WO2024166938A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024166938A1
WO2024166938A1 PCT/JP2024/004084 JP2024004084W WO2024166938A1 WO 2024166938 A1 WO2024166938 A1 WO 2024166938A1 JP 2024004084 W JP2024004084 W JP 2024004084W WO 2024166938 A1 WO2024166938 A1 WO 2024166938A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor heat
expansion valve
control unit
refrigeration cycle
Prior art date
Application number
PCT/JP2024/004084
Other languages
French (fr)
Japanese (ja)
Inventor
円 上野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2024166938A1 publication Critical patent/WO2024166938A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present invention relates to a refrigeration cycle device.
  • the refrigeration cycle device described in Patent Document 1 includes a refrigerant circuit connected so that the refrigerant circulates through the compressor, outdoor heat exchanger, expansion valve, and indoor heat exchanger in that order during cooling operation.
  • the refrigeration cycle device further includes a bypass circuit connected so that the refrigerant flows from the compressor discharge port to the two-way valve, pressure reducing section, heat storage heat exchanger, and compressor suction port in that order.
  • the two-way valve is opened and some of the refrigerant circulating in the refrigerant circuit flows into the bypass circuit. As a result, the amount of heat exchanged in the indoor heat exchanger decreases, reducing the cooling capacity.
  • Air conditioners are required to reduce not only their cooling capacity but also their heating capacity.
  • the object of the present invention is to provide a refrigeration cycle device that can reduce the minimum capacity during cooling or heating.
  • the refrigeration cycle device comprises a first refrigerant circuit, a second refrigerant circuit, and a control unit.
  • the first refrigerant circuit has a compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger.
  • the second refrigerant circuit has a valve and a second outdoor heat exchanger, one of which is connected to a first position of the first refrigerant circuit and the other of which is connected to a second position of the first refrigerant circuit.
  • the control unit controls cooling operation or heating operation. In the cooling operation, the control unit controls the compressor and the first expansion valve so that the first outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator.
  • the control unit controls the valve so that the second outdoor heat exchanger functions as an evaporator.
  • the control unit controls the compressor and the first expansion valve so that the first outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser.
  • the control unit controls the valve so that the second outdoor heat exchanger functions as a condenser.
  • the present invention provides a refrigeration cycle device that can reduce the minimum capacity during cooling or heating.
  • FIG. 1 is a diagram showing an air conditioner including a refrigeration cycle device according to a first embodiment.
  • 2 is a flowchart showing an operation during cooling operation of the refrigeration cycle apparatus shown in FIG. 1 .
  • 4 is a flowchart showing an operation during a heating operation of the refrigeration cycle apparatus shown in FIG. 1 .
  • FIG. 11 is a diagram showing an air conditioner including a refrigeration cycle device according to a second embodiment.
  • FIG. 11 is a diagram showing an air conditioner including a refrigeration cycle device according to a third embodiment.
  • FIG. 13 is a diagram showing an air conditioner including a refrigeration cycle device according to a fourth embodiment.
  • FIG. 13 is a diagram showing an air conditioner including a refrigeration cycle device according to a fifth embodiment.
  • 13 is a flowchart showing an operation during cooling operation of the refrigeration cycle device according to the sixth embodiment. 13 is a flowchart showing an operation during a heating operation of the refrigeration cycle apparatus 10A according to the sixth embodiment. 10 is a flowchart showing a detailed process procedure of step S407 shown in FIG. 9.
  • Fig. 1 is a block diagram of an air conditioner 100 including a refrigeration cycle device 10A according to a first embodiment. Fig. 1 shows the air conditioner 100 during cooling operation.
  • the air conditioner 100 selectively performs cooling operation and heating operation based on user operation. In this way, the air conditioner 100 adjusts the room temperature. Cooling operation is an operation mode for lowering the room temperature to near a first set temperature. Heating operation is an operation mode for raising the room temperature to near a second set temperature.
  • the air conditioner 100 comprises at least an outdoor unit 200 and an indoor unit 300.
  • the outdoor unit 200 and the indoor unit 300 are installed outdoors and indoors, respectively.
  • the air conditioner 100 comprises a refrigeration cycle device 10A in the outdoor unit 200 and the indoor unit 300.
  • the refrigeration cycle device 10A includes a first refrigerant circuit 1A, a second refrigerant circuit 2A, a control unit (outdoor unit side) 3A, and a control unit (indoor unit side) 4A.
  • the control unit 3A and the control unit 4A are examples of the "control unit" in the present invention.
  • the first refrigerant circuit 1A has a compressor 11, a four-way valve 12, a first outdoor heat exchanger 13, a first fan 14, a first expansion valve 15, an indoor heat exchanger 16, and a second fan 17.
  • the compressor 11, the four-way valve 12, the first outdoor heat exchanger 13, the first fan 14, and the first expansion valve 15 are arranged in the outdoor unit 200.
  • the indoor heat exchanger 16 and the second fan 17 are arranged in the indoor unit 300.
  • the compressor 11 is typically a scroll compressor.
  • the compressor 11 has a suction port 111, a discharge port 112, and a main body 113.
  • an accumulator 114 is located between the suction port 111 and the main body 113.
  • a low-temperature, low-pressure refrigerant flows into the suction port 111.
  • the accumulator 114 separates the refrigerant that flows into it through the suction port 111 into gas and liquid.
  • a low-temperature, low-pressure gas refrigerant flows from the accumulator 114 into the main body 113.
  • the main body 113 compresses the flowed gas refrigerant and discharges the high-temperature, high-pressure gas refrigerant from the discharge port 112.
  • the four-way valve 12 has a casing and a valve body that can be displaced within the casing.
  • the position of the valve body within the casing is switched between a cooling position, which is the position during cooling operation, and a heating position, which is the position during heating operation, under the control of the control unit 3A.
  • a cooling position which is the position during cooling operation
  • a heating position which is the position during heating operation
  • the control unit 3A controls the control of the control unit 3A.
  • refrigerant flows in the first refrigerant circuit 1A in the direction indicated by the black arrow in FIG. 1.
  • the first outdoor heat exchanger 13 functions as a condenser
  • the indoor heat exchanger 16 functions as an evaporator.
  • the valve body is in the heating position, refrigerant flows in the first refrigerant circuit 1A in the direction opposite to the direction indicated by the black arrow in FIG. 1.
  • the first outdoor heat exchanger 13 functions as an evaporator
  • the indoor heat exchanger 16 functions as
  • the first outdoor heat exchanger 13 is typically a coiled-tube heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation.
  • the first outdoor heat exchanger 13 has a heat transfer tube and fins.
  • One end 131 of the heat transfer tube is connected to the four-way valve 12 by piping 171, and the other end 132 of the heat transfer tube is connected to the first expansion valve 15 by piping 172.
  • low-pressure, low-temperature refrigerant flows in a gas-liquid mixed state from the first expansion valve 15 through the pipe 172 to the other end 132.
  • the outer surface of the heat transfer tube is exposed to the airflow F11, just as during cooling operation. Therefore, evaporation occurs inside the heat transfer tube. That is, the refrigerant vaporizes while flowing inside the heat transfer tube. Therefore, low-pressure gas refrigerant flows out from one end 131 of the heat transfer tube in the first outdoor heat exchanger 13 to the pipe 171.
  • the first fan 14 is typically a propeller fan, and generates an air flow F11 from the air intake 201 to the exhaust 202 in the outdoor unit 200 under the control of the control unit 3A.
  • the first expansion valve 15 is located between the first outdoor heat exchanger 13 and the indoor heat exchanger 16 in the first refrigerant circuit 1A.
  • the first expansion valve 15 is connected to the indoor heat exchanger 16 by a pipe 173.
  • the indoor heat exchanger 16 is typically a coiled-tube type heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the indoor heat exchanger 16 has a heat transfer tube and fins. One end 161 of the heat transfer tube is connected to the first expansion valve 15 by piping 173, and the other end 162 of the heat transfer tube is connected to the four-way valve 12 by piping 174.
  • low-pressure, low-temperature liquid refrigerant flows into one end 161 from the first expansion valve 15 through the pipe 173.
  • the outer surface of the heat transfer tube is exposed to the air flow F12 that flows from the air inlet 301 to the air outlet 302 in the indoor unit 300 due to the rotation of the second fan 17. Therefore, the refrigerant evaporates inside the heat transfer tube.
  • the refrigerant absorbs heat from the air flow F12 inside the heat transfer tube and evaporates. Therefore, low-pressure refrigerant flows out into the pipe 174 as a gas refrigerant or a gas-liquid mixture from the other end 162 of the heat transfer tube in the indoor heat exchanger 16.
  • the air flow F12 is cooled by the refrigerant flowing inside the heat transfer tube. Therefore, during cooling operation, the cooled air flow F12 is blown out into the room.
  • a temperature sensor 163 is also attached near the air intake 301 of the indoor unit 300.
  • the temperature sensor 163 outputs a signal indicating its own ambient temperature (hereinafter referred to as the "temperature signal").
  • the second fan 17 is typically a cross-flow fan, and generates an air flow F12 from the air inlet 301 to the air outlet 302 in the indoor unit 300.
  • a three-way joint 175, a solenoid valve 176, and a three-way joint 177 are arranged on the piping 174 from the indoor heat exchanger 16 toward the four-way valve 12 in the order of three-way joint 175, solenoid valve 176, and three-way joint 177.
  • each of the three-way joints 175, 177 has a first, second, and third port, and the first and second ports are each connected to the piping 174 so that refrigerant flows between the indoor heat exchanger 16 and the four-way valve 12.
  • the third ports of the three-way joint 175 and the three-way joint 177 are respectively connected to one end and the other end of the second refrigerant circuit 2A.
  • the solenoid valve 176 opens or closes the valve body under the control of the control unit 3A.
  • the solenoid valve 176 is fully open, refrigerant can flow between the indoor heat exchanger 16 and the four-way valve 12.
  • refrigerant cannot flow between the indoor heat exchanger 16 and the four-way valve 12.
  • One end of the second refrigerant circuit 2A is connected to the third port of the three-way joint 175 in the first refrigerant circuit 1A, and the other end of the second refrigerant circuit 2A is connected to the third port of the three-way joint 177 in the first refrigerant circuit 1A.
  • the position of the third port of the three-way joint 175 corresponds to an example of the "first position" in the present invention
  • the position of the third port of the three-way joint 177 corresponds to an example of the "second position" in the present invention.
  • the second refrigerant circuit 2A has a second outdoor heat exchanger 21, a solenoid valve 22, and pipes 231 and 232.
  • the solenoid valve 22 is an example of a "valve" in the present invention.
  • the second outdoor heat exchanger 21, the solenoid valve 22, and the pipes 231 and 232 are arranged in the outdoor unit 200.
  • the second outdoor heat exchanger 21 is typically a coiled-tube heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the second outdoor heat exchanger 21 has a heat transfer tube and fins. One end 211 of the heat transfer tube is connected to the third port of the three-way joint 175 by piping 231, and the other end 212 of the heat transfer tube is connected to the third port of the three-way joint 177 by piping 232.
  • low-pressure refrigerant in a gas-liquid mixed state flows into one end 211 through pipes 174 and 231.
  • the outer surface of the heat transfer tube is exposed to airflow F11. Therefore, the refrigerant progresses in vaporization due to evaporation within the heat transfer tube. Therefore, during cooling operation, low-pressure refrigerant in a gas-liquid mixed state flows out from the other end 212 of the heat transfer tube in the second outdoor heat exchanger 21 into pipe 232.
  • the solenoid valve 22 is located in the pipe 231 closer to the three-way joint 175 than the second outdoor heat exchanger 21.
  • the solenoid valve 22 sets the valve element to "fully open” or “fully closed” under the control of the control unit 3A.
  • refrigerant can flow in the second refrigerant circuit 2A.
  • refrigerant cannot flow in the second refrigerant circuit 2A.
  • Each of the control units 3A and 4A is a control circuit board having a board and a microcomputer etc. mounted on the board, and controls cooling operation or heating operation.
  • the control unit 3A is electrically connected to the compressor 11, the four-way valve 12, the first fan 14, and the first expansion valve 15.
  • the control unit 4A is electrically connected to the second fan 17 and the temperature sensor 163.
  • the control units 3A and 4A are connected so that they can communicate with each other.
  • the control unit 4A acquires a temperature signal from the temperature sensor 163.
  • the control unit 3A receives the temperature signal from the control unit 4A, and operates the compressor 11, the four-way valve 12, the first fan 14, and the first expansion valve 15 based on the temperature signal.
  • the control unit 4A operates the second fan 17 based on the temperature signal.
  • Figure 2 is a flow chart showing the operation of the air conditioner 100 of the first embodiment during cooling operation.
  • step S101 the control unit 4A receives a command to perform cooling operation (hereinafter referred to as a "cooling instruction") and a first set temperature from a remote controller (not shown) of the air conditioner 100.
  • a cooling instruction a command to perform cooling operation
  • a remote controller not shown
  • step S102 processing to start cooling operation in the refrigeration cycle apparatus 10A is executed.
  • the control unit 4A sends a cooling command and a first set temperature to the control unit 3A.
  • the control unit 3A is triggered by the cooling command to set the solenoid valve 22 to "fully closed”, set the solenoid valve 176 to "fully open”, and further set the four-way valve 12 to the cooling position.
  • the refrigerant can flow and circulate in the first refrigerant circuit 1A in the direction of the filled arrow (see FIG. 1), and does not circulate in the second refrigerant circuit 2A.
  • step S102 the control unit 4A first acquires a temperature signal from the temperature sensor 163. Then, in step S103, the control unit 4A determines whether or not the first low-capacity operation condition is satisfied.
  • the first low-capacity operation condition is that the difference (hereinafter referred to as "deviation") between the first set temperature and the current room temperature indicated by the temperature signal is equal to or less than a first reference temperature.
  • the first set temperature and the first reference temperature are examples of the "first target temperature" and "first predetermined value" in the present invention. If it is determined that the first low-capacity operation condition is not satisfied (No in step S103), the cooling operation in step S104 is performed. If it is determined that the first low-capacity operation condition is satisfied (Yes in step S103), the first low-capacity operation in step S105 is performed.
  • step S104 the control unit 4A transmits the temperature signal acquired in step S103 to the control unit 3A. Thereafter, the control unit 4A controls the rotation speed of the second fan 17 by PID control so that the deviation approaches zero.
  • the control unit 3A adjusts the opening of the first expansion valve 15 by PID control and controls the rotation speed of the compressor 11 and the first fan 14 so that the deviation approaches zero.
  • the first fan 14 generates an airflow that passes through the second outdoor heat exchanger 21.
  • the control units 3A and 4A control the compressor 11 and the first expansion valve 15 so that the first outdoor heat exchanger 13 functions as a condenser and the indoor heat exchanger 16 functions as an evaporator.
  • the indoor unit 300 blows cool air into the room to cool the room.
  • step S105 the control unit 4A sends a command to execute the first low-capacity operation (hereinafter referred to as the "first low-capacity operation instruction") to the control unit 3A.
  • the control unit 3A executes the first low-capacity operation using the first low-capacity operation instruction as a trigger.
  • the control unit 3A switches the solenoid valve 22 from “fully closed” to “fully open” and switches the solenoid valve 176 from “fully open” to “fully closed”.
  • the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those during cooling operation, or may be slightly different.
  • steps S104 and S105 are completed, when it is time to execute the next step S103, the process returns to step S103.
  • control units 3A and 4A control the solenoid valves 22 and 176 in step S105 so that the second outdoor heat exchanger 21 functions as an evaporator.
  • the indoor heat exchanger 16 and the second outdoor heat exchanger 21 evaporate the refrigerant, reducing the amount of heat exchanged in the indoor heat exchanger 16. This makes it possible to reduce the minimum capacity during cooling.
  • Figure 3 is a flow chart showing the operation of the air conditioner 100 of the first embodiment during heating operation.
  • step S201 the control unit 4A receives a command to execute heating operation (hereinafter referred to as a "heating instruction") and a second set temperature from a remote controller (not shown).
  • a heating instruction a command to execute heating operation
  • a second set temperature a command to execute temperature from a remote controller (not shown).
  • step S202 the heating operation of the refrigeration cycle apparatus 10A is started.
  • the control unit 4A sends a heating command and a second set temperature to the control unit 3A.
  • the control unit 3A is triggered by the heating command to set the solenoid valve 22 to "fully closed”, set the solenoid valve 176 to "fully open”, and further set the valve position of the four-way valve 12 to the heating position.
  • the refrigerant circulates by flowing in the direction opposite to the direction of the filled-in arrow (see FIG. 1) in the first refrigerant circuit 1A, and does not circulate in the second refrigerant circuit 2A.
  • step S203 the control unit 4A acquires a temperature signal. Then, in step S203, the control unit 4A determines whether or not the second low-capacity operation condition is satisfied.
  • the second low-capacity operation condition is that the deviation between the second set temperature and the current room temperature is equal to or less than a predetermined second reference temperature.
  • the second set temperature and the second reference temperature are examples of the "second target temperature" and "second predetermined value" in the present invention. If it is determined that the second low-capacity operation condition is not satisfied (No in step S203), the heating operation in step S204 is executed. If it is determined that the second low-capacity operation condition is satisfied (Yes in step S203), the second low-capacity operation in step S205 is executed.
  • step S204 the control unit 4A transmits the temperature signal acquired in step S203 to the control unit 3A.
  • the control unit 4A then controls the rotation speed of the second fan 17 by PID control.
  • the control unit 3A adjusts the opening of the first expansion valve 15 and controls the rotation speed of the compressor 11 and the first fan 14.
  • the first fan 14 generates an airflow that passes through the second outdoor heat exchanger 21.
  • the control units 3A and 4A control the compressor 11 and the first expansion valve 15 so that the first outdoor heat exchanger 13 functions as an evaporator and the indoor heat exchanger 16 functions as a condenser.
  • the indoor unit 300 blows warm air into the room, heating the room.
  • step S205 the control unit 4A sends a command to execute the second low-capacity operation (hereinafter referred to as the "second low-capacity operation instruction") to the control unit 3A.
  • the control unit 3A executes the second low-capacity operation using the second low-capacity operation instruction as a trigger.
  • the control unit 3A switches the solenoid valve 22 from “fully closed” to “fully open” and switches the solenoid valve 176 from “fully open” to “fully closed”.
  • the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those during cooling operation, or may be slightly different.
  • step S204 or step S205 After either step S204 or step S205 is completed, when it is time to execute the next step S203, the process returns to step S203.
  • control units 3A and 4A control the solenoid valves 22 and 176 in step S205 so that the second outdoor heat exchanger 21 functions as a condenser.
  • the indoor heat exchanger 16 and the second outdoor heat exchanger 21 condense the refrigerant, reducing the amount of heat exchanged in the indoor heat exchanger 16. This makes it possible to reduce the minimum capacity during heating operation.
  • the first embodiment provides a refrigeration cycle device 10A that can reduce the minimum capacity during cooling or heating.
  • the control unit 3A causes the first fan 14 to generate an air flow F11 that passes through the second outdoor heat exchanger 21. Therefore, compared to the case of a heat storage heat exchanger that uses the exhaust heat of the compressor, the amount of heat exchanged in the second outdoor heat exchanger 21 can be flexibly controlled.
  • the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 face each other in the direction in which the airflow F11 generated in the outdoor unit 200 flows. This allows the outdoor unit 200 to be made more compact. It is also preferable that the first outdoor heat exchanger 13 is located downstream of the second outdoor heat exchanger 21. During heating operation, frost may form on the first outdoor heat exchanger 13. However, with the above-mentioned arrangement, the airflow generated by the first fan 14 is heated while passing through the second outdoor heat exchanger 21, and then passes through the first outdoor heat exchanger 13. Therefore, it is possible to remove frost that forms on the first outdoor heat exchanger 13.
  • each of the three-way joints 175, 177 is located on the pipe 174 of the first refrigerant circuit 1A between the indoor heat exchanger 16 and the compressor 11.
  • the pipe 174 has sufficient space to place the three-way joints 175, 177. This allows the second refrigerant circuit 2A to be properly connected to the first refrigerant circuit 1A.
  • Second Embodiment 4 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the second embodiment.
  • the refrigeration cycle apparatus 10A according to the second embodiment is different from the refrigeration cycle apparatus 10A according to the first embodiment in that the three-way joint 177 is located at the suction port 111 of the compressor 11 or the inlet of the accumulator 114.
  • the suction port 111 is an example of the "suction port" in the present invention.
  • the three-way joint 177 can be located at a position farther away from the three-way joint 175 than in the first embodiment.
  • the degree of freedom in the arrangement of the pipes 231 and 232 made of metal such as copper is improved.
  • control unit 4A transmits a second low capacity operation instruction to the control unit 3A in step S205.
  • the control unit 3A executes the second low capacity operation using the second low capacity operation instruction as a trigger.
  • the control unit 3A switches the solenoid valve 22 from “fully closed” to “fully open” and leaves the solenoid valve 176 "fully open”.
  • the amount of refrigerant circulating into the other end 162 of the heat transfer tube in the indoor heat exchanger 16 decreases, so that the indoor unit 300 executes the second low capacity operation.
  • the solenoid valve 22 when the solenoid valve 22 is "fully closed", high-temperature and high-pressure gas refrigerant does not flow into the second outdoor heat exchanger 21, so that heat loss is reduced in the refrigeration cycle device 10A.
  • the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as or slightly different from those in the cooling operation.
  • FIG. 5 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the third embodiment.
  • the refrigeration cycle apparatus 10A of the third embodiment differs from the refrigeration cycle apparatus 10A of the first embodiment in that it does not include a solenoid valve 176 and a three-way joint 177, but includes a three-way valve 178.
  • the three-way valve 178 is an example of the "three-way valve" of the present invention.
  • the three-way valve 178 is located between the three-way joint 175 and the four-way valve 12 on the first refrigerant circuit 1A.
  • the position of the three-way valve 178 corresponds to another example of the "second position" in the present invention.
  • the three-way valve 178 has a casing and a valve body that is displaceable within the casing, and switches the position of the valve body within the casing under the control of the control unit 3A to whether or not refrigerant flows to the second outdoor heat exchanger 21.
  • the three-way valve 178 switches the position of the valve body between a first valve position that allows refrigerant to flow only through the first refrigerant circuit 1A, and a second valve position that allows refrigerant to flow through both the first refrigerant circuit 1A and the second refrigerant circuit 2A.
  • control unit 3A sets the solenoid valve 22 to "fully closed” and the three-way valve 178 to the first valve position in steps S102 (see FIG. 2) and S202 (see FIG. 3).
  • the control unit 3A sets the four-way valve 12 to the cooling position and the heating position in steps S102 (see FIG. 2) and S202 (see FIG. 3).
  • the control unit 3A sets the solenoid valve 22 to "fully open” and the three-way valve 178 to the second valve position in steps S105 (see FIG. 2) and S205 (see FIG. 3).
  • the three-way valve 178 is used. This reduces the manufacturing costs of the refrigeration cycle device 10A.
  • FIG. 6 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the fourth embodiment.
  • the refrigeration cycle apparatus 10A of the fourth embodiment differs from the refrigeration cycle apparatus 10A of the first embodiment in the positions of three-way joints 175, 177 (i.e., the connection positions of the second refrigerant circuit 2A in the first refrigerant circuit 1A), in not including solenoid valves 22, 176, and in including a second expansion valve 24.
  • the three-way joint 175 is located between the first outdoor heat exchanger 13 and the first expansion valve 15 in the first refrigerant circuit 1A.
  • the three-way joint 175 is provided between one end 131 and the other end 132 of the heat transfer tube in the first outdoor heat exchanger 13.
  • Each of the first and second ports of the three-way joint 175 is connected to a heat transfer tube so that the refrigerant flows through the heat transfer tube. Note that in FIG. 6, for convenience, the heat transfer tube is shown as a straight line using dashed lines.
  • the three-way joint 177 is located in the pipe 173 of the first refrigerant circuit 1A between the first expansion valve 15 and the indoor heat exchanger 16.
  • the first and second ports of the three-way joint 177 are each connected to the pipe 173 so that the refrigerant flows through the pipe 173.
  • the second expansion valve 24 is located on the pipe 231 between the three-way joint 175 (i.e., the first outdoor heat exchanger 13) and the second outdoor heat exchanger 21.
  • the opening degree of the second expansion valve 24 can be adjusted under the control of the control unit 3A.
  • the control unit 3A of the fourth embodiment sets the opening degree of the second expansion valve 24 to "fully closed” in steps S102 (see FIG. 2) and S202 (see FIG. 3).
  • the control unit 3A sets the four-way valve 12 to the cooling position and the heating position in steps S102 (see FIG. 2) and S202 (see FIG. 3).
  • the control unit 3A narrows the opening degree of the second expansion valve 24 below "fully open” in steps S105 (see FIG. 2) and S205 (see FIG. 3) to cause the second expansion valve 24 to function as an expansion valve.
  • step S105 the second outdoor heat exchanger 21 functions as an evaporator, so the amount of heat exchanged in the indoor heat exchanger 16 functioning as an evaporator is less than in cooling operation.
  • step S205 the second outdoor heat exchanger 21 functions as a condenser, so the amount of heat exchanged in the indoor heat exchanger 16 functioning as a condenser is less than in heating operation. Therefore, it is possible to reduce the minimum capacity during both cooling and heating operation.
  • FIG. 7 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to a fifth embodiment. As shown in Fig. 7, the refrigeration cycle apparatus 10A of the fifth embodiment is different from the refrigeration cycle apparatus 10A of the fourth embodiment in that it further includes a third expansion valve 25.
  • the third expansion valve 25 is located on the pipe 232 between the second outdoor heat exchanger 21 and the third port of the three-way joint 177.
  • the opening degree of the third expansion valve 25 can be adjusted under the control of the control unit 3A.
  • step S102 the control unit 3A of the fifth embodiment places the four-way valve 12 in the cooling position, opens the second expansion valve 24 fully, and narrows the opening of the third expansion valve 25 below the fully open position.
  • the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 each function as a condenser.
  • the cooling capacity of the air conditioner 100 increases.
  • step S105 the control unit 3A narrows the opening of the second expansion valve 24 below the fully open position, and opens the third expansion valve 25 fully.
  • the indoor heat exchanger 16 and the second outdoor heat exchanger 21 each function as an evaporator.
  • step S105 the heat exchange amount in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to the cooling operation. Therefore, the minimum capacity during the cooling operation can be reduced.
  • step S202 the control unit 3A sets the four-way valve 12 to the heating position, sets the second expansion valve 24 to "fully open”, and narrows the opening of the third expansion valve 25 below “fully open”. That is, the third expansion valve 25 functions as an expansion valve during heating operation.
  • step S205 the control unit 3A narrows the opening of the second expansion valve 24 below “fully open”, and sets the third expansion valve 25 to "fully open”. That is, the second expansion valve 24 functions as an expansion valve during heating operation.
  • each of the indoor heat exchanger 16 and the second outdoor heat exchanger 21 functions as an evaporator.
  • step S205 the heat exchange amount in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to that during heating operation. This makes it possible to reduce the minimum capacity during heating operation.
  • FIG. 10A The configuration of the refrigeration cycle apparatus 10A according to the sixth embodiment may be similar to that of the fifth embodiment. Therefore, in the sixth embodiment, FIG.
  • Figure 8 is a flow chart showing the operation of the refrigeration cycle device 10A of the sixth embodiment during cooling operation.
  • step S301 the control unit 4A receives a cooling instruction and a first set temperature, similar to step S101.
  • step S302 the process of starting the cooling operation in the refrigeration cycle device 10A is executed.
  • the control unit 4A transmits a cooling command and a first set temperature to the control unit 3A.
  • the control unit 3A is triggered by the cooling command to set the four-way valve 12 to the cooling position, set the second expansion valve 24 to "fully open”, and reduce the opening of the third expansion valve 25 to less than "fully open”, similar to step S102 in the fifth embodiment.
  • step S302 the control unit 4A first acquires a temperature signal. Then, in step S303, the control unit 4A determines whether or not the first medium capacity operation condition is met.
  • the first medium capacity operation condition is that the deviation is equal to or greater than the first reference temperature and equal to or less than the third reference temperature.
  • the first reference temperature is, for example, 0°C.
  • the third reference temperature is a temperature that is a predetermined temperature higher than the first reference temperature, for example, 2°C. If it is determined that the first medium capacity operation condition is not met (No in step S303), step S305 is executed. If it is determined that the first medium capacity operation condition is met (Yes in step S303), the first medium capacity operation in step S304 is executed.
  • step S305 the control unit 4A determines whether or not the first low-capacity operation condition described above is satisfied. If it is determined that the first low-capacity operation condition is not satisfied (No in step S305), the cooling operation is performed in step S307. If it is determined that the first low-capacity operation condition is satisfied (Yes in step S305), the first low-capacity operation is performed in step S306.
  • step S307 the control units 3A and 4A control the cooling operation in the same manner as in step S104 (see FIG. 2).
  • the indoor unit 300 blows cool air into the room, cooling the room so that the room temperature becomes the first set temperature.
  • step S304 the control unit 4A sends a command to execute the first medium capacity operation (hereinafter, referred to as the "first medium capacity operation instruction") to the control unit 3A.
  • the control unit 3A executes the first medium capacity operation using the first medium capacity operation instruction as a trigger.
  • the control unit 3A switches each of the second expansion valve 24 and the third expansion valve 25 to "fully closed”. If the second expansion valve 24 is "fully closed” earlier than the third expansion valve 25, the refrigerant does not accumulate in the second outdoor heat exchanger 21. If the second expansion valve 24 is "fully closed” later than the third expansion valve 25, the refrigerant accumulates in the second outdoor heat exchanger 21, and the amount of refrigerant circulating in the refrigeration cycle device 10A decreases.
  • the reduction in the amount of refrigerant can be advantageous when the total piping length in the refrigeration cycle device 10A is relatively short.
  • the cooling capacity can be reduced compared to that during cooling operation.
  • the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those in the cooling operation, or may be slightly different.
  • step S306 the control unit 3A narrows the opening of the second expansion valve 24 below "full open” and sets the opening of the third expansion valve 25 to be greater than the second expansion valve 24.
  • the control unit 3A controls the opening of the second expansion valve 24 and the third expansion valve 25 so that the opening of the second expansion valve 24 is smaller than that of the third expansion valve 25.
  • each of the indoor heat exchanger 16 and the second outdoor heat exchanger 21 functions as an evaporator.
  • step S306 the amount of heat exchange in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to cooling operation. Therefore, the minimum capacity during cooling operation can be reduced.
  • steps S304, S306, and S307 are completed, when it is time to execute the next step S303, the process returns to step S303.
  • Figure 9 is a flowchart showing the operation of the refrigeration cycle device 10A according to the sixth embodiment during heating operation.
  • step S401 the control unit 4A receives a heating instruction and a second set temperature, similar to step S201.
  • step S402 the process of starting the heating operation in the refrigeration cycle device 10A is executed.
  • the control unit 4A sends a heating command and a second set temperature to the control unit 3A.
  • the control unit 3A is triggered by the heating command to set the four-way valve 12 to the heating position, set the second expansion valve 24 to "fully open,” and reduce the opening of the third expansion valve 25 to less than “fully open,” as in step S202 of the fifth embodiment.
  • step S402 the control unit 4A first acquires a temperature signal. Then, in step S403, the control unit 4A determines whether or not the second medium capacity operation condition is met.
  • the second medium capacity operation condition is that the deviation is equal to or greater than the second reference temperature and equal to or less than the fourth reference temperature.
  • the second reference temperature is, for example, 0°C.
  • the fourth reference temperature is a temperature that is a predetermined temperature higher than the second reference temperature, for example, 2°C. If it is determined that the second medium capacity operation condition is not met (No in step S403), step S405 is executed. If it is determined that the first medium capacity operation condition is met (Yes in step S403), the second medium capacity operation in step S404 is executed.
  • step S405 the control unit 4A determines whether or not the second low-capacity operation condition described above is satisfied. If it is determined that the second low-capacity operation condition is not satisfied (No in step S405), the heating operation is performed in step S407. If it is determined that the second low-capacity operation condition is satisfied (Yes in step S405), the second low-capacity operation is performed in step S406.
  • step S407 the control units 3A and 4A execute the same process as in step S204 (see FIG. 2).
  • the indoor unit 300 blows out warm air into the room, heating the room so that the room temperature becomes the second set temperature.
  • control unit 4A sends an instruction to execute second medium capacity operation (hereinafter referred to as "second medium capacity operation instruction") to control unit 3A.
  • second medium capacity operation instruction an instruction to execute second medium capacity operation
  • control unit 3A executes second medium capacity operation similar to the first medium capacity operation described above. With the second medium capacity operation, the heating capacity can be reduced compared to heating operation.
  • step S406 the control unit 3A narrows the opening of the second expansion valve 24 below "fully open” and opens the third expansion valve 25 greater than the opening of the second expansion valve 24.
  • the indoor heat exchanger 16 and the second outdoor heat exchanger 21 each function as a condenser.
  • the amount of heat exchanged in the indoor heat exchanger 16 functioning as a condenser is reduced compared to heating operation. Therefore, the minimum capacity during heating operation can be reduced.
  • FIG. 10 is a flowchart showing the detailed processing procedure of step S407.
  • step S501 the control units 3A and 4A heat the room so that the room temperature becomes the second set temperature by processing similar to that of step S204 (see FIG. 2).
  • step S502 processing for determining whether the defrosting conditions are satisfied.
  • step S502 the control unit 3A determines whether the first defrost condition is satisfied.
  • the detailed processing of step S502 is described below.
  • the outdoor unit 200 has known frost sensors 26A, 26B.
  • the frost sensors 26A, 26B output a signal indicating the amount of frost on the first outdoor heat exchanger 13 (hereinafter referred to as the "first frost amount signal”) and a signal indicating the amount of frost on the second outdoor heat exchanger 21 (hereinafter referred to as the "second frost amount signal”) to the control unit 3A, respectively.
  • the control unit 3A acquires a first frost amount signal from the frost sensor 26A. If the first frost amount signal indicates a frost amount less than a predetermined frost amount reference value, the control unit 3A determines that the first defrost condition is not met (No in step S502). In this case, the process returns to step S501, and the control unit 3A waits for the next execution timing. On the other hand, if the first frost amount signal indicates a frost amount equal to or greater than the predetermined frost amount reference value, it is determined that the first defrost condition is met (Yes in step S502). In this case, step S503 is executed.
  • step S503 the control unit 3A determines whether or not there is a person in the room.
  • the determination in step S503 may be performed, for example, based on a detection signal from the human presence sensor 27 (see FIG. 7) provided in the indoor unit 300. Therefore, a detailed description of step S503 will be refrained from. If it is determined based on the detection signal that there is no person present (No in step S503), a normal defrosting operation is performed in step S504. On the other hand, if it is determined based on the detection signal that there is a person present (Yes in step S503), step S505 is performed.
  • step S504 the control unit 3A typically sets the four-way valve 12 to the cooling position.
  • the first outdoor heat exchanger 13 functions as a condenser, and high-temperature refrigerant flows through the heat transfer tubes of the first outdoor heat exchanger 13. This removes frost from the first outdoor heat exchanger 13.
  • the process returns to step S501.
  • control unit 3A may set the four-way valve 12 to the cooling position, set the second expansion valve 24 to "fully open”, and reduce the opening degree of the third expansion valve 25 below "fully open”.
  • each of the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 functions as a condenser.
  • frost is removed from each of the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21.
  • control unit 3A may, after the four-way valve 12 is set to the cooling position, and after a predetermined time has elapsed, set the second expansion valve 24 to "fully open” and reduce the opening degree of the third expansion valve 25 below “fully open.”
  • step S505 the control unit 3A determines whether the second defrost condition is satisfied.
  • the control unit 3A acquires a second frost amount signal from the frost sensor 26B. If the second frost amount signal indicates an amount of frost less than the frost amount reference value, the control unit 3A determines that the second defrost condition is not satisfied (No in step S505). In this case, the process proceeds to step S511. On the other hand, if the second frost amount signal indicates an amount of frost equal to or greater than the predetermined frost amount reference value, it is determined that the second defrost condition is satisfied (Yes in step S505). In this case, step S506 is executed.
  • step S506 the control unit 3A makes the indoor heat exchanger 16 function as a condenser, the second outdoor heat exchanger 21 function as a condenser, and the first outdoor heat exchanger 13 function as an evaporator to maintain the heating operation.
  • the control unit 3A narrows the opening of the second expansion valve 24 to a value smaller than "fully open,” and makes the opening of the third expansion valve 25 larger than that of the second expansion valve 24.
  • the frost is removed from the second outdoor heat exchanger 21.
  • the air flow F11 (see the white arrow) is heated in the process of passing through the second outdoor heat exchanger 21.
  • the heated air flow F11 can also melt the frost adhering to the first outdoor heat exchanger 13 in the process of passing through the first outdoor heat exchanger 13.
  • step S507 the control unit 3A determines whether or not the first defrost condition is satisfied, in the same manner as in step S502. If it is determined that the first defrost condition is not satisfied (No in step S507), step S501 is executed. On the other hand, if it is determined that the first defrost condition is satisfied (Yes in step S507), step S508 is executed.
  • step S508 the control unit 3A determines whether or not there is a person in the room, in the same manner as in step S503. If it is determined that there is no person in the room (No in step S508), step S504 is executed. On the other hand, if it is determined that there is a person in the room (Yes in step S508), step S510 is executed.
  • control unit 3A acquires a temperature signal through control unit 4A.
  • Control unit 3A determines whether the deviation between the second set temperature and the current room temperature is equal to or less than a predetermined fifth reference temperature. If it is determined that the deviation is not equal to or less than the fifth reference temperature (No in step S510), step S501 is executed since the room temperature is low and it is better to prioritize heating operation over defrosting. If it is determined that the deviation is equal to or less than the fifth reference temperature (Yes in step S510), step S511 is executed.
  • step S511 the control unit 3A makes the indoor heat exchanger 16 function as a condenser, the first outdoor heat exchanger 13 function as a condenser, and the second outdoor heat exchanger 21 function as an evaporator to maintain the heating operation.
  • the control unit 3A narrows the opening of the third expansion valve 25 to a value smaller than "fully open,” and makes the opening of the second expansion valve 24 larger than that of the third expansion valve 25.
  • the control unit 3A also makes the first expansion valve 15 "fully open.” As a result, the frost is removed from the first outdoor heat exchanger 13.
  • the frost is also removed from the first outdoor heat exchanger 13 in step S506, the frost is removed satisfactorily from the first outdoor heat exchanger 13 according to the process of FIG. 10.
  • step S506 is executed before step S511.
  • step S511 may be executed before step S506.
  • the present invention is a refrigeration cycle device and has industrial applicability.
  • Air conditioner 10A Refrigeration cycle device 1A: First refrigerant circuit 11: Compressor 111: Suction port 112: Discharge port 113: Main body 114: Accumulator 12: Four-way valve 13: First outdoor heat exchanger 14: First fan 15: First expansion valve 16: Indoor heat exchanger 163: Temperature sensor 17: Second fan 2A: Second refrigerant circuit 21: Second outdoor heat exchanger 22: Solenoid valve 24: Second expansion valve 25: Third expansion valve 26A: Frost sensor 26B: Frost sensor 27: Human presence sensor 3A: Control unit 4A: Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device comprises a first refrigerant circuit and a second refrigerant circuit. The first refrigerant circuit includes a compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger. The second refrigerant circuit includes a valve and a second outdoor heat exchanger, of which one is connected in a first position in the first refrigerant circuit and the other is connected in a second position in the first refrigerant circuit. In a space cooling operation, the first outdoor heat exchanger functions as a condenser, and the indoor heat exchanger functions as an evaporator. In the space cooling operation, if a difference between room temperature and a first target temperature is equal to or less than a first prescribed value, the second outdoor heat exchanger functions as an evaporator. In a space heating operation, the first outdoor heat exchanger functions as an evaporator, and the indoor heat exchanger functions as a condenser. In the space heating operation, if a difference between room temperature and a second target temperature is equal to or less than a second prescribed value, the second outdoor heat exchanger functions as a condenser.

Description

冷凍サイクル装置Refrigeration Cycle Equipment
 本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device.
 特許文献1に記載の冷凍サイクル装置は、冷房運転時に、圧縮機、室外熱交換器、膨張弁、室内熱交換器の順に冷媒が循環するように接続された冷媒回路を備える。冷媒サイクル装置は更に、圧縮機の吐出口から二方弁、減圧部、蓄熱熱交換器、圧縮機吸入口の順に冷媒が流れるように接続されたバイパス回路を更に備える。冷凍サイクル装置では、室内温度が目標温度を下回った状態を所定時間継続すると、二方弁が開放されて、冷媒回路で流通する冷媒の一部がバイパス回路に流入する。その結果、室内熱交換器における熱交換量が減少し、冷房能力が低減する。 The refrigeration cycle device described in Patent Document 1 includes a refrigerant circuit connected so that the refrigerant circulates through the compressor, outdoor heat exchanger, expansion valve, and indoor heat exchanger in that order during cooling operation. The refrigeration cycle device further includes a bypass circuit connected so that the refrigerant flows from the compressor discharge port to the two-way valve, pressure reducing section, heat storage heat exchanger, and compressor suction port in that order. In the refrigeration cycle device, when the indoor temperature remains below the target temperature for a predetermined period of time, the two-way valve is opened and some of the refrigerant circulating in the refrigerant circuit flows into the bypass circuit. As a result, the amount of heat exchanged in the indoor heat exchanger decreases, reducing the cooling capacity.
特開2022-37288号公報JP 2022-37288 A
 空気調和機には、冷房能力だけでなく暖房能力の低減も求められる。 Air conditioners are required to reduce not only their cooling capacity but also their heating capacity.
 本発明の目的は、冷房時又は暖房時における最小能力を低減可能な冷凍サイクル装置を提供することにある。 The object of the present invention is to provide a refrigeration cycle device that can reduce the minimum capacity during cooling or heating.
 本発明の第1形態に係る冷凍サイクル装置は、第1冷媒回路と、第2冷媒回路と、制御部とを備える。前記第1冷媒回路は、圧縮機、第1室外熱交換器、第1膨張弁、及び室内熱交換器を有する。前記第2冷媒回路は、弁及び第2室外熱交換器を有し、一方が前記第1冷媒回路の第1位置に接続され、他方が前記第1冷媒回路の第2位置に接続される。前記制御部は、冷房運転又は暖房運転を制御する。前記制御部は、前記冷房運転では、前記第1室外熱交換器を凝縮器として機能し、かつ前記室内熱交換器を蒸発器として機能するように、前記圧縮機と前記第1膨張弁とを制御する。前記制御部は、前記冷房運転において室温と第1目標温度との差が第1所定値以下になると、前記第2室外熱交換器が蒸発器として機能するように前記弁を制御する。前記制御部は、前記暖房運転では、前記第1室外熱交換器を蒸発器として機能させ、かつ前記室内熱交換器を凝縮器として機能するように、前記圧縮機と前記第1膨張弁とを制御する。前記制御部は、前記暖房運転において室温と第2目標温度との差が第2所定値以下になると、前記第2室外熱交換器が凝縮器として機能するように前記弁を制御する。 The refrigeration cycle device according to the first aspect of the present invention comprises a first refrigerant circuit, a second refrigerant circuit, and a control unit. The first refrigerant circuit has a compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger. The second refrigerant circuit has a valve and a second outdoor heat exchanger, one of which is connected to a first position of the first refrigerant circuit and the other of which is connected to a second position of the first refrigerant circuit. The control unit controls cooling operation or heating operation. In the cooling operation, the control unit controls the compressor and the first expansion valve so that the first outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator. When the difference between the room temperature and a first target temperature becomes equal to or less than a first predetermined value in the cooling operation, the control unit controls the valve so that the second outdoor heat exchanger functions as an evaporator. In the heating operation, the control unit controls the compressor and the first expansion valve so that the first outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser. When the difference between the room temperature and the second target temperature during the heating operation becomes equal to or less than a second predetermined value, the control unit controls the valve so that the second outdoor heat exchanger functions as a condenser.
 本発明によれば、冷房時又は暖房時における最小能力を低減可能な冷凍サイクル装置を提供できる。 The present invention provides a refrigeration cycle device that can reduce the minimum capacity during cooling or heating.
第1実施形態に係る冷凍サイクル装置を備えた空気調和機を示す図である。1 is a diagram showing an air conditioner including a refrigeration cycle device according to a first embodiment. 図1に示す冷凍サイクル装置の冷房運転時の動作を示すフローチャートである。2 is a flowchart showing an operation during cooling operation of the refrigeration cycle apparatus shown in FIG. 1 . 図1に示す冷凍サイクル装置の暖房運転時の動作を示すフローチャートである。4 is a flowchart showing an operation during a heating operation of the refrigeration cycle apparatus shown in FIG. 1 . 第2実施形態に係る冷凍サイクル装置を備えた空気調和機を示す図である。FIG. 11 is a diagram showing an air conditioner including a refrigeration cycle device according to a second embodiment. 第3実施形態に係る冷凍サイクル装置を備えた空気調和機を示す図である。FIG. 11 is a diagram showing an air conditioner including a refrigeration cycle device according to a third embodiment. 第4実施形態に係る冷凍サイクル装置を備えた空気調和機を示す図である。FIG. 13 is a diagram showing an air conditioner including a refrigeration cycle device according to a fourth embodiment. 第5実施形態に係る冷凍サイクル装置を備えた空気調和機を示す図である。FIG. 13 is a diagram showing an air conditioner including a refrigeration cycle device according to a fifth embodiment. 第6実施形態に係る冷凍サイクル装置の冷房運転時の動作を示すフローチャートである。13 is a flowchart showing an operation during cooling operation of the refrigeration cycle device according to the sixth embodiment. 第6実施形態に係る冷凍サイクル装置10Aの暖房運転時の動作を示すフローチャートである。13 is a flowchart showing an operation during a heating operation of the refrigeration cycle apparatus 10A according to the sixth embodiment. 図9に示されるステップS407の詳細な処理手順を示すフローチャートである。10 is a flowchart showing a detailed process procedure of step S407 shown in FIG. 9.
 以下、図面を参照して本発明による冷凍サイクル装置の各実施形態を説明する。なお、図中、同一又は相当部分には同一の参照符号を付して説明を繰り返さない。 Below, each embodiment of the refrigeration cycle device according to the present invention will be described with reference to the drawings. Note that in the drawings, the same or corresponding parts will be given the same reference symbols and descriptions will not be repeated.
「第1実施形態」
 図1は、第1実施形態に係る冷凍サイクル装置10Aを備えた空気調和機100のブロック図である。図1には、冷房運転時の空気調和機100が示される。
"First embodiment"
Fig. 1 is a block diagram of an air conditioner 100 including a refrigeration cycle device 10A according to a first embodiment. Fig. 1 shows the air conditioner 100 during cooling operation.
 図1に示されるように、空気調和機100は、ユーザ操作に基づいて、冷房運転及び暖房運転を選択的に実行する。これにより、空気調和機100は、室温を調整する。冷房運転は、室温を第1設定温度付近に下げるための運転モードである。暖房運転は、室温を第2設定温度付近に上げるための運転モードである。 As shown in FIG. 1, the air conditioner 100 selectively performs cooling operation and heating operation based on user operation. In this way, the air conditioner 100 adjusts the room temperature. Cooling operation is an operation mode for lowering the room temperature to near a first set temperature. Heating operation is an operation mode for raising the room temperature to near a second set temperature.
 空気調和機100は、少なくとも、室外機200と、室内機300とを備える。室外機200及び室内機300は、室外及び室内にそれぞれ設置される。空気調和機100は、室外機200及び室内機300に、冷凍サイクル装置10Aを備える。 The air conditioner 100 comprises at least an outdoor unit 200 and an indoor unit 300. The outdoor unit 200 and the indoor unit 300 are installed outdoors and indoors, respectively. The air conditioner 100 comprises a refrigeration cycle device 10A in the outdoor unit 200 and the indoor unit 300.
 冷凍サイクル装置10Aは、第1冷媒回路1Aと、第2冷媒回路2Aと、制御部(室外機側)3Aと、制御部(室内機側)4Aとを備える。制御部3A及び制御部4Aは、本発明における「制御部」の一例である。 The refrigeration cycle device 10A includes a first refrigerant circuit 1A, a second refrigerant circuit 2A, a control unit (outdoor unit side) 3A, and a control unit (indoor unit side) 4A. The control unit 3A and the control unit 4A are examples of the "control unit" in the present invention.
 第1冷媒回路1Aは、圧縮機11と、四方弁12と、第1室外熱交換器13と、第1ファン14と、第1膨張弁15と、室内熱交換器16と、第2ファン17とを有する。圧縮機11、四方弁12、第1室外熱交換器13、第1ファン14及び第1膨張弁15は、室外機200に配置される。室内熱交換器16及び第2ファン17は、室内機300に配置される。 The first refrigerant circuit 1A has a compressor 11, a four-way valve 12, a first outdoor heat exchanger 13, a first fan 14, a first expansion valve 15, an indoor heat exchanger 16, and a second fan 17. The compressor 11, the four-way valve 12, the first outdoor heat exchanger 13, the first fan 14, and the first expansion valve 15 are arranged in the outdoor unit 200. The indoor heat exchanger 16 and the second fan 17 are arranged in the indoor unit 300.
 圧縮機11は、典型的にはスクロールコンプレッサである。圧縮機11は、吸入ポート111と、吐出ポート112と、本体113とを有する。実施形態では、吸入ポート111と、本体113との間には、アキュムレータ114が位置する。吸入ポート111には、低温低圧の冷媒が流入する。アキュムレータ114は、吸入ポート111を通じて自身に流入した冷媒を気液分離する。その結果、低温低圧のガス冷媒がアキュムレータ114から本体113に流入する。本体113は、流入したガス冷媒を圧縮し、吐出ポート112から高温高圧のガス冷媒を吐出する。 The compressor 11 is typically a scroll compressor. The compressor 11 has a suction port 111, a discharge port 112, and a main body 113. In this embodiment, an accumulator 114 is located between the suction port 111 and the main body 113. A low-temperature, low-pressure refrigerant flows into the suction port 111. The accumulator 114 separates the refrigerant that flows into it through the suction port 111 into gas and liquid. As a result, a low-temperature, low-pressure gas refrigerant flows from the accumulator 114 into the main body 113. The main body 113 compresses the flowed gas refrigerant and discharges the high-temperature, high-pressure gas refrigerant from the discharge port 112.
 四方弁12は、ケーシングと、ケーシング内で変位可能な弁体とを有する。ケーシング内での弁体の位置は、制御部3Aの制御下で、冷房運転時の位置である冷房位置と、暖房運転時の位置である暖房位置とに切り換えられる。弁体が冷房位置にあるとき、第1冷媒回路1Aでは、図1に黒塗り矢印で示す方向に冷媒が流れる。また、第1室外熱交換器13は、凝縮器として機能し、室内熱交換器16は、蒸発器として機能する。弁体が暖房位置にあるとき、第1冷媒回路1Aでは、図1に黒塗り矢印で示す方向とは逆方向に冷媒が流れる。このとき、第1室外熱交換器13は、蒸発器として機能し、室内熱交換器16は、凝縮器として機能する。 The four-way valve 12 has a casing and a valve body that can be displaced within the casing. The position of the valve body within the casing is switched between a cooling position, which is the position during cooling operation, and a heating position, which is the position during heating operation, under the control of the control unit 3A. When the valve body is in the cooling position, refrigerant flows in the first refrigerant circuit 1A in the direction indicated by the black arrow in FIG. 1. Furthermore, the first outdoor heat exchanger 13 functions as a condenser, and the indoor heat exchanger 16 functions as an evaporator. When the valve body is in the heating position, refrigerant flows in the first refrigerant circuit 1A in the direction opposite to the direction indicated by the black arrow in FIG. 1. At this time, the first outdoor heat exchanger 13 functions as an evaporator, and the indoor heat exchanger 16 functions as a condenser.
 第1室外熱交換器13は、典型的には蛇管式熱交換器であり、冷房運転時には、凝縮機として機能し、暖房運転時には蒸発器として機能する。詳細には、第1室外熱交換器13は、伝熱管と、フィンとを有する。伝熱管の一方端131は、四方弁12と配管171で接続され、伝熱管の他方端132は、第1膨張弁15と配管172で接続される。 The first outdoor heat exchanger 13 is typically a coiled-tube heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation. In detail, the first outdoor heat exchanger 13 has a heat transfer tube and fins. One end 131 of the heat transfer tube is connected to the four-way valve 12 by piping 171, and the other end 132 of the heat transfer tube is connected to the first expansion valve 15 by piping 172.
 冷房運転時、一方端131には、四方弁12から配管171を通じて、高温高圧のガス冷媒が流入する。また、伝熱管の外面は、第1ファン14の回転により生じる空気流F11(白抜きの矢印参照)に曝される。従って、伝熱管の内部では凝縮が起こる。即ち、冷媒は伝熱管内を流れる間に液化し、冷媒の温度が低下する。従って、冷房運転時、第1室外熱交換器13における伝熱管の他方端132から、中温高圧の液冷媒が配管172に流出する。 During cooling operation, high-temperature, high-pressure gas refrigerant flows into one end 131 from the four-way valve 12 through the pipe 171. In addition, the outer surface of the heat transfer tube is exposed to the air flow F11 (see the white arrow) generated by the rotation of the first fan 14. Therefore, condensation occurs inside the heat transfer tube. That is, the refrigerant liquefies as it flows inside the heat transfer tube, and the temperature of the refrigerant drops. Therefore, during cooling operation, medium-temperature, high-pressure liquid refrigerant flows out from the other end 132 of the heat transfer tube in the first outdoor heat exchanger 13 into the pipe 172.
 暖房運転時、他方端132には、第1膨張弁15から配管172を通じて、気液混合状態で低圧低温の冷媒が流入する。伝熱管の外面は、冷房運転時と同様、空気流F11に曝される。従って、伝熱管の内部では蒸発が起こる。即ち、冷媒は伝熱管内を流れる間に気化する。従って、第1室外熱交換器13における伝熱管の一方端131から、低圧のガス冷媒が配管171に流出する。 During heating operation, low-pressure, low-temperature refrigerant flows in a gas-liquid mixed state from the first expansion valve 15 through the pipe 172 to the other end 132. The outer surface of the heat transfer tube is exposed to the airflow F11, just as during cooling operation. Therefore, evaporation occurs inside the heat transfer tube. That is, the refrigerant vaporizes while flowing inside the heat transfer tube. Therefore, low-pressure gas refrigerant flows out from one end 131 of the heat transfer tube in the first outdoor heat exchanger 13 to the pipe 171.
 第1ファン14は、典型的にはプロペラファンであり、制御部3Aの制御下で、室外機200における空気の吸込口201から排気口202への空気流F11を発生させる。 The first fan 14 is typically a propeller fan, and generates an air flow F11 from the air intake 201 to the exhaust 202 in the outdoor unit 200 under the control of the control unit 3A.
 第1膨張弁15は、第1冷媒回路1Aにおいて第1室外熱交換器13と室内熱交換器16の間に位置する。第1膨張弁15は、室内熱交換器16とは配管173で接続される。 The first expansion valve 15 is located between the first outdoor heat exchanger 13 and the indoor heat exchanger 16 in the first refrigerant circuit 1A. The first expansion valve 15 is connected to the indoor heat exchanger 16 by a pipe 173.
 冷房運転時及び暖房運転時、第1膨張弁15には、配管172及び配管173から、中温高圧の液冷媒がそれぞれ流入する。冷房運転時及び暖房運転時のいずれにおいても、第1膨張弁15は、流入した液冷媒を減圧する。その結果、第1膨張弁15からは、気液混合状態で低圧低温の冷媒が配管173及び配管172にそれぞれ流出する。 During cooling operation and heating operation, medium-temperature, high-pressure liquid refrigerant flows into the first expansion valve 15 from pipes 172 and 173, respectively. In both cooling operation and heating operation, the first expansion valve 15 reduces the pressure of the liquid refrigerant that flows in. As a result, low-pressure, low-temperature refrigerant in a gas-liquid mixture flows out of the first expansion valve 15 into pipes 173 and 172, respectively.
 室内熱交換器16は、典型的には蛇管式熱交換器であり、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。室内熱交換器16は、伝熱管と、フィンとを有する。伝熱管の一方端161は、配管173で第1膨張弁15と接続され、伝熱管の他方端162は、配管174で四方弁12と接続される。 The indoor heat exchanger 16 is typically a coiled-tube type heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. The indoor heat exchanger 16 has a heat transfer tube and fins. One end 161 of the heat transfer tube is connected to the first expansion valve 15 by piping 173, and the other end 162 of the heat transfer tube is connected to the four-way valve 12 by piping 174.
 冷房運転時、一方端161には、第1膨張弁15から配管173を通じて、低圧低温の液冷媒が流入する。伝熱管の外面は、第2ファン17の回転により室内機300における空気の吸込口301から吹出口302に向かう空気流F12に曝される。従って、伝熱管の内部では冷媒の蒸発が起こる。この時、冷媒は、伝熱管内で空気流F12から熱を奪って気化する。よって、室内熱交換器16における伝熱管の他方端162から、ガス冷媒、又は気液混合状態で低圧の冷媒が配管174に流出する。また、空気流F12は、伝熱管内で流れる冷媒により冷却される。従って、冷房運転時、冷却された空気流F12が室内に吹き出される。 During cooling operation, low-pressure, low-temperature liquid refrigerant flows into one end 161 from the first expansion valve 15 through the pipe 173. The outer surface of the heat transfer tube is exposed to the air flow F12 that flows from the air inlet 301 to the air outlet 302 in the indoor unit 300 due to the rotation of the second fan 17. Therefore, the refrigerant evaporates inside the heat transfer tube. At this time, the refrigerant absorbs heat from the air flow F12 inside the heat transfer tube and evaporates. Therefore, low-pressure refrigerant flows out into the pipe 174 as a gas refrigerant or a gas-liquid mixture from the other end 162 of the heat transfer tube in the indoor heat exchanger 16. In addition, the air flow F12 is cooled by the refrigerant flowing inside the heat transfer tube. Therefore, during cooling operation, the cooled air flow F12 is blown out into the room.
 暖房運転時、他方端162には、四方弁12から配管174を通じて、高温高圧のガス冷媒が流入する。伝熱管の外面は、冷房運転時と同様、空気流F12に曝される。従って、伝熱管の内部では凝縮が起こる。この時、冷媒の熱は、空気流F12により奪われて液化し、冷媒の温度が低下する。従って、室内熱交換器16における伝熱管の一方端161から、中温高圧の液冷媒が配管173に流出する。また、空気流F12は、伝熱管内で流れる冷媒から熱を奪うため加熱される。暖房運転時、加熱された空気流F12が室内に吹き出される。 During heating operation, high-temperature, high-pressure gas refrigerant flows into the other end 162 from the four-way valve 12 through the pipe 174. The outer surface of the heat transfer tube is exposed to the air flow F12, just as during cooling operation. Therefore, condensation occurs inside the heat transfer tube. At this time, the heat of the refrigerant is removed by the air flow F12, causing it to liquefy and the temperature of the refrigerant to decrease. Therefore, medium-temperature, high-pressure liquid refrigerant flows out from one end 161 of the heat transfer tube in the indoor heat exchanger 16 into the pipe 173. In addition, the air flow F12 is heated as it removes heat from the refrigerant flowing inside the heat transfer tube. During heating operation, the heated air flow F12 is blown out into the room.
 また、室内機300における空気の吸込口301付近には、温度センサ163が取り付けられている。温度センサ163は、自身の周囲温度を示す信号(以下、「温度信号」と記載する。)を出力する。 A temperature sensor 163 is also attached near the air intake 301 of the indoor unit 300. The temperature sensor 163 outputs a signal indicating its own ambient temperature (hereinafter referred to as the "temperature signal").
 第2ファン17は、典型的にはクロスフローファンであり、室内機300における吸込口301から吹出口302への空気流F12を発生させる。 The second fan 17 is typically a cross-flow fan, and generates an air flow F12 from the air inlet 301 to the air outlet 302 in the indoor unit 300.
 配管174上には、三方継手175と、電磁弁176と、三方継手177とが、室内熱交換器16から四方弁12に向かって三方継手175、電磁弁176及び三方継手177の順番で配置される。詳細には、三方継手175,177のそれぞれは、第1、第2及び第3ポートを有するが、第1ポート及び第2ポートの各々は、室内熱交換器16と四方弁12との間で冷媒が流通するように配管174に接続される。三方継手175及び三方継手177における第3ポートは、第2冷媒回路2Aの一方端及び他方端がそれぞれ接続される。また、電磁弁176は、制御部3Aの制御下で、弁体を「全開」又は「全閉」にする。電磁弁176が「全開」の場合、室内熱交換器16と四方弁12との間で冷媒が流通可能である。一方、「全閉」の場合、室内熱交換器16と四方弁12との間で冷媒が流通不能である。 A three-way joint 175, a solenoid valve 176, and a three-way joint 177 are arranged on the piping 174 from the indoor heat exchanger 16 toward the four-way valve 12 in the order of three-way joint 175, solenoid valve 176, and three-way joint 177. In detail, each of the three- way joints 175, 177 has a first, second, and third port, and the first and second ports are each connected to the piping 174 so that refrigerant flows between the indoor heat exchanger 16 and the four-way valve 12. The third ports of the three-way joint 175 and the three-way joint 177 are respectively connected to one end and the other end of the second refrigerant circuit 2A. In addition, the solenoid valve 176 opens or closes the valve body under the control of the control unit 3A. When the solenoid valve 176 is fully open, refrigerant can flow between the indoor heat exchanger 16 and the four-way valve 12. On the other hand, when it is "fully closed," refrigerant cannot flow between the indoor heat exchanger 16 and the four-way valve 12.
 次に、第2冷媒回路2Aについて説明する。第2冷媒回路2Aの一方端は、第1冷媒回路1Aにおける三方継手175の第3ポートに接続され、第2冷媒回路2Aの他方端は、第1冷媒回路1Aの三方継手177の第3ポートに接続される。三方継手175の第3ポートの位置は、本発明における「第1位置」の一例に相当し、三方継手177の第3ポートの位置は、本発明における「第2位置」の一例に相当する。 Next, the second refrigerant circuit 2A will be described. One end of the second refrigerant circuit 2A is connected to the third port of the three-way joint 175 in the first refrigerant circuit 1A, and the other end of the second refrigerant circuit 2A is connected to the third port of the three-way joint 177 in the first refrigerant circuit 1A. The position of the third port of the three-way joint 175 corresponds to an example of the "first position" in the present invention, and the position of the third port of the three-way joint 177 corresponds to an example of the "second position" in the present invention.
 詳細には、第2冷媒回路2Aは、第2室外熱交換器21と、電磁弁22と、配管231,232とを有する。電磁弁22は、本発明における「弁」の一例である。第2室外熱交換器21、電磁弁22及び配管231,232は、室外機200に配置される。 In detail, the second refrigerant circuit 2A has a second outdoor heat exchanger 21, a solenoid valve 22, and pipes 231 and 232. The solenoid valve 22 is an example of a "valve" in the present invention. The second outdoor heat exchanger 21, the solenoid valve 22, and the pipes 231 and 232 are arranged in the outdoor unit 200.
 第2室外熱交換器21は、典型的には蛇管式熱交換器であり、冷房運転時に蒸発器として機能し、暖房運転時には凝縮器として機能する。第2室外熱交換器21は、伝熱管と、フィンとを有する。伝熱管の一方端211は、三方継手175の第3ポートと配管231で接続され、伝熱管の他方端212は、三方継手177の第3ポートと配管232で接続される。 The second outdoor heat exchanger 21 is typically a coiled-tube heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. The second outdoor heat exchanger 21 has a heat transfer tube and fins. One end 211 of the heat transfer tube is connected to the third port of the three-way joint 175 by piping 231, and the other end 212 of the heat transfer tube is connected to the third port of the three-way joint 177 by piping 232.
 冷房運転時、一方端211には、配管174,231を通じて、気液混合状態で低圧の冷媒が流入する。また、伝熱管の外面は空気流F11に曝される。従って、冷媒は、伝熱管内での蒸発により気化が進む。よって、冷房運転時、第2室外熱交換器21における伝熱管の他方端212から、気液混合状態で低圧の冷媒が配管232に流出する。 During cooling operation, low-pressure refrigerant in a gas-liquid mixed state flows into one end 211 through pipes 174 and 231. In addition, the outer surface of the heat transfer tube is exposed to airflow F11. Therefore, the refrigerant progresses in vaporization due to evaporation within the heat transfer tube. Therefore, during cooling operation, low-pressure refrigerant in a gas-liquid mixed state flows out from the other end 212 of the heat transfer tube in the second outdoor heat exchanger 21 into pipe 232.
 電磁弁22は、配管231において第2室外熱交換器21よりも三方継手175の近くに位置する。電磁弁22は、制御部3Aの制御下で、弁体を「全開」又は「全閉」にする。電磁弁22が「全開」の場合、第2冷媒回路2Aにおいて冷媒が流通可能である。一方、「全閉」の場合、第2冷媒回路2Aにおいて冷媒が流通不能である。 The solenoid valve 22 is located in the pipe 231 closer to the three-way joint 175 than the second outdoor heat exchanger 21. The solenoid valve 22 sets the valve element to "fully open" or "fully closed" under the control of the control unit 3A. When the solenoid valve 22 is "fully open," refrigerant can flow in the second refrigerant circuit 2A. On the other hand, when it is "fully closed," refrigerant cannot flow in the second refrigerant circuit 2A.
 制御部3A,4Aの各々は、基板と、基板上に実装されたマイコン等とを有する制御回路基板であり、冷房運転又は暖房運転を制御する。制御部3Aは、圧縮機11、四方弁12、第1ファン14、及び第1膨張弁15と電気的に接続されている。制御部4Aは、第2ファン17及び温度センサ163と電気的に接続されている。制御部3A,4Aは、互いに通信可能に接続されている。制御部4Aは、温度センサ163からの温度信号を取得する。制御部3Aは、温度信号を制御部4Aから受け取り、温度信号に基づいて、圧縮機11、四方弁12、第1ファン14、及び第1膨張弁15を動作させる。制御部4Aは、温度信号に基づいて、第2ファン17を動作させる。 Each of the control units 3A and 4A is a control circuit board having a board and a microcomputer etc. mounted on the board, and controls cooling operation or heating operation. The control unit 3A is electrically connected to the compressor 11, the four-way valve 12, the first fan 14, and the first expansion valve 15. The control unit 4A is electrically connected to the second fan 17 and the temperature sensor 163. The control units 3A and 4A are connected so that they can communicate with each other. The control unit 4A acquires a temperature signal from the temperature sensor 163. The control unit 3A receives the temperature signal from the control unit 4A, and operates the compressor 11, the four-way valve 12, the first fan 14, and the first expansion valve 15 based on the temperature signal. The control unit 4A operates the second fan 17 based on the temperature signal.
 次に、図1及び図2を参照して冷凍サイクル装置10Aを備えた空気調和機100の冷房運転について説明する。図2は、第1実施形態の空気調和機100の冷房運転時の動作を示すフローチャートである。 Next, the cooling operation of the air conditioner 100 equipped with the refrigeration cycle device 10A will be described with reference to Figures 1 and 2. Figure 2 is a flow chart showing the operation of the air conditioner 100 of the first embodiment during cooling operation.
 図2に示されるように、ステップS101において、制御部4Aは、空気調和機100のリモートコントローラ(図示せず)から冷房運転の実行命令(以下、「冷房指示」と記載する。)と、第1設定温度とを受け付ける。 As shown in FIG. 2, in step S101, the control unit 4A receives a command to perform cooling operation (hereinafter referred to as a "cooling instruction") and a first set temperature from a remote controller (not shown) of the air conditioner 100.
 次に、ステップS102において、冷凍サイクル装置10Aにおける冷房運転の開始処理が実行される。詳細には、制御部4Aは、冷房指示と第1設定温度とを制御部3Aに送信する。第1実施形態において、制御部3Aは、冷房指示をトリガーとして、電磁弁22を「全閉」にし、電磁弁176を「全開」にし、更に、四方弁12を冷房位置にする。これにより、空気調和機100では、冷媒は、第1冷媒回路1A内で黒塗り矢印(図1参照)の向きで流れて循環することが可能となり、第2冷媒回路2A内では流通しなくなる。 Next, in step S102, processing to start cooling operation in the refrigeration cycle apparatus 10A is executed. In detail, the control unit 4A sends a cooling command and a first set temperature to the control unit 3A. In the first embodiment, the control unit 3A is triggered by the cooling command to set the solenoid valve 22 to "fully closed", set the solenoid valve 176 to "fully open", and further set the four-way valve 12 to the cooling position. As a result, in the air conditioner 100, the refrigerant can flow and circulate in the first refrigerant circuit 1A in the direction of the filled arrow (see FIG. 1), and does not circulate in the second refrigerant circuit 2A.
 ステップS102の終了後、制御部4Aはまず、温度センサ163から温度信号を取得する。その後、ステップS103において、制御部4Aは、第1低能力運転条件を満たしたか否かを判定する。第1低能力運転条件は、第1設定温度と、温度信号が示す現在の室温との差(以下、「偏差」と記載する。)が第1基準温度以下になることである。ここで、第1設定温度及び第1基準温度は、本発明における「第1目標温度」及び「第1所定値」の一例である。第1低能力運転条件を満たさないと判定された場合(ステップS103でNo)、ステップS104の冷房運転が実行される。第1低能力運転条件を満たすと判定された場合(ステップS103でYes)、ステップS105の第1低能力運転が実行される。 After step S102 is completed, the control unit 4A first acquires a temperature signal from the temperature sensor 163. Then, in step S103, the control unit 4A determines whether or not the first low-capacity operation condition is satisfied. The first low-capacity operation condition is that the difference (hereinafter referred to as "deviation") between the first set temperature and the current room temperature indicated by the temperature signal is equal to or less than a first reference temperature. Here, the first set temperature and the first reference temperature are examples of the "first target temperature" and "first predetermined value" in the present invention. If it is determined that the first low-capacity operation condition is not satisfied (No in step S103), the cooling operation in step S104 is performed. If it is determined that the first low-capacity operation condition is satisfied (Yes in step S103), the first low-capacity operation in step S105 is performed.
 ステップS104において、制御部4Aは、ステップS103で取得した温度信号を制御部3Aに送信する。その後、制御部4Aは、偏差がゼロに近づくように、PID制御により第2ファン17の回転数を制御する。制御部3Aは、温度信号の受信に応答して、偏差がゼロに近づくように、PID制御により第1膨張弁15の開度を調整するとともに、圧縮機11及び第1ファン14の回転数を制御する。その結果、第1ファン14は、第2室外熱交換器21を通過する気流を発生する。このように、制御部3A,4Aは、冷房運転では、第1室外熱交換器13を凝縮器として機能し、かつ室内熱交換器16を蒸発器として機能するように、圧縮機11と第1膨張弁15とを制御する。その結果、室内機300は、室内に向かって冷風を吹き出し、室内を冷房する。 In step S104, the control unit 4A transmits the temperature signal acquired in step S103 to the control unit 3A. Thereafter, the control unit 4A controls the rotation speed of the second fan 17 by PID control so that the deviation approaches zero. In response to receiving the temperature signal, the control unit 3A adjusts the opening of the first expansion valve 15 by PID control and controls the rotation speed of the compressor 11 and the first fan 14 so that the deviation approaches zero. As a result, the first fan 14 generates an airflow that passes through the second outdoor heat exchanger 21. In this way, in cooling operation, the control units 3A and 4A control the compressor 11 and the first expansion valve 15 so that the first outdoor heat exchanger 13 functions as a condenser and the indoor heat exchanger 16 functions as an evaporator. As a result, the indoor unit 300 blows cool air into the room to cool the room.
 ステップS105において、制御部4Aは、第1低能力運転の実行命令(以下、「第1低能力運転指示」と記載する。)を制御部3Aに送信する。制御部3Aは、第1低能力運転指示をトリガーとして、第1低能力運転を実行する。詳細には、制御部3Aは、電磁弁22を「全閉」から「全開」に切り換え、電磁弁176を「全開」から「全閉」に切り換える。なお、第1低能力運転では、圧縮機11、第1ファン14及び第2ファン17の各回転数と、第1膨張弁15の開度とは、冷房運転時と比較して同じであってもよいし、若干異なっていてもよい。 In step S105, the control unit 4A sends a command to execute the first low-capacity operation (hereinafter referred to as the "first low-capacity operation instruction") to the control unit 3A. The control unit 3A executes the first low-capacity operation using the first low-capacity operation instruction as a trigger. In detail, the control unit 3A switches the solenoid valve 22 from "fully closed" to "fully open" and switches the solenoid valve 176 from "fully open" to "fully closed". In the first low-capacity operation, the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those during cooling operation, or may be slightly different.
 ステップS104,S105の終了後に、次のステップS103の実行タイミングが到来すると、処理は、ステップS103に戻る。 After steps S104 and S105 are completed, when it is time to execute the next step S103, the process returns to step S103.
 上述の通り、制御部3A,4Aは、冷房運転において偏差が第1基準温度以下になると、ステップS105において、第2室外熱交換器21が蒸発器として機能するように電磁弁22,176を制御する。その結果、第1低能力運転時では、室内熱交換器16及び第2室外熱交換器21が冷媒を蒸発させるため、室内熱交換器16における熱交換量が減少する。よって、冷房時における最小能力を低減可能となる。 As described above, when the deviation becomes equal to or lower than the first reference temperature during cooling operation, the control units 3A and 4A control the solenoid valves 22 and 176 in step S105 so that the second outdoor heat exchanger 21 functions as an evaporator. As a result, during first low capacity operation, the indoor heat exchanger 16 and the second outdoor heat exchanger 21 evaporate the refrigerant, reducing the amount of heat exchanged in the indoor heat exchanger 16. This makes it possible to reduce the minimum capacity during cooling.
 次に、図1及び図3を参照して冷凍サイクル装置10Aを備えた空気調和機100の暖房運転について説明する。図3は、第1実施形態の空気調和機100の暖房運転時の動作を示すフローチャートである。 Next, the heating operation of the air conditioner 100 equipped with the refrigeration cycle device 10A will be described with reference to Figures 1 and 3. Figure 3 is a flow chart showing the operation of the air conditioner 100 of the first embodiment during heating operation.
 図3に示されるように、ステップS201において、制御部4Aは、リモートコントローラ(図示せず)から暖房運転の実行命令(以下、「暖房指示」と記載する。)と、第2設定温度とを受け付ける。 As shown in FIG. 3, in step S201, the control unit 4A receives a command to execute heating operation (hereinafter referred to as a "heating instruction") and a second set temperature from a remote controller (not shown).
 次に、ステップS202において、冷凍サイクル装置10Aの暖房運転が開始される。詳細には、制御部4Aは、暖房指示と第2設定温度とを制御部3Aに送信する。第1実施形態において、制御部3Aは、暖房指示をトリガーとして、電磁弁22を「全閉」にし、電磁弁176を「全開」にし、更に、四方弁12の弁位置を暖房位置にする。これにより、空気調和機100では、冷媒は、第1冷媒回路1A内で黒塗り矢印(図1参照)の向きとは逆向きに流れて循環し、第2冷媒回路2A内では流通しない。 Next, in step S202, the heating operation of the refrigeration cycle apparatus 10A is started. In detail, the control unit 4A sends a heating command and a second set temperature to the control unit 3A. In the first embodiment, the control unit 3A is triggered by the heating command to set the solenoid valve 22 to "fully closed", set the solenoid valve 176 to "fully open", and further set the valve position of the four-way valve 12 to the heating position. As a result, in the air conditioner 100, the refrigerant circulates by flowing in the direction opposite to the direction of the filled-in arrow (see FIG. 1) in the first refrigerant circuit 1A, and does not circulate in the second refrigerant circuit 2A.
 ステップS202の終了後、制御部4Aは、温度信号を取得する。その後、ステップS203において、制御部4Aは、第2低能力運転条件を満たしたか否かを判定する。第2低能力運転条件は、第2設定温度と、現在の室温との偏差が予め定められた第2基準温度以下になることである。ここで、第2設定温度及び第2基準温度は、本発明における「第2目標温度」及び「第2所定値」の一例である。第2低能力運転条件を満たさないと判定された場合(ステップS203でNo)、ステップS204の暖房運転が実行される。第2低能力運転条件を満たすと判定された場合(ステップS203でYes)、ステップS205の第2低能力運転が実行される。 After step S202 is completed, the control unit 4A acquires a temperature signal. Then, in step S203, the control unit 4A determines whether or not the second low-capacity operation condition is satisfied. The second low-capacity operation condition is that the deviation between the second set temperature and the current room temperature is equal to or less than a predetermined second reference temperature. Here, the second set temperature and the second reference temperature are examples of the "second target temperature" and "second predetermined value" in the present invention. If it is determined that the second low-capacity operation condition is not satisfied (No in step S203), the heating operation in step S204 is executed. If it is determined that the second low-capacity operation condition is satisfied (Yes in step S203), the second low-capacity operation in step S205 is executed.
 ステップS204において、制御部4Aは、ステップS203で取得した温度信号を制御部3Aに送信する。その後、制御部4Aは、PID制御により第2ファン17の回転数を制御する。制御部3Aは、温度信号の受信に応答して、第1膨張弁15の開度を調整するとともに、圧縮機11及び第1ファン14の回転数を制御する。その結果、第1ファン14は、第2室外熱交換器21を通過する気流を発生する。このように、制御部3A,4Aは、暖房運転では、第1室外熱交換器13を蒸発器として機能し、かつ室内熱交換器16を凝縮器として機能するように、圧縮機11と第1膨張弁15とを制御する。その結果、室内機300は、室内に向かって温風を吹き出し、室内を暖房する。 In step S204, the control unit 4A transmits the temperature signal acquired in step S203 to the control unit 3A. The control unit 4A then controls the rotation speed of the second fan 17 by PID control. In response to receiving the temperature signal, the control unit 3A adjusts the opening of the first expansion valve 15 and controls the rotation speed of the compressor 11 and the first fan 14. As a result, the first fan 14 generates an airflow that passes through the second outdoor heat exchanger 21. In this way, in heating operation, the control units 3A and 4A control the compressor 11 and the first expansion valve 15 so that the first outdoor heat exchanger 13 functions as an evaporator and the indoor heat exchanger 16 functions as a condenser. As a result, the indoor unit 300 blows warm air into the room, heating the room.
 ステップS205において、制御部4Aは、第2低能力運転の実行命令(以下、「第2低能力運転指示」と記載する。)を制御部3Aに送信する。制御部3Aは、第2低能力運転指示をトリガーとして、第2低能力運転を実行する。詳細には、制御部3Aは、電磁弁22を「全閉」から「全開」に切り換え、電磁弁176を「全開」から「全閉」に切り換える。なお、第2低能力運転では、圧縮機11、第1ファン14及び第2ファン17の各回転数と、第1膨張弁15の開度とは、冷房運転時と比較して同じであってもよいし、若干異なっていてもよい。 In step S205, the control unit 4A sends a command to execute the second low-capacity operation (hereinafter referred to as the "second low-capacity operation instruction") to the control unit 3A. The control unit 3A executes the second low-capacity operation using the second low-capacity operation instruction as a trigger. In detail, the control unit 3A switches the solenoid valve 22 from "fully closed" to "fully open" and switches the solenoid valve 176 from "fully open" to "fully closed". In the second low-capacity operation, the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those during cooling operation, or may be slightly different.
 ステップS204及びステップS205のいずれかが終了した後、次のステップS203の実行タイミングが到来すると、処理は、ステップS203に戻る。 After either step S204 or step S205 is completed, when it is time to execute the next step S203, the process returns to step S203.
 上述の通り、制御部3A,4Aは、暖房運転時に偏差が第2基準温度以下になると、ステップS205において、第2室外熱交換器21が凝縮器として機能するように電磁弁22,176を制御する。その結果、第2低能力運転時では、室内熱交換器16及び第2室外熱交換器21が冷媒を凝縮させるため、室内熱交換器16における熱交換量が減少する。よって、暖房運転時における最小能力を低減可能となる。 As described above, when the deviation becomes equal to or lower than the second reference temperature during heating operation, the control units 3A and 4A control the solenoid valves 22 and 176 in step S205 so that the second outdoor heat exchanger 21 functions as a condenser. As a result, during second low capacity operation, the indoor heat exchanger 16 and the second outdoor heat exchanger 21 condense the refrigerant, reducing the amount of heat exchanged in the indoor heat exchanger 16. This makes it possible to reduce the minimum capacity during heating operation.
 図1から図3を参照して説明した通り、第1実施形態では、冷房時又は暖房時における最小能力を低減可能な冷凍サイクル装置10Aを提供できる。 As described with reference to Figures 1 to 3, the first embodiment provides a refrigeration cycle device 10A that can reduce the minimum capacity during cooling or heating.
 上述の通り、第2室外熱交換器21が蒸発器(冷房運転時)又は凝縮器(暖房運転時)として機能する場合に、制御部3Aは、第1ファン14により、第2室外熱交換器21を通過する空気流F11を発生させる。従って、圧縮機の排熱を利用する蓄熱熱交換器の場合と比較して、第2室外熱交換器21における熱交換量を柔軟に制御できる。 As described above, when the second outdoor heat exchanger 21 functions as an evaporator (during cooling operation) or a condenser (during heating operation), the control unit 3A causes the first fan 14 to generate an air flow F11 that passes through the second outdoor heat exchanger 21. Therefore, compared to the case of a heat storage heat exchanger that uses the exhaust heat of the compressor, the amount of heat exchanged in the second outdoor heat exchanger 21 can be flexibly controlled.
 第1室外熱交換器13及び第2室外熱交換器21は、図1に示されるように、室外機200内で発生する空気流F11が流れる方向において対向していることが好ましい。これにより、室外機200を小型化できる。また、第1室外熱交換器13は、第2室外熱交換器21よりも下流に位置することが好ましい。暖房運転時、第1室外熱交換器13では霜が付着する可能性がある。しかし、上述の配置関係にあれば、第1ファン14で生じた気流は、第2室外熱交換器21を通過中に加熱された後に、第1室外熱交換器13を通過する。従って、第1室外熱交換器13に付着する霜を除去可能である。 As shown in FIG. 1, it is preferable that the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 face each other in the direction in which the airflow F11 generated in the outdoor unit 200 flows. This allows the outdoor unit 200 to be made more compact. It is also preferable that the first outdoor heat exchanger 13 is located downstream of the second outdoor heat exchanger 21. During heating operation, frost may form on the first outdoor heat exchanger 13. However, with the above-mentioned arrangement, the airflow generated by the first fan 14 is heated while passing through the second outdoor heat exchanger 21, and then passes through the first outdoor heat exchanger 13. Therefore, it is possible to remove frost that forms on the first outdoor heat exchanger 13.
 図1を参照して説明した通り、三方継手175,177のそれぞれは、第1冷媒回路1Aの配管174上で室内熱交換器16と圧縮機11との間に位置する。配管174は、三方継手175,177を配置するスペースが十分にある。これにより、第2冷媒回路2Aを第1冷媒回路1Aに適切に接続できる。 As described with reference to FIG. 1, each of the three- way joints 175, 177 is located on the pipe 174 of the first refrigerant circuit 1A between the indoor heat exchanger 16 and the compressor 11. The pipe 174 has sufficient space to place the three- way joints 175, 177. This allows the second refrigerant circuit 2A to be properly connected to the first refrigerant circuit 1A.
「第2実施形態」
 図4は、第2実施形態に係る冷凍サイクル装置10Aを備えた空気調和機100を示す図である。図4に示されるように、第2実施形態の冷凍サイクル装置10Aは、第1実施形態の冷凍サイクル装置10Aと比較すると、三方継手177が圧縮機11の吸入ポート111又はアキュムレータ114の流入口に位置する点において相違する。吸入ポート111は、本発明における「吸入口」の一例である。これにより、第1実施形態と比較して、三方継手177が三方継手175から離れた位置に配置可能となる。これにより、銅等の金属製の配管231,232の配置の自由度が向上する。
Second Embodiment
4 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the second embodiment. As shown in FIG. 4, the refrigeration cycle apparatus 10A according to the second embodiment is different from the refrigeration cycle apparatus 10A according to the first embodiment in that the three-way joint 177 is located at the suction port 111 of the compressor 11 or the inlet of the accumulator 114. The suction port 111 is an example of the "suction port" in the present invention. As a result, the three-way joint 177 can be located at a position farther away from the three-way joint 175 than in the first embodiment. As a result, the degree of freedom in the arrangement of the pipes 231 and 232 made of metal such as copper is improved.
 第2実施形態の制御部4Aは、ステップS205において、第2低能力運転指示を制御部3Aに送信する。制御部3Aは、第2低能力運転指示をトリガーとして、第2低能力運転を実行する。詳細には、制御部3Aは、電磁弁22を「全閉」から「全開」に切り換え、電磁弁176を「全開」のままにする。その結果、室内熱交換器16における伝熱管の他方端162に流入する冷媒の循環量が低下するため、室内機300は、第2低能力運転を実行することになる。第2実施形態では、電磁弁22が「全閉」の場合、第2室外熱交換器21には高温高圧のガス冷媒が流入しないため、冷凍サイクル装置10Aにおいて熱損失が少なくなる。なお、第2低能力運転では、圧縮機11、第1ファン14及び第2ファン17の各回転数と、第1膨張弁15の開度とは、冷房運転時と比較して同じであってもよいし、若干異なっていてもよい。 In the second embodiment, the control unit 4A transmits a second low capacity operation instruction to the control unit 3A in step S205. The control unit 3A executes the second low capacity operation using the second low capacity operation instruction as a trigger. In detail, the control unit 3A switches the solenoid valve 22 from "fully closed" to "fully open" and leaves the solenoid valve 176 "fully open". As a result, the amount of refrigerant circulating into the other end 162 of the heat transfer tube in the indoor heat exchanger 16 decreases, so that the indoor unit 300 executes the second low capacity operation. In the second embodiment, when the solenoid valve 22 is "fully closed", high-temperature and high-pressure gas refrigerant does not flow into the second outdoor heat exchanger 21, so that heat loss is reduced in the refrigeration cycle device 10A. In addition, in the second low capacity operation, the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as or slightly different from those in the cooling operation.
「第3実施形態」
 図5は、第3実施形態に係る冷凍サイクル装置10Aを備えた空気調和機100を示す図である。図5に示されるように、第3実施形態の冷凍サイクル装置10Aは、第1実施形態の冷凍サイクル装置10Aと比較すると、電磁弁176及び三方継手177を備えず、三方弁178を備える点において相違する。三方弁178は、本発明における「三方弁」の一例である。
"Third embodiment"
Fig. 5 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the third embodiment. As shown in Fig. 5, the refrigeration cycle apparatus 10A of the third embodiment differs from the refrigeration cycle apparatus 10A of the first embodiment in that it does not include a solenoid valve 176 and a three-way joint 177, but includes a three-way valve 178. The three-way valve 178 is an example of the "three-way valve" of the present invention.
 三方弁178は、第1冷媒回路1A上において三方継手175及び四方弁12の間に位置する。三方弁178の位置は、本発明における「第2位置」の他の例に相当する。三方弁178は、ケーシングと、ケーシング内で変位可能な弁体とを有しており、ケーシング内での弁体の位置を、制御部3Aの制御下で、第2室外熱交換器21に冷媒を流すか否かを切り換える。詳細には、三方弁178は、弁体の位置を、第1冷媒回路1Aのみに冷媒を流通させる第1弁位置と、第1冷媒回路1Aと第2冷媒回路2Aとに冷媒を流通させる第2弁位置とに切り換える。 The three-way valve 178 is located between the three-way joint 175 and the four-way valve 12 on the first refrigerant circuit 1A. The position of the three-way valve 178 corresponds to another example of the "second position" in the present invention. The three-way valve 178 has a casing and a valve body that is displaceable within the casing, and switches the position of the valve body within the casing under the control of the control unit 3A to whether or not refrigerant flows to the second outdoor heat exchanger 21. In detail, the three-way valve 178 switches the position of the valve body between a first valve position that allows refrigerant to flow only through the first refrigerant circuit 1A, and a second valve position that allows refrigerant to flow through both the first refrigerant circuit 1A and the second refrigerant circuit 2A.
 第3実施形態の制御部3Aは、ステップS102(図2参照)及びステップS202(図3参照)において、電磁弁22を「全閉」にし、三方弁178を第1弁位置にする。制御部3Aは、ステップS102(図2参照)及びステップS202(図3参照)において四方弁12を冷房位置及び暖房位置にする。制御部3Aは、ステップS105(図2参照)及びステップS205(図3参照)において、電磁弁22を「全開」にし、三方弁178を第2弁位置にする。 In the third embodiment, the control unit 3A sets the solenoid valve 22 to "fully closed" and the three-way valve 178 to the first valve position in steps S102 (see FIG. 2) and S202 (see FIG. 3). The control unit 3A sets the four-way valve 12 to the cooling position and the heating position in steps S102 (see FIG. 2) and S202 (see FIG. 3). The control unit 3A sets the solenoid valve 22 to "fully open" and the three-way valve 178 to the second valve position in steps S105 (see FIG. 2) and S205 (see FIG. 3).
 第3実施形態によれば、第1実施形態とは異なり、単一部品である三方弁178が使用される。従って、冷凍サイクル装置10Aの製造コストが抑制される。 In the third embodiment, unlike the first embodiment, a single component, the three-way valve 178, is used. This reduces the manufacturing costs of the refrigeration cycle device 10A.
「第4実施形態」
 図6は、第4実施形態に係る冷凍サイクル装置10Aを備えた空気調和機100を示す図である。図6に示されるように、第4実施形態の冷凍サイクル装置10Aは、第1実施形態の冷凍サイクル装置10Aと比較すると、三方継手175,177の位置(即ち、第1冷媒回路1Aにおける第2冷媒回路2Aの接続位置)と、電磁弁22,176を備えない点と、第2膨張弁24を備える点とにおいて相違する。
"Fourth embodiment"
Fig. 6 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to the fourth embodiment. As shown in Fig. 6, the refrigeration cycle apparatus 10A of the fourth embodiment differs from the refrigeration cycle apparatus 10A of the first embodiment in the positions of three-way joints 175, 177 (i.e., the connection positions of the second refrigerant circuit 2A in the first refrigerant circuit 1A), in not including solenoid valves 22, 176, and in including a second expansion valve 24.
 三方継手175は、第1冷媒回路1Aにおいて第1室外熱交換器13と第1膨張弁15との間に位置する。実施形態では、三方継手175は、第1室外熱交換器13における伝熱管の一方端131と他方端132との間に設けられる。三方継手175の第1ポート及び第2ポートの各々は、伝熱管において冷媒が流通するように伝熱管に接続される。なお、図6では、都合上、伝熱管は破線で直線状に示されている。 The three-way joint 175 is located between the first outdoor heat exchanger 13 and the first expansion valve 15 in the first refrigerant circuit 1A. In this embodiment, the three-way joint 175 is provided between one end 131 and the other end 132 of the heat transfer tube in the first outdoor heat exchanger 13. Each of the first and second ports of the three-way joint 175 is connected to a heat transfer tube so that the refrigerant flows through the heat transfer tube. Note that in FIG. 6, for convenience, the heat transfer tube is shown as a straight line using dashed lines.
 三方継手177は、第1冷媒回路1Aの配管173において第1膨張弁15と室内熱交換器16との間に位置する。三方継手177の第1ポート及び第2ポートの各々は、配管173において冷媒が流通するように配管173に接続される。 The three-way joint 177 is located in the pipe 173 of the first refrigerant circuit 1A between the first expansion valve 15 and the indoor heat exchanger 16. The first and second ports of the three-way joint 177 are each connected to the pipe 173 so that the refrigerant flows through the pipe 173.
 第2膨張弁24は、配管231上であって、三方継手175(即ち、第1室外熱交換器13)と第2室外熱交換器21との間に位置する。第2膨張弁24は、制御部3Aの制御下で開度を調整可能である。 The second expansion valve 24 is located on the pipe 231 between the three-way joint 175 (i.e., the first outdoor heat exchanger 13) and the second outdoor heat exchanger 21. The opening degree of the second expansion valve 24 can be adjusted under the control of the control unit 3A.
 第4実施形態の制御部3Aは、ステップS102(図2参照)及びステップS202(図3参照)において、第2膨張弁24の開度を「全閉」にする。制御部3Aは、ステップS102(図2参照)及びステップS202(図3参照)において、四方弁12を冷房位置及び暖房位置にする。制御部3Aは、ステップS105(図2参照)及びステップS205(図3参照)において、第2膨張弁24の開度を「全開」よりも絞って、第2膨張弁24を膨張弁として機能させる。 The control unit 3A of the fourth embodiment sets the opening degree of the second expansion valve 24 to "fully closed" in steps S102 (see FIG. 2) and S202 (see FIG. 3). The control unit 3A sets the four-way valve 12 to the cooling position and the heating position in steps S102 (see FIG. 2) and S202 (see FIG. 3). The control unit 3A narrows the opening degree of the second expansion valve 24 below "fully open" in steps S105 (see FIG. 2) and S205 (see FIG. 3) to cause the second expansion valve 24 to function as an expansion valve.
 ステップS105の結果、第2室外熱交換器21は、蒸発器として機能するため、蒸発器として機能する室内熱交換器16における熱交換量が冷房運転時よりも減少する。ステップS205の結果、第2室外熱交換器21は、凝縮器として機能するため、凝縮器として機能する室内熱交換器16における熱交換量が暖房運転時よりも減少する。よって、冷房運転時及び暖房運転時の各々における最小能力を低減可能となる。 As a result of step S105, the second outdoor heat exchanger 21 functions as an evaporator, so the amount of heat exchanged in the indoor heat exchanger 16 functioning as an evaporator is less than in cooling operation. As a result of step S205, the second outdoor heat exchanger 21 functions as a condenser, so the amount of heat exchanged in the indoor heat exchanger 16 functioning as a condenser is less than in heating operation. Therefore, it is possible to reduce the minimum capacity during both cooling and heating operation.
「第5実施形態」
 図7は、第5実施形態に係る冷凍サイクル装置10Aを備えた空気調和機100を示す図である。図7に示されるように、第5実施形態の冷凍サイクル装置10Aは、第4実施形態の冷凍サイクル装置10Aと比較すると、第3膨張弁25を更に備える点とにおいて相違する。
Fifth embodiment
Fig. 7 is a diagram showing an air conditioner 100 including a refrigeration cycle apparatus 10A according to a fifth embodiment. As shown in Fig. 7, the refrigeration cycle apparatus 10A of the fifth embodiment is different from the refrigeration cycle apparatus 10A of the fourth embodiment in that it further includes a third expansion valve 25.
 第3膨張弁25は、配管232上であって、第2室外熱交換器21と、三方継手177の第3ポートとの間に位置する。第3膨張弁25は、制御部3Aの制御下で開度を調整可能である。 The third expansion valve 25 is located on the pipe 232 between the second outdoor heat exchanger 21 and the third port of the three-way joint 177. The opening degree of the third expansion valve 25 can be adjusted under the control of the control unit 3A.
 第5実施形態の制御部3Aは、ステップS102(図2参照)において、四方弁12を冷房位置にし、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞る。その結果、第1室外熱交換器13及び第2室外熱交換器21の各々が凝縮器として機能する。その結果、空気調和機100の冷房能力が上昇する。制御部3Aは、ステップS105(図2参照)において、第2膨張弁24の開度を「全開」よりも絞り、且つ第3膨張弁25を「全開」にする。その結果、室内熱交換器16及び第2室外熱交換器21の各々が蒸発器として機能する。ステップS105の結果、蒸発器として機能する室内熱交換器16における熱交換量が冷房運転時よりも減少する。よって、冷房運転時における最小能力を低減可能となる。 In step S102 (see FIG. 2), the control unit 3A of the fifth embodiment places the four-way valve 12 in the cooling position, opens the second expansion valve 24 fully, and narrows the opening of the third expansion valve 25 below the fully open position. As a result, the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 each function as a condenser. As a result, the cooling capacity of the air conditioner 100 increases. In step S105 (see FIG. 2), the control unit 3A narrows the opening of the second expansion valve 24 below the fully open position, and opens the third expansion valve 25 fully. As a result, the indoor heat exchanger 16 and the second outdoor heat exchanger 21 each function as an evaporator. As a result of step S105, the heat exchange amount in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to the cooling operation. Therefore, the minimum capacity during the cooling operation can be reduced.
 また、制御部3Aは、ステップS202(図3参照)において、四方弁12を暖房位置にし、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞る。即ち、第3膨張弁25は、暖房運転時における膨張弁として機能する。その結果、第1室外熱交換器13及び第2室外熱交換器21の各々が蒸発器として機能する。これにより、空気調和機100の暖房能力を上昇させることが可能となる。制御部3Aは、ステップS205(図2参照)において、第2膨張弁24の開度を「全開」よりも絞り、且つ第3膨張弁25を「全開」にする。即ち、第2膨張弁24は、暖房運転時における膨張弁として機能する。その結果、室内熱交換器16及び第2室外熱交換器21の各々が蒸発器として機能する。ステップS205の結果、蒸発器として機能する室内熱交換器16における熱交換量が暖房運転時よりも減少する。よって、暖房運転時における最小能力を低減可能となる。 In addition, in step S202 (see FIG. 3), the control unit 3A sets the four-way valve 12 to the heating position, sets the second expansion valve 24 to "fully open", and narrows the opening of the third expansion valve 25 below "fully open". That is, the third expansion valve 25 functions as an expansion valve during heating operation. As a result, each of the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 functions as an evaporator. This makes it possible to increase the heating capacity of the air conditioner 100. In step S205 (see FIG. 2), the control unit 3A narrows the opening of the second expansion valve 24 below "fully open", and sets the third expansion valve 25 to "fully open". That is, the second expansion valve 24 functions as an expansion valve during heating operation. As a result, each of the indoor heat exchanger 16 and the second outdoor heat exchanger 21 functions as an evaporator. As a result of step S205, the heat exchange amount in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to that during heating operation. This makes it possible to reduce the minimum capacity during heating operation.
「第6実施形態」
 第6実施形態に係る冷凍サイクル装置10Aの構成は、第5実施形態と同様でよい。従って、第6実施形態では、図7が援用される。
Sixth Embodiment
The configuration of the refrigeration cycle apparatus 10A according to the sixth embodiment may be similar to that of the fifth embodiment. Therefore, in the sixth embodiment, FIG.
 以下、図7及び図8を参照して冷凍サイクル装置10Aを備えた空気調和機100の冷房運転について説明する。図8は、第6実施形態の冷凍サイクル装置10Aの冷房運転時の動作を示すフローチャートである。 Below, the cooling operation of the air conditioner 100 equipped with the refrigeration cycle device 10A will be described with reference to Figures 7 and 8. Figure 8 is a flow chart showing the operation of the refrigeration cycle device 10A of the sixth embodiment during cooling operation.
 図8に示されるように、ステップS301において、制御部4Aは、ステップS101と同様、冷房指示と、第1設定温度とを受け付ける。 As shown in FIG. 8, in step S301, the control unit 4A receives a cooling instruction and a first set temperature, similar to step S101.
 次に、ステップS302において、冷凍サイクル装置10Aにおける冷房運転の開始処理が実行される。詳細には、制御部4Aは、冷房指示と第1設定温度とを制御部3Aに送信する。制御部3Aは、冷房指示をトリガーとして、第5実施形態のステップS102と同様に、四方弁12を冷房位置にし、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞る。 Next, in step S302, the process of starting the cooling operation in the refrigeration cycle device 10A is executed. In detail, the control unit 4A transmits a cooling command and a first set temperature to the control unit 3A. The control unit 3A is triggered by the cooling command to set the four-way valve 12 to the cooling position, set the second expansion valve 24 to "fully open", and reduce the opening of the third expansion valve 25 to less than "fully open", similar to step S102 in the fifth embodiment.
 ステップS302の終了後、制御部4Aはまず、温度信号を取得する。その後、ステップS303において、制御部4Aは、第1中能力運転条件を満たしたか否かを判定する。第1中能力運転条件は、偏差が第1基準温度以上で第3基準温度以下になることである。第1基準温度は、例えば0℃である。第3基準温度は、第1基準温度よりも所定温度だけ高い温度であり、例えば2℃である。第1中能力運転条件を満たさないと判定された場合(ステップS303でNo)、ステップS305が実行される。第1中能力運転条件を満たすと判定された場合(ステップS303でYes)、ステップS304の第1中能力運転が実行される。 After step S302 is completed, the control unit 4A first acquires a temperature signal. Then, in step S303, the control unit 4A determines whether or not the first medium capacity operation condition is met. The first medium capacity operation condition is that the deviation is equal to or greater than the first reference temperature and equal to or less than the third reference temperature. The first reference temperature is, for example, 0°C. The third reference temperature is a temperature that is a predetermined temperature higher than the first reference temperature, for example, 2°C. If it is determined that the first medium capacity operation condition is not met (No in step S303), step S305 is executed. If it is determined that the first medium capacity operation condition is met (Yes in step S303), the first medium capacity operation in step S304 is executed.
 ステップS305において、制御部4Aは、前述の第1低能力運転条件を満たしたか否かを判定する。第1低能力運転条件を満たさないと判定された場合(ステップS305でNo)、ステップS307の冷房運転が実行される。第1低能力運転条件を満たすと判定された場合(ステップS305でYes)、ステップS306の第1低能力運転が実行される。 In step S305, the control unit 4A determines whether or not the first low-capacity operation condition described above is satisfied. If it is determined that the first low-capacity operation condition is not satisfied (No in step S305), the cooling operation is performed in step S307. If it is determined that the first low-capacity operation condition is satisfied (Yes in step S305), the first low-capacity operation is performed in step S306.
 ステップS307において、制御部3A,4Aは、ステップS104(図2参照)と同様の冷房運転を制御する。その結果、室内機300は、室内に向かって冷風を吹き出し、室温が第1設定温度になるように室内を冷房する。 In step S307, the control units 3A and 4A control the cooling operation in the same manner as in step S104 (see FIG. 2). As a result, the indoor unit 300 blows cool air into the room, cooling the room so that the room temperature becomes the first set temperature.
 ステップS304では、制御部4Aは、第1中能力運転の実行命令(以下、「第1中能力運転指示」と記載する。)を制御部3Aに送信する。制御部3Aは、第1中能力運転指示をトリガーとして、第1中能力運転を実行する。詳細には、制御部3Aは、第2膨張弁24及び第3膨張弁25の各々を「全閉」に切り換える。第2膨張弁24を第3膨張弁25よりも早く「全閉」にすると、冷媒が第2室外熱交換器21に溜まらない。第2膨張弁24を第3膨張弁25よりも遅く「全閉」にすると、第2室外熱交換器21に溜まるため、冷凍サイクル装置10A内で循環する冷媒量が減少する。冷媒量の減少は、冷凍サイクル装置10A内の全配管長が比較的短い場合に有利となりうる。第1中能力運転によれば、冷房能力を冷房運転時よりも低減可能となる。なお、第1低能力運転では、圧縮機11、第1ファン14及び第2ファン17の各回転数と、第1膨張弁15の開度とは、冷房運転時と比較して同じであってもよいし、若干異なっていてもよい。 In step S304, the control unit 4A sends a command to execute the first medium capacity operation (hereinafter, referred to as the "first medium capacity operation instruction") to the control unit 3A. The control unit 3A executes the first medium capacity operation using the first medium capacity operation instruction as a trigger. In detail, the control unit 3A switches each of the second expansion valve 24 and the third expansion valve 25 to "fully closed". If the second expansion valve 24 is "fully closed" earlier than the third expansion valve 25, the refrigerant does not accumulate in the second outdoor heat exchanger 21. If the second expansion valve 24 is "fully closed" later than the third expansion valve 25, the refrigerant accumulates in the second outdoor heat exchanger 21, and the amount of refrigerant circulating in the refrigeration cycle device 10A decreases. The reduction in the amount of refrigerant can be advantageous when the total piping length in the refrigeration cycle device 10A is relatively short. According to the first medium capacity operation, the cooling capacity can be reduced compared to that during cooling operation. In addition, in the first low capacity operation, the rotation speeds of the compressor 11, the first fan 14, and the second fan 17, and the opening degree of the first expansion valve 15 may be the same as those in the cooling operation, or may be slightly different.
 ステップS306では、制御部3Aは、第2膨張弁24の開度を「全開」よりも絞り、且つ第3膨張弁25の開度を第2膨張弁24より大きくする。換言すると、制御部3Aは、室温と第2設定温度との差が第2基準温度以下になると、第2膨張弁24及び第3膨張弁25の各開度を、第2膨張弁24の方が第3膨張弁25よりも小さくなるように制御する。その結果、室内熱交換器16及び第2室外熱交換器21の各々が蒸発器として機能する。ステップS306の結果、蒸発器として機能する室内熱交換器16における熱交換量が冷房運転時よりも減少する。よって、冷房運転時における最小能力を低減可能となる。 In step S306, the control unit 3A narrows the opening of the second expansion valve 24 below "full open" and sets the opening of the third expansion valve 25 to be greater than the second expansion valve 24. In other words, when the difference between the room temperature and the second set temperature becomes equal to or less than the second reference temperature, the control unit 3A controls the opening of the second expansion valve 24 and the third expansion valve 25 so that the opening of the second expansion valve 24 is smaller than that of the third expansion valve 25. As a result, each of the indoor heat exchanger 16 and the second outdoor heat exchanger 21 functions as an evaporator. As a result of step S306, the amount of heat exchange in the indoor heat exchanger 16 functioning as an evaporator is reduced compared to cooling operation. Therefore, the minimum capacity during cooling operation can be reduced.
 ステップS304,S306,S307の終了後に、次のステップS303の実行タイミングが到来すると、処理は、ステップS303に戻る。 After steps S304, S306, and S307 are completed, when it is time to execute the next step S303, the process returns to step S303.
 以下、図7及び図9を参照して冷凍サイクル装置10Aを備えた空気調和機100の冷房運転について説明する。図9は、第6実施形態に係る冷凍サイクル装置10Aの暖房運転時の動作を示すフローチャートである。 Below, the cooling operation of the air conditioner 100 equipped with the refrigeration cycle device 10A will be described with reference to Figures 7 and 9. Figure 9 is a flowchart showing the operation of the refrigeration cycle device 10A according to the sixth embodiment during heating operation.
 図9に示されるように、ステップS401において、制御部4Aは、ステップS201と同様、暖房指示と、第2設定温度とを受け付ける。 As shown in FIG. 9, in step S401, the control unit 4A receives a heating instruction and a second set temperature, similar to step S201.
 次に、ステップS402において、冷凍サイクル装置10Aにおける暖房運転の開始処理が実行される。詳細には、制御部4Aは、暖房指示と第2設定温度とを制御部3Aに送信する。制御部3Aは、暖房指示をトリガーとして、第5実施形態のステップS202と同様に、四方弁12を暖房位置にし、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞る。 Next, in step S402, the process of starting the heating operation in the refrigeration cycle device 10A is executed. In detail, the control unit 4A sends a heating command and a second set temperature to the control unit 3A. The control unit 3A is triggered by the heating command to set the four-way valve 12 to the heating position, set the second expansion valve 24 to "fully open," and reduce the opening of the third expansion valve 25 to less than "fully open," as in step S202 of the fifth embodiment.
 ステップS402の終了後、制御部4Aはまず、温度信号を取得する。その後、ステップS403において、制御部4Aは、第2中能力運転条件を満たしたか否かを判定する。第2中能力運転条件は、偏差が第2基準温度以上で第4基準温度以下になることである。第2基準温度は、例えば0℃である。第4基準温度は、第2基準温度よりも所定温度だけ高い温度であり、例えば2℃である。第2中能力運転条件を満たさないと判定された場合(ステップS403でNo)、ステップS405が実行される。第1中能力運転条件を満たすと判定された場合(ステップS403でYes)、ステップS404の第2中能力運転が実行される。 After step S402 is completed, the control unit 4A first acquires a temperature signal. Then, in step S403, the control unit 4A determines whether or not the second medium capacity operation condition is met. The second medium capacity operation condition is that the deviation is equal to or greater than the second reference temperature and equal to or less than the fourth reference temperature. The second reference temperature is, for example, 0°C. The fourth reference temperature is a temperature that is a predetermined temperature higher than the second reference temperature, for example, 2°C. If it is determined that the second medium capacity operation condition is not met (No in step S403), step S405 is executed. If it is determined that the first medium capacity operation condition is met (Yes in step S403), the second medium capacity operation in step S404 is executed.
 ステップS405では、制御部4Aは、前述の第2低能力運転条件を満たしたか否かを判定する。第2低能力運転条件を満たさないと判定された場合(ステップS405でNo)、ステップS407の暖房運転が実行される。第2低能力運転条件を満たすと判定された場合(ステップS405でYes)、ステップS406の第2低能力運転が実行される。 In step S405, the control unit 4A determines whether or not the second low-capacity operation condition described above is satisfied. If it is determined that the second low-capacity operation condition is not satisfied (No in step S405), the heating operation is performed in step S407. If it is determined that the second low-capacity operation condition is satisfied (Yes in step S405), the second low-capacity operation is performed in step S406.
 ステップS407において、制御部3A,4Aは、ステップS204(図2参照)と同様の処理を実行する。その結果、室内機300は、室内に向かって温風を吹き出し、室温が第2設定温度になるように室内を暖房する。 In step S407, the control units 3A and 4A execute the same process as in step S204 (see FIG. 2). As a result, the indoor unit 300 blows out warm air into the room, heating the room so that the room temperature becomes the second set temperature.
 ステップS404では、制御部4Aは、第2中能力運転の実行命令(以下、「第2中能力運転指示」と記載する。)を制御部3Aに送信する。制御部3Aは、第2中能力運転指示をトリガーとして、上述の第1中能力運転と同様の第2中能力運転を実行する。第2中能力運転によれば、暖房能力が暖房運転時よりも低減可能となる。 In step S404, control unit 4A sends an instruction to execute second medium capacity operation (hereinafter referred to as "second medium capacity operation instruction") to control unit 3A. Triggered by the second medium capacity operation instruction, control unit 3A executes second medium capacity operation similar to the first medium capacity operation described above. With the second medium capacity operation, the heating capacity can be reduced compared to heating operation.
 ステップS406では、制御部3Aは、第2膨張弁24の開度を「全開」よりも絞り、且つ第3膨張弁25の開度を第2膨張弁24より大きくする。その結果、室内熱交換器16及び第2室外熱交換器21の各々が凝縮器として機能する。ステップS406の結果、凝縮器として機能する室内熱交換器16における熱交換量が暖房運転時よりも減少する。よって、暖房運転時における最小能力を低減可能となる。 In step S406, the control unit 3A narrows the opening of the second expansion valve 24 below "fully open" and opens the third expansion valve 25 greater than the opening of the second expansion valve 24. As a result, the indoor heat exchanger 16 and the second outdoor heat exchanger 21 each function as a condenser. As a result of step S406, the amount of heat exchanged in the indoor heat exchanger 16 functioning as a condenser is reduced compared to heating operation. Therefore, the minimum capacity during heating operation can be reduced.
 ステップS404,S406,S407の終了後に、次のステップS403の実行タイミングが到来すると、処理は、ステップS403に戻る。 After steps S404, S406, and S407 are completed, when it is time to execute the next step S403, the process returns to step S403.
 次に、図10を参照して、ステップS407の暖房運転の詳細な処理を説明する。図10は、ステップS407の詳細な処理手順を示すフローチャートである。 Next, the detailed processing of the heating operation in step S407 will be described with reference to FIG. 10. FIG. 10 is a flowchart showing the detailed processing procedure of step S407.
 図10に示されるように、ステップS501において、制御部3A,4Aは、ステップS204(図2参照)と同様の処理により、室温が第2設定温度になるように室内を暖房する。暖房運転中に、ステップS502の実行タイミングが来ると、制御部3Aは、ステップS502(除霜条件の判定処理)を実行する。 As shown in FIG. 10, in step S501, the control units 3A and 4A heat the room so that the room temperature becomes the second set temperature by processing similar to that of step S204 (see FIG. 2). During heating operation, when the timing for executing step S502 arrives, the control unit 3A executes step S502 (processing for determining whether the defrosting conditions are satisfied).
 ステップS502において、制御部3Aは、第1除霜条件を満たすか否かを判定する。以下、ステップS502の詳細な処理について説明する。実施形態では、図7に示されるように、室外機200は、公知の着霜センサ26A,26Bを有する。着霜センサ26A,26Bは、第1室外熱交換器13への着霜量を示す信号(以下、「第1霜量信号」と記載する。)、及び第2室外熱交換器21への着霜量を示す信号(以下、「第2霜量信号」と記載する。)を制御部3Aにそれぞれ出力する。 In step S502, the control unit 3A determines whether the first defrost condition is satisfied. The detailed processing of step S502 is described below. In this embodiment, as shown in FIG. 7, the outdoor unit 200 has known frost sensors 26A, 26B. The frost sensors 26A, 26B output a signal indicating the amount of frost on the first outdoor heat exchanger 13 (hereinafter referred to as the "first frost amount signal") and a signal indicating the amount of frost on the second outdoor heat exchanger 21 (hereinafter referred to as the "second frost amount signal") to the control unit 3A, respectively.
 制御部3Aは、着霜センサ26Aから第1霜量信号を取得する。第1霜量信号が所定の着霜量基準値未満の着霜量を示している場合に、制御部3Aは、第1除霜条件を満たさないと判定する(ステップS502でNo)。この場合、処理は、ステップS501に戻り、制御部3Aは、次の実行タイミングを待機する。一方、第1霜量信号が所定の着霜量基準値以上の着霜量を示している場合に、第1除霜条件を満たすと判定される(ステップS502でYes)。この場合、ステップS503が実行される。 The control unit 3A acquires a first frost amount signal from the frost sensor 26A. If the first frost amount signal indicates a frost amount less than a predetermined frost amount reference value, the control unit 3A determines that the first defrost condition is not met (No in step S502). In this case, the process returns to step S501, and the control unit 3A waits for the next execution timing. On the other hand, if the first frost amount signal indicates a frost amount equal to or greater than the predetermined frost amount reference value, it is determined that the first defrost condition is met (Yes in step S502). In this case, step S503 is executed.
 ステップS503において、制御部3Aは、室内に人が居るか否かを判定する。ステップS503の判定は、例えば、室内機300に備わる人感センサ27(図7参照)からの検出信号に基づいて実行されればよい。そのため、ステップS503の詳細な説明を控える。検出信号に基づいて人が居ないと判定された場合(ステップS503でNo)、ステップS504の通常の除霜運転が実行される。一方、検出信号に基づいて人が居ると判定された場合(ステップS503でYes)、ステップS505が実行される。 In step S503, the control unit 3A determines whether or not there is a person in the room. The determination in step S503 may be performed, for example, based on a detection signal from the human presence sensor 27 (see FIG. 7) provided in the indoor unit 300. Therefore, a detailed description of step S503 will be refrained from. If it is determined based on the detection signal that there is no person present (No in step S503), a normal defrosting operation is performed in step S504. On the other hand, if it is determined based on the detection signal that there is a person present (Yes in step S503), step S505 is performed.
 ステップS504において、制御部3Aは、典型的には四方弁12を冷房位置にする。その結果、第1室外熱交換器13が凝縮器として機能し、第1室外熱交換器13の伝熱管には高温の冷媒が流れる。これにより、第1室外熱交換器13から霜が取り除かれる。また、第1室外熱交換器13に熱が加わることで、第2室外熱交換器21からも霜を取り除くことが可能である。ステップS504の終了後、処理は、ステップS501に戻る。 In step S504, the control unit 3A typically sets the four-way valve 12 to the cooling position. As a result, the first outdoor heat exchanger 13 functions as a condenser, and high-temperature refrigerant flows through the heat transfer tubes of the first outdoor heat exchanger 13. This removes frost from the first outdoor heat exchanger 13. In addition, by applying heat to the first outdoor heat exchanger 13, it is also possible to remove frost from the second outdoor heat exchanger 21. After step S504 is completed, the process returns to step S501.
 なお、ステップS504において、制御部3Aは、四方弁12を冷房位置にするとともに、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞ってもよい。その結果、第1室外熱交換器13及び第2室外熱交換器21の各々が凝縮器として機能する。その結果、第1室外熱交換器13及び第2室外熱交換器21の各々から霜が取り除かれる。 In addition, in step S504, the control unit 3A may set the four-way valve 12 to the cooling position, set the second expansion valve 24 to "fully open", and reduce the opening degree of the third expansion valve 25 below "fully open". As a result, each of the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21 functions as a condenser. As a result, frost is removed from each of the first outdoor heat exchanger 13 and the second outdoor heat exchanger 21.
 ステップS504において、制御部3Aは、上述以外にも、四方弁12を冷房位置にした後、所定時間が経過後に、第2膨張弁24を「全開」にし、且つ第3膨張弁25の開度を「全開」よりも絞ってもよい。 In step S504, in addition to the above, the control unit 3A may, after the four-way valve 12 is set to the cooling position, and after a predetermined time has elapsed, set the second expansion valve 24 to "fully open" and reduce the opening degree of the third expansion valve 25 below "fully open."
 ステップS505において、制御部3Aは、第2除霜条件を満たすか否かを判定する。制御部3Aは、着霜センサ26Bから第2霜量信号を取得する。第2霜量信号が着霜量基準値未満の着霜量を示している場合に、制御部3Aは、第2除霜条件を満たさないと判定する(ステップS505でNo)。この場合、処理は、ステップS511に進む。一方、第2霜量信号が所定の着霜量基準値以上の着霜量を示している場合に、第2除霜条件を満たすと判定される(ステップS505でYes)。この場合、ステップS506が実行される。 In step S505, the control unit 3A determines whether the second defrost condition is satisfied. The control unit 3A acquires a second frost amount signal from the frost sensor 26B. If the second frost amount signal indicates an amount of frost less than the frost amount reference value, the control unit 3A determines that the second defrost condition is not satisfied (No in step S505). In this case, the process proceeds to step S511. On the other hand, if the second frost amount signal indicates an amount of frost equal to or greater than the predetermined frost amount reference value, it is determined that the second defrost condition is satisfied (Yes in step S505). In this case, step S506 is executed.
 ステップS506において、制御部3Aは、暖房運転維持のために室内熱交換器16を凝縮器として機能させ、第2室外熱交換器21を凝縮器として機能させ且つ第1室外熱交換器13を蒸発器として機能させる。詳細には、制御部3Aは、第2膨張弁24の開度を「全開」よりも絞り、且つ第3膨張弁25の開度を第2膨張弁24より大きくする。その結果、第2室外熱交換器21から霜が取り除かれる。この時、第1ファン14が回転しているため、空気流F11(白抜きの矢印参照)が第2室外熱交換器21を通過する過程で加熱される。加熱された空気流F11は、第1室外熱交換器13を通過する過程で、第1室外熱交換器13に付着している霜を溶かすこともできる。ステップS506の終了後、処理は、ステップS507に進む。 In step S506, the control unit 3A makes the indoor heat exchanger 16 function as a condenser, the second outdoor heat exchanger 21 function as a condenser, and the first outdoor heat exchanger 13 function as an evaporator to maintain the heating operation. In detail, the control unit 3A narrows the opening of the second expansion valve 24 to a value smaller than "fully open," and makes the opening of the third expansion valve 25 larger than that of the second expansion valve 24. As a result, the frost is removed from the second outdoor heat exchanger 21. At this time, since the first fan 14 is rotating, the air flow F11 (see the white arrow) is heated in the process of passing through the second outdoor heat exchanger 21. The heated air flow F11 can also melt the frost adhering to the first outdoor heat exchanger 13 in the process of passing through the first outdoor heat exchanger 13. After step S506 is completed, the process proceeds to step S507.
 ステップS507において、制御部3Aは、ステップS502と同様にして、第1除霜条件を満たすか否かを判定する。第1除霜条件を満たさないと判定された場合(ステップS507でNo)、ステップS501が実行される。一方、第1除霜条件を満たすと判定された場合(ステップS507でYes)、ステップS508が実行される。 In step S507, the control unit 3A determines whether or not the first defrost condition is satisfied, in the same manner as in step S502. If it is determined that the first defrost condition is not satisfied (No in step S507), step S501 is executed. On the other hand, if it is determined that the first defrost condition is satisfied (Yes in step S507), step S508 is executed.
 ステップS508において、制御部3Aは、ステップS503と同様にして、室内に人が居るか否かを判定する。人が居ないと判定された場合(ステップS508でNo)、ステップS504が実行される。一方、人が居ると判定された場合(ステップS508でYes)、ステップS510が実行される。 In step S508, the control unit 3A determines whether or not there is a person in the room, in the same manner as in step S503. If it is determined that there is no person in the room (No in step S508), step S504 is executed. On the other hand, if it is determined that there is a person in the room (Yes in step S508), step S510 is executed.
 ステップS510において、制御部3Aは、制御部4Aを通じて温度信号を取得する。その後、制御部3Aは、第2設定温度と、現在の室温との偏差が予め定められた第5基準温度以下であるか否かを判定する。第5基準温度以下でないと判定された場合(ステップS510でNo)、室温が低く、除霜よりも暖房運転を優先した方がよいため、ステップS501が実行される。第5基準温度以下であると判定された場合(ステップS510でYes)、ステップS511が実行される。 In step S510, control unit 3A acquires a temperature signal through control unit 4A. Control unit 3A then determines whether the deviation between the second set temperature and the current room temperature is equal to or less than a predetermined fifth reference temperature. If it is determined that the deviation is not equal to or less than the fifth reference temperature (No in step S510), step S501 is executed since the room temperature is low and it is better to prioritize heating operation over defrosting. If it is determined that the deviation is equal to or less than the fifth reference temperature (Yes in step S510), step S511 is executed.
 ステップS511において、制御部3Aは、暖房運転維持のために室内熱交換器16を凝縮器として機能させ、第1室外熱交換器13を凝縮器として機能させ且つ第2室外熱交換器21を蒸発器として機能させる。詳細には、制御部3Aは、第3膨張弁25の開度を「全開」よりも絞り、且つ第2膨張弁24の開度を第3膨張弁25より大きくする。また、制御部3Aは、第1膨張弁15を「全開」にする。その結果、第1室外熱交換器13から霜が取り除かれる。より詳細には、ステップS506でも第1室外熱交換器13から霜が取り除かれているため、図10の処理によれば、第1室外熱交換器13から良好に霜が取り除かれる。ステップS511の終了後、処理は、ステップS501に戻る。 In step S511, the control unit 3A makes the indoor heat exchanger 16 function as a condenser, the first outdoor heat exchanger 13 function as a condenser, and the second outdoor heat exchanger 21 function as an evaporator to maintain the heating operation. In detail, the control unit 3A narrows the opening of the third expansion valve 25 to a value smaller than "fully open," and makes the opening of the second expansion valve 24 larger than that of the third expansion valve 25. The control unit 3A also makes the first expansion valve 15 "fully open." As a result, the frost is removed from the first outdoor heat exchanger 13. In more detail, since the frost is also removed from the first outdoor heat exchanger 13 in step S506, the frost is removed satisfactorily from the first outdoor heat exchanger 13 according to the process of FIG. 10. After step S511 is completed, the process returns to step S501.
 図10の処理では、ステップS506及びステップS511の中では、ステップS506がステップS511よりも先に実行されていた。しかし、これに限らず、ステップS511がステップS506よりも先に実行されてもよい。 In the process of FIG. 10, between steps S506 and S511, step S506 is executed before step S511. However, this is not limited to the above, and step S511 may be executed before step S506.
 以上、図面を参照しながら本発明の実施形態を説明した。ただし、本発明は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。また、上述の実施形態に開示される複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上述の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The above describes the embodiments of the present invention with reference to the drawings. However, the present invention is not limited to the above-mentioned embodiments, and can be implemented in various aspects without departing from the gist of the present invention. In addition, various inventions can be formed by appropriately combining multiple components disclosed in the above-mentioned embodiments. For example, some components may be deleted from all components shown in the embodiments. Furthermore, components from different embodiments may be appropriately combined. The drawings are mainly schematic views of each component for ease of understanding, and the thickness, length, number, spacing, etc. of each component shown in the drawings may differ from the actual ones due to the convenience of drawing. In addition, the material, shape, dimensions, etc. of each component shown in the above-mentioned embodiments are merely examples and are not particularly limited, and various modifications are possible within a range that does not substantially deviate from the effects of the present invention.
 本発明は、冷凍サイクル装置であり、産業上の利用可能性がある。 The present invention is a refrigeration cycle device and has industrial applicability.
100  :空気調和機
10A  :冷凍サイクル装置
1A   :第1冷媒回路
11   :圧縮機
111  :吸入ポート
112  :吐出ポート
113  :本体
114  :アキュムレータ
12   :四方弁
13   :第1室外熱交換器
14   :第1ファン
15   :第1膨張弁
16   :室内熱交換器
163  :温度センサ
17   :第2ファン
2A   :第2冷媒回路
21   :第2室外熱交換器
22   :電磁弁
24   :第2膨張弁
25   :第3膨張弁
26A  :着霜センサ
26B  :着霜センサ
27   :人感センサ
3A   :制御部
4A   :制御部
100: Air conditioner 10A: Refrigeration cycle device 1A: First refrigerant circuit 11: Compressor 111: Suction port 112: Discharge port 113: Main body 114: Accumulator 12: Four-way valve 13: First outdoor heat exchanger 14: First fan 15: First expansion valve 16: Indoor heat exchanger 163: Temperature sensor 17: Second fan 2A: Second refrigerant circuit 21: Second outdoor heat exchanger 22: Solenoid valve 24: Second expansion valve 25: Third expansion valve 26A: Frost sensor 26B: Frost sensor 27: Human presence sensor 3A: Control unit 4A: Control unit

Claims (14)

  1.  圧縮機、第1室外熱交換器、第1膨張弁、及び室内熱交換器を有する第1冷媒回路と、
     弁及び第2室外熱交換器を有し、一方が前記第1冷媒回路の第1位置に接続され、他方が前記第1冷媒回路の第2位置に接続される第2冷媒回路と、
     冷房運転又は暖房運転を制御する制御部と
    を備え、
     前記制御部は、
     前記冷房運転では、前記第1室外熱交換器を凝縮器として機能し、かつ前記室内熱交換器を蒸発器として機能するように、前記圧縮機と前記第1膨張弁とを制御し、
     前記冷房運転において室温と第1目標温度との差が第1所定値以下になると、前記第2室外熱交換器が蒸発器として機能するように前記弁を制御し、
     前記暖房運転では、前記第1室外熱交換器を蒸発器として機能させ、かつ前記室内熱交換器を凝縮器として機能するように、前記圧縮機と前記第1膨張弁とを制御し、
     前記暖房運転において室温と第2目標温度との差が第2所定値以下になると、前記第2室外熱交換器が凝縮器として機能するように前記弁を制御する、冷凍サイクル装置。
    a first refrigerant circuit including a compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger;
    a second refrigerant circuit including a valve and a second outdoor heat exchanger, one of which is connected to a first position of the first refrigerant circuit and the other of which is connected to a second position of the first refrigerant circuit;
    A control unit that controls a cooling operation or a heating operation,
    The control unit is
    In the cooling operation, the compressor and the first expansion valve are controlled so that the first outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator.
    When a difference between a room temperature and a first target temperature becomes equal to or smaller than a first predetermined value during the cooling operation, the valve is controlled so that the second outdoor heat exchanger functions as an evaporator;
    In the heating operation, the compressor and the first expansion valve are controlled so that the first outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser.
    the valve is controlled so that the second outdoor heat exchanger functions as a condenser when a difference between a room temperature and a second target temperature becomes equal to or smaller than a second predetermined value during the heating operation.
  2.  前記第2室外熱交換器を通過する気流を発生可能なファンを備え、
     前記制御部は、前記第2室外熱交換器が蒸発器又は凝縮器として機能する場合に、前記ファンにより前記気流を発生させる、請求項1に記載の冷凍サイクル装置。
    a fan capable of generating an airflow passing through the second outdoor heat exchanger,
    The refrigeration cycle apparatus according to claim 1 , wherein the control unit causes the fan to generate the airflow when the second outdoor heat exchanger functions as an evaporator or a condenser.
  3.  前記第1室外熱交換器及び前記第2室外熱交換器は対向する、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 2, wherein the first outdoor heat exchanger and the second outdoor heat exchanger face each other.
  4.  前記第1位置及び前記第2位置は、前記室内熱交換器及び前記圧縮機の間の位置であり、
     前記第2位置は、前記第1位置より前記圧縮機側の位置である、請求項1から請求項3のいずれかに記載の冷凍サイクル装置。
    the first position and the second position are positions between the indoor heat exchanger and the compressor,
    The refrigeration cycle apparatus according to claim 1 , wherein the second position is a position closer to the compressor than the first position.
  5.  前記第2位置は、前記圧縮機における吸込口、又は前記圧縮機に設けられるアキュムレータの流入口である、請求項4に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 4, wherein the second position is an intake port of the compressor or an inlet port of an accumulator provided in the compressor.
  6.  前記弁は、前記第2冷媒回路において前記第1位置と前記第2室外熱交換器との間に位置し、
     前記圧縮機から吐出された冷媒を、前記第2室外熱交換器に前記冷媒が流すか否かを切り換え、前記第2位置に位置する三方弁を更に備える、請求項4に記載の冷凍サイクル装置。
    the valve is located in the second refrigerant circuit between the first position and the second outdoor heat exchanger,
    The refrigeration cycle apparatus according to claim 4 , further comprising a three-way valve configured to switch whether or not the refrigerant discharged from the compressor flows through the second outdoor heat exchanger and to be located at the second position.
  7.  前記第1位置は、前記第1冷媒回路において前記第1室外熱交換器と前記第1膨張弁との間の位置であり、
     前記第2位置は、前記第1冷媒回路において前記第1膨張弁と前記室内熱交換器との間の位置であり、
     前記弁は、第2膨張弁であって、前記第1室外熱交換器と前記第2室外熱交換器との間に位置する、請求項1から請求項3のいずれかに記載の冷凍サイクル装置。
    the first position is a position between the first outdoor heat exchanger and the first expansion valve in the first refrigerant circuit,
    the second position is a position between the first expansion valve and the indoor heat exchanger in the first refrigerant circuit,
    The refrigeration cycle apparatus according to claim 1 , wherein the valve is a second expansion valve and is located between the first outdoor heat exchanger and the second outdoor heat exchanger.
  8.  前記第2冷媒回路は、前記第2室外熱交換器と前記第2位置との間に第3膨張弁を更に有する、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 7, wherein the second refrigerant circuit further includes a third expansion valve between the second outdoor heat exchanger and the second position.
  9.  前記制御部は、
     前記室温と前記第2目標温度との差が前記第2所定値以下になると、前記第2膨張弁及び前記第3膨張弁の各開度を、前記第2膨張弁の方が前記第3膨張弁よりも小さくなるように制御する、請求項8に記載の冷凍サイクル装置。
    The control unit is
    9. The refrigeration cycle device according to claim 8, wherein when the difference between the room temperature and the second target temperature becomes equal to or less than the second predetermined value, the opening degree of the second expansion valve and the opening degree of the third expansion valve are controlled so that the opening degree of the second expansion valve is smaller than that of the third expansion valve.
  10.  前記第1室外熱交換器は、前記第2室外熱交換器よりも前記気流の下流側に位置する、請求項1から3のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle device according to any one of claims 1 to 3, wherein the first outdoor heat exchanger is located downstream of the airflow from the second outdoor heat exchanger.
  11.  前記制御部は、前記暖房運転中に除霜条件を満たした場合に、前記第2室外熱交換器が蒸発器として機能するように、前記第2膨張弁及び前記第3膨張弁を制御する、請求項8に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 8, wherein the control unit controls the second expansion valve and the third expansion valve so that the second outdoor heat exchanger functions as an evaporator when a defrosting condition is satisfied during the heating operation.
  12.  前記制御部は、前記暖房運転中に除霜条件を満たした場合に、前記第1室外熱交換器が蒸発器として機能するように、前記第2膨張弁及び前記第3膨張弁を制御する、請求項8に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 8, wherein the control unit controls the second expansion valve and the third expansion valve so that the first outdoor heat exchanger functions as an evaporator when a defrosting condition is satisfied during the heating operation.
  13.  前記制御部は、前記暖房運転中に除霜条件を満たした場合に、前記第1室外熱交換器及び前記第2室外熱交換器のうち、前記第1室外熱交換器が蒸発器として機能した後に、前記第2室外熱交換器が蒸発器として機能するように、前記第2膨張弁及び前記第3膨張弁を制御する、請求項8に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 8, wherein the control unit controls the second expansion valve and the third expansion valve so that, when a defrosting condition is satisfied during the heating operation, the first outdoor heat exchanger of the first outdoor heat exchanger and the second outdoor heat exchanger functions as an evaporator after the first outdoor heat exchanger functions as an evaporator.
  14.  圧縮機、第1室外熱交換器、第1膨張弁、及び室内熱交換器を有する第1冷媒回路と、
     第2室外熱交換器を有し、一方が前記第1冷媒回路の第1位置に接続され、他方が前記第1冷媒回路の第2位置の間に接続される第2冷媒回路と、
     暖房運転を制御する制御部と
    を備え、
     前記制御部は、
     前記暖房運転では、前記第1室外熱交換器を蒸発器として機能させ、かつ前記室内熱交換器を凝縮器として機能させるように、前記圧縮機と前記第1膨張弁とを制御し、
     前記暖房運転において予め定められた除霜条件を満たした場合、前記室内熱交換器を凝縮器として機能させ、前記第1室外熱交換器及び前記第2室外熱交換器の一方を蒸発器として機能させかつ前記第1室外熱交換器及び前記第2室外熱交換器の他方を凝縮器として機能させる、冷凍サイクル装置。
    a first refrigerant circuit including a compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger;
    a second refrigerant circuit having a second outdoor heat exchanger, one of which is connected to the first position of the first refrigerant circuit and the other of which is connected between the second position of the first refrigerant circuit;
    A control unit for controlling a heating operation,
    The control unit is
    In the heating operation, the compressor and the first expansion valve are controlled so that the first outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser;
    a refrigeration cycle device in which, when a predetermined defrosting condition is satisfied during the heating operation, the indoor heat exchanger is caused to function as a condenser, one of the first outdoor heat exchanger and the second outdoor heat exchanger is caused to function as an evaporator, and the other of the first outdoor heat exchanger and the second outdoor heat exchanger is caused to function as a condenser.
PCT/JP2024/004084 2023-02-10 2024-02-07 Refrigeration cycle device WO2024166938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-019252 2023-02-10
JP2023019252A JP2024113951A (en) 2023-02-10 2023-02-10 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024166938A1 true WO2024166938A1 (en) 2024-08-15

Family

ID=92262729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004084 WO2024166938A1 (en) 2023-02-10 2024-02-07 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2024113951A (en)
WO (1) WO2024166938A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828968A (en) * 1994-07-19 1996-02-02 Kubota Corp Heat pump device
JP2006343052A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Simultaneous cooling and heating multi-air conditioner
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
JP2016090092A (en) * 2014-10-31 2016-05-23 株式会社富士通ゼネラル Air conditioner
WO2021065186A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner
WO2021250738A1 (en) * 2020-06-08 2021-12-16 三菱電機株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828968A (en) * 1994-07-19 1996-02-02 Kubota Corp Heat pump device
JP2006343052A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Simultaneous cooling and heating multi-air conditioner
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
JP2016090092A (en) * 2014-10-31 2016-05-23 株式会社富士通ゼネラル Air conditioner
WO2021065186A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner
WO2021250738A1 (en) * 2020-06-08 2021-12-16 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2024113951A (en) 2024-08-23

Similar Documents

Publication Publication Date Title
JP6602403B2 (en) Refrigeration cycle equipment
US8020395B2 (en) Air conditioning apparatus
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
WO2022110771A1 (en) Air conditioner
KR101737365B1 (en) Air conditioner
JP2003185307A (en) Control apparatus of air conditioner
JPH09310927A (en) Device for controlling refrigerant of air conditioner
CN112377986A (en) Air conditioner and control method thereof
WO2022267886A1 (en) Anti-frost control method for air conditioner and air conditioner
JP4622901B2 (en) Air conditioner
US10634391B2 (en) Supplemental heating and cooling system
WO2020189586A1 (en) Refrigeration cycle device
WO2024166938A1 (en) Refrigeration cycle device
JP3661014B2 (en) Refrigeration equipment
US20220252317A1 (en) A heat pump
JPH06281273A (en) Air conditioner
KR100445445B1 (en) Refrigerator
JP2016114319A (en) Heating system
JP2005291558A (en) Air conditioner
JP7216309B2 (en) air conditioner
JP7132782B2 (en) air conditioning system
JPH0510618A (en) Multi-chamber air conditioner
JP6727296B2 (en) Air conditioner
JPH01127870A (en) Air conditioner
KR20220147207A (en) Heat pump system for vehicle and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24753381

Country of ref document: EP

Kind code of ref document: A1