Norris et al., 1979 - Google Patents
Substrate temperature limits for epitaxy of InP by MBENorris et al., 1979
- Document ID
- 5890936921355933236
- Author
- Norris M
- Stanley C
- Publication year
- Publication venue
- Applied Physics Letters
External Links
Snippet
The temperature range within which epitaxial unintentionally doped InP can be deposited from In and P2 beams by MBE on to (100) InP substrates has been determined to be l00- 405· C. Above 410· C whisker growth from In droplets via a vapor-liquid-solid process …
- 239000000758 substrate 0 title abstract description 28
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed material
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cho | Film deposition by molecular-beam techniques | |
Akasaki et al. | Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1− xAlxN (0< x≦ 0.4) films grown on sapphire substrate by MOVPE | |
CA1327935C (en) | Growth of beta-sic thin films and semiconductor devices fabricated thereon | |
US5356831A (en) | Method of making a monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate | |
Dawson et al. | Effects of prelayers on minority‐carrier lifetime in GaAs/AlGaAs double heterostructures grown by molecular beam epitaxy | |
US4960728A (en) | Homogenization anneal of II-VI compounds | |
Parillaud et al. | High quality InP on Si by conformal growth | |
Hovel et al. | The Epitaxy of ZnSe on Ge, GaAs, and ZnSe by an HCl Close‐Spaced Transport Process | |
Werkhoven et al. | High‐purity ZnSe grown by liquid phase epitaxy | |
Takigawa et al. | Hetero-Epitaxial Growth of Boron Monophosphide on Silicon Substrate Using B2H6-PH3-H2 System | |
Norris et al. | Substrate temperature limits for epitaxy of InP by MBE | |
Queisser | Photoluminescence of Silicon‐Compensated Gallium Arsenide | |
US4195305A (en) | Lattice constant grading in the Aly Ga1-y As1-x Sbx alloy system | |
Chang et al. | Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate | |
US4948751A (en) | Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor | |
Faurie et al. | Characterization of CdxHg1-xTe p-type layers grown by MBE | |
Razeghi et al. | Growth of GaInAs‐InP multiquantum wells on garnet (GGG= Gd3Ga5O12) substrate by metalorganic chemical vapor deposition | |
Garozzo et al. | Heteroepitaxial growth of ge on< 111> si by vacuum evaporation | |
Bowers et al. | Comparison of Hg 0.6 Cd 0.4 Te LPE layer growth from Te-, Hg-, and HgTe-rich solutions | |
Ghandhi et al. | Growth of CdTe on GaAs by organometallic vapor phase heteroepitaxy | |
US4246050A (en) | Lattice constant grading in the Aly Ca1-y As1-x Sbx alloy system | |
Thompson et al. | Epitaxial growth of II–VI compounds on sapphire substrates | |
Shimanoe et al. | High quality Si-doped GaAs layers grown by molecular beam epitaxy | |
Nanishi et al. | Plasma-excited MBE—Proposal and achievements through R&D of compound semiconductor materials and devices | |
Tanahashi et al. | Electrical properties of undoped and Si‐doped Al0. 48In0. 52As grown by liquid phase epitaxy |