JP2010255918A - Air heat exchanger - Google Patents

Air heat exchanger Download PDF

Info

Publication number
JP2010255918A
JP2010255918A JP2009105845A JP2009105845A JP2010255918A JP 2010255918 A JP2010255918 A JP 2010255918A JP 2009105845 A JP2009105845 A JP 2009105845A JP 2009105845 A JP2009105845 A JP 2009105845A JP 2010255918 A JP2010255918 A JP 2010255918A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
heat exchanger
tube
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009105845A
Other languages
Japanese (ja)
Inventor
Tomotsugu Inoue
智嗣 井上
Genei Kin
鉉永 金
Takayuki Hyodo
孝之 兵頭
Yoshikazu Shiraishi
吉和 白石
Akihiro Fujiwara
明大 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009105845A priority Critical patent/JP2010255918A/en
Publication of JP2010255918A publication Critical patent/JP2010255918A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat transfer performance while suppressing an increase of a material in extrusion molding in an air heat exchanger having a flat porous heat transfer tube manufactured by extrusion molding. <P>SOLUTION: The air heat exchanger 1 is equipped with a heating medium heat transfer tube 2 comprising a plurality of flat porous tube having broad plane parts 21 in a state of facing each other with a ventilation space for passing air toward a width direction of the plane part 21 between, having a plurality of passage holes 22 for making heating mediums internally pass therethrough in a row in the width direction of the plane part 21, and manufactured by extrusion molding. An outer face of the plane part 21 is uneven along a shape of an inner circumferential surface of each passage hole 22 when seeing the heating medium heat transfer tube 2 from a longitudinal direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気熱交換器、特に、押し出し成形により製造される扁平多穴伝熱管を有する空気熱交換器に関する。   The present invention relates to an air heat exchanger, and more particularly to an air heat exchanger having a flat multi-hole heat transfer tube manufactured by extrusion molding.

従来より、特許文献1(特開平6−74609号公報)に示されるような、押し出し成形により製造される扁平多穴管を有する空気熱交換器がある。扁平多穴管は、幅広の平面部を有しており、空気が流れる通風空間を空けて向かい合う状態で複数配置されている。平面部は、通風空間に面する幅広の外面が平坦な面となっており、その内部には、扁平多穴管の長手方向から見た際に、長方形の断面形状を有する複数の流路穴が、長方形の短辺同士が平行になるように幅方向に並んで形成されている。扁平多穴管の内部(すなわち、複数の流路穴)には、熱媒体が流れており、扁平多穴管の外側の通風空間を流れる空気と熱交換を行うようになっている。   Conventionally, there is an air heat exchanger having a flat multi-hole tube manufactured by extrusion molding as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 6-74609). The flat multi-hole tube has a wide flat surface portion, and a plurality of flat multi-hole tubes are arranged facing each other with a ventilation space through which air flows. The flat portion has a flat surface with a wide outer surface facing the ventilation space, and has a plurality of flow passage holes having a rectangular cross-sectional shape when viewed from the longitudinal direction of the flat multi-hole tube. However, the rectangular short sides are formed in parallel in the width direction. A heat medium flows inside the flat multi-hole tube (that is, a plurality of flow path holes), and heat exchange is performed with air flowing in the ventilation space outside the flat multi-hole tube.

しかし、上記従来の扁平多穴管を有する空気熱交換器では、内部を流れる熱媒体の圧力が高くなる等のように厚肉化の要求に対応しようとする場合、押し出し成形により製造されることから、扁平多穴管の製造に使用される金属素材からなる材料の量が多くなる傾向にある。しかも、扁平多穴管を有する空気熱交換器では、さらなる伝熱性能の向上も要求されている。   However, the conventional air heat exchanger having a flat multi-hole tube is manufactured by extrusion molding in order to meet the demand for thickening such as the pressure of the heat medium flowing inside is increased. Therefore, the amount of a material made of a metal material used for manufacturing a flat multi-hole tube tends to increase. Moreover, in the air heat exchanger having a flat multi-hole tube, further improvement in heat transfer performance is also required.

本発明の課題は、押し出し成形により製造される扁平多穴伝熱管を有する空気熱交換器において、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させることにある。   The subject of this invention is improving the heat-transfer performance, suppressing the increase in the material at the time of extrusion molding in the air heat exchanger which has the flat multi-hole heat-transfer tube manufactured by extrusion molding.

第1の発明にかかる空気熱交換器は、幅広の平面部が平面部の幅方向に向かって空気が流れる通風空間を空けて向かい合う状態で複数配置されており、内部に熱媒体が流れる複数の流路穴が平面部の幅方向に並んで形成されており、押し出し成形により製造される扁平多穴管からなる熱媒体伝熱管を備えており、平面部の外面は、熱媒体伝熱管を長手方向から見た際に、各流路穴の内周面の形状に沿うように凹凸している。   A plurality of air heat exchangers according to the first invention are arranged in a state where the wide flat surface portions face each other with a ventilation space through which air flows in the width direction of the flat surface portions, and a plurality of heat media flow inside. The flow path holes are formed side by side in the width direction of the flat portion, and are provided with a heat medium heat transfer tube made of a flat multi-hole tube manufactured by extrusion molding. When viewed from the direction, it is uneven so as to follow the shape of the inner peripheral surface of each flow path hole.

この空気熱交換器では、上記従来の扁平多穴管における平坦な外面を有する平面部とは異なり、平面部の外面が、熱媒体伝熱管を長手方向から見た際に、各流路穴の内周面の形状に沿うように凹凸しているため、複数の流路穴がなす平面部の内部形状と平面部の外形とが相似形状に近づき、無駄に厚肉になる部分が減少するとともに、平面部の外面の伝熱面積が増加し、かつ、通風空間を流れる空気の乱流化が促進されることになる。   In this air heat exchanger, unlike the flat portion having a flat outer surface in the above-described conventional flat multi-hole tube, the outer surface of the flat portion has a shape of each flow path hole when the heat medium heat transfer tube is viewed from the longitudinal direction. Since it is uneven so as to conform to the shape of the inner peripheral surface, the internal shape of the flat part formed by the plurality of flow path holes and the external shape of the flat part approach a similar shape, and the portion that becomes uselessly thick decreases. As a result, the heat transfer area of the outer surface of the flat portion increases, and the turbulence of the air flowing through the ventilation space is promoted.

これにより、この空気熱交換器では、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させることができる。   Thereby, in this air heat exchanger, the heat transfer performance can be improved while suppressing an increase in material during extrusion molding.

