JP2007255860A - Absorber for air-cooled absorption type refrigerating device - Google Patents

Absorber for air-cooled absorption type refrigerating device Download PDF

Info

Publication number
JP2007255860A
JP2007255860A JP2006084428A JP2006084428A JP2007255860A JP 2007255860 A JP2007255860 A JP 2007255860A JP 2006084428 A JP2006084428 A JP 2006084428A JP 2006084428 A JP2006084428 A JP 2006084428A JP 2007255860 A JP2007255860 A JP 2007255860A
Authority
JP
Japan
Prior art keywords
absorber
air
solution
cooled
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006084428A
Other languages
Japanese (ja)
Other versions
JP4821397B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006084428A priority Critical patent/JP4821397B2/en
Publication of JP2007255860A publication Critical patent/JP2007255860A/en
Application granted granted Critical
Publication of JP4821397B2 publication Critical patent/JP4821397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems on clogging of an absorbent atomizing nozzle in an indirect air-cooled type absorber applying an atomization method, increase of power consumption by increase of discharge heads of a solution pump, and the like. <P>SOLUTION: In this air-cooled absorption type refrigerating device where the indirect air-cooling method for removing heat only by sensible heat of a solution obtained by supercooling an absorbed solution flowing into the absorber by an air-cooled cooler, is applied as a cooling method of the absorber, a liquid film flow-down type plate structure is applied to an absorbing portion of the absorber 3, an absorbed solution distributing tray 6 for uniformly distributing the absorbed solution to the plate portion, is disposed on its upper portion, and the absorbed solution after supercooling is allowed to flow to both faces of the plate portion in a liquid film state to promote the absorption of a refrigerant vapor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、間接空冷方式を採用した空冷吸収式冷凍装置の吸収器の構造に関するものである。   The present invention relates to the structure of an absorber of an air-cooled absorption refrigeration apparatus employing an indirect air-cooling method.

従来の一般的な空冷吸収式冷凍装置の吸収器は、例えば図7に示すように、吸収器30を、多数の伝熱フィン9,9・・・を備えた複数本の伝熱管3a,3a・・・(溶液流入口3c,3c・・・)と、吸収溶液分配トレイ11とから構成し、溶液循環路13に設けた冷媒循環ポンプPを介して吸収器30の伝熱管3a,3a・・・内の冷媒通路3b,3b・・・に吸収溶液を流し、同溶液通路3b,3b・・・部分で蒸発器側からの冷媒蒸気を吸収させながら、吸収溶液を伝熱管3a,3a外周のファンFの冷却風により冷却される空冷フィン9,9・・・で冷却する直接空冷方式であり、吸収器30では、冷媒蒸気の吸収と吸収溶液の冷却とを同時に行うための気液界面の拡大が重要であるため、小型化への制約が大きい。   For example, as shown in FIG. 7, an absorber of a conventional general air-cooled absorption refrigeration apparatus includes an absorber 30 and a plurality of heat transfer tubes 3a, 3a each having a plurality of heat transfer fins 9, 9. ... (solution inlets 3c, 3c ...) and the absorption solution distribution tray 11, and the heat transfer tubes 3a, 3a, ... of the absorber 30 via the refrigerant circulation pump P provided in the solution circulation path 13. ..Absorptive solution flows through the inner refrigerant passages 3b, 3b... And absorbs the refrigerant vapor from the evaporator side in the solution passages 3b, 3b. Are directly air-cooled with air-cooling fins 9, 9... Cooled by the cooling air of the fan F, and the absorber 30 is a gas-liquid interface for simultaneously absorbing the refrigerant vapor and cooling the absorbing solution. Since it is important to expand the size, there are significant restrictions on downsizing.

例えば、吸収溶液分配トレイ11を含めた上下吸収器ヘッダー部分でのスペース、蒸気圧損考慮のための大口径管の使用、冷媒蒸気の流速制限に起因して蒸発器との連絡管が太くなる等である。   For example, the space in the upper and lower absorber headers including the absorbent solution distribution tray 11, the use of a large-diameter pipe for considering vapor pressure loss, the connection pipe with the evaporator becoming thick due to the restriction of the flow rate of the refrigerant vapor, etc. It is.

また、コスト的にも、溶接による接続箇所があるため、小型機では割高となる。   Moreover, since there exists the connection location by welding also in terms of cost, it becomes expensive in a small machine.

これに対して、例えば図8に示すように、溶液ポンプPにより溶液循環路12を介して筒状の吸収器30内に流入する吸収溶液を伝熱管15a,15a・・・、伝熱フィン17,17・・・、上下ヘッダ16b,16a、ファンF等よりなる空冷式の冷却器15にて過冷却することによって、吸収器30内では単に冷媒蒸気のみを吸収させ、吸収熱は同過冷却された吸収溶液の顕熱で取り去るだけの間接(溶液分離冷却)空冷方式があり、同方式では、冷却手段が不要となるだけ吸収器30部分が小型化されるので、小型の空冷吸収器では有利である。   On the other hand, for example, as shown in FIG. 8, the absorption solution flowing into the cylindrical absorber 30 through the solution circulation path 12 by the solution pump P is transferred to the heat transfer tubes 15 a, 15 a. , 17..., And by supercooling by the air-cooled cooler 15 including the upper and lower headers 16b and 16a, the fan F, etc., only the refrigerant vapor is absorbed in the absorber 30, and the absorbed heat is supercooled. There is an indirect (solution separation cooling) air cooling method that removes the absorbed solution by sensible heat. In this method, the absorber 30 is reduced in size so that no cooling means is required. It is advantageous.

そこで、従来例の中には、そのような特徴を活用し、吸収溶液噴霧方式(図8の符号14参照)による冷媒蒸気の吸収方法を採用した空冷吸収式冷凍装置の吸収器がある(特許文献1参照)。   Therefore, in the conventional example, there is an absorber of an air-cooled absorption refrigeration apparatus that utilizes such a feature and adopts an absorption solution spray method (see reference numeral 14 in FIG. 8) of refrigerant vapor (patent). Reference 1).

特開平7−98163号公報(明細書1−8頁、図1−12)JP-A-7-98163 (Specifications page 1-8, FIG. 1-12)

しかし、同噴霧方式では吸収液噴霧ノズル14の目詰まりや、溶液ポンプの吐出ヘッド増大による消費電力の増加等の問題がある。   However, the spray system has problems such as clogging of the absorbing liquid spray nozzle 14 and an increase in power consumption due to an increase in the discharge head of the solution pump.

本願発明は、このような問題を解決するためになされたもので、吸収器の冷却方式を、上記吸収器に流入する吸収溶液を空冷冷却器にて過冷却した溶液の顕熱で取り去るだけの間接空冷方式とする一方、吸収器の吸収部に液膜流下式のプレート構造を採用するとともに、その上部にプレートに吸収溶液を均等に分配するための吸収溶液分配トレイを設け、当該プレートの両面に上記過冷却後の吸収溶液を液膜状態で流すことによって、冷媒蒸気の吸収を促進させるようにした高効率かつ小型、低コストの空冷吸収器を提供することを目的とするものである。   The present invention has been made to solve such problems, and the cooling method of the absorber is simply removed by the sensible heat of the solution supercooled by the air-cooled cooler. While adopting an indirect air cooling system, a liquid film flow-down plate structure is adopted for the absorption part of the absorber, and an absorption solution distribution tray for evenly distributing the absorption solution to the plate is provided on the upper part, and both surfaces of the plate are arranged. Another object of the present invention is to provide a high-efficiency, small, and low-cost air-cooled absorber that promotes absorption of refrigerant vapor by flowing the supercooled absorption solution in a liquid film state.

本願発明は、同目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the same object, the present invention is configured with the following problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、吸収器の冷却方式を、当該吸収器に流入する吸収溶液を空冷冷却器にて過冷却した溶液の顕熱で取り去るだけの間接空冷方式としてなる空冷吸収式冷凍装置において、上記吸収器の吸収部に液膜流下式のプレート構造を採用するとともに、その上部に同プレート部に吸収溶液を均等に分配するための吸収溶液分配トレイを設け、当該プレート部の両面に上記過冷却後の吸収溶液を液膜状態で流すことにより、冷媒蒸気の吸収を促進させるようにされている。
(1) First problem solving means The first problem solving means of the present invention removes the cooling method of the absorber by sensible heat of the solution supercooled by the air-cooled cooler from the absorbing solution flowing into the absorber. In the air-cooled absorption refrigeration system, which is an indirect air-cooling system only, a liquid film flow-down plate structure is adopted for the absorption part of the absorber, and absorption for evenly distributing the absorption solution to the plate part on the upper part A solution distribution tray is provided, and absorption of the refrigerant vapor is promoted by flowing the supercooled absorption solution in a liquid film state on both surfaces of the plate portion.

このような構成によれば、吸収器の吸収部を伝熱管ではなくプレート部材で構成することができるようになり、蒸発器との一体化も可能となり、小型化、低コスト化が可能となる。   According to such a configuration, the absorption part of the absorber can be configured by a plate member instead of a heat transfer tube, and can be integrated with the evaporator, and can be reduced in size and cost. .

また、従来例のような吸収溶液噴霧ノズルを使用するものと異なって、目詰まりや、溶液ポンプの吐出ヘッドの増大等がなく、消費電力も少ない。   Further, unlike the case of using the absorbing solution spray nozzle as in the conventional example, there is no clogging, an increase in the discharge head of the solution pump, and the power consumption is small.

また、吸収溶液冷却用の空冷冷却器は、汎用の伝熱管や熱交換器が使用できるため、大きくコストが低下する。   In addition, since the air-cooled cooler for cooling the absorbing solution can use a general-purpose heat transfer tube or heat exchanger, the cost is greatly reduced.

(2) 第2の課題解決手段
この発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、プレート部はフラットな平面プレートよりなっている。
(2) Second Problem Solving Means According to a second problem solving means of the present invention, in the configuration of the first problem solving means, the plate portion is a flat flat plate.

このような構成によると、液膜化による吸収効率向上、冷却部不要による可及的な小型化を図ることができる。   According to such a configuration, it is possible to improve the absorption efficiency by forming a liquid film and to reduce the size as much as possible without the need for a cooling unit.

(3) 第3の課題解決手段
この発明の第3の課題解決手段は、上記第1の課題解決手段の構成において、プレート部は、コルゲーションタイプの平面プレートよりなっている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first problem solving means, the plate portion is a corrugated flat plate.

このような構成によれば、平面プレートとして効果的に液膜化が図られることはもちろん、液膜部の面積拡大により、より有効に吸収性能を向上させることができる。   According to such a configuration, a liquid film can be effectively formed as a flat plate, and the absorption performance can be improved more effectively by expanding the area of the liquid film portion.

(4) 第4の課題解決手段
この発明の第4の課題解決手段は、上記第2の課題解決手段の構成において、プレート部の表面に、液膜拡散手段を設けて構成されている。
(4) Fourth Problem Solving Means A fourth problem solving means of the present invention is configured by providing a liquid film diffusion means on the surface of the plate portion in the configuration of the second problem solving means.

このような構成によれば、プレート部表面の液膜を有効に拡散させ、下部側への流下を可及的に均一することができる。その結果、より有効に吸収性能を向上させることができる。   According to such a configuration, the liquid film on the surface of the plate portion can be effectively diffused, and the flow down to the lower side can be made as uniform as possible. As a result, the absorption performance can be improved more effectively.

この液膜拡散手段としては、例えばプレート部の表面にディンプルや凹凸の溝を付けたり、さらに金網等を取り付けることなどが考えられる。   As the liquid film diffusing means, for example, it is conceivable to add dimples or concave and convex grooves on the surface of the plate portion, or to attach a wire mesh or the like.

(5) 第5の課題解決手段
この発明の第5の課題解決手段は、上記第3の課題解決手段の構成において、コルゲーションタイプの平面プレートのプレート部には、多数の穴が設けられている。
(5) Fifth Problem Solving Means According to a fifth problem solving means of the present invention, in the configuration of the third problem solving means, a plate portion of a corrugation type flat plate is provided with a number of holes. .

このような構成によれば、平面部での吸収液の液膜化と多数の穴を介した液滴化とが可能となり、それらの両方で冷媒蒸気の吸収性能を一層大きく向上させることができる。   According to such a configuration, it is possible to form a liquid film of the absorbing liquid on the flat portion and to form droplets through a large number of holes, and both of them can further improve the absorption performance of the refrigerant vapor. .

この場合、穴あきプレートとしては、例えばパンチングプレートやエキスパンドメタルなどの採用が可能であり、そのようにすると、容易に加工製作することができる。   In this case, for example, a punching plate or an expanded metal can be used as the perforated plate, and by doing so, it can be easily processed and manufactured.

以上の結果、本願発明によると、冷媒蒸気吸収性能の高い吸収器を低コスト、かつコンパクトに提供することが可能となる。   As a result, according to the present invention, it is possible to provide an absorber with high refrigerant vapor absorption performance at low cost and in a compact manner.

(最良の実施の形態1)
図1〜図3は、本願発明の最良の実施の形態1に係る空冷吸収式冷凍装置の吸収器の構成を示している。
(Best Embodiment 1)
1 to 3 show the configuration of an absorber of an air-cooled absorption refrigeration apparatus according to the best embodiment 1 of the present invention.

先ず図1は、同吸収器3に対して蒸発器2を箱型の本体ケーシング4内に一体化した吸収器および蒸発器ユニット1部分の構成を箱型の本体ケーシング4の一部を切り欠いて示している。   First, FIG. 1 shows a configuration of an absorber and an evaporator unit 1 part in which an evaporator 2 is integrated in a box-type main body casing 4 with respect to the same absorber 3, and a part of the box-type main body casing 4 is cut away. It shows.

この実施の形態の場合、吸収器3に入るLiBr吸収溶液を図示しない空冷冷却器(図8参照)にて過冷却し、蒸発器2と一体で本体ケーシング1内に収められた吸収器3内で、蒸発器2で蒸発させた冷媒蒸気を単に吸収させるだけで、吸収時に発生する吸収熱を過冷却された吸収溶液の顕熱で間接的に冷却する間接(溶液分離冷却)空冷方式が採用されている。   In the case of this embodiment, the LiBr absorption solution entering the absorber 3 is supercooled by an air-cooled cooler (not shown) (see FIG. 8), and the absorber 3 integrated with the evaporator 2 is accommodated in the main body casing 1. Therefore, an indirect (solution separation cooling) air cooling method is adopted in which the refrigerant vapor evaporated in the evaporator 2 is simply absorbed and the absorption heat generated during absorption is indirectly cooled by the sensible heat of the supercooled absorption solution. Has been.

そして、蒸発器2、吸収器3の各々上部には、図2、図3に示すように、冷媒、吸収溶液を均等に分配するための冷媒分配トレイ5、吸収溶液分配トレイ6を各々設け、蒸発器2は内部に被冷却体通路21aを形成した菱形構造のプレート熱交換器21,21・・・とし、表面に冷媒を液膜で流下させて蒸発させることで内部の被冷却流体(冷水等)を冷却するようになっている一方、吸収器3は単一の平面プレート31,31・・・の両面を溶液が液膜状態で垂直に流下することで、冷媒蒸気の吸収をより効果的に促進させるようになっている。   Then, as shown in FIGS. 2 and 3, a refrigerant distribution tray 5 and an absorption solution distribution tray 6 for evenly distributing the refrigerant and the absorption solution are provided on the upper portions of the evaporator 2 and the absorber 3, respectively. The evaporator 2 is a rhombus-shaped plate heat exchanger 21, 21... In which a cooled body passage 21 a is formed, and a coolant is allowed to flow down on the surface in a liquid film to evaporate the liquid to be cooled (cold water). Etc.), while the absorber 3 causes the solution to flow vertically in a liquid film state on both surfaces of a single flat plate 31, 31. Has been promoted.

なお、図1中の7は希溶液の出口、8aは冷水の入り口、8bは冷水の出口を示している。   In FIG. 1, 7 is an outlet for dilute solution, 8a is an inlet for cold water, and 8b is an outlet for cold water.

このような構成によれば、吸収器3の吸収部を伝熱管ではなくプレート部材で構成することができるようになり、蒸発器2との一体化も可能となり、小型化、低コスト化が可能となる。   According to such a configuration, the absorption part of the absorber 3 can be configured by a plate member instead of a heat transfer tube, and can be integrated with the evaporator 2, thereby enabling downsizing and cost reduction. It becomes.

また、従来例のような吸収溶液噴霧ノズル(図8中の14参照)を使用するものと異なって、目詰まりや、溶液ポンプの吐出ヘッドの増大等がなく、消費電力も少ない。   Further, unlike the case of using an absorbing solution spray nozzle (see 14 in FIG. 8) as in the conventional example, there is no clogging, an increase in the discharge head of the solution pump, and the power consumption is small.

また、吸収溶液冷却用の空冷冷却器は、汎用の伝熱管や熱交換器が使用できるため(図8の構成参照)、大きくコストが低下する。   In addition, since the air-cooled cooler for cooling the absorbing solution can use a general-purpose heat transfer tube or heat exchanger (see the configuration in FIG. 8), the cost is greatly reduced.

また、吸収器3の吸収部はフラットな平面プレート31,31・・・よりなっている。   Moreover, the absorption part of the absorber 3 consists of flat plane plates 31, 31 ....

このような構成によると、液膜化による吸収効率向上、冷却部不要による可及的な小型化を図ることができる。   According to such a configuration, it is possible to improve the absorption efficiency by forming a liquid film and to reduce the size as much as possible without the need for a cooling unit.

それらの結果、冷媒蒸気吸収性能の高い吸収器を低コスト、かつコンパクトに提供することが可能となる。   As a result, it is possible to provide an absorber having high refrigerant vapor absorption performance at a low cost and in a compact manner.

(変形例1)
なお、以上のように構成した場合において、上記フラットな平面プレート31,31・・・の表面には、液膜を有効に拡散させ、その下部への流下状態をできるだけ均一化にするように、例えばディンプルや凹凸の溝を付けたり、さらに金網等を取り付けることもできる。
(Modification 1)
In the case of the above configuration, the liquid film is effectively diffused on the surfaces of the flat flat plates 31, 31..., So that the flowing state to the lower part is made as uniform as possible. For example, dimples and concave / convex grooves can be provided, and a wire mesh or the like can be attached.

(最良の実施の形態2)
次に図4および図5は、本願発明の最良の実施の形態2に係る空冷吸収式冷凍装置の吸収器の構造を示している。
(Best Mode 2)
Next, FIGS. 4 and 5 show the structure of the absorber of the air-cooled absorption refrigeration apparatus according to the second preferred embodiment of the present invention.

この実施の形態は、上記最良の実施の形態1の構成における吸収器3の各平面プレート31,31・・・を、例えば図4に示すような上下方向に所定の長さのコルゲーション構造に曲成するとともに、その表面31a,31a・・・に多数の穴32,32・・・を設け、平面部を上方側から下方側に流下する液膜化された吸収溶液をさらに多数の穴32,32・・・を介して効果的に液滴化させながら順次上段から下段に流下させるようにしたことを特徴とするものである。   In this embodiment, the planar plates 31, 31... Of the absorber 3 in the configuration of the best embodiment 1 are bent into a corrugation structure having a predetermined length in the vertical direction as shown in FIG. Are provided with a large number of holes 32, 32... On the surfaces 31a, 31a... 32..., While being effectively formed into droplets through the upper and lower stages 32...

このような構成によると、液膜形成のためのプレート部の面積が大きく拡大され、液膜面積が大きく拡大されるとともに、それらの広い範囲で上段側から下段側への液滴化が生じ、それらの両方の作用で冷媒蒸気の吸収性能が一段と大きく向上する。   According to such a configuration, the area of the plate portion for liquid film formation is greatly enlarged, the liquid film area is greatly enlarged, and droplet formation from the upper stage side to the lower stage occurs in those wide ranges, Both of these effects greatly improve the refrigerant vapor absorption performance.

(変形例1)
なお、以上のように構成した場合においても、上記多数の穴32,32・・・を有するコルゲーション構造の平面プレート31,31・・・の表面に、液膜を拡散させ、その下部への流下状態をできるだけ均一化にするように、例えばディンプルや凹凸の溝を付けたり、さらに金網等を取り付けることができる。
(Modification 1)
Even when configured as described above, the liquid film is diffused on the surface of the flat plate 31, 31... Of the corrugation structure having the numerous holes 32, 32. In order to make the state as uniform as possible, for example, dimples or concave and convex grooves can be provided, or a wire mesh or the like can be attached.

(変形例2)
また、以上のように、吸収器3の平面プレート31,31・・・を、多数の穴32,32・・・を備えたコルゲーション構造のものに形成した場合において、例えば図6に示すように、上記吸収器3と蒸発器4は横方向に並設して一体化することもできる。
(Modification 2)
Further, as described above, when the flat plates 31, 31... Of the absorber 3 are formed in a corrugated structure having a large number of holes 32, 32. The absorber 3 and the evaporator 4 can be arranged side by side in the horizontal direction and integrated.

このような構成によっても、上記図4のものと全く同様の作用効果を実現することができる。   Even with such a configuration, it is possible to achieve the same effect as that of FIG.

本願発明の最良の実施の形態1に係る空冷吸収式冷凍装置の蒸発器および吸収器部分の構成を示す一部切欠斜視図である。It is a partially cutaway perspective view showing the configuration of the evaporator and the absorber part of the air-cooled absorption refrigeration apparatus according to the first embodiment of the present invention. 同装置の蒸発器部分の縦断面図である。It is a longitudinal cross-sectional view of the evaporator part of the same apparatus. 同装置の吸収器部分の縦断面図である。It is a longitudinal cross-sectional view of the absorber part of the same apparatus. 本願発明の最良の実施の形態2に係る空冷吸収式冷凍装置の蒸発器および吸収器部分の構成を示す斜視図である。It is a perspective view which shows the structure of the evaporator and absorber part of the air cooling absorption refrigerating device which concerns on best Embodiment 2 of this invention. 同装置の吸収器およびトレイ部分の構成を示す斜視図である。It is a perspective view which shows the structure of the absorber of the same apparatus, and a tray part. 同装置の変形例2に係る蒸発器および吸収器部分の斜視図である。It is a perspective view of the evaporator and absorber part which concern on the modification 2 of the apparatus. 従来一般の空冷吸収式冷凍装置の空冷吸収器の構成を示す図である。It is a figure which shows the structure of the air-cooling absorber of the conventional general air-cooling absorption refrigeration apparatus. 従来の空冷吸収式冷凍装置の間接空冷方式の吸収器の構成を示す図である。It is a figure which shows the structure of the absorber of the indirect air cooling system of the conventional air cooling absorption refrigeration apparatus.

符号の説明Explanation of symbols

1は蒸発器および吸収器ユニット、2は蒸発器、3は吸収器、4は本体ケーシング、5は冷媒分配トレイ、6は吸収溶液分配トレイ、21は蒸発器用プレート式熱交換器、21aは被冷却体通路、31は吸収器用平面プレートである。   1 is an evaporator and absorber unit, 2 is an evaporator, 3 is an absorber, 4 is a main body casing, 5 is a refrigerant distribution tray, 6 is an absorbent solution distribution tray, 21 is a plate heat exchanger for an evaporator, and 21a is a cover. The cooling body passage 31 is an absorber flat plate.

Claims (5)

吸収器の冷却方式を、当該吸収器に流入する吸収溶液を空冷冷却器にて過冷却した溶液の顕熱で取り去るだけの間接空冷方式としてなる空冷吸収式冷凍装置において、上記吸収器の吸収部に液膜流下式のプレート構造を採用するとともに、その上部に同プレート部に吸収溶液を均等に分配するための吸収溶液分配トレイを設け、当該プレート部の両面に上記過冷却後の吸収溶液を液膜状態で流すことにより、冷媒蒸気の吸収を促進させるようにしたことを特徴とする空冷吸収式冷凍装置の吸収器。   In the air-cooled absorption refrigeration system, the absorption unit of the absorber is an indirect air-cooling system in which the absorption solution flowing into the absorber is simply removed by the sensible heat of the supercooled solution in the air-cooled cooler. In addition, the plate structure of the liquid film flow type is adopted, and the upper part thereof is provided with an absorbent solution distribution tray for evenly distributing the absorbent solution to the same plate part, and the supercooled absorbent solution is placed on both surfaces of the plate part. An absorber of an air-cooled absorption refrigeration apparatus, wherein the absorption of refrigerant vapor is promoted by flowing in a liquid film state. プレート部は、フラットな平面プレートよりなっていることを特徴とする請求項1記載の空冷吸収式冷凍装置の吸収器。   2. The absorber of an air-cooled absorption refrigeration apparatus according to claim 1, wherein the plate portion is a flat flat plate. プレート部は、コルゲーションタイプの平面プレートよりなっていることを特徴とする請求項1記載の空冷吸収式冷凍装置の吸収器。   The absorber of an air-cooled absorption refrigeration apparatus according to claim 1, wherein the plate portion is a corrugated flat plate. プレート部の表面に、液膜拡散手段を設けて構成されていることを特徴とする請求項2又は3記載の空冷吸収式冷凍装置の吸収器。   The absorber of an air-cooled absorption refrigeration apparatus according to claim 2 or 3, wherein a liquid film diffusion means is provided on the surface of the plate portion. コルゲーションタイプの平面プレートのプレート部には、多数の穴が設けられていることを特徴とする請求項3又は4記載の空冷吸収式冷凍装置の吸収器。   The absorber of the air-cooled absorption refrigeration apparatus according to claim 3 or 4, wherein the plate portion of the corrugation type flat plate is provided with a number of holes.
JP2006084428A 2006-03-27 2006-03-27 Air-cooled absorption refrigeration equipment absorber Expired - Fee Related JP4821397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084428A JP4821397B2 (en) 2006-03-27 2006-03-27 Air-cooled absorption refrigeration equipment absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084428A JP4821397B2 (en) 2006-03-27 2006-03-27 Air-cooled absorption refrigeration equipment absorber

Publications (2)

Publication Number Publication Date
JP2007255860A true JP2007255860A (en) 2007-10-04
JP4821397B2 JP4821397B2 (en) 2011-11-24

Family

ID=38630278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084428A Expired - Fee Related JP4821397B2 (en) 2006-03-27 2006-03-27 Air-cooled absorption refrigeration equipment absorber

Country Status (1)

Country Link
JP (1) JP4821397B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278570A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Air-cooled absorption type refrigerating device
WO2017053955A1 (en) * 2015-09-24 2017-03-30 University Of Florida Research Foundation, Inc. Compact and efficient plate and frame abssorber
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470965U (en) * 1990-10-29 1992-06-23
JPH09273831A (en) * 1996-04-05 1997-10-21 Osaka Gas Co Ltd Plate type vaporizer for absorption type refrigerator
JPH10122702A (en) * 1996-10-15 1998-05-15 Daikin Ind Ltd Air cooled absorption-refrigerator
JPH11248292A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Absorption refrigerating device
JPH11257796A (en) * 1998-03-10 1999-09-24 Daikin Ind Ltd Air-cooled absorber
JP2000283662A (en) * 1999-03-31 2000-10-13 Tokyo Gas Co Ltd Falling liquid film type heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470965U (en) * 1990-10-29 1992-06-23
JPH09273831A (en) * 1996-04-05 1997-10-21 Osaka Gas Co Ltd Plate type vaporizer for absorption type refrigerator
JPH10122702A (en) * 1996-10-15 1998-05-15 Daikin Ind Ltd Air cooled absorption-refrigerator
JPH11248292A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Absorption refrigerating device
JPH11257796A (en) * 1998-03-10 1999-09-24 Daikin Ind Ltd Air-cooled absorber
JP2000283662A (en) * 1999-03-31 2000-10-13 Tokyo Gas Co Ltd Falling liquid film type heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278570A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Air-cooled absorption type refrigerating device
WO2017053955A1 (en) * 2015-09-24 2017-03-30 University Of Florida Research Foundation, Inc. Compact and efficient plate and frame abssorber
US10677501B2 (en) 2015-09-24 2020-06-09 University Of Florida Research Foundation, Incorporated Component and efficient plate and frame absorber
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment
US11236931B2 (en) 2016-01-28 2022-02-01 Cool4Sea Aps Absorption refrigeration and air conditioning devices
JP7029807B2 (en) 2016-01-28 2022-03-04 クール4シー エーピーエス Absorption refrigeration and air conditioning equipment

Also Published As

Publication number Publication date
JP4821397B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5868088B2 (en) Cooling unit for vehicle air conditioner
JP2007271197A (en) Absorption type refrigerating device
JP4821397B2 (en) Air-cooled absorption refrigeration equipment absorber
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JP2004077039A (en) Evaporation type condenser
JP2009058181A (en) Absorption type refrigerating apparatus
KR20110122534A (en) Heat exchanger for carbon dioxide coolant enhanced heat exchange efficiency
JP2008202824A (en) Absorption type refrigerating device
JP2008202881A (en) Cooling block body and cooling device
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP4881820B2 (en) Absorption refrigerator
JP2016023925A (en) Evaporation air conditioning system
KR100924564B1 (en) Liquid drain apparatus of condenser for in-door-unit
US20070138662A1 (en) Closed evaporative cooling tower
JP2006200852A (en) Absorber in absorption type refrigerator
JP2007278570A (en) Air-cooled absorption type refrigerating device
JP3229824U (en) A heat exchanger and a cooling device equipped with the heat exchanger
JP2004317058A (en) Supply structure of supply liquid to heat exchange element of heat exchanger in evaporator and absorber
JP3054847B2 (en) Air-cooled absorption chiller / heater
JP2010255918A (en) Air heat exchanger
KR101244196B1 (en) Water division cap for recyling evaporation cooler and recyling evaporation cooler
JP3123476B2 (en) Heat exchanger
JP2001165528A (en) Absorbing type freezer
JP2003336932A (en) Absorption refrigerating machine
JP4720558B2 (en) Absorption refrigerator generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees