WO2020066406A1 - 光照射装置 - Google Patents

光照射装置 Download PDF

Info

Publication number
WO2020066406A1
WO2020066406A1 PCT/JP2019/033218 JP2019033218W WO2020066406A1 WO 2020066406 A1 WO2020066406 A1 WO 2020066406A1 JP 2019033218 W JP2019033218 W JP 2019033218W WO 2020066406 A1 WO2020066406 A1 WO 2020066406A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
line
reflected
reflection
Prior art date
Application number
PCT/JP2019/033218
Other languages
English (en)
French (fr)
Inventor
達磨 北澤
健太 向島
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2020548194A priority Critical patent/JPWO2020066406A1/ja
Publication of WO2020066406A1 publication Critical patent/WO2020066406A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/331Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of complete annular areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light irradiation device.
  • an apparatus that reflects light emitted from a light source toward the front of a vehicle and scans an area in front of the vehicle with the reflected light to form a predetermined light distribution pattern.
  • a plurality of light sources composed of light emitting elements, and a blade scan (registered trademark) that forms a desired light distribution pattern by reflecting light emitted from the plurality of light sources on a reflecting surface while rotating in one direction around a rotation axis.
  • An optical unit that uses a polygon mirror instead of a rotating reflector is also known. In such an optical unit, there is room for improvement in controlling the light distribution pattern.
  • optical units using polygon mirrors are becoming smaller. Accordingly, the distance between the polygon mirror and a surface from which light is emitted from the optical unit (light emitting surface) is also becoming narrower. As a result, the diffusion width of the light distribution pattern is reduced.
  • the light irradiation device provided with such a polygon mirror has room for improvement in this respect.
  • an object of the present invention is to provide a light irradiation device that can make a part of a light distribution pattern brighter than other parts, that is, can increase the luminous intensity of at least a part of the light distribution pattern.
  • Another object of the present invention is to provide a light irradiation device that can reduce the size of an optical unit without reducing the diffusion width of a light distribution pattern.
  • a light irradiation device is: Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the mirror includes at least one reflection surface, and the curvature in the rotation direction of the mirror changes at the at least one reflection surface.
  • the scanning speed of light changes according to the change in curvature, it is possible to make a part of the light distribution pattern brighter than other parts. Further, it is not necessary to change the output of the light source in order to make a part of the light distribution pattern brighter than the other parts, so that the output control of the light source becomes easy.
  • the curvature is set such that the scanning speed of the light for forming the central region of the line in the scanning direction of the light is lower than the scanning speed of the light for forming the region other than the central region. It may be.
  • the luminous intensity of the central region of the line in the light scanning direction can be higher than the luminous intensity of the other regions.
  • the at least one reflecting surface may include a flat surface and a convex or concave curved surface in the rotation direction.
  • a part of the light distribution pattern can be made brighter than other parts with a simple configuration.
  • a light irradiation device is: Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the mirror has a plurality of reflection surfaces arranged along a rotation direction of the mirror, The plurality of reflecting surfaces are configured such that at least a part of the light overlaps on the same line that forms at least a part of the light distribution pattern.
  • the luminous intensity of at least a part of the light distribution pattern can be increased by overlapping the light on the same line.
  • the light reflected by at least two of the plurality of reflecting surfaces may form the same line that forms at least a part of the light distribution pattern.
  • the same line is formed by the plurality of reflection surfaces, the luminous intensity of at least a part of the light distribution pattern can be increased.
  • the light distribution pattern includes a plurality of first lines, and a second line disposed between the plurality of first lines,
  • the at least two reflecting surfaces may be configured such that the light reflected by the at least two reflecting surfaces forms the second line.
  • the luminous intensity at the center of the light distribution pattern can be increased.
  • a light irradiation device is: Light source, A rotatable first mirror that reflects light emitted from the light source, With A light irradiation device, wherein the light is divided into a plurality of stages and scanned in a line by the displacement of the reflection direction of the light by rotation of the first mirror, The apparatus further includes a second mirror that reflects light reflected by the first mirror.
  • the light reflected by the first mirror is further reflected by the second mirror.
  • the optical path from the reflection surface of the first mirror to the light emission surface of the light irradiation device is longer than when the light is reflected only by the first mirror.
  • the optical device may further include an optical member that transmits light reflected by the second mirror.
  • the optical member includes a phosphor and a projection lens,
  • the phosphor is disposed between the first mirror and the projection lens,
  • the light reflected by the second mirror is scanned on the phosphor,
  • Light emitted from the phosphor is transmitted through the projection lens and emitted.
  • the optical path from the reflection surface of the first mirror to the phosphor can be made longer than when the light is reflected only by the first mirror.
  • the size of the optical unit can be reduced.
  • the mirror may be configured as a polygon mirror.
  • a light irradiation device that can make a part of the light distribution pattern brighter than other parts, that is, can increase the luminous intensity of at least a part of the light distribution pattern.
  • the present invention it is possible to provide a light irradiation device that can reduce the size of the optical unit without reducing the diffusion width of the light distribution pattern.
  • FIG. 3 is a top view of the optical unit in FIG. 2.
  • FIG. 3 is a side view of the optical unit in FIG. 2.
  • FIG. 5 is a side view illustrating a state where a rotating mirror is rotated in the optical unit of FIG. 4.
  • FIG. 3 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by the optical unit in FIG. 2.
  • FIG. 3 is a top view of the optical unit according to the first embodiment.
  • FIG. 8 is an enlarged view showing one reflection surface of a rotating mirror in the optical unit of FIG. 7.
  • FIG. 8 is an enlarged view showing one reflection surface of a rotating mirror in the optical unit of FIG. 7.
  • FIG. 8 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by the optical unit in FIG. 7.
  • FIG. 10 is a diagram illustrating a rotating mirror according to a first modification. It is a figure showing one reflective surface of a rotation mirror of the first modification.
  • FIG. 14 is a diagram illustrating a rotating mirror according to a second modification. It is a figure showing one reflective surface of a rotation mirror of the second modification.
  • FIG. 13 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by an optical unit including the rotating mirror in FIG. 12.
  • FIG. 14 is a diagram illustrating a rotating mirror according to a third modification. It is a figure showing one reflective surface of a rotation mirror of the third modification.
  • FIG. 19 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit in FIG. 18. It is a top view of the optical unit concerning a 5th modification. It is a top view of the optical unit concerning a 6th modification. It is a schematic diagram which shows an example of the light distribution pattern which concerns on a 5th modification and a 6th modification. It is the perspective view which showed typically the structure of the optical unit which concerns on 3rd embodiment.
  • FIG. 24 is a top view of the optical unit of FIG. 23.
  • FIG. 24 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit of FIG. 23. It is a perspective view showing typically composition of an optical unit concerning a 4th embodiment.
  • FIG. 27 is a side view of the optical unit of FIG. 26.
  • FIG. 27 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit of FIG. 26. It is a top view of the optical unit concerning a 5th embodiment.
  • the “left-right direction”, “front-back direction”, and “up-down direction” are relative directions set for the vehicle headlight shown in FIG. 1 for convenience of description.
  • the “front-back direction” is a direction including the “front direction” and the “back direction”.
  • the “left-right direction” is a direction including “left direction” and “right direction”.
  • the “vertical direction” is a direction including “upward” and “downward”.
  • the optical unit (an example of a light irradiation device) of the present invention can be used for various vehicle lamps. First, an outline of a vehicle headlamp on which an optical unit according to each embodiment described later can be mounted will be described.
  • FIG. 1 is a horizontal sectional view of a vehicle headlamp.
  • FIG. 2 is a perspective view schematically showing a configuration of an optical unit mounted on the vehicle headlight of FIG.
  • FIG. 3 is a top view of the optical unit, and
  • FIGS. 4 and 5 are side views of the optical unit.
  • the vehicle headlamp 10 shown in FIG. 1 is a right headlamp mounted on the right side of the front end of the vehicle, and has the same structure as the headlamp mounted on the left side except that it is symmetrical. Therefore, hereinafter, the right vehicle headlamp 10 will be described in detail, and the description of the left vehicle headlamp will be omitted.
  • the vehicle headlamp 10 includes a lamp body 12 having a concave portion that opens forward.
  • the lamp body 12 has a front opening covered with a transparent front cover 14 to form a lamp chamber 16.
  • the light room 16 functions as a space in which the two lamp units 20 and 30 are housed in a state of being arranged side by side in the vehicle width direction.
  • the lamp unit 20 arranged inside the vehicle width direction that is, the lower side shown in FIG. 1 in the right vehicle headlamp 10 is configured to emit a low beam.
  • the lamp unit 30 disposed outside in the vehicle width direction that is, the upper side shown in FIG. 1 of the right vehicle headlamp 10 is a lamp unit having a lens 36. , And a variable high beam.
  • the low beam lamp unit 20 has a reflector 22 and a light source 24 made of, for example, an LED.
  • the reflector 22 and the LED light source 24 are tiltably supported with respect to the lamp body 12 by known means (not shown), for example, means using an aiming screw and a nut.
  • the high beam lamp unit 30 includes a light source 32, a rotating mirror 34 as a reflector, and a plano-convex lens as a projection lens disposed in front of the rotating mirror 34. 36, and a phosphor 38 disposed between the rotating mirror 34 and the plano-convex lens 36.
  • the light source 32 for example, a laser light source can be used. Instead of a laser light source, a semiconductor light emitting element such as an LED or an EL element can be used as a light source.
  • the light source 32 can be turned on and off by a light source control unit (not shown). In particular, for controlling a light distribution pattern described later, it is preferable to use a light source capable of turning on and off accurately in a short time.
  • the light source control unit includes, for example, at least one electronic control unit (ECU: Electronic Control Unit).
  • the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits including active elements such as transistors and passive elements.
  • the processor is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit) and / or a GPU (Graphics Processing Unit).
  • the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the control program of the lamp unit 30 may be stored in the ROM.
  • the shape of the plano-convex lens 36 may be appropriately selected according to the light distribution characteristics such as a required light distribution pattern and illuminance distribution, and an aspheric lens or a free-form surface lens is used.
  • the rear focus of the plano-convex lens 36 is set, for example, near the light emitting surface of the phosphor 38. As a result, the light image on the light emitting surface of the phosphor 38 is turned upside down and is irradiated forward.
  • the phosphor 38 is made of, for example, a resin material mixed with phosphor powder that emits yellow light when excited by blue laser light emitted from the light source 32.
  • the laser light emitted from the phosphor 38 by mixing the blue laser light and the yellow fluorescent light becomes white light.
  • the rotating mirror 34 is rotatably connected to a motor 40 as a driving source.
  • the rotating mirror 34 is rotated by a motor 40 in a rotation direction D about a rotation axis R.
  • the rotation axis R of the rotation mirror 34 is oblique to the optical axis Ax (see FIG. 4).
  • the rotating mirror 34 includes a plurality of (12 in this example) reflecting surfaces 34a to 34l arranged along the rotating direction D.
  • the reflecting surfaces 34a to 34l of the rotating mirror 34 reflect the light emitted from the light source 32 while rotating. This enables scanning using light from the light source 32 as shown in FIG.
  • the rotating mirror 34 is, for example, a polygon mirror in which twelve reflecting surfaces are formed in a polygonal shape.
  • the reflecting surface 34a and the reflecting surface 34g located on the diagonally opposite side of the reflecting surface 34a are referred to as a first reflecting surface pair 34A.
  • the reflecting surface 34b and the reflecting surface 34h located on the diagonally opposite side of the reflecting surface 34b are defined as a second reflecting surface pair 34B.
  • the reflecting surface 34c and the reflecting surface 34i located on the diagonally opposite side of the reflecting surface 34c are defined as a third reflecting surface pair 34C.
  • the reflecting surface 34d and the reflecting surface 34j on the diagonally opposite side of the reflecting surface 34d are defined as a fourth reflecting surface pair 34D.
  • the reflecting surface 34e and the reflecting surface 34k located on the diagonally opposite side of the reflecting surface 34e are referred to as a fifth reflecting surface pair 34E.
  • the reflecting surface 34f and the reflecting surface 341 located on the diagonally opposite side of the reflecting surface 34f are referred to as a sixth reflecting surface pair 34F.
  • the first reflecting surface pair 34A is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 34a (that is, in the case of the arrangement shown in FIGS. 3 and 4).
  • the corners are formed to be substantially the same.
  • the second reflecting surface pair 34B is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 34b (that is, in the case of the arrangement shown in FIG. 5).
  • the corners are formed to be substantially the same.
  • the third pair of reflecting surfaces 34C includes an angle formed between the reflecting surface 34c and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 34c, and the laser light from the light source 32 is reflected by the reflecting surface 34i.
  • the angle formed between the reflecting surface 34i and the optical axis Ax at the time of reflection is substantially the same.
  • the fourth reflecting surface pair 34D is formed by an angle between the reflecting surface 34d and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 34d, and the laser light from the light source 32 is reflected by the reflecting surface 34j.
  • the angle formed between the reflection surface 34j and the optical axis Ax at the time of reflection is substantially the same.
  • the fifth reflection surface pair 34E is formed by an angle between the reflection surface 34e and the optical axis Ax when the laser light from the light source 32 is reflected by the reflection surface 34e, and the laser light from the light source 32 is reflected by the reflection surface 34k.
  • the angle formed between the reflection surface 34k and the optical axis Ax at the time of reflection is substantially the same.
  • the sixth reflection surface pair 34F is formed such that the angles formed by the reflection surfaces 34f and 34l and the optical axis Ax by the laser light from the light source 32 are substantially the same. That is, each of the reflecting surfaces 34a to 34l of the rotating mirror 34 is formed such that a pair of diagonal reflecting surfaces are inclined surfaces having the same angle.
  • the light reflected by the pair of reflecting surfaces constituting the first reflecting surface pair 34A to the sixth reflecting surface pair 34F is applied to substantially the same position in the vertical direction in front of the vehicle. Further, it is possible to prevent the rotation of the rotating mirror 34 when the rotating mirror 34 is rotated in the rotation direction D by the motor 40.
  • the angle ⁇ a between the first reflecting surface pair 34A and the optical axis Ax is determined by the angle ⁇ a between the laser light from the light source 32 and the other reflecting surface.
  • the angles formed by the respective reflection surfaces of the other reflection surface pairs 34B to 34F and the optical axis Ax when reflected by the pairs 34B to 34F are different from each other.
  • the angle ⁇ b between the reflection surface 34b and the optical axis Ax shown in FIG. 5 is formed to be slightly smaller than the angle ⁇ a between the reflection surface 34a and the optical axis Ax shown in FIG.
  • each reflecting surface pair and the optical axis Ax are formed so that the angle formed by them becomes smaller.
  • the light reflected by one pair of reflecting surfaces is applied to a position different from that of the other pair of reflecting surfaces in the vertical direction in front of the vehicle.
  • the light Lb reflected by the reflection surface 34b is irradiated above the light La reflected by the reflection surface 34a on the virtual vertical screen in front of the vehicle.
  • a light distribution pattern P1 as shown in FIG. 6 is formed on the virtual vertical screen. Specifically, the lowermost line LA1 of the light distribution pattern P1 shown in FIG. 6 is formed by the light reflected by the first reflection surface pair 34A (reflection surfaces 34a and 34g). Further, a line LB1 is formed above the line LA1 by the light reflected by the second pair of reflection surfaces 34B (the reflection surfaces 34b and 34h).
  • the line LC1 is formed above the line LB1 by the light reflected by the third pair of reflection surfaces 34C (the reflection surfaces 34c and 34i).
  • the line LD1 is formed above the line LC1 by the light reflected by the fourth reflection surface pair 34D (reflection surfaces 34d and 34j).
  • the line LE1 is formed above the line LD1 by the light reflected by the fifth reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • the line LF1 is formed above the line LE1 by the light reflected by the sixth reflection surface pair 34F (the reflection surfaces 34f and 34l). As described above, the light reflection direction is changed by the rotation of the rotating mirror 34, so that the light is divided into a plurality of stages and scanned in a line to form the light distribution pattern P1.
  • the light source control unit controls the turning on and off of the light source 32 so that the light source 32 is turned off at the timing when the boundary between the respective reflection surfaces 34a to 34l and the laser beam from the light source 32 intersect.
  • the light source 32 provided is relatively small, and the position where the light source 32 is disposed is also between the rotating mirror 34 and the plano-convex lens 36 and is shifted from the optical axis Ax. ing. Therefore, the length of the vehicle headlamp 10 in the vehicle front-rear direction is smaller than that in the case where the light source, the reflector, and the lens are arranged in a line on the optical axis as in a conventional projector type lamp unit. Can be shorter.
  • FIG. 7 shows a top view of the lamp unit 130 according to the first embodiment.
  • the lamp unit 130 includes a light source 32, a rotating mirror 134, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 134 of the lamp unit 130 has a plurality of (12 in this example) reflecting surfaces 134a to 134l arranged in parallel along the rotating direction D.
  • the reflecting surfaces 134a to 134l of the rotating mirror 134 are configured such that the curvature of the reflecting surface in the rotation direction D of the rotating mirror 134 changes at each reflecting surface.
  • FIG. 8 is an enlarged view showing the configuration of one of the reflecting surfaces 134a to 134l of the rotating mirror 134, for example, the reflecting surface 134a.
  • the reflection surface 134a is constituted by two flat surfaces 135 and one concave curved surface 136.
  • the concave curved surface 136 is disposed at the center of the reflecting surface 134a in the rotation direction D.
  • the two planes 135 are arranged on both sides of the concave curved surface 136 so as to sandwich the concave curved surface 136 in the rotation direction D.
  • the two flat surfaces 135 and the concave curved surface 136 interposed therebetween are formed so as to be continuously connected.
  • the two planes 135 are formed so as to be inclined downward toward the concave curved surface 136 side (the center of the reflection surface 134a).
  • the concave curved surface 136 is formed as a curved reflective surface concave toward the rotation axis R (see FIG. 7).
  • the inclination angle of the plane 135 is set so that the laser beam emitted from the light source 32 to each plane 135 is reflected toward the phosphor 38 at a predetermined diffusion angle.
  • the length xb of the concave curved surface 136 on a straight line connecting both end portions of the concave curved surface 136 and the degree of curvature of the concave curved surface 136 are determined by the laser light emitted from the light source 32 to the concave curved surface 136. Is set to be reflected at a predetermined diffusion angle toward. For example, the length xa of the plane 135 is set to be longer than the length xb of the concave curved surface 136.
  • the laser light reflected by the reflecting surface 134a having such a configuration is, as shown in FIG.
  • the light is diffused by the diffusion angle Wab.
  • the laser light reflected by the concave curved surface 136 is diffused in the left-right direction of the lamp unit 130 by the diffusion angle Wa about the optical axis Ax.
  • the laser light reflected on the two planes 135 is diffused by a diffusion angle Wb on both sides of the laser light reflected on the concave curved surface 136 in the left-right direction of the lamp unit 130.
  • the other reflecting surfaces 134b to 134l constituting the rotating mirror 134 are formed to have the same configuration as the reflecting surface 134a.
  • the angle between the reflection surface 134a and the optical axis Ax when the laser light emitted from the light source 32 is reflected by the reflection surface 134a is determined when the laser light emitted from the light source 32 is reflected by the reflection surface 134g. It is formed so that the angle formed by the reflection surface 134g and the optical axis Ax is substantially the same (see FIGS. 4 and 5). Similarly, the angle formed between the reflection surface 134b and the optical axis Ax is formed to be substantially the same as the angle formed between the reflection surface 134h and the optical axis Ax.
  • the angle between the reflection surface 134c and the optical axis Ax is formed to be substantially the same as the angle between the reflection surface 134i and the optical axis Ax.
  • the angle formed between the reflection surface 134d and the optical axis Ax is formed to be substantially the same as the angle formed between the reflection surface 134j and the optical axis Ax.
  • the angle between the reflection surface 134e and the optical axis Ax is formed to be substantially the same as the angle between the reflection surface 134k and the optical axis Ax.
  • the angle between the reflection surface 134f and the optical axis Ax is formed to be substantially the same as the angle between the reflection surface 134l and the optical axis Ax.
  • the reflecting surfaces 134a to 134l of the rotating mirror 134 are formed such that a pair of diagonal reflecting surfaces are inclined at the same angle as in the reference embodiment.
  • the laser light reflected by the reflecting surfaces 134a and 134g is applied to substantially the same position in the vertical direction in front of the vehicle.
  • laser light reflected by the reflecting surfaces 134b and 134h, laser light reflected by the reflecting surfaces 134c and 134i, laser light reflected by the reflecting surfaces 134d and 134j, and reflecting surface 134e The laser light reflected by the reflection surface 134k and the laser light reflected by the reflection surface 134f and the reflection surface 134l are applied to substantially the same position in the vertical direction in front of the vehicle.
  • the angle formed between one reflection surface pair and the optical axis Ax is formed so as to be different from the angle formed between the other reflection surface pair and the optical axis Ax.
  • the angle formed between the reflection surfaces 134b and 134h and the optical axis Ax is formed to be slightly smaller than the angle formed between the reflection surfaces 134a and 134g and the optical axis Ax.
  • the reflecting surfaces 134c and 134i, the reflecting surfaces 134d and 134j, the reflecting surfaces 134e and 134k, the reflecting surfaces 134f and 134l the angle formed between each reflecting surface pair and the optical axis Ax. Is formed to be small.
  • the laser light reflected by one reflection surface pair is applied to a position different from the laser light reflected by the other reflection surface pair in the vertical direction in front of the vehicle.
  • the laser light reflected by the reflecting surfaces 134b and 134h is irradiated above the laser light reflected by the reflecting surfaces 134a and 134g.
  • the laser light reflected by the reflecting surfaces 134c and 134i is irradiated above the light reflected by the reflecting surfaces 134b and 134h.
  • FIG. 9 is a diagram in which a light distribution pattern P2 formed in front of the vehicle by the lamp unit 130 according to the first embodiment is observed from the vehicle side.
  • the light distribution pattern P2 is formed by a laser beam that is divided into a plurality of stages (six in this example) and scanned in lines (LA2 to LF2).
  • the laser light emitted from the light source 32 is reflected by the reflecting surfaces 134a to 134l of the rotating mirror 134, and passes through the plano-convex lens 36 via the phosphor 38.
  • the rear focal point of the plano-convex lens 36 is set near the light emitting surface of the phosphor 38, so that the light image on the light emitting surface of the phosphor 38 is inverted upside down and irradiated forward.
  • the lowermost first line LA2 of the light distribution pattern P2 shown in FIG. 9 is formed by the laser light reflected by the reflection surface 134a.
  • the second line LB2 is formed above the first line LA2 by the laser light reflected by the reflection surface 134b.
  • the third line LC2 is formed above the second line LB2 by the laser light reflected by the reflection surface 134c.
  • the fourth line LD2 is formed above the third line LC2 by the laser light reflected by the reflection surface 134d.
  • the fifth line LE2 is formed above the fourth line LD2 by the laser beam reflected by the reflection surface 134e.
  • the sixth line LF2 is formed above the fifth line LE2 by the laser beam reflected by the reflection surface 134f.
  • first line LA2, the second line LB2, the third line LC2, the fourth line LD2, the fifth line LE2, and the sixth line are formed by the light reflected by the reflecting surfaces 134g, 134h, 134i, 134j, 134k, and 134l.
  • Lines LF2 are respectively formed.
  • the light source is rotated from the light source. It is conceivable to adopt a light source control method in which the amount of light radiated toward the mirror is changed for each portion within each reflection surface. However, in this method, the output of the light source must be frequently changed at a short timing for each reflection surface, and the control becomes complicated. Further, it is necessary to change the output of the light source, and the light use efficiency may decrease.
  • the lamp unit 130 is configured such that the curvature of the reflection surface in the rotation direction D of the rotation mirror 134 changes in each of the reflection surfaces 134a to 134l of the rotation mirror 134.
  • each of the reflecting surfaces 134a to 134l is formed by two flat surfaces disposed on both sides of the concave curved surface 136 so as to sandwich the concave curved surface 136 disposed at the center of the reflecting surface. 135.
  • the laser light reflected on the concave curved surface 136 at the central portion is compared with the laser light reflected on the plane 135 disposed on both sides of the concave curved surface 136 in the central direction (on the optical axis Ax side). ).
  • the scanning speed of the light forming the central region of each line depends on the side region of each line. It becomes slower than the scanning speed of the light to be formed. Therefore, according to the lamp unit 130, as shown in FIG. 9, when the light distribution pattern P2 is formed, the central region Lwa in the left and right direction (the region shown by oblique lines in FIG. 9) in each line (LA2 to LF2).
  • the luminous intensity can be higher than the luminous intensity of the side region Lwb of each line.
  • FIG. 10 is a diagram illustrating a configuration of a rotating mirror 144 according to a first modification
  • FIG. 11 is a diagram illustrating a configuration of one reflection surface 144a of the rotating mirror 144.
  • the rotating mirror 144 includes a plurality of (for example, 12) reflecting surfaces 144a to 144l arranged in parallel along the rotation direction D, similarly to the rotating mirror 134 shown in FIG. I have.
  • the reflecting surfaces 144a to 144l of the rotating mirror 144 are configured such that the curvature of the reflecting surface in the rotation direction D of the rotating mirror 144 changes at each reflecting surface.
  • the reflection surface 144a is composed of two convex curved surfaces 145 and one flat surface 146.
  • the plane 146 is disposed at the center of the reflection surface 144a in the rotation direction D.
  • the two convex curved surfaces 145 are arranged on both sides of the plane 146 so as to sandwich the plane 146 in the rotation direction D.
  • the two convexly curved surfaces 145 and the plane 146 sandwiched therebetween are formed so as to be continuously connected.
  • the convex curved surface 145 is formed as a curved reflective surface protruding outward from the rotating mirror 144.
  • a convex curve on a straight line connecting the ends of the two convex curved surfaces 145 that is, a straight line connecting the left end of the left convex curved surface 145 and the right end of the right convex curved surface 145 in FIG.
  • the length xa1 of the surface 145 and the degree of curvature of the convex curved surface 145 are set so that the laser light emitted from the light source 32 to each convex curved surface 145 is reflected toward the phosphor 38 at a predetermined diffusion angle. Have been.
  • the length xb1 of the plane 146 on a straight line connecting both ends of the plane 146 is set so that the laser beam emitted from the light source 32 to the plane 146 is reflected toward the phosphor 38 at a predetermined diffusion angle.
  • the length xa1 of the convex curved surface 145 is set to be longer than the length xb1 of the plane 146.
  • the other reflecting surfaces 144b to 144l forming the rotating mirror 144 have the same configuration as the reflecting surface 144a.
  • the diffusion angle of the laser light reflected by the convex curved surfaces 145 on both sides is larger than the diffusion angle of the laser light reflected by the central plane 146.
  • the scanning speed of the laser light forming the central region of each of the lines LA2 to LF2 is equal to the scanning speed of the laser light forming the side region of each of the lines LA2 to LF2. It is slower than the scanning speed. Therefore, according to the rotating mirror 144, similarly to the light distribution pattern P2 of FIG.
  • the luminous intensity of the central region Lwa in each of the lines LA2 to LF2 is reduced by the side region Lwb of each of the lines LA2 to LF2. Higher than the luminosity.
  • the output control of the light source 32 is easy and the light use efficiency can be improved.
  • FIG. 12 is a diagram illustrating a configuration of a rotating mirror 154 according to a second modification
  • FIG. 13 is a diagram illustrating a configuration of one reflection surface 154a of the rotating mirror 154.
  • the rotating mirror 154 includes a plurality of (for example, 12) reflecting surfaces 154a to 154l arranged in parallel along the rotation direction D, similarly to the rotating mirror 134 shown in FIG. I have.
  • the reflection surfaces 154a to 154l are configured such that the curvature of the reflection surface in the rotation direction D of the rotating mirror 154 changes at each reflection surface.
  • the reflection surface 154a includes two concave curved surfaces 155 and one flat surface 156.
  • the plane 156 is disposed at the center of the reflection surface 154a in the rotation direction D.
  • the two concave curved surfaces 155 are arranged on both sides of the plane 156 so as to sandwich the plane 156 in the rotation direction D.
  • the two concave curved surfaces 155 and the plane 156 sandwiched therebetween are formed so as to be continuously connected.
  • the concave curved surface 155 is formed as a curved reflective surface that is concave toward the rotation axis R (see FIG. 12).
  • a length xa2 on a straight line connecting the ends of the two concave curved surfaces 155 that is, a straight line connecting the left end of the left concave curved surface 155 and the right end of the right concave curved surface 155 in FIG.
  • the degree of curvature of the curved surface 155 is set so that the laser light emitted from the light source 32 to each concave curved surface 155 is reflected toward the phosphor 38 at a predetermined diffusion angle.
  • the length xb2 of the plane 156 on a straight line connecting both ends of the plane 156 is set so that the laser beam emitted from the light source 32 to the plane 156 is reflected toward the phosphor 38 at a predetermined diffusion angle. I have.
  • the length xa2 of the concave curved surface 155 is set to be longer than the length xb2 of the plane 156.
  • the other reflecting surfaces 154b to 154l constituting the rotating mirror 154 have the same configuration as the reflecting surface 154a.
  • FIG. 14 is a diagram in which the light distribution pattern P3 formed in front of the vehicle by the rotating mirror 154 is observed from the vehicle side.
  • the light distribution pattern P3 is formed by light that is divided into a plurality of stages (six in this example) and scanned in lines (LA3 to LF3).
  • the rotating mirror 154 having such a configuration, the laser light reflected on the concave curved surfaces 155 on both sides travels so as to be focused as compared with the laser light reflected on the plane 156 at the center. Therefore, in the scanning direction of the light distribution pattern P3 formed by the reflected light, the scanning speed of the light forming the side area of each of the lines LA3 to LF3 is the scanning speed of the light forming the central area of each of the lines LA3 to LF3. Slower than speed. Therefore, according to the rotating mirror 154, as shown in FIG. 14, when forming the light distribution pattern P3, the luminous intensity of both side regions (regions indicated by oblique lines in FIG. 14) of each of the lines LA3 to LF3 is changed to each line LA3. It can be made higher than the luminous intensity of the central region of LF3. Further, according to the rotating mirror 154, similarly to the rotating mirror 134, the output control of the light source 32 is easy and the light use efficiency can be improved.
  • FIG. 15 is a diagram illustrating a configuration of a rotating mirror 164 according to a third modification
  • FIG. 16 is a diagram illustrating a configuration of one reflection surface 164a of the rotating mirror 164.
  • the rotating mirror 164 includes a plurality of (for example, 12) reflecting surfaces 164a to 164l arranged in parallel along the rotation direction D, similarly to the rotating mirror 134 shown in FIG. I have.
  • the reflecting surfaces 164a to 164l are configured such that the curvature of the reflecting surface in the rotation direction D of the rotating mirror 164 changes at each reflecting surface.
  • the reflection surface 164a is composed of two flat surfaces 165 and one convex curved surface 166.
  • the convex curved surface 166 is disposed at the center of the reflection surface 164a in the rotation direction D.
  • the two flat surfaces 165 are arranged on both sides of the convex curved surface 166 so as to sandwich the convex curved surface 166 in the rotation direction D.
  • the two flat surfaces 165 and the convex curved surface 166 sandwiched therebetween are formed so as to be continuously connected.
  • the two planes 165 are formed so as to be inclined upward toward the convex curved surface 166 side (the center of the reflection surface 164a).
  • the convex curved surface 166 is formed as a curved reflective surface that protrudes outward from the rotating mirror 164.
  • a length xa3 on a straight line connecting the ends of the two planes 165, that is, a straight line connecting the left end of the left plane 165 and the right end of the right plane 165 in FIG. 16, and the inclination of the plane 165 with respect to the straight line The angle is set such that the laser beam emitted from the light source 32 to each plane 165 is reflected toward the phosphor 38 at a predetermined diffusion angle.
  • the length xb3 of the convex curved surface 166 on a straight line connecting both ends of the convex curved surface 166, and the degree of curvature of the convex curved surface 166 are determined by the laser light emitted from the light source 32 to the convex curved surface 166. Is set to be reflected toward the phosphor 38 at a predetermined diffusion angle. For example, the length xa3 of the plane 165 is set to be longer than the length xb3 of the plane 156.
  • the other reflecting surfaces 164b to 164l constituting the rotating mirror 164 have the same configuration as the reflecting surface 164a.
  • the diffusion angle of the laser light reflected by the convex curved surface 166 at the center is larger than the diffusion angle of the laser light reflected by the flat surfaces 165 on both sides.
  • the scanning speed of the light forming the side region of each line is lower than the scanning speed of the light forming the central region of each line. Therefore, according to the rotating mirror 164, similarly to the light distribution pattern P3 of FIG. 14 formed by the rotating mirror 154, the luminous intensity of both side regions (regions indicated by oblique lines) in each line (LA3 to LF3) is calculated. Can be higher than the luminous intensity of the central region of Further, according to the rotating mirror 164, similarly to the rotating mirror 134, the output control of the light source 32 is easy and the light use efficiency can be improved.
  • the reflecting surfaces having the same configuration are arranged diagonally, and the inclination angles of both reflecting surfaces on the diagonal are the same. It is not limited to this combination.
  • a reflection surface composed of two planes 135 and one concave curved surface 136 in the first embodiment and a reflection surface composed of two convex curved surfaces 145 and one plane 146 in the first modification.
  • the surfaces may be arranged diagonally, and the inclination angles of both reflecting surfaces may be the same.
  • a reflection surface composed of two concave curved surfaces 155 and one flat surface 156 in the second modification and a reflection surface composed of two planes 165 and one convex curved surface 166 in the third modification.
  • the surfaces may be arranged diagonally, and the inclination angles of both reflecting surfaces may be the same.
  • the reflecting surfaces in the first embodiment and the first to third modifications may be arranged in other combinations.
  • each reflecting surface is constituted by a plane and a concave curved surface, or a plane and a convex curved surface, but is not limited to this combination.
  • the central region of each reflecting surface may be configured with a concave curved surface, and the both side regions may be configured with a convex curved surface.
  • the central region of each reflecting surface may be formed by a convex curved surface, and the both side regions may be formed by a concave curved surface.
  • a dodecahedral rotating mirror is used in a top view, and light reflected by a pair of reflecting surfaces arranged diagonally forms the same line in the light distribution pattern.
  • the present invention is not limited to this example.
  • one line may be formed by light reflected on one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and has six reflecting surfaces along the rotating direction.
  • FIG. 17 shows a lamp unit 530 according to a fourth modification.
  • a rotating mirror (rotating reflector) 500 of a blade scan (registered trademark) method may be used instead of the polygon mirror 134 used in the above embodiment.
  • the rotating mirror 500 includes a plurality of (three in FIG. 17) blades 501a and a cylindrical rotating part 501b. Each blade 501a is provided around the rotating part 501b and functions as a reflecting surface.
  • the rotating mirror 500 is arranged so that its rotation axis R is oblique to the optical axis Ax.
  • the blade 501a has a shape twisted such that the angle formed between the optical axis Ax and the reflection surface changes in the circumferential direction around the rotation axis R.
  • scanning using light from the light source 32 can be performed.
  • each blade 501a is configured such that the curvature of the reflection surface in the rotation direction of the rotating mirror 500 changes.
  • the reflecting surface of each blade 501a is formed to have the same shape as the reflecting surface of the rotating mirror illustrated in any one of FIGS. 8, 11, 13, and 16. Even when such a rotating mirror 500 is used, as in the above-described embodiment, the light scanning speed changes in accordance with the change in the curvature, so that a part of the light distribution pattern can be made brighter than the other parts. It becomes possible.
  • the lamp unit is described as being mounted on the vehicle headlamp, but is not limited to this example.
  • the optical unit including the light source and the rotating mirror as described above can also be applied to components of a sensor unit (for example, a laser radar or LiDAR) mounted on a vehicle. Also in this case, by configuring so that the curvature in the rotation direction of the rotating mirror changes at each reflection surface of the rotating mirror, it is possible to improve the sensor sensitivity of a specific area in the sensor target range.
  • FIG. 18 shows a top view of a lamp unit 230 according to the second embodiment.
  • the lamp unit 230 includes a light source 32, a rotating mirror 234, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 234 of the lamp unit 230 has a plurality of (eight in this example) reflecting surfaces 234a to 234h arranged in parallel along the rotating direction D.
  • the reflecting surfaces 234a to 234h of the rotating mirror 234 are all formed in a plane in this example.
  • the reflecting surfaces 234a to 234h are formed such that the lengths of the respective reflecting surfaces along the rotation direction D are the same.
  • the shape of the reflection surface is not limited to a flat surface, and may be, for example, a convex curved surface, a concave curved surface, or the like.
  • the angle between each of the reflection surfaces 234a to 234f and the optical axis Ax is formed differently, and the angle between the reflection surface 234g and the optical axis Ax is defined as the angle between the reflection surface 234c and the optical axis Ax.
  • the angle formed by the reflection surface 234h and the optical axis Ax is the same as the angle formed by the reflection surface 234d and the optical axis Ax (FIGS. 4 and 5). reference).
  • the angle formed between each of the reflecting surfaces 234a to 234f and the optical axis Ax is slightly smaller than the angle formed between the reflecting surface 234b and the optical axis Ax. It is formed as follows. Similarly, the reflection surface 234c, the reflection surface 234d, the reflection surface 234e, and the reflection surface 234f are formed in this order so that the angle formed between each reflection surface and the optical axis Ax becomes smaller.
  • the light reflected by one of the reflecting surfaces 234a to 234f is applied to a position different from the other reflecting surfaces in the vertical direction in front of the vehicle. For example, the light reflected by the reflecting surface 234b is irradiated above the light reflected by the reflecting surface 234a.
  • the light reflected by the reflecting surface 234c is irradiated above the light reflected by the reflecting surface 234b. Further, the light reflected by the reflecting surface 234d is irradiated above the light reflected by the reflecting surface 234c. Further, the light reflected by the reflecting surface 234e is irradiated above the light reflected by the reflecting surface 234d. Further, the light reflected by the reflecting surface 234f is irradiated above the light reflected by the reflecting surface 234e.
  • the light reflected by the reflecting surface 234g is irradiated in the same direction as the light reflected by the reflecting surface 234c having the same angle with the optical axis Ax.
  • the light reflected by the reflection surface 234h is irradiated in the same direction as the light reflected by the reflection surface 234d having the same angle with the optical axis Ax.
  • FIG. 19 shows a light distribution pattern P4 formed in front of the vehicle by the lamp unit 230.
  • the light distribution pattern P4 includes a plurality of lines (LA4 to LH4) formed by the laser light emitted from the light source 32.
  • the laser light emitted from the light source 32 is reflected by each of the reflecting surfaces 234a to 234h of the rotating mirror 234, and passes through the plano-convex lens 36 via the phosphor 38.
  • the rear focal point of the plano-convex lens 36 is set near the light emitting surface of the phosphor 38, so that the light image on the light emitting surface of the phosphor 38 is inverted upside down and irradiated forward.
  • the laser light is scanned in a line by being divided into a plurality of stages by the displacement of the light reflection direction due to the rotation of the rotating mirror 234.
  • the light reflected by the reflection surface 234a forms the lowermost line LA4 of the light distribution pattern P4 shown in FIG.
  • a line LB4 is formed above the line LA4 by the light reflected by the reflection surface 234b.
  • the line LC4 is formed above the line LB4 by the light reflected by the reflection surface 234c.
  • a line LD4 is formed above the line LC4 by the light reflected by the reflection surface 234d.
  • a line LE4 is formed above the line LD4 by the light reflected by the reflection surface 234e.
  • a line LF4 is formed above the line LE4 by the light reflected by the reflection surface 234f.
  • a line LG4 is formed overlapping with the line LC4 by the light reflected by the reflection surface 234g.
  • the line LH4 is formed overlapping with the line LD4 by the light reflected by the reflection surface 234h.
  • the lines at the lower center of the light distribution pattern P4 in the vertical direction are the light reflected by the reflection surface 234c and the light reflected by the reflection surface 234g. Is configured to scan twice. Further, a line at the upper center in the vertical direction of the light distribution pattern P4 (lines LD4 and LH4 corresponding to the third stage from the top) is twice formed by the light reflected by the reflection surface 234d and the light reflected by the reflection surface 234h. It is configured to be scanned. In addition, the line scanned repeatedly can be an arbitrary line in the light distribution pattern P4 by setting an angle between the reflection surface and the optical axis Ax.
  • the lamp unit 230 scans some lines in the vertical direction of the light distribution pattern P4 by light reflected on at least two of the plurality of reflecting surfaces 234a to 234h of the rotating mirror 234. It is configured to be able to.
  • the light distribution pattern P4 is disposed between the lines LF4, LE4, LB4, and LA4 (an example of a first line) and between the lines LF4 and LE4 and the lines LB4 and LA4 (an example of a first line).
  • Lines LD4 (LH4) and LC4 (LG4) an example of a second line).
  • the laser beams reflected by the two reflecting surfaces 234d and 234h of the rotating mirror 234 form the same line LD4 (LH4), and the laser beams reflected by the two reflecting surfaces 234c and 234g are the same.
  • LH4 line LD4
  • LG4 line LC4
  • the octahedral rotating mirror 234 is used in a top view, but is not limited to this example. It is sufficient that at least two of the angles formed by each reflection surface and the optical axis Ax are the same. For example, a light distribution pattern is formed by six lines as shown in FIG. In this case, a rotating mirror having seven or more reflecting surfaces may be used.
  • FIG. 20 is a top view of a lamp unit 330 according to the fifth modification.
  • the lamp unit 330 includes a light source 32, a rotating mirror 334, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 334 of the lamp unit 330 has a plurality (eight in this example) of reflecting surfaces 334a to 334h arranged in parallel along the rotating direction D.
  • the reflecting surfaces 334a to 334h of the rotating mirror 334 are all formed in a plane in this example.
  • the reflecting surface 334e of the reflecting surfaces 334a to 334h is formed such that the length (surface width) of the surface along the rotation direction D is shorter than the other reflecting surfaces.
  • an angle formed between the reflecting surface 334e having a short surface width and the optical axis Ax is set to be the same as an angle formed between the reflecting surface 334d adjacent to the reflecting surface 334e and the optical axis Ax. Have been. Thereby, the light reflected by the reflecting surface 334d and the light reflected by the reflecting surface 334e are irradiated on the same line.
  • FIG. 21 is a top view of a lamp unit 430 according to the sixth modification.
  • the lamp unit 430 includes a light source 32, a rotating mirror 434, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 434 of the lamp unit 430 has a plurality of (eight in this example) reflecting surfaces 434a to 434h arranged in parallel along the rotating direction D.
  • the reflecting surface 434e of the reflecting surfaces 434a to 434h of the rotating mirror 434 is formed as a concave curved surface that is recessed toward the rotation axis R.
  • the reflecting surfaces 434a to 434d and 434f to 434h other than the reflecting surface 434e are all formed in a planar shape.
  • the light reflected by the concave reflecting surface 434e is converged in the left-right direction as compared with the light reflected by the planar reflecting surfaces 434a to 434d and 434f to 434h.
  • an angle formed between the reflecting surface 434e having a short surface width and the optical axis Ax is set to be the same as an angle formed between the reflecting surface 434d adjacent to the reflecting surface 434e and the optical axis Ax. Have been. Thereby, the light reflected by the reflection surface 434d and the light reflected by the reflection surface 434e are irradiated on the same line.
  • FIG. 22 is a schematic diagram illustrating an example of a light distribution pattern P5 according to a fifth modification and a sixth modification of the second embodiment.
  • the light distribution pattern P5 overlaps the lines LH5, LG5, LF5, LD5, LC5, LB5, and LA5 on the same line as the line LD5 and in the central region of the line LD5 in the left-right direction.
  • the line LE5 formed.
  • the surface width of the reflection surface 334e for forming the line LE5 is set shorter than the surface width of the other reflection surfaces, the length of the line LE5 in the left-right direction is set. Is shorter than the length of the line LD5 or the like.
  • the reflecting surface 434e for forming the line LE5 is formed as a concave curved surface, the light reflected by the reflecting surface 434e is collected in the left-right direction.
  • the length of the line LE5 in the left-right direction is shorter than the length of the line LD5 or the like.
  • the luminous intensity of a partial area of the light distribution pattern is higher than the luminous intensity of the other area.
  • the line LE5 is formed so as to overlap the central region of the line LD5, but the range (position, size, shape, etc.) of the overlapping portion of the line is not limited to this example. .
  • the luminous intensity of a desired region of the light distribution pattern can be changed as appropriate.
  • a blade scan type rotation mirror 500 may be used (see FIG. 17). Also in the rotating mirror 500 of FIG. 17, the light reflected by at least two blades 501a of the plurality of blades 501a can scan a part of lines in the vertical direction of the light distribution pattern so as to overlap. By doing so, the luminous intensity of some regions of the light distribution pattern can be higher than the luminous intensity of other regions, as in the second embodiment.
  • the lamp unit is described as being mounted on the vehicle headlamp, but is not limited to this example.
  • the optical unit including the light source and the rotating mirror as described above can also be applied to components of a sensor unit (for example, a laser radar or LiDAR) mounted on a vehicle. Also in this case, since the light reflected by at least two of the plurality of reflecting surfaces of the rotating mirror is configured to irradiate the same range, the sensor sensitivity in a specific region of the sensor target range is adjusted. Can be improved.
  • the high beam lamp unit 630 As shown in FIG. 23, the high beam lamp unit 630 according to the third embodiment is disposed in front of the rotating mirror 34 with the light source 632, the rotating mirror 34 as a reflector (an example of a first mirror).
  • an arranged mirror 35 (an example of a second mirror).
  • the lamp unit 630 according to the third embodiment is different from the lamp unit 30 according to the reference embodiment in that the lamp unit 630 further includes a mirror 35 and that a light source 632 is provided instead of the light source 32.
  • the light source 632 has the same function as the light source 32.
  • the light source 32 according to the reference embodiment is disposed in front of the rotating mirror 34, whereas the light source 632 according to the third embodiment is disposed obliquely behind the rotating mirror 34.
  • the mirror 35 is disposed before the rotation axis R of the rotation mirror 34 and after the phosphor 38 in the front-rear direction.
  • the mirror 35 is arranged on the left front of the rotating mirror 34.
  • the surface facing the rotating mirror 34 is a reflection surface.
  • the mirror 35 is disposed at a position where the laser beam reflected by the rotating mirror 34 shines.
  • FIG. 24 is a top view of the optical unit according to the third embodiment.
  • the laser light emitted from the light source 632 hits the reflecting surface 34a of the rotating mirror 34.
  • the laser light is reflected by the reflection surface 34a and goes straight toward the mirror 35.
  • the laser light reflected by the reflecting surface 34a hits the reflecting surface of the mirror 35, the laser light is reflected by the reflecting surface of the mirror 35, and the reflected laser light goes straight toward the phosphor 38.
  • the scanning range on the phosphor 38 at this time is S2. Thereafter, the laser beam passes through the plano-convex lens 36 via the phosphor 38.
  • the length of the optical path from the reflecting surface 34a to the mirror 35 is D1
  • the length of the optical path from the reflecting surface of the mirror 35 to the phosphor 38 is D2
  • the length of the optical path from the reflecting surface 34a to the phosphor 38 is This is the length obtained by adding D2 to D1.
  • the light source 32 is disposed between the rotating mirror 34 and the phosphor 38 as in the reference embodiment.
  • the laser light is emitted from the light source 32
  • the laser light is reflected by the reflection surface closest to the phosphor 38 among the reflection surfaces 34a to 34l.
  • the laser light reflected by the reflecting surface goes straight toward the phosphor 38.
  • the length of the optical path from the reflecting surface of the rotating mirror 34 to the phosphor 38 is D3, and the scanning range on the phosphor 38 is S1.
  • the light reflected by each of the reflecting surfaces 34a to 34l of the rotating mirror 34 and transmitted through the plano-convex lens 36 via the phosphor 38 is transmitted to a predetermined position in front of the vehicle (for example, the vehicle).
  • a light distribution pattern P6 as shown in FIG. 25 is formed on the virtual vertical screen (25 m ahead). Specifically, the lowermost line LA6 of the light distribution pattern P6 shown in FIG. 25 is formed by the light reflected by the first pair of reflection surfaces 34A (reflection surfaces 34a and 34g). Further, a line LB6 is formed above the line LA6 by the light reflected by the second pair of reflection surfaces 34B (the reflection surfaces 34b and 34h).
  • the line LC6 is formed above the line LB6 by the light reflected by the third pair of reflecting surfaces 34C (the reflecting surfaces 34c and 34i).
  • the line LD6 is formed above the line LC6 by the light reflected by the fourth reflecting surface pair 34D (the reflecting surfaces 34d and 34j).
  • the line LE6 is formed above the line LD6 by the light reflected by the fifth reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • the line LF6 is formed above the line LE6 by the light reflected by the sixth reflection surface pair 34F (the reflection surfaces 34f and 34l). As described above, the light reflection direction is changed by the rotation of the rotating mirror 34, so that the light is divided into a plurality of stages and scanned in a line to form the light distribution pattern P6.
  • the high beam lamp unit 730 As shown in FIG. 26, the high beam lamp unit 730 according to the fourth embodiment is disposed in front of the light source 732, the rotating mirror 34 as a reflector (an example of a first mirror), and the rotating mirror 34.
  • Mirror 735 (an example of a second mirror).
  • the lamp unit 730 according to the third embodiment is different from the lamp unit 730 according to the third embodiment in that a lamp 730 is further provided instead of the mirror 35 and a light source 732 is provided instead of the light source 632. And different.
  • the light source 732 has the same function as the light sources 32 and 632.
  • the light source 732 is arranged on the left front of the rotating mirror 34 and toward the lower side.
  • the light exit of the light source 732 is slightly upward from the light exits of the light source 32 and the light source 632.
  • the mirror 735 is disposed above the rotating mirror 34 between the rotating mirror 34 and the phosphor 38 in the front-rear direction. Of the surfaces of the mirror 735, the surface facing the rotating mirror 34 is a reflection surface. The mirror 735 is arranged at a position where the laser light reflected by the rotating mirror 34 shines.
  • FIG. 27 is a side view of a lamp unit 730 according to the fourth embodiment.
  • the laser light emitted from the light source 732 impinges on the reflecting surface 34a of the rotating mirror 34.
  • the laser light is reflected by the reflection surface 34a and travels straight to the mirror 735.
  • the laser light reflected by the reflection surface 34a hits the reflection surface of the mirror 735, the laser light is reflected by the reflection surface of the mirror 735, and the reflected laser light goes straight toward the phosphor 38.
  • the scanning range at this time is S3. Thereafter, the laser beam passes through the plano-convex lens 36 via the phosphor 38.
  • the length of the optical path from the reflecting surface 34a to the mirror 735 is D4 and the length of the optical path from the mirror 735 to the phosphor 38 is D5
  • the length of the optical path from the reflecting surface 34a to the phosphor 38 is D5. Length.
  • the light source 32 is disposed between the rotating mirror 34 and the phosphor 38 as in the reference embodiment (the light source 32 is indicated by a broken line in FIG. 27).
  • the laser light is reflected by the reflection surface closest to the phosphor 38 among the reflection surfaces 34a to 34l.
  • the laser light reflected by the reflecting surface goes straight toward the phosphor 38.
  • the length of the optical path from the reflecting surface of the rotating mirror 34 to the phosphor 38 is D3.
  • the scanning range on the phosphor 38 is S1.
  • the light reflected by each of the reflecting surfaces 34a to 34l of the rotating mirror 34 and transmitted through the phosphor 38 through the plano-convex lens 36 is at a predetermined position in front of the vehicle (for example, in the vehicle).
  • a light distribution pattern P7 as shown in FIG. 28 is formed on the virtual vertical screen (25 m ahead). Specifically, the light reflected by the first pair of reflection surfaces 34A (reflection surfaces 34a and 34g) forms the lowermost line LA7 of the light distribution pattern P7 shown in FIG. Further, a line LB7 is formed above the line LA7 by the light reflected by the second pair of reflection surfaces 34B (the reflection surfaces 34b and 34h).
  • a line LC7 is formed above the line LB7 by the light reflected by the third pair of reflection surfaces 34C (the reflection surfaces 34c and 34i).
  • the line LD7 is formed above the line LC7 by the light reflected by the fourth reflection surface pair 34D (reflection surfaces 34d and 34j).
  • the line LE7 is formed above the line LD7 by the light reflected by the fifth reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • a line LF7 is formed above the line LE7 by the light reflected by the sixth reflecting surface pair 34F (the reflecting surfaces 34f and 34l).
  • the light reflected by the rotating mirror 34 (an example of the first mirror) is further reflected by the mirror 35 (an example of the second mirror). Therefore, the optical path from the reflecting surfaces 34a to 34l to the phosphor 38 can be made longer than when the light is reflected only by the reflecting surfaces 34a to 34l of the rotating mirror 34. Thus, the size of the optical unit can be reduced.
  • the laser light is emitted by the rotating mirror 34 and the mirrors 35 and 735, respectively. Since the laser light is reflected, the optical path from the reflecting surfaces 34a to 34l of the rotating mirror 34 to the light emitting surface (projection lens 36 or clear cover) of the optical unit is longer than when the laser light is reflected only by the rotating mirror 34. Become. Therefore, the optical unit can be reduced in size while preventing the diffusion width of the light distribution pattern from being reduced.
  • FIG. 29 shows a lamp unit 830 according to the fifth embodiment.
  • a rotating mirror 500 of a blade scan system may be used instead of the polygon mirror 34 used in the third and fourth embodiments.
  • the laser light emitted from the light source 632 hits the blade 501a of the rotating mirror 500.
  • the laser light is reflected by the blade 501a and travels straight toward the mirror 35.
  • the laser light reflected by the blade 501a hits the reflection surface of the mirror 35, the laser light is reflected by the reflection surface of the mirror 35, and the reflected laser light goes straight toward the phosphor 38. Therefore, also in the fifth embodiment, the optical path from the blade 501a to the phosphor 38 can be lengthened. Thus, the size of the optical unit can be reduced.
  • the boundary surface between the reflecting surfaces 34a to 34l of the rotating mirror 34 is discontinuous, but is not limited to this example.
  • the boundary surface between the reflection surfaces 34a to 34l may be a continuous surface.
  • the dodecahedral rotating mirror 34 is used when viewed from above, the light reflected by the pair of reflecting surfaces arranged diagonally forms the same line in the light distribution pattern.
  • the present invention is not limited to this example.
  • one line may be formed by light reflected by one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and has six reflecting surfaces along the rotating direction.
  • the lamp unit is described as being mounted on the vehicle headlamp, but is not limited to this example.
  • the optical unit including the light source and the rotating mirror as described above can be applied to components of a sensor unit (for example, a laser radar, a LiDAR, a visible light camera, an infrared camera, etc.) mounted on a vehicle. .
  • the present invention has been described with reference to the above embodiments.
  • the present invention is not limited to the above embodiments, and the configurations of the embodiments are appropriately combined or replaced. These are also included in the present invention. Further, it is also possible to appropriately change the combination and the order of processing in each embodiment based on the knowledge of those skilled in the art, and to add various modifications such as design changes to each embodiment. An embodiment to which is added can also be included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光照射装置(130)は、光源(32)と、光源(32)から出射された光を反射させる回転可能なミラー(134)と、を備えている。ミラー(134)の回転によって光源(42)から出射された光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンを形成する。ミラー(134)は、少なくとも一つの反射面(134a)から構成され、少なくとも一つの反射面(134a)においてミラー(134)の回転方向における曲率が変化するように構成されている。

Description

光照射装置
 本発明は、光照射装置に関する。
 近年、光源から出射した光を車両前方に反射し、その反射光で車両前方の領域を走査することで所定の配光パターンを形成する装置が考案されている。例えば、発光素子からなる複数の光源と、回転軸を中心に一方向に回転しながら複数の光源から出射した光を反射面において反射して所望の配光パターンを形成するブレードスキャン(登録商標)方式の回転リフレクタと、を備えた光学ユニットが知られている(特許文献1参照)。当該光学ユニットにおいて、複数の光源は、各光源から出射した光が回転リフレクタの反射面の異なる位置で反射するように配置されている。
日本国特開2015-26628号公報
 回転リフレクタに代えて、ポリゴンミラーを用いる光学ユニットも知られている。このような光学ユニットにおいて、配光パターンの制御には改善の余地がある。
 また、ポリゴンミラーを用いる光学ユニットは小型化が進んでいる。それに伴い、ポリゴンミラーと光学ユニットから光が出る面(光出射面)との間隔も狭まってきている。その結果、配光パターンの拡散幅が狭くなる。このようなポリゴンミラーを備えた光照射装置は、この点で改善の余地がある。
 そこで、本発明は、配光パターンの一部を他の部分よりも明るくする、すなわち、配光パターンの少なくとも一部の光度を高めることが可能な光照射装置を提供することを目的とする。
 また、本発明は、配光パターンの拡散幅を狭めることなく、光学ユニットを小型化することができる光照射装置を提供することを目的とする。
 上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記ミラーは少なくとも一つの反射面から構成され、当該少なくとも一つの反射面において前記ミラーの回転方向における曲率が変化するように構成されている。
 上記構成によれば、曲率の変化に応じて光の走査速度が変化するため、配光パターンの一部を他の部分よりも明るくすることが可能となる。また、配光パターンの一部を他の部分よりも明るくするために光源の出力を変化させる必要がなく、光源の出力制御が容易となる。
 また、本発明に係る光照射装置において、
 前記光の走査方向における前記ラインの中央領域を形成するための前記光の走査速度が、前記中央領域以外の領域を形成するための前記光の走査速度よりも遅くなるように、前記曲率が設定されていてもよい。
 上記構成によれば、光の走査方向におけるラインの中央領域の光度を他の領域の光度よりも高くすることができる。
 また、本発明に係る光照射装置において、
 前記少なくとも一つの反射面は、前記回転方向において平面と凸状または凹状の湾曲面とから構成されていてもよい。
 上記構成によれば、簡便な構成で、配光パターンの一部を他の部分よりも明るくすることができる。
 上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記ミラーは、前記ミラーの回転方向に沿って配置された複数の反射面を有し、
 前記複数の反射面は、前記配光パターンの少なくとも一部を構成する同一のライン上で前記光の少なくとも一部が重複するように構成されている。
 上記構成によれば、同一のライン上で光が重複することで、配光パターンの少なくとも一部の光度を高めることができる。
 前記複数の反射面のうち少なくとも二つの反射面で反射された前記光が前記配光パターンの少なくとも一部を構成する同一のラインを形成してもよい。
 上記構成によれば、複数の反射面で同一のラインを形成するため、配光パターンの少なくとも一部の光度を高めることができる。
 また、本発明に係る光照射装置において、
 前記配光パターンは、複数の第一のラインと、前記複数の第一のラインの間に配置された第二のラインとを含み、
 前記少なくとも二つの反射面は、前記少なくとも二つの反射面で反射された前記光が前記第二のラインを形成するように、構成されていてもよい。
 上記構成によれば、配光パターンのうち中央部の光度を高めることができる。
 上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能な第一のミラーと、
を備え、
 前記第一のミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査される、光照射装置であって、
 前記第一のミラーにより反射された光を反射させる第二のミラーをさらに備えている。
 上記構成に係る光照射装置によれば、第一のミラーで反射された光は、第二のミラーによってさらに反射される。このため、光が第一のミラーでのみ反射される場合と比べて、第一のミラーの反射面から当該光照射装置の光出射面までの光路が長くなる。
 このように、上記構成によれば、配光パターンの拡散幅が狭まってしまうことを防ぎつつ、光学ユニットを小型化させることができる。
 また、本発明に係る光照射装置は、
 前記第二のミラーにより反射された光を透過する光学部材をさらに備えてもよい。
 また、本発明に係る光照射装置において、
 前記光学部材は、蛍光体と投影レンズとを含み、
 前記蛍光体は、前記第一のミラーと前記投影レンズとの間に配置され、
 前記第二のミラーにより反射された光は、前記蛍光体上に走査され、
 前記蛍光体から出射された光は、前記投影レンズを透過して出射される。
 上記構成に係る光照射装置によれば、光が第一のミラーでのみ反射される場合と比べて、第一のミラーの反射面から蛍光体までの光路を長くすることができる。それにより、光学ユニットを小型化することができる。
 また、本発明に係る光照射装置において、
 前記ミラーは、ポリゴンミラーとして構成されていてもよい。
 前記ミラーとしては、ポリゴンミラーを用いることが好ましい。
 本発明によれば、配光パターンの一部を他の部分よりも明るくする、すなわち配光パターンの少なくとも一部の光度を高めることが可能な光照射装置を提供することができる。
 また、本発明によれば、配光パターンの拡散幅を狭めることなく、光学ユニットを小型化することができる光照射装置を提供することができる。
車両用前照灯の水平断面図である。 参考実施形態に係る光学ユニットの構成を模式的に示した斜視図である。 図2の光学ユニットの上面図である。 図2の光学ユニットの側面図である。 図4の光学ユニットにおいて回転ミラーが回転した状態を示す側面図である。 図2の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第一実施形態に係る光学ユニットの上面図である。 図7の光学ユニットにおける回転ミラーの一つの反射面を示す拡大図である。 図7の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第一変形例に係る回転ミラーを示す図である。 第一変形例の回転ミラーの一つの反射面を示す図である。 第二変形例に係る回転ミラーを示す図である。 第二変形例の回転ミラーの一つの反射面を示す図である。 図12の回転ミラーを備えた光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第三変形例に係る回転ミラーを示す図である。 第三変形例の回転ミラーの一つの反射面を示す図である。 第四変形例に係る光学ユニットの側面図である。 第二実施形態に係る光学ユニットの上面図である。 図18の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第五変形例に係る光学ユニットの上面図である。 第六変形例に係る光学ユニットの上面図である。 第五変形例および第六変形例に係る配光パターンの一例を示す模式図である。 第三実施形態に係る光学ユニットの構成を模式的に示した斜視図である。 図23の光学ユニットの上面図である。 図23の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第四実施形態に係る光学ユニットの構成を模式的に示した斜視図である。 図26の光学ユニットの側面図である。 図26の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第五実施形態に係る光学ユニットの上面図である。
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
 なお、本実施形態における、「左右方向」、「前後方向」、「上下方向」とは、図1に示す車両用前照灯について、説明の便宜上、設定された相対的な方向である。「前後方向」とは、「前方向」および「後方向」を含む方向である。「左右方向」とは、「左方向」および「右方向」を含む方向である。「上下方向」とは、「上方向」および「下方向」を含む方向である。
 本発明の光学ユニット(光照射装置の一例)は、種々の車両用灯具に用いることができる。はじめに、後述する各実施形態に係る光学ユニットを搭載可能な車両用前照灯の概略について説明する。
[車両用前照灯]
 図1は、車両用前照灯の水平断面図である。図2は、図1の車両用前照灯に搭載された光学ユニットの構成を模式的に示した斜視図である。図3は、光学ユニットの上面図であり、図4および5は光学ユニットの側面図である。
 図1に示す車両用前照灯10は、自動車の前端部の右側に搭載される右側前照灯であり、左側に搭載される前照灯と左右対称である以外は同じ構造である。そのため、以下では、右側の車両用前照灯10について詳述し、左側の車両用前照灯については説明を省略する。
 図1に示すように、車両用前照灯10は、前方に向かって開口した凹部を有するランプボディ12を備えている。ランプボディ12は、その前面開口が透明な前面カバー14によって覆われて灯室16が形成されている。灯室16は、2つのランプユニット20,30が車幅方向に並んで配置された状態で収容される空間として機能する。
 これらランプユニット20,30のうち車幅方向の内側、すなわち、右側の車両用前照灯10において図1に示す下側に配置されたランプユニット20は、ロービームを照射するように構成されている。一方、これらランプユニット20,30のうち車幅方向の外側、すなわち、右側の車両用前照灯10において図1に示す上側に配置されたランプユニット30は、レンズ36を備えたランプユニットであり、可変ハイビームを照射するように構成されている。
 ロービーム用のランプユニット20は、リフレクタ22と、例えばLEDからなる光源24とを有している。リフレクタ22およびLED光源24は、図示しない既知の手段、例えば、エイミングスクリューとナットを使用した手段によりランプボディ12に対して傾動自在に支持されている。
(参考実施形態)
 参考実施形態に係るハイビーム用のランプユニット30は、図2~図5に示すように、光源32と、リフレクタとしての回転ミラー34と、回転ミラー34の前方に配置された投影レンズとしての平凸レンズ36と、回転ミラー34と平凸レンズ36との間に配置された蛍光体38と、を備えている。
 光源32としては、例えば、レーザ光源を用いることができる。レーザ光源の代わりに、LEDやEL素子などの半導体発光素子を光源として用いることも可能である。光源32は、不図示の光源制御部により、点消灯の制御が可能となっている。特に後述する配光パターンの制御には、点消灯が短時間に精度よく行える光源を用いることが好ましい。光源制御部は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)及び/又はGPU(Graphics Processing Unit)である。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、ランプユニット30の制御プログラムが記憶されてもよい。
 平凸レンズ36の形状は、要求される配光パターンや照度分布などの配光特性に応じて適宜選択すればよいが、非球面レンズや自由曲面レンズが用いられる。平凸レンズ36の後方焦点は、例えば、蛍光体38の光出射面近傍に設定される。これにより、蛍光体38の光出射面の光像が上下反転して前方へ照射されることになる。
 蛍光体38は、例えば、光源32から出射された青色レーザ光で励起されることによって黄色光を発する蛍光体粉末が混合された樹脂材料により構成されている。青色レーザ光と黄色蛍光が混色して蛍光体38から出射されたレーザ光は白色光となる。
 回転ミラー34は、駆動源としてのモータ40に回転自在に接続されている。回転ミラー34は、モータ40により回転軸Rを中心に回転方向Dに回転する。回転ミラー34の回転軸Rは、光軸Axに対して斜めになっている(図4参照)。回転ミラー34は、回転方向Dに沿って配置された複数(本例では12面)の反射面34a~34lから構成されている。回転ミラー34の各反射面34a~34lは、光源32から出射した光を回転しながら反射する。これにより、図4に示すように光源32の光を用いた走査が可能となる。回転ミラー34は、例えば、12面の反射面を多角形状に構成したポリゴンミラーである。
 ここで、反射面34a~34hのうち、反射面34aと、当該反射面34aと対角線上の反対側に位置する反射面34gとを、第一反射面対34Aとする。反射面34bと、当該反射面34bと対角線上の反対側に位置する反射面34hとを、第二反射面対34Bとする。反射面34cと、当該反射面34cと対角線上の反対側に位置する反射面34iとを、第三反射面対34Cとする。反射面34dと、当該反射面34dと対角線上の反対側に位置する反射面34jとを、第四反射面対34Dとする。反射面34eと、当該反射面34eと対角線上の反対側に位置する反射面34kとを、第五反射面対34Eとする。反射面34fと、当該反射面34fと対角線上の反対側に位置する反射面34lとを、第六反射面対34Fとする。
 第一反射面対34Aは、光源32からのレーザ光が反射面34aで反射されるときの(すなわち、図3および図4に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面34aと光軸Axとの成す角θaと、光源32からのレーザ光が反射面34gで反射されるときの上下方向および前後方向からなる面における反射面34gと光軸Axとの成す角が略同一となるように形成されている。同様に、第二反射面対34Bは、光源32からのレーザ光が反射面34bで反射されるときの(すなわち、図5に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面34bと光軸Axとの成す角θbと、光源32からのレーザ光が反射面34hで反射されるときの上下方向および前後方向からなる面における反射面34hと光軸Axとの成す角が略同一となるように形成されている。第三反射面対34Cは、光源32からのレーザ光が反射面34cで反射されるときの反射面34cと光軸Axとの成す角と、光源32からのレーザ光が反射面34iで反射されるときの反射面34iと光軸Axとの成す角が略同一となるように形成されている。第四反射面対34Dは、光源32からのレーザ光が反射面34dで反射されるときの反射面34dと光軸Axとの成す角と、光源32からのレーザ光が反射面34jで反射されるときの反射面34jと光軸Axとの成す角が略同一となるように形成されている。第五反射面対34Eは、光源32からのレーザ光が反射面34eで反射されるときの反射面34eと光軸Axとの成す角と、光源32からのレーザ光が反射面34kで反射されるときの反射面34kと光軸Axとの成す角が略同一となるように形成されている。第六反射面対34Fは、光源32からのレーザ光が反射面34f,34lと光軸Axとの成す角が互いに略同一となるように形成されている。すなわち、回転ミラー34の各反射面34a~34lは、対角線上にある一対の反射面同士が同じ角度の傾斜面となるように形成されている。これにより、第一反射面対34A~第六反射面対34Fをそれぞれ構成する一対の反射面により反射された光は、車両前方の上下方向において略同一の位置に照射される。また、回転ミラー34がモータ40により回転方向Dに回転する際の回転ミラー34のブレを防止することができる。
 また、光源32からのレーザ光が第一反射面対34Aで反射されるときの当該第一反射面対34Aと光軸Axとの成す角θaは、光源32からのレーザ光が他の反射面対34B~34Fで反射されるときの他の反射面対34B~34Fの各反射面と光軸Axとの成す角とは異なるように形成されている。例えば、図5に示す反射面34bと光軸Axとの成す角θbは、図4に示す反射面34aと光軸Axとの成す角θaよりもやや小さくなるように形成されている。同様に、第二反射面対34B、第三反射面対34C、第四反射面対34D、第五反射面対34E、第六反射面対34Fの順で、各反射面対と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面対により反射された光は、車両前方の上下方向において他の反射面対とは異なる位置に照射される。例えば、反射面34bにより反射された光Lbは、車両前方の仮想鉛直スクリーン上において反射面34aにより反射された光Laよりも上方に照射される。
 上記のように構成された回転ミラー34の各反射面34a~34lにより反射されて蛍光体38を介して平凸レンズ36を透過した光は、車両前方の所定位置(例えば、車両の25m前方)の仮想鉛直スクリーン上において図6に示すような配光パターンP1を形成する。具体的には、第一反射面対34A(反射面34a,34g)で反射された光により、図6に示す配光パターンP1のうち最下部のラインLA1が形成される。また、第二反射面対34B(反射面34b,34h)で反射された光により、ラインLA1の上側にラインLB1が形成される。第三反射面対34C(反射面34c,34i)で反射された光により、ラインLB1の上側にラインLC1が形成される。第四反射面対34D(反射面34d,34j)で反射された光により、ラインLC1の上側にラインLD1が形成される。第五反射面対34E(反射面34e,34k)で反射された光により、ラインLD1の上側にラインLE1が形成される。第六反射面対34F(反射面34f,34l)で反射された光により、ラインLE1の上側にラインLF1が形成される。このように、回転ミラー34の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP1が形成される。
 なお、各反射面34a~34lの間の境界で光源32からのレーザ光が反射されると、レーザ光が散乱して不適切な配光が形成されるおそれがある。そのため、光源制御部は、各反射面34a~34l間の境界と光源32からのレーザ光の光線が交差するタイミングでは光源32を消灯するように、光源32の点消灯を制御することが好ましい。
 また、参考実施形態に係るランプユニット30においては、備えている光源32は比較的小さく、光源32が配置されている位置も回転ミラー34と平凸レンズ36との間であって光軸Axよりずれている。そのため、従来のプロジェクタ方式のランプユニットのように、光源とリフレクタとレンズとが光軸上に一列に配列されている場合と比較して、車両用前照灯10の車両前後方向の長さを短くすることができる。
(第一実施形態)
 図7は、第一実施形態に係るランプユニット130の上面図を示す。図7に示すようにランプユニット130は、光源32と、回転ミラー134と、平凸レンズ36と、蛍光体38と、を備えている。
 ランプユニット130の回転ミラー134は、回転方向Dに沿って並列して配置される複数(本例では12面)の反射面134a~134lを備えている。回転ミラー134の反射面134a~134lは、各反射面において回転ミラー134の回転方向Dにおける反射面の曲率が変化するように構成されている。
 図8は、回転ミラー134の反射面134a~134lのうちの一つの反射面、例えば、反射面134aの構成を示す拡大図である。図8に示すように反射面134aは、二つの平面135と一つの凹状湾曲面136とで構成されている。
 凹状湾曲面136は、回転方向Dにおいて、反射面134aの中央部に配置されている。二つの平面135は、回転方向Dにおいて、凹状湾曲面136を間に挟むように凹状湾曲面136の両側に配置されている。二つの平面135とその間に挟まれた凹状湾曲面136とは、連続的につながるように形成されている。
 二つの平面135は、凹状湾曲面136側(反射面134aの中央)に向かって下り傾斜となるように形成されている。凹状湾曲面136は、回転軸R(図7参照)側に凹んだ湾曲反射面として形成されている。2つの平面135の端部同士を結ぶ直線、すなわち図8において左側の平面135の左端部と右側の平面135の右端部とを結ぶ直線上における各平面135の長さxa、および当該直線に対する各平面135の傾斜角度は、光源32から各平面135へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。また、凹状湾曲面136の両端部を結ぶ直線上における凹状湾曲面136の長さxb、および凹状湾曲面136の湾曲度は、光源32から凹状湾曲面136へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。例えば、平面135の長さxaは、凹状湾曲面136の長さxbよりも長くなるように設定されている。
 このような構成の反射面134aによって反射されたレーザ光は、回転ミラー134の回転方向Dに沿った回転の速度が一定であるとすると、図7に示すように、ランプユニット130の左右方向において、例えば、拡散角度Wabだけ拡散する。このうち、凹状湾曲面136で反射されたレーザ光は、ランプユニット130の左右方向において、光軸Axを中心として拡散角度Waだけ拡散する。そして、二つの平面135で反射されたレーザ光は、ランプユニット130の左右方向において、凹状湾曲面136で反射されたレーザ光の両側にそれぞれ拡散角度Wbずつ拡散する。
 なお、回転ミラー134を構成する他の反射面134b~134lは、反射面134aと同じ構成を有するように形成されている。
 光源32から出射されたレーザ光が反射面134aで反射されるときの当該反射面134aと光軸Axとの成す角は、光源32から出射されたレーザ光が反射面134gで反射されるときの当該反射面134gと光軸Axとの成す角と略同一となるように形成されている(図4,図5参照)。同様に、反射面134bと光軸Axとの成す角は、反射面134hと光軸Axとの成す角と略同一となるように形成されている。同様に、反射面134cと光軸Axとの成す角は、反射面134iと光軸Axとの成す角と略同一となるように形成されている。同様に、反射面134dと光軸Axとの成す角は、反射面134jと光軸Axとの成す角と略同一となるように形成されている。同様に、反射面134eと光軸Axとの成す角は、反射面134kと光軸Axとの成す角と略同一となるように形成されている。同様に、反射面134fと光軸Axとの成す角は、反射面134lと光軸Axとの成す角と略同一となるように形成されている。
 すなわち、回転ミラー134の反射面134a~134lは、参考実施形態と同様に、対角線上にある一対の反射面同士が同じ角度の傾斜面となるように形成されている。これにより、反射面134aと反射面134gとで反射されたレーザ光は、車両前方の上下方向において略同一の位置に照射される。また、反射面134bと反射面134hとで反射されたレーザ光、反射面134cと反射面134iとで反射されたレーザ光、反射面134dと反射面134jとで反射されたレーザ光、反射面134eと反射面134kとで反射されたレーザ光、反射面134fと反射面134lとで反射されたレーザ光は、車両前方の上下方向において略同一の位置に照射される。
 また、参考実施形態と同様に、一の反射面対と光軸Axとの成す角は、他の反射面対と光軸Axとの成す角とは異なるように形成されている。例えば、反射面134bおよび反射面134hと光軸Axとの成す角は、反射面134aおよび反射面134gと光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、反射面134cおよび反射面134i、反射面134dおよび反射面134j、反射面134eおよび反射面134k、反射面134fおよび反射面134lの順で、各反射面対と光軸Axとの成す角が小さくなるように形成されている。
 これにより、一の反射面対により反射されたレーザ光は、車両前方の上下方向において他の反射面対により反射されたレーザ光とは異なる位置に照射される。例えば、反射面134bおよび反射面134hで反射されたレーザ光は、反射面134aおよび反射面134gで反射されたレーザ光よりも上方に照射される。また、反射面134cおよび反射面134iで反射されたレーザ光は、反射面134bおよび反射面134hで反射された光よりも上方に照射される。
 図9は、第一実施形態に係るランプユニット130により車両前方に形成される配光パターンP2を車両側から観察した図である。
 図9に示すように、配光パターンP2は、複数の段(本例では6段)に分かれてライン(LA2~LF2)状に走査されるレーザ光によって形成される。光源32から出射されたレーザ光は、回転ミラー134の反射面134a~134lにより反射され、蛍光体38を介して平凸レンズ36を透過する。参考実施形態と同様に、平凸レンズ36の後方焦点は蛍光体38の光出射面近傍に設定されているため、蛍光体38の光出射面の光像が上下反転して前方へ照射される。
 具体的には、反射面134aで反射されたレーザ光により、図9に示す配光パターンP2のうち最下部の第一ラインLA2が形成される。また、反射面134bで反射されたレーザ光により、第一ラインLA2の上側に第二ラインLB2が形成される。反射面134cで反射されたレーザ光により、第二ラインLB2の上側に第三ラインLC2が形成される。反射面134dで反射されたレーザ光により、第三ラインLC2の上側に第四ラインLD2が形成される。反射面134eで反射されたレーザ光により、第四ラインLD2の上側に第五ラインLE2が形成される。反射面134fで反射されたレーザ光により、第五ラインLE2の上側に第六ラインLF2が形成される。同様に、反射面134g、134h、134i、134j、134k、134lで反射された光により、第一ラインLA2、第二ラインLB2、第三ラインLC2、第四ラインLD2、第五ラインLE2、第六ラインLF2がそれぞれ形成される。
 ところで、参考実施形態のように反射面34a~34lが全て平面で構成されている回転ミラー34を用いて配光パターンの一部を他の部分よりも明るくしようとする場合、例えば、光源から回転ミラーに向けて照射する光量を各反射面内で部分ごとに変化させるような光源の制御方法を採用することが考えられる。しかしながら、この方法では、反射面ごとに短いタイミングで頻繁に光源の出力を変化させなければならず制御が複雑となる。また、光源の出力を変化させる必要があり、光の利用効率が低下する場合がある。
 これに対して、上記第一実施形態に係るランプユニット130は、回転ミラー134の各反射面134a~134lにおいて回転ミラー134の回転方向Dにおける反射面の曲率が変化するように構成されている。具体的には、各反射面134a~134lは、反射面の中央部に配置される凹状湾曲面136と凹状湾曲面136を間に挟むように凹状湾曲面136の両側に配置される二つの平面135により構成されている。この構成によれば、中央部の凹状湾曲面136で反射されたレーザ光は、凹状湾曲面136の両側に配置される平面135で反射されたレーザ光と比較して中央方向(光軸Ax側)に集光するように進行する。このため、回転ミラー134により反射された光により形成される配光パターンP2の走査方向において、各ライン(LA2~LF2)の中央領域を形成する光の走査速度は、各ラインの側部領域を形成する光の走査速度よりも遅くなる。よって、ランプユニット130によれば、図9に示すように、配光パターンP2を形成する際に、各ライン(LA2~LF2)における左右方向の中央領域(図9の斜線で示す領域)Lwaの光度を各ラインの側部領域Lwbの光度よりも高くすることができる。
 また、この構成によれば、配光パターンP2の一部(中央領域Lwa)を他の部分(側部領域Lwb)よりも明るくするために光源32の照射光量を変化させる必要がない。そのため、光源32の出力制御が容易となる。さらに、各反射面134a~134lにレーザ光を照射させる際に光源32から出射させるレーザ光の出射光量を低下させる必要がない。そのため、光の利用効率を向上させることができる。
 次に、第一実施形態に係る回転ミラー134の変形例について説明する。
(第一変形例)
 図10は、第一変形例に係る回転ミラー144の構成を示す図であり、図11は、回転ミラー144の一つの反射面144aの構成を示す図である。
 図10に示すように、回転ミラー144は、図7に示す回転ミラー134と同様に、回転方向Dに沿って並列して配置される複数(例えば12面)の反射面144a~144lを備えている。また、回転ミラー144の反射面144a~144lは、各反射面において回転ミラー144の回転方向Dにおける反射面の曲率が変化するように構成されている。
 図11に示すように、反射面144aは、二つの凸状湾曲面145と一つの平面146とで構成されている。
 平面146は、回転方向Dにおいて、反射面144aの中央部に配置されている。二つの凸状湾曲面145は、回転方向Dにおいて、平面146を間に挟むように平面146の両側に配置されている。二つの凸状湾曲面145とその間に挟まれた平面146とは、連続的につながるように形成されている。凸状湾曲面145は、回転ミラー144の外方向に突出する湾曲反射面として形成されている。二つの凸状湾曲面145の端部同士を結ぶ直線、すなわち、図11において左側の凸状湾曲面145の左端部と右側の凸状湾曲面145の右端部とを結ぶ直線上における凸状湾曲面145の長さxa1、および凸状湾曲面145の湾曲度は、光源32から各凸状湾曲面145へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。また、平面146の両端部を結ぶ直線上における平面146の長さxb1は、光源32から平面146へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。例えば、凸状湾曲面145の長さxa1は、平面146の長さxb1よりも長くなるように設定されている。
 なお、回転ミラー144を構成する他の反射面144b~144lは、反射面144aと同じ構成を有する。
 このような構成の回転ミラー144によれば、両側部の凸状湾曲面145で反射されたレーザ光の拡散角度は、中央部の平面146で反射されたレーザ光の拡散角度よりも大きくなるように構成されている。このため、反射光により形成される配光パターンの走査方向において、各ラインLA2~LF2の中央領域を形成するレーザ光の走査速度は、各ラインLA2~LF2の側部領域を形成するレーザ光の走査速度よりも遅くなる。よって、回転ミラー144によれば、上記回転ミラー134で形成される図9の配光パターンP2と同様に、各ラインLA2~LF2における中央領域Lwaの光度を各ラインLA2~LF2の側部領域Lwbの光度よりも高くすることができる。
 また、回転ミラー144によれば、上記回転ミラー134と同様に、光源32の出力制御が容易であり、且つ、光の利用効率を向上させることができる。
(第二変形例)
 図12は、第二変形例に係る回転ミラー154の構成を示す図であり、図13は、回転ミラー154の一つの反射面154aの構成を示す図である。
 図12に示すように、回転ミラー154は、図7に示す回転ミラー134と同様に、回転方向Dに沿って並列して配置される複数(例えば12面)の反射面154a~154lを備えている。反射面154a~154lは、各反射面において回転ミラー154の回転方向Dにおける反射面の曲率が変化するように構成されている。
 図13に示すように、反射面154aは、二つの凹状湾曲面155と一つの平面156とで構成されている。
 平面156は、回転方向Dにおいて、反射面154aの中央部に配置されている。二つの凹状湾曲面155は、回転方向Dにおいて、平面156を間に挟むように平面156の両側に配置されている。二つの凹状湾曲面155とその間に挟まれた平面156とは、連続的につながるように形成されている。凹状湾曲面155は、回転軸R(図12参照)側に凹んだ湾曲反射面として形成されている。二つの凹状湾曲面155の端部同士を結ぶ直線、すなわち、図13において左側の凹状湾曲面155の左端部と右側の凹状湾曲面155の右端部とを結ぶ直線上における長さxa2、および凹状湾曲面155の湾曲度は、光源32から各凹状湾曲面155へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。また、平面156の両端部を結ぶ直線上における平面156の長さxb2は、光源32から平面156へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。例えば、凹状湾曲面155の長さxa2は、平面156の長さxb2よりも長くなるように設定されている。
 なお、回転ミラー154を構成する他の反射面154b~154lは、反射面154aと同じ構成を有する。
 図14は、回転ミラー154により車両前方に形成される配光パターンP3を車両側から観察した図である。図14に示すように、配光パターンP3は、複数の段(本例では6段)に分かれてライン(LA3~LF3)状に走査される光によって形成される。
 このような構成の回転ミラー154によれば、両側部の凹状湾曲面155で反射されたレーザ光は、中央部の平面156で反射されたレーザ光と比較して集光するように進行する。このため、反射光により形成される配光パターンP3の走査方向において、各ラインLA3~LF3の側部領域を形成する光の走査速度は、各ラインLA3~LF3の中央領域を形成する光の走査速度よりも遅くなる。よって、回転ミラー154によれば、図14に示すように、配光パターンP3を形成する際に、各ラインLA3~LF3における両側部領域(図14の斜線で示す領域)の光度を各ラインLA3~LF3の中央領域の光度よりも高くすることができる。
 また、回転ミラー154によれば、上記回転ミラー134と同様に、光源32の出力制御が容易であり、かつ、光の利用効率を向上させることができる。
(第三変形例)
 図15は、第三変形例に係る回転ミラー164の構成を示す図であり、図16は、回転ミラー164の一つの反射面164aの構成を示す図である。
 図15に示すように、回転ミラー164は、図7に示す回転ミラー134と同様に、回転方向Dに沿って並列して配置される複数(例えば12面)の反射面164a~164lを備えている。反射面164a~164lは、各反射面において回転ミラー164の回転方向Dにおける反射面の曲率が変化するように構成されている。
 図16に示すように、反射面164aは、二つの平面165と一つの凸状湾曲面166とで構成されている。
 凸状湾曲面166は、回転方向Dにおいて、反射面164aの中央部に配置されている。二つの平面165は、回転方向Dにおいて、凸状湾曲面166を間に挟むように凸状湾曲面166の両側に配置されている。二つの平面165とその間に挟まれた凸状湾曲面166とは、連続的につながるように形成されている。二つの平面165は、凸状湾曲面166側(反射面164aの中央)に向かって上り傾斜となるように形成されている。凸状湾曲面166は、回転ミラー164の外方向に突出する湾曲反射面として形成されている。二つの平面165の端部同士を結ぶ直線、すなわち、図16において左側の平面165の左端部と右側の平面165の右端部とを結ぶ直線上における長さxa3、および当該直線に対する平面165の傾斜角度は、光源32から各平面165へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。また、凸状湾曲面166の両端部を結ぶ直線上における凸状湾曲面166の長さxb3、および凸状湾曲面166の湾曲度は、光源32から凸状湾曲面166へ照射されたレーザ光が蛍光体38に向けて所定の拡散角度で反射するように設定されている。例えば、平面165の長さxa3は、平面156の長さxb3よりも長くなるように設定されている。
 なお、回転ミラー164を構成する他の反射面164b~164lは、反射面164aと同じ構成を有する。
 このような構成の回転ミラー164によれば、中央部の凸状湾曲面166で反射されたレーザ光の拡散角度は、両側部の平面165で反射されたレーザ光の拡散角度よりも大きくなるように構成されている。このため、反射光により形成される配光パターンの走査方向において、各ラインの側部領域を形成する光の走査速度は、各ラインの中央領域を形成する光の走査速度よりも遅くなる。よって、回転ミラー164によれば、上記回転ミラー154で形成される図14の配光パターンP3と同様に、各ライン(LA3~LF3)における両側部領域(斜線で示す領域)の光度を各ラインの中央領域の光度よりも高くすることができる。
 また、回転ミラー164によれば、上記回転ミラー134と同様に、光源32の出力制御が容易であり、且つ、光の利用効率を向上させることができる。
 なお、上記第一実施形態および第一変形例~第三変形例においては、同じ構成の反射面同士を対角線上に配置させ、この対角線上の両反射面の傾斜角度を同じにしているが、この組み合わせに限定されない。例えば、第一実施形態における二つの平面135と一つの凹状湾曲面136とで構成される反射面と、第一変形例における二つの凸状湾曲面145と一つの平面146とで構成される反射面とを対角線上に配置させ、両反射面の傾斜角度を同じにしてもよい。また、第二変形例における二つの凹状湾曲面155と一つの平面156とで構成される反射面と、第三変形例における二つの平面165と一つの凸状湾曲面166とで構成される反射面とを対角線上に配置させ、両反射面の傾斜角度を同じにしてもよい。さらに、第一実施形態、第一変形例~第三変形例における反射面を上記以外の組み合わせで配置させるようにしてもよい。
 また、第一実施形態および第一変形例~第三変形例においては、各反射面を平面と凹状湾曲面、あるいは平面と凸状湾曲面により構成しているが、この組み合わせに限定されない。例えば、各反射面の中央領域を凹状湾曲面で構成し、その両側部領域を凸状湾曲面で構成するようにしてもよい。また、各反射面の中央領域を凸状湾曲面で構成し、その両側部領域を凹状湾曲面で構成するようにしてもよい。
 また、上記の実施形態および変形例においては、上面視において12面体の回転ミラーを用い、対角線上に配置された一対の反射面により反射された光が配光パターンのうち同一のラインを形成しているが、この例に限られない。例えば、一つの反射面で反射された光により一つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが六つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って六つの反射面を備えることとなる。
(第四変形例)
 図17は、第四変形例に係るランプユニット530を示す。
 図17に示すように、上記実施形態で用いたポリゴンミラー134の代わりに、ブレードスキャン(登録商標)方式の回転ミラー(回転リフレクタ)500を用いてもよい。回転ミラー500は、複数枚(図17では3枚)のブレード501aと、筒状の回転部501bとを備えている。各ブレード501aは、回転部501bの周囲に設けられており、反射面として機能する。回転ミラー500は、その回転軸Rが光軸Axに対して斜めになるように配置されている。
 ブレード501aは、回転軸Rを中心とする周方向に向かうにつれて、光軸Axと反射面とが成す角が変化するように捩られた形状を有している。これにより、ポリゴンミラー134と同様に、光源32の光を用いた走査が可能となる。
 各ブレード501aは、回転ミラー500の回転方向における反射面の曲率が変化するように構成されている。例えば、各ブレード501aの反射面は、図8、図11、図13および図16のいずれか一つに図示された回転ミラーの反射面と同様の形状となるように形成されている。このような回転ミラー500を用いた場合も、上記実施形態と同様に、曲率の変化に応じて光の走査速度が変化するため、配光パターンの一部を他の部分よりも明るくすることが可能となる。
 上記の実施形態においては、ランプユニットが車両用前照灯に搭載されたものとして説明しているが、この例に限られない。上記で説明したような光源や回転ミラー等を備えた光学ユニットを、車両に搭載されるセンサユニット(例えば、レーザレーダやLiDAR等)の構成部品に適用することもできる。この場合も、回転ミラーの各反射面において回転ミラーの回転方向における曲率が変化するように構成することで、センサ対象範囲のうち特定の領域のセンサ感度を向上させることができる。
(第二実施形態)
 図18は、第二実施形態に係るランプユニット230の上面図を示す。図18に示すようにランプユニット230は、光源32と、回転ミラー234と、平凸レンズ36と、蛍光体38と、を備えている。
 ランプユニット230の回転ミラー234は、回転方向Dに沿って並列して配置される複数(本例では8面)の反射面234a~234hを有している。回転ミラー234の反射面234a~234hは、本例では全て平面状に形成されている。また、反射面234a~234hは、各反射面の回転方向Dに沿った面の長さが同じ長さになるように形成されている。なお、反射面の形状は、平面に限定されず、例えば、凸状の湾曲面、凹状の湾曲面等で構成するようにしてもよい。
 光源32から照射されたレーザ光が反射面234a~234hで反射されるときの各反射面234a~234hと光軸Axとのそれぞれの成す角は、少なくともその中の二つの成す角が同じとなるように形成されている。例えば、反射面234a~234fの各反射面と光軸Axとの成す角がそれぞれ異なるように形成されており、反射面234gと光軸Axとの成す角が反射面234cと光軸Axとの成す角と同じになるように形成され、反射面234hと光軸Axとの成す角が反射面234dと光軸Axとの成す角と同じになるように形成されている(図4,図5参照)。
 反射面234a~234fの各反射面と光軸Axとの成す角は、例えば、反射面234bと光軸Axとの成す角が、反射面234aと光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、反射面234c、反射面234d、反射面234e、反射面234fの順で、各反射面と光軸Axとの成す角が小さくなるように形成されている。これにより、反射面234a~234fの一の反射面により反射された光は、車両前方の上下方向において他の反射面とは異なる位置に照射される。例えば、反射面234bで反射された光は、反射面234aで反射された光よりも上方に照射される。また、反射面234cで反射された光は、反射面234bで反射された光よりも上方に照射される。また、反射面234dで反射された光は、反射面234cで反射された光よりも上方に照射される。また、反射面234eで反射された光は、反射面234dで反射された光よりも上方に照射される。また、反射面234fで反射された光は、反射面234eで反射された光よりも上方に照射される。
 そして、反射面234gで反射された光は、光軸Axとの成す角が同じである反射面234cで反射された光と同じ方向に照射される。また、反射面234hで反射された光は、光軸Axとの成す角が同じである反射面234dで反射された光と同じ方向に照射される。
 図19は、ランプユニット230により車両前方に形成される配光パターンP4を示す。
 図19に示すように、配光パターンP4は、光源32から出射されたレーザ光により形成される複数のライン(LA4~LH4)を含んでいる。光源32から出射されたレーザ光は、回転ミラー234の各反射面234a~234hで反射され、蛍光体38を介して平凸レンズ36を透過する。参考実施形態と同様に、平凸レンズ36の後方焦点は蛍光体38の光出射面近傍に設定されているため、蛍光体38の光出射面の光像が上下反転して前方へ照射される。レーザ光は、回転ミラー234の回転によって光の反射方向が変位することで、複数の段に分かれてライン状に走査される。
 具体的には、反射面234aで反射された光により、図19に示す配光パターンP4のうち最下部のラインLA4が形成される。また、反射面234bで反射された光により、ラインLA4の上側にラインLB4が形成される。反射面234cで反射された光により、ラインLB4の上側にラインLC4が形成される。反射面234dで反射された光により、ラインLC4の上側にラインLD4が形成される。反射面234eで反射された光により、ラインLD4の上側にラインLE4が形成される。反射面234fで反射された光により、ラインLE4の上側にラインLF4が形成される。そして、反射面234gで反射された光により、ラインLC4に重複してラインLG4が形成される。反射面234hで反射された光により、ラインLD4に重複してラインLH4が形成される。
 本例においては、配光パターンP4の上下方向における中央下部のライン(上から四段目に相当するラインLC4,LG4)が反射面234cで反射された光と反射面234gで反射された光とにより二度走査されるように構成されている。また、配光パターンP4の上下方向における中央上部のライン(上から三段目に相当するラインLD4,LH4)が反射面234dで反射された光と反射面234hで反射された光とにより二度走査されるように構成されている。
 なお、重複して走査されるラインは、反射面と光軸Axとの成す角を設定することにより、配光パターンP4における任意のラインとすることが可能である。
 このようにランプユニット230は、回転ミラー234の複数の反射面234a~234hのうち少なくとも二つの反射面で反射された光により、配光パターンP4の上下方向における一部のラインを重複して走査することができるように構成されている。例えば、配光パターンP4は、ラインLF4,LE4,LB4,LA4(第一のラインの一例)、およびラインLF4,LE4とラインLB4,LA4(第一のラインの一例)との間に配置されたラインLD4(LH4),LC4(LG4)(第二のラインの一例)とから構成されている。そして、回転ミラー234の二つの反射面234dおよび反射面234hで反射されたレーザ光が同一のラインLD4(LH4)を形成し、二つの反射面234cおよび反射面234gで反射されたレーザ光が同一のラインLC4(LG4)を形成するように構成されている。このため、ランプユニット230の構成によれば、例えば、図19に示すように、配光パターンP4のうち上下方向の中央部の領域(図19の斜線で示す領域)の光度をそれ以外の領域の光度よりも高めることができる。
 なお、上記第二実施形態においては、上面視において8面体の回転ミラー234を用いているが、この例に限定されない。各反射面と光軸Axとの成す角の中の少なくとも二つの成す角が同じとなるように形成されていればよく、例えば、図19に示すように6行のラインで配光パターンを形成する場合には、7面以上の反射面を有する回転ミラーであればよい。
(第五変形例および第六変形例)
 図20は、第五変形例に係るランプユニット330の上面図である。図20に示すようにランプユニット330は、光源32と、回転ミラー334と、平凸レンズ36と、蛍光体38と、を備えている。
 ランプユニット330の回転ミラー334は、回転方向Dに沿って並列して配置される複数(本例では8面)の反射面334a~334hを有している。回転ミラー334の反射面334a~334hは、本例では全て平面状に形成されている。また、反射面334a~334hのうち反射面334eは、他の反射面よりも、回転方向Dに沿った面の長さ(面幅)が短くなるように形成されている。反射面334eの両側の反射面334d,334fの面幅を長くすることで、反射面334eの面幅を短くすることができる。これにより、反射面334eで反射された光は、他の反射面で反射された光に比べて、左右方向において狭い範囲に照射される。なお、図示は省略するが、側面視において、面幅の短い反射面334eと光軸Axとの成す角は、反射面334eと隣り合う反射面334dと光軸Axとの成す角と同一に設定されている。これにより、反射面334dで反射された光と反射面334eで反射された光とが同一ライン上に照射される。
 図21は、第六変形例に係るランプユニット430の上面図である。図21に示すようにランプユニット430は、光源32と、回転ミラー434と、平凸レンズ36と、蛍光体38と、を備えている。
 ランプユニット430の回転ミラー434は、回転方向Dに沿って並列して配置される複数(本例では8面)の反射面434a~434hを有している。回転ミラー434の反射面434a~434hのうち反射面434eは、回転軸R側に凹んだ凹状湾曲面として形成されている。また、反射面434e以外の反射面434a~434d,434f~434hは、すべて平面状に形成されている。これにより、凹状の反射面434eで反射された光は、平面状の反射面434a~434d,434f~434hで反射された光に比べて、左右方向において集光される。なお、図示は省略するが、側面視において、面幅の短い反射面434eと光軸Axとの成す角は、反射面434eと隣り合う反射面434dと光軸Axとの成す角と同一に設定されている。これにより、反射面434dで反射された光と反射面434eで反射された光とが同一ライン上に照射される。
 図22は、第二実施形態の第五変形例および第六変形例に係る配光パターンP5の一例を示す模式図である。
 図22に示すように、配光パターンP5は、ラインLH5,LG5,LF5,LD5,LC5,LB5,LA5と、ラインLD5と同一ライン上であってラインLD5の左右方向における中央領域に重複して形成されるラインLE5とから構成されている。第五変形例の回転ミラー334の場合は、ラインLE5を形成するための反射面334eの面幅が他の反射面の面幅よりも短く設定されているため、ラインLE5の左右方向の長さはラインLD5等の長さよりも短くなる。また、第六変形例の回転ミラー434の場合は、ラインLE5を形成するための反射面434eが凹状湾曲面として形成されているため、反射面434eで反射された光は左右方向において集光され、ラインLE5の左右方向の長さはラインLD5等の長さよりも短くなる。
 このように、反射面334e,434eによって形成されるラインを他の反射面によって形成されるラインの一部に重畳させることで、配光パターンの一部領域の光度を他の領域の光度よりも高くすることができる。なお、図22の例においては、ラインLE5は、ラインLD5の中央領域に重複して形成されているが、ラインの重畳部位の範囲(位置、大きさ、形状等)はこの例に限られない。ラインの重畳範囲に自由度を持たせることで、配光パターンの所望の領域の光度を適宜変更することができる。
(第七変形例)
 上記第二実施形態で用いたポリゴンミラー234,334,434の代わりに、ブレードスキャン方式の回転ミラー500を用いてもよい(図17参照)。図17の回転ミラー500においても、複数のブレード501aのうち少なくとも二つのブレード501aで反射された光が、配光パターンの上下方向における一部のラインを重複して走査することができるように構成することで、上記第二実施形態と同様に、配光パターンのうち一部の領域の光度をそれ以外の領域の光度よりも高めることができる。
 上記の第二実施形態においては、ランプユニットが車両用前照灯に搭載されたものとして説明しているが、この例に限られない。上記で説明したような光源や回転ミラー等を備えた光学ユニットを、車両に搭載されるセンサユニット(例えば、レーザレーダやLiDAR等)の構成部品に適用することもできる。この場合も、回転ミラーの複数の反射面のうち少なくとも二つの反射面で反射された光が同一の範囲を照射するように構成されていることで、センサ対象範囲のうち特定の領域におけるセンサ感度を向上させることができる。
(第三実施形態)
 第三実施形態に係るハイビーム用のランプユニット630は、図23に示すように、光源632と、リフレクタとしての回転ミラー34(第一のミラーの一例)と、回転ミラー34の前方に配置された投影レンズとしての平凸レンズ36と、回転ミラー34と平凸レンズ36との間に配置された蛍光体38と、前後方向において、回転ミラー34の回転軸Rより前であって、蛍光体38より後に配置されたミラー35(第二のミラーの一例)と、を備えている。
 第三実施形態に係るランプユニット630は、ミラー35をさらに備えている点、及び光源32に代わりに光源632を備えている点で、参考実施形態に係るランプユニット30と異なる。
 光源632は光源32と同じ機能を有する。参考実施形態に係る光源32は回転ミラー34の前方に配置されているのに対し、第三実施形態に係る光源632は、回転ミラー34の斜め後方に配置されている
 ミラー35は、前後方向において、回転ミラー34の回転軸Rより前であって、蛍光体38より後に配置されている。ミラー35は、回転ミラー34の左前方に配置されている。ミラー35の表面のうち、回転ミラー34に対向する表面は反射面である。ミラー35は、回転ミラー34によって反射されたレーザ光が当たる位置に配置されている。
 図24は、第三実施形態に係る光学ユニットの上面図である。回転ミラー34が、図24に示すような配置関係にあるとき、光源632から出射されたレーザ光は、回転ミラー34の反射面34aに当たる。当該レーザ光は、反射面34aによって反射され、ミラー35に向かって直進する。反射面34aによって反射されたレーザ光が、ミラー35の反射面に当たると、当該レーザ光はミラー35の反射面によって反射され、反射されたレーザ光は、蛍光体38に向かって直進する。このときの蛍光体38上での走査範囲はS2である。当該レーザ光は、その後、蛍光体38を介して平凸レンズ36を透過する。
 反射面34aからミラー35までの光路の長さをD1、ミラー35の反射面から蛍光体38までの光路の長さをD2とすると、反射面34aから蛍光体38までの光路の長さは、D1にD2を加えた長さである。
 ここで、参考実施形態のように、光源32が、回転ミラー34と蛍光体38の間に配置されていると仮定する。この場合において、光源32からレーザ光が出射されると、レーザ光は反射面34a~34lのうち、最も蛍光体38に近い反射面によって反射される。当該反射面によって反射されたレーザ光は、蛍光体38に向かって直進する。この場合における、回転ミラー34の反射面から蛍光体38までの光路の長さをD3、蛍光体38上における走査範囲をS1とする。
 回転ミラー34の反射面34a~34lから蛍光体38までの光路が長いほど、蛍光体38上での走査範囲は広くなる。D1にD2を加えた長さは、D3よりも長い。このため、走査範囲S2は走査範囲S1よりも広い。
 第三実施形態に係るランプユニット630において、回転ミラー34の各反射面34a~34lにより反射されて蛍光体38を介して平凸レンズ36を透過した光は、車両前方の所定位置(例えば、車両の25m前方)の仮想鉛直スクリーン上において図25に示すような配光パターンP6を形成する。具体的には、第一反射面対34A(反射面34a,34g)で反射された光により、図25に示す配光パターンP6のうち最下部のラインLA6が形成される。また、第二反射面対34B(反射面34b,34h)で反射された光により、ラインLA6の上側にラインLB6が形成される。第三反射面対34C(反射面34c,34i)で反射された光により、ラインLB6の上側にラインLC6が形成される。第四反射面対34D(反射面34d,34j)で反射された光により、ラインLC6の上側にラインLD6が形成される。第五反射面対34E(反射面34e,34k)で反射された光により、ラインLD6の上側にラインLE6が形成される。第六反射面対34F(反射面34f,34l)で反射された光により、ラインLE6の上側にラインLF6が形成される。このように、回転ミラー34の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP6が形成される。
 蛍光体38上での走査範囲が広いほど、配光パターンの拡散幅は広い。つまり、回転ミラー34の反射面34a~34lから蛍光体38までの光路が長いほど、配光パターンの拡散幅は広い。このため、配光パターンP6の水平方向の長さH2は、配光パターンP1の水平方向の長さH1よりも長い。
(第四実施形態)
 第四実施形態に係るハイビーム用のランプユニット730は、図26に示すように、光源732と、リフレクタとしての回転ミラー34(第一のミラーの一例)と、回転ミラー34の前方に配置された投影レンズとしての平凸レンズ36と、回転ミラー34と平凸レンズ36との間に配置された蛍光体38と、前後方向では回転ミラー34と蛍光体38との間にあって、回転ミラー34より上方に配置されたミラー735(第二のミラーの一例)と、を備えている。
 第四実施形態に係るランプユニット730は、ミラー35の代わりに、ミラー735をさらに備えている点、及び光源632に代わりに光源732を備えている点で、第三実施形態に係るランプユニット630と異なる。
 光源732は、光源32及び光源632と同じ機能を有する。光源732は回転ミラー34の左前方かつ、下方寄りに配置されている。光源732の光出射口は、光源32や光源632の光出射口よりも、やや上向きである。
 ミラー735は、前後方向では回転ミラー34と蛍光体38との間で、回転ミラー34より上方に配置されている。ミラー735の表面のうち、回転ミラー34に対向する表面は反射面である。ミラー735は、回転ミラー34によって反射されたレーザ光が当たる位置に配置されている。
 図27は、第四実施形態に係るランプユニット730の側面図である。回転ミラー34が、図27に示すような配置関係にあるとき、光源732から出射されたレーザ光は、回転ミラー34の反射面34aに当たる。当該レーザ光は、反射面34aによって反射され、ミラー735に向かって直進する。反射面34aによって反射されたレーザ光が、ミラー735の反射面に当たると、当該レーザ光はミラー735の反射面によって反射され、反射されたレーザ光は、蛍光体38に向かって直進する。このときの走査範囲はS3である。当該レーザ光は、その後、蛍光体38を介して平凸レンズ36を透過する。
 反射面34aからミラー735までの光路の長さをD4、ミラー735から蛍光体38までの光路の長さをD5とすると、反射面34aから蛍光体38までの光路の長さは、D4にD5を加えた長さである。
 ここで、参考実施形態のように、光源32が、回転ミラー34と蛍光体38の間に配置されていると仮定する(図27では光源32を破線で示している)。この場合において、レーザ光は反射面34a~34lのうち、最も蛍光体38に近い反射面によって反射される。当該反射面によって反射されたレーザ光は、蛍光体38に向かって直進する。この場合における、回転ミラー34の反射面から蛍光体38までの光路の長さはD3である。また、この場合における、蛍光体38上における走査範囲をS1とする。
 D4にD5を加えた長さは、D3よりも長い。このため、走査範囲S3は走査範囲S1よりも広い。
 第四実施形態に係るランプユニット730において、回転ミラー34の各反射面34a~34lにより反射されて蛍光体38を介して平凸レンズ36を透過した光は、車両前方の所定位置(例えば、車両の25m前方)の仮想鉛直スクリーン上において図28に示すような配光パターンP7を形成する。具体的には、第一反射面対34A(反射面34a,34g)で反射された光により、図28に示す配光パターンP7のうち最下部のラインLA7が形成される。また、第二反射面対34B(反射面34b,34h)で反射された光により、ラインLA7の上側にラインLB7が形成される。第三反射面対34C(反射面34c,34i)で反射された光により、ラインLB7の上側にラインLC7が形成される。第四反射面対34D(反射面34d,34j)で反射された光により、ラインLC7の上側にラインLD7が形成される。第五反射面対34E(反射面34e,34k)で反射された光により、ラインLD7の上側にラインLE7が形成される。第六反射面対34F(反射面34f,34l)で反射された光により、ラインLE7の上側にラインLF7が形成される。このように、回転ミラー34の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP7が形成される。
 蛍光体38上での走査範囲が広いほど、配光パターンの拡散幅は広い。つまり、回転ミラー34の反射面34a~34lから蛍光体38までの光路が長いほど、配光パターンの拡散幅は広い。このため、配光パターンP7の水平方向の長さH3は、配光パターンP1の水平方向の長さH1よりも長い。
 上記構成に係る光照射装置によれば、回転ミラー34(第一のミラーの一例)で反射された光は、ミラー35(第二のミラーの一例)によってさらに反射される。このため、光が回転ミラー34の反射面34a~34lでのみ反射される場合と比べて、反射面34a~34lから蛍光体38までの光路を長くすることができる。それにより、光学ユニットを小型化することができる。
 なお、ランプユニット630,730が、蛍光体38を含んでいない場合においても、第三実施形態及び第四実施形態に係る光学ユニットによれば、レーザ光は回転ミラー34とミラー35,735それぞれによって反射されるので、レーザ光が回転ミラー34でしか反射されない場合と比べて、回転ミラー34の反射面34a~34lから当該光学ユニットの光出射面(投影レンズ36又はクリアカバー)までの光路が長くなる。このため、配光パターンの拡散幅が狭まってしまうことを防ぎつつ、光学ユニットを小型化させることができる。
(第五実施形態)
 図29は、第五実施形態に係るランプユニット830を示す。
 図29に示すように、上記第三実施形態及び第四実施形態で用いたポリゴンミラー34の代わりに、ブレードスキャン方式の回転ミラー500を用いてもよい。
 回転ミラー500が、図29に示すような配置関係にあるとき、光源632から出射されたレーザ光は、回転ミラー500のブレード501aに当たる。当該レーザ光は、ブレード501aによって反射され、ミラー35に向かって直進する。ブレード501aによって反射されたレーザ光が、ミラー35の反射面に当たると、当該レーザ光はミラー35の反射面によって反射され、反射されたレーザ光は、蛍光体38に向かって直進する。このため、第五実施形態においても、ブレード501aから蛍光体38までの光路を長くすることができる。それにより、光学ユニットを小型化することができる。
 上記の実施形態においては、回転ミラー34に係る反射面34a~34l同士の境界面は不連続であるが、この例に限られない。例えば、反射面34a~34l同士の境界面は連続面であってもよい。
 上記の各実施形態においては、上面視において12面体の回転ミラー34を用い、対角線上に配置された一対の反射面により反射された光が配光パターンのうち同一のラインを形成しているが、この例に限られない。例えば、1つの反射面により反射された光により1つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが6つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って6つの反射面を備えることとなる。
 上記の実施形態においては、ランプユニットが車両用前照灯に搭載されたものとして説明しているが、この例に限られない。上記で説明したような光源や回転ミラー等を備えた光学ユニットを、車両に搭載されるセンサユニット(例えば、レーザレーダやLiDAR、可視光線カメラ、赤外線カメラ等)の構成部品に適用することもできる。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 本出願は、2018年9月25日出願の日本特許出願2018-179114号、2018年9月25日出願の日本特許出願2018-179115号および2018年9月25日出願の日本特許出願2018-179116号に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記ミラーは少なくとも一つの反射面から構成され、当該少なくとも一つの反射面において前記ミラーの回転方向における曲率が変化するように構成されている、光照射装置。
  2.  前記光の走査方向における前記ラインの中央領域を形成するための前記光の走査速度が、前記中央領域以外の領域を形成するための前記光の走査速度よりも遅くなるように、前記曲率が設定されている、請求項1に記載の光照射装置。
  3.  前記少なくとも一つの反射面は、前記回転方向において平面と凸状または凹状の湾曲面とから構成されている、請求項1または2に記載の光照射装置。
  4.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記ミラーは、前記ミラーの回転方向に沿って配置された複数の反射面を有し、
     前記複数の反射面は、前記配光パターンの少なくとも一部を構成する同一のライン上で前記光の少なくとも一部が重複するように構成されている、光照射装置。
  5.  前記複数の反射面のうち少なくとも二つの反射面で反射された前記光が前記配光パターンの少なくとも一部を構成する同一のラインを形成する、請求項4に記載の光照射装置。
  6.  前記配光パターンは、複数の第一のラインと、前記複数の第一のラインの間に配置された第二のラインとを含み、
     前記少なくとも二つの反射面で反射された前記光が前記第二のラインを形成するように構成されている、請求項5に記載の光照射装置。
  7.  前記ミラーは、ポリゴンミラーとして構成されている、請求項4から6のいずれか一項に記載の光照射装置。
  8.  光源と、
     前記光源から出射された光を反射させる回転可能な第一のミラーと、
    を備え、
     前記第一のミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査される、光照射装置であって、
     前記第一のミラーにより反射された光を反射させる第二のミラーをさらに備えている、光照射装置。
  9.  前記第二のミラーにより反射された光を透過する光学部材をさらに備えている、請求項8に記載の光照射装置。
  10.  前記光学部材は、蛍光体と投影レンズとを含み、
     前記蛍光体は、前記第一のミラーと前記投影レンズとの間に配置され、
     前記第二のミラーにより反射された光は、前記蛍光体上に走査され、
     前記蛍光体から出射された光は、前記投影レンズを透過して出射される、請求項9に記載の光照射装置。
  11.  前記第一のミラーはポリゴンミラーである、請求項8から10のいずれか一項に記載の光照射装置。
PCT/JP2019/033218 2018-09-25 2019-08-26 光照射装置 WO2020066406A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548194A JPWO2020066406A1 (ja) 2018-09-25 2019-08-26 光照射装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-179115 2018-09-25
JP2018179115 2018-09-25
JP2018-179116 2018-09-25
JP2018179114 2018-09-25
JP2018179116 2018-09-25
JP2018-179114 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066406A1 true WO2020066406A1 (ja) 2020-04-02

Family

ID=69906015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033218 WO2020066406A1 (ja) 2018-09-25 2019-08-26 光照射装置

Country Status (3)

Country Link
JP (1) JPWO2020066406A1 (ja)
CN (2) CN113790425A (ja)
WO (1) WO2020066406A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039836A1 (zh) * 2021-09-17 2023-03-23 华域视觉科技(上海)有限公司 照明单元、车灯及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180769A (ja) * 1998-12-18 2000-06-30 Ricoh Co Ltd ポリゴンミラー
WO2008099581A1 (ja) * 2007-02-08 2008-08-21 Panasonic Corporation 面状照明装置及びそれを用いた液晶表示装置
JP2017140887A (ja) * 2016-02-08 2017-08-17 シャープ株式会社 照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042237A (ja) * 1999-07-29 2001-02-16 Matsushita Electric Ind Co Ltd 映像表示装置
JP5937310B2 (ja) * 2011-07-19 2016-06-22 株式会社小糸製作所 車両用前照灯
FR3009370B1 (fr) * 2013-07-30 2018-06-15 Valeo Vision Systeme d'eclairage a moyens de balayage perfectionnes
JP6951076B2 (ja) * 2016-10-14 2021-10-20 株式会社小糸製作所 光学ユニット
JP6935185B2 (ja) * 2016-10-20 2021-09-15 株式会社小糸製作所 車両用前照灯
CN210801010U (zh) * 2018-09-25 2020-06-19 株式会社小糸制作所 光照射装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180769A (ja) * 1998-12-18 2000-06-30 Ricoh Co Ltd ポリゴンミラー
WO2008099581A1 (ja) * 2007-02-08 2008-08-21 Panasonic Corporation 面状照明装置及びそれを用いた液晶表示装置
JP2017140887A (ja) * 2016-02-08 2017-08-17 シャープ株式会社 照明装置

Also Published As

Publication number Publication date
CN113790425A (zh) 2021-12-14
CN110939917B (zh) 2022-10-14
CN110939917A (zh) 2020-03-31
JPWO2020066406A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
KR102663209B1 (ko) 차량의 라이다 통합 램프 장치
JP4080780B2 (ja) 光源ユニット
CN210118703U (zh) 车辆用灯
CN108375029B (zh) 光学单元
US7866863B2 (en) Vehicle lamp
JP5526453B2 (ja) 車両用前照灯
JP2013004167A (ja) 車両用前照灯
JP7289388B2 (ja) 光学ユニット
WO2020066406A1 (ja) 光照射装置
WO2020066603A1 (ja) 光照射装置
CN210831805U (zh) 光照射装置
CN110939918B (zh) 光照射装置
CN210801010U (zh) 光照射装置
CN210921231U (zh) 光照射装置
CN210801008U (zh) 光照射装置
CN210801009U (zh) 光照射装置
CN210801011U (zh) 光照射装置
CN210831803U (zh) 光照射装置
CN210831806U (zh) 光照射装置
CN113790426B (zh) 光照射装置
JP7426838B2 (ja) 照明装置、車両用灯具
CN210831792U (zh) 光照射装置
JP2018177090A (ja) 光学ユニット
JP2018092762A (ja) 車両用灯具
US20230103239A1 (en) Light irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867228

Country of ref document: EP

Kind code of ref document: A1