WO2022179030A1 - 磁性颜料片、光变油墨和防伪制品 - Google Patents

磁性颜料片、光变油墨和防伪制品 Download PDF

Info

Publication number
WO2022179030A1
WO2022179030A1 PCT/CN2021/103887 CN2021103887W WO2022179030A1 WO 2022179030 A1 WO2022179030 A1 WO 2022179030A1 CN 2021103887 W CN2021103887 W CN 2021103887W WO 2022179030 A1 WO2022179030 A1 WO 2022179030A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
dielectric layer
magnetic pigment
magnetic core
Prior art date
Application number
PCT/CN2021/103887
Other languages
English (en)
French (fr)
Inventor
孙洪保
孙倩云
陈章荣
潘硕
Original Assignee
惠州市华阳光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华阳光学技术有限公司 filed Critical 惠州市华阳光学技术有限公司
Priority to EP21918115.3A priority Critical patent/EP4079815A4/en
Priority to US17/853,944 priority patent/US20220334295A1/en
Publication of WO2022179030A1 publication Critical patent/WO2022179030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0033Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of a metal or an alloy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0057Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer
    • C09C1/006Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer consisting of a metal or an alloy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/50Interference pigments comprising a layer or a core consisting of or comprising discrete particles, e.g. nanometric or submicrometer-sized particles
    • C09C2200/502Metal particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present application relates to the technical field of magnetic orientation, in particular to magnetic pigment flakes, optically variable inks and anti-counterfeiting products.
  • the color of the optical color-changing film changes under different angles of observation. Because of its unique angular discoloration characteristics, and the color changes obviously, it cannot be scanned and copied, and is easily recognized by the public. It has been widely used. In the field of banknotes, securities and anti-counterfeiting of cigarette packs. The emergence of optical color-changing anti-counterfeiting technology has effectively reduced the circulation of counterfeit products in the market, curbed the development of counterfeiting technology, and played an important role in maintaining the stability of the market economy and information security. However, the structure, action mechanism and technological process of magneto-optically variable pigments have been reported by a large number of patents and academic papers. At the same time, magnetic optically variable pigments have also begun to enter the decoration market, and their credibility and anti-counterfeiting performance as high-security document protection are gradually declining.
  • the main purpose of this application is to provide magnetic pigment flakes, optically variable inks and anti-counterfeiting products, so as to improve the anti-counterfeiting performance and imitation difficulty of anti-counterfeiting patterns made by magnetic pigment flakes.
  • a technical solution adopted in the present application is to provide a magnetic pigment flake, which comprises a filter film layer with magnetic or magnetizable material and a metal nanoparticle layer formed on the surface of the filter film layer , the metal nanoparticle layer is arranged to generate a localized surface plasmon resonance under the irradiation of visible light exceeding a predetermined intensity.
  • the color of the light generated by the metal nanoparticle layer under the local surface plasmon resonance is different from the color of the light generated after being filtered by the filter film layer.
  • the filter film layer includes a magnetic core layer and a first dielectric layer stacked on at least one main surface of the magnetic core layer, and the metal nanoparticle layer is disposed on a first side of the first dielectric layer away from the magnetic core layer.
  • the filter film layer further includes a second medium layer, the second medium layer is disposed between the first medium layer and the magnetic core layer, and the refractive index of the second medium layer is lower than that of the first medium layer.
  • the filter film layer further includes an absorption layer and a second dielectric layer, wherein the absorption layer and the second dielectric layer are arranged between the magnetic core layer and the first dielectric layer, and the absorption layer is closer to the first dielectric layer than the second dielectric layer. dielectric layer.
  • the physical thickness of the absorption layer is less than 30nm;
  • the material of the absorber layer is selected from at least one or an alloy of at least one of titanium, aluminum, chromium, nickel, palladium, titanium, vanadium, cobalt, iron, carbon, tin, tungsten, molybdenum, rhodium and niobium, or silicon carbide .
  • the filter film layer further includes a second medium layer, wherein the number of magnetic core layers is at least two, the second medium layer is arranged between two adjacent magnetic core layers, and the first medium layer is arranged on the outermost layer.
  • the magnetic core layer is on the major surface facing away from the second dielectric layer.
  • the filter film layer further includes a second medium layer and a reflection layer, wherein the number of magnetic core layers is at least two, the second medium layer and the reflection layer are arranged between two adjacent magnetic core layers, and the reflection layer
  • the magnetic core layers adjacent to both sides are spaced by a second dielectric layer, and the first dielectric layer is disposed on the main surface of the outermost magnetic core layer facing away from the second dielectric layer.
  • the metal nanoparticles in the metal nanoparticle layer are distributed at intervals, and the gap between two adjacent metal nanoparticles is 2 nm-1 mm.
  • the particle size of the metal nanoparticles is 2nm-1 ⁇ m;
  • the material of the metal nanoparticles is selected from at least one of aluminum, silver, gold, copper, platinum, ruthenium, palladium, rhodium, cobalt, iron, nickel, lead, osmium, iridium and alloys thereof.
  • the present application also provides an optically variable ink, the optically variable ink comprising an ink body and the above-mentioned magnetic pigment flakes doped in the ink body.
  • the present application also provides an anti-counterfeiting product
  • the anti-counterfeiting product comprises a product body and the above-mentioned optically variable ink coated on the product body, wherein the magnetic pigment flakes of the optically variable ink are magnetically oriented so as to be lower than A predetermined intensity of visible light irradiation produces bright and dark areas that vary with viewing angles, and under the irradiation of visible light exceeding the predetermined intensity, a corresponding position of the dark area produces light with a color different from that of the bright area.
  • the beneficial effects of the present application are: the metal nanoparticle layer is formed on the surface of the filter film layer, the metal nanoparticle layer is arranged to generate local surface plasmon resonance under the illumination of light exceeding a predetermined intensity, and the filter film layer
  • the magnetic or magnetizable materials are oriented and arranged in a magnetic field, which can make the anti-counterfeiting pattern composed of magnetic pigment flakes produce obvious light and dark areas, and at the same time cooperate with the localized surface plasmon resonance effect of the metal nanoparticle layer, so that the magnetic pigment flakes of the present application are composed of
  • the color of the dark area of the anti-counterfeiting pattern is different from the color of the dark area of the anti-counterfeiting pattern composed of the magnetic pigment flakes that only include the filter film layer, so that the anti-counterfeiting pattern composed of the magnetic pigment flakes of the present application not only includes the following products based on magnetic or magnetizable materials.
  • the two color changes of front view and side view produced by the characteristics of angular heterochromia can also make the third color (hidden color) appear in the dark area of the anti-counterfeiting pattern under the illumination of light exceeding a predetermined intensity, which enriches the dynamic discoloration of the anti-counterfeiting pattern Therefore, the anti-counterfeiting property and imitation difficulty of the anti-counterfeiting pattern formed by the magnetic pigment flakes can be effectively improved.
  • FIG. 1 is a schematic structural diagram of an embodiment of a magnetic pigment flake of the present application.
  • FIG. 2 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 4 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 6 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 8 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 9 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 10 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of the magnetic pigment flake of the present application.
  • FIG. 12 is a schematic diagram of the effect of the anti-counterfeiting pattern made by the optically variable ink comprising the magnetic pigment flakes of the comparative example of the present application;
  • Example 13 is a schematic diagram of the effect of the anti-counterfeiting pattern made by the optically variable ink comprising the magnetic pigment flakes of Example 1 of the present application;
  • Example 14 is a spectral schematic diagram of the reflectance-wavelength of the anti-counterfeiting pattern made of the optically variable ink comprising the magnetic pigment flakes of Example 1 of the present application;
  • FIG. 15 is a schematic diagram of the scratch-like scattering spectrum of the magnetic pigment flakes of Example 1 of the present application.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the magnetic pigment flake 100 of the present application.
  • the magnetic pigment flake 100 includes a filter film layer 110 having a magnetic or magnetizable material and a metal nanoparticle layer 120 .
  • the metal nanoparticle layer 120 is formed on the surface of the filter film layer 110, the metal nanoparticle layer 120 is arranged to generate local surface plasmon resonance under the illumination of light exceeding a predetermined intensity, and the magnetic or magnetizable material of the filter film layer 110 is oriented in the magnetic field
  • the arrangement can make the anti-counterfeiting pattern composed of the magnetic pigment flakes 100 produce obvious bright and dark areas (ie, bright and dark areas), and at the same time cooperate with the localized surface plasmon resonance (LSPR, localized surface plasmon resonance) of the metal nanoparticle layer 120, so that
  • the color of the dark area of the anti-counterfeiting pattern composed of the magnetic pigment flakes 100 of the present application is different from the color of the dark area of the anti-counterfeiting pattern composed of the magnetic pigment flakes that only include the filter film layer 110, so the anti-counterfeiting pattern composed of the magnetic pigment flakes 100 of the present application not only Including two color changes in front view and side view based on the floppy
  • the color of the light generated by the metal nanoparticle layer 120 under the local surface plasmon resonance is different from the color of the light generated after being filtered by the filter film layer 110 .
  • the filter film layer 110 scatters, absorbs and/or diffuses the light, so that the light can be re-scattered to the metal nanoparticle layer 120
  • the resonance of the metal free electrons in the metal nanoparticle layer 120 can be caused, so that the metal free electrons absorb the SPR absorption peak of the metal nanoparticles
  • the energy of light in the wavelength range, so that the color of the light generated by the metal nanoparticle layer 120 under the local surface plasmon resonance is different from the color of the light generated after being filtered by the filter film layer 110, and re-incident to the metal
  • the light intensity of the nanoparticle layer 120 is sufficient so
  • the wavelength range of the irradiated light needs to overlap with the wavelength range of the SPR absorption peak of the metal nanoparticle, so that the metal nanoparticle layer 120 can generate localized surface plasmon resonance under the irradiated light.
  • the irradiated light can be visible light, and the visible light has a wide wavelength range, and the metal nanoparticle layer 120 can generate localized surface plasmon resonance in cooperation with the filter film layer 110 under the visible light of sufficient intensity.
  • the material of the metal nanoparticle layer 120 may be selected from at least one of aluminum, silver, gold, copper, platinum, ruthenium, palladium, rhodium, cobalt, iron, nickel, lead, osmium, iridium and alloys thereof.
  • the anti-counterfeiting pattern can be based on localized surface plasmon resonance by changing the shape and/or size of the metal nanoparticles.
  • the resulting color changes are changed, thereby further improving the anti-counterfeiting performance and the difficulty of counterfeiting of the anti-counterfeiting pattern.
  • the shape of the metal nanoparticles can be sphere, hemisphere, ellipsoid, cube, cuboid, octahedron, dodecahedron, hexahedron, rod, star, cone, triangle, and cylinder.
  • the particle size of the metal nanoparticles may be 2 nm-1 ⁇ m.
  • the metal nanoparticles in the metal nanoparticle layer 120 are spaced apart from each other, and the gap between two adjacent metal nanoparticles is 2 nm-1 mm, so that the metal nanoparticles have a certain free movement space, which is convenient for the metal nanoparticles.
  • the particle layer 120 generates a localized surface plasmon resonance effect under certain conditions.
  • the filter film layer may have a Fabry-Perot interference cavity.
  • metal nanoparticle layers 120 can be provided on the main surfaces of the front and back sides of the filter film layer 110 in this embodiment, so that the magnetic pigment flake 100 has a symmetrical structure with the filter film layer 110 as the center.
  • FIG. 2 is a schematic structural diagram of the second embodiment of the magnetic pigment flake 200 of the present application.
  • the magnetic pigment flake 200 includes a filter film layer 210 having a magnetic or magnetizable material and a metal nanoparticle layer 220 .
  • the metal nanoparticle layer 220 is formed on the surface of the filter film layer 210, and the metal nanoparticle layer 220 is arranged to generate localized surface plasmon resonance (equivalent to localized surface plasmon resonance) under the irradiation of light exceeding a predetermined intensity.
  • the filter film layer 210 includes a magnetic core layer 211 and a first dielectric layer 212 stacked on at least one main surface of the magnetic core layer 211 , wherein the metal nanoparticle layer 220 is disposed on the first dielectric layer 212 away from the magnetic One side of the core layer 211 .
  • the magnetic core layer 211 and the first dielectric layer 212 form an interference cavity to scatter, absorb and/or diffuse light, so that the light can be re-emitted to the metal nanoparticle layer 220, so that the metal nanoparticle layer 220 can be under certain conditions Produces a localized surface plasmon resonance effect.
  • the magnetic core layer 211 has magnetic or magnetizable materials, so that the magnetic pigment flakes 200 can be magnetically oriented under the action of a magnetic field.
  • the physical thickness of the magnetic core layer 211 may range from 2 nm to 10000 nm.
  • the physical thickness range of the magnetic core layer 211 may be greater than 30 nm, for example, may be 38 nm, 53 nm, 80 nm, or the like.
  • the magnetic or magnetizable materials in the magnetic core layer 211 can be selected from iron, cobalt, nickel, gadolinium, terbium, dysprosium, erbium and their alloys or their oxides; Iron/silicon/aluminum alloy, iron/silicon/chromium alloy, iron/nickel/molybdenum alloy.
  • the magnetic core layer 211 may have a single-layer structure.
  • the magnetic core layer 211 may be a multi-layer composite structure, such as M1M0M2 structure, M0M1M0 structure, M0M1 structure, M1D1M0D2M2 structure, M0D1M1D2M0 structure, M1D1M0 structure, and the like.
  • M0 is a magnetic film layer
  • the material is selected from iron, cobalt, nickel, gadolinium, terbium, dysprosium, erbium and their alloys or their oxides, or selected from iron-silicon alloys, iron-aluminum alloys, iron/silicon/aluminum alloys, Iron/silicon/chromium alloys, iron/nickel/molybdenum alloys.
  • M1 or M2 is a metal film layer, and the material of the metal film layer is selected from aluminum, silver, gold, copper, platinum, tin, titanium, palladium, rhodium, niobium, chromium and alloys thereof.
  • D1 or D2 is a dielectric film layer, and its material is selected from silicon dioxide, aluminum oxide, magnesium fluoride, aluminum fluoride, cerium fluoride, lanthanum fluoride, neodymium fluoride, samarium fluoride, barium fluoride, calcium fluoride .
  • variable structure of the magnetic core layer 211 can make the interference effect of the interference cavity on light more variable, thereby making the anti-counterfeiting pattern made by the magnetic pigment flakes 200 more variable, so as to improve the anti-counterfeiting performance and imitation difficulty of the anti-counterfeiting pattern.
  • the refractive index of the first dielectric layer 212 may be higher than the threshold value to increase the intensity of the light re-injected into the metal nanoparticle layer 220 by the filter film layer 210 , so that the localized surface plasmon resonance generated by the metal nanoparticle layer 220
  • the color change caused by the effect can be detected by the human eye, so as to improve the anti-counterfeiting property of the anti-counterfeiting pattern.
  • the threshold can be set according to the actual situation, for example, it can be 1.65 or 1.80.
  • the first dielectric layer 212 can be made of lanthanum titanate, titanium pentoxide, niobium pentoxide, zinc sulfide, zinc oxide, zirconium oxide, titanium dioxide, carbon, indium oxide, indium tin oxide, tantalum pentoxide, cerium oxide , yttrium oxide, europium oxide, iron oxide, ferric oxide, hafnium nitride, hafnium carbide, hafnium oxide, lanthanum oxide, magnesium oxide, neodymium oxide, praseodymium oxide, samarium oxide, antimony trioxide, silicon carbide, silicon nitride , silicon monoxide, selenium trioxide, tin oxide and at least one of tungsten trioxide.
  • the physical thickness of the first dielectric layer 212 is 30 nm-80 nm, and the physical thickness may be 20 nm, 25 nm, 50.5 nm, 70 nm, 85 nm, 99 nm, or 100 nm, or the like.
  • the film thickness coefficient of the first dielectric layer 212 may be less than or equal to 6, for example, may be 0, 2, 4, or the like.
  • first dielectric layers 212 may be provided on the main surfaces of the front and back sides of the magnetic core layer 211 of the magnetic pigment flake 200 of the present embodiment, and each first dielectric layer 212 faces away from the magnetic core layer 211 .
  • a metal nanoparticle layer 220 is provided on one surface, so that the magnetic pigment flake 200 has a 5-layer symmetrical structure with the magnetic core layer 211 as the center.
  • the materials of the two first dielectric layers 312 in the magnetic pigment flake 200 of FIG. 3 may be the same or different.
  • FIG. 4 is a schematic structural diagram of the third embodiment of the magnetic pigment flake 300 of the present application.
  • the magnetic pigment flake 300 includes a filter film layer 310 having a magnetic or magnetizable material and a metal nanoparticle layer 320 .
  • the metal nanoparticle layer 320 is formed on the surface of the filter film layer 310, and the metal nanoparticle layer 320 is arranged to generate local surface plasmon resonance under the irradiation of light exceeding a predetermined intensity.
  • the filter film layer 310 includes a magnetic core layer 311 and a first dielectric layer 312 stacked on at least one main surface of the magnetic core layer 311 , wherein the metal nanoparticle layer 320 is disposed on the first dielectric layer 312 away from the magnetic One side of the core layer 311 .
  • the properties and structures of the magnetic core layer 311 and the first dielectric layer 312 reference can be made to the description in the second embodiment, which is not repeated here.
  • the filter film layer 310 further includes a second dielectric layer 313 .
  • the second dielectric layer 313 is disposed between the first dielectric layer 312 and the magnetic core layer 311 .
  • the refractive index of the second dielectric layer 313 is lower than that of the first dielectric layer 312 .
  • the magnetic pigment flake 300 can have a higher reflectivity and a lower valley value. It can reduce the influence of the ink on the color development and the influence of the interface reverse, so that the color rendering effect of the magnetic pigment flakes 300 in the ink can be further improved;
  • the light is ultraviolet light, the color change caused by localized surface plasmon resonance can be made more obvious, so the anti-aging performance of the magnetic pigment flake 300 can also be improved, and the cost can be reduced.
  • the refractive index of the second dielectric layer 313 may be lower than the threshold.
  • the threshold can be set according to the actual situation, for example, it can be 1.65 or 1.80.
  • the material of the second dielectric layer 313 includes silicon dioxide, aluminum oxide, magnesium fluoride, aluminum fluoride, cerium fluoride, lanthanum fluoride, neodymium fluoride, samarium fluoride, barium fluoride, calcium fluoride , lithium fluoride, polystyrene, polyethylene, PMMA, polyamideimide, polyperfluoroethylene propylene, tetrafluoroethylene, chlorotrifluoroethylene, cellulose propionate, cellulose acetate, cellulose acetate butyrate, Methylpentene polymer, homopolyoxymethylene, acrylic resin, nitrocellulose, ethylcellulose, polypropylene, polysulfone, polyethersulfone, mica, heteromorphic polymer, polybutene, ionomer At least one of polymer, acrylic copolymer, thermoplastic, styrene butadiene, PVC, urea formaldehyde, st
  • the physical thickness of the second dielectric layer 313 may be greater than 30 nm, specifically 80 nm-180 nm, such as 80 nm, 100 nm, 105 nm, 150.5 nm, 160 nm, or 180 nm.
  • the film thickness coefficient of the second dielectric layer 313 may be less than or equal to 6, for example, may be 0, 2, 4, or the like.
  • first dielectric layers composed of the first dielectric layer 312 and the second dielectric layer 313 can be disposed on at least one main surface of the magnetic core layer 311, and multi-color stacking is realized by stacking multiple layers. Composite color rendering effect and translucent color rendering effect at the same time.
  • the first dielectric layers 312 and the second dielectric layers 313 on the main surface of the magnetic core layer 311 are alternately arranged; in each first dielectric stack, the second dielectric layer 313 is closer to the magnetic core layer than the first dielectric layer 312 311, which can meet the design requirements of the membrane system.
  • the first dielectric stack in this embodiment may include at least three dielectric layers with different refractive indices, which can improve the uniformity of refractive index changes in the first dielectric stack.
  • the first dielectric stack may further include a third dielectric layer disposed between the first dielectric layer 312 and the second dielectric layer 313 , and the refractive index of the third dielectric layer is smaller than that of the first dielectric layer 312 and greater than that of the first dielectric layer 312 .
  • the refractive index of the second dielectric layer 313 may be any suitable for the first dielectric stack.
  • the main surfaces of the front and back sides of the magnetic core layer 311 in this embodiment can be provided with first dielectric layers 312 , and each first dielectric layer 312 is on the surface of one side away from the magnetic core layer 311 .
  • Metal nanoparticle layers 320 are provided, and a second dielectric layer 313 is provided between each first dielectric layer 312 and the magnetic core layer 311 , so that the magnetic pigment flake 300 has 7 layers centered on the magnetic core layer 311 Symmetrical structure.
  • the plurality of second dielectric layers 313 in the magnetic pigment flake 300 of this embodiment may be made of the same material, or may be made of different materials.
  • FIG. 6 is a schematic structural diagram of the fourth embodiment of the magnetic pigment flake 400 of the present application.
  • the magnetic pigment flake 400 includes a filter film layer 410 having a magnetic or magnetizable material and a metal nanoparticle layer 420 .
  • the metal nanoparticle layer 420 is formed on the surface of the filter film layer 410, and the metal nanoparticle layer 420 is arranged to generate local surface plasmon resonance under the irradiation of light exceeding a predetermined intensity.
  • the filter film layer 410 includes a magnetic core layer 411 and a first dielectric layer 412 stacked on at least one main surface of the magnetic core layer 411 , wherein the metal nanoparticle layer 420 is disposed on the first dielectric layer 412 away from the magnetic One side of the core layer 411 .
  • the properties and structures of the magnetic core layer 411 and the first dielectric layer 412 reference can be made to the description in the second embodiment, which is not repeated here.
  • the filter film layer 410 may further include an absorption layer 414 and a second dielectric layer 413, wherein the absorption layer 414 and the second dielectric layer 413 are disposed between the magnetic core layer 411 and the first dielectric layer 412, and the absorption layer 414 is compared with the first dielectric layer 412.
  • the second dielectric layer 413 is closer to the first dielectric layer 412 .
  • the magnetic core layer 411, the second dielectric layer 413, the absorption layer 414 and the first dielectric layer 412 may constitute an interference cavity to scatter, absorb and/or diffuse light, so that the light can be re-emitted to the metal nanoparticle layer 420, In order to make the metal nanoparticle layer 420 generate a localized surface plasmon resonance effect under certain conditions.
  • the light of a specific wavelength band is absorbed by the absorption layer 414 to narrow the spectrum, so as to improve the color saturation, chromaticity, etc. of the magnetic pigment flake 400 .
  • the second dielectric layer 413 can protect the magnetic reflection layer, which improves the overall resistance performance of the magnetic pigment flake 400 .
  • the absorption layer 414 may have a translucent property so that part of the light can pass through the absorption layer 414 , and the absorption layer 414 may satisfy the translucency by defining the thickness of the absorption layer 414 .
  • the physical thickness range of the absorption layer 414 may be less than 30 nm, for example, may be 3 nm, 5 nm, 8 nm, 10 nm, 12 nm, 15 nm, 18 nm or 20 nm.
  • the material of the absorption layer 414 may be selected from at least one of titanium, aluminum, chromium, nickel, palladium, titanium, vanadium, cobalt, iron, carbon, tin, tungsten, molybdenum, rhodium, niobium, and silicon carbide. That is to say, the absorption layer 414 may be made of the above-mentioned single-substance material, or an alloy material composed of the above-mentioned single-substance material.
  • the refractive index of the second dielectric layer 413 is not limited, and it may be greater than or equal to the threshold value, and may also be smaller than the threshold value.
  • the threshold can be set according to the actual situation, which is not limited here, for example, it can be 1.65 or 1.80.
  • the material of the second dielectric layer 413 may be at least one of silicon dioxide, magnesium fluoride, titanium dioxide, aluminum oxide, silicon monoxide, and cryolite.
  • the second dielectric layer 413 may be a dielectric film layer, or may be a dielectric stack with alternating high and low refractive index film layers.
  • the film thickness coefficient of the second dielectric layer 413 may be less than or equal to 6, for example, may be 0, 2, 4, or the like.
  • a plurality of second dielectric layers composed of the second dielectric layer 413 and the absorption layer 414 can be disposed between the first dielectric layer 412 and the magnetic core layer 411, and multi-color composite is realized through the stacking of multiple film layers.
  • color rendering effect and at the same time has a translucent color rendering effect.
  • the magnetic core layer 411 and a second dielectric stack disposed on at least one main surface thereof, the first dielectric layer 412 and the metal nanoparticles basically determine the main color of the magnetic pigment flake 400 (that is, the color when viewed from the front) and The final discoloration (ie, the color at which the viewing angle deviates from the normal direction of the main surface of the magnetic core layer 411 equal to or near 90 degrees).
  • another second dielectric stack can form an additional interference cavity, which can selectively absorb and filter the reflection peaks of a specific wavelength band, so that when the observation angle changes, the half-peak width of the reflection peaks of a specific wavelength is changed. Narrowing, so that when the observation angle changes, there is a clear color boundary between the different colors that can be observed, which is reflected in discrete changes in color.
  • the color of the magnetic pigment flakes 400 exhibits discrete changes.
  • the reason is that: due to the selective absorption of the absorption layer 414 and the second medium layer 413 multiple times back and forth, they play a filtering role and filter out the impurities near the highest reflected wavelength light. light, so that when interference occurs, the light waves of a specific wavelength get constructive interference, and the light of wavelengths near this specific wavelength band and other wavelength bands are largely suppressed due to filtering, so that when the observation angle changes, The half-width of the reflection spectrum of a specific wavelength is narrowed, and it is manifested as a discrete change in color.
  • the magnetic pigment flakes 400 of the present application have at least four colors. For example, it can be: when the viewing angle deviates from 0 degrees relative to the normal direction of the main surface of the magnetic core layer 411 or is in the vicinity of 0 degrees (eg, 0 degrees to 5 degrees) , the magnetic pigment flakes 400 have the first color; when the observation angle deviates from the normal direction of the main surface of the magnetic core layer 411 by more than 0 degrees (or more than 5 degrees) and less than or equal to 45 degrees, the magnetic pigment flakes 400 have The second color; when the viewing angle deviates more than 45 degrees and less than or equal to 90 degrees with respect to the normal direction of the main surface of the magnetic core layer 411, the magnetic pigment flakes 400 have a third color, and there is a clear color between the three colors Limit; when the observation angle is at any angle, the dark area of the anti-counterfeiting pattern formed by the magnetic pigment flakes 400 will show a fourth color (hidden color) due to the localized surface plasmon resonance effect of the
  • the magnetic pigment flakes 400 can exhibit richer color changes, so as to improve the anti-counterfeiting performance and imitation difficulty of the anti-counterfeiting patterns made of the magnetic pigment flakes 400 .
  • the second dielectric layer 413 may be closer to the magnetic core layer 411 than the absorption layer 414 .
  • the main surfaces of the front and back sides of the magnetic core layer 411 in this embodiment can be provided with a first dielectric layer 412 , and each first dielectric layer 412 is on the side of the surface away from the magnetic core layer 411 .
  • Metal nanoparticle layers 420 are provided, and an absorption layer 414 and a second dielectric layer 413 are provided between each of the first dielectric layer 412 and the magnetic core layer 411, so that the magnetic pigment flake 400 has the magnetic core layer 411 as the 9-layer symmetrical structure in the center.
  • FIG. 8 is a schematic structural diagram of the fifth embodiment of the magnetic pigment flake 500 of the present application.
  • the magnetic pigment flake 500 includes a filter film layer 510 having a magnetic or magnetizable material and a metal nanoparticle layer 520 .
  • the metal nanoparticle layer 520 is formed on the surface of the filter film layer 510, and the metal nanoparticle layer 520 is arranged to generate local surface plasmon resonance under the irradiation of light exceeding a predetermined intensity.
  • the filter film layer 510 may include a first dielectric layer 512 , a magnetic core layer 511 and a second dielectric layer 513 that are stacked in sequence, and the metal nanoparticle layer 520 is disposed on the side of the first dielectric layer 512 away from the magnetic core layer 511 .
  • the second dielectric layer 513, the magnetic core layer 511 and the first dielectric layer 512 form an interference cavity to scatter, absorb and/or diffuse light so that the light can be re-incident to the metal nanoparticle layer 520, so that the metal nanoparticles
  • the layer 520 produces a localized surface plasmon resonance effect under certain conditions, and the filter layer 510 in this embodiment is reflective by the second dielectric layer 513, so there is no need to increase the magnetic field in order to improve the reflectivity of the filter layer 510.
  • the thickness of the core layer 511, the magnetic core layer 511 is relatively thin, and it is not easy to form a demagnetizing field inside, so that there are fewer magnetic domains, the magnetic domain wall energy is higher, and the magnetic permeability is increased, making the magnetic pigment flake 500 easier to magnetize, with Better color rendering.
  • the properties and structures of the first dielectric layer 512 can be referred to the description in the second embodiment, and are not repeated here.
  • the magnetic core layer 511 has magnetic or magnetizable materials, so that the magnetic pigment flakes 500 can be magnetically oriented under the action of a magnetic field.
  • the physical thickness of the magnetic core layer 511 may range from 2 nm to 10000 nm.
  • the physical thickness range of the magnetic core layer 511 may be less than 30 nm, such as 2 nm, 10 nm, 15 nm or 20 nm, so that at least part of the light can pass through the magnetic core layer 511 , and the thickness of the magnetic core layer 511 is thin, and it is not easy to be inside
  • a demagnetizing field is formed, so that there are fewer magnetic domains, the energy of the magnetic domain wall is higher, and the magnetic permeability is increased, so that the magnetic pigment flake 500 is easier to be magnetized and has better color rendering effect.
  • the magnetic core layer 511 may have a single-layer structure.
  • the magnetic core layer 511 may be a multi-layer composite structure.
  • the refractive index of the second dielectric layer 513 is not limited, and it may be greater than or equal to the threshold value, and may also be less than the threshold value.
  • the threshold can be set according to the actual situation, which is not limited here, for example, it can be 1.65 or 1.80.
  • the material of the second dielectric layer 513 may be at least one of silicon dioxide, magnesium fluoride, titanium dioxide, aluminum oxide, silicon monoxide, and cryolite.
  • the second dielectric layer 513 may be a dielectric film layer, or may be a dielectric stack with alternating high and low refractive index film layers.
  • the number of magnetic core layers 511 in this embodiment is at least two
  • the second dielectric layer 513 is disposed between two adjacent magnetic core layers 511
  • the first dielectric layer 512 is disposed on the most
  • the metal nanoparticle layer 520 is disposed on the main surface of the first dielectric layer 512 facing away from the second dielectric layer 513, so that the magnetic pigment flake 500 has a second
  • the dielectric layer 513 is a symmetrical structure with at least seven layers in the center, and the magnetic moments between at least two magnetic core layers 511 influence each other, so that when the magnetic pigment flake 500 is magnetized, it has a better color rendering effect.
  • FIG. 10 is a schematic structural diagram of the sixth embodiment of the magnetic pigment flake 600 of the present application.
  • the magnetic pigment flake 600 includes a filter film layer 610 having a magnetic or magnetizable material and a metal nanoparticle layer 620 .
  • the metal nanoparticle layer 620 is formed on the surface of the filter film layer 610, and the metal nanoparticle layer 620 is arranged to generate local surface plasmon resonance under the irradiation of light exceeding a predetermined intensity.
  • the filter film layer 610 may include a first dielectric layer 612, a magnetic core layer 611, a second dielectric layer 613 and a reflection layer 614 that are stacked in sequence, and the metal nanoparticle layer 620 is disposed on the first dielectric layer 612 away from the magnetic core layer. side of 611.
  • the second dielectric layer 613, the magnetic core layer 611, the first dielectric layer 612 and the reflective layer 614 constitute an interference cavity to scatter, absorb and/or diffuse the light, so that the light can be re-incident to the metal nanoparticle layer 620 to
  • the metal nanoparticle layer 620 produces a localized surface plasmon resonance effect under certain conditions, and the filter film layer 610 in this embodiment is reflective by the reflective layer 614, so there is no need to improve the reflectivity of the filter film layer 610.
  • the magnetic core layer 611 is relatively thin, and it is not easy to form a demagnetizing field inside, so that there are fewer magnetic domains, the magnetic domain wall energy is higher, and the magnetic permeability increases, making the magnetic pigment flakes 600 easier to magnetize , with better color rendering effect.
  • the properties and structures of the first dielectric layer 612 can be referred to the description in the second embodiment, and are not repeated here.
  • the properties and structures of the second dielectric layer 613 can be referred to the descriptions in the fifth embodiment, which are not repeated here.
  • the magnetic core layer 611 has magnetic or magnetizable materials, so that the magnetic pigment flakes 600 can be magnetically oriented under the action of a magnetic field.
  • the physical thickness of the magnetic core layer 611 may range from 2 nm to 10000 nm.
  • the physical thickness range of the magnetic core layer 611 may be less than 30 nm, such as 2 nm, 10 nm, 15 nm or 20 nm, so that at least part of the light can pass through the magnetic core layer 611, and the thickness of the magnetic core layer 611 is thin, and the interior is not easy to A demagnetizing field is formed, so that there are fewer magnetic domains, higher energy of the magnetic domain wall, and increased magnetic permeability, so that the magnetic pigment flakes 600 are easier to be magnetized and have better color rendering effect.
  • the magnetic core layer 611 may be a single-layer structure, or may be a multi-layer composite structure.
  • the reflective layer 614 can be made of metal, and its material can be selected from aluminum, silver, gold, copper, platinum, tin, titanium, palladium, rhodium, niobium, chromium and alloys thereof.
  • the physical thickness of the reflective layer 614 may range from 2 nm to 500 nm, for example, may be 30 nm, 50 nm or 80 nm.
  • the number of magnetic core layers 611 in this embodiment is at least two, the second dielectric layer 613 and the reflection layer 614 are disposed between two adjacent magnetic core layers 611 , and the reflection layer 614
  • the magnetic core layers 611 adjacent to both sides are separated by a second dielectric layer 613, the first dielectric layer 612 is disposed on the main surface of the outermost magnetic core layer 611 away from the second dielectric layer 613, and the metal nanoparticle layer 620 is disposed on the main surface of the first dielectric layer 612 away from the second dielectric layer 613, so that the magnetic pigment flake 600 has at least 9-layer symmetric structure with the reflective layer 614 as the center, so that at least two magnetic cores in the magnetic pigment flake 600
  • the magnetic moments between the layers 611 influence each other, so that when the magnetic pigment flakes 600 are magnetized, a better color rendering effect is achieved.
  • the magnetic pigment flakes of the above-mentioned various embodiments can be prepared by methods such as physical vapor deposition, chemical vapor deposition, sol-gel, and dipping.
  • the magnetic pigment flakes of the above embodiments can be mixed with the ink body to make the optically variable ink.
  • the optically variable ink with the magnetic pigment flakes of the present application can be coated on the product body to make an anti-counterfeiting product, wherein the magnetic pigment flakes of the optically variable ink are magnetically oriented to produce a change with the viewing angle when the light irradiation intensity is lower than a predetermined intensity. and under the illumination of visible light exceeding a predetermined intensity, the corresponding position of the dark area produces light with a color different from that of the bright area.
  • the present application provides the following comparative examples and multiple embodiments.
  • a base layer is provided.
  • the base layer can be a rigid base or a flexible base.
  • the material of the base layer can be quartz glass or PET.
  • An isolation layer is formed on the base layer, and a first dielectric layer, a second dielectric layer, a metal film layer, a magnetic film layer, a metal film layer, a second dielectric layer, and a first dielectric layer are sequentially deposited on the isolation layer; wherein, specifically , on the rigid substrate, with the isolation layer, the first dielectric layer, the second dielectric layer, the metal film layer, the magnetic film layer, the metal film layer, the second dielectric layer, and the first dielectric layer as the cycle; repeat the evaporation for 20 to 30 or more times, the magnetic pigment flakes on the base layer are peeled off by dry or wet methods, and the magnetic pigment flakes are pulverized and mixed with ink to make optical variable ink, and the optical variable ink is printed on the substrate, The optically variable ink pattern on the substrate is magnetized, and then the effect
  • a base layer is provided.
  • the base layer can be a rigid base or a flexible base.
  • the material of the base layer can be quartz glass or PET.
  • An isolation layer is formed on the base layer, and a metal nanoparticle layer, a first dielectric layer, a second dielectric layer, a metal film layer, a magnetic film layer, a metal film layer, a second dielectric layer, and a first dielectric layer are sequentially deposited on the isolation layer.
  • a metal nanoparticle layer wherein, specifically, on the rigid substrate, an isolation layer, a metal nanoparticle layer, a first dielectric layer, a second dielectric layer, a metal film layer, a magnetic film layer, a metal film layer, a second medium layer, the first dielectric layer, and the metal nanoparticle layer are cycles; repeat the evaporation 20 to 30 times, or more, use dry or wet methods to peel off the magnetic pigment flakes on the base layer, and pulverize the magnetic pigment flakes.
  • ink to make optically variable ink and printed the optically variable ink on the substrate, and fixed the magnetization of the optically variable ink pattern on the substrate, and then observed the effect of the optically variable ink pattern as shown in Figure 13.
  • the ordinate is the reflectance
  • the abscissa is the wavelength
  • the thin line represents the frontal direction of the optically variable ink pattern (for example, relative to The spectral curve of the normal direction of the main surface of the magnetic core layer deviated by 5°)
  • the thick line represents the spectral curve of the side view direction of the optically variable ink pattern (for example, relative to the normal direction of the main surface of the magnetic core layer is deviated by 60°) spectral curve
  • the color of the pattern gradually changes from blue to purple.
  • the dark area of the pattern is under strong visible light due to the localized surface plasmon of metal nanoparticles.
  • Body resonance causes enhanced scattered light, which causes the color of the dark area of the pattern to change to yellow, while the color of the bright area remains unchanged; when the pattern is rotated, the blue (color in the bright area) and yellow (the color in the dark area) gradually shift, resulting in a rolling effect. and can be changed alternately. Therefore, under strong light irradiation, the pattern has no obvious dark area, and the pattern color is composed of bright area color and hidden color.
  • a base layer is provided.
  • the base layer can be a rigid base or a flexible base.
  • the material of the base layer can be quartz glass or PET.
  • An isolation layer is formed on the base layer, and a metal nanoparticle layer, a first dielectric layer, an absorption layer, a second dielectric layer, a metal film layer, a magnetic film layer, a metal film layer, a second dielectric layer, and an absorption layer are sequentially deposited on the isolation layer.
  • a layer a first dielectric layer, a metal nanoparticle layer; wherein, specifically, on a rigid substrate, an isolation layer, a metal nanoparticle layer, a first dielectric layer, an absorption layer, a second dielectric layer, a metal film layer, a magnetic film layer, metal film layer, second dielectric layer, absorption layer, first dielectric layer, and metal nanoparticle layer are cycles; repeat the evaporation 20 to 30 times, or more, and dry or wet the substrate layer.
  • the magnetic pigment flakes are peeled off to obtain magnetic pigment flakes.
  • a base layer is provided.
  • the base layer can be a flexible substrate.
  • the material of the base layer can be PET.
  • An isolation layer is formed on the base layer, and a metal nanoparticle layer, a first dielectric layer, a second dielectric layer, a metal film layer, a magnetic film layer, a second dielectric layer, a first dielectric layer, and a metal nanoparticle are sequentially deposited on the isolation layer.
  • the specific peeling method can be dry or wet, transfer printing, or use an adhesive substrate to stick and peel.
  • a base layer is provided.
  • the base layer can be a flexible substrate.
  • the material of the base layer can be PET.
  • An isolation layer is formed on the base layer, and a first dielectric layer, an absorption layer, a second dielectric layer, a magnetic film layer, a second dielectric layer, an absorption layer, and a first absorption layer are sequentially deposited on the isolation layer; the specific peeling method can be adopted Dry or wet, transfer printing, or stick-and-peel using a sticky substrate, followed by chemical growth of metal nanoparticles on the pigment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本申请公开磁性颜料片、光变油墨和防伪制品。该磁性颜料片包括具有磁性或可磁化材料的滤光膜层以及形成于滤光膜层表面的金属纳米颗粒层,金属纳米颗粒层设置成在超过预定强度的可见光照射下生成局部表面等离子共振。本申请可以提高通过磁性颜料片制成的防伪图案的防伪性和仿制难度。

Description

磁性颜料片、光变油墨和防伪制品 【技术领域】
本申请涉及磁定向技术领域,特别是涉及磁性颜料片、光变油墨和防伪制品。
【背景技术】
基于光学薄膜干涉原理的光学变色薄膜,其颜色在不同角度观察下发生变化,因其独特的随角异色特性,且颜色鲜艳变化明显,不能被扫描、复印,易被大众识别,已经广泛应用于钞票,证券和烟包防伪领域。光学变色防伪技术的出现,有效减少造假产品在市面上的流通,遏制造假技术的发展,为维护市场经济的稳定和信息安全起到了重大的作用。但是,磁性光变颜料的结构、作用机理和工艺过程已有大量专利和学术论文报道。同时,磁性光变颜料也开始走进装饰市场,其作为高安全文件保护的公信力和防伪性能正逐渐下降。
【发明内容】
本申请主要的目的是提供磁性颜料片、光变油墨和防伪制品磁性颜料片、光变油墨和防伪制品,以提高通过磁性颜料片制成的防伪图案的防伪性和仿制难度。
为达到上述目的,本申请采用的一个技术方案是:提供一种磁性颜料片,该磁性颜料片包括具有磁性或可磁化材料的滤光膜层以及形成于滤光膜层表面的金属纳米颗粒层,金属纳米颗粒层设置成在超过预定强度的可见光照射下生成局部表面等离子共振。
其中,金属纳米颗粒层在局部表面等离子共振下所产生的光线的颜色不同于经滤光膜层滤光后所产生的光线的颜色。
其中,滤光膜层包括磁核层以及层叠设置于磁核层的至少一侧主表面上的第一介质层,金属纳米颗粒层设置于第一介质层背离磁核层的第一侧。
其中,滤光膜层进一步包括第二介质层,第二介质层设置于第一介质层和磁核层之间,且第二介质层的折射率低于第一介质层。
其中,滤光膜层进一步包括吸收层和第二介质层,其中吸收层和第二介质 层设置于磁核层与第一介质层之间,吸收层相较于第二介质层更加靠近第一介质层。
其中,吸收层的物理厚度小于30nm;
吸收层的材料选自钛、铝、铬、镍、钯、钛、钒、钴、铁、碳、锡、钨、钼、铑和铌中的至少一者或者至少一者的合金、或者碳化硅。
其中,滤光膜层还包括第二介质层,其中磁核层的数量为至少两层,第二介质层设置于相邻的两层磁核层之间,第一介质层设置于最外侧的磁核层背离第二介质层的主表面上。
其中,滤光膜层还包括第二介质层和反射层,其中磁核层的数量为至少两层,第二介质层和反射层设置于相邻的两层磁核层之间,且反射层与两侧相邻的磁核层之间由第二介质层进行间隔,第一介质层设置于最外侧的磁核层背离第二介质层的主表面上。
其中,金属纳米颗粒层中的金属纳米颗粒彼此间隔分布,且相邻两个金属纳米颗粒之间的间隙为2nm-1mm。
其中,金属纳米颗粒的粒径为2nm-1μm;
金属纳米颗粒的材料选自铝、银、金、铜、铂、钌、钯、铑、钴、铁、镍、铅、锇、铱及其合金中的至少一者。
为达到上述目的,本申请还提供一种光变油墨,该光变油墨包括油墨本体以及掺杂于油墨本体内的上述磁性颜料片。
为达到上述目的,本申请还提供一种防伪制品,该防伪制品包括制品本体以及涂敷于制品本体上的上述的光变油墨,其中光变油墨的磁性颜料片经磁定向,以在低于预定强度的可见光照射产生随视角变化的亮区和暗区,且在超过预定强度的可见光照射下,暗区的对应位置产生颜色不同于亮区的光线。
与现有技术相比,本申请的有益效果是:金属纳米颗粒层形成于滤光膜层表面,金属纳米颗粒层设置成在超过预定强度的光照射下生成局部表面等离子共振,滤光膜层的磁性或可磁化材料在磁场中定向排列,可以使由磁性颜料片构成的防伪图案产生明显的明暗区域,同时配合金属纳米颗粒层的局域表面等离子体共振效应,使得由本申请磁性颜料片构成的防伪图案的暗区颜色与只包括单纯滤光膜层的磁性颜料片构成的防伪图案的暗区颜色不相同,这样由本申请磁性颜料片构成的防伪图案不仅包括基于磁性或可磁化材料的随角异色的特 性产生的正视和侧视的两种颜色变化,还可在超过预定强度的光照射下使防伪图案的暗区出现第三种颜色(隐藏色),丰富了防伪图案的动态变色效果,从而可有效提高由磁性颜料片构成的防伪图案的防伪性和仿制难度。
【附图说明】
图1是本申请的磁性颜料片一实施例的结构示意图;
图2是本申请的磁性颜料片另一实施例的结构示意图;
图3是本申请的磁性颜料片又一实施例的结构示意图;
图4是本申请的磁性颜料片又一实施例的结构示意图;
图5是本申请的磁性颜料片又一实施例的结构示意图;
图6是本申请的磁性颜料片又一实施例的结构示意图;
图7是本申请的磁性颜料片又一实施例的结构示意图;
图8是本申请的磁性颜料片又一实施例的结构示意图;
图9是本申请的磁性颜料片又一实施例的结构示意图;
图10是本申请的磁性颜料片又一实施例的结构示意图;
图11是本申请的磁性颜料片又一实施例的结构示意图;
图12是本申请的包含对照例磁性颜料片的光变油墨制成的防伪图案的效果示意图;
图13是本申请的包含实施例1磁性颜料片的光变油墨制成的防伪图案的效果示意图;
图14是本申请的包含实施例1磁性颜料片的光变油墨制成的防伪图案的反射率—波长的光谱示意图;
图15是本申请的实施例1的磁性颜料片刮样散射光谱示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各 部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
请参阅图1,图1是本申请磁性颜料片100第一实施方式的结构示意图。磁性颜料片100包括具有磁性或可磁化材料的滤光膜层110和金属纳米颗粒层120。
金属纳米颗粒层120形成于滤光膜层110表面,金属纳米颗粒层120设置成在超过预定强度的光照射下生成局部表面等离子共振,滤光膜层110的磁性或可磁化材料在磁场中定向排列,可以使由磁性颜料片100构成的防伪图案产生明显的明暗区域(即亮暗区域),同时配合金属纳米颗粒层120的局域表面等离子体共振效应(LSPR,localized surface plasmon resonance),使得由本申请磁性颜料片100构成的防伪图案的暗区颜色与只包括单纯滤光膜层110的磁性颜料片构成的防伪图案的暗区颜色不相同,这样由本申请磁性颜料片100构成的防伪图案不仅包括基于磁性或可磁化材料的随角异色的特性产生的正视和侧视的两种颜色变化,还可在超过预定强度的光照射下使防伪图案的暗区出现第三种颜色(隐藏色),丰富了防伪图案的动态变色效果,从而可有效提高由磁性颜料片100构成的防伪图案的防伪性和仿制难度。
其中,金属纳米颗粒层120在局部表面等离子共振下所产生的光线的颜色不同于经滤光膜层110滤光后所产生的光线的颜色。在超过预定强度的光透过金属纳米颗粒层120进入到滤光膜层110,滤光膜层110会对光进行散射、吸收和/或漫射,使得光可以重新散射到金属纳米颗粒层120当散射光是以临界角入射到滤光膜层110和金属纳米颗粒层120的介质界面时,可引起金属纳米颗粒层120中金属自由电子的共振,致使金属自由电子吸收金属纳米颗粒SPR吸收峰波长范围内的光的能量,从而导致金属纳米颗粒层120在局部表面等离子共 振下所产生的光线的颜色不同于经滤光膜层110滤光后所产生的光线的颜色,并且重新射到金属纳米颗粒层120的光的强度足够,使得金属纳米颗粒层120的局域表面等离子体共振效应所带来的颜色变化能被人眼察觉,以提高防伪图案的防伪性和仿制难度。
其中,照射光的波长范围需要与金属纳米颗粒SPR吸收峰波长范围出现重叠,以使金属纳米颗粒层120能够在照射光下产生局域表面等离子共振。优选地,照射光可以是可见光,可见光波长范围较广,在足够强度的可见光下和滤光膜层110配合能够使金属纳米颗粒层120产生局域表面等离子共振。
其中,金属纳米颗粒层120的材料可选自铝、银、金、铜、铂、钌、钯、铑、钴、铁、镍、铅、锇、铱及其合金中的至少一者。
可选地,由于金属纳米颗粒层中金属纳米颗粒的SPR吸收峰与金属纳米颗粒的形状和大小相关;从而可通过改变金属纳米颗粒的形状和/或大小,使防伪图案基于局域表面等离子共振产生的颜色变化情况发生改变,从而更加提高防伪图案的防伪性和仿造难度。
具体地,金属纳米颗粒的形状可为球体、半球体、椭球体、正方体、长方体、八面体、十二面体、十六面体、棒形、星形、锥体、三角体、圆柱体。
金属纳米颗粒的粒径可为2nm-1μm。
可选地,金属纳米颗粒层120中的金属纳米颗粒彼此间隔分布,且相邻两个金属纳米颗粒之间的间隙为2nm-1mm,以使得金属纳米颗粒具有一定的自由活动空间,便于金属纳米颗粒层120在一定条件下产生局域表面等离子体共振效应。
其中,滤光膜层可具有法布里-珀罗干涉腔。
进一步地,本实施方式的滤光膜层110正反两侧的主表面上均可设有金属纳米颗粒层120,以使得磁性颜料片100具有以滤光膜层110为中心的对称结构。
下述内容将会对以第一实施方式为基础的多个实施方式进行详细描述,具体会对磁性颜料片100中滤光膜层110进行详细介绍。需要注意的是,下述多个实施方式可以在不违背本申请技术思路的基础上任意组合。
请参阅图2,图2是本申请磁性颜料片200第二实施方式的结构示意图。
磁性颜料片200包括具有磁性或可磁化材料的滤光膜层210和金属纳米颗粒层220。金属纳米颗粒层220形成于滤光膜层210表面,金属纳米颗粒层220 设置成在超过预定强度的光照射下生成局部表面等离子共振(等同于局域表面等离子共振)。
其中,滤光膜层210包括磁核层211以及层叠设置于磁核层211的至少一侧主表面上的第一介质层212,其中,金属纳米颗粒层220设置于第一介质层212背离磁核层211的一侧。磁核层211和第一介质层212构成干涉腔,以对光进行散射、吸收和/或漫射,使得光可以重新射到金属纳米颗粒层220,以使金属纳米颗粒层220在一定条件下产生局域表面等离子体共振效应。
其中,磁核层211中具有磁性或可磁化材料,使得磁性颜料片200可在磁场作用下进行磁定向。磁核层211的物理厚度范围可为2nm-10000nm。优选地,磁核层211的物理厚度范围可大于30nm,例如可为38nm、53nm、80nm等。
其中,磁核层211中磁性或可磁化材料可选自铁、钴、镍、钆、铽、镝、铒及其合金或其氧化物;或者,磁性材料选自铁硅合金、铁铝合金、铁/硅/铝合金、铁/硅/铬合金、铁/镍/钼合金。
可选地,磁核层211可为单层结构。
在另一实现方式中,磁核层211可为多层复合结构,例如可为M1M0M2结构、M0M1M0结构、M0M1结构、M1D1M0D2M2结构、M0D1M1D2M0结构、M1D1M0结构等。其中,M0为磁性膜层,材料选自铁、钴、镍、钆、铽、镝、铒及其合金或其氧化物,或者选自铁硅合金、铁铝合金、铁/硅/铝合金、铁/硅/铬合金、铁/镍/钼合金。M1或M2为金属膜层,金属膜层材料选自铝、银、金、铜、铂、锡、钛、钯、铑、铌、铬及其合金。D1或D2为介质膜层,其材料选自二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡、氟化钙。可通过磁核层211多变的结构,使得干涉腔对光的干涉效果更加多变,从而使得由磁性颜料片200制得的防伪图案更加多变,以提高防伪图案的防伪性和仿制难度。
另外,第一介质层212的折射率可以高于阈值,以增加滤光膜层210重新射入到金属纳米颗粒层220的光的强度,使得金属纳米颗粒层220产生的局域表面等离子体共振效应所带来的颜色变化能被人眼察觉,以提高防伪图案的防伪性。其中,阈值可根据实际情况进行设定,例如可为1.65或1.80。
进一步地,第一介质层212可由钛酸镧、五氧化三钛、五氧化二铌、硫化锌、氧化锌、氧化锆、二氧化钛、碳、氧化铟、氧化铟锡、五氧化二钽、氧化 铈、氧化钇、氧化铕、氧化铁、四氧化三铁、氮化铪、碳化铪、氧化铪、氧化镧、氧化镁、氧化钕、氧化镨、氧化钐、三氧化锑、碳化硅、氮化硅、一氧化硅、三氧化硒、氧化锡和三氧化钨中的至少一种制成。
可选地,第一介质层212的物理厚度为30nm-80nm,该物理厚度可以为20nm、25nm、50.5nm、70nm、85nm、99nm或100nm等。
可选地,第一介质层212的膜层厚度系数可以小于或等于6,例如可为0、2、4等。
如图3所示,本实施方式磁性颜料片200的磁核层211正反两侧的主表面上均可设有第一介质层212,且每个第一介质层212背离磁核层211的一侧表面上均设有金属纳米颗粒层220,以使得磁性颜料片200具有以磁核层211为中心的5层对称结构。其中,图3的磁性颜料片200中两个第一介质层312的材料可相同或不相同。
请参阅图4,图4是本申请磁性颜料片300第三实施方式的结构示意图。
磁性颜料片300包括具有磁性或可磁化材料的滤光膜层310和金属纳米颗粒层320。金属纳米颗粒层320形成于滤光膜层310表面,金属纳米颗粒层320设置成在超过预定强度的光照射下生成局部表面等离子共振。
其中,滤光膜层310包括磁核层311以及层叠设置于磁核层311的至少一侧主表面上的第一介质层312,其中,金属纳米颗粒层320设置于第一介质层312背离磁核层311的一侧。磁核层311和第一介质层312的性质和结构均可参见第二实施方式中的描述,在此不做赘述。
滤光膜层310进一步包括第二介质层313。第二介质层313设置于第一介质层312和磁核层311之间。且第二介质层313的折射率低于第一介质层312。
通过在磁核层311的至少一侧主表面上设置不同折射率介质层的堆叠结构,实现多色复合显色效果,能够使磁性颜料片300具有更高的反射率和更低的谷值,能够降低油墨对色彩显色的影响,降低界面背反的影响,从而使磁性颜料片300在油墨中的显色效果得到进一步提升;且还能够增加磁性颜料片300对紫外线的反射率,从而在照射光为紫外光时,可以使得局域表面等离子共振带来的颜色变化更加明显,因此还能够提高磁性颜料片300的抗老化性能,降低成本。
可选地,第二介质层313的折射率可以低于阈值。阈值可根据实际情况进 行设定,例如可为1.65或1.80。
可选地,第二介质层313的材料包括二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡、氟化钙、氟化锂、聚苯乙烯、聚乙烯、PMMA、聚酰胺酰亚胺、聚全氟乙丙烯、四氟乙烯、三氟氯乙烯、丙酸纤维素、醋酸纤维素、乙酸丁酸纤维素、甲基戊烯聚合物、均聚甲醛、丙烯酸树脂、硝酸纤维素、乙基纤维素、聚丙烯、聚砜、聚醚砜、云母、异质同晶聚合物、聚丁烯、离子交联聚合物、丙烯酸共聚物、热塑性、苯乙烯丁二烯、PVC、脲醛、苯乙烯丙烯晴、聚碳酸酯中的至少一种。
其中,第二介质层313的物理厚度可大于30nm,具体可为80nm-180nm,例如可为80nm、100nm、105nm、150.5nm、160nm或180nm等。
可选地,第二介质层313的膜层厚度系数可以小于或等于6,例如可为0、2、4等。
进一步地,可在磁核层311的至少一侧主表面上设置多个由第一介质层312和第二介质层313构成的第一介质叠层,通过多膜层的堆叠,实现了多色复合的显色效果,且同时具备半透明的显色效果。磁核层311的主表面上的第一介质层312与第二介质层313交替设置;在每一个第一介质叠层中,第二介质层313相对于第一介质层312更加靠近磁核层311,能够满足膜系设计要求。
另外,本实施方式的第一介质叠层可包括至少三种不同折射率的介质层,能够提高第一介质叠层中折射率变化的均匀性。例如,第一介质叠层还可包括设置于第一介质层312和第二介质层313之间的第三介质层,第三介质层的折射率小于第一介质层312的折射率且大于第二介质层313的折射率。
如图5所示,本实施方式的磁核层311正反两侧的主表面上均可设有第一介质层312,且每个第一介质层312背离磁核层311的一侧表面上均设有金属纳米颗粒层320,且每个第一介质层312和磁核层311之间均设有第二介质层313,以使得磁性颜料片300具有以磁核层311为中心的7层对称结构。
可选地,本实施方式的磁性颜料片300中多个第二介质层313可采用相同的材料制成,或者采用不同的材料制成。
请参阅图6,图6是本申请磁性颜料片400第四实施方式的结构示意图。
磁性颜料片400包括具有磁性或可磁化材料的滤光膜层410和金属纳米颗粒层420。金属纳米颗粒层420形成于滤光膜层410表面,金属纳米颗粒层420 设置成在超过预定强度的光照射下生成局部表面等离子共振。
其中,滤光膜层410包括磁核层411以及层叠设置于磁核层411的至少一侧主表面上的第一介质层412,其中,金属纳米颗粒层420设置于第一介质层412背离磁核层411的一侧。磁核层411和第一介质层412的性质和结构均可参见第二实施方式中的描述,在此不做赘述。
滤光膜层410还可进一步包括吸收层414和第二介质层413,其中吸收层414和第二介质层413设置于磁核层411与第一介质层412之间,吸收层414相较于第二介质层413更加靠近第一介质层412。
磁核层411、第二介质层413、吸收层414和第一介质层412可构成干涉腔,以对光进行散射、吸收和/或漫射,使得光可以重新射到金属纳米颗粒层420,以使金属纳米颗粒层420在一定条件下产生局域表面等离子体共振效应。通过吸收层414对特定波段的光进行吸收,使得光谱变窄,以提高磁性颜料片400的显色饱和度、色度等。并且第二介质层413对磁反射层可起到保护作用,提升了该磁性颜料片400的整体耐受性能。
吸收层414可呈半透明性质,以使部分光可穿过吸收层414,可通过限定吸收层414的厚度使吸收层414满足半透明性。具体地,吸收层414的物理厚度范围可小于30nm,例如可为3nm、5nm、8nm、10nm、12nm、15nm、18nm或20nm。
吸收层414的材料可选自钛、铝、铬、镍、钯、钛、钒、钴、铁、碳、锡、钨、钼、铑、铌、碳化硅中的至少一种。也就是说,吸收层414可以由上述单质材料制成,或者是由上述单质构成的合金材料制成。
另外,第二介质层413的折射率不受限制,其可大于或等于阈值,也可小于阈值。阈值可根据实际情况进行设定,在此不做限定,例如可为1.65或1.80。
第二介质层413的材料可为二氧化硅、氟化镁、二氧化钛、氧化铝、一氧化硅、冰晶石中的至少一种。
可选地,第二介质层413可为电介质膜层,或者可为高低折射率膜层交替的电介质叠层。
可选地,第二介质层413的膜层厚度系数可以小于或等于6,例如可为0、2、4等。
此外,可在第一介质层412和磁核层411之间设置有多个由第二介质层413 和吸收层414构成的第二介质叠层,通过多膜层的堆叠,实现了多色复合的显色效果,且同时具备半透明的显色效果。其中,磁核层411和设置在其至少一侧主表面上一个第二介质叠层、第一介质层412和金属纳米颗粒基本决定了磁性颜料片400的主色(即正视时的颜色)及最终变色(即观察角度相对于磁核层411的主表面的法线方向偏离等于90度或接近90度时的颜色)。在此基础上,另外的第二介质叠层能够形成额外的干涉腔,对特定波段的反射峰进行选择性吸收及过滤,从而使得当观察角度发生变化时,特定波长的反射峰的半峰宽变窄,从而可以在观察角度发生变化时,使所能观察到的不同的颜色之间具有明显的颜色界限,在颜色上体现为离散性变化。
磁性颜料片400的颜色呈现出离散性变化的现象,原因在于:由于吸收层414和第二介质层413来回多次的选择性吸收,起到了过滤作用,滤去了最高反射波长光附近的杂光,使得在发生干涉的时候,特定波长的光波得到相长干涉,而这个特定波段附近的波长的光及其他波段由于被过滤而得到很大程度地抑制,使得当观察角度发生变化的时候,特定波长的反射光谱的半峰宽变窄,从而在颜色上体现为离散性变化。
本申请的磁性颜料片400至少具有四种颜色,例如可以是:当观察角度在相对于磁核层411的主表面的法线方向偏离0度或在0度附近(如0度-5度)时,磁性颜料片400具有第一颜色;当观察角度在相对于磁核层411的主表面的法线方向偏离大于0度(或大于5度)且小于等于45度时,磁性颜料片400具有第二颜色;当观察角度在相对于磁核层411的主表面的法线方向偏离大于45度且小于等于90度时,磁性颜料片400具有第三颜色,三种颜色之间具有明显的颜色界限;当观察角度位于任意角度时,由磁性颜料片400构成的防伪图案的暗区由于金属纳米颗粒层的局域表面等离子共振效应会显现出第四种颜色(隐藏色)。这样与金属纳米颗粒层420配合,可使磁性颜料片400呈现更加丰富的颜色变化,以提高由磁性颜料片400制成的防伪图案的防伪性和仿造难度。
其中,在每一个第二介质叠层中,第二介质层413可相对于吸收层414更加靠近磁核层411。
如图7所示,本实施方式的磁核层411正反两侧的主表面上均可设有第一介质层412,且每个第一介质层412背离磁核层411的一侧表面上均设有金属纳米颗粒层420,且每个第一介质层412和磁核层411之间均设有吸收层414和第 二介质层413,以使得磁性颜料片400具有以磁核层411为中心的9层对称结构。
请参阅图8,图8是本申请磁性颜料片500第五实施方式的结构示意图。
磁性颜料片500包括具有磁性或可磁化材料的滤光膜层510和金属纳米颗粒层520。金属纳米颗粒层520形成于滤光膜层510表面,金属纳米颗粒层520设置成在超过预定强度的光照射下生成局部表面等离子共振。
其中,滤光膜层510可包括依次层叠设置的第一介质层512、磁核层511和第二介质层513,金属纳米颗粒层520设置于第一介质层512背离磁核层511的一侧。
第二介质层513、磁核层511和第一介质层512构成干涉腔,以对光进行散射、吸收和/或漫射,使得光可以重新射到金属纳米颗粒层520,以使金属纳米颗粒层520在一定条件下产生局域表面等离子体共振效应,而且本实施方式的滤光膜层510是由第二介质层513承担反射任务,这样无需为了提高滤光膜层510的反射率增加磁核层511的厚度,磁核层511相对较薄,内部不容易形成退磁场,从而磁畴较少,磁畴壁能量较高,磁导率增加,使该磁性颜料片500更容易磁化,具有更好的显色效果。
其中,第一介质层512的性质和结构均可参见第二实施方式中的描述,在此不做赘述。
其中,磁核层511中具有磁性或可磁化材料,使得磁性颜料片500可在磁场作用下进行磁定向。磁核层511的物理厚度范围可为2nm-10000nm。优选地,磁核层511的物理厚度范围可小于30nm,例如可为2nm、10nm、15nm或20nm,以便至少部分光可穿过磁核层511,并且磁核层511厚度较薄,内部不容易形成退磁场,从而磁畴较少,磁畴壁能量较高,磁导率增加,使该磁性颜料片500更容易磁化,具有更好的显色效果。
可选地,磁核层511可为单层结构。或者磁核层511可为多层复合结构。
另外,第二介质层513的折射率不受限制,其可大于或等于阈值,也可小于阈值。阈值可根据实际情况进行设定,在此不做限定,例如可为1.65或1.80。
第二介质层513的材料可为二氧化硅、氟化镁、二氧化钛、氧化铝、一氧化硅、冰晶石中的至少一种。
可选地,第二介质层513可为电介质膜层,或者可为高低折射率膜层交替的电介质叠层。
进一步地,如图9所示,本实施方式的磁核层511的数量至少为二,第二介质层513设置于相邻的两层磁核层511之间,第一介质层512设置于最外侧的磁核层511背离第二介质层513的主表面上,金属纳米颗粒层520设置于第一介质层512背离第二介质层513的主表面上,以使得磁性颜料片500具有以第二介质层513为中心的至少7层对称结构,至少两个磁核层511之间的磁矩互相影响,实现了当该磁性颜料片500定磁后,具有更好的显色效果。
请参阅图10,图10是本申请磁性颜料片600第六实施方式的结构示意图。
磁性颜料片600包括具有磁性或可磁化材料的滤光膜层610和金属纳米颗粒层620。金属纳米颗粒层620形成于滤光膜层610表面,金属纳米颗粒层620设置成在超过预定强度的光照射下生成局部表面等离子共振。
其中,滤光膜层610可包括依次层叠设置的第一介质层612、磁核层611、第二介质层613和反射层614,金属纳米颗粒层620设置于第一介质层612背离磁核层611的一侧。
第二介质层613、磁核层611、第一介质层612和反射层614构成干涉腔,以对光进行散射、吸收和/或漫射,使得光可以重新射到金属纳米颗粒层620,以使金属纳米颗粒层620在一定条件下产生局域表面等离子体共振效应,而且本实施方式的滤光膜层610是由反射层614承担反射任务,这样无需为了提高滤光膜层610的反射率增加磁核层611的厚度,磁核层611相对较薄,内部不容易形成退磁场,从而磁畴较少,磁畴壁能量较高,磁导率增加,使该磁性颜料片600更容易磁化,具有更好的显色效果。
其中,第一介质层612的性质和结构均可参见第二实施方式中的描述,在此不做赘述。第二介质层613的性质和结构均可参见第五实施方式中的描述,在此不做赘述。
其中,磁核层611中具有磁性或可磁化材料,使得磁性颜料片600可在磁场作用下进行磁定向。磁核层611的物理厚度范围可为2nm-10000nm。优选地,磁核层611的物理厚度范围可小于30nm,例如可为2nm、10nm、15nm或20nm,以便至少部分光可穿过磁核层611,并且磁核层611厚度较薄,内部不容易形成退磁场,从而磁畴较少,磁畴壁能量较高,磁导率增加,使该磁性颜料片600更容易磁化,具有更好的显色效果。
可选地,磁核层611可为单层结构,或者可为多层复合结构。
另外,反射层614可由金属制成,其材料可选自铝、银、金、铜、铂、锡、钛、钯、铑、铌、铬及其合金。
反射层614的物理厚度范围可为2nm-500nm,例如可为30nm、50nm或80nm。
进一步地,如图11所示,本实施方式的磁核层611的数量至少为二,第二介质层613和反射层614设置于相邻的两层磁核层611之间,且反射层614与两侧相邻的磁核层611之间由第二介质层613进行间隔,第一介质层612设置于最外侧的磁核层611背离第二介质层613的主表面上,金属纳米颗粒层620设置于第一介质层612背离第二介质层613的主表面上,以使得磁性颜料片600具有以反射层614为中心的至少9层对称结构,这样磁性颜料片600中至少两个磁核层611之间的磁矩互相影响,实现了当该磁性颜料片600定磁后,具有更好的显色效果。
上述多个实施方式的磁性颜料片可采用物理气相沉积、化学气相沉积、溶胶凝胶、浸渍法等方法制备而成。
可选地,上述多个实施方式的磁性颜料片可和油墨本体混合,以制成光变油墨。
当然具有本申请磁性颜料片的光变油墨可涂覆与制品本体上,以制成防伪制品,其中光变油墨的磁性颜料片经磁定向,以在低于预定强度的光照射产生随视角变化的亮区和暗区,且在超过预定强度的可见光照射下,暗区的对应位置产生颜色不同于亮区的光线。
为直观说明本申请金属纳米颗粒层的效果,本申请提供下述对照例和多个实施例。
对照例
提供一基底层,具体的,基底层可为刚性基底或柔性基底,例如,基底层的材料可以为石英玻璃或PET。在基底层上形成隔离层,在隔离层上依次沉积第一介质层、第二介质层、金属膜层、磁性膜层、金属膜层、第二介质层、第一介质层;其中,具体地,在刚性基底上,以隔离层、第一介质层、第二介质层、金属膜层、磁性膜层、金属膜层、第二介质层、第一介质层为周期;重复蒸镀20到30次,或者更多次,采用干法或湿法将基底层上的磁性颜料片剥离,并将磁性颜料片粉碎后和油墨混合制成光变油墨,并将光变油墨印刷到承印物 上,并对承印物上的光变油墨图案进行定磁,接着观察光变油墨图案定磁后的效果,通过对照例制成的光变油墨图案定磁后的效果如图12所示,可以看出在环境光下转动光变油墨图案,图案暗区逐渐位移,图案具有滚动效果,同时图案颜色由蓝色逐渐变为紫色。
实施例1
提供一基底层,具体的,基底层可为刚性基底或柔性基底,例如,基底层的材料可以为石英玻璃或PET。在基底层上形成隔离层,在隔离层上依次沉积金属纳米颗粒层、第一介质层、第二介质层、金属膜层、磁性膜层、金属膜层、第二介质层、第一介质层、金属纳米颗粒层;其中,具体地,在刚性基底上,以隔离层、金属纳米颗粒层、第一介质层、第二介质层、金属膜层、磁性膜层、金属膜层、第二介质层、第一介质层、金属纳米颗粒层为周期;重复蒸镀20到30次,或者更多次,采用干法或湿法将基底层上的磁性颜料片剥离,并将磁性颜料片粉碎后和油墨混合制成光变油墨,并将光变油墨印刷到承印物上,并对承印物上的光变油墨图案进行定磁,接着观察图13所示的光变油墨图案定磁后的效果,以及观察图14所示的定磁后的光变油墨图案的反射率-波长的光谱示意图,其中纵坐标为反射率,横坐标为波长;细线代表光变油墨图案正视方向(例如相对于磁核层的主表面的法线方向偏离5°)的光谱曲线,粗线代表光变油墨图案侧视方向(例如相对于磁核层的主表面的法线方向偏离60°)的光谱曲线,可以看出在环境光下转动光变油墨图案,图案暗区逐渐位移,图案具有滚动效果,同时在环境光下、观察视角从5°变为60°时,图案颜色由蓝色逐渐变为紫色;并且结合图15所示的光变油墨刮样的在强光下的散射光谱图和图13观察可知,在强可见光照射下,图案暗区在强可见光下由于金属纳米颗粒的局域表面等离子体共振引起增强散射光,从而导致图案暗区颜色变为黄色,明区颜色则保持不变;转动图案时,蓝色(明区颜色)和黄色(暗区颜色)逐渐位移,产生滚动效果,且可交替变化。故在强光照射下,图案无明显暗区,图案色彩由明区颜色和隐藏色组成。
实施例2
提供一基底层,具体的,基底层可为刚性基底或柔性基底,例如,基底层的材料可以为石英玻璃或PET。在基底层上形成隔离层,在隔离层上依次沉积金属纳米颗粒层、第一介质层、吸收层、第二介质层、金属膜层、磁性膜层、 金属膜层、第二介质层、吸收层、第一介质层、金属纳米颗粒层;其中,具体地,在刚性基底上,以隔离层、金属纳米颗粒层、第一介质层、吸收层、第二介质层、金属膜层、磁性膜层、金属膜层、第二介质层、吸收层、第一介质层、金属纳米颗粒层为周期;重复蒸镀20到30次,或者更多次,采用干法或湿法将基底层上的磁性颜料片剥离,以得到磁性颜料片。
实施例3
使用卷绕镀膜机,提供一基底层,具体的,基底层可为柔性基底,例如,基底层的材料可以PET。在基底层上形成隔离层,在隔离层上依次沉积金属纳米颗粒层、第一介质层、第二介质层、金属膜层、磁性膜层、第二介质层,第一介质层、金属纳米颗粒层;具体的剥离方式可以采用干法或湿法、转印或使用粘性基底去粘贴剥离。
实施例4
使用卷绕镀膜机,提供一基底层,具体的,基底层可为柔性基底,例如,基底层的材料可以PET。在基底层上形成隔离层,在隔离层上依次沉积第一介质层、吸收层、第二介质层、磁性膜层、第二介质层,吸收层、第一吸收层;具体的剥离方式可以采用干法或湿法、转印或使用粘性基底去粘贴剥离,然后再使用化学方式在颜料上进行金属纳米颗粒的生长。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种磁性颜料片,其特征在于,所述磁性颜料片包括具有磁性或可磁化材料的滤光膜层以及形成于所述滤光膜层表面的金属纳米颗粒层,所述金属纳米颗粒层设置成在超过预定强度的可见光照射下生成局部表面等离子共振。
  2. 根据权利要求1所述的磁性颜料片,其特征在于,所述金属纳米颗粒层在局部表面等离子共振下所产生的光线的颜色不同于经所述滤光膜层滤光后所产生的光线的颜色。
  3. 根据权利要求1所述的磁性颜料片,其特征在于,所述滤光膜层包括磁核层以及层叠设置于所述磁核层的至少一侧主表面上的第一介质层,所述金属纳米颗粒层设置于所述第一介质层背离所述磁核层的第一侧。
  4. 根据权利要求3所述的磁性颜料片,其特征在于,所述滤光膜层进一步包括第二介质层,所述第二介质层设置于所述第一介质层和所述磁核层之间,且所述第二介质层的折射率低于所述第一介质层。
  5. 根据权利要求4所述的磁性颜料片,其特征在于,所述第二介质层的折射率小于或等于1.65;
    所述第二介质层选自二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡、氟化钙、氟化锂、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯、聚酰胺酰亚胺、聚全氟乙丙烯、四氟乙烯、三氟氯乙烯、丙酸纤维素、醋酸纤维素、乙酸丁酸纤维素、甲基戊烯聚合物、均聚甲醛、丙烯酸树脂、硝酸纤维素、乙基纤维素、聚丙烯、聚砜、聚醚砜、云母、异质同晶聚合物、聚丁烯、离子交联聚合物、丙烯酸共聚物、热塑性、苯乙烯丁二烯、聚氯乙烯、脲醛、苯乙烯丙烯晴和聚碳酸酯中的至少一种。
  6. 根据权利要求3所述的磁性颜料片,其特征在于,所述滤光膜层进一步包括吸收层和第二介质层,其中所述吸收层和第二介质层设置于所述磁核层与所述第一介质层之间,所述吸收层相较于所述第二介质层更加靠近所述第一介质层。
  7. 根据权利要求6所述的磁性颜料片,其特征在于,所述吸收层的物理厚度小于30nm;
    所述吸收层的材料选自钛、铝、铬、镍、钯、钛、钒、钴、铁、碳、锡、钨、钼、铑和铌中的至少一者或者至少一者的合金、或者碳化硅。
  8. 根据权利要求3所述的磁性颜料片,其特征在于,所述滤光膜层还包括第二介质层,其中所述磁核层的数量为至少两层,所述第二介质层设置于相邻的两层所述磁核层之间,所述第一介质层设置于最外侧的所述磁核层背离所述第二介质层的主表面上。
  9. 根据权利要求3所述的磁性颜料片,其特征在于,所述滤光膜层还包括第二介质层和反射层,其中所述磁核层的数量为至少两层,所述第二介质层和反射层设置于相邻的两层所述磁核层之间,且所述反射层与两侧相邻的所述磁核层之间由所述第二介质层进行间隔,所述第一介质层设置于最外侧的所述磁核层背离所述第二介质层的主表面上。
  10. 根据权利要求9所述的磁性颜料片,其特征在于,所述反射层的材料选自铝、银、金、铜、铂、锡、钛、钯、铑、铌、铬及其合金中的至少一种;
    所述反射层的物理厚度为2nm-500nm。
  11. 根据权利要求8-10中任一项所述的磁性颜料片,其特征在于,所述磁核层的物理厚度小于30nm;
    所述第二介质层为折射率高低交替层或电介质膜层;
    所述第二介质层的材料选自二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡和氟化钙中的至少一种。
  12. 根据权利要求1所述的磁性颜料片,其特征在于,所述金属纳米颗粒层中的金属纳米颗粒彼此间隔分布,且相邻两个金属纳米颗粒之间的间隙为2nm-1mm。
  13. 根据权利要求1所述的磁性颜料片,其特征在于,
    所述金属纳米颗粒的粒径为2nm-1μm;
    所述金属纳米颗粒的材料选自铝、银、金、铜、铂、钌、钯、铑、钴、铁、镍、铅、锇、铱及其合金中的至少一者;
    所述金属纳米颗粒的形状为球体、半球体、椭球体、正方体、长方体、八面体、十二面体、十六面体、棒形、星形、锥体、三角体或圆柱体。
  14. 根据权利要求3-10中任一项所述的磁性颜料片,其特征在于,
    所述第一介质层的折射率大于1.65。
  15. 根据权利要求3-10中任一项所述的磁性颜料片,其特征在于,
    所述第一介质层选自钛酸镧、五氧化三钛、五氧化二铌、硫化锌、氧化锌、 氧化锆、二氧化钛、碳、氧化铟、氧化铟锡、五氧化二钽、氧化铈、氧化钇、氧化铕、氧化铁、四氧化三铁、氮化铪、碳化铪、氧化铪、氧化镧、氧化镁、氧化钕、氧化镨、氧化钐、三氧化锑、碳化硅、氮化硅、一氧化硅、三氧化硒、氧化锡和三氧化钨中的至少一种;
    所述磁核层由铁、钴、镍、钆、铽、镝和铒中的至少一种材料或其氧化物及其合金制成。
  16. 一种光变油墨,其特征在于,所述光变油墨包括油墨本体以及掺杂于所述油墨本体内的如权利要求1-15任意一项所述的磁性颜料片。
  17. 一种防伪制品,其特征在于,所述防伪制品包括制品本体以及涂敷于所述制品本体上的如权利要求16所述的光变油墨,其中所述光变油墨的磁性颜料片经磁定向,以在低于预定强度的可见光照射产生随视角变化的亮区和暗区,且在超过预定强度的可见光照射下,所述暗区的对应位置产生颜色不同于所述亮区的光线。
  18. 一种防伪制品,其特征在于,所述防伪制品用于在光的照射下产生随视角变化的亮区和暗区;
    所述防伪制品设置成在超过预定强度的光照射下生成局部表面等离子共振,使得所述防伪制品的暗区在超过预定强度的光照射下呈现的颜色不同于在低于预定强度的光照射下呈现的颜色。
PCT/CN2021/103887 2021-02-24 2021-06-30 磁性颜料片、光变油墨和防伪制品 WO2022179030A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21918115.3A EP4079815A4 (en) 2021-02-24 2021-06-30 MAGNETIC PIGMENT FLAKE, OPTICALLY VARIABLE INK AND ANTI-COUNTERFEITING ITEM
US17/853,944 US20220334295A1 (en) 2021-02-24 2022-06-30 Magnetic pigment flake, optically variable ink, and anti-falsification article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110210021.6A CN114958077B (zh) 2021-02-24 2021-02-24 磁性颜料片、光变油墨和防伪制品
CN202110210021.6 2021-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,944 Continuation US20220334295A1 (en) 2021-02-24 2022-06-30 Magnetic pigment flake, optically variable ink, and anti-falsification article

Publications (1)

Publication Number Publication Date
WO2022179030A1 true WO2022179030A1 (zh) 2022-09-01

Family

ID=82973320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103887 WO2022179030A1 (zh) 2021-02-24 2021-06-30 磁性颜料片、光变油墨和防伪制品

Country Status (4)

Country Link
US (1) US20220334295A1 (zh)
EP (1) EP4079815A4 (zh)
CN (1) CN114958077B (zh)
WO (1) WO2022179030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200064B (zh) * 2022-12-16 2024-03-29 惠州市华阳光学技术有限公司 一种涂料组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459034A (zh) * 2001-03-09 2003-11-26 西柏控股有限公司 磁性薄膜干涉器件或颜料及其制造方法、含这种磁性薄膜干涉器件的印刷油墨或涂料组合物、秘密文件以及应用
CN1923912A (zh) * 2005-08-31 2007-03-07 Jds尤尼弗思公司 可排列衍射颜料薄片及用于排列和由其形成图像的方法和装置
CN101706595A (zh) * 2009-01-05 2010-05-12 惠州市华阳光学技术有限公司 磁性光变薄膜、薄膜碎片及其制造方法
US20100307705A1 (en) * 2007-12-21 2010-12-09 Giesecke & Devrient Gmbh Security element
CN102372944A (zh) * 2010-08-24 2012-03-14 惠州市华阳光学技术有限公司 应用于示踪防伪技术的颜料薄片及其制造方法
CN109608940A (zh) * 2018-12-17 2019-04-12 惠州市华阳光学技术有限公司 一种具有多种防伪功能的颜料片及其制备方法
US20200284947A1 (en) * 2019-03-04 2020-09-10 Viavi Solutions Inc. Thin film interference pigments with a coating of nanoparticles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160194A1 (en) * 2001-04-27 2002-10-31 Flex Products, Inc. Multi-layered magnetic pigments and foils
US6692830B2 (en) * 2001-07-31 2004-02-17 Flex Products, Inc. Diffractive pigment flakes and compositions
DE102010019766A1 (de) * 2010-05-07 2011-11-10 Giesecke & Devrient Gmbh Verfahren zur Erzeugung einer Mikrostruktur auf einem Träger
KR101922630B1 (ko) * 2011-12-20 2018-11-28 울산과학기술원 유기 광전자 소자 및 이의 제조방법
CN103804963B (zh) * 2012-11-14 2015-09-09 上海纳米技术及应用国家工程研究中心有限公司 一种具备较高饱和度的光学干涉变色颜料的制备方法
US9482800B2 (en) * 2013-06-10 2016-11-01 Viavi Solutions Inc. Durable optical interference pigment with a bimetal core
DE102015120433A1 (de) * 2014-11-28 2016-06-02 Toyota Jidosha Kabushiki Kaisha Dekorative Beschichtung
WO2017041085A1 (en) * 2015-09-04 2017-03-09 President And Fellows Of Harvard College Modifying optical properties of thin film structures using an absorbing element
CN108466504B (zh) * 2017-02-23 2021-02-02 中钞特种防伪科技有限公司 光学防伪元件和光学防伪产品
CN110193976A (zh) * 2019-05-30 2019-09-03 惠州市华阳光学技术有限公司 一种磁性颜料片
CN110667019B (zh) * 2019-09-06 2021-07-16 山东大学 等离子体共振可逆调控银纳米颗粒薄膜及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459034A (zh) * 2001-03-09 2003-11-26 西柏控股有限公司 磁性薄膜干涉器件或颜料及其制造方法、含这种磁性薄膜干涉器件的印刷油墨或涂料组合物、秘密文件以及应用
CN1923912A (zh) * 2005-08-31 2007-03-07 Jds尤尼弗思公司 可排列衍射颜料薄片及用于排列和由其形成图像的方法和装置
US20100307705A1 (en) * 2007-12-21 2010-12-09 Giesecke & Devrient Gmbh Security element
CN101706595A (zh) * 2009-01-05 2010-05-12 惠州市华阳光学技术有限公司 磁性光变薄膜、薄膜碎片及其制造方法
CN102372944A (zh) * 2010-08-24 2012-03-14 惠州市华阳光学技术有限公司 应用于示踪防伪技术的颜料薄片及其制造方法
CN109608940A (zh) * 2018-12-17 2019-04-12 惠州市华阳光学技术有限公司 一种具有多种防伪功能的颜料片及其制备方法
US20200284947A1 (en) * 2019-03-04 2020-09-10 Viavi Solutions Inc. Thin film interference pigments with a coating of nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079815A4 *

Also Published As

Publication number Publication date
CN114958077B (zh) 2023-04-25
EP4079815A4 (en) 2023-07-26
US20220334295A1 (en) 2022-10-20
EP4079815A1 (en) 2022-10-26
CN114958077A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
RU2333230C2 (ru) Прочные многослойные магнитные пигменты и фольга
JP5132540B2 (ja) 多層磁性ピグメントおよび箔
KR100739895B1 (ko) 색이 변화는 배경을 갖는 회절 표면
US20080248255A1 (en) Three-dimensional orientation of grated flakes
JP2016183416A (ja) 高反射保護膜を持つ磁性粒子及びその製造方法
CN110154462B (zh) 一种磁性颜料片
JP7183497B2 (ja) 光学的エフェクト顔料
US10031269B2 (en) Durable optical interference pigment with a bimetal core
WO2022179030A1 (zh) 磁性颜料片、光变油墨和防伪制品
CN111171600A (zh) 光变颜料片
CN112708288A (zh) 一种磁性结构色薄膜
CN114891368B (zh) 一种磁性光变颜料
CN114958032A (zh) 一种高色饱和度的光致变色颜料
JP2023523383A (ja) 光学的セキュリティ機能を備えた平坦なセキュリティ要素
CN113881272A (zh) 颜料片、涂料和防伪制品
Baloukas et al. Optical coatings for security and authentication devices
TWI284667B (en) All-dielectric optical diffractive pigments

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021918115

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE