CN102610523B - 在超级结mosfet中集成肖特基二极管的方法 - Google Patents

在超级结mosfet中集成肖特基二极管的方法 Download PDF

Info

Publication number
CN102610523B
CN102610523B CN201110021587.0A CN201110021587A CN102610523B CN 102610523 B CN102610523 B CN 102610523B CN 201110021587 A CN201110021587 A CN 201110021587A CN 102610523 B CN102610523 B CN 102610523B
Authority
CN
China
Prior art keywords
schottky diode
region
drift region
junction mosfet
super junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110021587.0A
Other languages
English (en)
Other versions
CN102610523A (zh
Inventor
金勤海
王永成
陈正嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201110021587.0A priority Critical patent/CN102610523B/zh
Publication of CN102610523A publication Critical patent/CN102610523A/zh
Application granted granted Critical
Publication of CN102610523B publication Critical patent/CN102610523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种在超级结MOSFET中集成肖特基二极管的方法,为在超级结MOSFET中并联集成有由肖特基接触与衬底形成的肖特基二极管,肖特基二极管的阳极位于超级结MOSFET元胞区域的源端两个体区之间的漂移区上,肖特基二极管的阳极与超级结MOSFET的源端相连;阳极的漂移区上还设有多个掺杂区,掺杂区的导电类型与漂移区相反,杂质浓度大于漂移区的杂质浓度,掺杂区也与超级结MOSFET的源端相连;肖特基二极管的阴极共用位于衬底背面的所述超级结MOSFET的漏电极。本发明的方法,可降低肖特基二极管的反向漏电。

Description

在超级结MOSFET中集成肖特基二极管的方法
技术领域
本发明涉及一种超级结MOSFET的制备方法。
背景技术
功率金属氧化物半导体场效应晶体管(简称功率MOS)固有一个与其并联的寄生二极管,寄生二极管的阳极与MOS的体区以及源极相连,阴极与MOS的漏极相连,因此功率MOS常常被用来续流或者钳制电压。
在续流或者钳制电压时,寄生二极管正向导通,MOS也导通,MOS的源极(寄生二极管阳极)电压比漏极(寄生二极管阴极)电压稍高,电流从源极流向漏极;反向截至时MOS的漏极(寄生二极管阴极)电压比源极(寄生二极管阳极)电压高,器件只有很小的漏电。这样的应用由于MOS的导通电阻很小,正向电压降往往比寄生二极管小,因此导通时功耗更小。
这种寄生二极管与普通二极管一样,由少子参与导电,因此有反向恢复时间,从而降低开关速度、增加开关损耗。现有的超结金属氧化物半导体场效应晶体管(简称super junction MOS)因固有寄生二极管同样有上述优缺点(只是导通时电阻比一般MOS更低)。
发明内容
本发明要解决的技术问题是提供一种在超级结MOSFET中集成肖特基二极管的方法,其能增加器件的性能。
为解决上述技术问题,本发明的在超级结MOSFET中集成肖特基二极管的方法,为在所述超级结MOSFET中并联集成有由肖特基接触与衬底形成的肖特基二极管,所述肖特基二极管的阳极位于超级结MOSFET元胞区域的源端两个体区之间的漂移区上,所述肖特基二极管的阳极与所述超级结MOSFET的源端相连;所述阳极的漂移区上还设有多个掺杂区,所述掺杂区的导电类型与所述漂移区相反,杂质浓度大于所述漂移区的杂质浓度,所述掺杂区也与所述超级结MOSFET的源端相连;所述肖特基二极管的阴极共用位于衬底背面的所述超级结MOSFET的漏电极。
在本发明的超级结MOSFET中,并联的肖特基二极管由多子(电子)导电,它与MOS并联使用,在续流时,寄生二极管的少子摄入(扩散)大大减小,反向恢复时间大大降低。与肖特基接触相邻的掺杂区与漂移区形成PN结,在肖特基二极管电压反向偏置时,上述PN结也反向偏置,肖特基接触附近的电子被耗尽,从而降低肖特基二极管的反向漏电。
附图说明
下面结合附图与具体实施方式对本发明作进一步详细的说明:
图1为现有的超级结MOSFET结构示意图;
图2为本发明的超级结MOSFET的版图示意;
图3为本发明的超级结MOSFET结构截面示意图,其中a为沿图2中AA’线的截面示意图,b为沿图2中BB’线的截面示意图,c为沿图2中CC’线的截面示意图;
图4为本发明的超级结MOSFET制备中栅极形成后的截面示意图;
图5为本发明的超级结MOSFET制备中定义出肖特基二极管阳极后的截面示意图;
图6为本发明的超级结MOSFET制备中刻蚀掉肖特基二极管阳极位置处的多晶硅后的截面示意图;
图7为本发明的超级结MOSFET制备中刻蚀形成接触孔后的截面示意图;
图8为本发明的超级结MOSFET制备中源极引出端和掺杂区注入的示意图,其中a为图2中AA’线的截面示意图,b为图2中BB’线的截面示意图,c为图2中CC’线的截面示意图;
图9为本发明的超级结MOSFET制备中源极引出端和掺杂区形成后的截面示意图,其中a为图2中AA’线的截面示意图,b为图2中BB’线的截面示意图,c为图2中CC’线的截面示意图。
具体实施方式
本发明的超级结MOSFET中集成肖特基二极管的结构,为在超级结MOSFET中并联肖特基二极管。肖特基二极管的阳极设置在超级结MOSFET元胞区域的源端两个体区之间的漂移区上,由阳极和漂移区形成肖特基接触,该阳极与、超级结MOSFET的源端相连;肖特基二极管的阴极共用位于衬底背面的超级结MOSFET的漏电极。在肖特基二极管阳极的漂移区上,还设有多个掺杂区,掺杂区的导电类型与漂移区相反,杂质浓度大于漂移区的杂质浓度,掺杂区也与超级结MOSFET的源端相连。与肖特基接触相邻的掺杂区与漂移区形成PN结,在肖特基二极管电压反向偏置时,上述PN结也反向偏置,肖特基接触附件的电子被耗尽,从而使肖特基二极管的反向漏电降低。
在一个具体实例中(见图2和图3),超级结MOSFET制备中高掺杂的N型硅衬底上,衬底上方为N型的漂移区,通常为N型外延层。漂移区内有P柱,P柱上方为P型的体区,在体区上方设有N+源区,且源区被体区包围。在源区的中间为P+型的源极引出端(即掺杂浓度比体区的掺杂浓度高),用于通过接触孔连接电极。往上依次为氧化硅和多晶硅层。在相邻的两个体区之间的漂移区上,设置有接触孔,用于通过接触金属与漂移区形成肖特基二极管。在漂移区表面上,沿着漂移区的宽度方向(即多晶硅的延伸方向),设置有多个掺杂区(为P+区,可为等间距设置),该掺杂区的掺杂浓度和掺杂类型可设为与源极引出端中的相同,并通过接触金属引出,该掺杂区与漂移区形成PN结,最终在漂移区的宽度方向形成PN结和肖特基二极管相间隔设置的结构。PN结中P端的接触金属可与肖特基二极管中阳极设在一起,通过同一金属线引出,也可以各自通过接触孔引出。PN结的P端与超级结MOSFET的源端相连,而N端和肖特基二极管的阴极共用衬底背面的漏电极。
本发明的超级结MOSFET结构的制备方法,为在原有的流程中进行改进。具体流程可为:
1)在高掺杂N型衬底的N外延层上形成体区源区和栅极(见图4),在多晶硅的刻蚀中增加刻蚀去除位于漂移区上方的多晶硅(见图5和图6)。具体可为先通过光刻工艺定义出需要去除多晶硅的位置,而后刻蚀露出的多晶硅。
2)而后在衬底上淀积层间膜,接着采用光刻工艺定义出接触孔的位置,刻蚀层间膜形成源极引出端的接触孔(该接触孔同时为体区的引出接触孔),漂移区上方的接触孔(见图7)。
3)而后进行离子注入形成漂移区表面的掺杂区和源极引出端的接触区,在离子注入之前,先通过光刻工艺使光刻胶覆盖不需要注入的肖特基二极管的接触孔(见图8)。一实例中,注入最终在相应的接触孔底部形成P+区,而在肖特基阳极下方的漂移区中没有进行注入(见图9)。掺杂区的掺杂浓度为:1013-1014个原子/cm2
其余步骤与常规功率器件工艺相同,包括接触金属填充、回刻(或化学机械研磨),正面金属形成,背面减薄,背面金属形成(即为超级结MOSFET的漏电极)。

Claims (3)

1.一种在超级结MOSFET中集成肖特基二极管的方法,其特征在于:在所述超级结MOSFET中并联集成有由肖特基接触与衬底形成的肖特基二极管,所述肖特基二极管的阳极位于超级结MOSFET元胞区域的源端两个体区之间的漂移区上,所述肖特基二极管的阳极与所述超级结MOSFET的源端相连;所述阳极的漂移区上还设有多个掺杂区,所述掺杂区沿所述漂移区的宽度方向等间距设置,所述掺杂区的导电类型与所述漂移区相反,所述掺杂区为P+掺杂且杂质浓度大于所述漂移区的杂质浓度,所述掺杂区也与所述超级结MOSFET的源端相连;所述肖特基二极管的阴极共用位于衬底背面的所述超级结MOSFET的漏电极;所述掺杂区和所述漂移区形成PN结,在所述漂移区的宽度方向形成PN结和肖特基二极管相间隔设置的结构;所述肖特基二极管反向偏置时,所述PN结也反向偏置,使所述肖特基二极管附近的电子被耗尽,从而使所述肖特基二极管的反向漏电降低;
在所述体区下方的所述漂移区中形成有P柱,所述P柱和所述P柱之间的所述漂移区形成交替排列的超级结结构;
在各超级结单元中,在所述体区的表面形成有多晶硅栅,所述多晶硅栅和所述体区表面之间隔离有氧化硅,源区和所述多晶硅栅的一侧自对准,被所述多晶硅栅覆盖的所述体区的表面用于形成连接所述源区和所述漂移区的沟道;
在俯视面上,令从所述源区到所述漂移区的方向为沟道长度方向,和该沟道长度方向垂直的方向为沟道宽度方向,各超级结单元的所述多晶硅栅沿着所述沟道宽度方向延伸并呈平行排列结构,各所述源区、各所述肖特基二极管的肖特基接触区域也都和所述多晶硅栅平行;在所述源区表面上方形成有和所述源区接触的金属接触,该金属接触也和所述多晶硅栅平行;在所述肖特基二极管的肖特基接触区域表面上方形成有和所述肖特基接触区域接触的金属接触,该金属接触也和所述多晶硅栅平行。
2.按照权利要求1所述的在超级结MOSFET中集成肖特基二极管的方法,其特征在于,所述超级结MOSFET中集成肖特基二极管的制备包括:
在超级结MOSFET中的多晶硅淀积完成后,刻蚀去除位于源区上方和位于两个体区之间的漂移区上方的多晶硅,形成多晶硅栅;
在所述源区和所述漂移区上刻蚀形成接触孔后,利用光刻工艺使光刻胶覆盖源区的接触孔和漂移区上部分接触孔,接着离子注入在所述漂移区上方未被光刻胶的覆盖的接触孔内形成掺杂区,所述掺杂区的导电类型与所述漂移区相反,杂质浓度大于所述漂移区的杂质浓度,最后去除光刻胶;
接着填入金属在接触孔内形成接触金属;
在接下来的金属互连形成工艺中,用金属线连接所述源区、所述肖特基二极管的阳极和所述掺杂区。
3.按照权利要求1或2所述的在超级结MOSFET中集成肖特基二极管的方法,其特征在于:所述掺杂区的掺杂浓度为:1013-1016个原子/cm2
CN201110021587.0A 2011-01-19 2011-01-19 在超级结mosfet中集成肖特基二极管的方法 Active CN102610523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110021587.0A CN102610523B (zh) 2011-01-19 2011-01-19 在超级结mosfet中集成肖特基二极管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110021587.0A CN102610523B (zh) 2011-01-19 2011-01-19 在超级结mosfet中集成肖特基二极管的方法

Publications (2)

Publication Number Publication Date
CN102610523A CN102610523A (zh) 2012-07-25
CN102610523B true CN102610523B (zh) 2015-02-04

Family

ID=46527811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110021587.0A Active CN102610523B (zh) 2011-01-19 2011-01-19 在超级结mosfet中集成肖特基二极管的方法

Country Status (1)

Country Link
CN (1) CN102610523B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679758B (zh) * 2016-03-25 2017-12-29 南京微盟电子有限公司 一种具有防电流倒灌的p型金属氧化物半导体场效应管
CN106057798B (zh) * 2016-06-27 2019-01-01 电子科技大学 一种集成沟槽肖特基的mosfet
CN106129119A (zh) * 2016-08-31 2016-11-16 西安龙腾新能源科技发展有限公司 集成肖特基二极管的超结功率vdmos的版图结构及其制作方法
CN107768371A (zh) * 2017-10-24 2018-03-06 贵州芯长征科技有限公司 集成肖特基结的超结mosfet结构及其制备方法
US11031472B2 (en) 2018-12-28 2021-06-08 General Electric Company Systems and methods for integrated diode field-effect transistor semiconductor devices
CN111969063B (zh) * 2020-09-21 2021-07-09 电子科技大学 一种具有漏端肖特基接触的超结mosfet
CN114678277B (zh) * 2022-05-27 2022-08-16 深圳平创半导体有限公司 中心注入p+屏蔽区的分裂栅平面mosfet及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752311A (zh) * 2008-12-17 2010-06-23 上海华虹Nec电子有限公司 功率mos晶体管与肖特基二极管的集成方法及结构
CN101465374B (zh) * 2007-12-21 2011-02-16 万国半导体股份有限公司 在有源区接触沟槽中具有集成肖特基二极管的mos器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299970A (ja) * 2006-05-01 2007-11-15 Toshiba Corp 半導体装置及びその製造方法
JP2008066708A (ja) * 2006-08-09 2008-03-21 Toshiba Corp 半導体装置
JP4412344B2 (ja) * 2007-04-03 2010-02-10 株式会社デンソー 半導体装置およびその製造方法
JP4620075B2 (ja) * 2007-04-03 2011-01-26 株式会社東芝 電力用半導体素子
JP5290549B2 (ja) * 2007-08-29 2013-09-18 ローム株式会社 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465374B (zh) * 2007-12-21 2011-02-16 万国半导体股份有限公司 在有源区接触沟槽中具有集成肖特基二极管的mos器件
CN101752311A (zh) * 2008-12-17 2010-06-23 上海华虹Nec电子有限公司 功率mos晶体管与肖特基二极管的集成方法及结构

Also Published As

Publication number Publication date
CN102610523A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN101740515B (zh) 半导体元件及制造方法
CN102610523B (zh) 在超级结mosfet中集成肖特基二极管的方法
US7692241B2 (en) Semiconductor device
US10861965B2 (en) Power MOSFET with an integrated pseudo-Schottky diode in source contact trench
US7928505B2 (en) Semiconductor device with vertical trench and lightly doped region
CN102468337B (zh) 半导体器件
US7795638B2 (en) Semiconductor device with a U-shape drift region
CN102569298B (zh) 包括二极管的半导体器件
CN104299997A (zh) 电荷补偿半导体器件
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN105280711A (zh) 电荷补偿结构及用于其的制造
CN104347715B (zh) 包括边缘端接的半导体器件
CN104981909A (zh) 具有改进的沟槽保护的基于沟槽的器件
CN104637821A (zh) 超级结器件的制造方法
CN102456690B (zh) 半导体器件及其制造方法
CN104282745B (zh) 半导体器件以及改善半导体器件的击穿电压的方法
CN104241363B (zh) 沟渠式mos整流元件及其制造方法
CN109148583A (zh) Snldmos器件及其制造方法
CN103325846B (zh) 一种斜沟槽肖特基势垒整流器件的制造方法
CN203300654U (zh) 斜沟槽肖特基势垒整流器件
CN104701355B (zh) 逆导型igbt半导体器件及制造方法
CN108074963B (zh) 超结器件及其制造方法
CN107785365B (zh) 集成有结型场效应晶体管的器件及其制造方法
CN106328688B (zh) 一种超结器件终端分压区的结构和制作方法
CN104253152A (zh) 一种igbt及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140108

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140108

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant