereof are in contact with each other. Note that an insulating layer such as an insulating film or an insulating paint may be provided between the semiconductor chips 20 and 30 as needed to prevent an electrical short circuit.

このような半導体チップ20,30と配線基板10との位置合わせには、好ましくはテフロン(登録商標)からなる位置合わせ冶具を用いる。この位置合わせ用冶具には配線基板10若しくは半導体チップ20,30に設けられた窪み部または突起部に嵌合するための突起部または窪み部が設けられており、これら突起部または窪み部に配線基板10若しくは半導体チップ20,30に設けられた窪み部または突起部を挿入し、位置合わせを行うことができる。位置合わせの最適位置は、通電して電流量が電気的に最も小さくなる位置であり、あるいは顕微鏡映像をモニターしながら自動的もしくは手動で操作することにより決定してもよい。   Preferably, a positioning jig made of Teflon (registered trademark) is used for positioning the semiconductor chips 20 and 30 and the wiring substrate 10. The positioning jig is provided with projections or depressions for fitting into the depressions or projections provided on the wiring board 10 or the semiconductor chips 20 and 30, and these projections or depressions are provided with wiring. A recess or a protrusion provided on the substrate 10 or the semiconductor chips 20 and 30 can be inserted for positioning. The optimal position for the alignment is a position where the amount of current is minimized electrically when energized, or may be determined automatically or manually while monitoring the microscope image.

配線基板10と半導体チップ20、更に半導体チップ20,30同士の位置合わせがなされると、次いで、これらをフリップチップ接続する。具体的には、2つの半導体チップ20,30と配線基板10とを位置ずれしないように冶具で押圧しながら、めっきを行うことにより配線基板10,半導体チップ20,30をフリップチップ接続、すなわち、突起電極(バンプ)を介して配線基板10および半導体チップ20,30相互間を電気的に接続させる。   When the wiring board 10 and the semiconductor chip 20 and the semiconductor chips 20 and 30 are aligned with each other, they are then flip-chip connected. More specifically, the wiring board 10 and the semiconductor chips 20 and 30 are flip-chip connected by plating while pressing the two semiconductor chips 20 and 30 and the wiring board 10 with a jig so as not to displace. The wiring substrate 10 and the semiconductor chips 20, 30 are electrically connected to each other via the protruding electrodes (bumps).

このめっき処理は、配線基板10および半導体チップ20,30を槽内のめっき浴中に浸漬して電気めっきしてもよいし、無電解めっきしてもよい。また、めっき液をスプレー状に吹き付ける等の手法で互いに接触部を電気的に導通させたのち、その接触部をめっき金属で被覆させることにより接合してもよい。このようにめっき処理することにより、図1に示したように、配線基板10の電極と半導体チップ20の突起電極との間、および半導体チップ20,30の突起電極間にめっき金属を被覆させて接合する。この際、電気的接合箇所である突起部やその接触面を除いた他の電気回路露出面には油性塗料を印刷により塗布することによって、めっき金属の析出を防ぐことが好ましい。   In this plating process, the wiring board 10 and the semiconductor chips 20 and 30 may be immersed in a plating bath in a bath to perform electroplating, or may be subjected to electroless plating. Alternatively, the contact portions may be electrically connected to each other by a technique such as spraying a plating solution in a spray form, and then the contact portions may be covered with a plating metal to join them. By performing the plating process in this manner, as shown in FIG. 1, the plating metal is coated between the electrodes of the wiring board 10 and the protruding electrodes of the semiconductor chip 20 and between the protruding electrodes of the semiconductor chips 20 and 30. Join. At this time, it is preferable to prevent the deposition of the plating metal by applying an oil-based paint by printing to the exposed surface of the electric circuit other than the projections, which are the electrical joints, and the contact surfaces thereof.

めっき用金属としては、例えば銅(Cu),ニッケル(Ni),金(Au),錫(Sn)またはこれらの合金を用いることができ、突起電極等の電極と同材質でもよいが、他の金属を用いてもよい。   As the metal for plating, for example, copper (Cu), nickel (Ni), gold (Au), tin (Sn) or an alloy thereof can be used. A metal may be used.

なお、めっき処理に際しては、半導体チップ20と配線基板10との間に半導体チップ20を破損しない程度にわずかに圧力を加えることも可能である。   During the plating process, a slight pressure may be applied between the semiconductor chip 20 and the wiring board 10 so as not to damage the semiconductor chip 20.

なお、電解めっきでは、配線基板10の電極と半導体チップ20の突起電極、および半導体チップ20,30の突起電極同士を位置合わせし、めっき浴に浸す。両者をめっき浴に浸したのち、共通電極を負極、めっき用電極を正極として両者間に直流電圧を所定の時間印加する。   In the electrolytic plating, the electrodes of the wiring board 10 and the protruding electrodes of the semiconductor chip 20 and the protruding electrodes of the semiconductor chips 20 and 30 are aligned with each other and immersed in a plating bath. After both are immersed in the plating bath, a DC voltage is applied between them for a predetermined time using the common electrode as a negative electrode and the plating electrode as a positive electrode.

なお、めっき処理に際しては、液壁面に超音波振動を与えることが望ましい。これにより、めっき液を、配線基板10と半導体チップ20との間、および半導体チップ20,30間に充分浸透させることができると共に、めっき液の循環が促進され、めっきのすべてのパンプ成長の均一化を図ることができる。   In plating, it is desirable to apply ultrasonic vibration to the liquid wall surface. Thereby, the plating solution can be sufficiently penetrated between the wiring board 10 and the semiconductor chip 20 and between the semiconductor chips 20 and 30, and the circulation of the plating solution is promoted, so that the growth of all the pumps of plating is uniform. Can be achieved.

また、半導体チップ20,30が実装された配線基板10をめっき槽内に配置し、内部を減圧して半導体チップ20,30同士の間、配線基板10と半導体チップ20との間の狭い領域の空気を抜き、そののちめっき層内にめっき液を収容することによって、めっき膜を形成するようにしてもよい。これにより、めっき液を、配線基板10と半導体チップ20との間、および半導体チップ20,30間の狭い領域に充分浸透させることができ、空気残存部におけるめっき不良の発生を防止することができる。   Further, the wiring board 10 on which the semiconductor chips 20 and 30 are mounted is arranged in a plating bath, and the inside is reduced in pressure to reduce the pressure in the narrow area between the semiconductor chips 20 and 30 and between the wiring board 10 and the semiconductor chip 20. The plating film may be formed by bleeding air and then storing the plating solution in the plating layer. Thereby, the plating solution can sufficiently penetrate into the narrow area between the wiring board 10 and the semiconductor chip 20 and between the semiconductor chips 20 and 30, and it is possible to prevent the occurrence of plating failure in the air remaining portion. .

更には、めっき膜をめっき槽に収容されためっき液の表面部分の空気を加圧しながら形成するようにしてもよい。これによっても上記と同様の効果を得ることができる。   Further, the plating film may be formed while pressurizing air on the surface of the plating solution contained in the plating tank. With this, the same effect as above can be obtained.

上記めっき工程が終了すると、めっき液を純水で洗浄し、めっき時に付着した汚染物質を除去する。次に、必要に応じて、酸化や吸湿による劣化を防ぐため、配線基板10,半導体チップ20,30相互間の接合部を中心に、一部もしくは全部を樹脂で封止する。封止樹脂としては、エポキシ樹脂を始めとする電気絶縁性と耐熱性が優れた樹脂が選択すれはよい。   When the plating step is completed, the plating solution is washed with pure water to remove contaminants attached during plating. Next, if necessary, in order to prevent deterioration due to oxidation or moisture absorption, a part or the whole is sealed with a resin centering on a joint between the wiring board 10 and the semiconductor chips 20 and 30. As the sealing resin, a resin having excellent electric insulation and heat resistance such as an epoxy resin is preferably selected.

以上の工程ののち、基板をダイシングあるいはレーザビーム等により切断して分割することにより、高密度に集積された半導体チップ実装体1を得ることができる。   After the above steps, the substrate is cut by dicing or laser beam and divided to obtain the semiconductor chip mounted body 1 integrated at high density.

このように本実施の形態では、配線基板10上に半導体チップ20,30の位置合わせを行ったのち、半導体チップ20の突起電極と配線基板10の電極との間、および半導体チップ20,30の各突起電極同士をそれぞれめっきにより電気的に接続させるようにしたので、めっき膜を均一、かつ安定して付着させることができ、ばらつきのない接合強度が得られる。また、接合作業を迅速に行うことができるので、生産性が向上する。更に、リードと半導体チップとの間隔を充分に取れるため、高度集積が可能となり、小型で極めて信頼性の高い半導体チップ実装体を得ることができる。   As described above, in the present embodiment, after the positioning of the semiconductor chips 20 and 30 on the wiring board 10, between the protruding electrodes of the semiconductor chip 20 and the electrodes of the wiring board 10, and between the semiconductor chip 20 and 30. Since the respective protruding electrodes are electrically connected to each other by plating, a plating film can be uniformly and stably adhered, and a uniform bonding strength can be obtained. In addition, since the joining operation can be performed quickly, productivity is improved. Further, since a sufficient space is provided between the lead and the semiconductor chip, a high degree of integration is possible, and a small and extremely reliable semiconductor chip mounting body can be obtained.

特に、従来行われているバンプ接続では、ミクロに見ると突起電極同士の接続部では接続されていない箇所(不接合箇所)が見られるが、本実施の形態では、このような不接合箇所にめっき金属が充填されるので、十分な接合強度が得られるとと共に電気的接合も十分に確保でき、接合部がより低抵抗となる。特に、配線基板10の配線層12や半導体チップ20,30の配線層の幅が65nm以下というように微細配線になると、その膜厚も薄くなり、また、配線層下の絶縁層が多孔質(ポーラス)シリコン酸化膜(SiO2 )により形成されている場合には脆いため、従来のワイヤボンディングやバンプ圧着のような圧力を加える手法を用いることは望ましくない。このような場合に、本実施の形態の手法が有効であり、10μmピッチの微細配線を有する半導体実装体を絶縁層を損傷することなく得ることができる。 In particular, in the conventional bump connection, when viewed microscopically, a portion (unjoined portion) that is not connected is seen at a connection portion between the protruding electrodes. In the present embodiment, however, in such a non-joined portion, Since the plating metal is filled, a sufficient bonding strength can be obtained, and at the same time, electrical connection can be sufficiently secured, and the bonding portion has a lower resistance. In particular, when the width of the wiring layer 12 of the wiring board 10 and the width of the wiring layer of the semiconductor chips 20 and 30 are fine, such as 65 nm or less, the film thickness becomes thin, and the insulating layer below the wiring layer becomes porous ( In the case of being formed of a (porous) silicon oxide film (SiO 2 ), it is brittle, and it is not desirable to use a technique of applying pressure such as conventional wire bonding or bump compression. In such a case, the method of the present embodiment is effective, and a semiconductor package having fine wiring with a pitch of 10 μm can be obtained without damaging the insulating layer.

また、今後は、ギガヘルツ(GHz)の周波数の信号伝達が普及するものと考えられているが、従来のデバイス(図2)のように電極間がワイヤにより接続されていると、ワイヤの長さ分およびワイヤが弯曲していることによる高周波抵抗の影響で信号伝達に遅れが生じてしまう。これに対して、本実施の形態では、図1に示したように、配線基板10に貫通電極11A、半導体チップ20に貫通電極21A、半導体チップ30に貫通電極31Aがそれぞれ設けられ、これら貫通電極11A,12A,13Aが互いに対向するように配置されると共に、突起電極23,32を介して電気的に接続されている。すなわち、貫通電極11A,12A,13Aが直線状に最短距離で接続されており、ギガヘルツ(GHz)の周波数の信号であっても、伝達が高速にかつ安定して行われる。   In the future, signal transmission at a frequency of gigahertz (GHz) is considered to be widespread. However, when the electrodes are connected by wires as in a conventional device (FIG. 2), the length of the wires is reduced. Signal transmission is delayed due to the effect of high frequency resistance due to the bending of the wire and the wire. On the other hand, in the present embodiment, as shown in FIG. 1, the wiring substrate 10 is provided with a through electrode 11A, the semiconductor chip 20 is provided with a through electrode 21A, and the semiconductor chip 30 is provided with a through electrode 31A. 11A, 12A, and 13A are arranged so as to face each other, and are electrically connected via protruding electrodes 23 and 32. That is, the penetrating electrodes 11A, 12A, and 13A are linearly connected at the shortest distance, and even if the signal has a frequency of gigahertz (GHz), transmission is performed quickly and stably.

以下、具体的な実施例について説明する。   Hereinafter, specific examples will be described.

直径4インチのシリコンウェハ上に、1チップが7.5×7.5mmの大きさであり、その外周部に200個のアルミニウム(Al)電極(80μm×80μm)を配置し、電極部分以外は、シリコン酸化膜(SiO2 )からなる保護膜で被覆した。次いで、レーザにより電極部分に貫通孔を形成し、その中に、半田を毛細管現象により浸透させ充填した。さらに、充填した半田部分に高さ5μmの金の突起電極(バンプ)を形成した。 One chip has a size of 7.5 × 7.5 mm on a silicon wafer having a diameter of 4 inches, and 200 aluminum (Al) electrodes (80 μm × 80 μm) are arranged on the outer periphery thereof. And a protective film made of a silicon oxide film (SiO 2 ). Next, a through hole was formed in the electrode portion by laser, and solder was permeated and filled into the through hole by capillary action. Further, a gold bump electrode (bump) having a height of 5 μm was formed on the filled solder portion.

このウェハを突起電極同士が接触するように2枚積層して配置し、その周辺部にめっき負電極を接続し、電流密度を200A/m2 に設定したCuめっき浴(硫酸銅0.8モル/l,硫酸0.5モル/l)中に浸漬して、突起電極周辺において5μmの厚さにCuめっきを行い、突起電極同士を電気的に接続させた。次いで、めっき液を洗浄し、チップ同士の空間にアンダーフィルの樹脂を注入した。その後、チップサイズに分割した。 Two such wafers are stacked and arranged so that the protruding electrodes are in contact with each other, a negative plating electrode is connected to the periphery thereof, and a Cu plating bath (0.8 mol of copper sulfate) having a current density of 200 A / m 2 is set. / L, sulfuric acid 0.5 mol / l), and Cu plating was performed to a thickness of 5 µm around the protruding electrodes to electrically connect the protruding electrodes. Next, the plating solution was washed, and an underfill resin was injected into the space between the chips. After that, it was divided into chip sizes.

次に、配線基板の電極と半導体チップに形成したCuめっきによる突起とが当接するように、配線基板と半導体チップとの位置合わせを行ったのち、これらを冶具で固定し、上記しためっき浴と同様の浴中で、配線基板、2つの半導体チップ相互のめっき接続を行った。このとき、配線基板の電極部以外は油性塗料を塗布してめっきが付着しないようにした。   Next, after positioning the wiring board and the semiconductor chip so that the electrode of the wiring board and the protrusion by Cu plating formed on the semiconductor chip are in contact with each other, these are fixed with a jig, and the plating bath described above is used. In the same bath, plating connection between the wiring substrate and the two semiconductor chips was performed. At this time, an oil-based paint was applied to portions other than the electrode portion of the wiring board so that plating did not adhere.

上記方法で得た半導体チップ実装体をめっき純水で洗浄したのち、洗浄液を乾燥させることにより製品を得た。   After washing the semiconductor chip mounted body obtained by the above method with pure plating water, the washing liquid was dried to obtain a product.

(剥離試験結果)
このようにしてめっき接続した接合部をシェア試験し、半導体チップ間の層間接着強度を測定した。その結果、平均10g/バンプの強度が得られ、極めて良好な接合であることが明らかになった。
(Peeling test result)
A shear test was performed on the joints thus plated and connected, and the interlayer adhesive strength between the semiconductor chips was measured. As a result, an average strength of 10 g / bump was obtained, and it was revealed that the bonding was extremely good.

(電気抵抗試験)
電気抵抗試験でも、0.5mΩ/バンプと良好な接続抵抗を示した。
(Electric resistance test)
The electrical resistance test also showed a good connection resistance of 0.5 mΩ / bump.

以上実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態や実施例に限定されるものではなく種々変形可能である。例えば、配線基板10上に搭載する半導体チップは2層だけではなく、3層以上とすることもできる。すなわち、配線基板10上に搭載された第1の半導体チップの上に2以上の第2の半導体チップを順次搭載していくようにしてもよい。   Although the present invention has been described with reference to the embodiment and the example, the present invention is not limited to the above-described embodiment and example, and can be variously modified. For example, the number of semiconductor chips mounted on the wiring board 10 is not limited to two, but may be three or more. That is, two or more second semiconductor chips may be sequentially mounted on the first semiconductor chip mounted on the wiring board 10.

本発明の一実施の形態に係る半導体チップ実装体の構造を表す断面図である。1 is a cross-sectional view illustrating a structure of a semiconductor chip mounted body according to one embodiment of the present invention. 従来の半導体チップ実装体の模式図である。It is a schematic diagram of a conventional semiconductor chip mounting body.

符号の説明Explanation of reference numerals

10…配線基板、11,21,31…貫通孔(スルーホール)、11A…貫通電極、12…配線層、20…半導体チップ(第1の半導体チップ)、30…半導体チップ(第2の半導体チップ)、22…外部引き出し電極、23…突起電極(パンプ)、24,33…めっき膜。   DESCRIPTION OF SYMBOLS 10 ... Wiring board, 11, 21, 31 ... Through-hole (through-hole), 11A ... Through-electrode, 12 ... Wiring layer, 20 ... Semiconductor chip (1st semiconductor chip), 30 ... Semiconductor chip (2nd semiconductor chip) ), 22 ... external lead-out electrodes, 23 ... projecting electrodes (pumps), 24, 33 ... plating films.

Claims (13)

表面に配線層を有する配線基板と、
突起電極を有すると共に前記配線基板上に搭載され、前記突起電極が前記配線層に接触すると共に、少なくとも前記突起電極と前記配線層との接触部の周囲が導電性のめっき膜により被覆されてなる第1の半導体チップと、
突起電極を有すると共に前記第1の半導体チップ上に積層して搭載され、少なくとも互いの突起電極同士の接触部の周囲が導電性のめっき膜により被覆されてなる1または2以上の第2の半導体チップ
とを備えたことを特徴とする半導体チップ実装体。
A wiring board having a wiring layer on the surface,
It has a protruding electrode and is mounted on the wiring board, and the protruding electrode is in contact with the wiring layer, and at least a periphery of a contact portion between the protruding electrode and the wiring layer is covered with a conductive plating film. A first semiconductor chip;
One or more second semiconductors having a protruding electrode and mounted on the first semiconductor chip in a stacked manner, and at least a periphery of a contact portion between the protruding electrodes is covered with a conductive plating film. A semiconductor chip mounted body comprising: a chip.
前記めっき膜は、銅(Cu),ニッケル(Ni),金(Au),錫(Sn)またはこれら金属の合金により構成されている
ことを特徴とする請求項1記載の半導体チップ実装体。
The semiconductor chip package according to claim 1, wherein the plating film is made of copper (Cu), nickel (Ni), gold (Au), tin (Sn), or an alloy of these metals.
前記第1の半導体チップは、その両面間を貫通する貫通孔内に導電性材料を埋設して形成された貫通電極を有すると共に、前記貫通電極の端部に外部引き出し電極を有し、前記外部引出電極に前記突起電極が形成されている
ことを特徴とする請求項1または2記載の半導体チップ実装体。
The first semiconductor chip has a through electrode formed by burying a conductive material in a through hole penetrating between both surfaces thereof, and has an external lead electrode at an end of the through electrode. The semiconductor chip package according to claim 1, wherein the protruding electrode is formed on an extraction electrode.
前記配線基板と第1の半導体チップとの接続部における前記突起電極および外部引き出し電極の全体が前記めっき膜により被覆されている
ことを特徴とする請求項3記載の半導体チップ実装体。
4. The semiconductor chip package according to claim 3, wherein the entirety of the protruding electrode and the external lead electrode in a connection portion between the wiring substrate and the first semiconductor chip is covered with the plating film. 5.
前記半導体チップの突起電極の全体が前記めっき膜により被覆されている
ことを特徴とする請求項4記載の半導体チップ実装体。
The semiconductor chip mounted body according to claim 4, wherein the whole of the protruding electrode of the semiconductor chip is covered with the plating film.
前記配線基板上に搭載された第1の半導体チップおよび第2の半導体チップが樹脂で封止されている
ことを特徴とする請求項1乃至5のいずれか1に記載の半導体チップ実装体。
The semiconductor chip package according to claim 1, wherein the first semiconductor chip and the second semiconductor chip mounted on the wiring board are sealed with a resin.
前記第2半導体チップおよび前記配線基板が、前記第1の半導体チップの貫通電極に対向する位置に貫通電極を有し、前記複数の貫通電極が前記突起電極を介して電気的に接続されている
ことを特徴とする請求項1乃至6のいずれか1に記載の半導体チップ実装体。
The second semiconductor chip and the wiring substrate have a through electrode at a position facing the through electrode of the first semiconductor chip, and the plurality of through electrodes are electrically connected via the protruding electrodes. The semiconductor chip package according to claim 1, wherein:
表面に配線層を有する配線基板に対して、突起電極を有する第1の半導体チップの前記突起電極が前記配線基板の配線層上の所定の接続箇所に接触するように位置合わせを行うと共に、前記第1の半導体チップ上に、突起電極を有する1または2以上の第2の半導体チップを互いの突起電極同士が接触するように位置合わせを行う工程と、
前記第1の半導体チップの突起電極と前記配線基板の配線層の接続箇所との間、および前記第1および第2の半導体チップの突起電極同士をそれぞれめっき膜により電気的に接続させる工程
とを含むことを特徴とする半導体チップ実装体の製造方法。
Positioning is performed such that the projecting electrodes of the first semiconductor chip having projecting electrodes are in contact with predetermined connection locations on the wiring layer of the wiring board with respect to the wiring board having the wiring layer on the surface, and A step of aligning one or more second semiconductor chips having projecting electrodes on the first semiconductor chip such that the projecting electrodes are in contact with each other;
Electrically connecting the protruding electrodes of the first semiconductor chip to the connection locations of the wiring layers of the wiring board and the protruding electrodes of the first and second semiconductor chips by plating films, respectively. A method for manufacturing a semiconductor chip mounted body, comprising:
前記めっき膜を電気めっきまたは溶射めっきにより形成する
ことを特徴とする請求項8記載の半導体チップ実装体の製造方法。
The method for manufacturing a semiconductor chip package according to claim 8, wherein the plating film is formed by electroplating or thermal spray plating.
前記めっき膜を、めっき液が収容されためっき槽の壁面に超音波振動を加えつつ形成する
ことを特徴とする請求項8または9に記載の半導体チップ実装体の製造方法。
The method for manufacturing a semiconductor chip mounted body according to claim 8, wherein the plating film is formed while applying ultrasonic vibration to a wall surface of a plating bath containing a plating solution.
前記第1および第2の半導体チップが実装された配線基板をめっき槽内に配置し、内部を減圧したのちめっき液を前記めっき層内に収容することにより、前記めっき膜を形成する
ことを特徴とする請求項8または9に記載の半導体チップ実装体の製造方法。
The plating film is formed by disposing a wiring board on which the first and second semiconductor chips are mounted in a plating tank, depressurizing the inside, and then housing a plating solution in the plating layer. The method for manufacturing a semiconductor chip mounted body according to claim 8 or 9, wherein
前記めっき膜を、めっき槽に収容されためっき液を加圧しつつ形成する
ことを特徴とする請求項8または9に記載の半導体チップ実装体の製造方法。
The method according to claim 8, wherein the plating film is formed while pressurizing a plating solution contained in a plating tank.
前記めっき膜を形成した後、前記配線基板上に搭載された第1の半導体チップおよび第2の半導体チップを樹脂で封止する工程を含む
ことを特徴とする請求項8ないし12に記載の半導体チップ実装体の製造方法。
13. The semiconductor according to claim 8, further comprising: after forming the plating film, sealing a first semiconductor chip and a second semiconductor chip mounted on the wiring substrate with a resin. Manufacturing method of chip mounted body.
JP2004141893A 2003-05-15 2004-05-12 Semiconductor chip mounted body and its manufacturing method Pending JP2004363573A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004141893A JP2004363573A (en) 2003-05-15 2004-05-12 Semiconductor chip mounted body and its manufacturing method
PCT/JP2004/006878 WO2004102663A1 (en) 2003-05-15 2004-05-14 Semiconductor chip mounting body and manufacturing method thereof
US10/556,335 US20060231927A1 (en) 2003-05-15 2004-05-14 Semiconductor chip mounting body and manufacturing method thereof
US12/219,211 US20090014897A1 (en) 2003-05-15 2008-07-17 Semiconductor chip package and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003137140 2003-05-15
JP2004141893A JP2004363573A (en) 2003-05-15 2004-05-12 Semiconductor chip mounted body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004363573A true JP2004363573A (en) 2004-12-24

Family

ID=33455476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141893A Pending JP2004363573A (en) 2003-05-15 2004-05-12 Semiconductor chip mounted body and its manufacturing method

Country Status (3)

Country Link
US (1) US20060231927A1 (en)
JP (1) JP2004363573A (en)
WO (1) WO2004102663A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335473A (en) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd Method of bonding semiconductor element and semiconductor device
JP2009010311A (en) * 2007-06-26 2009-01-15 Hynix Semiconductor Inc Through-silicon via stack package and manufacturing method therefor
US7598617B2 (en) 2006-03-17 2009-10-06 Hynix Semiconductor Inc. Stack package utilizing through vias and re-distribution lines
US8012798B2 (en) 2009-05-22 2011-09-06 Elpida Memory, Inc. Method of fabricating stacked semiconductor chips
JP2012069555A (en) * 2010-09-21 2012-04-05 Disco Abrasive Syst Ltd Stacked device manufacturing method
KR20170036088A (en) * 2014-07-29 2017-03-31 후아웨이 테크놀러지 컴퍼니 리미티드 Chip integration module, chip encapsulation structure and chip integration method
JP2019106550A (en) * 2013-10-09 2019-06-27 学校法人早稲田大学 Electrode connection method and electrode connection structure
US11189775B2 (en) 2017-09-29 2021-11-30 Brother Kogyo Kabushiki Kaisha Composite substrate for preventing bonding failure between substrates

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551857B2 (en) 1997-04-04 2003-04-22 Elm Technology Corporation Three dimensional structure integrated circuits
WO2004015764A2 (en) 2002-08-08 2004-02-19 Leedy Glenn J Vertical system integration
JP4327644B2 (en) * 2004-03-31 2009-09-09 Necエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP4507101B2 (en) * 2005-06-30 2010-07-21 エルピーダメモリ株式会社 Semiconductor memory device and manufacturing method thereof
DE102005035393B4 (en) * 2005-07-28 2007-05-24 Infineon Technologies Ag A method of manufacturing a multi-chip device and such a device
US7354870B2 (en) * 2005-11-14 2008-04-08 National Research Council Of Canada Process for chemical etching of parts fabricated by stereolithography

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266953A (en) * 1988-08-31 1990-03-07 Nec Corp Mounting structure of semiconductor element and manufacture thereof
JPH08148531A (en) * 1994-11-22 1996-06-07 Nec Corp Semiconductor chip and method for connecting semiconductor chip with circuit board
JP2000156459A (en) * 1998-11-20 2000-06-06 Matsushita Electronics Industry Corp Manufacture of semiconductor device
JP2002118132A (en) * 2000-10-10 2002-04-19 Matsushita Electric Ind Co Ltd Mounting method of electronic parts
JP2002176137A (en) * 2000-09-28 2002-06-21 Toshiba Corp Laminated semiconductor device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807021A (en) * 1986-03-10 1989-02-21 Kabushiki Kaisha Toshiba Semiconductor device having stacking structure
US5229647A (en) * 1991-03-27 1993-07-20 Micron Technology, Inc. High density data storage using stacked wafers
US5432999A (en) * 1992-08-20 1995-07-18 Capps; David F. Integrated circuit lamination process
US5535101A (en) * 1992-11-03 1996-07-09 Motorola, Inc. Leadless integrated circuit package
US5431328A (en) * 1994-05-06 1995-07-11 Industrial Technology Research Institute Composite bump flip chip bonding
US5542601A (en) * 1995-02-24 1996-08-06 International Business Machines Corporation Rework process for semiconductor chips mounted in a flip chip configuration on an organic substrate
US5783870A (en) * 1995-03-16 1998-07-21 National Semiconductor Corporation Method for connecting packages of a stacked ball grid array structure
US5682062A (en) * 1995-06-05 1997-10-28 Harris Corporation System for interconnecting stacked integrated circuits
US5754408A (en) * 1995-11-29 1998-05-19 Mitsubishi Semiconductor America, Inc. Stackable double-density integrated circuit assemblies
US5808874A (en) * 1996-05-02 1998-09-15 Tessera, Inc. Microelectronic connections with liquid conductive elements
US5860585A (en) * 1996-05-31 1999-01-19 Motorola, Inc. Substrate for transferring bumps and method of use
US6809421B1 (en) * 1996-12-02 2004-10-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US5994166A (en) * 1997-03-10 1999-11-30 Micron Technology, Inc. Method of constructing stacked packages
US6281590B1 (en) * 1997-04-09 2001-08-28 Agere Systems Guardian Corp. Circuit and method for providing interconnections among individual integrated circuit chips in a multi-chip module
US6043429A (en) * 1997-05-08 2000-03-28 Advanced Micro Devices, Inc. Method of making flip chip packages
GB9808561D0 (en) * 1998-04-23 1998-06-24 Lucas Ind Plc Security arrangement
US6011301A (en) * 1998-06-09 2000-01-04 Stmicroelectronics, Inc. Stress reduction for flip chip package
JP3563604B2 (en) * 1998-07-29 2004-09-08 株式会社東芝 Multi-chip semiconductor device and memory card
SG75873A1 (en) * 1998-09-01 2000-10-24 Texas Instr Singapore Pte Ltd Stacked flip-chip integrated circuit assemblage
KR20000029054A (en) * 1998-10-15 2000-05-25 이데이 노부유끼 Semiconductor device and method for manufacturing the same
US6426176B1 (en) * 1999-01-06 2002-07-30 Intel Corporation Method of forming a protective conductive structure on an integrated circuit package interconnection
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
US6483190B1 (en) * 1999-10-20 2002-11-19 Fujitsu Limited Semiconductor chip element, semiconductor chip element mounting structure, semiconductor chip element mounting device and mounting method
KR100345035B1 (en) * 1999-11-06 2002-07-24 한국과학기술원 The Method for Preparation of Flip chip Bump and UBM for High speed Copper Interconnect Chip Using Electroless Plating Method
JP3879816B2 (en) * 2000-06-02 2007-02-14 セイコーエプソン株式会社 SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, LAMINATED SEMICONDUCTOR DEVICE, CIRCUIT BOARD AND ELECTRONIC DEVICE
JP3951091B2 (en) * 2000-08-04 2007-08-01 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP3735526B2 (en) * 2000-10-04 2006-01-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3447690B2 (en) * 2000-12-04 2003-09-16 日本電気株式会社 Semiconductor chip stacking method
US6518675B2 (en) * 2000-12-29 2003-02-11 Samsung Electronics Co., Ltd. Wafer level package and method for manufacturing the same
JP2003201574A (en) * 2001-10-25 2003-07-18 Seiko Epson Corp Electroless plating apparatus, semi-conductor wafer with bump, semiconductor chip with bump, manufacturing method thereof, semiconductor device, circuit substrate, and electronic appliance
JP2003258196A (en) * 2002-02-27 2003-09-12 Fujitsu Ltd Semiconductor device and method for manufacturing the same
US6700206B2 (en) * 2002-08-02 2004-03-02 Micron Technology, Inc. Stacked semiconductor package and method producing same
US6903442B2 (en) * 2002-08-29 2005-06-07 Micron Technology, Inc. Semiconductor component having backside pin contacts
JP2004119646A (en) * 2002-09-26 2004-04-15 Sony Corp Semiconductor device and method of manufacturing same
US6841883B1 (en) * 2003-03-31 2005-01-11 Micron Technology, Inc. Multi-dice chip scale semiconductor components and wafer level methods of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266953A (en) * 1988-08-31 1990-03-07 Nec Corp Mounting structure of semiconductor element and manufacture thereof
JPH08148531A (en) * 1994-11-22 1996-06-07 Nec Corp Semiconductor chip and method for connecting semiconductor chip with circuit board
JP2000156459A (en) * 1998-11-20 2000-06-06 Matsushita Electronics Industry Corp Manufacture of semiconductor device
JP2002176137A (en) * 2000-09-28 2002-06-21 Toshiba Corp Laminated semiconductor device
JP2002118132A (en) * 2000-10-10 2002-04-19 Matsushita Electric Ind Co Ltd Mounting method of electronic parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598617B2 (en) 2006-03-17 2009-10-06 Hynix Semiconductor Inc. Stack package utilizing through vias and re-distribution lines
JP2007335473A (en) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd Method of bonding semiconductor element and semiconductor device
JP2009010311A (en) * 2007-06-26 2009-01-15 Hynix Semiconductor Inc Through-silicon via stack package and manufacturing method therefor
US8012798B2 (en) 2009-05-22 2011-09-06 Elpida Memory, Inc. Method of fabricating stacked semiconductor chips
JP2012069555A (en) * 2010-09-21 2012-04-05 Disco Abrasive Syst Ltd Stacked device manufacturing method
JP2019106550A (en) * 2013-10-09 2019-06-27 学校法人早稲田大学 Electrode connection method and electrode connection structure
KR20170036088A (en) * 2014-07-29 2017-03-31 후아웨이 테크놀러지 컴퍼니 리미티드 Chip integration module, chip encapsulation structure and chip integration method
US11189775B2 (en) 2017-09-29 2021-11-30 Brother Kogyo Kabushiki Kaisha Composite substrate for preventing bonding failure between substrates

Also Published As

Publication number Publication date
WO2004102663A1 (en) 2004-11-25
US20060231927A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US7034401B2 (en) Packaging substrates for integrated circuits and soldering methods
KR100488126B1 (en) Semiconductor device and manufacturing method thereof
TWI437679B (en) Substrate interconnections having different sizes
JP4568337B2 (en) Integrated semiconductor device
JP4345808B2 (en) Manufacturing method of semiconductor device
JP5375708B2 (en) Manufacturing method of semiconductor device
WO2005059998A1 (en) Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities
US20060118940A1 (en) Semiconductor device and method of fabricating the same
JP5064632B2 (en) Method and apparatus for forming an interconnect structure
JP4245754B2 (en) Semiconductor device
JP2007157844A (en) Semiconductor device, and method of manufacturing same
JP2004363573A (en) Semiconductor chip mounted body and its manufacturing method
US10129980B2 (en) Circuit board and electronic component device
JP5272922B2 (en) Semiconductor device and manufacturing method thereof
JP2010272737A (en) Method for manufacturing semiconductor device
JP2008277733A (en) Semiconductor device
US20090014897A1 (en) Semiconductor chip package and method of manufacturing the same
JPH07201864A (en) Projection electrode formation method
JP2005057264A (en) Packaged electric structure and its manufacturing method
JP3457926B2 (en) Semiconductor device and manufacturing method thereof
JP3279470B2 (en) Semiconductor device and manufacturing method thereof
JP2004014854A (en) Semiconductor device
TW201239987A (en) Protection of reactive metal surfaces of semiconductor devices during shipping by providing an additional protection layer
JP2002222901A (en) Method of mounting semiconductor device, mounting structure thereof, semiconductor device and manufacturing method thereof
JP2009070865A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608