第2の発明にかかる空気熱交換器は、第1の発明にかかる空気熱交換器において、平面部の外面は、各流路穴の内周面からの平面部の外面までの肉厚が略同じになるように凹凸している。   The air heat exchanger according to a second aspect of the present invention is the air heat exchanger according to the first aspect of the present invention, wherein the outer surface of the flat portion has a thickness from the inner peripheral surface of each flow path hole to the outer surface of the flat portion. It is uneven to be the same.

第3の発明にかかる空気熱交換器は、第1又は第2の発明にかかる空気熱交換器において、通風空間に配置された波形フィンからなる伝熱フィンをさらに備えている。   An air heat exchanger according to a third aspect of the present invention is the air heat exchanger according to the first or second aspect of the present invention, further comprising heat transfer fins made of corrugated fins arranged in the ventilation space.

この空気熱交換器では、波形フィンからなる伝熱フィンが通風空間に配置された構造を有しているため、伝熱面積が増加し、さらに伝熱性能が向上している。   Since this air heat exchanger has a structure in which heat transfer fins made of corrugated fins are arranged in the ventilation space, the heat transfer area is increased and the heat transfer performance is further improved.

第4の発明にかかる空気熱交換器は、第1又は第2の発明にかかる空気熱交換器において、熱媒体伝熱管が貫通する貫通穴が形成されたプレートフィンからなる伝熱フィンをさらに備えており、熱媒体伝熱管は、貫通穴を貫通した状態で拡管されることによって、伝熱フィンに固定されている。   An air heat exchanger according to a fourth aspect of the present invention is the air heat exchanger according to the first or second aspect of the present invention, further comprising a heat transfer fin comprising a plate fin in which a through hole through which the heat medium heat transfer tube passes is formed. The heat transfer tube is fixed to the heat transfer fin by being expanded in a state of passing through the through hole.

この空気熱交換器では、プレートフィンからなる伝熱フィンに熱媒体伝熱管を貫通させる構造を有しているため、伝熱面積が増加し、さらに伝熱性能が向上している。しかも、熱媒体伝熱管の伝熱フィンへの固定は、拡管によって行われるが、上記のように、熱媒体伝熱管の平面部の外面が、熱媒体伝熱管を長手方向から見た際に、各流路穴の内周面の形状に沿うように凹凸しているため、拡管の際に、平面部の外面が均等に拡大することになり、これにより、伝熱フィン(より具体的には、貫通穴の周縁)と平面部との密着性が向上し、伝熱性能の向上にも寄与している。   Since this air heat exchanger has a structure in which the heat transfer pipes are penetrated by the heat transfer fins made of plate fins, the heat transfer area is increased and the heat transfer performance is further improved. Moreover, the heat medium heat transfer tube is fixed to the heat transfer fins by expanding the tube, but as described above, when the outer surface of the flat portion of the heat medium heat transfer tube is viewed from the longitudinal direction of the heat medium heat transfer tube, Since it is uneven so as to conform to the shape of the inner peripheral surface of each flow path hole, the outer surface of the flat surface portion will be uniformly expanded when expanding the tube, whereby heat transfer fins (more specifically, , The peripheral edge of the through-hole) and the flat portion are improved, which contributes to the improvement of heat transfer performance.

第5の発明にかかる空気熱交換器は、第1〜第4の発明のいずれかにかかる空気熱交換器において、各流路穴は、熱媒体伝熱管を長手方向から見た際に、円形の断面形状を有している。   An air heat exchanger according to a fifth aspect of the present invention is the air heat exchanger according to any of the first to fourth aspects of the present invention, wherein each flow passage hole is circular when the heat medium heat transfer tube is viewed from the longitudinal direction. The cross-sectional shape is as follows.

第6の発明にかかる空気熱交換器は、第1〜第4の発明のいずれかにかかる空気熱交換器において、各流路穴は、4角形の断面形状を有しており、熱媒体伝熱管を長手方向から見た際に、4角形の1対の角部が平面部の両外面に向かって突出するように配置されている。   An air heat exchanger according to a sixth aspect of the present invention is the air heat exchanger according to any one of the first to fourth aspects, wherein each flow path hole has a quadrangular cross-sectional shape, When the heat tube is viewed from the longitudinal direction, the pair of corner portions of the quadrangular shape are arranged so as to protrude toward both outer surfaces of the plane portion.

第7の発明にかかる空気熱交換器は、第1〜第4の発明のいずれかにかかる空気熱交換器において、各流路穴は、熱媒体伝熱管を長手方向から見た際に、5角以上の多角形の断面形状を有している。   An air heat exchanger according to a seventh aspect of the present invention is the air heat exchanger according to any one of the first to fourth aspects of the invention, wherein each flow path hole is 5 when the heat medium heat transfer tube is viewed from the longitudinal direction. It has a polygonal cross-sectional shape with corners or more.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1、第2、及び、第5〜第7の発明では、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させることができる。   In the first, second, and fifth to seventh inventions, the heat transfer performance can be improved while suppressing an increase in material during extrusion molding.

第3の発明では、伝熱面積が増加し、さらに伝熱性能が向上している。   In the third invention, the heat transfer area is increased and the heat transfer performance is further improved.

第4の発明では、伝熱面積が増加し、さらに伝熱性能が向上している。しかも、伝熱フィンと平面部との密着性が向上し、伝熱性能の向上にも寄与している。   In the fourth invention, the heat transfer area is increased and the heat transfer performance is further improved. In addition, the adhesion between the heat transfer fins and the flat portion is improved, contributing to the improvement of the heat transfer performance.

本発明の第1実施形態にかかる空気熱交換器の概略構成図である。It is a schematic block diagram of the air heat exchanger concerning 1st Embodiment of this invention. 図1のA部の拡大斜視図である。It is an expansion perspective view of the A section of FIG. 図2を熱媒体伝熱管の長手方向から見た図である。It is the figure which looked at FIG. 2 from the longitudinal direction of the heat carrier heat exchanger tube. 図2の分解斜視図である。FIG. 3 is an exploded perspective view of FIG. 2. 第1実施形態の変形例1にかかる空気熱交換器を示す図であって、図3に相当する図である。It is a figure which shows the air heat exchanger concerning the modification 1 of 1st Embodiment, Comprising: It is a figure corresponded in FIG. 第1実施形態の変形例2にかかる空気熱交換器を示す図であって、図3に相当する図である。It is a figure which shows the air heat exchanger concerning the modification 2 of 1st Embodiment, Comprising: It is a figure equivalent to FIG. 本発明の第2実施形態にかかる空気熱交換器の概略構成図である。It is a schematic block diagram of the air heat exchanger concerning 2nd Embodiment of this invention. 図7のA部の拡大斜視図である。It is an expansion perspective view of the A section of FIG.

以下、本発明にかかる空気熱交換器の実施形態について、図面に基づいて説明する。   Hereinafter, an embodiment of an air heat exchanger according to the present invention will be described with reference to the drawings.

−第1実施形態−
<空気熱交換器の全体構成>
図1は、本発明の第1実施形態にかかる空気熱交換器1の概略構成図であり、図2は、図1のA部の拡大斜視図であり、図3は、図2のB矢視図であり、図4は、図2の分解斜視図である。空気熱交換器1は、空気を冷却源又は加熱源として、熱媒体の放熱(凝縮)や加熱(蒸発)を行う熱交換器であり、例えば、蒸気圧縮式の冷凍装置の冷媒回路を構成する熱交換器として採用されるものである。ここでは、冷媒回路を循環する熱媒体として二酸化炭素を使用するものとする。
-First embodiment-
<Overall configuration of air heat exchanger>
1 is a schematic configuration diagram of an air heat exchanger 1 according to a first embodiment of the present invention, FIG. 2 is an enlarged perspective view of a portion A in FIG. 1, and FIG. 3 is an arrow B in FIG. FIG. 4 is an exploded perspective view of FIG. 2. The air heat exchanger 1 is a heat exchanger that performs heat dissipation (condensation) and heating (evaporation) of a heat medium using air as a cooling source or a heating source, and constitutes, for example, a refrigerant circuit of a vapor compression refrigeration apparatus. It is adopted as a heat exchanger. Here, carbon dioxide is used as the heat medium circulating in the refrigerant circuit.

空気熱交換器1は、主として、熱媒体伝熱管2と、伝熱フィン3と、ヘッダー管4、5とを有している。   The air heat exchanger 1 mainly includes a heat medium heat transfer tube 2, heat transfer fins 3, and header tubes 4 and 5.

<熱媒体伝熱管>
熱媒体伝熱管2は、長尺で幅広の平面部21が上下方向に向く状態で上下方向間に平面部21の幅方向(図1〜図3においては、紙面手前−奥方向に向かって空気が流れる通風空間を空けて複数(ここでは、8つ)配置されており、内部に熱媒体が流れる扁平管からなる。尚、熱媒体伝熱管2の流路穴22の個数は、8つに限定されず、任意に設定可能である。
<Heat transfer tube>
The heat transfer tube 2 is configured such that the long and wide flat surface portion 21 faces in the vertical direction, and the air flows in the width direction of the flat surface portion 21 in the vertical direction (in FIG. 1 to FIG. A plurality (eight in this case) are arranged with a ventilation space through which the heat medium flows, and are composed of flat tubes through which the heat medium flows, and the number of the channel holes 22 of the heat medium heat transfer tube 2 is eight. It is not limited and can be set arbitrarily.

平面部21内には、平面部21を長手方向に貫通するように幅方向に並んだ複数(ここでは、8つ)の流路穴22が形成されており、熱媒体は、各流路穴22を流れるようになっている。尚、熱媒体伝熱管2は、アルミニウム等の金属素材からなり、押し出し成形により製造されている。   A plurality of (in this case, eight) flow passage holes 22 are formed in the flat portion 21 so as to pass through the flat portion 21 in the longitudinal direction. 22 flows. The heat medium heat transfer tube 2 is made of a metal material such as aluminum and is manufactured by extrusion molding.

各流路穴22は、熱媒体伝熱管2を長手方向から見た際に、円形の断面形状を有している。そして、平面部21の外面は、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸している。より具体的には、平面部21の外面は、各流路穴22の内周面からの平面部21の外面までの肉厚が略同じになるように凹凸している。   Each flow path hole 22 has a circular cross-sectional shape when the heat medium heat transfer tube 2 is viewed from the longitudinal direction. And the outer surface of the plane part 21 is uneven | corrugated so that the shape of the internal peripheral surface of each flow path hole 22 may be seen, when the heat-medium heat exchanger tube 2 is seen from a longitudinal direction. More specifically, the outer surface of the flat portion 21 is uneven so that the thickness from the inner peripheral surface of each flow path hole 22 to the outer surface of the flat portion 21 is substantially the same.

このように、ここでは、熱媒体伝熱管2として、複数の流路穴22が形成された扁平多穴管を採用しているため、熱媒体側の熱伝達率が向上している。しかも、ここでは、従来の扁平多穴管における平坦な外面を有する平面部とは異なり、平面部21の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸しているため、複数の流路穴22がなす平面部21の内部形状と平面部21の外形とが相似形状に近づき、無駄に厚肉になる部分が減少するとともに、平面部21の外面の伝熱面積が増加し、かつ、通風空間を流れる空気(特に、熱媒体伝熱管2の近傍を通過する空気)の乱流化が促進されるようになり、これにより、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させることができるようになっている。特に、ここでは、熱媒体伝熱管2内を流れる熱媒体が、蒸気圧縮式の冷凍装置の冷媒回路を循環する二酸化炭素であることから、熱媒体の圧力が高く厚肉化が要求されるが、上記のように、無駄に厚肉になる部分が減少するため、押し出し成形時の材料の増加を抑える効果が顕著となっている。   Thus, since the flat multi-hole tube in which the several flow-path hole 22 was formed is employ | adopted as the heat-medium heat transfer tube 2 here, the heat transfer rate by the side of a heat medium is improving. In addition, here, unlike the flat portion having a flat outer surface in the conventional flat multi-hole tube, when the outer surface of the flat portion 21 looks at the heat medium heat transfer tube 2 from the longitudinal direction, Since it is uneven so as to conform to the shape of the inner peripheral surface, the internal shape of the flat surface portion 21 formed by the plurality of flow passage holes 22 and the external shape of the flat surface portion 21 approach a similar shape, and there is a portion that becomes uselessly thick. While decreasing, the heat transfer area of the outer surface of the plane part 21 increases, and the turbulent flow of the air flowing through the ventilation space (particularly, the air passing through the vicinity of the heat medium heat transfer tube 2) is promoted. Thus, the heat transfer performance can be improved while suppressing an increase in the material during extrusion molding. In particular, here, since the heat medium flowing in the heat medium heat transfer tube 2 is carbon dioxide circulating in the refrigerant circuit of the vapor compression refrigeration apparatus, the pressure of the heat medium is high and a thickening is required. As described above, since the portion where the thickness becomes useless is reduced, the effect of suppressing the increase in the material during the extrusion is remarkable.

<ヘッダー管>
ヘッダー管4、5は、熱媒体伝熱管2を支持する機能と、熱媒体を熱媒体伝熱管2(ここでは、複数の流路穴22)内に流入させる機能と、熱媒体伝熱管2(ここでは、複数の流路穴22)から熱媒体を流出させる機能とを有する部材であり、上下方向に複数配置された熱媒体伝熱管2の両端にロウ付けによって接合されている。ここでは、図1における紙面右側のヘッダー管を第1ヘッダー管4とし、図1における紙面左側のヘッダー管を第2ヘッダー管5とする。尚、ヘッダー管4、5の構成は、図1の構成に限定されず、種々の構成が適用可能である。
<Header tube>
The header tubes 4 and 5 have a function of supporting the heat medium heat transfer tube 2, a function of flowing the heat medium into the heat medium heat transfer tube 2 (here, a plurality of flow path holes 22), and a heat medium heat transfer tube 2 ( Here, it is a member having a function of causing the heat medium to flow out from the plurality of flow passage holes 22), and is joined to both ends of the heat medium heat transfer tubes 2 arranged in the vertical direction by brazing. Here, the header pipe on the right side in FIG. 1 is a first header pipe 4, and the header pipe on the left side in FIG. 1 is a second header pipe 5. In addition, the structure of the header pipe | tubes 4 and 5 is not limited to the structure of FIG. 1, A various structure is applicable.

第1ヘッダー管4は、上部に熱媒体のやりとりを行うための第1開口41が設けられるとともに下端が閉じられている上下方向に延びる筒状の部材であり、ここでは、上下方向の中央よりもやや上側の位置(より具体的には、上から3段目の熱媒体伝熱管2と上から4段目の熱媒体伝熱管2との間の位置)に、第1ヘッダー管4内の空間を上下2つに仕切る第1仕切板42が設けられている。これにより、第1ヘッダー管4は、上から1段目から3段目までの3つの熱媒体伝熱管2及び第1開口41に連通する第1上部ヘッダー43と、残りの5つの熱媒体伝熱管2に連通する第1下部ヘッダー44とを有している。   The first header pipe 4 is a cylindrical member extending in the vertical direction with a first opening 41 for exchanging the heat medium at the top and closed at the lower end, and here, from the center in the vertical direction. In the first header pipe 4 at a slightly higher position (more specifically, a position between the heat medium heat transfer pipe 2 at the third stage from the top and the heat medium heat transfer pipe 2 at the fourth stage from the top). A first partition plate 42 that partitions the space into two upper and lower portions is provided. As a result, the first header pipe 4 includes the first upper header 43 communicating with the three heat medium heat transfer pipes 2 and the first opening 41 from the first stage to the third stage from the top, and the remaining five heat medium transmissions. And a first lower header 44 communicating with the heat pipe 2.

第2ヘッダー管5は、下部に熱媒体のやりとりを行うための第2開口51が設けられるとともに上端が閉じられている上下方向に延びる筒状の部材であり、ここでは、上下方向の中央よりもやや下側の位置(より具体的には、上から6段目の熱媒体伝熱管2と上から7段目の熱媒体伝熱管2との間の位置)に、第2ヘッダー管5内の空間を上下2つに仕切る第2仕切板52が設けられている。これにより、第2ヘッダー管5は、下から1段目から2段目までの2つの熱媒体伝熱管2及び第2開口51に連通する第2下部ヘッダー54と、残りの6つの熱媒体伝熱管2に連通する第2上部ヘッダー53とを有している。   The second header pipe 5 is a cylindrical member that extends in the vertical direction and has a second opening 51 for exchanging the heat medium at the bottom and has an upper end closed, and here, from the center in the vertical direction. Inside the second header pipe 5 at a slightly lower position (more specifically, a position between the heat medium heat transfer pipe 2 at the sixth stage from the top and the heat medium heat transfer pipe 2 at the seventh stage from the top). A second partition plate 52 is provided to partition the space into upper and lower parts. As a result, the second header pipe 5 includes the second heat transfer pipe 2 and the second lower header 54 communicating with the second opening 51 from the first stage to the second stage from the bottom, and the remaining six heat transfer pipes. And a second upper header 53 communicating with the heat pipe 2.

これにより、空気熱交換器1が熱媒体の放熱器(凝縮器)として機能する場合には、熱媒体は、第1開口41を通じて第1上部ヘッダー43に流入し、上から1段目から3段目までの3つの熱媒体伝熱管2に分配されて流入し、これら3つの熱媒体伝熱管2内を流れた後に、第2上部ヘッダー53に流出して集合される。この第2上部ヘッダー53において集合した熱媒体は、上から4段目から6段目までの3つの熱媒体伝熱管2に分配されて流入し、これら3つの熱媒体伝熱管2内を流れた後に第1下部ヘッダー44に流出して集合される。この第1下部ヘッダー44において集合した熱媒体は、上から7段目から8段目までの2つの熱媒体伝熱管2に分配されて流入し、これら2つの熱媒体伝熱管2内を流れた後に第2下部ヘッダー54に流出して集合され、第2開口51を通じて第2下部ヘッダー54から流出する。また、空気熱交換器1が熱媒体の加熱器(蒸発器)として機能する場合には、熱媒体は、第2開口51を通じて第2下部ヘッダー54に流入し、上から7段目から8段目までの2つの熱媒体伝熱管2に分配されて流入し、これら2つの熱媒体伝熱管2内を流れた後に、第1下部ヘッダー44に流出して集合される。この第1下部ヘッダー44において集合した熱媒体は、上から4段目から6段目までの3つの熱媒体伝熱管2に分配されて流入し、これら3つの熱媒体伝熱管2内を流れた後に第2上部ヘッダー53に流出して集合される。この第2上部ヘッダー53において集合した熱媒体は、上から1段目から3段目までの3つの熱媒体伝熱管2に分配されて流入し、これら3つの熱媒体伝熱管2内を流れた後に第1上部ヘッダー43に流出して集合され、第1開口41を通じて第1上部ヘッダー43から流出する。また、熱媒体伝熱管2の両端は、ロウ付けによってヘッダー管4、5に接合されるが、この際、熱媒体伝熱管2に形成された流路穴22が、従来の扁平多穴管と同様の長方形の断面形状を有する場合には、流路穴の長方形の角部にロウ材が流れ込みやすく、複数の流路穴の一部に詰まりが生じて、伝熱性能を低下させるおそれがあるが、ここでは、流路穴22を円形の断面形状にしているため、角部が存在せず、ロウ材が流れ込んで複数の流路穴の一部に詰まりが生じるおそれが少なくなっている。   As a result, when the air heat exchanger 1 functions as a heat medium radiator (condenser), the heat medium flows into the first upper header 43 through the first opening 41, and from the top to the third stage. The three heat medium heat transfer tubes 2 up to the stage are distributed and flown in, flown through the three heat medium heat transfer tubes 2, and then flow out to the second upper header 53 to be collected. The heat medium gathered in the second upper header 53 is distributed and flows into the three heat medium heat transfer tubes 2 from the fourth to the sixth step from the top, and flows through the three heat medium heat transfer tubes 2. Later, it flows out to the first lower header 44 and is assembled. The heat medium gathered in the first lower header 44 is distributed and flows into the two heat medium heat transfer tubes 2 from the seventh to the eighth step from the top, and flows through the two heat medium heat transfer tubes 2. It flows out to the second lower header 54 later and gathers, and then flows out from the second lower header 54 through the second opening 51. When the air heat exchanger 1 functions as a heating medium heater (evaporator), the heating medium flows into the second lower header 54 through the second opening 51, and the seventh to eighth stages from the top. The two heat medium heat transfer tubes 2 are distributed and flowed in, and after flowing through the two heat medium heat transfer tubes 2, they flow out to the first lower header 44 and are collected. The heat medium assembled in the first lower header 44 is distributed and flows into the three heat medium heat transfer tubes 2 from the fourth to the sixth step from the top, and flows through the three heat medium heat transfer tubes 2. Later, it flows out to the second upper header 53 and gathers. The heat medium gathered in the second upper header 53 is distributed and flows into the three heat medium heat transfer tubes 2 from the first to the third step from the top, and flows through the three heat medium heat transfer tubes 2. Afterwards, it flows out to the first upper header 43 and gathers, and flows out from the first upper header 43 through the first opening 41. Further, both ends of the heat medium heat transfer tube 2 are joined to the header tubes 4 and 5 by brazing. At this time, the flow path hole 22 formed in the heat medium heat transfer tube 2 is different from the conventional flat multi-hole tube. In the case of having a similar rectangular cross-sectional shape, the brazing material easily flows into the rectangular corners of the flow path holes, which may cause clogging in some of the flow path holes and reduce heat transfer performance. However, since the channel hole 22 has a circular cross-sectional shape here, there is no corner portion, and the possibility that the brazing material flows and a part of the plurality of channel holes is clogged is reduced.

<伝熱フィン>
伝熱フィン3は、熱媒体伝熱管2が貫通する貫通穴31が形成されたプレートフィンからなり、熱媒体伝熱管2の長手方向に沿って略等間隔に複数配置されている。貫通穴31は、熱媒体伝熱管2の長手方向における外形と同じ穴形状を有している。
<Heat transfer fin>
The heat transfer fins 3 are plate fins formed with through holes 31 through which the heat medium heat transfer tubes 2 pass, and a plurality of heat transfer fins 3 are arranged at substantially equal intervals along the longitudinal direction of the heat medium heat transfer tubes 2. The through hole 31 has the same hole shape as the outer shape in the longitudinal direction of the heat medium heat transfer tube 2.

熱媒体伝熱管2は、貫通穴31を通じて伝熱フィン3を貫通し(図4の矢印B参照)、貫通穴31を貫通した状態で拡管されることによって、伝熱フィン3に固定されている。ここで、拡管の手法としては、熱媒体伝熱管2が複数の流体穴22を有する多穴管構造であることを考慮して、熱媒体伝熱管2の管端から高圧の液体や気体を供給して熱媒体伝熱管2を拡管させる流体圧拡管の手法を採用される。   The heat transfer tube 2 is fixed to the heat transfer fins 3 by passing through the heat transfer fins 3 through the through holes 31 (see arrow B in FIG. 4) and expanding in a state of passing through the through holes 31. . Here, as a method of expanding the tube, considering that the heat medium heat transfer tube 2 has a multi-hole tube structure having a plurality of fluid holes 22, a high-pressure liquid or gas is supplied from the tube end of the heat medium heat transfer tube 2. Then, a fluid pressure expansion method for expanding the heat medium heat transfer tube 2 is employed.

このように、ここでは、プレートフィンからなる伝熱フィン3に熱媒体伝熱管2を貫通させる構造を有しているため、伝熱面積が増加し、さらに伝熱性能が向上している。しかも、熱媒体伝熱管2の伝熱フィン3への固定は、拡管によって行われるが、上記のように、熱媒体伝熱管2の平面部21の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸しているため、拡管の際に、平面部21の外面が均等に拡大することになり(図4の拡管前の平面部21及び流路穴22を示す二点鎖線と拡管後の平面部21及び流路穴22を示す実線とを参照)、これにより、伝熱フィン3(より具体的には、貫通穴31の周縁)と平面部21との密着性が向上し、伝熱性能の向上にも寄与している。   Thus, since it has the structure which makes the heat-transfer heat pipe 3 penetrate the heat-transfer fin 3 which consists of a plate fin here, a heat-transfer area increases and heat-transfer performance is improving further. Moreover, the heat medium heat transfer tubes 2 are fixed to the heat transfer fins 3 by expanding the tubes. As described above, the outer surface of the flat portion 21 of the heat medium heat transfer tubes 2 connects the heat medium heat transfer tubes 2 from the longitudinal direction. When viewed, since it is uneven so as to conform to the shape of the inner peripheral surface of each flow path hole 22, the outer surface of the flat surface portion 21 is uniformly expanded during the tube expansion (before the tube expansion in FIG. 4). , Refer to the two-dot chain line indicating the flat surface portion 21 and the flow path hole 22 and the solid line indicating the flat surface portion 21 and the flow path hole 22 after the pipe expansion), whereby the heat transfer fin 3 (more specifically, the through hole) (Periphery of 31) and the flat part 21 are improved, which contributes to the improvement of heat transfer performance.

<変形例1>
上述の実施形態における空気熱交換器1では、流路穴22が、熱媒体伝熱管2を長手方向から見た際に、円形の断面形状を有するように形成されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用しているが、図5に示されるように、流路穴22が、4角形(ここでは、略正方形)の断面形状を有するように形成されており、熱媒体伝熱管2を長手方向から見た際に、4角形の1対の角部が平面部21の両外面に向かって突出するように配置されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用してもよい。
<Modification 1>
In the air heat exchanger 1 according to the above-described embodiment, the flow path hole 22 is formed to have a circular cross-sectional shape when the heat medium heat transfer tube 2 is viewed from the longitudinal direction, and the planar portion 22. When the heat medium heat transfer tube 2 is viewed from the longitudinal direction, the outer surface of the heat medium heat transfer tube 2 is employed so as to conform to the shape of the inner peripheral surface of each flow path hole 22. As shown, the channel hole 22 is formed to have a quadrangular (here, approximately square) cross-sectional shape, and when the heat transfer tube 2 is viewed from the longitudinal direction, the quadrangular 1 The pair of corners are arranged so as to protrude toward both outer surfaces of the flat surface portion 21, and when the heat medium heat transfer tube 2 is viewed from the longitudinal direction of the outer surface of the flat surface portion 22, You may employ | adopt the heat-medium heat exchanger tube 2 uneven | corrugated so that the shape of the inner peripheral surface of 22 may be followed.

本変形例においても、上述の実施形態と同様に、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させる等の作用効果を得ることができる。   Also in this modified example, like the above-described embodiment, it is possible to obtain effects such as improving heat transfer performance while suppressing an increase in material during extrusion molding.

<変形例2>
上述の実施形態における空気熱交換器1では、流路穴22が、熱媒体伝熱管2を長手方向から見た際に、円形の断面形状を有するように形成されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用しているが、図6に示されるように、流路穴22が、5角以上(ここでは、6角)の多角形の断面形状を有するように形成されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用してもよい。
<Modification 2>
In the air heat exchanger 1 according to the above-described embodiment, the flow path hole 22 is formed to have a circular cross-sectional shape when the heat medium heat transfer tube 2 is viewed from the longitudinal direction, and the planar portion 22. When the heat medium heat transfer tube 2 is viewed from the longitudinal direction, the heat medium heat transfer tube 2 that is uneven so as to conform to the shape of the inner peripheral surface of each flow path hole 22 is employed. As shown, the flow path hole 22 is formed to have a polygonal cross-sectional shape of five or more corners (here, six corners), and the outer surface of the plane portion 22 is the heat medium heat transfer tube 2. When viewed from the longitudinal direction, the heat medium heat transfer tube 2 that is uneven so as to follow the shape of the inner peripheral surface of each flow path hole 22 may be employed.

本変形例においても、上述の実施形態と同様に、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させる等の作用効果を得ることができる。   Also in this modified example, like the above-described embodiment, it is possible to obtain effects such as improving heat transfer performance while suppressing an increase in material during extrusion molding.

−第2実施形態−
<空気熱交換器の全体構成>
図7は、本発明の第2実施形態にかかる空気熱交換器101の概略構成図であり、図8は、図7のA部の拡大斜視図である。空気熱交換器101は、上述の第1実施形態及びその変形例にかかる空気熱交換器1と同様、空気を冷却源又は加熱源として、熱媒体の放熱(凝縮)や加熱(蒸発)を行う熱交換器であり、例えば、蒸気圧縮式の冷凍装置の冷媒回路を構成する熱交換器として採用されるものである。ここでは、冷媒回路を循環する熱媒体として二酸化炭素を使用するものとする。
-Second Embodiment-
<Overall configuration of air heat exchanger>
FIG. 7 is a schematic configuration diagram of an air heat exchanger 101 according to the second embodiment of the present invention, and FIG. 8 is an enlarged perspective view of a portion A in FIG. The air heat exchanger 101 performs heat radiation (condensation) and heating (evaporation) of the heat medium using air as a cooling source or a heating source, similarly to the air heat exchanger 1 according to the first embodiment and the modification thereof. For example, the heat exchanger is employed as a heat exchanger constituting a refrigerant circuit of a vapor compression refrigeration apparatus. Here, carbon dioxide is used as the heat medium circulating in the refrigerant circuit.

空気熱交換器101は、主として、熱媒体伝熱管2と、伝熱フィン103と、ヘッダー管4、5とを有している。ここで、熱媒体伝熱管2及びヘッダー管4、5については、上述の第1実施形態及びその変形例における熱媒体伝熱管2及びヘッダー管4、5と同様であるため、ここでは説明を省略し、伝熱フィン103について説明する。   The air heat exchanger 101 mainly includes the heat medium heat transfer tube 2, the heat transfer fins 103, and the header tubes 4 and 5. Here, the heat medium heat transfer pipe 2 and the header pipes 4 and 5 are the same as the heat medium heat transfer pipe 2 and the header pipes 4 and 5 in the above-described first embodiment and the modifications thereof, and thus the description thereof is omitted here. The heat transfer fin 103 will be described.

<伝熱フィン>
伝熱フィン103は、板状素材が熱媒体伝熱管2の長手方向に沿って波形に折り曲げられることによって構成された波形フィンからなる。
<Heat transfer fin>
The heat transfer fin 103 is formed of a corrugated fin formed by bending a plate-like material into a corrugated shape along the longitudinal direction of the heat transfer tube 2.

伝熱フィン103は、平面部21の上下方向間の通風空間に配置されており、波形に折り曲げることによって形成された上端及び下端が平面部21の下面及び上面にロウ付け等によって接合されている。また、伝熱フィン103には、熱交換効率を向上させるために、伝熱フィン103の上下方向中央部分を切り起こすことによって複数の切り起こし部103が形成されている。ここでは、本体側切り起こし部131は、ルーバー状に切り起こされており、通風方向の上流側の部分と下流側の部分とで通風方向に対する傾斜方向が逆になるように形成されている。尚、切り起こし部103の形状等は、図8の形状等に限定されず、種々の構成が適用可能である。このように、ここでは、波形フィンからなる伝熱フィン103を通風空間に配置する構造を有しているため、伝熱面積が増加し、さらに伝熱性能が向上している。   The heat transfer fins 103 are disposed in the ventilation space between the upper and lower directions of the plane portion 21, and the upper end and the lower end formed by bending into a corrugated shape are joined to the lower surface and the upper surface of the plane portion 21 by brazing or the like. . Further, in order to improve the heat exchange efficiency, the heat transfer fins 103 are formed with a plurality of cut-and-raised portions 103 by cutting up the central portion in the vertical direction of the heat transfer fins 103. Here, the main body side cut-and-raised portion 131 is cut and raised in a louver shape, and is formed so that the inclination direction with respect to the ventilation direction is reversed between the upstream portion and the downstream portion in the ventilation direction. Note that the shape and the like of the cut-and-raised portion 103 is not limited to the shape and the like of FIG. 8, and various configurations can be applied. Thus, here, since it has the structure which arrange | positions the heat-transfer fin 103 which consists of a corrugated fin in ventilation space, a heat-transfer area increases and heat-transfer performance is improving further.

そして、本実施形態における空気熱交換器103においても、上述の第1実施形態と同様に、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させる等の作用効果を得ることができる。   And also in the air heat exchanger 103 in this embodiment, the effect of improving heat-transfer performance, etc. can be acquired, suppressing the increase in the material at the time of extrusion molding similarly to the above-mentioned 1st Embodiment. .

<変形例>
上述の実施形態における空気熱交換器103では、流路穴22が、熱媒体伝熱管2を長手方向から見た際に、円形の断面形状を有するように形成されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用しているが、上述の第1実施形態の変形例1、2における空気熱交換器1(図5、6参照)と同様、流路穴22が、4角形(ここでは、略正方形)の断面形状を有するように形成されており、熱媒体伝熱管2を長手方向から見た際に、4角形の1対の角部が平面部21の両外面に向かって突出するように配置されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用してもよいし、流路穴22が、5角以上(ここでは、6角)の多角形の断面形状を有するように形成されており、かつ、平面部22の外面が、熱媒体伝熱管2を長手方向から見た際に、各流路穴22の内周面の形状に沿うように凹凸した熱媒体伝熱管2を採用してもよい。
<Modification>
In the air heat exchanger 103 in the above-described embodiment, the flow path hole 22 is formed to have a circular cross-sectional shape when the heat medium heat transfer tube 2 is viewed from the longitudinal direction, and the planar portion 22. The heat medium heat transfer tubes 2 that are uneven so as to conform to the shape of the inner peripheral surface of each flow path hole 22 when the heat medium heat transfer tubes 2 are viewed from the longitudinal direction are employed. Similarly to the air heat exchanger 1 (see FIGS. 5 and 6) in the first and second modifications of the embodiment, the flow path hole 22 is formed to have a quadrangular (here, substantially square) cross-sectional shape. And when the heat-medium heat transfer tube 2 is viewed from the longitudinal direction, a pair of corners of the quadrangular shape are arranged so as to protrude toward both outer surfaces of the plane part 21, and the outer surface of the plane part 22 However, when the heat transfer tube 2 is viewed from the longitudinal direction, it is uneven so as to follow the shape of the inner peripheral surface of each flow path hole 22. Alternatively, the heat transfer tube 2 may be employed, and the flow path hole 22 is formed to have a polygonal cross-sectional shape of five or more corners (here, six corners), and the planar portion 22. Alternatively, the heat medium heat transfer tube 2 may be employed in which the outer surface of the heat medium heat transfer tube 2 is uneven so as to follow the shape of the inner peripheral surface of each flow path hole 22 when the heat medium heat transfer tube 2 is viewed from the longitudinal direction.

本変形例においても、上述の実施形態と同様に、押し出し成形時の材料の増加を抑えつつ、伝熱性能を向上させる等の作用効果を得ることができる。   Also in this modified example, like the above-described embodiment, it is possible to obtain effects such as improving heat transfer performance while suppressing an increase in material during extrusion molding.

−他の実施形態−
以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
-Other embodiments-
As mentioned above, although embodiment of this invention and its modification were demonstrated based on drawing, specific structure is not restricted to these embodiment and its modification, It changes in the range which does not deviate from the summary of invention. Is possible.

(1)
上述の実施形態及びその変形例では、熱媒体伝熱管2の流路穴22が幅方向に8つ並んで形成されているが、これに限定されない。流路穴の個数は任意に設定してもよい。
(1)
In the above-mentioned embodiment and its modification, although eight flow-path holes 22 of the heat-medium heat exchanger tube 2 are formed in the width direction, it is not limited to this. The number of channel holes may be set arbitrarily.

(2)
ヘッダー管の構成は、上述の実施形態及びその変形例の構成に限定されず、種々の構成が適用可能である。
(2)
The configuration of the header pipe is not limited to the configuration of the above-described embodiment and its modifications, and various configurations can be applied.

(3)
上述の第1及び第2実施形態では、流路穴22が、略真円の断面形状であったが、これに限定されず、楕円の断面形状であってもよい。
(3)
In the first and second embodiments described above, the flow path hole 22 has a substantially circular cross-sectional shape, but is not limited thereto, and may have an elliptical cross-sectional shape.

(4)
上述の第1実施形態の変形例1及び第2実施形態の変形例では、流路穴22が、略正方形の断面形状であったが、これに限定されず、長方形や菱形等の他の4角形の断面形状であってもよい。
(4)
In the modified example 1 of the first embodiment and the modified example of the second embodiment, the flow path hole 22 has a substantially square cross-sectional shape. It may have a square cross-sectional shape.

(5)
上述の実施形態の変形例2及び第2実施形態の変形例では、流路穴22が、六角形の断面形状であったが、これに限定されず、5角以上の多角形の断面形状であればよく、5角形や7角形以上等の断面形状であってもよい。
(5)
In the modification 2 of the above-described embodiment and the modification of the second embodiment, the flow path hole 22 has a hexagonal cross-sectional shape, but is not limited thereto, and has a polygonal cross-sectional shape of five or more corners. Any cross-sectional shape such as a pentagon or a heptagon may be used.

(6)
上述の第2実施形態及びその変形例では、切り起こし部103の形状がルーバ状であったが、これに限定されず、種々の形状が適用可能である。
(6)
In the above-described second embodiment and the modifications thereof, the shape of the cut-and-raised portion 103 is a louver shape, but is not limited to this, and various shapes can be applied.

本発明は、押し出し成形により製造される扁平多穴伝熱管を有する空気熱交換器に広く適用可能である。   The present invention is widely applicable to an air heat exchanger having a flat multi-hole heat transfer tube manufactured by extrusion molding.

1、101 空気熱交換器
2 熱媒体伝熱管
3、103 伝熱フィン
21 平面部
22 流路穴
31 貫通穴
DESCRIPTION OF SYMBOLS 1,101 Air heat exchanger 2 Heat-medium heat exchanger tube 3, 103 Heat transfer fin 21 Planar part 22 Channel hole 31 Through-hole

特開平6−74609号公報JP-A-6-74609

Claims (7)

幅広の平面部(21)が前記平面部の幅方向に向かって空気が流れる通風空間を空けて向かい合う状態で複数配置されており、内部に熱媒体が流れる複数の流路穴(22)が前記平面部の幅方向に並んで形成されており、押し出し成形により製造される扁平多穴管からなる熱媒体伝熱管(2)を備え、
前記平面部の外面は、前記熱媒体伝熱管を長手方向から見た際に、前記各流路穴の内周面の形状に沿うように凹凸している、
空気熱交換器(1、101)。
A plurality of wide planar portions (21) are arranged facing each other with a ventilation space through which air flows in the width direction of the planar portion, and a plurality of flow path holes (22) through which a heat medium flows are provided. It is formed side by side in the width direction of the flat portion, and includes a heat medium heat transfer tube (2) made of a flat multi-hole tube manufactured by extrusion molding,
The outer surface of the flat portion is uneven so as to follow the shape of the inner peripheral surface of each flow path hole when the heat transfer tube is viewed from the longitudinal direction.
Air heat exchanger (1, 101).
前記平面部(21)の外面は、前記各流路穴(22)の内周面からの前記平面部の外面までの肉厚が略同じになるように凹凸している、請求項1に記載の空気熱交換器(1、101)。   The outer surface of the flat portion (21) is uneven so that the thickness from the inner peripheral surface of each flow path hole (22) to the outer surface of the flat portion is substantially the same. Air heat exchanger (1, 101). 前記通風空間に配置された波形フィンからなる伝熱フィン(103)をさらに備えている、請求項1又は2に記載の空気熱交換器(101)。   The air heat exchanger (101) according to claim 1 or 2, further comprising a heat transfer fin (103) made of corrugated fins arranged in the ventilation space. 前記熱媒体伝熱管(2)が貫通する貫通穴(31)が形成されたプレートフィンからなる伝熱フィン(3)をさらに備えており、
前記熱媒体伝熱管は、前記貫通穴を貫通した状態で拡管されることによって、前記伝熱フィンに固定されている、
請求項1又は2に記載の空気熱交換器(1、101)。
A heat transfer fin (3) comprising a plate fin formed with a through hole (31) through which the heat transfer tube (2) passes;
The heat medium heat transfer tube is fixed to the heat transfer fin by being expanded in a state of passing through the through hole.
The air heat exchanger (1, 101) according to claim 1 or 2.
前記各流路穴(22)は、前記熱媒体伝熱管(2)を長手方向から見た際に、円形の断面形状を有している、請求項1〜4のいずれかに記載の空気熱交換器(1、101)。   Each said flow-path hole (22) has the circular cross-sectional shape, when the said heat-medium heat exchanger tube (2) is seen from a longitudinal direction, The air heat in any one of Claims 1-4 Exchanger (1, 101). 前記各流路穴(22)は、4角形の断面形状を有しており、前記熱媒体伝熱管(2)を長手方向から見た際に、前記4角形の1対の角部が前記平面部(21)の両外面に向かって突出するように配置されている、請求項1〜4のいずれかに記載の空気熱交換器(1、101)。   Each of the channel holes (22) has a quadrangular cross-sectional shape, and when the heat medium heat transfer tube (2) is viewed from the longitudinal direction, a pair of corners of the quadrangular shape is the plane. The air heat exchanger (1, 101) according to any one of claims 1 to 4, wherein the air heat exchanger (1, 101) is disposed so as to protrude toward both outer surfaces of the portion (21). 前記各流路穴(22)は、前記熱媒体伝熱管(2)を長手方向から見た際に、5角以上の多角形の断面形状を有している、請求項1〜4のいずれかに記載の空気熱交換器(1、101)。   Each said flow-path hole (22) has a polygonal cross-sectional shape of 5 or more corners, when the said heat-medium heat exchanger tube (2) is seen from a longitudinal direction. The air heat exchanger (1, 101) described in 1.
JP2009105845A 2009-04-24 2009-04-24 Air heat exchanger Pending JP2010255918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105845A JP2010255918A (en) 2009-04-24 2009-04-24 Air heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105845A JP2010255918A (en) 2009-04-24 2009-04-24 Air heat exchanger

Publications (1)

Publication Number Publication Date
JP2010255918A true JP2010255918A (en) 2010-11-11

Family

ID=43317040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105845A Pending JP2010255918A (en) 2009-04-24 2009-04-24 Air heat exchanger

Country Status (1)

Country Link
JP (1) JP2010255918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079756A (en) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp Heat exchanger and refrigerant cycle device
JP2017515087A (en) * 2014-05-05 2017-06-08 ヴァレオ システム テルミク Flat tube for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079756A (en) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp Heat exchanger and refrigerant cycle device
JP2017515087A (en) * 2014-05-05 2017-06-08 ヴァレオ システム テルミク Flat tube for heat exchanger

Similar Documents

Publication Publication Date Title
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US20120103583A1 (en) Heat exchanger and fin for the same
WO2014091536A1 (en) Flat tube heat exchange apparatus
JP2006322698A (en) Heat exchanger
KR102634151B1 (en) Aluminum extruded flat perforated tube and heat exchanger
JP2007278558A (en) Refrigerant radiator
JP2008101847A (en) Air heat exchanger
CN102192673A (en) Flat-tube heat exchanger structure and assembling method thereof
JP2015017776A5 (en)
JP5147894B2 (en) Refrigerant distributor and evaporator
WO2016027811A1 (en) Fin-and-tube heat exchanger
JP2015017738A (en) Heat exchanger
EP2447660A2 (en) Heat Exchanger and Micro-Channel Tube Thereof
JP2008298391A (en) Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
JP2003185374A (en) Tube for heat exchanger with optimized plate
CN104089517A (en) Fin used for heat exchanger and heat exchanger with same
JP6160385B2 (en) Laminate heat exchanger
US12007178B2 (en) Heat exchanger
JP2010255918A (en) Air heat exchanger
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP2005180714A (en) Heat exchanger and inner fin used by it
JPWO2005073655A1 (en) Heat exchanger and air conditioner including the same
JP2010276298A (en) Heat exchanger
JP2010255864A (en) Flat tube and heat exchanger
JP2008070106A (en) Condenser and radiator in air conditioning cooling system