WO2020040298A1 - 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物 - Google Patents

有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物 Download PDF

Info

Publication number
WO2020040298A1
WO2020040298A1 PCT/JP2019/033069 JP2019033069W WO2020040298A1 WO 2020040298 A1 WO2020040298 A1 WO 2020040298A1 JP 2019033069 W JP2019033069 W JP 2019033069W WO 2020040298 A1 WO2020040298 A1 WO 2020040298A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
ring
aryl
alkyl
compound
Prior art date
Application number
PCT/JP2019/033069
Other languages
English (en)
French (fr)
Inventor
琢次 畠山
靖宏 近藤
笹田 康幸
梁井 元樹
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to JP2020538493A priority Critical patent/JP7388658B2/ja
Priority to KR1020217008660A priority patent/KR20210050537A/ko
Priority to CN201980066048.3A priority patent/CN113169285A/zh
Publication of WO2020040298A1 publication Critical patent/WO2020040298A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescent device including a host compound, a thermally activated delayed phosphor and a compound having a boron atom, and a display device and a lighting device including the organic electroluminescent device.
  • the present invention also relates to a composition and a compound for forming a light emitting layer of an organic electroluminescent device.
  • the organic electroluminescent element has a structure including a pair of electrodes including an anode and a cathode, and one or more layers including an organic compound disposed between the pair of electrodes.
  • the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons.
  • Various organic materials suitable for these layers have been developed.
  • ⁇ ⁇ There are mainly two light emission mechanisms of the organic electroluminescent element: fluorescence emission using light emission from an excited singlet state and phosphorescence emission using light emission from an excited triplet state.
  • Common fluorescent light emitting materials have low exciton utilization efficiency, about 25%, and have triplet-triplet fusion (TTF: Triplet-Triplet @ Fusion or triplet-triplet annihilation, TTA: Triplet-Triplet @ Annihilation). ), The exciton utilization efficiency is 62.5%.
  • phosphorescent materials may have an exciton utilization efficiency of 100% in some cases, but have difficulty in achieving deep blue light emission, and have a problem that the color purity is low due to the wide emission spectrum.
  • Non-Patent Document 1 a thermally activated delayed fluorescent (TADF) mechanism (see Non-Patent Document 1), and the use of a thermally activated delayed fluorescent substance to emit light.
  • the exciton utilization efficiency has reached 100%.
  • the heat-activated delayed fluorescent substance gives a broad emission spectrum with low color purity due to its structure, the speed of inverse intersystem crossing is extremely high.
  • Adachi and colleagues take advantage of this advantage, using thermally activated delayed phosphors as assisting dopants (Assisting Dopant: AD), and using narrow half bandwidth dopants as emitting dopants (Emitting Dopant: ED).
  • Hyper Fluorescence TM TADF Assisting Fluorescence: also called TAF
  • TAF Trigger Fluorescence TM
  • a high-efficiency, high-color-purity, and long-life element has been developed as a red- and green-emitting organic electroluminescent element (see Non-Patent Document 2).
  • deep blue emission has problems in any of efficiency, color purity, and lifetime because both the emitting dopant and the assisting dopant require high energy.
  • Patent Document 3 a new molecular design that dramatically improves the color purity of TADF materials has been proposed by Professor Kwansei Gakuin University Hatakeyama (see Non-Patent Document 3).
  • the compound (1-401) disclosed has a robust planar structure utilizing the multiple resonance effect of boron (electron donating) and nitrogen (electron withdrawing), resulting in absorption and emission. Successfully obtained an emission spectrum having a small Stokes shift and a high color purity.
  • the dimer compound represented by the formula (1-422) two borons and two nitrogens are bonded to the central benzene ring, so that the multiple resonance effect is further enhanced in the central benzene ring. As a result, it is possible to emit light having an extremely narrow emission peak width.
  • organic electroluminescent properties such as luminescent properties are further enhanced, and options of organic electroluminescent materials such as a material for a light emitting layer are increased.
  • combinations of compounds that have not been specifically known hitherto are desired.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, using a host compound, a thermally activated delayed fluorescent substance, and a light emitting layer containing a compound having a boron atom in a molecule, their excited singlet energy levels It has been found that by defining the positional relationship, an excellent organic electroluminescent device can be obtained, and the present invention has been completed. Specifically, the present invention has the following configuration.
  • An organic electroluminescent device having a light emitting layer, wherein the light emitting layer is As a first component, at least one host compound; As a second component, at least one heat-activated delayed phosphor; A compound having at least one type of boron atom as the third component,
  • the excitation singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the first component is E (1, S, Sh), and the excitation singlet energy level is obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the second component.
  • the excited singlet energy level is E (2, S, Sh)
  • the excited singlet energy level determined from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the third component is E (3, S, Sh).
  • the first component may be included as a polymer compound having a structure in which two hydrogen atoms of the host compound are eliminated as a repeating unit
  • the second component may be included as a polymer compound having a structure in which two hydrogen atoms of the thermally activated delayed fluorescent substance are eliminated as a repeating unit
  • the third component may be included as a polymer compound having a structure in which two hydrogen atoms of the compound having a boron atom are eliminated as a repeating unit, Organic electroluminescent device.
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • a ring, B ring, C ring and D ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • Y is B (boron), X 1 , X 2 , X 3 And X 4 Are independently>O,>NR,> CR 2 ,> S or> Se, and the R of> NR and> CR 2 R is an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl or an optionally substituted alkyl; May be bonded to at least one selected from the A ring, B ring, C ring and D ring by a group or a single bond, R 1 And R 2 Is independently hydrogen, alky
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • X 1 , X 2 And X 3 Is independently O, NR,> CR 2 , S or Se, R of the NR and> CR 2 R is an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl or alkyl, and R of the above NR is a linking group or a single bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 Is each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy, which may be further substituted with aryl, heteroaryl or alkyl; , R 1 ⁇ R 3 , R 4 ⁇ R 7 And R 8 ⁇ R 11 May be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and the formed ring is aryl, heteroaryl, diarylamino, alkyl, cyclo May be substituted with at least one selected from alkyl, alkoxy and aryloxy, which may be further substituted with at least one selected from aryl, heteroaryl and alkyl; X 1 And X
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 And R 14 Is each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio or An alkyl-substituted silyl wherein at least one hydrogen is optionally substituted with aryl, heteroaryl or alkyl; 5 ⁇ R 7 And R 10 ⁇ R 12 And adjacent groups may form an aryl ring or a heteroaryl ring together with the b-ring or the d-ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, Diheteroary
  • CR 2 R is -O-, -S-, -C (-R) 2 -Or a single bond may be bonded to at least one selected from the a ring, the b ring, the c ring and the d ring; 2 R in-is hydrogen or alkyl having 1 to 6 carbons, Where X 1 , X 2 , X 3 , And X 4 Is simultaneously> CR 2 Will not be And At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen, or deuterium.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 9 , R 10 And R 11 Is each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy, which are further substituted with at least one selected from aryl, heteroaryl and alkyl And R 1 ⁇ R 3 , R 4 ⁇ R 6 And R 9 ⁇ R 11 May be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and the formed ring is aryl, heteroaryl, diarylamino, alkyl, cyclo May be substituted with at least one selected from alkyl, alkoxy and aryloxy, which may be further substituted with at least one selected from aryl, heteroaryl, cycloalkyl and alkyl;
  • X 1 is aryl, hetero
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 And R 14 Is each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy, which are further substituted with at least one selected from aryl, heteroaryl and alkyl And R 1 ⁇ R 3 , R 4 ⁇ R 7 , R 8 ⁇ R 10 And R 11 ⁇ R 14 Among adjacent groups may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring, the c ring or the d ring, and the formed ring is aryl, heteroaryl, diarylamino, Optionally substituted with at least one selected from alkyl, cycloalkyl, alk
  • X and L are simultaneously> CR 2 Will not be And At least one hydrogen in the compounds and structures represented by formula (4) may be substituted with cyano, halogen or deuterium.
  • the third component at least one compound represented by any of the formulas (1), (2) and (4) is included, In the above formula (1), X 1 And X 2 Are each independently> O or> NR, In the above formula (2), X 1 , X 2 , X 3 And X 4 Are each independently> O or> NR, In the above formula (4), X is> O and> NR, and L is a single bond.
  • the organic electroluminescent device according to [3].
  • At least one compound represented by any of the formulas (1), (2), (3), and (4) is included, and an atom constituting a ring present in the compound includes: At least one selected from aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio and alkyl-substituted silyl
  • At least one compound represented by the formula (2) is included, and the atoms constituting the ring present in the compound are aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino , Arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio and alkyl-substituted silyl, which are further substituted with aryl, heteroaryl, cycloalkyl
  • the organic electroluminescent device according to [5] which may be substituted with at least one selected from alkyl and alkyl.
  • each hydrogen in the partial structure may be independently substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and these are further substituted with aryl, heteroaryl, cycloalkyl and alkyl. And may be substituted with at least one selected from [8]
  • the compound represented by any of the above formulas (1) to (4) is 3 Sp bonded to m or p position with respect to carbon or boron atom 2
  • the organic electroluminescent device according to [3], wherein the compound represented by the formula (2) is the following compound.
  • the organic electroluminescent device according to [4], wherein the compound represented by the formula (2) is the following compound.
  • L 1 Is arylene, heteroarylene, heteroarylenearylene or aryleneheteroarylenearylene having 6 to 24 carbon atoms; At least one hydrogen in the compounds represented by each of the above formulas may be substituted with alkyl having 1 to 6 carbon atoms, cyano, halogen or deuterium.
  • the second component is selected from carbazole, phenoxazine, acridine, triazine, pyrimidine, pyrazine, thioxanthene, benzonitrile, phthalonitrile, isophthalonitrile, diphenylsulfone, triazole, oxadiazole, thiadiazole and benzophenone as a partial structure.
  • the organic electroluminescent device according to any one of [1] to [13], comprising at least one of the following: [15] The organic compound according to any one of [1] to [14], wherein the second component contains at least one compound represented by any of the following formulas (AD1), (AD2) and (AD3). Electroluminescent device.
  • M is each independently a single bond, —O—,> N—Ar or> CAr 2
  • J is each independently an arylene having 6 to 18 carbon atoms, and the arylene is substituted with at least one selected from phenyl, alkyl having 1 to 6 carbons, and cycloalkyl having 3 to 12 carbons.
  • Ar is each independently hydrogen, aryl having 6 to 18 carbons, heteroaryl having 6 to 18 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, At least one hydrogen in the arylene may be substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, m is 1 or 2, n is an integer of 2 to (6-m); At least one hydrogen in the compounds represented by the above formulas may be substituted with halogen or deuterium.
  • D 2 -L 2 -A 2 -L 3 -D 3 (DAD2) (In the above formula (DAD2), D 2 And D 3 Are each independently a donor group, and L 2 And L 3 Are each independently a single bond or a conjugated linking group; 2 Is an acceptor group.
  • the organic electroluminescent device according to [17].
  • the excitation singlet energy level obtained from the shoulder on the peak short wavelength side of the fluorescence spectrum of the second component is E (2, S, Sh)
  • the excitation singlet energy level is obtained from the shoulder on the peak short wavelength side of the phosphorescence spectrum of the second component.
  • the excited triplet energy level is E (2, T, Sh)
  • the excited singlet energy level determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the third component is E (3, S, Sh).
  • the singlet triplet energy difference ( ⁇ E (2, The organic electroluminescent device according to any one of [1] to [23], wherein ST, Sh) and ⁇ E (3, ST, Sh)) have the following relationship.
  • the excitation singlet energy level obtained from the shoulder on the peak short wavelength side of the fluorescence spectrum of the second component is E (2, S, Sh)
  • the excitation singlet energy level is obtained from the shoulder on the peak short wavelength side of the phosphorescence spectrum of the second component.
  • the excited triplet energy level is E (2, T, Sh)
  • the excited singlet energy level determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the third component is E (3, S, Sh).
  • the singlet triplet energy difference ( ⁇ E (2, The organic electroluminescent device according to any one of [1] to [24], wherein ST, Sh) and ⁇ E (3, ST, Sh)) have the following relationship.
  • ⁇ E (2, ST, Sh) E (2, S, Sh) ⁇ E (2, T, Sh) ⁇ 0.30 eV [27]
  • the organic electroluminescent device according to any one of [1] to [26], wherein a singlet / triplet energy difference ( ⁇ E (2, ST, Sh)) of the second component has the following relationship.
  • ⁇ E (2, ST, Sh) E (2, S, Sh) ⁇ E (2, T, Sh) ⁇ 0.15 eV
  • the excitation singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the second component is E (2, S, Sh), and the excitation singlet energy level is obtained from the shoulder on the short wavelength side of the peak of the phosphorescence spectrum of the second component.
  • the excited triplet energy level is E (2, T, Sh)
  • the excited singlet energy level determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the third component is E (3, S, Sh).
  • E (3, T, Sh) the excited triplet energy level obtained from the shoulder on the short wavelength side of the peak of the phosphorescence spectrum of the third component
  • a display device comprising the organic electroluminescent device according to any one of [1] to [32].
  • a lighting device comprising the organic electroluminescent element according to any one of [1] to [32].
  • a composition for forming a light-emitting layer for coating and forming a light-emitting layer of an organic electroluminescent device comprising at least one organic solvent as a fourth component in addition to the first component, the second component, and the third component according to any one of [1] to [32].
  • the fourth component includes a good solvent (GS) and a poor solvent (PS) for at least one of the first component, the second component, and the compound that is the third component, and the good solvent (GS) Boiling point (BP GS ) Is the boiling point (BP) of the poor solvent (PS) PS
  • the first component is 0.0998% by mass to 4.0% by mass with respect to the total mass of the composition for forming a light emitting layer; 0.0001% by mass to 2.0% by mass of the second component based on the total mass of the composition for forming a light emitting layer;
  • the third component is 0.0001% by mass to 2.0% by mass based on the total mass of the composition for forming a light emitting layer; 90.0% by mass to 99.9% by mass of the fourth component, based on the total mass of the composition for forming a light emitting layer;
  • the composition for forming a light emitting layer according to any one of [35] to [37].
  • [39] An organic electroluminescent device having a light emitting layer formed using the composition for forming a light emitting layer according to any one of [38] to [38].
  • R 40 And R 41 Is an alkyl having 2 to 10 carbon atoms which may be bonded, and the wavy line is a bonding site to another structure.
  • a repeating unit containing a structure in which two hydrogen atoms are eliminated from a compound having a boron atom, a repeating unit containing a structure in which two hydrogen atoms are eliminated from a thermally activated delayed fluorescent substance, and two hydrogen atoms from a host compound A polymer compound comprising at least two kinds of repeating units selected from repeating units having a structure from which is eliminated.
  • At least one kind of repeating unit containing a structure in which two hydrogen atoms are eliminated from a compound having a boron atom at least one kind of repeating unit containing a structure in which two hydrogen atoms are eliminated from a thermally activated delayed fluorescent substance, and a polymer compound containing at least one repeating unit having a structure in which two hydrogen atoms are eliminated from a host compound.
  • the organic electroluminescent device of the present invention includes, in the light-emitting layer, a host compound, a heat-activated delayed fluorescent substance, and a compound having a boron atom in a molecule, and their excited singlet energy levels satisfy a predetermined condition. Thereby, the organic electroluminescence characteristics can be further enhanced.
  • FIG. 2 is an energy level diagram showing an example of an energy relationship between a host, an assisting dopant, and an emitting dopant of the organic electroluminescent device to which the present invention is applied.
  • FIG. 4 is an energy level diagram showing another example of the energy relationship between the host, the assisting dopant, and the emitting dopant of the organic electroluminescent device to which the present invention is applied.
  • FIG. 9 is an energy level diagram showing still another example of the energy relationship between the host, the assisting dopant, and the emitting dopant of the organic electroluminescent device to which the present invention is applied.
  • FIG. 1 is a schematic cross-sectional view illustrating an organic electroluminescent device according to an embodiment.
  • FIG. 1 is a schematic cross-sectional view illustrating an organic electroluminescent device according to an embodiment.
  • FIG. 4 is an energy level diagram showing an energy relationship among a host, an assisting dopant, and an emitting dopant of a TAF element using a general fluorescent dopant.
  • FIG. 3 is a diagram illustrating a method for manufacturing an organic electroluminescent element on a substrate having a bank by using an inkjet method.
  • FIG. 2 is a view showing the relationship between the basic skeleton of a compound and Tau (Delay) and Stokes shift.
  • FIG. 3 is a diagram showing the relationship between the basic skeleton of a compound and the half-value width, external quantum efficiency, and device lifetime.
  • FIG. 3 is a view showing the relationship between substituents of a compound and Tau (Delay) and Stokes shift.
  • FIG. 3 is a diagram showing the relationship among substituents of a compound and half-value width, external quantum efficiency, and device lifetime.
  • FIG. 3 is a diagram showing the relationship between the substituents of a compound and Stokes shift and half width.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • Room temperature means 20 ° C.
  • the organic electroluminescent device of the present invention utilizes a host compound, a thermally activated delayed fluorescent substance, and a compound having a boron atom in a molecule.
  • the “host compound” in the present invention means that the excited singlet energy level determined from the shoulder on the short wavelength side of the peak of the fluorescence spectrum is a thermally activated delayed phosphor as the second component, and It means a compound higher than a compound having a boron atom.
  • thermally activated delayed phosphor refers to the absorption of thermal energy, which causes an inverse intersystem crossing from an excited triplet state to an excited singlet state, and radiation inactivation from the excited singlet state to cause delayed fluorescence.
  • thermally activated delayed fluorescence includes those that undergo higher-order triplets in the process of excitation from the excited triplet state to the excited singlet state.
  • a paper by Durk University Monkman et al. NATURE COMMUNICATIONS, 7: 13680, DOI: 10.1038 / ncomms13680
  • a paper by Hosogai et al. Sato et al. Scientific Reports, 7: 4820, DOI: 10.1038 / s41598-017-05007-7)
  • Sato et al At Kyoto University (The 98th Annual Meeting of the Chemical Society of Japan, publication number: 2I4- 15.
  • the fluorescence lifetime of a sample containing a target compound is measured at 300 K, it is determined that the target compound is a “heat-activated delayed fluorescent substance” when a slow fluorescent component is observed.
  • the slow fluorescent component refers to a component having a fluorescence lifetime of 0.1 ⁇ sec or more.
  • the measurement of the fluorescence lifetime can be performed using, for example, a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics KK).
  • the ⁇ compound having a boron atom in the molecule '' can function as an emitting dopant, and the ⁇ thermally-activated delayed fluorescent substance '' can be used as an assisting dopant to assist the emission of a compound having a boron atom in the molecule.
  • a thermally activated delayed phosphor as an assisting dopant
  • TAF device TADF Assisting Fluorescence device
  • FIG. 5 shows an energy level diagram of a light emitting layer of a TAF element using a general fluorescent dopant as an emitting dopant (ED).
  • the energy level of the ground state of the host is E (1, G)
  • the excited singlet energy level determined from the shoulder on the short wavelength side of the fluorescence spectrum of the host is E (1, S, Sh)
  • the excited triplet energy level determined from the shoulder on the short wavelength side of the phosphorescence spectrum is E (1, T, Sh)
  • the ground state energy level of the assisting dopant as the second component is E (2, G).
  • the excitation singlet energy level determined from the short wavelength shoulder of the fluorescence spectrum of the assisting dopant as the second component is E (2, S, Sh)
  • the phosphorescent spectrum of the assisting dopant as the second component is E (2, S, Sh).
  • the excited triplet energy level determined from the shoulder on the short wavelength side is E (2, T, Sh)
  • the ground state energy level of the emitting dopant as the third component is E (3, G)
  • the excitation singlet energy level determined from the shoulder on the short wavelength side of the fluorescence spectrum of the three-component emitting dopant is E (3, S, Sh)
  • the short-wavelength of the phosphorescent spectrum of the third component is the dopant.
  • the excited triplet energy level determined from the shoulder on the side is E (3, T, Sh).
  • E (3, T, Sh) When a general fluorescent dopant is used as an emitting dopant (ED), the energy up-converted by the assisting dopant is changed to the excited singlet energy level E (3, S, Sh) of the emitting dopant. The light is shifted. However, some of the excited triplet energy E (2, T, Sh) on the assisting dopant moves to the excited triplet energy level E (3, T, Sh) of the emitting dopant, , An intersystem crossing from the excited singlet energy level E (3, S, Sh) to the excited triplet energy level E (3, T, Sh) occurs, and then heat is transferred to the ground state E (3, G). Deactivate. Some energy is not used for light emission by this route, and energy is wasted.
  • the energy transferred from the assisting dopant to the emitting dopant can be efficiently used for light emission, thereby realizing high luminous efficiency. This is presumed to be due to the following light emission mechanism. That is, a preferable energy relationship in the organic electroluminescent device of the present invention is shown in FIG.
  • the compound having a boron atom as the emitting dopant has a high excited triplet energy level E (3, T, Sh).
  • the excited singlet energy up-converted by the assisting dopant intersects with the excited triplet energy level E (3, T, Sh) by the emitting dopant, the excited singlet energy remains on the emitting dopant. It is up-converted or recovered to the excited triplet energy level E (2, T, Sh) on the assisting dopant (thermally activated delayed phosphor). Therefore, the generated excitation energy can be used for light emission without waste.
  • the functions of up-conversion and luminescence into two types of molecules, each of which is excellent, it is expected that the residence time of high energy is reduced and the burden on the compound is reduced.
  • the excited triplet energy involved in the forward and reverse intersystem crossing from the excited triplet state to the excited singlet state is calculated by molecular orbital calculation.
  • it may not be the excited triplet energy observed by the phosphorescence spectrum but a higher-order excited triplet energy (The 98th Annual Meeting of the Chemical Society of Japan, Presentation No .: 2I4-15, Mechanism of high-efficiency light emission in organic electroluminescence using DABNA as a light-emitting molecule, presented by Professor Toru Sato of the graduate School of Engineering, Kyoto University).
  • the inverse intersystem crossing in DABNA2 having a boron atom in the molecule is an FvHT (Fluorescence via Higher Triplet) mechanism using higher-order triplet orbitals, and the transition from higher-order triplet orbitals to the ground state is performed. It is suggested that the transition from higher-order triplet orbit to excited singlet orbit occurs because of the suppression.
  • FvHT Fluorescence via Higher Triplet
  • the energy relation in the light-emitting layer of the organic electroluminescent device of the present invention is such that the higher-order excited triplet energy level E (3, Tn) is the excited singlet energy level. If it is slightly lower (in the case of the TADF mechanism), it can be represented by the energy level diagram of FIG. 2, and if the higher-order excited triplet energy level is slightly higher than the excited singlet energy level (FvHT function). 3) can be represented by the energy level diagram of FIG. In any case, since deactivation from the lowest triplet orbit is suppressed, it is expected that good device characteristics will be provided similarly to the energy relationship in FIG.
  • the excited triplet energy level is determined from the phosphorescence spectrum because it can be measured spectroscopically.
  • the organic electroluminescent device of the present invention is not limited to those shown in FIGS. It does not exclude having the energy relationship shown by.
  • a DA-type thermally activated delayed phosphor (D represents an electron-donating atomic group and A represents an electron-accepting atomic group) has a high up-conversion rate. , The half-width of light emission is wide, and the color purity is low.
  • a thermally activated delayed phosphor of the multiple resonance effect (MRE) type has a slow up-conversion speed, a narrow emission half width, a high color purity, a high fluorescence quantum yield (PLQY), and It is characterized by a high light emission speed.
  • the organic electroluminescent device of the present invention is designed to take advantage of these molecules. As a result, it is possible to realize a spectrum with a good halftone width and a good color, high external quantum efficiency, improved roll-off, and long life.
  • the host compound first component
  • the thermally activated delayed phosphor assisting dopant, second component
  • the boron atom in the organic electroluminescent device of the present invention were used.
  • the relationship between the energies of the compounds (emission dopant, third component) is summarized below.
  • the excitation singlet energy level determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the first component is E (1, S, Sh)
  • the excitation singlet determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the second component is E (2, S, Sh)
  • the excited singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the third component is E (3, S, Sh)
  • E (1, S, Sh) -E (2, S, Sh) is preferably from 0 to 1.0 eV
  • E (2, S, Sh) -E (3, S, Sh) is It is preferably 0 to 0.20 eV.
  • the excitation singlet energy level obtained from the short wavelength side peak top of the fluorescence spectrum of the first component is E (1, S, PT)
  • the excitation singlet energy obtained from the short wavelength side peak top of the second component fluorescence spectrum is obtained.
  • energy level is E (2, S, PT)
  • the excited singlet energy level obtained from the peak top on the short wavelength side of the fluorescence spectrum of the third component is E (3, S, PT)
  • the present invention can be applied to E (2, S, PT) and E (3, S, PT) whichever is larger, but E (3, S, PT)> E (2, S, PT) It is preferable that
  • the excitation singlet energy level determined from the shoulder on the peak short wavelength side of the fluorescence spectrum of the second component is E (2, S, Sh)
  • the excitation triplet determined from the shoulder on the peak short wavelength side of the phosphorescence spectrum of the second component is E (2, T, Sh)
  • the term energy level is E (2, T, Sh)
  • the excited singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the third component is E (3, S, Sh)
  • the energy of the third component is Assuming that the excited triplet energy level obtained from the shoulder on the short wavelength side of the peak of the phosphorescence spectrum is E (3, T, Sh), the singlet triplet energy difference ( ⁇ E (2, ST, Sh)) obtained from these is determined.
  • ⁇ E (3, ST, Sh)) preferably have the following relationship.
  • ⁇ E (2, ST, Sh) E (2, S, Sh) ⁇ E (2, T, Sh) ⁇ 0.50 eV
  • ⁇ E (3, ST, Sh) E (3, S, Sh) ⁇ E (3, T, Sh) ⁇ 0.20 eV
  • ⁇ E (2, ST, Sh) is more preferably 0.30 eV or less, further preferably 0.15 eV or less, and even more preferably 0.10 eV or less.
  • ⁇ E (3, ST, Sh) is more preferably 0.15 eV or less, and even more preferably 0.10 eV or less.
  • ⁇ E (2, ST, Sh) and ⁇ E (3, ST, Sh) preferably have the following relationship. ⁇ E (2, ST, Sh) ⁇ ⁇ E (3, ST, Sh)
  • E (2, S, Sh) -E (3, S, Sh) is preferably 0 to 0.20 eV
  • E (3, T, Sh) -E (2, T, Sh) is It is preferably 0 to 0.20 eV.
  • the inverse intersecting speed of the second component is k (2, RISC)
  • the inverse intersecting speed of the third component is k (3, RISC)
  • the emission speed of the second component is k (2, Prompt)
  • the excitation singlet energy level determined from the shoulder on the short wavelength side of the fluorescence spectrum is E (1, S, Sh)
  • the peak top on the short wavelength side of the fluorescence spectrum is defined as E (1, S, Sh).
  • the excitation singlet energy level determined from the above is defined as E (1, S, PT)
  • the excitation triplet energy level determined from the shoulder on the short wavelength side of the phosphorescence spectrum is defined as E (1, T, Sh).
  • the excited triplet energy level determined from the peak top on the short wavelength side of the spectrum is E (1, T, PT).
  • PT the excited triplet energy level E (T, Sh) determined from the shoulder on the short wavelength side of the phosphorescence spectrum, and the excited triplet energy level E (T) determined from the peak top on the short wavelength side of the phosphorescence spectrum.
  • PT the inverse intersystem crossing speed, and the light emission speed are calculated as follows.
  • the shoulder on the peak short wavelength side means an inflection point on the short wavelength side of the emission peak
  • the peak top on the short wavelength side is the emission maximum value of the emission peak, It means the position on the peak corresponding to the emission maximum value on the shortest wavelength side.
  • the thickness of the polymethyl methacrylate film in which the target compound is dispersed may be any thickness that can provide sufficient intensity for the measurement of the absorption spectrum, the fluorescence spectrum, and the phosphorescence spectrum. If it is strong, it may be thick.
  • the wavelength of the absorption peak obtained in the absorption spectrum is used.
  • blue emission is in the range of 400 to 500 nm
  • green emission is Is determined in the range of 480 to 600 nm
  • the respective energy levels are obtained using data obtained from the emission peaks appearing in the range of 580 to 700 nm.
  • Excited singlet energy level E (S, Sh) obtained from the shoulder on the peak short wavelength side of the fluorescence spectrum
  • the measurement sample containing the target compound is irradiated with excitation light at 77 K, and the fluorescence spectrum is observed.
  • a tangent line passing through the inflection point (shoulder) on the shorter wavelength side is drawn to the emission peak appearing in the fluorescence spectrum, and the following equation is obtained from the wavelength (B Sh ) [nm] at the intersection of the tangent line and the baseline. Is used to calculate the excited singlet energy level E (S, Sh).
  • E (S, Sh) [eV] 1240 / B Sh [2]
  • Excited singlet energy level E (S, PT) obtained from the peak top on the short wavelength side of the fluorescence spectrum
  • the measurement sample containing the target compound is irradiated with excitation light at 77 K, and the fluorescence spectrum is observed.
  • the wavelength (emission maximum wavelength, B PT ) [nm] corresponding to the peak top on the shortest wavelength side of the emission peak appearing in the fluorescence spectrum the excited singlet energy level E (S, PT) is obtained using the following equation. Is calculated.
  • E (S, PT) [eV] 1240 / B PT [3]
  • Excited triplet energy level E (T, Sh) obtained from the shoulder on the peak short wavelength side of the phosphorescence spectrum
  • the measurement sample containing the target compound is irradiated with excitation light at 77 K, and the phosphorescence spectrum is observed.
  • a tangent line passing through the inflection point (shoulder) on the shorter wavelength side is drawn with respect to the emission peak appearing in the phosphorescence spectrum, and from the wavelength (C Sh ) [nm] at the intersection of the tangent line and the base line, the following equation is obtained. Is used to calculate the excited triplet energy level E (T, Sh).
  • E (T, Sh) [eV] 1240 / C Sh [4]
  • Excited triplet energy level E (T, PT) obtained from the peak top on the short wavelength side of the phosphorescence spectrum
  • the measurement sample containing the target compound is irradiated with excitation light at 77 K, and the phosphorescence spectrum is observed.
  • the excited triplet energy level E (T, PT) is calculated using the following equation. Is calculated.
  • E (T, PT) [eV] 1240 / C PT
  • the DA (donor-acceptor) type TADF material and the MRE (Multi Resonance Effect, multiple resonance) type compound have different emission widths of the fluorescence and phosphorescence spectra due to the robustness of the molecule. Even in the same case, it is considered that the DA type thermally activated delayed fluorescent substance has a wider range of energy than the MRE type compound molecule.
  • the TAF element it is necessary to accurately estimate the energy transfer between the components and design the configuration. Therefore, the excited singlet energy level and the excited triplet energy level are estimated from the shoulder on the short wavelength side of the spectrum. In general, the intersection of the tangent and the baseline passing through the inflection point on the short wavelength side of the spectrum is the energy determined from the shoulder on the short wavelength side.
  • the excited singlet energy level E (S, Sh) and the excited triplet energy level E (T, Sh) obtained from the shoulder on the short wavelength side are used for calculation and discussion of ⁇ E (ST), and the first component It is also used to discuss the confinement and transfer of energy between the host compound and the assisting dopant, and the confinement and transfer of energy between the assisting dopant and the emitting dopant.
  • the inverse intersystem crossing speed indicates the speed of the inverse intersystem crossing from the excited triplet to the excited singlet.
  • the inverse intersystem crossing rate of the assisting dopant and the emitting dopant is calculated by transient fluorescence spectrometry using the method described in Nat. Commun. 2015, 6, 8476. or Organic Electronics 2013, 14, 2721-2726.
  • the assisting dopant has an inverse intersystem crossing speed of 10 5 s ⁇ 1 , and more preferably 10 6 s ⁇ 1 .
  • the light emission rate indicates a rate at which a transition from an excited singlet to a ground state occurs via fluorescence emission without going through a TADF process.
  • the emission velocities of the assisting dopant and the emitting dopant are calculated using the method described in Nat. Commun. 2015, 6, 8476. Specifically, the inverse intersystem crossing speed of the emitting dopant is 10 7 s ⁇ 1 , and more preferably 10 8 s ⁇ 1 .
  • the light emitting layer in the organic electroluminescent device includes at least a host compound as a first component, a thermally activated delayed phosphor as a second component, and a compound having a boron atom as a third component.
  • the thermally activated delayed fluorescent substance as the second component is referred to as “assisting dopant” (compound)
  • the compound having a boron atom as the third component is referred to as “emitting dopant” (compound).
  • the light emitting layer may be a single layer or a plurality of layers.
  • the host compound, the thermally activated delayed fluorescent substance, and the compound having a boron atom may be contained in the same layer, or at least one component may be contained in a plurality of layers.
  • the host compound, the thermally activated delayed fluorescent substance, and the compound having a boron atom contained in the light emitting layer may be of one type or a combination of a plurality of types.
  • the assisting dopant and the emitting dopant may be entirely or partially contained in the host compound as the matrix.
  • the emitting layer doped with the assisting dopant and the emitting dopant is formed by depositing the host compound, the assisting dopant, and the emitting dopant by a ternary co-evaporation method, and the host compound, the assisting dopant, and the emitting dopant are mixed in advance. And then simultaneously vapor deposition, applying a composition (paint) for forming a light-emitting layer prepared by dissolving a host compound, an assisting dopant and an emitting dopant in an organic solvent, or a wet film-forming method. it can.
  • the amount of the host compound used depends on the type of the host compound, and may be determined according to the characteristics of the host compound.
  • the standard of the amount of the host compound used is preferably 40 to 99.999% by mass, more preferably 50 to 99.99% by mass, and still more preferably 60 to 99.9% by mass of the whole material for the light emitting layer. It is. The above range is preferable, for example, in terms of efficient charge transport and efficient energy transfer to the dopant.
  • the amount of the assisting dopant (thermally activated delayed fluorescent material) used varies depending on the kind of the assisting dopant, and may be determined according to the characteristics of the assisting dopant.
  • the standard of the amount of the assisting dopant to be used is preferably 1 to 60% by mass, more preferably 2 to 50% by mass, further preferably 5 to 30% by mass of the whole material for the light emitting layer. The above range is preferable, for example, in that energy can be efficiently transferred to the emitting dopant.
  • the amount of the emitting dopant (compound having a boron atom) used depends on the type of the emitting dopant, and may be determined according to the characteristics of the emitting dopant.
  • the standard of the usage amount of the emitting dopant is preferably 0.001 to 30% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.1 to 10% by mass of the whole material for the light emitting layer. %.
  • the above range is preferable, for example, in that the density quenching phenomenon can be prevented.
  • the amount of the emitting dopant used is low, since the concentration quenching phenomenon can be prevented. It is preferable that the amount of the assisting dopant used is high from the viewpoint of the efficiency of the thermally activated delayed fluorescence mechanism. Further, from the viewpoint of the efficiency of the thermally activated delayed fluorescence mechanism of the assisting dopant, it is preferable that the amount of the emitting dopant used is lower than that of the assisting dopant.
  • the host compound known compounds can be used, and examples thereof include a compound having at least one of a carbazole ring and a furan ring. Among them, at least one of a furanyl group and a carbazolyl group, It is preferable to use a compound in which at least one of the above is bonded. Specific examples include mCP and mCBP.
  • the excited triplet energy level E (1, T, Sh) obtained from the shoulder on the short wavelength side of the peak of the phosphorescence spectrum of the host compound is determined from the viewpoint of promoting the generation of TADF in the light emitting layer without inhibiting the light emitting layer. It is preferable that the emission dopant or the emission dopant having the highest excitation triplet energy level among the excitation triplet energy levels E (2, T, Sh) and E (3, T, Sh) be higher than the above.
  • the excited triplet energy level E (1, T, Sh) of the host compound is 0.01 eV or more as compared with E (2, T, Sh) and E (3, T, Sh). Preferably, it is 0.03 eV or more, more preferably, 0.1 eV or more.
  • a TADF-active compound may be used as the host compound.
  • L 1 is arylene having 6 to 24 carbon atoms, heteroarylene having 2 to 24 carbon atoms, heteroarylene arylene having 6 to 24 carbon atoms or 6 to 24 carbon atoms.
  • Arylene heteroarylene arylene preferably an arylene having 6 to 16 carbon atoms, more preferably an arylene having 6 to 12 carbon atoms, particularly preferably an arylene having 6 to 10 carbon atoms, specifically, a benzene ring and a biphenyl ring , A terphenyl ring and a fluorene ring.
  • a heteroarylene having 2 to 24 carbon atoms is preferable, a heteroarylene having 2 to 20 carbon atoms is more preferable, a heteroarylene having 2 to 15 carbon atoms is further preferable, and a heteroarylene having 2 to 10 carbon atoms is particularly preferable.
  • the host compound is preferably a compound represented by any of the structural formulas listed below.
  • at least one hydrogen may be substituted with halogen, cyano, alkyl having 1 to 4 carbons (eg, methyl or t-butyl), phenyl or naphthyl.
  • the heat-activated delayed fluorescent substance (TADF compound) used in the present invention is capable of forming a HOMO (Highest Occupied Molecular Orbital) in a molecule by using an electron-donating substituent called a donor and an electron-accepting substituent called an acceptor.
  • TADF compound heat-activated delayed fluorescent substance
  • DA type heat-activated delayed phosphor designed to localize LUMO (Lowest Unoccupied Molecular Orbital) and to cause efficient reverse intersystem crossing (TADF compound).
  • the term “electron-donating substituent” refers to a substituent and a partial structure in which a LUMO orbital is localized in a thermally activated delayed fluorescent molecule.
  • the term “electron-accepting substituent” means a substituent and a partial structure in which a HOMO orbital is localized in a thermally activated delayed fluorescent molecule.
  • a thermally activated delayed phosphor using a donor or an acceptor has a large spin orbit coupling (SOC) due to its structure, and has a small exchange interaction between HOMO and LUMO and ⁇ E ( Since ST) is small, a very fast inverse intersystem crossing speed is obtained.
  • thermally activated delayed phosphors using donors and acceptors have a large degree of structural relaxation in the excited state.
  • Some molecules have different stable structures between the ground state and the excited state. When the conversion to the excited state occurs, the structure changes to a stable structure in the excited state), so that a broad emission spectrum is provided. Therefore, when used as a light-emitting material, color purity may be reduced.
  • heat-activated delayed fluorescent substance of the present invention for example, a compound in which a donor and an acceptor are bound directly or via a spacer can be used.
  • structure of the donor and acceptor used in the heat-activated delayed fluorescent substance of the present invention for example, the structure described in Chemistry of Materials, 2017, 29, 1946-1963 can be used.
  • Examples of the donor structure include carbazole, dimethylcarbazole, di-tert-butylcarbazole, dimethoxycarbazole, tetramethylcarbazole, benzofluorocarbazole, benzothienocarbazole, phenyldihydroindolocarbazole, phenylbicarbazole, bicarbazole, and tercarbazole.
  • Acceptable structures include sulfonyldibenzene, benzophenone, phenylenebis (phenylmethanone), benzonitrile, isonicotinonitrile, phthalonitrile, isophthalonitrile, paraphthalonitrile, benzenetricarbonitrile, triazole, oxazole, thiadiazole , Benzothiazole, benzobis (thiazole), benzoxazole, benzobis (oxazole), quinoline, benzimidazole, dibenzoquinoxaline, heptaazaphenalene, thioxanthone dioxide, dimethylanthracenone, anthracenedione, cycloheptapyridine, fluorangecarbonitrile, Triephenyltriazine, pyrazinedicarbonitrile, pyrimidine, phenylpyrimidine, methylpyrimidine, pyridi Dicarbonitrile, dibenzo quinoxaline-carbon
  • the compound having heat-activated delayed fluorescence of the present invention as a partial structure, carbazole, phenoxazine, acridine, triazine, pyrimidine, pyrazine, thioxanthene, benzonitrile, phthalonitrile, isophthalonitrile, diphenylsulfone, triazole And a compound having at least one selected from oxadiazole, thiadiazole and benzophenone.
  • the compound used as the second component of the light emitting layer of the present invention is a heat-activated delayed fluorescent substance, and is preferably a compound whose emission spectrum at least partially overlaps the absorption peak of the emitting dopant.
  • compounds that can be used as the second component (heat-activated delayed fluorescent substance) of the light emitting layer of the present invention will be exemplified.
  • the compounds that can be used as the heat-activated delayed fluorescent substance in the present invention are not limited to the following exemplified compounds.
  • Me represents methyl
  • t-Bu represents t-butyl
  • Ph represents phenyl
  • wavy lines represent bonding positions.
  • a compound represented by any of the following formulas (AD1), (AD2) and (AD3) can also be used as the heat-activated delayed phosphor.
  • M is each independently a single bond, —O—,> N—Ar or> CAr 2 , and represents the HOMO depth and the excited singlet energy level and the excited triplet energy level of the partial structure to be formed. From the viewpoint of height, a single bond, —O— or> N—Ar is preferable.
  • J is a spacer structure that separates a donor partial structure and an acceptor partial structure, each independently being an arylene having 6 to 18 carbon atoms, and a conjugate leaching from the donor partial structure and the acceptor partial structure. From the viewpoint of the size, arylene having 6 to 12 carbon atoms is preferable.
  • Ar is each independently hydrogen, aryl having 6 to 24 carbons, heteroaryl having 2 to 24 carbons, alkyl having 1 to 12 carbons or cycloalkyl having 3 to 18 carbons, and the partial structure to be formed From the viewpoint of the depth of the HOMO and the height of the excited singlet energy level and the excited triplet energy level of the HOMO, preferably hydrogen, aryl having 6 to 12 carbons, heteroaryl having 2 to 14 carbons, carbon number Alkyl of 1-4 or cycloalkyl of 6-10, more preferably hydrogen, phenyl, tolyl, xylyl, mesityl, biphenyl, pyridyl, bipyridyl, triazyl, carbazolyl, dimethylcarbazolyl, di-tert-butyl Carbazolyl, benzimidazole or phenylbenzimidazole, more preferably hydrogen Phenyl or carbazolyl.
  • n is 1 or 2.
  • n is an integer of-(6-m), and preferably an integer of 4- (6-m) from the viewpoint of steric hindrance.
  • at least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
  • the compound used as the second component of the light emitting layer of the present invention is 4CzBN, 4CzBN-Ph, 5CzBN, 3Cz2DPhCzBN, 4CzIPN, 2PXZ-TAZ, Cz-TRZ3, BDPCC-TPTA, MA-TA, PA -TA, FA-TA, PXZ-TRZ, DMAC-TRZ, BCzT, DCzTrz, DDCzTRz, spiroAC-TRZ, Ac-HPM, Ac-PPM, Ac-MPM, TCzTrz, TmCzTrz and DCzmCzTrz are preferred.
  • the compound used as the second component of the light emitting layer of the present invention may be a donor-acceptor type TADF compound represented by DA in which one donor D and one acceptor A are bonded directly or via a linking group.
  • the organic electroluminescent device has a structure represented by the following formula (DAD1) in which a plurality of donors D are bonded to one acceptor A through a direct bond or a linking group. It is preferable because it becomes more excellent.
  • D 1 -L 1 nA 1 (DAD1)
  • DAD1 includes a compound represented by the following formula (DAD2).
  • D 1 , D 2, and D 3 each independently represent a donor group.
  • the donor group the above donor structure can be employed.
  • a 1 and A 2 each independently represent an acceptor group.
  • the acceptor group the above-described acceptor structure can be employed.
  • L 1 , L 2 and L 3 each independently represent a single bond or a conjugated linking group.
  • the conjugated linking group has a spacer structure for separating the donor group and the acceptor group, and is preferably an arylene having 6 to 18 carbon atoms, more preferably an arylene having 6 to 12 carbon atoms.
  • L 1 , L 2 and L 3 are more preferably each independently phenylene, methylphenylene or dimethylphenylene.
  • n is a 2 or more in the formula (DAD1), represents an integer less than or equal to the maximum number of A 1 may be substituted. n may be selected, for example, in the range of 2 to 10, or in the range of 2 to 6. When n is 2, the compound represented by the formula (DAD2) is obtained. n number of D 1 may be different even in the same, the n L 1 may be different even in the same.
  • Preferred specific examples of the compounds represented by the formulas (DAD1) and (DAD2) include 2PXZ-TAZ and the following compounds. Not limited.
  • the light emitting layer of the organic electroluminescent device of the present invention contains a compound having a boron atom as the third component.
  • the light emitting layer includes, as a compound having a boron atom, a compound represented by any of the following formulas (i), (ii), and (iii), and a multimer having a plurality of structures represented by the following formula (i) Preferably it comprises at least one of the compounds.
  • the light emitting layer of the organic electroluminescent device of the present invention comprises a compound represented by any of the following formulas (1), (2), (3) and (4) as a third component (compound having a boron atom). More preferably, at least one is included.
  • a light emitting material for an organic electroluminescent display three kinds of materials, a fluorescent material, a phosphorescent material, and a thermally activated delayed fluorescent (TADF) material, are used. About 62.5%.
  • the phosphorescent material and the TADF material sometimes have luminous efficiencies as high as 100%, but both have a problem that the color purity is low (the emission spectrum is wide).
  • the display expresses various colors by mixing the three primary colors of light, red, green and blue, but if the color purity is low, colors that cannot be reproduced will be created, and the image quality of the display will be reduced. It greatly decreases.
  • the half width of the blue emission spectrum of a commercially available smartphone is about 20 to 25 nm, but the half width of a general fluorescent material is about 40 to 60 nm, the phosphorescent material is about 60 to 90 nm, and the TADF material is And about 70 to 100 nm.
  • the half width of a fluorescent material it is only necessary to remove some unnecessary colors because the half width is relatively narrow.
  • a phosphorescent material or a TADF material it is necessary to remove half or more. From such a background, development of a luminescent material having both luminous efficiency and color purity has been desired.
  • a TADF material uses an electron-donating substituent called a donor and an electron-accepting substituent called an acceptor to localize HOMO and LUMO in a molecule, so that an efficient reverse intersystem (reverse intersystem) is used.
  • reverse intersystem reverse intersystem
  • crossing is designed to occur, the use of donors and acceptors increases the structural relaxation in the excited state (for some molecules, the stable state is different between the ground state and the excited state, so the ground state is stimulated by external stimuli)
  • the structure changes to a stable structure in the excited state after that), thereby giving a broad emission spectrum with low color purity.
  • WO 2015/102118 proposes a new molecular design that dramatically improves the color purity of a TADF material.
  • a TADF material For example, in the compound (1-401) disclosed in the literature, three carbons on a benzene ring composed of six carbons are obtained by utilizing the multiple resonance effect of boron (electron donating) and nitrogen (electron withdrawing). (Black circles) successfully localized HOMO and the remaining three carbons (open circles) localized LUMO. Due to this efficient inverse intersystem crossing, the luminous efficiency of the compound reaches 100% at the maximum.
  • boron and nitrogen of the compound (1-401) not only localize HOMO and LUMO, but also maintain a robust planar structure by condensing three benzene rings, and reduce structural relaxation in an excited state. It also plays a role of suppressing, and as a result, has succeeded in obtaining an emission spectrum with a small Stokes shift of absorption and emission peaks and high color purity.
  • the half width of the emission spectrum is 28 nm, which indicates a level of color purity that surpasses even that of a high-purity fluorescent material that is in practical use.
  • the dimer compound represented by the formula (1-422) two borons and two nitrogens are bonded to the central benzene ring, thereby further enhancing the multiple resonance effect in the central benzene ring. As a result, it is possible to emit light having an extremely narrow emission peak width.
  • the present compound in the device of the present invention, by utilizing the present compound as an emitting dopant, a high energy transfer efficiency from the assisting dopant to the emitting dopant, an appropriate emission wavelength and a half width of the emission spectrum, a high color purity, and a high device Efficiency and small roll-off, and long life are realized.
  • Compounds represented by any of the above formulas (i), (ii) and (iii), multimeric compounds having a plurality of structures represented by the formula (i), formulas (1), (2), ( The compound represented by any one of 3) and (4) is a compound obtained by further studying these specific compound examples.
  • the third component may be a normal phosphor or a thermally activated delayed phosphor.
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • X 1 and X 2 are each independently O, NR,> CR 2 , S or Se, wherein R of the NR and R of> CR 2 are an optionally substituted aryl, Is a heteroaryl, an optionally substituted cycloalkyl or an alkyl, and R of the NR is at least one selected from the above-mentioned ring A, ring B and ring C by a linking group or a single bond. May be combined, and At least one hydrogen in the compound or structure represented by formula (i) may
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy (hereinafter, the first) Substituents), which may be further substituted with at least one (or more, a second substituent) selected from aryl, heteroaryl, and alkyl, and R 1 to R 3 , R 4 to R 7 and adjacent groups among R 8 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and the formed ring may be an aryl or heteroaryl , Diarylamino, alkyl, cycloalkyl, alkoxy and aryloxy (at least one of
  • the “aryl” (first substituent) such as R 1 may be a single ring or a condensed ring obtained by condensing two or more aromatic hydrocarbon rings, and may have two or more aromatic hydrocarbon rings linked to each other. It may be a connected ring. When two or more aromatic hydrocarbon rings are linked, they may be linked linearly or may be linked branched.
  • “Aryl” is, for example, an aryl having 6 to 30 carbon atoms, preferably an aryl having 6 to 20 carbon atoms, more preferably an aryl having 6 to 16 carbon atoms, further preferably an aryl having 6 to 12 carbon atoms. Aryl of the number 6 to 10 is particularly preferred.
  • aryl examples include phenyl which is a monocyclic system, biphenylyl which is a bicyclic system, naphthyl which is a condensed bicyclic system, terphenylyl which is a tricyclic system (m-terphenylyl, o-terphenylyl, p-terphenylyl), condensed Examples include tricyclic, acenaphthenyl, fluorenyl, phenalenyl, phenanthrenyl, fused tetracyclic, triphenylenyl, pyrenyl, naphthacenyl, fused pentacyclic perylenyl, pentacenyl, and the like.
  • Heteroaryl (first substituent) such as R 1 is a condensed ring in which one or more heterocycles and one or more heterocycles or one or more aromatic hydrocarbon rings are condensed even if they are monocyclic. Alternatively, a connecting ring in which two or more heterocycles are connected may be used. When two or more heterocycles are linked, they may be linked linearly or may be linked branched. “Heteroaryl” is, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, more preferably a heteroaryl having 2 to 20 carbon atoms, and a heteroaryl having 2 to 15 carbon atoms.
  • heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • the heteroaryl is, for example, a heterocyclic ring containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phen
  • aryl in “diarylamino” (first substituent) such as R 1 and the “aryl” in “aryloxy” (first substituent), the description of aryl described above can be cited.
  • aryl in “diarylboryl” (first substituent) such as R 1 , the above description of aryl can be cited.
  • Alkyl (first substituent) such as R 1 may be linear or branched, and is, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons is preferable.
  • Branched alkyl having 3 to 6 carbons is more preferable, and alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methyl Pentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, methyl
  • Cycloalkyl (first substituent) such as R 1 includes cycloalkyl consisting of one ring, cycloalkyl consisting of a plurality of rings, cycloalkyl containing a double bond not conjugated in a ring, and branching outside the ring. Any of the included cycloalkyls may be used, for example, cycloalkyl having 3 to 12 carbon atoms. Cycloalkyl having 5 to 10 carbon atoms is preferable, and cycloalkyl having 6 to 10 carbon atoms is more preferable.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2,2,1] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, adamantyl and the like. No.
  • Alkoxy (first substituent) such as R 1 may be linear or branched. For example, it is a straight-chain alkoxy having 1 to 24 carbon atoms or a branched alkoxy having 3 to 24 carbon atoms. Alkoxy having 1 to 18 carbon atoms (alkoxy having a branched chain having 3 to 18 carbon atoms) is preferable, alkoxy having 1 to 12 carbons (alkoxy having a branched chain having 3 to 12 carbon atoms) is more preferable, and alkoxy having 1 to 6 carbon atoms is preferable. (Alkoxy having a branched chain having 3 to 6 carbon atoms) is more preferred, and alkoxy having 1 to 4 carbons (an alkoxy having a branched chain having 3 to 4 carbon atoms) is particularly preferred.
  • alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • the emission wavelength can be adjusted by the steric hindrance, electron-donating property and electron-withdrawing property of the structure of R 1 or the like (first substituent), and is preferably a group represented by the following formula. And more preferably methyl, t-butyl, bicyclooctyl, cyclohexyl, adamantyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4, 6-mesityl, diphenylamino, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, diphenylboryl, dimesitylboryl, dibenzooxaborinyl, phenyldibenzodiborinyl, carbazolyl, 3,6-dimethylcarba Zolyl, 3,6-di-t-butylcarbazolyl and
  • steric hindrance is large for selective synthesis.
  • t-butyl, o-tolyl, 2,6-xylyl, 2,4,6-mesityl , 3,6-dimethylcarbazolyl and 3,6-di-t-butylcarbazolyl are preferred.
  • Me represents methyl
  • tBu represents t-butyl
  • the wavy line represents the bonding position
  • Adjacent groups among R 1 to R 3 , R 4 to R 7 and R 8 to R 11 in the formula (1) are bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring.
  • the ring structure of the polycyclic aromatic compound represented by the formula (1) changes depending on the mutual bonding form of the substituents on the a-ring, b-ring and c-ring.
  • R 3 of a ring and R 4 of b ring, R 7 of b ring and R 8 of c ring, R 11 of c ring and R 1 of a ring do not correspond to “adjacent groups”. , They do not combine. That is, “adjacent groups” means groups that are adjacent on the same ring.
  • the “aryl ring” or “heteroaryl ring” formed is an unvalent ring of the aryl or heteroaryl as the first substituent described above.
  • the carbon number of the formed ring includes the carbon number of the ring before condensation.
  • Aryl, heteroaryl, diarylamino, alkyl, alkoxy, or aryloxy (the above, the first substituent) which substitutes on the formed aryl ring or heteroaryl ring, and aryl, hetero, which further substitutes the first substituent
  • the aryl or alkyl (the above is the second substituent)
  • the description of aryl, heteroaryl, diarylamino, alkyl, alkoxy or aryloxy as R 1 and the like can be cited.
  • X in the formula (1) is>O,>NR,> CR 2 ,> S or> Se, and preferably> O and> NR.
  • aryl is R of CR 2, heteroaryl or alkyl (more first substituent), also aryl further substituted to the first substituent, heteroaryl or alkyl (more, the the 2 substituents), aryl as above R 1 etc. (first substituent), a description of the heteroaryl or alkyl can be cited.
  • the compound represented by the formula (1) is preferably a compound having the following partial structure.
  • Me represents methyl
  • tBu and t-Bu represent t-butyl
  • Ph represents phenyl
  • a ring, B ring, C ring and D ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • Y is B (boron),
  • X 1 , X 2 , X 3 and X 4 are each independently>O,>NR,> CR 2 ,> S or> Se, and R of> NR and> CR 2 R is an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl or an optionally substituted alkyl, and R of the formula> NR represents a linking group.
  • R 1 and R 2 each independently represent hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 12 carbons, aryl having 6 to 12 carbons, heteroaryl or diarylamino having 2 to 15 carbons (Wherein aryl is aryl having 6 to 12 carbon atoms)
  • At least one hydrogen in the compound represented by the formula (ii) may be substituted with cyano, halogen, or deuterium.
  • R 1 to R 14 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl , alkoxy, aryloxy, heteroaryloxy, arylthio, a heteroarylthio or alkyl-substituted silyl, at least one hydrogen in these, aryl may be substituted with a heteroaryl or alkyl, also, R 5 ⁇ R 7 and the adjacent groups among R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the b-ring or the d-ring, and at least one hydrogen in the formed ring is aryl , Heteroaryl, diarylamin
  • aryls having up to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, cycloalkyl having 3 to 12 carbon atoms or alkyl having 1 to 6 carbon atoms, and R of> NR and R of> CR 2 are —O—, —S—, —C (—R) 2 — or a single bond may be bonded to at least one selected from the a ring, b ring, c ring and d ring; R of —R) 2 — is hydrogen or alkyl having 1 to 6 carbons; However, X 1 , X 2 , X 3 , and X 4 are not simultaneously> CR 2 ; And At least one hydrogen in the compounds and structures represented by formula (2) may be substituted with cyano, halogen, or deuterium. )
  • aryl, heteroaryl, diarylamino, alkyl, alkoxy or aryloxy or more, the first substituent
  • aryl, heteroaryl or alkyl or more, further substituting the first substituent) the second substituent
  • aryl as above R 1 etc. first substituent
  • heteroaryl, diarylamino, alkyl a description of the alkoxy or aryloxy
  • the compound represented by the above formula (2) is preferably a compound containing the following partial structure.
  • R in the above structure is any of the following groups.
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • X 1 , X 2 and X 3 are each independently O, NR,> CR 2 , S or Se, and R of NR and R of> CR 2 may be substituted Aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or alkyl, and R of the NR is selected from the A ring, B ring and C ring by a linking group or a single bond.
  • And may be associated with at least one of At least one hydrogen in the compound or structure represented by formula (iii)
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy, Further, it may be substituted with at least one selected from aryl, heteroaryl and alkyl, and adjacent groups among R 1 to R 3 , R 4 to R 6 and R 9 to R 11 are bonded to each other To form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and the formed ring is selected from aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy and aryloxy.
  • X 1 , X 2 and X 3 are each independently>O,> NR, or> CR 2 , wherein R of> NR and R of> CR 2 are aryl, heteroaryl, cycloaryl Alkyl or alkyl, which may be substituted with at least one selected from aryl, heteroaryl and alkyl; However, X 1 , X 2 , and X 3 are not simultaneously> CR 2 .
  • At least one hydrogen in the compounds and structures represented by formula (3) may be substituted with cyano, halogen or deuterium.
  • aryl, heteroaryl, diarylamino, alkyl, alkoxy or aryloxy (or more, a first substituent), or aryl, heteroaryl or alkyl (or more, which further substitutes the first substituent) the second substituent), aryl as above R 1 etc. (first substituent), heteroaryl, diarylamino, alkyl, a description of the alkoxy or aryloxy can be cited.
  • R 1 to R 14 are each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl, alkyl, cycloalkyl, alkoxy or aryloxy; Further, it may be substituted with at least one selected from aryl, heteroaryl and alkyl, and further, among R 1 to R 3 , R 4 to R 7 , R 8 to R 10 and R 11 to R 14 Adjacent groups may combine with each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring, c ring or d ring, and the formed ring is aryl, heteroaryl, diarylamino, alkyl, cyclo May be substituted with at least one selected from alkyl
  • L is a single bond,> CR 2 ,>O,> S or> NR
  • R in the above> CR 2 and> NR is each independently hydrogen, aryl, heteroaryl, diarylamino , Alkyl, alkoxy or aryloxy, which may be further substituted with at least one selected from aryl, heteroaryl and alkyl;
  • X and L are simultaneously> not be a CR 2
  • At least one hydrogen in the compounds and structures represented by formula (4) may be substituted with cyano, halogen or deuterium.
  • aryl, heteroaryl, diarylamino, alkyl, alkoxy or aryloxy or more, the first substituent
  • aryl, heteroaryl or alkyl or more, further substituting the first substituent) the second substituent
  • aryl as above R 1 etc. first substituent
  • heteroaryl, diarylamino, alkyl a description of the alkoxy or aryloxy
  • L in the formula (4) is a single bond,> CR 2 ,>O,> S or> NR, preferably a single bond,> O or> NR, and more preferably a single bond.
  • Aryl, heteroaryl, diarylamino, alkyl, alkoxy or aryloxy (hereinafter, the first substituent) which is R of> CR 2 and> NR, and aryl and heteroaryl further substituting the first substituent or alkyl (more second substituent) as may cite aryl as above R 1 etc. (first substituent), heteroaryl, diarylamino, alkyl, a description of the alkoxy or aryloxy.
  • the compound represented by the formula (4) is preferably a compound having the following partial structure.
  • the third component of the present invention is at least one of the compounds represented by formulas (i) to (iii), and more specifically, at least one of the compounds represented by formulas (1) to (4). It is preferably one. From the viewpoint of high PLQY, the compounds represented by the formulas (i) and (ii) are preferable, and the compound represented by the formula (ii) is more preferable. More specifically, it is preferable that the planarity of the conjugated structure containing a boron atom is higher, the formulas (1), (2) and (4) are preferable, and the formulas (2) and (4) are more preferable.
  • the compounds represented by the formulas (i) and (ii) are preferable, and the compound represented by the formula (ii) is more preferable. More specifically, it is preferable that X, X 1 , X 2 , X 3 and X 4 are nitrogen, and formulas (1), (2) and (4) are preferable, and formulas (1) and (4) More preferred. From the viewpoint of a large SOC, the formulas (i) and (ii) are preferable. More specifically, it is better that the conjugated structure containing a boron atom is not a perfect plane but is distorted. Formulas (1), (2) and (4) are preferable, and formulas (1) and (4) are more preferable. , Formula (1) is more preferable.
  • the substituent is bonded to the ring present in the compound. It may be an unsubstituted compound which is not substituted, but it is preferable to use a compound substituted with an appropriate substituent.
  • a compound substituted with an appropriate substituent By using a compound substituted with an appropriate substituent as the third component, the characteristics of the organic electroluminescent device are more excellent than when using an unsubstituted compound.
  • Preferred substituents include aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio and alkyl-substituted silyl. More preferred substituents include aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy and aryloxy; more preferred substituents include aryl, diarylamino, alkyl Even more preferred substituents are diarylamino and alkyl; particularly preferred substituents are diarylamino.
  • aryl, heteroaryl, diarylamino, diarylboryl, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio and alkyl-substituted silyl are May be substituted with at least one selected from aryl, heteroaryl, cycloalkyl and alkyl.
  • the two aryls in the diarylamino may be the same or different, but are preferably the same.
  • the aryl include phenyl which is a monocyclic system, biphenylyl which is a bicyclic system, naphthyl which is a condensed bicyclic system, terphenylyl which is a tricyclic system (m-terphenylyl, o-terphenylyl, p-terphenylyl), condensed tricyclic system Acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, condensed tetracyclic triphenylenyl, pyrenyl, naphthacenyl, condensed pentacyclic perylenyl, pentacenyl and the like.
  • the aryl of the diarylamino is substituted, it is preferably substituted with at least one selected from aryl and alkyl. Further, a group in which two aryl groups constituting diarylamino are not bonded to each other may be particularly selected and used. For example, diphenylamino, di (4-methylphenyl) amino, di (4-t-butylphenyl) amino and the like can be mentioned.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methyl Pentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, methyl
  • the third component By using a compound having a preferred substituent as the third component, it is possible to improve the external quantum yield of the organic electroluminescent device, to reduce the half width, and to increase the lifetime of the device. Can be Further, by substituting with an appropriate substituent, the lifetime Tau (Delay) of the delayed fluorescence can be shortened, and the Stokes shift can be reduced, thereby improving the performance of the organic electroluminescent device. .
  • the following particularly preferred energy structures can be constructed and adopted for the second component and the third component by employing a technique such as appropriately selecting a substituent. E (3, T, Sh) ⁇ E (2, T, Sh) ⁇ E (2, ST, Sh) ⁇ ⁇ E (3, ST, Sh)
  • the Stokes shift of the third component is 10 nm or less.
  • the Stokes shift of the third component is 15 nm or less. Further, the following energy structure is also preferable. E (3, T, Sh) ⁇ E (2, T, Sh) ⁇ E (2, ST, Sh) ⁇ ⁇ E (3, ST, Sh)
  • the Stokes shift of the third component is larger than 15 nm. In any of the above energy structures, it is preferable that E (3, S, PT) ⁇ E (2, S, PT).
  • the first component contained in the light emitting layer of the organic electroluminescent device of the present invention may be a polymer compound containing, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from a host compound.
  • the second component contained in the light emitting layer of the organic electroluminescent device of the present invention may be a polymer compound containing, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance.
  • the third component contained in the light emitting layer of the organic electroluminescent device of the present invention may be a polymer compound containing, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from a compound having a boron atom.
  • the two hydrogen atoms to be eliminated can be any two atoms in the compound. It may or may not be two hydrogen atoms bonded to the same ring structure.
  • the polymer compound contained in the light-emitting layer contains, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from the host compound, and also contains, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance. It may be a polymer compound.
  • the polymer compound contained in the light-emitting layer contains, as a repeating unit, a structure in which two hydrogen atoms are eliminated from a host compound and a structure in which two hydrogen atoms are eliminated from a compound containing a boron atom as a repeating unit. It may be a molecular compound.
  • the polymer compound contained in the light emitting layer contains, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance, and a structure in which two hydrogen atoms have been eliminated from a compound containing a boron atom. It may be a polymer compound containing as a unit. Further, the polymer compound contained in the light emitting layer contains, as a repeating unit, a structure in which two hydrogen atoms have been eliminated from the host compound, and a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance. And a polymer compound containing, as a repeating unit, a structure in which two hydrogen atoms are eliminated from a compound containing a boron atom.
  • the polymer compound contained in the light emitting layer may contain two or more kinds of repeating units having a structure in which two hydrogen atoms are eliminated from the host compound.
  • the polymer compound contained in the light emitting layer may contain two or more kinds of repeating units having a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance. Two or more kinds of repeating units having a structure in which two hydrogen atoms are eliminated from a compound containing a boron atom, which is contained in the polymer compound contained in the light emitting layer, may be used.
  • the polymer compound contained in the light emitting layer includes a repeating unit having a structure in which two hydrogen atoms have been eliminated from the host compound, a repeating unit having a structure in which two hydrogen atoms have been eliminated from the thermally activated delayed fluorescent substance, and boron.
  • the compound may contain one or more kinds of repeating units different from these.
  • a repeating unit including a structure exhibiting a hole transporting property a repeating unit including a structure exhibiting an electron transporting property, a repeating unit not exhibiting a hole transporting property or an electron transporting property, and the like are appropriately selected and employed. can do.
  • the arylene and heteroarylene mentioned herein may be substituted, and examples of the substituent include alkyl having 1 to 30 carbons, aryl having 6 to 22 carbons, and heteroaryl having 5 to 22 ring skeleton constituting atoms. be able to.
  • Examples of RA include alkyl having 1 to 30 carbons, aryl having 6 to 22 carbons, and heteroaryl having 5 to 22 ring skeleton-constituting atoms.
  • Specific examples of the repeating unit include the following structures.
  • the hydrogen atoms present in the structures below may be substituted with alkyl having 1 to 30 carbons, aryl having 6 to 22 carbons, heteroaryl having 5 to 22 ring skeleton-constituting atoms, or the like.
  • each repeating unit constituting the polymer compound contained in the light emitting layer is not particularly limited.
  • a repeating unit having a structure in which two hydrogen atoms are eliminated from a host compound a repeating unit having a structure in which two hydrogen atoms are eliminated from a thermally activated delayed fluorescent substance, and two hydrogen atoms are eliminated from a compound containing a boron atom
  • each repeating unit can be selected within the range of 0.01 to 100 mol%.
  • the molar ratio of the repeating unit can be selected from the range of 0.01 to 99.99 mol%.
  • R B is alkyl optionally substituted, an optionally substituted cycloalkyl, or also aryl such as optionally substituted.
  • R C and R G are a hydrogen atom, an optionally substituted alkyl, an optionally substituted cycloalkyl, or the like, and two or more R C or R G are connected to each other to form a cyclic structure.
  • RD is Li, Na, K, Rb, Cs or the like.
  • RE and RF are a chlorine atom, a bromine atom or an iodine atom.
  • the coupling reaction is preferably performed in the presence of a catalyst.
  • a catalyst bis (triphenylphosphine) palladium (II) dichloride, bis (tris-o-methoxyphenylphosphine) palladium (II) dichloride, tetrakis (triphenylphosphine) palladium (0), tris (dibenzylideneacetone) dichloride Palladium (0), palladium acetate, tetrakis (triphenylphosphine) nickel (0), [1,3-bis (diphenylphosphino) propane) nickel (II) dichloride, bis (1,4-cyclooctadiene) nickel ( 0), sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetraethylammonium hydroxide, tetra
  • the organic electroluminescent device of the present invention may have one or more organic layers in addition to the light emitting layer.
  • the organic layer include an electron transport layer, a hole transport layer, an electron injection layer, a hole injection layer, and the like, and may further include another organic layer.
  • FIG. 4 shows an example of a layer configuration of an organic electroluminescent device including these organic layers.
  • reference numeral 101 denotes a substrate
  • 102 denotes an anode
  • 103 denotes a hole injection layer
  • 104 denotes a hole transport layer
  • 105 denotes a light emitting layer
  • 106 denotes an electron transport layer
  • 107 denotes an electron injection layer
  • 108 denotes a cathode.
  • an organic layer, a cathode and an anode, and a substrate provided in addition to the light emitting layer in the organic electroluminescent device will be described.
  • the electron injection layer and the electron transport layer 107 in the organic electroluminescent element play a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role in efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • Each of the electron transport layer 106 and the electron injection layer 107 is formed by laminating and mixing one or more of the electron transport / injection materials.
  • the electron injection / transport layer is a layer that injects electrons from the cathode and transports the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently.
  • the substance be a substance having a high electron affinity, a high electron mobility, excellent stability, and hardly generating impurities serving as traps during production and use.
  • the electron transport capability is not so high. Even if it is not high, the effect of improving the luminous efficiency is equivalent to a material having a high electron transporting ability. Therefore, the electron injecting / transporting layer in the present embodiment may include a function of a layer that can efficiently block the movement of holes.
  • a material (electron transporting material) for forming the electron transporting layer 106 or the electron injecting layer 107 a compound conventionally used as an electron transporting compound in a photoconductive material, an electron injecting layer and an electron transporting layer of an organic electroluminescent element can be used. Any of the known compounds used can be arbitrarily selected and used.
  • condensed ring type aromatic ring derivatives such as naphthalene and anthracene
  • styryl type aromatic ring derivatives typified by 4,4′-bis (diphenylethenyl) biphenyl
  • perinone derivatives such as naphthalene and anthracene
  • coumarin derivatives such as naphthalimide derivatives
  • quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives.
  • the metal complex having an electron accepting nitrogen include a hydroxyazole complex such as a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex. These materials may be used alone or in combination with different materials.
  • electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, and oxadiazole.
  • Derivatives such as 1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene derivatives, and triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4- Triazole), metal complexes of thiadiazole derivatives, oxine derivatives, quinolinol-based metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazoles, gallium complexes, pyrazole derivatives, perfluorinated Nylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives (such as 2,2'-bis (benzo [h] quinolin-2-yl) -9,9'-spirobifluorene), imidazopyridine derivatives, borane derivatives, benzones Imidazole derivatives (such as tris (N-phenylbenzimidazol
  • the above-mentioned materials may be used alone, but may be used in combination with different materials.
  • borane derivatives pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives, and quinolinol-based metals Complexes are preferred.
  • the pyridine derivative is, for example, a compound represented by the following formula (ETM-2), and preferably a compound represented by the formula (ETM-2-1) or (ETM-2-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
  • R 11 and R 12 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may combine to form a ring.
  • the “pyridine-based substituent” is any of the following formulas (Py-1) to (Py-15), and the pyridine-based substituents are each independently substituted with alkyl having 1 to 4 carbon atoms. It may be. Further, the pyridine-based substituent may be bonded to ⁇ , an anthracene ring or a fluorene ring in each formula via a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among them, any of the following formulas (Py-21) to (Py-44) Is preferred.
  • At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine-based substituents” in the above formula (ETM-2-1) and formula (ETM-2-2) May be replaced by an aryl.
  • the “alkyl” for R 11 to R 18 may be linear or branched, and includes, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferred “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferred “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyl,
  • alkyl having 1 to 4 carbon atoms to be substituted with the pyridine-based substituent the description of the above alkyl can be cited.
  • Cycloalkyl for R 11 to R 18 includes, for example, cycloalkyl having 3 to 12 carbon atoms.
  • Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • the “aryl” in R 11 to R 18 may be a single ring, a condensed ring in which two or more aromatic hydrocarbon rings are fused, or a connecting ring in which two or more aromatic hydrocarbon rings are linked. There may be. When two or more aromatic hydrocarbon rings are linked, they may be linked linearly or may be linked branched. Preferred aryl is aryl having 6 to 30 carbons, more preferred aryl is aryl having 6 to 18 carbons, still more preferred is aryl having 6 to 14 carbons, and particularly preferred is aryl having 6 to 12 carbons. It is.
  • aryl examples include, for example, phenyl which is a monocyclic aryl, biphenylyl which is a bicyclic aryl (2-biphenylyl, 3-biphenylyl, 4-biphenylyl), and naphthyl (1-naphthyl) which is a fused bicyclic aryl , 2-naphthyl), terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3 '-Yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl , O-terphenyl-2-yl, o-terphenyl,
  • Preferred “aryl having 6 to 30 carbon atoms” include phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl, more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, and particularly preferably phenyl, -Naphthyl or 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may combine to form a ring, and as a result, the 5-membered ring of the fluorene skeleton has cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene or indene may be spiro-bonded.
  • pyridine derivative examples include, for example, the following compounds.
  • This pyridine derivative can be produced using a known raw material and a known synthesis method.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). The details are also described in WO2013 / 079217.
  • R 5 is a substituted or unsubstituted alkyl having 1 to 20 carbons, an aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons
  • R 6 is CN, substituted or unsubstituted alkyl having 1 to 20 carbons, heteroalkyl having 1 to 20 carbons, aryl having 6 to 20 carbons, heteroaryl having 5 to 20 carbons, 1 to carbons 20 alkoxy or aryloxy having 6 to 20 carbon atoms
  • R 7 and R 8 are each independently a substituted or unsubstituted aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons
  • R 9 is oxygen or sulfur
  • j is 0 or 1
  • k is 0 or 1
  • r is an integer of 0 to 4
  • q is
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, and an arylthioether group.
  • Ar 1 may be the same or different and is an arylene group or a heteroarylene group
  • Ar 2 may be the same or different and is an aryl group or a heteroaryl group.
  • at least one of Ar 1 and Ar 2 has a substituent or forms a condensed ring with an adjacent substituent.
  • n is an integer of 0 to 3. When n is 0, there is no unsaturated structure part, and when n is 3, R 1 does not exist.
  • the alkyl group means a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group, which may be unsubstituted or substituted.
  • the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group. This point is also common to the following description.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
  • cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 3 to 20.
  • the aralkyl group refers to, for example, an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group and a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter.
  • the carbon number of the aliphatic moiety is not particularly limited, but is usually in the range of 1 to 20.
  • Alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group and a butadienyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2 to 20.
  • the cycloalkenyl group refers to, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexene group, which may be unsubstituted or substituted. I don't care.
  • Alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkynyl group is not particularly limited, but is usually in the range of 2 to 20.
  • Alkoxy group means, for example, an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkoxy group is not particularly limited, it is usually in the range of 1 to 20.
  • Alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the aryl ether group refers to, for example, an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted.
  • the number of carbon atoms in the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • the arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is substituted with a sulfur atom.
  • the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenylyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group.
  • the aryl group may be unsubstituted or substituted.
  • the carbon number of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, and a carbazolyl group. It doesn't matter.
  • the carbon number of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
  • Halogen refers to fluorine, chlorine, bromine and iodine.
  • the aldehyde group, carbonyl group, and amino group may also include groups substituted with an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a heterocyclic ring, and the like.
  • aliphatic hydrocarbons aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and heterocycles may be unsubstituted or substituted.
  • silyl group means a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
  • carbon number of the silyl group is not particularly limited, it is usually in the range of 3 to 20. Further, the number of silicon is usually 1 to 6.
  • the condensed ring formed between adjacent substituents is, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like.
  • n when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other.
  • These condensed rings may contain nitrogen, oxygen and sulfur atoms in the ring structure, or may be condensed with another ring.
  • phosphine oxide derivative examples include the following compounds.
  • This phosphine oxide derivative can be produced using a known raw material and a known synthesis method.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). The details are also described in WO 2011/021689.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • the “aryl” of the “optionally substituted aryl” may be a single ring, a condensed ring obtained by condensing two or more aromatic hydrocarbon rings, or two or more aromatic hydrocarbon rings linked to each other. It may be a connected ring. When two or more aromatic hydrocarbon rings are linked, they may be linked linearly or may be linked branched.
  • “Aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, and still more preferably aryl having 6 to 12 carbon atoms. It is.
  • aryl examples include, for example, phenyl which is a monocyclic aryl, biphenylyl which is a bicyclic aryl (2-biphenylyl, 3-biphenylyl, 4-biphenylyl), and naphthyl (1-naphthyl) which is a fused bicyclic aryl , 2-naphthyl), terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3 '-Yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl , O-terphenyl-2-yl, o-terphenyl,
  • heteroaryl of the “optionally substituted heteroaryl” may be a single ring or a condensed ring in which one or more heterocycles and one or more heterocycles or one or more aromatic hydrocarbon rings are fused. Alternatively, it may be a connecting ring in which two or more heterocycles are connected. When two or more heterocycles are linked, they may be linked linearly or may be linked branched. “Heteroaryl” includes, for example, heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, and 2 to 15 carbon atoms.
  • Heteroaryl is more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanil, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl,
  • the above aryl and heteroaryl may be substituted, for example, each of the above aryl and heteroaryl may be substituted.
  • pyrimidine derivative examples include, for example, the following compounds.
  • This pyrimidine derivative can be produced using a known raw material and a known synthesis method.
  • Triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in U.S. Publication No. 2011/0156013.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl examples include, for example, phenyl which is a monocyclic aryl, biphenylyl which is a bicyclic aryl (2-biphenylyl, 3-biphenylyl, 4-biphenylyl), and naphthyl (1-naphthyl) which is a fused bicyclic aryl , 2-naphthyl), terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3 '-Yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl , O-terphenyl-2-yl, o-terphenyl,
  • heteroaryl of the “optionally substituted heteroaryl” may be a single ring or a condensed ring in which one or more heterocycles and one or more heterocycles or one or more aromatic hydrocarbon rings are fused. Alternatively, it may be a connecting ring in which two or more heterocycles are connected. When two or more heterocycles are linked, they may be linked linearly or may be linked branched. “Heteroaryl” includes, for example, heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, and 2 to 15 carbon atoms.
  • Heteroaryl is more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanil, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl,
  • the above aryl and heteroaryl may be substituted, for example, each of the above aryl and heteroaryl may be substituted.
  • triazine derivative examples include, for example, the following compounds.
  • This triazine derivative can be produced using a known raw material and a known synthesis method.
  • Benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4.
  • the “benzimidazole-based substituent” means that the pyridyl group in the “pyridine-based substituent” in the above formulas (ETM-2), (ETM-2-1) and (ETM-2-2) is benzo. It is a substituent replacing the imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
  • R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbons, cycloalkyl having 3 to 12 carbons or aryl having 6 to 30 carbons, and is represented by the above formula (ETM-2-1) or ( It may be cited to the description of R 11 in ETM-2-2).
  • is further preferably an anthracene ring or a fluorene ring, and in this case, the structure described in the above formula (ETM-2-1) or (ETM-2-2) can be referred to.
  • R 11 to R 18 can refer to the description in the above formula (ETM-2-1) or formula (ETM-2-2).
  • two pyridine-based substituents are described as being bonded. However, when these are replaced with benzimidazole-based substituents, both are substituted.
  • benzimidazole derivative examples include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- ( Naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4 -(10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10 Di (naphthalen-2
  • This benzimidazole derivative can be produced using a known raw material and a known synthesis method.
  • Phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or (ETM-12-1). Details are described in WO 2006/021982.
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 in each formula are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cycloalkyl having 3 to 12 carbons) or aryl (preferably carbon Aryl of formulas 6 to 30).
  • alkyl preferably alkyl having 1 to 24 carbons
  • cycloalkyl preferably cycloalkyl having 3 to 12 carbons
  • aryl preferably carbon Aryl of formulas 6 to 30.
  • each phenanthroline derivative may be replaced with deuterium.
  • R 11 ⁇ R 18, cycloalkyl and aryl may be cited to the description of R 11 ⁇ R 18 in the formula (ETM-2).
  • is, for example, the following structural formula in addition to the above examples.
  • R in the following structural formulas is each independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • phenanthroline derivative examples include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9 ′ -Difluoro-bis (1,10-phenanthroline-5-yl), bathocuproine, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
  • This phenanthroline derivative can be produced using a known raw material and a known synthesis method.
  • the quinolinol-based metal complex is, for example, a compound represented by the following formula (ETM-13).
  • R 1 to R 6 are hydrogen or a substituent
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol-based metal complexes include 8-quinolinol lithium, tris (8-quinolinolate) aluminum, tris (4-methyl-8-quinolinolate) aluminum, tris (5-methyl-8-quinolinolate) aluminum, tris (3 , 4-Dimethyl-8-quinolinolate) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolinolate) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-methylphenolate) aluminum, bis (2-methyl-8- Quinolinolate) (4- Butylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis (2-methyl- 8-quinol lithium
  • This quinolinol-based metal complex can be produced using a known raw material and a known synthesis method.
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing a material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing a material forming the electron transport layer or the electron injection layer As the reducing substance, various substances having a certain reducing property are used, for example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkali metals, and the like. From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected can be suitably used.
  • Preferred reducing substances include alkali metals such as Na (2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. eV).
  • Alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) and Ba (2.52 eV), and those having a work function of 2.9 eV or less are particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, further preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the material forming the electron transporting layer or the electron injecting layer can improve the emission luminance and extend the life of the organic electroluminescent device.
  • a reducing substance having a work function of 2.9 eV or less a combination of two or more of these alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the cathode in the organic electroluminescent device plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer.
  • the material for forming the cathode 108 is not particularly limited as long as the material can efficiently inject electrons into the organic layer, and the same material as the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium) -An indium alloy, an aluminum-lithium alloy such as lithium fluoride / aluminum, etc.).
  • lithium, sodium, potassium, cesium, calcium, magnesium or an alloy containing these low work function metals is effective.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, and vinyl chloride It is preferable to laminate a hydrocarbon polymer compound and the like.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam evaporation, sputtering, ion plating, and coating.
  • the hole injection layer and the hole transport layer 103 in the organic electroluminescent element serve to inject holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104 efficiently.
  • the hole transport layer 104 plays a role in efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light-emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or more of the hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done. Further, a layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole injecting / transporting material.
  • a hole injection / transport substance As a hole injection / transport substance, it is necessary to efficiently inject and transport holes from the positive electrode between the electrodes to which an electric field is applied, and the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For that purpose, it is preferable that the ionization potential is small, the hole mobility is large, the stability is further improved, and impurities serving as traps are less likely to be generated during production and use.
  • a compound conventionally used as a hole charge transport material in a photoconductive material, a p-type semiconductor, and a hole injection layer of an organic electroluminescent element are used. Any of the known materials used for the layer and the hole transport layer can be selected and used. Specific examples thereof include a carbazole derivative (N-phenylcarbazole, polyvinylcarbazole, etc.), a biscarbazole derivative such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), and a triarylamine derivative (aromatic tertiary).
  • polycarbonates having the above monomers in the side chain polycarbonates having the above monomers in the side chain, styrene derivatives, polyvinyl carbazole, polysilanes and the like are preferable, but light emission is preferred.
  • the compound is not particularly limited as long as it is a compound capable of forming a thin film required for manufacturing an element, injecting holes from the anode, and transporting holes.
  • an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) are known for doping of electron donors.
  • TCNQ tetracyanoquinonedimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane
  • a material for forming the hole injection layer 103 and the hole transport layer 104 by using a wet film formation method a material for forming the hole injection layer 103 and the hole transport layer 104 used for the above-described vapor deposition is used.
  • a hole-injecting and hole-transporting polymer, a hole-injecting and hole-transporting crosslinkable polymer, a hole-injecting and hole-transporting polymer precursor, and a polymer An initiator or the like can be used.
  • PEDOT PSS
  • polyaniline compounds described in JP-A-2005-108828, WO 2010/058776, WO 2013/042623, etc.
  • fluorene polymers JP-A-2011-251984, 2011-501449, JP 2012-533661, etc.
  • the anode 102 in the organic electroluminescent device plays a role of injecting holes into the light emitting layer 105. Note that when the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light-emitting layer 105, holes are injected into the light-emitting layer 105 through these layers. .
  • an inorganic compound and an organic compound can be given.
  • the inorganic compound include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) (IZO), metal halides (eg, copper iodide), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
  • the organic compound include conductive polymers such as polythiophene such as poly (3-methylthiophene), polypyrrole, and polyaniline. In addition, it can be appropriately selected from the substances used as the anode of the organic electroluminescent element.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, but is preferably low from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate having a resistance of 300 ⁇ / ⁇ or less functions as an element electrode.
  • a substrate of about 10 ⁇ / ⁇ can be supplied at present, for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low-resistance product of /.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm.
  • the anode in the organic electroluminescent element may have a bank (partition material).
  • a bank partition material
  • an arbitrary layer can be obtained by dropping a composition for forming each layer or a composition for forming a light emitting layer in a bank and drying the composition.
  • Photolithography technology can be used for manufacturing the bank.
  • a bank material that can be used for photolithography an inorganic material and an organic material can be used.
  • the inorganic material for example, SiNx, SiOx and a mixture thereof
  • the organic material for example, a positive resist Materials and negative resist materials can be used.
  • a patterning printing method such as a sputtering method, an inkjet method, gravure offset printing, reverse offset printing, and screen printing can also be used. In that case, a permanent resist material can be used.
  • the bank may have a multilayer structure, and different types of materials may be used.
  • organic material used for the bank examples include polysaccharides and derivatives thereof, homopolymers and copolymers of ethylenic monomers having hydroxyls, biopolymer compounds, polyacryloyl compounds, polyesters, polystyrene, polyimide, polyamideimide, and poly (imide).
  • Ether imide polysulfide, polysulfone, polyphenylene, polyphenyl ether, polyurethane, epoxy (meth) acrylate, melamine (meth) acrylate, polyolefin, cyclic polyolefin, acrylonitrile-butadiene-styrene copolymer (ABS), silicone resin, polyvinyl chloride , Chlorinated polyethylene, chlorinated polypropylene, polyacetate, polynorbornene, synthetic rubber, polyfluorovinylidene, polytetrafluoroethylene, poly Fluorinated polymers hexafluoropropylene etc., fluoroolefins - hydrocarbonoxy olefin copolymer, fluorocarbon polymers, and the like, but is not so limited.
  • a resin layer is formed by applying a material having liquid repellency to the functional layer forming composition such as the light emitting layer forming composition on the element substrate on which the electrodes are formed, and drying the applied material.
  • a material having liquid repellency to the functional layer forming composition such as the light emitting layer forming composition on the element substrate on which the electrodes are formed, and drying the applied material.
  • a bank can be formed on the element substrate on which the electrodes are formed.
  • a process such as a washing / drying process with a solvent or an ultraviolet treatment may be performed to remove impurities on the surface of the bank in order to spread the composition for forming a functional layer evenly.
  • the substrate 101 serves as a support for the organic electroluminescent device 100, and is usually made of quartz, glass, metal, plastic, or the like.
  • the substrate 101 is formed in a plate shape, a film shape, or a sheet shape depending on the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable.
  • the thickness only needs to be 0.2 mm or more, as long as it has a thickness sufficient to maintain mechanical strength.
  • the upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • alkali-free glass is preferable because it is preferable that the amount of ions eluted from the glass is small, but soda lime glass with a barrier coat such as SiO 2 is also commercially available. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance gas barrier properties.
  • a plate, film, or sheet made of a synthetic resin having low gas barrier properties is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • Each layer constituting the organic electroluminescent device is formed by vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination, printing, spin coating or casting, in which the materials constituting each layer are formed. It can be formed by forming a thin film by a method such as a coating method.
  • the thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a quartz oscillation type film thickness measuring device or the like.
  • the evaporation conditions vary depending on the type of material, the target crystal structure, association structure, and the like of the film.
  • the deposition conditions are as follows: heating temperature of the crucible for deposition +50 to + 400 ° C., vacuum degree of 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate of 0.01 to 50 nm / sec, substrate temperature of ⁇ 150 to + 300 ° C., and film thickness of 2 nm. It is preferable to set appropriately within a range of 5 ⁇ m.
  • an anode / a hole injection layer / a hole transport layer / a host compound, a light-emitting layer containing a thermally activated delayed phosphor and a compound having a boron atom / electron transport A method for producing an organic electroluminescent device comprising a layer / electron injection layer / cathode will be described.
  • Evaporation Method A thin film of an anode material is formed on a suitable substrate by an evaporation method or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host compound, a thermally activated delayed phosphor and a compound having a boron atom are co-evaporated to form a thin film to form a light emitting layer, and an electron transport layer and an electron injection layer are formed on the light emitting layer,
  • a target organic electroluminescent element is obtained by forming a thin film made of a material for a cathode by a vapor deposition method or the like to form a cathode.
  • the production order may be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be produced in this order. It is possible.
  • a compound represented by the formula (ii) or a compound represented by the formula (2) as the third component it is preferable to select and use a compound in which at least one of R 1 to R 14 in the formula (2) is a substituent.
  • a preferable substituent in the above-mentioned third component can be employed.
  • alkyl having 1 to 24 carbon atoms and optionally substituted diarylamino can be particularly preferably employed.
  • the external quantum efficiency of the organic electroluminescent device is higher and the characteristics are better than when formed by a vapor deposition method using the compound represented by the formula (4).
  • the light-emitting layer is formed by a vapor deposition method using the compound represented by the formula (i) or (iii) as the third component
  • a preferable substituent in the third component It is particularly preferable to use a compound having an alkyl having 1 to 24 carbon atoms and an optionally substituted diarylamino.
  • the external quantum efficiency of the organic electroluminescent device is higher than when the light-emitting layer is formed by a vapor deposition method using a corresponding compound having no substituent. Long life and excellent characteristics.
  • the film is formed by using a wet film forming method.
  • the wet film forming method generally forms a coating film through a coating step of applying a composition for forming a light emitting layer to a substrate and a drying step of removing a solvent from the applied composition for forming a light emitting layer.
  • the method using a spin coater can be changed to a spin coating method, a slit coating method using a slit coater, a gravure using a plate, offset, reverse offset, flexographic printing method, a method using an ink jet printer to an ink jet method, a mist form
  • the spraying method is called a spray method.
  • the drying step includes methods such as air drying, heating, and vacuum drying. The drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, for example, different methods such as firing under reduced pressure may be used in combination.
  • the wet film forming method is a film forming method using a solution, and for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, and the like.
  • the wet film formation method does not require an expensive vacuum deposition apparatus unlike the vacuum deposition method, and can form a film under atmospheric pressure.
  • the wet film forming method enables a large area and continuous production, which leads to a reduction in manufacturing cost.
  • the wet film formation method is difficult to laminate.
  • a multilayer film is formed by a wet film formation method, it is necessary to prevent the dissolution of the lower layer by the composition of the upper layer, a composition having controlled solubility, crosslinking of the lower layer, and an orthogonal solvent (orthogonal solvent, which dissolve each other). No solvent).
  • the organic electroluminescent device thus manufactured is preferably covered with a sealing layer (not shown) to protect it from moisture and oxygen.
  • a sealing layer for example, an inorganic insulating material such as silicon oxynitride (SiON) having low permeability to moisture or oxygen can be used.
  • the organic electroluminescent element may be sealed by attaching a sealing substrate such as a transparent glass or an opaque ceramic to an element substrate on which the organic electroluminescent element is formed via an adhesive.
  • the present invention can also be applied to a display device including the organic electroluminescent element, a lighting device including the organic electroluminescent element, and the like.
  • a display device or a lighting device equipped with the organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment to a known driving device, and can be driven by direct current, pulse, or alternating current. Driving can be performed by appropriately using a known driving method such as driving.
  • Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066, JP-A-2003-321546). Gazette, JP-A-2004-281086).
  • Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • pixels for display are two-dimensionally arranged such as in a lattice or mosaic, and a set of pixels displays a character or an image.
  • the shape and size of the pixel depend on the application. For example, a square pixel having a side of 300 ⁇ m or less is normally used for displaying images and characters on a personal computer, a monitor, and a television. In the case of a large display such as a display panel, a pixel having a side of mm order is used. become.
  • pixels of the same color may be arranged, but in the case of color display, red, green and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix may be driven by either a line-sequential driving method or an active matrix.
  • the line-sequential driving has the advantage that the structure is simpler, but the active matrix is sometimes superior when the operating characteristics are taken into consideration.
  • a pattern is formed so as to display predetermined information, and a predetermined area emits light.
  • a time display and a temperature display on a digital clock or a thermometer an operation state display of an audio device or an electromagnetic cooker, and a panel display of a car.
  • Illumination devices include, for example, illumination devices such as interior lighting, backlights of liquid crystal display devices (for example, JP-A-2003-257621, JP-A-2003-277741, and JP-A-2004-119211). Etc.).
  • a backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the present embodiment is considered to be difficult to make thin because the conventional method is made up of a fluorescent lamp and a light guide plate.
  • the backlight using the light emitting element according to the above is characterized by being thin and lightweight.
  • the light emitting layer forming composition of the present invention is a composition for forming a light emitting layer of an organic electroluminescent device by a wet method.
  • the composition for forming a light-emitting layer comprises a compound having at least one host compound as a first component, at least one heat-activated delayed phosphor as a second component, and at least one boron atom as a third component. And a composition containing at least one organic solvent as the fourth component.
  • the host compound the thermally activated delayed fluorescent substance, and the compound having a boron atom, the compounds described in the description of the light emitting layer in the organic electroluminescent device can be used.
  • the composition for forming a light emitting layer of the present invention preferably contains at least one organic solvent.
  • the evaporation rate of the organic solvent at the time of film formation, it is possible to control and improve the film formability and the presence / absence of defects in the coating film, surface roughness, and smoothness.
  • the meniscus stability at the pinhole of the inkjet head can be controlled, and the ejection property can be controlled and improved.
  • the drying rate of the film and the orientation of the derivative molecules the electric characteristics, light-emitting characteristics, efficiency, and lifetime of the organic electroluminescent device having the light-emitting layer obtained from the light-emitting layer forming composition are improved. be able to.
  • the boiling point of at least one organic solvent contained as the fourth component in the composition for forming a light emitting layer is from 130 ° C. to 350 ° C., preferably from 140 ° C. to 300 ° C., more preferably from 150 ° C. to 250 ° C. More preferred.
  • the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ink jet discharge properties.
  • the boiling point is lower than 350 ° C., it is preferable from the viewpoints of coating film defects, surface roughness, residual solvent and smoothness. From the viewpoints of good ink jetting properties, film forming properties, smoothness, and low residual solvent, a configuration containing two or more organic solvents is more preferable.
  • the composition may be in a solid state by removing a solvent from the composition for forming a light emitting layer in consideration of transportability and the like.
  • the composition for forming a light-emitting layer of the present invention contains, as a fourth component, a good solvent (GS) and a poor solvent (PS) for at least one of the compounds as the first component, the second component, and the third component. It is particularly preferred that the boiling point (BP GS ) of the solvent ( GS ) is lower than the boiling point (BP PS ) of the poor solvent (PS).
  • a poor solvent having a high boiling point a good solvent having a low boiling point volatilizes first during the film formation, and the concentration of the components contained in the composition and the concentration of the poor solvent are increased, thereby promoting a rapid film formation. Thereby, a coating film with few defects, small surface roughness, and high smoothness can be obtained.
  • the difference in solubility is preferably at least 1%, more preferably at least 3%, even more preferably at least 5%.
  • the difference in boiling points is preferably at least 10 ° C., more preferably at least 30 ° C., even more preferably at least 50 ° C.
  • the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure, and heating.
  • a drying process such as vacuum, reduced pressure, and heating.
  • organic solvent examples include a hydrocarbon solvent, an alkylbenzene solvent, a phenyl ether solvent, an alkyl ether solvent, a cyclic ketone solvent, an aliphatic ketone solvent, and a simple solvent. Examples thereof include a cyclic ketone solvent, a solvent having a diester skeleton, and a fluorinated solvent.
  • an alkylbenzene-based solvent, a phenylether-based solvent, or a mixed solvent thereof is preferable.
  • the alkylbenzene-based solvent cyclohexylbenzene is preferable, and as the phenylether-based solvent, 3-phenoxytoluene is preferable.
  • a mixed solvent of cyclohexylbenzene and 3-phenoxytoluene is also preferable.
  • the mass ratio of the two is not particularly limited, but may be, for example, 2: 8 to 8: 2, and is preferably 5: 5 to 8: 2.
  • composition for forming an optional component light emitting layer may contain optional components as long as the properties are not impaired.
  • Optional components include a binder and a surfactant.
  • the composition for forming a binder light emitting layer may contain a binder.
  • the binder forms a film during film formation and bonds the obtained film to the substrate. In addition, it plays a role of dissolving, dispersing, and binding other components in the light emitting layer forming composition.
  • binder used in the composition for forming a light emitting layer examples include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon (registered trademark), acrylonitrile-butadiene-styrene copolymer (ABS) ) Resins, acrylonitrile-styrene copolymer (AS) resins, phenolic resins, epoxy resins, melamine resins, urea resins, alkyd resins, polyurethanes, and copolymers of the above resins and polymers. Is but
  • the binder used in the composition for forming a light emitting layer may be only one kind or a mixture of plural kinds.
  • the composition for forming a surfactant light emitting layer may contain, for example, a surfactant for controlling the film surface uniformity, the solvent affinity and the liquid repellency of the film surface of the light emitting layer forming composition.
  • Surfactants are classified into ionic and nonionic according to the structure of the hydrophilic group, and further classified into alkyl, silicon and fluorine based on the structure of the hydrophobic group. Further, according to the molecular structure, they are classified into a monomolecular system having a relatively small molecular weight and a simple structure and a high molecular system having a large molecular weight and having side chains or branches.
  • the composition is classified into a single system and a mixed system in which two or more surfactants and a base material are mixed from the composition.
  • surfactants that can be used in the composition for forming a light emitting layer all kinds of surfactants can be used.
  • surfactant examples include Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, polyflow no. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbyk 161, Disperbake 162, Disperbake 163, Disperbake 164, Disperbake 166, Disperbake 170, Disperbake 180, Disperbake 181, Disperbake Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by BYK Japan KK), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Futergent 222F, Futerge 251;
  • the first component, the second component, and the third component have excellent solubility, film formability, wet coatability, and thermal stability.
  • a compound that satisfies at least one of properties and in-plane orientation is selected.
  • alkyl having 1 to 24 carbon atoms, diarylamino, cycloalkyl having 5 to 24 carbon atoms, and cycloalkyl having 6 to 24 carbon atoms are preferable. It is preferable to select a compound substituted with aryl and heteroaryl having 5 to 24 carbon atoms.
  • the first component it is preferable to select a compound having phenylene, triazine, pyridine, carbazole, dibenzofuran or dibenzothiophene having a substituent at the m-position in the molecule.
  • a compound having alkyl or cycloalkyl in the molecule is preferable from the viewpoint of solubility and film formability, and a rod-like molecule having a high oversight is preferable from the viewpoint of efficiency.
  • Compounds having azole, thiadiazole and triazole in the molecule are preferred, and Formula 2PXZ-TAZ is preferred.
  • a compound having alkyl or cycloalkyl in the molecule is preferable from the viewpoint of solubility and film-forming properties, and a rod-like molecule having a high overhead is preferable from the viewpoint of efficiency.
  • the compound represented by 2) is preferable, and B2N4-0230 / S-M1, B2N4-0220 / S-M1, B2N4-0211 / S-M1, BN2BNO-0230 / S-M1, and B2O2N2-0220 / S-M1 It is preferred to select a compound that is
  • each component in the composition for forming a light emitting layer of the present invention is not particularly limited, but the content of the first component is preferably based on the total mass of the first component, the second component, and the third component. It is from 40% by mass to 98.999% by mass, more preferably from 50% by mass to 99.99% by mass, still more preferably from 60% by mass to 94.9% by mass.
  • the content of the second component is 1% by mass to 60% by mass, more preferably 2% by mass to 50% by mass, based on the total mass of the first component, the second component and the third component. Preferably it is 5% by mass to 30% by mass.
  • the content of the third component is preferably 0.001% by mass to 30% by mass, more preferably 0.01% to 20% by mass, based on the total mass of the first component, the second component and the third component. And more preferably 0.1 to 10% by mass.
  • the above range is preferable, for example, in that the density quenching phenomenon can be prevented.
  • the content of each of the first component, the second component and the third component is determined by the good dissolution of each component in the composition for forming a light emitting layer. , Storage stability and film-forming properties, and good film quality of a coating film obtained from the composition for forming a light-emitting layer, and also good dischargeability when using an inkjet method, produced using the composition. It may be determined from the viewpoints of good electric characteristics, light-emitting characteristics, efficiency, and life of the organic electroluminescent element having the light-emitting layer.
  • the first component is 40 to 98.999% by mass
  • the second component is 1% by mass based on the total mass of the first component, the second component, and the third component of the composition for forming a light emitting layer.
  • % To 60% by mass and the third component is preferably 0.001% to 30% by mass. More preferably, the first component is 50% to 97.9% by mass, and the second component is 2% by mass, based on the total mass of the first, second and third components of the composition for forming a light emitting layer.
  • the third component is 0.01 to 20% by mass.
  • the first component is 60% by mass to 94.9% by mass
  • the second component is 5% by mass, based on the total mass of the first component, the second component, and the third component of the composition for forming a light emitting layer.
  • the third component is 0.1-10% by mass.
  • each component in the composition for forming a light-emitting layer of the present invention is good solubility, storage stability and film formability of each component in the composition for forming a light-emitting layer, and the composition for forming a light-emitting layer.
  • Good film quality of the coating film obtained from the above, and also good ejection property when using the ink jet method, good electric characteristics and light emitting characteristics of the organic electroluminescent element having the light emitting layer manufactured using the composition It may be determined from the viewpoints of efficiency, life, and life.
  • the first component is included in an amount of 0.0998% by mass to 4.0% by mass
  • the second component is included in the total mass of the light emitting layer forming composition.
  • the third component is 0.0001% by mass to 2.0% by mass
  • the fourth component is the light emitting layer with respect to the total mass of the composition for forming a light emitting layer. It is preferably from 90.0% to 99.9% by mass relative to the total mass of the forming composition.
  • the first component is 0.17% by mass to 4.0% by mass with respect to the total mass of the light emitting layer forming composition
  • the second component is with respect to the total mass of the light emitting layer forming composition.
  • the third component being 0.03% by mass to 1.0% by mass
  • the fourth component being the composition for forming the light emitting layer, based on the total mass of the composition for forming the light emitting layer. 93.0% by mass to 99.77% by mass with respect to the total mass of the product.
  • the first component is 0.25% by mass to 2.5% by mass with respect to the total mass of the light emitting layer forming composition
  • the second component is the total mass of the light emitting layer forming composition.
  • the third component being 0.05% to 0.5% by mass
  • the fourth component being the composition for forming the light emitting layer, based on the total mass of the composition for forming the light emitting layer. 96.5% by mass to 99.7% by mass relative to the total mass of the product.
  • the first component is 0.095% by mass to 4.0% by mass, based on the total mass of the light emitting layer forming composition
  • the second component is the total mass of the light emitting layer forming composition.
  • the third component is 0.002% by mass to 1.0% by mass
  • the fourth component is the light emitting layer with respect to the total mass of the composition for forming a light emitting layer. It is 92.0% by mass to 99.9% by mass relative to the total mass of the forming composition.
  • the composition for forming a light-emitting layer can be produced by appropriately selecting the above-mentioned components by stirring, mixing, heating, cooling, dissolving, dispersing and the like by a known method. After the preparation, filtration, degassing (also referred to as degassing), ion exchange treatment, inert gas replacement / sealing treatment, and the like may be appropriately selected and performed.
  • the viscosity of the composition for forming a light emitting layer is preferably from 0.3 mPa ⁇ s to 3 mPa ⁇ s at 25 ° C., more preferably from 1 mPa ⁇ s to 3 mPa ⁇ s.
  • the viscosity is a value measured using a conical plate type rotary viscometer (cone plate type).
  • the viscosity of the composition for forming a light emitting layer preferably has a surface tension at 25 ° C. of 20 mN / m to 40 mN / m, and more preferably 20 mN / m to 30 mN / m.
  • the surface tension is a value measured using the hanging drop method.
  • reaction solution was cooled to room temperature, filtered using silica gel (eluent: toluene), and the solvent was distilled off under reduced pressure to obtain a crude product. After dissolving the obtained crude product in toluene, an appropriate amount was distilled off under reduced pressure, and hexane was added for reprecipitation, whereby N 1 , N 3 -diphenylbenzene-1,3-diamine (16.5 g, (60% yield) as a white solid.
  • reaction solution was cooled to room temperature, filtered using silica gel (eluent: toluene), and the solvent was distilled off under reduced pressure to obtain a crude product. After dissolving the obtained crude product in toluene, the solution is distilled off under reduced pressure to prepare a saturated solution, and hexane is added thereto for reprecipitation to give 5-chloro-N 1 , N 1 , N 3 , N 3. -Tetraphenylbenzene-1,3-diamine (5.66 g, 43% yield) was obtained as a white solid.
  • Compound (1-49) was synthesized according to the method described in “Comparative Synthesis Example (1)” of JP-A-2016-88927.
  • the compound When thinning only the compound to be evaluated for evaluation, the compound was vacuum-deposited on a glass substrate with a thickness of 30 to 100 nm to obtain a sample.
  • a commercially available PMMA (polymethyl methacrylate) was used as a matrix material when the compound to be evaluated was dispersed in an appropriate matrix material.
  • a sample was prepared by dissolving PMMA and a compound to be evaluated in toluene and then forming a thin film having a thickness of 10 nm on a transparent support substrate (10 mm ⁇ 10 mm) made of quartz by spin coating. .
  • the concentration of the sample was 1% by mass.
  • the measurement of the absorption spectrum of the evaluation sample for the absorption characteristics and the emission characteristics was performed using an ultraviolet-visible-near-infrared spectrophotometer (UV-2600, Shimadzu Corporation).
  • UV-2600 ultraviolet-visible-near-infrared spectrophotometer
  • the fluorescence spectrum and phosphorescence spectrum of the sample were measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Co., Ltd.).
  • the photoluminescence was measured by exciting at an appropriate excitation wavelength of about 340 nm at room temperature.
  • the sample was immersed in liquid nitrogen (temperature 77 K) using an attached cooling unit.
  • the delay time from the irradiation of the excitation light to the start of the measurement was adjusted using an optical chopper. The sample was excited at the appropriate excitation wavelength and photoluminescence was measured.
  • the Stokes shift was determined from the difference between the peak top of the absorption spectrum and the peak top of the emission spectrum at room temperature.
  • the fluorescence quantum yield (PLQY) was measured using an absolute PL quantum yield measurement device (C9920-02G, manufactured by Hamamatsu Photonics KK). Furthermore, the time until the light emission intensity became 50% of the initial value was measured by continuously applying a direct current, and the device life (LT50) was evaluated.
  • Fluorescence Lifetime (Delayed Fluorescence) The fluorescence lifetime was measured at 300K using a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics KK). Specifically, at the maximum emission wavelength measured at an appropriate excitation wavelength, a light emission component having a short fluorescence lifetime and a light emission component having a long fluorescence lifetime were observed. In the measurement of the fluorescence lifetime of a general organic electroluminescent material that emits fluorescence at room temperature, a slow emission component involving a triplet component derived from phosphorescence due to deactivation of the triplet component due to heat is not observed. rare.
  • the fluorescence lifetime of the delayed fluorescence was measured as Tau (Delay).
  • the singlet excitation energy level of the first component is E (1, S, Sh)
  • the singlet excitation energy level of the second component is E (2, S, Sh)
  • the singlet excitation energy level is the single component.
  • Term is E (3, S, Sh)
  • the triplet excitation energy level of the first component is E (1, T, Sh)
  • the triplet excitation energy level of the second component is E (2, T, Sh)
  • the triplet excitation energy level of the third component is denoted as E (3, T, Sh).
  • ⁇ E (ST) is the energy difference between E (S, Sh) and E (T, Sh).
  • ⁇ E (ST) E (S, Sh) ⁇ E (T, Sh).
  • ⁇ E (ST) is, for example, “Purely organic electroluminescent material realizing 100% conversion from electricity to light”, H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Katsuaki, S. Kubo, T Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.
  • ⁇ E (ST) of the first component is ⁇ E (1, ST, Sh)
  • ⁇ E (ST) of the second component is ⁇ E (2, ST, Sh)
  • ⁇ E (ST) of the third component is ⁇ E (ST).
  • ⁇ E (3, ST, Sh) is displayed.
  • the following table shows the results of measuring the maximum peak emission wavelength of the fluorescence spectrum of the main compound.
  • Configuration A is a configuration suitable for a heat-activated delayed fluorescence material.
  • Configuration A is an element configuration that can be expected to have high efficiency as shown in the literature (Adv. Mater. 2016, 28, 2777-2781).
  • the application of the compound of the present invention is not limited to these structures, and the film thickness of each layer and constituent materials can be appropriately changed depending on the basic physical properties of the compound of the present invention.
  • Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4> A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by OptoScience Corp.), which was formed by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, was used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and NPD, TcTa, mCP, the first component (mCBP), the second component (the compounds described in the table below), A tantalum evaporation boat containing the third component (ED1) and TSPO1, respectively, and an aluminum nitride evaporation boat containing LiF and aluminum, respectively, were mounted.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the pressure in the vacuum chamber was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • NPD was heated to deposit a film to a thickness of 40 nm
  • TcTa was heated to deposit a film to a thickness of 15 nm to form two layers.
  • the mCP was heated to be deposited to a thickness of 15 nm to form an electron blocking layer.
  • the first component, the second component, and the third component described in the table below were simultaneously heated and co-evaporated to a thickness of 20 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the mass ratio of the first component, the second component, and the third component was as shown in the table below.
  • TSPO1 was heated and evaporated to a thickness of 30 nm to form an electron transport layer.
  • the deposition rate of each of the above layers was 0.01 to 1 nm / sec.
  • the cathode is formed by heating LiF so as to have a film thickness of 1 nm at a deposition rate of 0.01 to 0.1 nm / sec, and then heating aluminum so as to have a film thickness of 100 nm.
  • the deposition rate of aluminum was adjusted to be 1 nm to 10 nm / sec.
  • Examples 1-1 to 1-3, Comparative Examples 1-3 and Comparative Examples 1-4 were deep blue (deep blue), and Comparative Examples 1-1 were sky blue (sky blue) to greenish. Blue (Greenish blue), and Comparative Example 1-2 was blue (blue).
  • Examples 1-4 to 1-11 and Comparative Example 1-5 The organic electroluminescent devices of Examples 1-4 to 1-11 and Comparative Example 1-5 were manufactured in the same procedure as Example 1-1, except that the materials described in the table below were used. did. In Example 1-4, Comparative Example 1-5, and Example 1-5, the compound of the third component was changed. In Examples 1-6 to 1-11, the compound of the first component was changed.
  • Example 1-5 For each of the fabricated organic electroluminescent devices of Examples 1-4 to 1-11 and Comparative Example 1-5, a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode in the same manner as in Example 1-1, and the fluorescent light was emitted. The peak wavelength, half width and external quantum efficiency were measured. The results are shown in the table below.
  • Examples 1-4 to 1-11 and Comparative Example 1-5 all satisfy the relational expression of E (1, S, Sh) ⁇ E (2, S, Sh) ⁇ E (3, S, Sh).
  • the first component, the second component, and the third component are used in combination in the light-emitting layer, compared to Comparative Example 1-5 using R-BD2 which is a compound having no boron atom as the third component,
  • the half-value width was smaller and the external quantum efficiency was higher.
  • Example 1-5 using RD-3 which is the compound of formula (i) as the third component RD-1 which is the compound of formula (ii) corresponding to the dimer of formula (i)
  • the half width was smaller and more preferable characteristics were exhibited.
  • E (3, T, Sh) the external quantum efficiency is equal to or more than that of Example 1-5.
  • the ED1 when ED1 having a structure substituted with a diarylamino group is used as the third component, the ED1 has a particularly small half-width, a high external quantum efficiency, and further excellent characteristics as an organic electroluminescent device. It was confirmed that.
  • Examples 1-12 to 1-15 and Comparative Example 1-6 The organic electroluminescent devices of Examples 1-4 to 1-11 and Comparative Example 1-5 were manufactured in the same procedure as Example 1-1, except that the materials described in the table below were used. did. In these specific examples, the compound of the second component is changed.
  • Example 1-1 For each of the fabricated organic electroluminescent devices of Examples 1-12 to 1-15 and Comparative Example 1-6, a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode in the same manner as in Example 1-1, and the fluorescent light was emitted. The peak wavelength, half width and external quantum efficiency were measured. The results are shown in the table below.
  • Examples 1-12 to 1-15 have a half-width compared to Comparative Example 1-6 in which the relationship of E (1, S, Sh) ⁇ E (2, S, Sh) ⁇ E (3, S, Sh) is not satisfied. And the external quantum yield was high. The results of Examples 1-12 to 1-15 show that good characteristics are maintained even when the type of the second component is changed.
  • Examples 1-16 to 1-26 Using the materials described in the table below, the electron transport layer was changed to a configuration B by forming two layers of an electron transport layer 1 having a thickness of 10 nm and an electron transport layer 2 having a thickness of 20 nm. According to the same procedure as in 1-1, the organic electroluminescent devices of Examples 1-16 to 1-26 were manufactured.
  • the electron transporting layer 2 of Example 1-23 was formed by heating BPy-TP2 and Liq and vapor-depositing them to a thickness of 20 nm so that the respective ratios became 7: 3 by mass.
  • the electron transport layer 2 of Example 1-24 was formed by heating SF3-TRZ and Liq and vapor-depositing the film to a thickness of 20 nm so that the respective ratios became 7: 3 by mass.
  • Examples 1-27 to 1-55 and Comparative Example 1-7 The organic electroluminescence of Configuration B of Examples 1-27 to 1-55 and Comparative Example 1-7 was conducted in the same manner as in Example 1-14, except that the materials described in the table below were used. The device was manufactured. In Examples 1-27 to 1-55, various compounds represented by the formula (ii) were evaluated as the third component.
  • Example 1-7 For each of the prepared organic electroluminescent devices of Examples 1-27 to 1-55 and Comparative Example 1-7, a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode in the same manner as in Example 1-16, and the fluorescent light was emitted. The peak wavelength, half width, external quantum efficiency, and device lifetime (LT50) were measured. The results are shown in the table below.
  • Examples 1-27 to 1-55 and Comparative Example 1-7 the first component that satisfies E (1, S, Sh) ⁇ E (2, S, Sh) ⁇ E (3, S, Sh) ,
  • the second component and the third component are used in combination in the light-emitting layer.
  • R-BD2 which is a compound having no boron atom as the third component
  • the half width was smaller, the external quantum efficiency was higher, and the device life was longer.
  • the relational expressions of E (1, T, Sh)> E (3, T, Sh) ⁇ E (2, T, Sh) are used.
  • Example 1-39 shows ⁇ E (3, ST, Sh). ) was sufficiently low at 0.08 eV, so that the half width was small and the external quantum efficiency was high.
  • Comparative Example 1-7 no phosphorescence was emitted from the third component, R-BD2, and ⁇ E (3, ST, Sh) was large, so that the half width was large and the external quantum efficiency was low.
  • Examples 1-27 to 1-55 all have a structure represented by the formula (ii). Since the skeleton of the formula (i) has a dimerized multimeric skeleton and the skeleton has a symmetrical shape, it is considered to show good characteristics.
  • Examples 1-56 to 1-72 and Comparative Example 1-8 The organic electroluminescence of Configuration B of Examples 1-56 to 1-72 and Comparative Example 1-8 was performed in the same manner as in Example 1-14, except that the materials described in the following table were used. The device was manufactured. In Examples 1-56 to 1-72, various compounds represented by the formula (i) were evaluated as the third component.
  • Example 1-8 For each of the fabricated organic electroluminescent devices of Examples 1-56 to 1-72 and Comparative Example 1-8, a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode in the same manner as in Example 1-16, and the fluorescent The peak wavelength, half width, external quantum efficiency, and device lifetime (LT50) were measured.
  • Examples 1-56 to 1-66 and Comparative Example 1 where E (3, T, Sh) is less than 0.3 eV and ⁇ E (2, ST, Sh) is greater than ⁇ E (3, ST, Sh).
  • the measurement results of -8 are shown in the following table. Further, the measurements of Examples 1-67 to 1-72 in which E (3, T, Sh) is 0.3 eV or more and ⁇ E (3, ST, Sh) is larger than ⁇ E (2, ST, Sh). The results are shown in the table below.
  • the first component, the second component, and the third component satisfying the relationship of E (1, S, Sh) ⁇ E (2, S, Sh) ⁇ E (3, S, Sh) are combined to form a light emitting layer.
  • the device lifetimes (LT50) of Examples 1-56 to 1-72 used are long, the relationship of E (1, S, Sh) ⁇ E (2, S, Sh) ⁇ E (3, S, Sh) It was confirmed that the element life (LT50) of Comparative Example 1-8 which was not satisfied was short.
  • Examples 1-56 to 1-72 have a half width in the range of 22 to 30 nm, an external quantum efficiency in the range of 12.0 to 16.8%, and an element lifetime (LT50) of 82 to 116 hours. Was within the range.
  • FIG. 7 also shows the results of averaging the Tau (Delay) and Stokes shift of the compounds having each of these basic skeletons and forming a graph. 7 and 8, it can be seen that a device having a small Tau (Delay) has a longer device life (LT50), a smaller half width, and a higher external quantum efficiency.
  • LT50 device life
  • the compound represented by the formula (ii) has a smaller Tau (Delay) than the compound represented by the formula (i), and the characteristics of the organic electroluminescent device using the compound represented by the formula (ii) as the third component Is better.
  • a compound having a basic skeleton of B2N4 is particularly preferable.
  • FIG. 10 is a graph showing the relationship between the external quantum efficiency and the device lifetime (LT50).
  • FIG. 9 shows a graph of the average value of Tau (Delay) and Stokes shift for each substituent. 9 and 10, the graphs are divided into carbazolyl (Cz), diphenylamino (DPA), compounds substituted with both diphenylamino and fluorine atoms (DPA & F), phenyl (Ph), and tert-butyl (tBu). ing.
  • diphenylamino (DPA) and phenyl (Ph) include those substituted with alkyl. 9 and 10, the compound substituted with diphenylamino (DPA) has a small Tau (Delay) and Stokes shift, a long device lifetime (LT50), a small half width, and a low external quantum efficiency. Is also expensive. However, DPA & F substituted by a fluorine atom together with diphenylamino has a device life (LT50) that is not as long as when substituted by diphenylamino alone.
  • LT50 device life
  • diphenylamino shows a particularly excellent effect in improving the device characteristics
  • carbazolyl (Cz), phenyl (Ph), and tert-butyl (tBu) also show a good effect.
  • FIG. 11 shows the types of substituents substituted on the basic skeleton and the average of Stokes shift based on the measurement results of Examples 1-56 to 1-66 using the compound represented by formula (i) as the third component.
  • 6 is a graph showing the relationship between the value and the average value of the half width. It was confirmed that the Stokes shift of the compound substituted with phenyl (Ph) was small and the half width was narrow. In particular, the effect of the phenyl group in which the ortho position was alkyl-substituted was excellent.
  • FIG. 7 shows that the compounds represented by the formula (i), BONf and BOnN, have a small Stokes shift.
  • ⁇ E (3, ST, Sh) is slightly larger than 0.3 eV, and therefore, Examples 1-67 to 1-72 using these compounds as the third component show E (1, T, Sh).
  • the evaluation results of the Stokes shift of the third component and the device characteristics of Examples 1-67 to 1-72 are shown in the following table. The results in the table below show that the smaller the Stokes shift, the longer the device lifetime (LT50). From this, even when E (1, T, Sh)> E (2, T, Sh)> E (3, T, Sh), a compound having a small Stokes shift as the third component is used. It was shown that the element characteristics were improved when used.
  • composition for forming light-emitting layer Next, in order to describe the present invention in more detail, specific examples of the composition for forming a light-emitting layer of the present invention and evaluation results thereof will be described. Not limited.
  • Examples 2-1 to 2-32> The first component, the second component, the third component, and the fourth component shown in the table below were mixed at a ratio shown in the table and stirred to prepare a composition for forming a light emitting layer.
  • Tol used as the fourth component is toluene
  • DHNp is decahydronaphthalene
  • 3PxT is 3-phenoxytoluene
  • c6B is cyclohexylbenzene
  • Anis is anisole
  • Xyl is xylene (mixture)
  • 1MNp 1-methylnaphthalene
  • 8B n-octylbenzene
  • DPE diphenyl ether
  • 4FAnis is 4-fluoroanisole.
  • Inkjet Using an inkjet, the ink was discharged into a pixel of 100 ppi and dried at 100 ° C. The discharge stability of the inkjet was also evaluated immediately after the start of the inkjet discharge and after the continuous operation for 24 hours. A sample with poor ejection stability was rated "x”, a sample with good ejection stability was rated “O”, and a sample with extremely good ejection stability was rated " ⁇ ".
  • Comparative Example 2-2 using compound R-BD2 having no boron atom as the third component was poor in solubility and could not be evaluated thereafter.
  • Comparative Example 2-1 using unsubstituted R-BD1 having a large molecular weight had poor solubility.
  • Examples 2-1 to 2-33 using unsubstituted R-BD3 having a small molecular weight and a compound having a substituent even if having a large molecular weight are compounds having a boron atom, Both the film properties and the ink jet ejection stability were good.
  • XLP-101 as a polymer hole transport compound was synthesized by the following reaction.
  • a copolymer in which M5 or M6 was bonded next to M4 was obtained, and the ratio of each unit was estimated to be 40:10:50 (molar ratio) based on the charging ratio.
  • Bpin is pinacolate boryl.
  • PEDOT PSS Solution A commercially available PEDOT: PSS solution (Clevios TM PVP AI4083, aqueous dispersion of PEDOT: PSS, Heraeus Holdings) was used.
  • OTPD OTPD
  • LT-N159 manufactured by Luminescence Technology Corp.
  • IK-2 photocationic polymerization initiator, manufactured by San Apro
  • XLP-101 was dissolved in xylene at a concentration of 0.6% by mass to prepare a 0.6% by mass XLP-101 solution.
  • PCz polyvinyl carbazole
  • Example 3-1 A PEDOT: PSS solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 150 nm, and baked on a hot plate at 200 ° C. for 1 hour to form a PEDOT: PSS film having a thickness of 40 nm. (Hole injection layer). Next, the OTPD solution is spin-coated, dried on a hot plate at 80 ° C. for 10 minutes, exposed to light at an exposure intensity of 100 mJ / cm 2 with an exposure machine, and baked on a hot plate at 100 ° C. for 1 hour to obtain a solution. A OTPD film having a thickness of 30 nm, which was insoluble in the above, was formed (hole transport layer). Next, the composition for forming a light emitting layer prepared in Example 2-19 was spin-coated and baked on a hot plate at 120 ° C. for 1 hour to form a light emitting layer having a thickness of 20 nm.
  • the produced multilayer film was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing 2CzBN and BPy-TP2, a molybdenum vapor deposition boat containing LiF, and aluminum
  • the inserted tungsten deposition boat was mounted.
  • 2CzBN was heated and vapor-deposited to a thickness of 10 nm to form the electron transport layer 1.
  • BPy-TP2 was heated and vapor-deposited to a thickness of 20 nm to form an electron transport layer 2.
  • the deposition rate at the time of forming the electron transport layer was 1 nm / sec. Thereafter, LiF was heated to be deposited at a deposition rate of 0.01 to 0.1 nm / sec so as to have a film thickness of 1 nm. Next, aluminum was heated and vapor-deposited to a thickness of 100 nm to form a cathode. Thus, an organic electroluminescent device was obtained.
  • Example 3-2 An organic electroluminescent device was obtained in the same manner as in Example 3-1. Note that the hole transport layer was formed by spin-coating an XLP-101 solution and baking it on a hot plate at 200 ° C. for 1 hour to form a film having a thickness of 30 nm.
  • Example 3-3 An organic electroluminescent device was manufactured in the same procedure as in Example 3-1 except that the composition for forming a light emitting layer prepared in Example 2-2 was used instead of the composition for forming a light emitting layer prepared in Example 2-19.
  • the hole transport layer was formed by spin-coating an XLP-101 solution and baking it on a hot plate at 200 ° C. for 1 hour to form a film having a thickness of 30 nm.
  • Example 3-4 An organic electroluminescent device was prepared in the same procedure as in Example 3-1 except that the composition for forming a light emitting layer prepared in Example 2-18 was used instead of the composition for forming a light emitting layer prepared in Example 2-19.
  • the hole transport layer was formed by spin-coating an XLP-101 solution and baking it on a hot plate at 200 ° C. for 1 hour to form a film having a thickness of 30 nm.
  • Example 3-5 An organic electroluminescent device was obtained in the same manner as in Example 3-1.
  • the hole transport layer was formed by spin-coating a PCz solution and baking it on a hot plate at 120 ° C. for 1 hour to form a film having a thickness of 30 nm.
  • an organic electroluminescent device could be manufactured using the composition for forming a light emitting layer of the present invention.
  • R-BD3 which is a compound containing boron, has excellent solubility, emits light in an organic electroluminescent device manufactured using a wet film formation method, has a blue peak wavelength, a small half-value width, The taste was excellent. Further, comparing Example 3-2 and Example 3-4, the device using the emitting dopant having a substituent was excellent in external quantum efficiency.
  • composition containing polymer compound The composition for forming a light emitting layer of the present invention may contain a polymer compound or a crosslinkable compound. Further, the organic electroluminescent device of the present invention may contain a polymer compound or a crosslinkable compound.
  • Example 4-1 According to the method described in International Patent Publication No. WO2019 / 004248, a polymer containing a structure having a host as the first component and a boron atom as the third component can be synthesized.
  • the above polymer is a polymer containing the first component and the third component in the molecule.
  • Addition of the heat-activated delayed phosphor as the second component is the composition for forming a light-emitting layer of the present invention.
  • Example 4-2> According to the method described in International Patent Publication No. WO2019 / 004248, it is possible to synthesize a polymer having the following structure of the host as the first component and the thermally activated delayed phosphor as the second component.
  • the above polymer is a polymer containing the first component and the second component in the molecule.
  • a compound having a boron atom as the third component is added, the composition for forming a light emitting layer of the present invention is obtained.
  • a polymer containing a structure having a host having the first component, a thermally activated delayed fluorescent material having the second component, and a boron atom being the third component is synthesized as follows. can do.
  • Example 4-4 According to the method described in International Patent Publication No. WO2019 / 004248, a polymer containing a structure having a host as the first component and a boron atom as the third component can be synthesized. Addition of the heat-activated delayed phosphor as the second component is the composition for forming a light-emitting layer of the present invention.
  • a polymer containing a structure having a host as the first component and a boron atom as the third component can be synthesized.
  • Addition of the heat-activated delayed phosphor as the second component is the composition for forming a light-emitting layer of the present invention.
  • the first component, the second component, or the third component added to the polymer a single molecule that can be used as the first component, the second component, or the third component in the present invention can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

第1成分としてホスト化合物、第2成分として熱活性化型遅延蛍光体および第3成分としてホウ素原子を有する化合物を含む発光層を有する有機電界発光素子であって、(第1成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位)≧(第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位)≧(第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位)の関係式を満たす有機電界発光素子。

Description

有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
 本発明は、ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物を含む有機電界発光素子、およびその有機電界発光素子を備えた表示装置および照明装置に関する。また本発明は、有機電界発光素子の発光層形成用組成物、および化合物にも関する。
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子(有機EL素子)は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の1つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
 有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
 有機電界発光素子の発光機構としては、励起一重項状態からの発光を用いる蛍光発光および励起三重項状態からの発光を用いるりん光発光の主に2つがある。一般的な蛍光発光材料は、励起子利用効率が低く、およそ25%であり、三重項-三重項フュージョン(TTF:Triplet-Triplet Fusion、または、三重項-三重項消滅、TTA:Triplet-Triplet Annihilation)を用いても励起子利用効率は62.5%である。一方、りん光材料は、励起子利用効率が100%に達する場合もあるが、深い青色発光の実現が困難であり、加えて発光スペクトルの幅が広いため色純度が低いという問題がある。
 そこで、九州大学安達千波矢教授により熱活性化型遅延蛍光(TADF: Thermally Assisting Delayed Fluorescence))機構が提案され(非特許文献1参照)、熱活性化型遅延蛍光体を利用することで発光の励起子利用効率は100%に達するようになった。熱活性化型遅延蛍光体はその構造に起因して色純度が低い幅広な発光スペクトルを与えるが、逆項間交差の速度が極めて速い。
 さらに、安達らはこの長所を利用し、熱活性化型遅延蛍光体をアシスティングドーパント(Assisting Dopant: AD)として利用し、半値幅の狭いドーパントをエミッティングドーパント (Emitting Dopant: ED) として利用するHyper Fluorescence TM(TADF Assisting Fluorescence: TAFとも呼ばれる)を提案し、赤色発光および緑色発光の有機電界発光素子において、高効率、高色純度かつ長寿命な素子を開発した(非特許文献2参照)。しかしながら、深い青色の発光はエミッティングドーパントおよびアシスティングドーパントが共に高いエネルギーを必要とするために、効率、色純度および寿命のいずれでも問題があった。
 そこで、関西学院大学畠山教授によりTADF材料の色純度を飛躍的に向上させる新たな分子設計が提案されている(非特許文献3参照)。また、特許文献1では、開示された例えば化合物(1-401)では、ホウ素(電子供与性)と窒素(電子吸引性)の多重共鳴効果を利用した堅牢な平面構造により、結果として吸収および発光のピークのストークスシフトが小さい、色純度の高い発光スペクトルを得ることに成功した。また、式(1-422)のような二量体化合物では、2つのホウ素と2つの窒素が中央のベンゼン環に結合することで、中央のベンゼン環においてさらに多重共鳴効果を増強させており、その結果、極めて狭い発光ピーク幅を有する発光が可能となっている。
Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492, 234-238 NATURE COMMUNICATIONS, 5:4016, Published 30 May 2014, DOI: 10.1038/ncomms5016 Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect、Advanced Materials, Volume28, Issue14, April 13, 2016, 2777-2781
国際公開第2015/102118号公報
 上述するように、有機電界発光素子に用いられる材料としては種々の材料が開発されているが、発光特性などの有機電界発光特性を更に高め、発光層用材料などの有機電界発光材料の選択肢を増やすために、従来具体的には知られていなかった化合物の組み合わせが望まれている。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ホスト化合物、熱活性化型遅延蛍光体、分子中にホウ素原子を有する化合物を含む発光層を用い、それらの励起一重項エネルギー準位の関係を規定することにより、優れた有機電界発光素子が得られることを見出し、本発明を完成させた。具体的に、本発明は、以下の構成を有する。
[1]
 発光層を有する有機電界発光素子であって、前記発光層が、
 第1成分として、少なくとも1種のホスト化合物と、
 第2成分として、少なくとも1種の熱活性化型遅延蛍光体と、
 第3成分として、少なくとも1種のホウ素原子を有する化合物とを含み、
前記第1成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)、前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)としたとき、以下の関係式(1)を満たし、
 前記第1成分は、前記ホスト化合物の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよく、
 前記第2成分は、前記熱活性化型遅延蛍光体の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよく、
 前記第3成分は、前記ホウ素原子を有する化合物の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよい、
有機電界発光素子。
 関係式(1): E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)
[2]
 前記第3成分として、下記式(i)、(ii)および(iii)のいずれかで表される化合物、および下記式(i)で表される構造を複数有する多量体化合物の少なくとも1つを含む、[1]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000018
(上記式(i)中、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
 XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
 式(i)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000019
(上記式(ii)中、
 A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 YはB(ホウ素)であり、
 X、X、XおよびXは、それぞれ独立して、>O、>N-R、>CR、>Sまたは>Seであり、前記>N-RのRおよび>CRのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたは置換されていてもよいアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環、C環およびD環から選択される少なくとも1つと結合していてもよく、
 RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、
 式(ii)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(上記式(iii)中、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
 X、XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
 式(iii)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。)
[3]
 前記第3成分として、下記式(1)、(2)、(3)および(4)のいずれかで表される化合物を少なくとも1つ含む、[1]または[2]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000021
(上記式(1)中、
  R、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、XおよびXは、同時に>CRになることはなく、
そして、
 式(1)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000022
(上記式(2)中、
 R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 YはB(ホウ素)であり、
 X、X、XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキルまたは炭素数1~6のアルキルであり、また、前記>N-RのRおよび>CRのRは、-O-、-S-、-C(-R)-または単結合により前記a環、b環、c環およびd環から選択される少なくとも1つと結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキルであり、
 ただし、X、X、X、およびXは、同時に>CRになることはなく、
そして、
 式(2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000023
(上記式(3)中、
  R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 X、XおよびXは、それぞれ独立して、>O、>N-R、または>CRであり、前記>N-RのRおよび>CR のRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、X、X、およびXは、同時に>CRになることはなく、
そして、
 式(3)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000024
(上記式(4)中、
 R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~R、R~R10およびR11~R14のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 Xは、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRはアリール、ヘテロアリールまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 Lは、単結合、>CR、>O、>Sまたは>N-Rであり、前記>CRおよび>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、XおよびLは、同時に>CR になることはなく、
そして、
 式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
[4]
 前記第3成分として、前記式(1)、(2)および(4)のいずれかで表される化合物を少なくとも1つを含み、
 前記式(1)において、XおよびXが、それぞれ独立して、>Oまたは>N-Rであり、
 前記式(2)において、X、X、XおよびXが、それぞれ独立して、>Oまたは>N-Rであり、
 前記式(4)において、Xが、>Oおよび>N-Rであり、Lが、単結合である、
 [3]に記載の有機電界発光素子。
[5]
 前記第3成分として、前記式(1)、(2)、(3)および(4)のいずれかで表される化合物を少なくとも1つを含み、その化合物に存在する環を構成する原子が、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルから選択される少なくとも1つで置換されている、[3]または[4]に記載の有機電界発光素子。
[6]
 前記第3成分として、前記式(2)で表される化合物を少なくとも1つを含み、その化合物に存在する環を構成する原子が、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルから選択される少なくとも1つで置換され、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよい、[5]に記載の有機電界発光素子。
[7]
 前記第3成分が、下記式で表される部分構造を含む、[1]~[6]のいずれか一項に記載の有機電界発光素子。ただし、前記部分構造における水素は、それぞれ独立して、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されてもよく、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
[8]
 前記式(1)~(4)のいずれかで表される化合物が、以下に記載のいずれかの部分構造を含む、[3]~[6]のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000028
(上記部分構造式中、
 Meはメチルを表し、tBuはt-ブチルを表し、波線は結合位置を表す。
 ただし、上記部分構造式における水素は、
 それぞれ独立して、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、前記アリールにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、前記ヘテロアリールにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、前記ジアリールアミノにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよい。)
[9]
 前記式(1)~(4)のいずれかで表される化合物が、sp炭素、ホウ素原子に対してm位またはp位に結合するsp炭素原子、または、ホウ素に対してp位に置換する窒素原子、をいずれか1つ有する、[3]~[8]のいずれか一項に記載の有機電界発光素子。
[10]
 前記式(2)で表される化合物が、以下の化合物である、[3]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000029
[11]
 前記式(2)で表される化合物が、以下の化合物である、[4]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000030
[12]
 前記第1成分が、部分構造として、カルバゾールおよびフランから選択される少なくとも一つを有する化合物である、[1]~[11]のいずれか一項に記載の有機電界発光素子。
[13]
 前記第1成分が、下記式(H1)、(H2)および(H3)のいずれかで表される化合物を少なくとも一つ含有する、[1]~[12]のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000031
(上記式(H1)、(H2)および(H3)中、Lは炭素数6~24のアリーレン、ヘテロアリーレン、ヘテロアリーレンアリーレンまたはアリーレンヘテロアリーレンアリーレンであり、
 上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
[14]
 前記第2成分が、部分構造として、カルバゾール、フェノキサジン、アクリジン、トリアジン、ピリミジン、ピラジン、チオキサンテン、ベンゾニトリル、フタロニトリル、イソフタロニトリル、ジフェニルスルホン、トリアゾール、オキサジアゾール、チアジアゾールおよびベンゾフェノンから選択される少なくとも一つを有する、[1]~[13]のいずれか一項に記載の有機電界発光素子。
[15]
 前記第2成分が、下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物を少なくとも一つ含有する、[1]~[14]のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000032
(上記式(AD1)、(AD2)および(AD3)中、
 Mは、それぞれ独立して、単結合、-O-、>N-Arまたは>CArであり、
 Jは、それぞれ独立して、炭素数6~18のアリーレンであり、前記アリーレンは、フェニル、炭素数1~6のアルキルおよび炭素数3~12のシクロアルキルから選択される少なくとも1つで置換されてもよく、
 Qは、それぞれ独立して、=C(-H)-または=N-であり、
 Arは、それぞれ独立して、水素、炭素数6~18のアリール、炭素数6~18のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、前記アリールおよびヘテロアリーレンにおける少なくとも1つの水素は、フェニル、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されてもよく、
 mは、1または2であり、
 nは、2~(6-m)の整数であり、
 上記各式で表される化合物における少なくとも1つの水素は、ハロゲンまたは重水素で置換されていてもよい。)
[16]
 前記第2成分が、下記式(DAD1)で表される化合物を少なくとも一つ含有する、[1]~[14]のいずれか一項に記載の有機電界発光素子。
   (D-L)n-A                   (DAD1)
(上記式(DAD1)中、Dはドナー性基であり、Lは単結合または共役連結基であり、Aはアクセプター性基であり、nは2以上であってAが置換しうる最大数以下である整数である。)
[17]
 前記第2成分が、下記式(DAD2)で表される化合物を少なくとも一つ含有する、[16]に記載の有機電界発光素子。
    D-L-A-L-D               (DAD2)
(上記式(DAD2)中、DおよびDはそれぞれ独立してドナー性基であり、LおよびLはそれぞれ独立しては単結合または共役連結基であり、Aはアクセプター性基である。)
[18]
 前記式(AD1)、(AD2)および(AD3)において、
 Mは、それぞれ独立して、単結合、-O-または>N-Arであり、
 Jは、それぞれ独立して、フェニレンであり、前記フェニレンは、炭素数1~4のアルキルで置換されてもよく、
 Qは、それぞれ独立して、=Nーであり、
 Arは、それぞれ独立して、水素またはフェニルであり、前記フェニルは、フェニル、炭素数1~4のアルキルで置換されてもよく、
 mは、1または2であり、
 nは、4~(6-m)の整数である、
 [17]に記載の有機電界発光素子。
[19]
 前記第2成分の逆項間交差速度が、10-1以上である、[1]~[18]のいずれか一項に記載の有機電界発光素子。
[20]
 前記第3成分の遅延蛍光寿命が、0.05μsec~40μsecである、[1]~[19]のいずれか一項に記載の有機電界発光素子。
[21]
 前記第3成分の遅延蛍光寿命が、0.05μsec~20μsecである、[1]~[19]のいずれか一項に記載の有機電界発光素子。
[22]
 前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、14nm以下である、[1]~[21]のいずれか一項に記載の有機電界発光素子。
[23]
 前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、10nm以下である、[1]~[21]のいずれか一項に記載の有機電界発光素子。
[24]
 前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,Sh)およびΔE(3,ST,Sh))が以下の関係にある、[1]~[23]のいずれか一項に記載の有機電界発光素子。
 ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.50 eV
 ΔE(3,ST,Sh)=E(3,S,Sh)ーE(3,T,Sh)≦ 0.20 eV
[25]
 前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,Sh)およびΔE(3,ST,Sh))が以下の関係にある、[1]~[24]のいずれか一項に記載の有機電界発光素子。
 ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)
 ΔE(3,ST,Sh)=E(3,S,Sh)ーE(3,T,Sh)
 ΔE(2,ST,Sh)≧ ΔE(3,ST,Sh)
[26]
 前記第2成分の一重項三重項エネルギー差(ΔE(2,ST,Sh))が以下の関係にある、[1]~[25]のいずれか一項に記載の有機電界発光素子。
 ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.30 eV
[27]
 前記第2成分の一重項三重項エネルギー差(ΔE(2,ST,Sh))が以下の関係にある、[1]~[26]のいずれか一項に記載の有機電界発光素子。
 ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.15 eV
[28]
 前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらが以下の関係にある、[1]~[27]のいずれか一項に記載の有機電界発光素子。
 E(2,S,Sh)≧E(3,S,Sh)
 E(2,T,Sh)≦E(3,T,Sh)
[29]
 前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、10nm以下である、[1]~[28]のいずれか一項に記載の有機電界発光素子。
[30]
 前記第3成分が、前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物として含まれている、[1]~[29]のいずれか一項に記載の有機電界発光素子。
[31]
 前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物が、前記ホスト化合物の水素原子2個が脱離した基も繰り返し単位として有する、[30]に記載の有機電界発光素子。
[32]
 前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物が、前記遅延蛍光体の水素原子2個が脱離した基も繰り返し単位として有する、[30]または[31]に記載の有機電界発光素子。
[33]
 [1]~[32]のいずれか一項に記載の有機電界発光素子を備えた表示装置。
[34]
 [1]~[32]のいずれか1項に記載の有機電界発光素子を備えた照明装置。
[35]
 有機電界発光素子の発光層を塗布形成するための発光層形成用組成物であって、
 [1]~[32]のいずれか一項に記載の第1成分、第2成分および第3成分に加えて、第4成分として、少なくとも1種の有機溶媒を含む、発光層形成用組成物(ただし、前記第3成分は下記化合物ではない。)。
Figure JPOXMLDOC01-appb-C000033
[36]
 前記第4成分における少なくとも1種の有機溶媒の沸点が130℃~350℃である、[35]に記載の発光層形成用組成物。
[37]
 前記第4成分が、前記第1成分、前記第2成分、および前記第3成分である化合物の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、前記良溶媒(GS)の沸点(BPGS)が前記貧溶媒(PS)の沸点(BPPS)よりも低い、[35]または[36]に記載の発光層形成用組成物。
[38]
 前記第1成分が発光層形成用組成物の全質量に対して0.0998質量%~4.0質量%であり、
 前記第2成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
 前記第3成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
 前記第4成分が発光層形成用組成物の全質量に対して90.0質量%~99.9質量%である、
 [35]~[37]のいずれか一項に記載の発光層形成用組成物。
[39]
 [35]~[38]のいずれか一項に記載の発光層形成用組成物を用いて形成される発光層を有する有機電界発光素子。
[40]
 [2]に記載の式(ii)で表される化合物の少なくとも1つの水素が、下記部分構造(B)、塩素、臭素、またはヨウ素により置換された化合物。
Figure JPOXMLDOC01-appb-C000034
(上記部分構造(B)中、R40およびR41は、合計炭素数2~10の結合していてもよいアルキルであり、波線部は他の構造との結合部位である。)
[41]
 ホウ素原子を有する化合物から水素原子2個を脱離した構造を含む繰り返し単位、熱活性化型遅延蛍光体から水素原子2個を脱離した構造を含む繰り返し単位、およびホスト化合物から水素原子2個を脱離した構造を含む繰り返し単位から選択される少なくとも2種の繰り返し単位を含む高分子化合物。
[42]
 ホウ素原子を有する化合物から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種、熱活性化型遅延蛍光体から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種、およびホスト化合物から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種を含む高分子化合物。
 本発明の有機電界発光素子は、発光層に、ホスト化合物、熱活性化型遅延蛍光体、および分子中にホウ素原子を有する化合物を含み、それらの励起一重項エネルギー準位が所定の条件を満たすことにより、有機電界発光特性を更に高めることができる。
本発明を適用した有機電界発光素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係の一例を示すエネルギー準位図である。 本発明を適用した有機電界発光素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係の他の例を示すエネルギー準位図である。 本発明を適用した有機電界発光素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係のさらに他の例を示すエネルギー準位図である。 本実施形態に係る有機電界発光素子を示す概略断面図である。 一般的な蛍光ドーパントを用いたTAF素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係を示すエネルギー準位図である。 バンクを有する基板にインクジェット法を用いて有機電界発光素子を作製する方法を説明する図である。 化合物の基本骨格とTau(Delay)およびストークスシフトとの関係を示す図である。 化合物の基本骨格と半値幅、外部量子効率および素子寿命との関係を示す図である。 化合物の置換基とTau(Delay)およびストークスシフトとの関係を示す図である。 化合物の置換基と半値幅、外部量子効率および素子寿命との関係を示す図である。 化合物の置換基とストークスシフトおよび半値幅との関係を示す図である。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。また、室温は20℃を意味する。
1.用語の説明と本発明のメカニズム
 本発明の有機電界発光素子は、ホスト化合物、熱活性化型遅延蛍光体、分子中にホウ素原子を有する化合物を利用したものである。
 本発明における「ホスト化合物」とは、蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位が、第2成分としての熱活性化型遅延蛍光体、および、第3成分としてのホウ素原子を有する化合物よりも高い化合物のことを意味する。
 「熱活性化型遅延蛍光体」とは、熱エネルギーを吸収して励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して遅延蛍光を放射しうる化合物のことを意味する。ただし、「熱活性化型遅延蛍光」とは、励起三重項状態から励起一重項状態への励起過程で高次三重項を経るものも含む。例えば、Durham大学 Monkmanらによる論文(NATURE COMMUNICATIONS,7:13680,DOI: 10.1038/ncomms13680)、産業技術総合研究所 細貝らによる論文(Hosokai et al., Sci. Adv. 2017;3: e1603282)、京都大学 佐藤らによる論文(Scientific Reports,7:4820, DOI:10.1038/s41598-017-05007-7)および、同じく京都大学 佐藤らによる学会発表(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機電界発光における高効率発光の機構、京都大学大学院工学研究科)などが挙げられる。本発明では、対象化合物を含むサンプルについて、300Kで蛍光寿命を測定したとき、遅い蛍光成分が観測されたことをもって該対象化合物が「熱活性化型遅延蛍光体」であると判定することとする。ここで、遅い蛍光成分とは、蛍光寿命が0.1μsec以上であるもののことを言う。蛍光寿命の測定は、例えば蛍光寿命測定装置(浜松ホトニクス社製、C11367-01)を用いて行うことができる。
 「分子中にホウ素原子を有する化合物」は、エミッティングドーパントとして機能させることができ、「熱活性化型遅延蛍光体」は、分子中にホウ素原子を有する化合物の発光をアシストするアシスティングドーパントとして機能させることができる。
 以下の説明では、熱活性化型遅延蛍光体をアシスティングドーパントとして用いる有機電界発光素子を、「TAF素子」(TADF Assisting Fluorescence素子)ということがある。
 図5に一般的な蛍光ドーパントをエミッティングドーパント(ED)に用いたTAF素子の発光層のエネルギー準位図を示す。図中、ホストの基底状態のエネルギー準位をE(1,G)、ホストの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)、ホストのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(1,T,Sh)、第2成分であるアシスティングドーパントの基底状態のエネルギー準位をE(2,G)、第2成分であるアシスティングドーパントの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、第2成分であるアシスティングドーパントのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、第3成分であるエミッティングドーパントの基底状態のエネルギー準位をE(3,G)、第3成分であるエミッティングドーパントの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、第3成分であるエミッティングドーパントのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)とする。TAF素子において、一般的な蛍光ドーパントをエミッティングドーパント(ED)として用いた場合、アシスティングドーパントでアップコンバージョンされたエネルギーはエミッティングドーパントの励起一重項エネルギー準位E(3,S,Sh)に移り発光する。しかし、アシスティングドーパント上の一部の励起三重項エネルギーE(2,T,Sh)がエミッティングドーパントの励起三重項エネルギー準位E(3,T,Sh)に移動したり、エミッティングドーパント上で励起一重項エネルギー準位E(3,S,Sh)から励起三重項エネルギー準位E(3,T,Sh)への項間交差が起こり、引き続いて基底状態E(3,G)へ熱的に失活する。この経路により一部のエネルギーは発光に利用されず、エネルギーの無駄が生じる。
 これに対して、本発明の有機電界発光素子では、アシスティングドーパントからエミッティングドーパントに移動したエネルギーを効率よく発光に利用することができ、これにより高い発光効率を実現することができる。これは、以下の発光メカニズムによるものと推測される。
 すなわち、本発明の有機電界発光素子における好ましいエネルギー関係を図1に示す。本発明の有機電界発光素子においては、エミッティングドーパントとしての、ホウ素原子を有する化合物が高い励起三重項エネルギー準位E(3,T,Sh)を有する。そのため、アシスティングドーパントでアップコンバージョンされた励起一重項エネルギーが、例え、エミッティングドーパントで励起三重項エネルギー準位E(3,T,Sh)へ項間交差した場合にも、エミッティングドーパント上でアップコンバージョンされるか、アシスティングドーパント(熱活性化型遅延蛍光体)上の励起三重項エネルギー準位E(2,T,Sh)へ回収される。したがって、生成した励起エネルギーを無駄なく発光に使用することができる。また、アップコンバージョンおよび発光の機能をそれぞれが得意な2種の分子に分けることで、高いエネルギーの滞留時間が減少し、化合物への負担が減少すると予想される。
 一方、本発明の第3成分であるホウ素原子を含む化合物については、分子軌道計算より、励起三重項状態から励起一重項状態への順方向および逆方向の項間交差に関与する励起三重項エネルギーが、リン光スペクトルにより観測される励起三重項エネルギーではなく、より高次の励起三重項エネルギーである可能性が指摘されている(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機電界発光における高効率発光の機構、京都大学大学院工学研究科 佐藤徹教授による発表)。発表によれば、ホウ素原子を分子中に有するDABNA2での逆項間交差は高次三重項軌道を用いるFvHT(Fluorescence via Higher Triplet)機構であり、高次三重項軌道から基底状態への遷移が抑えられているために高次三重項軌道より励起一重項軌道への遷移が起きることが示唆されている。
 前記、高次三重項エネルギー準位を考慮した場合、本発明の有機電界発光素子の発光層におけるエネルギー関係は、高次励起三重項エネルギー準位E(3,Tn)が励起一重項エネルギー準位よりわずかに低い場合(TADF機構の場合)には、図2のエネルギー準位図で表すことができ、高次励起三重項エネルギー準位が励起一重項エネルギー準位よりわずかに高い場合(FvHT機能の場合)には、図3のエネルギー準位図で表すことができる。いずれの場合も、最低三重項軌道からの失活が抑えられているために、図1のエネルギー関係と同様に、良好な素子特性を与えると予想される。しかしながら、分子軌道計算より示唆される高次三重項軌道については現在のところ分光学的に明らかにはされていない。本明細書では、分光学的に測定可能であるとの理由から、励起三重項エネルギー準位をリン光スペクトルより求めたものとしているが、本発明の有機電界発光素子が、図2および図3で示すエネルギー関係を有することを除外するものではない。
 TADF活性な化合物の観点から言えば、D-A型熱活性化型遅延蛍光体(Dは電子ドナー性の原子団を表し、Aは電子アクセプター性の原子団を表す)は、アップコンバージョンの速度が速く、発光の半値幅が広くて色純度が低いという特徴がある。一方、多重共鳴効果(MRE)型の熱活性化型遅延蛍光体は、アップコンバージョンの速度が遅く、発光の半値幅が狭くて色純度が高く、蛍光量子収率(PLQY)が高く、加えて、発光の速度が速いという特徴がある。本発明の有機電界発光素子はこれらの分子の長所を生かした設計である。これにより、半値幅の狭い色味の良いスペクトル、高い外部量子効率、ロールオフの改善、および長寿命が実現できる。
 論文で示されたTAF素子の条件および上記説明より、本発明の有機電界発光素子におけるホスト化合物(第1成分)、熱活性化型遅延蛍光体(アシスティングドーパント、第2成分)およびホウ素原子を有する化合物(エミッティングドーパント、第3成分)のエネルギーの関係を以下にまとめる。
 第1成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)、第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)としたとき、以下の関係式(1)を満たす。
 関係式(1): E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)
 つまり、エネルギーの閉じ込めおよび/または伝達は第1成分であるホスト化合物が、発光は第3成分であるエミッティングドーパントがそれぞれ担う。
 ここで、E(1,S,Sh)ーE(2,S,Sh)は0~1.0eVであることが好ましく、E(2,S,Sh)ーE(3,S,Sh)は0~0.20eVであることが好ましい。
 第1成分の蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位をE(1,S,PT)、第2成分の蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位をE(2,S,PT)、第3成分の蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位をE(3,S,PT)としたとき、以下の2つの関係式を満たすことが好ましい。
    E(1,S,PT)>E(2,S,PT)
    E(1,S,PT)>E(3,S,PT)
E(2,S,PT)とE(3,S,PT)はいずれが大きくても本発明を適用することができるが、E(3,S,PT)>E(2,S,PT)であることが好ましい。
 第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,Sh)およびΔE(3,ST,Sh))が以下の関係にあることが好ましい。
 ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.50 eV
 ΔE(3,ST,Sh)=E(3,S,Sh)ーE(3,T,Sh)≦ 0.20 eV
 つまり、第2成分においては、TADF活性の指標としてΔE(ST)の大きさを用いる。ΔE(ST)が小さければ小さいほどTADF活性を示すには有利になる。
 ここで、ΔE(2,ST,Sh)は0.30eV以下であることがより好ましく、0.15eV以下であることがさらに好ましく、0.10eV以下であることがさらにより好ましい。ΔE(3,ST,Sh)は、0.15eV以下であることがより好ましく、0.10eV以下であることがさらに好ましい。
 ΔE(2,ST,Sh)とΔE(3,ST,Sh)は以下の関係にあることが好ましい。
 ΔE(2,ST,Sh)≧ΔE(3,ST,Sh)
 また、以下の関係にあることも好ましい。
 E(2,S,Sh)≧E(3,S,Sh)
 E(2,T,Sh)≦E(3,T,Sh)
 ここで、E(2,S,Sh)ーE(3,S,Sh)は0~0.20eVであることが好ましく、E(3,T,Sh)ーE(2,T,Sh)は0~0.20eVであることが好ましい。
これらは図1で示した本発明のTAF素子の設計を示す。
 また、第2成分の逆項間交差速度をk(2,RISC)、第3成分の逆項間交差速度をk(3,RISC)、第2成分の発光速度をk(2,Prompt)および第3成分の発光速度をk(3,Prompt)とするとき、以下の関係を満たすことが好ましい。
 k(2,RISC)>k(3,RISC)
 k(2,Prompt)<k(3,Prompt)
 さらに、本明細書中では、ホスト化合物について、その蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)とし、蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位をE(1,S,PT)とし、燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(1,T,Sh)とし、燐光スペクトルの短波長側のピークトップより求められる励起三重項エネルギー準位をE(1,T,PT)とする。また、上記のE(1,S,Sh)、E(2,S,Sh)、E(3,S,Sh)を総称してE(S,Sh)といい、E(1,S,PT)、E(2,S,PT)、E(3,S,PT)を総称してE(S,PT)といい、E(1,T,Sh)、E(2,T,Sh)、E(3,T,Sh)を総称してE(T,Sh)といい、E(1,T,PT)、E(2,T,PT)、E(3,T,PT)を総称してE(T,PT)といい、ΔE(2,ST,PT)およびΔE(3,ST,PT)を総称してΔE(ST)ということとする。
 本発明において、蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位E(S,Sh)、蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位E(S,PT)、燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位E(T,Sh)、燐光スペクトルの短波長側のピークトップより求められる励起三重項エネルギー準位E(T,PT)、逆項間交差速度および発光速度は、以下のようにして算出することとする。
 ここで、「ピーク短波長側の肩」とは、発光ピークの短波長側の変曲点のことを意味し、「短波長側のピークトップ」とは、発光ピークの発光極大値のうち、最も短波長側の発光極大値に対応するピーク上の位置のことを意味する。
 また、各エネルギー準位を測定するための測定サンプルとして、対象化合物がホスト化合物またはアシスティングドーパントである場合には、ガラス基板上に形成した対象化合物の単独膜(Neat膜、厚さ:50nm)を使用し、対象化合物がエミッティングドーパントである場合には、ガラス基板上に形成した、対象化合物を分散させたポリメチルメタクリレート膜(厚さ:
10μm、対象化合物の濃度:1質量%)を使用する。対象化合物を分散させたポリメチルメタクリレート膜の膜厚については、吸収スペクトル、蛍光スペクトルおよび燐光スペクトルの測定に十分な強度が得られる膜厚であればよく、強度が弱い場合には厚く、強度が強い場合には厚くすればよい。励起光には、吸収スペクトルにおいて得られた吸収ピークの波長を使用し、蛍光スペクトルまたは燐光スペクトルに出現した発光ピークのうち、青色の発光の場合は400~500nmの範囲に、緑色の発光の場合は480~600nmの範囲に、赤色の場合は580~700nmの範囲にそれぞれ出現した発光ピークから得たデータを用いて各エネルギー準位を求めることとする。また、吸収ピークと発光ピークが近く、発光ピーク中に励起光が混合する場合には、より短波長側の吸収ピークや吸収肩を用いてもよい。
[1]蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位E(S,Sh)
 対象化合物を含む測定サンプルに、77Kで励起光を照射して蛍光スペクトルを観測する。その蛍光スペクトルに現れた発光ピークに対して、その短波長側の変曲点(肩)を通る接線をひき、その接線とベースラインとの交点の波長(BSh)[nm]から、下記式を用いて励起一重項エネルギー準位E(S,Sh)を算出する。
          E(S,Sh) [eV]=1240/BSh
[2]蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位E(S,PT)
 対象化合物を含む測定サンプルに、77Kで励起光を照射して蛍光スペクトルを観測する。その蛍光スペクトルに現れた発光ピークの最も短波長側のピークトップに対応する波長(発光極大波長、BPT)[nm]から、下記式を用いて励起一重項エネルギー準位E(S,PT)を算出する。
          E(S,PT) [eV]=1240/BPT
[3]燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位E(T,Sh)
 対象化合物を含む測定サンプルに、77Kで励起光を照射して燐光スペクトルを観測する。その燐光スペクトルに現れた発光ピークに対して、その短波長側の変曲点(肩)を通る接線をひき、その接線とベースラインとの交点の波長(CSh)[nm]から、下記式を用いて励起三重項エネルギー準位E(T,Sh)を算出する。
          E(T,Sh) [eV]=1240/CSh
[4]燐光スペクトルの短波長側のピークトップより求められる励起三重項エネルギー準位E(T,PT)
 対象化合物を含む測定サンプルに、77Kで励起光を照射して燐光スペクトルを観測する。その燐光スペクトルに現れた発光ピークの最も短波長側のピークトップに対応する波長(発光極大波長、CPT)[nm]から、下記式を用いて励起三重項エネルギー準位E(T,PT)を算出する。
          E(T,PT) [eV]=1240/CPT
 ここで、D-A(ドナー-アクセプター)型TADF材料とMRE(Multi Resonance Effect、多重共鳴)型化合物では、分子の堅牢性により蛍光およびリン光スペクトルの発光幅が異なるために、極大発光波長が同じでもD-A型熱活性化型遅延蛍光体の方がMRE型化合物分子より分子の持つエネルギーに幅があると考えられる。TAF素子では各成分間でのエネルギー授受を正確に見積もり、構成を設計する必要があるために、励起一重項エネルギー準位および励起三重項エネルギー準位をスペクトルの短波長側の肩より見積もる。一般的には、スペクトルの短波長側の変曲点を通る接線とベースラインの交点を、短波長側の肩より求められるエネルギーとする。
 短波長側の肩から求められる励起一重項エネルギー準位E(S,Sh)および励起三重項エネルギー準位E(T,Sh)は、ΔE(ST)の算出と議論に用いるとともに、第1成分であるホスト化合物とアシスティングドーパントとのエネルギーの閉じ込めおよび授受、アシスティングドーパントとエミッティングドーパントとのエネルギーの閉じ込めおよび授受の議論にも用いる。
[5]逆項間交差速度
 逆項間交差速度は、励起三重項から励起一重項への逆項間交差の速度を示す。アシスティングドーパントおよびエミッティングドーパントの逆項間交差速度は、過渡蛍光分光測定により、Nat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、アシスティングドーパントの逆項間交差速度は10-1であり、さらに好ましくは、10-1である。
[6]発光速度
 発光速度は、TADF過程を経ないで励起一重項から基底状態へ蛍光発光を経て遷移する速度を示す。アシスティングドーパントおよびエミッティングドーパントの発光速度は、逆項間交差速度と同様にNat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、エミッティングドーパントの逆項間交差速度は10-1であり、さらに好ましくは、10-1である。
2.有機電界発光素子
 以下において、本発明の有機電界発光素子を構成する各層について説明する。
2-1.有機電界発光素子における発光層
 発光層は、第1成分としてのホスト化合物、第2成分としての熱活性化型遅延蛍光体、および第3成分としてのホウ素原子を有する化合物を少なくとも含む。
 本明細書中では、第2成分としての熱活性化型遅延蛍光体を「アシスティングドーパント」(化合物)といい、第3成分としての、ホウ素原子を有する化合物を「エミッティングドーパント」(化合物)ということがある。
 発光層は単一層でも複数層からなってもどちらでもよい。また、ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物は、同一の層内に含まれていてもよく、複数層に少なくとも1成分ずつ含まれていてもよい。発光層が含むホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。アシスティングドーパントおよびエミッティングドーパントは、マトリックスとしてのホスト化合物中に、全体的に含まれていてもよいし、部分的に含まれていてもよい。アシスティングドーパントおよびエミッティングドーパントがドープされた発光層は、ホスト化合物とアシスティングドーパントとエミッティングドーパントを三元共蒸着法によって成膜する方法、ホスト化合物とアシスティングドーパントとエミッティングドーパントを予め混合してから同時に蒸着する方法、ホスト化合物とアシスティングドーパントとエミッティングドーパントを有機溶媒に溶解して調製した発光層形成用組成物(塗料)を塗布する、湿式成膜法等により形成することができる。
 ホスト化合物の使用量はホスト化合物の種類によって異なり、そのホスト化合物の特性に合わせて決めればよい。ホスト化合物の使用量の目安は、好ましくは発光層用材料全体の40~99.999質量%であり、より好ましくは50~99.99質量%であり、さらに好ましくは60~99.9質量%である。上記の範囲であれば、例えば、効率的な電荷の輸送と、ドーパントへの効率的なエネルギーの移動の点で好ましい。
 アシスティングドーパント(熱活性化型遅延蛍光体)の使用量はアシスティングドーパントの種類によって異なり、そのアシスティングドーパントの特性に合わせて決めればよい。アシスティングドーパントの使用量の目安は、好ましくは発光層用材料全体の1~60質量%であり、より好ましくは2~50質量%であり、さらに好ましくは5~30質量%である。上記の範囲であれば、例えば、効率的にエネルギーをエミッティングドーパントへ移動させられるという点で好ましい。
 エミッティングドーパント(ホウ素原子を有する化合物)の使用量はエミッティングドーパントの種類によって異なり、そのエミッティングドーパントの特性に合わせて決めればよい。エミッティングドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~30質量%であり、より好ましくは0.01~20質量%であり、さらに好ましくは0.1~10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
 エミッティングドーパントの使用量は低濃度である方が濃度消光現象を防止できるという点で好ましい。アシスティングドーパントの使用量が高濃度である方が熱活性化型遅延蛍光機構の効率の点からは好ましい。さらには、アシスティングドーパントの熱活性化型遅延蛍光機構の効率の点からは、アシスティングドーパントの使用量に比べてエミッティングドーパントの使用量が低濃度である方が好ましい。
2-1-1.ホスト化合物
 ホスト化合物としては、公知のものを用いることができ、例えばカルバゾール環およびフラン環の少なくとも一方を有する化合物を挙げることができ、中でも、フラニル基およびカルバゾリル基の少なくとも一方と、アリーレンおよびヘテロアリーレンの少なくとも一方とが結合した化合物を用いることが好ましい。具体例として、mCPやmCBPなどが挙げられる。
 ホスト化合物の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位E(1,T,Sh)は、発光層内でのTADFの発生を阻害せず促進させる観点から、発光層内において最も高い励起三重項エネルギー準位を有するエミッティングドーパントまたはアシスティングドーパントの励起三重項エネルギー準位E(2,T,Sh)、E(3,T,Sh)に比べて高い方が好ましく、具体的には、ホスト化合物の励起三重項エネルギー準位E(1,T,Sh)はE(2,T,Sh)、E(3,T,Sh)に比べて、0.01eV以上が好ましく、0.03eV以上がより好ましく、0.1eV以上がさらに好ましい。また、ホスト化合物にTADF活性な化合物を用いてもよい。
 ホスト化合物には、例えば、下記式(H1)、(H2)および(H3)のいずれかで表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000035
 上記式(H1)、(H2)および(H3)中、Lは炭素数6~24のアリーレン、炭素数2~24のヘテロアリーレン、炭素数6~24のヘテロアリーレンアリーレンまたは炭素数6~24のアリーレンヘテロアリーレンアリーレンであり、炭素数6~16のアリーレンが好ましく、炭素数6~12のアリーレンがより好ましく、炭素数6~10のアリーレンが特に好ましく、具体的には、ベンゼン環、ビフェニル環、テルフェニル環およびフルオレン環などの二価の基が挙げられる。ヘテロアリーレンとしては、炭素数2~24のヘテロアリーレンが好ましく、炭素数2~20のヘテロアリーレンがより好ましく、炭素数2~15のヘテロアリーレンがさらに好ましく、炭素数2~10のヘテロアリーレンが特に好ましく、具体的には、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環およびチアントレン環などの二価の基が挙げられる。
 上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
 ホスト化合物としては、好ましくは以下に列挙したいずれかの構造式で表される化合物である。なお、以下に列挙した構造式においては、少なくとも1つの水素が、ハロゲン、シアノ、炭素数1~4のアルキル(例えばメチルやt-ブチル)、フェニルまたはナフチルなどで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
2-1-2.熱活性化型遅延蛍光体(アシスティングドーパント)
 本発明で用いる熱活性化型遅延蛍光体(TADF化合物)は、ドナーと呼ばれる電子供与性の置換基とアクセプターと呼ばれる電子受容性の置換基を用いて分子内のHOMO(Highest Occupied Molecular Orbital)とLUMO(Lowest Unoccupied Molecular Orbital)を局在化させて、効率的な逆項間交差(reverse intersystem crossing)が起きるようにデザインされた、ドナー-アクセプター型熱活性化型遅延蛍光体(D-A型TADF化合物)であることが好ましい。
 ここで、本明細書中において「電子供与性の置換基」(ドナー)とは、熱活性化型遅延蛍光体分子中でLUMO軌道が局在する置換基および部分構造のことを意味し、「電子受容性の置換基」(アクセプター)とは、熱活性化型遅延蛍光体分子中でHOMO軌道が局在する置換基および部分構造のことを意味することとする。
 一般的に、ドナーやアクセプターを用いた熱活性化型遅延蛍光体は、構造に起因してスピン軌道結合(SOC: Spin Orbit Coupling)が大きく、かつ、HOMOとLUMOの交換相互作用が小さくΔE(ST)が小さいために、非常に速い逆項間交差速度が得られる。一方、ドナーやアクセプターを用いた熱活性化型遅延蛍光体は、励起状態での構造緩和が大きくなり(ある分子においては、基底状態と励起状態では安定構造が異なるため、外部刺激により基底状態から励起状態への変換が起きると、その後、励起状態における安定構造へと構造が変化する)、幅広な発光スペクトルを与えるため、発光材料として使うと色純度を低下させる可能性がある。
 本発明の熱活性化型遅延蛍光体として、例えばドナーおよびアクセプターが直接またはスペーサーを介して結合している化合物を用いることができる。本発明の熱活性化型遅延蛍光体に用いられるドナー性およびアクセプター性の構造としては、例えば、Chemistry of Materials, 2017, 29, 1946-1963に記載の構造を用いることができる。ドナー性の構造としては、カルバゾール、ジメチルカルバゾール、ジ-tert-ブチルカルバゾール、ジメトキシカルバゾール、テトラメチルカルバゾール、ベンゾフルオロカルバソール、ベンゾチエノカルバゾール、フェニルジヒドロインドロカルバゾール、フェニルビカルバゾール、ビカルバゾール、ターカルバゾール、ジフェニルカルバゾリルアミン、テトラフェニルカルバゾリルジアミン、フェノキサジン、ジヒドロフェナジン、フェノチアジン、ジメチルジヒドロアクリジン、ジフェニルアミン、ビス(tert-ブチル)フェニル)アミン、(ジフェニルアミノ)フェニル)ジフェニルベンゼンジアミン、ジメチルテトラフェニルジヒドロアクリジンジアミン、テトラメチル-ジヒドローインデノアクリジンおよびジフェニルージヒドロジベンゾアザシリンなどが挙げられる。アクセプター性の構造としては、スルホニルジベンゼン、ベンゾフェノン、フェニレンビス(フェニルメタノン)、ベンゾニトリル、イソニコチノニトリル、フタロニトリル、イソフタロニトリル、パラフタロニトリル、ベンゼントリカルボニトリル、トリアゾール、オキサゾール、チアジアゾール、ベンゾチアゾール、ベンゾビス(チアゾール)、ベンゾオキサゾール、ベンゾビス(オキサゾール)、キノリン、ベンゾイミダゾール、ジベンゾキノキサリン、ヘプタアザフェナレン、チオキサントンジオキシド、ジメチルアントラセノン、アントラセンジオン、シクロヘプタビピリジン、フルオレンジカルボニトリル、トリエフェニルトリアジン、ピラジンジカルボニトリル、ピリミジン、フェニルピリミジン、メチルピリミジン、ピリジンジカルボニトリル、ジベンゾキノキサリンジカルボニトリル、ビス(フェニルスルホニル)ベンゼン、ジメチルチオキサンテンジオキド、チアンスレンテトラオキシドおよびトリス(ジメチルフェニル)ボランが挙げられる。特に、本発明の熱活性化型遅延蛍光を有する化合物は、部分構造として、カルバゾール、フェノキサジン、アクリジン、トリアジン、ピリミジン、ピラジン、チオキサンテン、ベンゾニトリル、フタロニトリル、イソフタロニトリル、ジフェニルスルホン、トリアゾール、オキサジアゾール、チアジアゾールおよびベンゾフェノンから選択される少なくとも一つを有する化合物であることが好ましい。
 本発明の発光層の第2成分として用いる化合物は、熱活性化型遅延蛍光体であって、その発光スペクトルがエミッティングドーパントの吸収ピークと少なくとも一部重なる化合物であることが好ましい。以下において、本発明の発光層の第2成分(熱活性化型遅延蛍光体)として用いることができる化合物を例示する。ただし、本発明において熱活性化型遅延蛍光体として用いることができる化合物は、以下の例示化合物によって限定的に解釈されることはない。下記式において、Meはメチルを表し、t-Buはt-ブチルを表し、Phはフェニルを表し、波線は結合位置を表す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 さらに、熱活性化型遅延蛍光体として、下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物も用いることができる。
Figure JPOXMLDOC01-appb-C000059
 上記式(AD1)、(AD2)および(AD3)中、
 Mは、それぞれ独立して、単結合、-O-、>N-Arまたは>CArであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、単結合、-O-または>N-Arである。Jはドナー性の部分構造とアクセプター性の部分構造を分けるスペーサー構造であり、それぞれ独立して、炭素数6~18のアリーレンであり、ドナー性の部分構造とアクセプター性の部分構造から染み出す共役の大きさの観点から、炭素数6~12のアリーレンが好ましい。より具体的には、フェニレン、メチルフェニレンおよびジメチルフェニレンが挙げられる。Qは、それぞれ独立して、=C(-H)-または=N-であり、形成する部分構造のLUMOの浅さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、=N-である。Arは、それぞれ独立して、水素、炭素数6~24のアリール、炭素数2~24のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~18のシクロアルキルであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、水素、炭素数6~12のアリール、炭素数2~14のヘテロアリール、炭素数1~4のアルキルまたは炭素数6~10のシクロアルキルであり、より好ましくは、水素、フェニル、トリル、キシリル、メシチル、ビフェニル、ピリジル、ビピリジル、トリアジル、カルバゾリル、ジメチルカルバゾリル、ジーtert-ブチルカルバゾリル、ベンゾイミダゾールまたはフェニルベンゾイミダゾールであり、さらに好ましくは、水素、フェニルまたはカルバゾリルである。mは、1または2である。nは、~(6-m)の整数であり、立体障害の観点から、好ましくは、4~(6-m)の整数である。さらに、上記各式で表される化合物における少なくとも1つの水素は、ハロゲンまたは重水素で置換されていてもよい。
 本発明の発光層の第2成分として用いる化合物は、より具体的に言えば、4CzBN、4CzBN-Ph、5CzBN、3Cz2DPhCzBN、4CzIPN、2PXZーTAZ、Cz-TRZ3、BDPCC-TPTA、MA-TA、PA-TA、FA-TA、PXZ-TRZ、DMAC-TRZ、BCzT、DCzTrz、DDCzTRz、spiroAC-TRZ、Ac-HPM、Ac-PPM、Ac-MPM、TCzTrz、TmCzTrzおよびDCzmCzTrzであることが好ましい。
 本発明の発光層の第2成分として用いる化合物は、1つのドナーDと1つのアクセプターAが直接結合または連結基を介して結合しているD-Aで表されるドナーアクセプター型TADF化合物でもよいが、1つのアクセプターAに複数のドナーDが直接結合または連結基を介して結合している下記式(DAD1)で表される構造を有するものであることが、有機電界発光素子の特性がより優れたものになるため好ましい。
   (D-L)n-A                   (DAD1)
式(DAD1)には、下記式(DAD2)で表される化合物が含まれる。
    D-L-A-L-D3                   (DAD2)
式(DAD1)および式(DAD2)において、D、DおよびDはそれぞれ独立してドナー性基を表す。ドナー性基としては、上記のドナー性の構造を採用することができる。AおよびAはそれぞれ独立してアクセプター性基を表す、アクセプター性基としては、上記のアクセプター性の構造を採用することができる。L、LおよびLはそれぞれ独立して単結合または共役連結基を表す。共役連結基はドナー性基とアクセプター性基を分けるスペーサー構造であり、炭素数6~18のアリーレンであることが好ましく、炭素数6~12のアリーレンがより好ましい。L、LおよびLは、それぞれ独立してフェニレン、メチルフェニレンまたはジメチルフェニレンであることがさらに好ましい。式(DAD1)におけるnは2以上であって、Aが置換しうる最大数以下の整数を表す。nは例えば2~10の範囲内で選択したり、2~6の範囲内で選択したりしてもよい。nが2であるとき、式(DAD2)で表される化合物になる。n個のDは同一であっても異なっていてもよく、n個のLは同一であっても異なっていてもよい。式(DAD1)および式(DAD2)で表される化合物の好ましい具体例として、2PXZ-TAZや下記の化合物をあげることができるが、本発明で採用することができる第2成分はこれらの化合物に限定されない。
Figure JPOXMLDOC01-appb-C000060
2-1-3.ホウ素原子を有する化合物(エミッティングドーパント)
 本発明の有機電界発光素子の発光層は、第3成分としてホウ素原子を有する化合物を含む。発光層は、ホウ素原子を有する化合物として、下記式(i)、(ii)、および(iii)のいずれかで表される化合物、および下記式(i)で表される構造を複数有する多量体化合物の少なくとも1つを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 本発明の有機電界発光素子の発光層は、第3成分(ホウ素原子を有する化合物)として、下記式(1)、(2)、(3)および(4)のいずれかで表される化合物を少なくとも1つ含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
 例えば有機電界発光ディスプレイ用の発光材料としては、蛍光材料、りん光材料、熱活性化型遅延蛍光(TADF)材料の3種類が利用されているが、蛍光材料は、発光効率が低く、およそ25~62.5%程度である。一方、りん光材料とTADF材料は、発光効率が100%に達する場合もあるが、いずれも色純度が低い(発光スペクトルの幅が広い)という問題がある。ディスプレイでは、光の三原色である赤・緑・青色の発光を混合することによりさまざまな色を表現しているが、それぞれの色純度が低いと、再現できない色ができてしまい、ディスプレイの画質が大きく低下する。そこで、市販のディスプレイでは、発光スペクトルから不必要な色を光学フィルターで除去することにより、色純度を高めてから(スペクトル幅を狭くしてから)使用している。したがって、元々のスペクトル幅が広いと除去する割合が増えるために、発光効率が高い場合でも、実質的な効率は大きく低下する。例えば、市販のスマートフォンの青色の発光スペクトルの半値幅は、およそ20~25nm程度であるが、一般的な蛍光材料の半値幅は40~60nm程度、りん光材料は60~90nm程度、TADF材料だと70~100nm程度である。蛍光材料を用いた場合は半値幅が比較的狭いため不要な色を一部除去するだけで足りるが、りん光材料やTADF材料を用いた場合は半分以上除去する必要がある。このような背景から、発光効率と色純度の両方を兼ね備えた発光材料の開発が望まれていた。
 一般にTADF材料は、ドナーと呼ばれる電子供与性の置換基とアクセプターと呼ばれる電子受容性の置換基を用いて分子内のHOMOとLUMOを局在化させて、効率的な逆項間交差(reverse intersystem crossing)が起きるようにデザインされているが、ドナーやアクセプターを用いると励起状態での構造緩和が大きくなり(ある分子においては、基底状態と励起状態では安定構造が異なるため、外部刺激により基底状態から励起状態への変換が起きると、その後、励起状態における安定構造へと構造が変化する)、色純度が低い幅広な発光スペクトルを与えることになる。
 そこで、国際公開第2015/102118号公報では、TADF材料の色純度を飛躍的に向上させる新たな分子設計を提案している。当該文献に開示された例えば化合物(1-401)では、ホウ素(電子供与性)と窒素(電子吸引性)の多重共鳴効果を利用することで、6つの炭素からなるベンゼン環上の3つの炭素(黒丸)にHOMOを、残りの3つの炭素(白丸)にLUMOを局在化させることに成功している。この効率的な逆項間交差により、当該化合物の発光効率は最大で100%に達する。さらに、化合物(1-401)のホウ素と窒素はHOMOとLUMOを局在化させるだけではなく、3つのベンゼン環を縮環させることにより堅牢な平面構造を維持し、励起状態での構造緩和を抑制するという役割も担っており、結果として吸収および発光のピークのストークスシフトが小さい、色純度の高い発光スペクトルを得ることにも成功している。その発光スペクトルの半値幅は28nmであり、実用化されている高色純度の蛍光材料をも凌駕するレベルの色純度を示している。また、式(1-422)のような二量体化合物では、2つのホウ素と2つの窒素が中央のベンゼン環に結合することで、中央のベンゼン環においてさらに多重共鳴効果を増強させており、その結果、極めて狭い発光ピーク幅を有する発光が可能となっている。
Figure JPOXMLDOC01-appb-C000068
 我々は鋭意研究の結果、(i)多重共鳴効果を調節する元素を適切な位置に導入する、(ii)分子を歪ませて平面性を減少させるために適切な位置に置換基を導入する、(iii)平面性の高い構造を適切な位置に導入する、という、3つのアプローチを適切に組み合わせることで、化合物において、発光波長および発光スペクトルの半値幅の調整、高い発光効率および小さなΔE(ST)を化合物において実現した(WO2015/102118、特願2016-174209、特願2017-097142、特願2017-248014、PCT/JP2018/ 18731、特願2018-107092、特願2018-110876)。本発明の素子においては、本化合物をエミッティングドーパントとして利用することで、アシスティングドーパントからエミッティングドーパントへの高いエネルギー移動効率、適切な発光波長および発光スペクトルの半値幅、高い色純度、高い素子効率および小さいロールオフ、および長寿命を実現した。
 上記の式(i)、(ii)、および(iii)のいずれかで表される化合物、式(i)で表される構造を複数有する多量体化合物、式(1)、(2)、(3)および(4)のいずれかで表される化合物は、これらの具体的な化合物例について、さらに検討を行って一般化したものである。
 第3成分は通常の蛍光体であっても、熱活性化型遅延蛍光体であってもよい。
 以下において、各式およびその具体例について説明する。
2-1-3(i). 第3成分:下記式(i)で表される化合物
Figure JPOXMLDOC01-appb-C000069
 上記式(i)において、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
 XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
 式(i)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。
 第3成分としての式(i)で表される化合物は、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000070
 上記式(1)において、
 R~R11(以降、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つ(以上、第2置換基)で置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つ(以上、第1置換基)で置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つ(以上、第2置換基)で置換されていてもよく、
 XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、XおよびXは、同時に>CRになることはなく、
そして、
 式(1)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
 R等の「アリール」(第1置換基)は、単環であっても、2以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の芳香族炭化水素環が連結した連結環であってもよい。2以上の芳香族炭化水素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。「アリール」は、例えば、炭素数6~30のアリールであり、炭素数6~20のアリールが好ましく、炭素数6~16のアリールがより好ましく、炭素数6~12のアリールがさらに好ましく、炭素数6~10のアリールが特に好ましい。
 具体的なアリールとしては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどが挙げられる。
 R等の「ヘテロアリール」(第1置換基)は、単環であっても、1以上の複素環と1以上の複素環または1以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の複素環が連結した連結環であってもよい。2以上の複素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。「ヘテロアリール」は、例えば、炭素数2~30のヘテロアリールであり、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールは、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などである。
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チオフェニル、ベンゾチオフェニル、ジベンゾチオフェニル、フラザニル、オキサジアゾリル、チアントレニルなどが挙げられる。
 R等の「ジアリールアミノ」(第1置換基)中の「アリール」および「アリールオキシ」(第1置換基)中の「アリール」としては、上述したアリールの説明を引用できる。
 R等の「ジアリールボリル」(第1置換基)中の「アリール」としては、上述したアリールの説明を引用できる。
 R等の「アルキル」(第1置換基)は、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルである。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 R等の「シクロアルキル」(第1置換基)は、1つの環からなるシクロアルキル、複数の環からなるシクロアルキル、環内で共役しない二重結合を含むシクロアルキルおよび環外に分岐を含むシクロアルキルのいずれでもよく、例えば、炭素数3~12のシクロアルキルである。炭素数5~10のシクロアルキルが好ましく、炭素数6~10のシクロアルキルがより好ましい。
 具体的なシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2,2,1]ヘプチル、ビシクロ[2.2.2]オクチル、デカヒドロナフチル、アダマンチルなどが挙げられる。
 R等の「アルコキシ」(第1置換基)は、直鎖状であっても分岐鎖状であってもよい。例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシである。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。
 R等(第1置換基)にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述した第1置換基としてのアリール、ヘテロアリールまたはアルキルの説明を引用できる。
 具体的には、R等(第1置換基)の構造の立体障害性、電子供与性および電子吸引性により発光波長を調整することができ、好ましくは以下の式で表される基であり、より好ましくは、メチル、t-ブチル、ビシクロオクチル、シクロヘキシル、アダマンチル、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、ジフェニルボリル、ジメシチルボリル、ジベンゾオキサボリニル、フェニルジベンゾジボリニル、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、o-トリル、2,6-キシリル、2,4,6-メシチル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。
Figure JPOXMLDOC01-appb-C000071
 式において、Meはメチルを表し、tBuはt-ブチルを表し、波線は結合位置を表す。
 式(1)におけるR~R、R~RおよびR~R11のうちの隣接する基同士は、互いに結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、式(1)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって化合物を構成する環構造が変化する。例えば、a環のRとb環のR、b環のRとc環のR、c環のR11とa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
 形成された「アリール環」または「ヘテロアリール環」は、上述した第1置換基としてのアリールまたはヘテロアリールの、無価の環である。ただし、形成された環の炭素数は縮合前の環の炭素数を含む。
 形成されたアリール環またはヘテロアリール環に置換する、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシの説明を引用できる。
 式(1)におけるXは、>O、>N-R、>CR、>Sまたは>Seであり、>Oおよび>N-Rが好ましい。
 >N-RのRおよび>CRのRであるアリール、ヘテロアリールまたはアルキル(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリールまたはアルキルの説明を引用できる。
 式(1)で表される化合物は、下記部分構造を含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 次に、具体的な構造を示す。下記式において、Meはメチルを表し、tBuおよびt-Buはt-ブチルを表し、Phはフェニルを表す。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
2-1-3(ii). 第3成分:下記式(ii)で表される化合物
Figure JPOXMLDOC01-appb-C000098
 上記式(ii)において、
 A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 YはB(ホウ素)であり、
 X、X、XおよびXは、それぞれ独立して、>O、>N-R、>CR、>Sまたは>Seであり、前記>N-RのRおよび>CRのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたは置換されていてもよいアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環、C環およびD環から選択される少なくとも1つと結合していてもよく、
 RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、
 式(ii)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
 第3成分としての式(ii)で表される化合物は、下記式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000099
 上記式(2)において、
 R~R14(以降、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 YはB(ホウ素)であり、
 X、X、XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキルまたは炭素数1~6のアルキルであり、また、前記>N-RのRおよび>CRのRは、-O-、-S-、-C(-R)-または単結合により前記a環、b環、c環およびd環から選択される少なくとも1つと結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキルであり、
 ただし、X、X、X、およびXは、同時に>CRになることはなく、
そして、
 式(2)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
 上記式(2)における、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシの説明を引用できる。
 上記式(2)で表される化合物は下記部分構造を含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
 以下に、上記式(2)で表される化合物の具体的な構造を示す。下記式において、Meはメチルを表し、tBuはt-ブチルを表し、Phはフェニルを表す。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 上記の構造におけるRは、以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
2-1-3(iii). 第3成分:下記式(iii)で表される化合物
Figure JPOXMLDOC01-appb-C000119
上記式(iii)において、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
 X、XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
 式(iii)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。
 式(iii)で表される化合物は、下記式(3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000120
 上記式(3)において、
 R~R11(以降、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 X、XおよびXは、それぞれ独立して、>O、>N-R、または>CRであり、前記>N-RのRおよび>CR のRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、X、X、およびXは、同時に>CRになることはなく、
そして、
 式(3)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
 上記式(3)における、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシの説明を引用できる。
 以下に、上記式(3)の具体的な構造を示す。
Figure JPOXMLDOC01-appb-C000121
2-1-3(iv). 第3成分:下記式(4)で表される化合物
 上記の式(i)で表される化合物は、下記式(4)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000122
 上記式(4)において、
 R~R14(以降、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~R、R~R10およびR11~R14のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 Xは、>O、>N-Rまたは>CRであり、前記>N-RのRはアリール、ヘテロアリールまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 Lは、単結合、>CR、>O、>Sまたは>N-Rであり、前記>CRおよび>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
 ただし、XおよびLは、同時に>CRになることはなく、
そして、
 式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
 上記式(4)における、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシの説明を引用できる。
 式(4)におけるLは、単結合、>CR、>O、>Sまたは>N-Rであり、単結合、>Oまたは>N-Rが好ましく、単結合がより好ましい。
 >CRおよび>N-RのRであるアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリールまたはアルキル(以上、第2置換基)としては、上述したR等(第1置換基)としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシの説明を引用できる。
 式(4)で表される化合物は下記部分構造を含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000123
 以下に、上記式(4)で表される化合物の具体的な構造を示す。下記式において、Meはメチルを表し、t-Buはt-ブチルを表す。
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
 本発明の第3成分は、式(i)~(iii)で表される化合物の少なくとも一つであり、より具体的には、式(1)~(4)で表される化合物の少なくとも一つであることが好ましい。高いPLQYの観点からは、式(i)および(ii)で表される化合物が好ましく、式(ii)で表される化合物がより好ましい。より具体的には、ホウ素原子を含む共役構造の平面性が高いほうが好ましく、式(1)、(2)および(4)が好ましく、式(2)および(4)がより好ましい。また、小さなΔE(ST)の観点からは、式(i)および(ii)で表される化合物が好ましく、式(ii)で表される化合物がより好ましい。より具体的には、X、X、X、XおよびXが窒素であるほうが好ましく、式(1)、(2)および(4)が好ましく、式(1)および(4)がより好ましい。また、大きなSOCの観点からは、式(i)および(ii)が好ましい。より具体的には、ホウ素原子を含む共役構造が完全な平面ではなく歪んでいるほうがよく、式(1)、(2)および(4)が好ましく、式(1)および(4)がより好ましく、式(1)がさらに好ましい。
2-1-3(v). 第3成分:好ましい置換基
 第3成分として用いることができる式(i)~(iii)および式(1)~(4)で表される化合物は、化合物内に存在する環に置換基が結合していない無置換体であってもよいが、適切な置換基で置換されている化合物を用いることが好ましい。適切な置換基で置換されている化合物を第3成分として用いることにより、無置換体を用いた場合よりも、有機電界発光素子の特性がより優れたものになる。好ましい置換基として、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルをあげることができ;より好ましい置換基として、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシをあげることができ;さらに好ましい置換基としてアリール、ジアリールアミノ、アルキルをあげることができ;さらにより好ましい置換基としてジアリールアミノ、アルキルをあげることができ;特に好ましい置換基としてジアリールアミノをあげることができる。ここでいうアリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルは、これらにおける少なくとも1つの水素が、アリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよい。
 ジアリールアミノにおける2つのアリールは、同一であっても異なっていてもよいが、同一であることが好ましい。アリールとしては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどが挙げられる。ジアリールアミノのアリールが置換されている場合は、アリールおよびアルキルから選択される少なくとも1つで置換されていることが好ましい。また、ジアリールアミノを構成する2つのアリール基が互いに結合していない基を特に選択して用いてもよい。例えば、ジフェニルアミノ、ジ(4-メチルフェニル)アミノ、ジ(4-t-ブチルフェニル)アミノなどがあげられる。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 
 好ましい置換基を有する化合物を第3成分として用いることにより、有機電界発光素子の外部量子収率が向上したり、半値幅が狭くなったり、素子寿命が長くなったりする等の性能の向上が見られる。また、適切な置換基で置換することにより、遅延蛍光の寿命Tau(Delay)を短くしたり、ストークスシフトを小さくしたりすることもでき、それにより有機電界発光素子の性能を向上させることもできる。
 適切に置換基を選択する等の手法をとることにより、第2成分と第3成分については下記の特に好ましいエネルギー構造を構築し、採用することができる。
   E(3,T,Sh)≧E(2,T,Sh)
   ΔE(2,ST,Sh)≧ΔE(3,ST,Sh)
   第3成分のストークスシフトが10nm以下
 また、下記のエネルギー構造も好ましい。
   E(3,T,Sh)≦E(2,T,Sh)
   ΔE(2,ST,Sh)≦ΔE(3,ST,Sh)
   第3成分のストークスシフトが15nm以下
 さらに、下記のエネルギー構造も好ましい。
   E(3,T,Sh)≦E(2,T,Sh)
   ΔE(2,ST,Sh)≧ΔE(3,ST,Sh)
   第3成分のストークスシフトが15nmより大きい
 また、上記のいずれのエネルギー構造においても、E(3,S,PT)≧E(2,S,PT)であることが好ましい。
2-1-4.高分子化合物
 本発明の有機電界発光素子の発光層に含まれる第1成分は、ホスト化合物から水素原子2個が脱離した構造を繰り返し単位として含む高分子化合物であってもよい。本発明の有機電界発光素子の発光層に含まれる第2成分は、熱活性型遅延蛍光体から水素原子2個が脱離した構造を繰り返し単位として含む高分子化合物であってもよい。本発明の有機電界発光素子の発光層に含まれる第3成分は、ホウ素原子を有する化合物から水素原子2個が脱離した構造を繰り返し単位として含む高分子化合物であってもよい。脱離する2個の水素原子は、化合物中の任意の2原子とすることができる。同一の環構造に結合している2個の水素原子であってもよいし、そうでなくてもよい。
 発光層に含まれる高分子化合物は、ホスト化合物から水素原子2個が脱離した構造を繰り返し単位として含むとともに、熱活性型遅延蛍光体から水素原子2個が脱離した構造も繰り返し単位として含む高分子化合物であってもよい。発光層に含まれる高分子化合物は、ホスト化合物から水素原子2個が脱離した構造を繰り返し単位として含むとともに、ホウ素原子を含む化合物から水素原子2個が脱離した構造も繰り返し単位として含む高分子化合物であってもよい。発光層に含まれる高分子化合物は、熱活性型遅延蛍光体から水素原子2個が脱離した構造を繰り返し単位として含むとともに、ホウ素原子を含む化合物から水素原子2個が脱離した構造も繰り返し単位として含む高分子化合物であってもよい。また、発光層に含まれる高分子化合物は、ホスト化合物から水素原子2個が脱離した構造を繰り返し単位として含むとともに、熱活性型遅延蛍光体から水素原子2個が脱離した構造も繰り返し単位として含み、なおかつ、ホウ素原子を含む化合物から水素原子2個が脱離した構造も繰り返し単位として含む高分子化合物であってもよい。
 発光層に含まれる高分子化合物に含まれる、ホスト化合物から水素原子2個が脱離した構造を有する繰り返し単位は2種以上であってもよい。発光層に含まれる高分子化合物に含まれる、熱活性型遅延蛍光体から水素原子2個が脱離した構造を有する繰り返し単位は2種以上であってもよい。発光層に含まれる高分子化合物に含まれる、ホウ素原子を含む化合物から水素原子2個が脱離した構造を有する繰り返し単位は2種以上であってもよい。
 発光層に含まれる高分子化合物は、ホスト化合物から水素原子2個が脱離した構造を有する繰り返し単位、熱活性型遅延蛍光体から水素原子2個が脱離した構造を有する繰り返し単位、およびホウ素原子を含む化合物から水素原子2個が脱離した構造を有する繰り返し単位から選択される少なくとも1つの繰り返し単位の他に、これらとは異なる繰り返し単位を1種以上含んでいてもよい。そのような繰り返し単位として、正孔輸送性を示す構造を含む繰り返し単位、電子輸送性を示す構造を含む繰り返し単位、正孔輸送性や電子輸送性を示さない繰り返し単位などを適宜選択して採用することができる。好ましい繰り返し単位として、アリーレン、ヘテロアリーレン、2種以上のアリーレンが結合した基、2種以上のヘテロアリーレンが結合した基、少なくとも1種のアリーレンと少なくとも1種のヘテロアリーレンが結合した基、少なくとも1種のアリーレンと少なくとも1種のーN(R)ーで表される基が結合した基、少なくとも1種のヘテロアリーレンと少なくとも1種のーN(R)ーで表される基が結合した基、少なくとも1種のアリーレンと少なくとも1種のヘテロアリーレンと少なくとも1種のーN(R)ーで表される基が結合した基を例示することができる。ここでいうアリーレン、ヘテロアリーレンは置換されていてもよく、その置換基としては炭素数1~30のアルキル、炭素数6~22のアリール、環骨格構成原子数5~22のヘテロアリールを例示することができる。またRとして、炭素数1~30のアルキル、炭素数6~22のアリール、環骨格構成原子数5~22のヘテロアリールを例示することができる。繰り返し単位の具体例として、以下の構造をあげることができる。下記の構造に存在する水素原子は、炭素数1~30のアルキル、炭素数6~22のアリール、環骨格構成原子数5~22のヘテロアリール等で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000159
 発光層に含まれる高分子化合物を構成する各繰り返し単位のモル比は特に制限されない。ホスト化合物から水素原子2個が脱離した構造を有する繰り返し単位、熱活性型遅延蛍光体から水素原子2個が脱離した構造を有する繰り返し単位、ホウ素原子を含む化合物から水素原子2個が脱離した構造を有する繰り返し単位が存在するとき、各繰り返し単位は0.01~100モル%の範囲内で選択することができる。また、これらの繰り返し単位以外の繰り返し単位が存在するとき、その繰り返し単位のモル比は0.01~99.99モル%の範囲内で選択することができる。
 高分子化合物は、公知の重合反応により合成することができる。例えば、公知のカップリング反応を用いて合成することが可能である。すなわち、高分子化合物を構成する第1の繰り返し単位の両末端に塩素原子、臭素原子、ヨウ素原子、-O-S(=O)等の反応性基を結合させた化合物と、第2の繰り返し単位の両末端に第1の繰り返し単位の両末端の反応性基とカップリング反応を起こす官能基を結合させた化合物とを反応させることにより、容易に目的とする高分子化合物を合成することができる。ここでRは、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリール等である。第1の繰り返し単位の両末端の反応性基とカップリング反応を起こす官能基としては、-B(OR、BF、MgR、ZnR、Sn(Rを例示することができる。ここでRおよびRは、水素原子、置換されていてもよいアルキル、置換されていてもよいシクロアルキル等であり、2つ以上RまたはRは互いに連結して環状構造を形成してもよい。Rは、Li、Na、K、Rb、Cs等である。RおよびRは、塩素原子、臭素原子またはヨウ素原子である。
 カップリング反応は、触媒の存在下で行うことが好ましい。触媒としては、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリス-o-メトキシフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム、フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウムを用いることができる。カップリング反応を-100~200℃にて1~24時間程度行うことにより、目的とする高分子化合物を合成することができる。
(その他の有機層)
 本発明の有機電界発光素子は、発光層の他に、1以上の有機層を有していてもよい。有機層としては、例えば、電子輸送層、正孔輸送層、電子注入層および正孔注入層等を挙げることができ、さらに、その他の有機層を有していてもよい。
 図4に、これらの有機層を備えた有機電界発光素子の層構成の一例を示す。図4において、101は基板、102は陽極、103は正孔注入層、104は正孔輸送層、105は発光層、106は電子輸送層、107は電子注入層、108は陰極をそれぞれ示す。
 以下において、有機電界発光素子において、発光層の他に設けられる有機層、陰極および陽極、基板について説明する。
2-2.有機電界発光素子における電子注入層、電子輸送層
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合により形成される。
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環もしくは複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などが挙げられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などが挙げられる。
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。
2-2-1.ピリジン誘導体
 ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000160
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
 上記式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。
 上記式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。
 各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれかであり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。
Figure JPOXMLDOC01-appb-C000161
 ピリジン系置換基は、上記式(Py-1)~式(Py-15)のいずれかであるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000162
 各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、上記式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。
 R11~R18における「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。
 R11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
 R11~R18における「アリール」は、単環であっても、2以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の芳香族炭化水素環が連結した連結環であってもよい。2以上の芳香族炭化水素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。
 具体的なアリールとしては、例えば、単環系アリールであるフェニル、二環系アリールであるビフェニリル(2-ビフェニリル,3-ビフェニリル,4-ビフェニリル)、縮合二環系アリールであるナフチル(1-ナフチル,2-ナフチル)、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレニル(アセナフチレン-1-イル,アセナフチレン-3-イル,アセナフチレン-4-イル,アセナフチレン-5-イル)、フルオレニル(フルオレン-1-イル,フルオレン-2-イル,フルオレン-3-イル,フルオレン-4-イル,フルオレン-9-イル)、フェナレニル(フェナレン-1-イル,フェナレン-2-イル)、フェナントリル(1-フェナントリル,2-フェナントリル,3-フェナントリル,4-フェナントリル,9-フェナントリル)、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン(トリフェニレン-1-イル,トリフェニレン-2-イル)、ピレニル(ピレン-1-イル,ピレン-2-イル,ピレン-4-イル)、ナフタセニル(ナフタセン-1-イル,ナフタセン-2-イル,ナフタセン-5-イル)、縮合五環系アリールであるペリレニル(ペリレン-1-イル,ペリレン-2-イル,ペリレン-3-イル)、ペンタセニル(ペンタセン-1-イル,ペンタセン-2-イル,ペンタセン-5-イル,ペンタセン-6-イル)などが挙げられる。
 好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどが挙げられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルが挙げられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルが挙げられる。
 上記式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
 このピリジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000163
 このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-2.ホスフィンオキサイド誘導体
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000164
 Rは、置換または無置換の、炭素数1~20のアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは、CN、置換または無置換の、炭素数1~20のアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
 RおよびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは酸素または硫黄であり、
 jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000165
 R~Rは、同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、アミノ基、ニトロ基、シリル基、および隣接置換基との間に形成される縮合環の中から選ばれる。
 Arは、同じでも異なっていてもよく、アリーレン基またはヘテロアリーレン基であり、Arは、同じでも異なっていてもよく、アリール基またはヘテロアリール基である。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。
 これらの置換基の内、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル基、アリール基、複素環基などを挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。
 また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル基部分の炭素数は特に限定されないが、通常、3~20の範囲である。
 また、アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。
 また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、アルキニル基とは、例えば、アセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシ基の炭素数は特に限定されないが、通常、1~20の範囲である。
 また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換された基である。
 また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6~40の範囲である。
 また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。
 また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニリル基、フェナントリル基、テルフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、無置換でも置換されていてもかまわない。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。
 また、複素環基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
 アルデヒド基、カルボニル基、アミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。
 また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。
 シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。
 隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとArなどの間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
 このホスフィンオキサイド誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000166
 このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-3.ピリミジン誘導体
 ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000167
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。
 「置換されていてもよいアリール」の「アリール」は、単環であっても、2以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の芳香族炭化水素環が連結した連結環であってもよい。2以上の芳香族炭化水素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
 具体的なアリールとしては、例えば、単環系アリールであるフェニル、二環系アリールであるビフェニリル(2-ビフェニリル,3-ビフェニリル,4-ビフェニリル)、縮合二環系アリールであるナフチル(1-ナフチル,2-ナフチル)、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレニル(アセナフチレン-1-イル,アセナフチレン-3-イル,アセナフチレン-4-イル,アセナフチレン-5-イル)、フルオレニル(フルオレン-1-イル,フルオレン-2-イル,フルオレン-3-イル,フルオレン-4-イル,フルオレン-9-イル)、フェナレニル(フェナレン-1-イル,フェナレン-2-イル)、フェナントリル(1-フェナントリル,2-フェナントリル,3-フェナントリル,4-フェナントリル,9-フェナントリル)、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン(トリフェニレン-1-イル,トリフェニレン-2-イル)、ピレニル(ピレン-1-イル,ピレン-2-イル,ピレン-4-イル)、ナフタセニル(ナフタセン-1-イル,ナフタセン-2-イル,ナフタセン-5-イル)、縮合五環系アリールであるペリレニル(ペリレン-1-イル,ペリレン-2-イル,ペリレン-3-イル)、ペンタセニル(ペンタセン-1-イル,ペンタセン-2-イル,ペンタセン-5-イル,ペンタセン-6-イル)などが挙げられる。
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」は、単環であっても、1以上の複素環と1以上の複素環または1以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の複素環が連結した連結環であってもよい。2以上の複素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
 このピリミジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000168
 このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-4.トリアジン誘導体
 トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国公開公報2011/0156013号公報に記載されている。
Figure JPOXMLDOC01-appb-C000169
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
 具体的なアリールとしては、例えば、単環系アリールであるフェニル、二環系アリールであるビフェニリル(2-ビフェニリル,3-ビフェニリル,4-ビフェニリル)、縮合二環系アリールであるナフチル(1-ナフチル,2-ナフチル)、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレニル(アセナフチレン-1-イル,アセナフチレン-3-イル,アセナフチレン-4-イル,アセナフチレン-5-イル)、フルオレニル(フルオレン-1-イル,フルオレン-2-イル,フルオレン-3-イル,フルオレン-4-イル,フルオレン-9-イル)、フェナレニル(フェナレン-1-イル,フェナレン-2-イル)、フェナントリル(1-フェナントリル,2-フェナントリル,3-フェナントリル,4-フェナントリル,9-フェナントリル)、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン(トリフェニレン-1-イル,トリフェニレン-2-イル)、ピレニル(ピレン-1-イル,ピレン-2-イル,ピレン-4-イル)、ナフタセニル(ナフタセン-1-イル,ナフタセン-2-イル,ナフタセン-5-イル)、縮合五環系アリールであるペリレニル(ペリレン-1-イル,ペリレン-2-イル,ペリレン-3-イル)、ペンタセニル(ペンタセン-1-イル,ペンタセン-2-イル,ペンタセン-5-イル,ペンタセン-6-イル)などが挙げられる。
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」は、単環であっても、1以上の複素環と1以上の複素環または1以上の芳香族炭化水素環が縮合した縮合環であっても、2以上の複素環が連結した連結環であってもよい。2以上の複素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
 このトリアジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000170
 このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-5.ベンゾイミダゾール誘導体
 ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000171
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がベンゾイミダゾール基に置き換わった置換基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000172
 上記ベンゾイミダゾール基におけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、上記式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。
 このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどが挙げられる。
Figure JPOXMLDOC01-appb-C000173
 このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-6.フェナントロリン誘導体
 フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開2006/021982号公報に記載されている。
Figure JPOXMLDOC01-appb-C000174
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
 各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、上記式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφと結合する。
 各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
 R11~R18におけるアルキル、シクロアルキルおよびアリールとしては、上記式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した例のほかに、例えば、以下の構造式が挙げられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000175
 このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000176
 このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
2-2-7.キノリノール系金属錯体
 キノリノール系金属錯体は、例えば下記式(ETM-13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000177
 式中、R~Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどが挙げられる。
 このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機電界発光素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら二種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機電界発光素子における発光輝度の向上や長寿命化が図られる。
2-3.有機電界発光素子における陰極
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の物質を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率を上げて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例として挙げられる。これらの電極の作製法も、抵抗加熱、電子ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
2-4.有機電界発光素子における正孔注入層、正孔輸送層
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。
 また、湿式成膜法を用いて正孔注入層103および正孔輸送層104を形成する材料としては、上記に記載の蒸着に用いられる正孔注入層103および正孔輸送層104を形成する材料に加えて、正孔注入性および正孔輸送性の高分子、正孔注入性および正孔輸送性の架橋性高分子、正孔注入性および正孔輸送性の高分子前駆体、および、重合開始剤などを用いることができる。例えば、PEDOT:PSS、ポリアニリン化合物(特開2005-108828号公報、国際公開第2010/058776号、国際公開第2013/042623号等に記載)、フルオレンポリマー(特開2011-251984号公報、特開2011-501449号公報、特開2012-533661号公報等に記載)、「Xiaohui Yang, David C. Muller, Dieter Neher, Klaus Meerholz,Organic Electronics,12,2253-2257 (2011)」、「Philipp Zacharias, Malte C. Gather, Markus Rojahn, Oskar Nuyken, Klaus Meerholz, Angew. Chem. Int. Ed.,46,4388-4392 (2007)」、「Chei-Yen, Yu-Cheng Lin, Wen-Yi Hung, Ken-Tsung Wong, Raymond C. Kwong, Sean C. Xia, Yu-Hung Chen, Chih-I Wu, J.Mater.Chem., 19,3618-3626(2009)」、「Fei Huang, Yen-Ju Cheng, Yong Zhang, Michelle S. Liu, Alex K.-Y. Jen, J.Mater.Chem., 18,4495-4509(2008)」「Carlos A. Zuniga, Jassem Abdallah, Wojciech Haske, Yadong Zhang, Igor Coropceanu, Stephen Barlow, Bernard Kippelen, Seth R. Marder, Adv.Mater., 25,1739-1744(2013)」、「Wen-Yi Hung, Chi-Yen Lin, Tsang-Lung Cheng, Shih-Wei Yang, Atul Chaskar, Gang-Lun Fan, Ken-Tsung Wong, Teng-Chih Chao, Mei-Rurng Tseng, Organic Electronics,13,2508-2515 (2012)」等に記載の化合物が挙げられる。
2-5.有機電界発光素子における陽極
 陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。
 有機電界発光素子における陽極にはバンク(隔壁材料)を有していてもよい。湿式成膜法により有機電界発光素子を形成する場合、バンク内に各層形成用組成物または発光層形成用組成物を滴下し乾燥させることで任意の層を得ることができる。
 バンクの作製にはフォトリソグラフィ技術を用いることができる。フォトリソグラフィの利用可能なバンク材としては、無機系材料、および有機系材料を用いることができ、無機系材料としては例えば、SiNx、SiOxおよびその混合物、有機系材料としては、例えば、ポジ型レジスト材料およびネガ型レジスト材料を用いることができる。また、スパッタリング法、インクジェット法、グラビアオフセット印刷、リバースオフセット印刷、スクリーン印刷などのパターン可能な印刷法も用いることができる。その際には永久レジスト材料を用いることもできる。また、バンクは多層構造を有していてもよく、異なる種類の材料が用いられていてもよい。
 バンクに用いられる有機系材料としては、多糖類およびその誘導体、ヒドロキシルを有するエチレン性モノマーの単独重合体および共重合体、生体高分子化合物、ポリアクリロイル化合物、ポリエステル、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、ポリフェニルエーテル、ポリウレタン、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、アクリロニトリル-ブタジエン-スチレン共重合ポリマー(ABS)、シリコーン樹脂、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアセテート、ポリノルボルネン、合成ゴム、ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ化ポリマー、フルオロオレフィン-ヒドロカーボンオレフィンの共重合ポリマー、フルオロカーボンポリマー、が挙げられるが、それだけに限定されない。
 以下にバンクのフォトリソグラフィ技術での有機系材料を用いた形成方法の例を示す。電極が形成された素子基板に、発光層形成用組成物などの機能層形成用組成物に対して撥液性を示す材料を塗布し、乾燥することにより、樹脂層を形成する。この樹脂層に対して露光用マスクを用いて露光工程および現像工程を行うことにより、電極が形成された素子基板上にバンクが形成できる。この後、必要であれば、機能層形成用組成物をムラなく広げるため、バンクの表面の不純物を取り除くための、溶媒による洗浄・乾燥工程や紫外線処理等の工程を行ってもよい。
2-6 有機電界発光素子における基板
 基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
2-7.有機電界発光素子の作製方法
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、蒸着用ルツボの加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物を含む発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。
2-7-1.蒸着法
 適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に、ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 蒸着法で発光層を形成する際には、第3成分として式(ii)で表される化合物や式(2)で表される化合物を選択して用いることが好ましい。特に式(2)のR~R14の少なくとも1つが置換基である化合物を選択して用いることが好ましい。ここでいう置換基としては、上記の第3成分における好ましい置換基を採用することができる。中でも、炭素数1~24のアルキル、置換されていてもよいジアリールアミノを特に好ましく採用することができる。これらの置換基を有する化合物を用いて発光層を蒸着法で形成した場合は、置換基を有しない対応化合物、式(i)で表される化合物、式(iii)で表される化合物、あるいは式(4)で表される化合物を用いて蒸着法で形成した場合よりも、有機電界発光素子の外部量子効率が高くて特性が優れている。
 また、第3成分として式(i)または式(iii)で表される化合物を用いて蒸着法で発光層を形成する場合は、上記の第3成分における好ましい置換基を採用することが好ましく、炭素数1~24のアルキル、置換されていてもよいジアリールアミノを有する化合物を用いることが特に好ましい。これらの置換基を有する化合物を用いて発光層を蒸着法で形成した場合は、置換基を有しない対応化合物を用いて蒸着法で形成した場合よりも、有機電界発光素子の外部量子効率が高くて長寿命であり特性が優れている。
2-7-2.湿式成膜法
 発光層形成用組成物を使用する場合は、湿式成膜法を用いることによって成膜される。
 湿式成膜法は、一般的には、基板に発光層形成用組成物を塗布する塗布工程および塗布された発光層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。塗布工程の違いにより、スピンコーターを用いる手法をスピンコート法、スリットコーターを用いるスリットコート法、版を用いるグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる手法をインクジェット法、霧状に吹付ける手法をスプレー法と呼ぶ。乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。
 湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。
 一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。
2-7-3.真空蒸着法と湿式成膜法の併用
 そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機電界発光素子を作製するという方法が採用される。
 例えば、湿式成膜法を一部適用し有機電界発光素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層の湿式成膜法による成膜
(手順3)正孔輸送層の湿式成膜法による成膜
(手順4)ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
 この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料、熱活性化型遅延蛍光体およびホウ素原子を有する化合物を含む発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子が得られる。
2-7-4.インクジェットによる有機電界発光素子の作製例
 図6を参考にして、バンクを有する基板にインクジェット法を用いて有機電界発光素子を作製する方法を説明する。まず、バンク(200)は基板(110)上の電極(120)の上に設けられている。この場合、インクジェットヘッド(300)より、バンク(200)間にインクの液滴(310)を滴下し、乾燥させることで塗膜(130)を作製することができる。これを繰り返し、次の塗膜(140)、さらに発光層(150)まで作製し、真空蒸着法を用い電子輸送層、電子注入層および電極を成膜すれば、バンク材で発光部位が区切られた有機電界発光素子を作製することができる。
 このように作製した有機電界発光素子は、水分や酸素から保護するために、封止層(図示省略)によって覆うことが好ましい。例えば、外部から水分や酸素などが浸入すると、発光機能が阻害され、発光効率の低下や、発光しない暗点(ダークスポット)が発生する。また、発光寿命が短くなる可能性がある。封止層としては、例えば、水分や酸素などの透過性が低い、酸窒化シリコン(SiON)などの無機絶縁材料を用いることができる。また、透明なガラスや不透明なセラミックなどの封止基板を、有機電界発光素子が形成された素子基板に接着剤を介して貼り付けることにより、有機電界発光素子を封止してもよい。
2-8.有機電界発光素子の応用例
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどが挙げられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などが挙げられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
 マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどが挙げられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
3.発光層形成用組成物
 本発明の発光層形成用組成物は、有機電界発光素子の発光層を湿式法により形成するための組成物である。発光層形成用組成物は、第1成分として少なくとも1種のホスト化合物と、第2成分として少なくとも1種の熱活性化型遅延蛍光体と、第3成分として少なくとも1種のホウ素原子を有する化合物と、第4成分として少なくとも1種の有機溶媒を含む組成物である。ホスト化合物、熱活性化型遅延蛍光体およびホウ素原子を有する化合物については、上記の有機電界発光素子における発光層の説明にて記載した化合物を用いることができる。
3-1.有機溶媒
 本発明の発光層形成用組成物は、少なくとも1種の有機溶媒を含むことが好ましい。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該発光層形成用組成物より得られる発光層を有する有機電界発光素子の電気特性、発光特性、効率、および寿命を改善することができる。
3-1-1.有機溶媒の物性
 発光層形成用組成物に第4成分として含まれる少なくとも1種の有機溶媒の沸点は、130℃~350℃であり、140℃~300℃がより好ましく、150℃~250℃がさらに好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が350℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。良好なインクジェットの吐出性、製膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、発光層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
 本発明の発光層形成用組成物は、第1成分、第2成分および第3成分である化合物の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを第4成分として含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低いことが特に好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
 溶解度の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布製膜性改善の観点からは、第1成分、第2成分および第3成分である化合物のうち最も高いガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、、第2成分および第3成分である化合物のうち最も低いガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。
3-1-2.有機溶媒の具体例
 発光層形成用組成物に用いられる有機溶媒としては、炭化水素系溶媒、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などが挙げられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2’-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテル、ニトロベンゼン、ジメチルニトロベンゼン、アミノビフェニル、ジフェニルアミンなどが挙げられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
 有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、またはこれらの混合溶媒が好ましい。アルキルベンゼン系溶媒としてはシクロヘキシルベンゼンが好ましく、フェニルエーテル系溶媒としては3-フェノキシトルエンが好ましい。シクロヘキシルベンゼンと3-フェノキシトルエンとの混合溶媒も好ましい。このとき、両者の質量比は特に限定されないが、例えば2:8~8:2であればよく、5:5~8:2が好ましい。
3-2.任意成分
 発光層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等が挙げられる。
3-2-1.バインダー
 発光層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該発光層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
 発光層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-エチレン-スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン(登録商標)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、が挙げられるが、それだけに限定されない。
 発光層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。
3-2-2.界面活性剤
 発光層形成用組成物は、例えば、発光層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該発光層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
 界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL-245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP-341、KP-358、KP-368、KF-96-50CS、KF-50-100CS(商品名、信越化学工業(株)製)、サーフロンSC-101、サーフロンKH-40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX-218(商品名、(株)ネオス製)、EFTOP EF-351、EFTOP EF-352、EFTOP EF-601、EFTOP EF-801、EFTOP EF-802(商品名、三菱マテリアル(株)製)、メガファックF-470、メガファックF-471、メガファックF-475、メガファックR-08、メガファックF-477、メガファックF-479、メガファックF-553、メガファックF-554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオルアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩を挙げることができる。
 界面活性剤は1種で用いてもよく、2種以上を併用してもよい。
3-3.発光層形成用組成物の組成および物性
 本発明の発光層形成用組成物では、第1成分、第2成分および第3成分として、優れた溶解性、成膜性、湿式塗布性、熱的安定性、および面内配向性の少なくとも1つを満たす化合物を選択する。また、優れた溶解性、製膜性、湿式塗布性、および面内配向性の観点から、炭素数1~24のアルキル、ジアリールアミノ、炭素数5~24のシクロアルキル、炭素数6~24のアリールおよび炭素数5~24のヘテロアリールで置換されている化合物を選択することが好ましい。
 第1成分としては、m位に置換基を有するフェニレン、トリアジン、ピリジン、カルバゾール、ジベンゾフランまたはジベンゾチオフェンを分子中に有するである化合物を選択することが好ましい。第2成分としては、溶解性と成膜性の観点からは分子中にアルキルまたはシクロアルキルを有する化合物が好ましく、また、効率の観点からはオーバリティの高いより棒状の分子が好ましく、例えば、オキサジアゾール、チアジアゾールおよびトリアゾールを分子中に有する化合物が好ましく、式2PXZ-TAZを選択することが好ましい。第3成分としては、溶解性と成膜性の観点からは分子中にアルキルまたはシクロアルキルを有する化合物が好ましく、また、効率の観点からはオーバリティの高いより棒状の分子が好ましく、例えば式式(2)で表される化合物が好ましく、B2N4-0230/S-M1、B2N4-0220/S-M1、B2N4-0211/S-M1、BN2BNO-0230/S-M1、およびB2O2N2-0220/S-M1である化合物を選択することが好ましい。
 本発明の発光層形成用組成物における各成分の含有量は、特に限定されないが、第1成分の含有量は、第1成分、第2成分および第3成分の総質量に対して、好ましくは40質量%~98.999質量%であり、より好ましくは50質量%~97.99質量%であり、さらに好ましくは60質量%~94.9質量%である。第2成分の含有量は、第1成分、第2成分および第3成分の総質量に対して、1質量%~60質量%であり、より好ましくは2質量%~50質量%であり、さらに好ましくは5質量%~30質量%である。第3成分の含有量は、第1成分、第2成分および第3成分の総質量に対して、好ましくは0.001質量%~30質量%であり、より好ましくは0.01~20質量%であり、さらに好ましくは0.1~10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
 さらに本発明の発光層形成用組成物が有機溶媒を含むとき、第1成分、第2成分および第3成分の各成分の含有量は、発光層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該発光層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された発光層を有する有機電界発光素子の、良好な電気特性、発光特性、効率、寿命の観点から、決定すればよい。例えば、上記の観点から、発光層形成用組成物の第1成分、第2成分および第3成分の総質量に対して、第1成分が40~98.999質量%、第2成分が1質量%~60質量%、第3成分が0.001質量%~30質量%が好ましい。より好ましくは、発光層形成用組成物の第1成分、第2成分および第3成分の総質量に対して、第1成分が50質量%~97.99質量%、第2成分が2質量%~50質量%、第3成分が0.01質量%~20質量%である。さらに好ましくは、発光層形成用組成物の第1成分、第2成分および第3成分の総質量に対して、第1成分が60質量%~94.9質量%、第2成分が5質量%~30質量%、第3成分が0.1質量%~10質量%である。
 本発明の発光層形成用組成物における各成分の含有量は、発光層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該発光層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された発光層を有する有機電界発光素子の、良好な電気特性、発光特性、効率、寿命の観点から、決定すればよい。例えば、上記の観点から、第1成分が発光層形成用組成物の全質量に対して、0.0998質量%~4.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.0001質量%~2.0質量%、第3成分が発光層形成用組成物の全質量に対して、0.0001質量%~2.0質量%、第4成分が発光層形成用組成物の全質量に対して、90.0質量%~99.9質量%が好ましい。
 より好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.17質量%~4.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.03質量%~1.0質量%、第3成分が発光層形成用組成物の全質量に対して、0.03質量%~1.0質量%、第4成分が発光層形成用組成物の全質量に対して、93.0質量%~99.77質量%である。さらに好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.25質量%~2.5質量%、第2成分が発光層形成用組成物の全質量に対して、0.05質量%~0.5質量%、第3成分が発光層形成用組成物の全質量に対して、0.05質量%~0.5質量%、第4成分が発光層形成用組成物の全質量に対して、96.5質量%~99.7質量%である。他に好ましい態様としては、第1成分が発光層形成用組成物の全質量に対して、0.095質量%~4.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.003質量%~1.0質量%、第3成分が発光層形成用組成物の全質量に対して、0.002質量%~1.0質量%、第4成分が発光層形成用組成物の全質量に対して、92.0質量%~99.9質量%である。
 発光層形成用組成物は、上述した成分を、公知の方法で撹拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。
 発光層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該発光層形成用組成物の粘度は、25℃における粘度が0.3mPa・s~3mPa・sであることが好ましく、1mPa・s~3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。
 発光層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該発光層形成用組成物の粘度は、25℃における表面張力が20mN/m~40mN/mであることが好ましく、20mN/m~30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。
 以下、本発明を実施例によって具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 以下に、実施例で使用した化合物の合成例を示す。
1.化合物の合成
 合成例(1)
 化合物(ED1):N,N,N13,N13,5,9,11,15-オクタフェニル-5,9,11,15-テトラヒドロ-5,9,11,15-テトラアザ-19b,20b-ジボラジナフト[3,2,1-de:1’,2’,3’-jk]ペンタセン-7,13-ジアミンの合成
Figure JPOXMLDOC01-appb-C000178
[第1段]
 窒素雰囲気下、1,3-ジブロモベンゼン(25.0g、106mmol)、アニリン(20.3ml、223mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0)(Pd(dba))(971mg、1.06mmol)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP:1.98g、3.18mmol)、NaOtBu(25.5g、265mmol)およびトルエン(400ml)の入ったフラスコを110℃に加熱し、18時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をトルエンに溶解させた後、適当量を減圧留去し、ヘキサンを加え再沈殿させることで、N,N-ジフェニルベンゼン-1,3-ジアミン(16.5g、収率60%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000179
 NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=5.63(s,2H)、6.60(dd,2H)、6.74(t,1H)、6.90(t,2H)、7.06(d,4H)、7.12(t,1H)、7.24(dt,4H).
[第2段]
 窒素雰囲気下、1,3-ジブロモ-5-クロロベンゼン(8.11g、30mmol)、ジフェニルアミン(10.1g、60mmol)、Pd(dba)(550mg、0.6mmol)、2-ジシクロヘキシルフェニルホスフィノ-2’,6’-ジメトキシジフェニル(SPhos:0.493g、1.2mmol)、ナトリウム tert-ブトキシド(NaOtBu)(8.60g、90mmol)およびトルエン(300ml)の入ったフラスコを80℃に加熱し、15時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をトルエンに溶解させた後、減圧留去することで飽和溶液を調製し、ヘキサンを加え再沈殿させることで、5-クロロ-N,N,N,N-テトラフェニルベンゼン-1,3-ジアミン(5.66g、収率43%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000180
 NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=6.56(d,2H)、6.64(t,1H)、7.00(t,4H)、7.05(d,8H)、7.21(dd,8H).
[第3段]
 窒素雰囲気下、第1段で合成したN,N-ジフェニルベンゼン-1,3-ジアミン(1.34g、5.1mmol)、第2段で合成した5-クロロ-N,N,N,N-テトラフェニルベンゼン-1,3-ジアミン(4.80g、11mmol)、Pd(dba)(0.140g、0.15mmol)、トリ-tert-ブチルホスフィン(60.7mg、0.30mmol)、NaOtBu(1.47g、15mmol)およびトルエン(200ml)の入ったフラスコを110℃に加熱し、8時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をヘキサン、メタノールの順に洗浄することで、N,N’-(1,3-フェニレン)ビス(N,N,N,N,N-ペンタフェニルベンゼン-1,3,5-トリアミン(4.80g、収率87%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000181
 NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=6.38(d,4H)、6.41(t,2H)、6.58(dd,2H)、6.70(t,1H)、6.88-6.90(m,14H)、6.85(t,1H)、6.99(d,16H)、7.08-7.15(m,20H).
[第4段]
 N,N’-(1,3-フェニレン)ビス(N,N,N,N,N-ペンタフェニルベンゼン-1,3,5-トリアミン(3.24g、3.0mmol)およびオルトジクロロベンゼン(400ml)の入ったフラスコに、窒素雰囲気下、室温で、三臭化ホウ素(1.13ml、12mmol)を加えた。滴下終了後、180℃まで昇温して20時間撹拌した。その後、再び室温まで冷却して、N-ジイソプロピルエチルアミン(7.70ml、45mmol)を加え、発熱が収まるまで撹拌した。その後、60℃で減圧下、反応溶液を留去して粗生成物を得た。得られた粗生成物をアセトニトリル、メタノール、トルエンの順に洗浄し、シリカゲルカラムクロマトグラフィー(溶離液:トルエン)で精製後粗体をo-ジクロロベンゼンで2回再結晶を行い、その後1×10-4mmHgの減圧下、440℃にて昇華精製を行うことで、化合物(ED1)を1.17g得た。
Figure JPOXMLDOC01-appb-C000182
 NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=5.72(s,2H)、5.74(s,2H)、5.86(s,1H)、6.83(d,2H)、6.88-6.93(m,12H)、7.05(t,8H)、7.12-7.19(m,6H)、7.24-7.26(m,4H)、7.05(d,4H)、7.12(dd,8H)、7.12-7.19(m,6H)、7.32(d,4H)、7.38(dd,2H)、7.42(t,2H)、7.46(dd,2H)、7.47(dd,4H)、9.30(d,2H)、10.5(s,1H).
13C-NMR(101MHz,CDCl):99.5(2C+2C)、103.4(1C)、116.8(2C)、120.0(2C)、123.1(4C)、125.3(8C)、127.1(2C)、127.6(2C)、128.5(8C)、129.6(4C)、129.8(4C)、130.2(4C+2C)、130.3(4C)、135.0(2C)、142.1(2C)、142.5(2C)、143.3(1C)、146.8(4C)、147.9(2C+2C)、148.0(2C)、150.1(2C)、151.1(2C).
 合成例(2)
 化合物(1-41):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-7-メチル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000183
 化合物(1-41)は、国際公開第2015/102118号の「合成例(32)」に記載された方法に準じて合成した。
 以下、合成例(1-2)~(1-4)、(1-9)~(1-14)では、前述した合成例(1-1)と同様の方法を用い、各化合物を合成した。
 合成例(3)
 化合物(1-31):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000184
 合成例(4)
 化合物(1-53):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-7-(9H-カルバゾール-9-イル)-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000185
 合成例(5)
 化合物(1-37):3,12-ジ-t-ブチル-9-(4-(t-ブチル)フェニル)-5-(3,5-ジ-t-ブチルフェニル)-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000186
 合成例(6)
 化合物(1-46):3,12-ジ-t-ブチル-9-(4-(t-ブチル)フェニル)-5-(3,5-ジ-t-ブチルフェニル)-7-メチル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000187
 化合物(1-46)は、国際公開第2015/102118号の「合成例(32)」に記載された方法に準じて合成した。
 合成例(7)
 化合物(1-50):2,12-ジ-t-ブチル-N,N,5,9-テトラキス(4-(t-ブチル)フェニル)-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセン-7-アミンの合成
Figure JPOXMLDOC01-appb-C000188
 化合物(1-50)は、国際公開第2015/102118号の「合成例(32)」に記載された方法に準じて合成した。
 合成例(8)
 化合物(1-49):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-N,N-ジフェニル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセン-7-アミンの合成
Figure JPOXMLDOC01-appb-C000189
 化合物(1-49)は、特開2016-88927号公報の「比較合成例(1)」に記載された方法に準じて合成した。
 合成例(9)
 式(1-340)の化合物:15,15-ジメチル-N,N-ジフェニル-15H-5,9-ジオキサ-16b-ボラインデノ[1,2-b]ナフト[1,2,3-fg]アントラセン-13-アミンの合成
Figure JPOXMLDOC01-appb-C000190
 化合物(1-340)は、国際公開第2017/126443号の「合成例(4)」に記載された方法に準じて合成した。
 合成例(10)
 式(1-351)の化合物:5-([1,1’-ビフェニル]-4-イル)-15,15-ジメチル-N,N,2-トリフェニル-5H,15H-9-オキサ-5-アザ-16b-ボラインデノ[1,2-b]ナフト[1,2,3-fg]アントラセン-13-アミンの合成
Figure JPOXMLDOC01-appb-C000191
 化合物(1-351)は、国際公開第2017/126443号の「合成例(5)」に記載された方法に準じて合成した。
2.基礎物性の評価
サンプルの準備
 評価対象の化合物の吸収特性と発光特性(蛍光と燐光)を評価する際には、評価対象の化合物のみを薄膜化し評価するか、あるいは、評価対象の化合物を適切なマトリックス材料中に分散して薄膜化して評価した。
 評価対象の化合物のみを薄膜化し評価する際は、化合物をガラス基板上に厚さ30~100nmで真空蒸着してサンプルとした。
 評価対象の化合物を適切なマトリックス材料中に分散する際のマトリックス材料としては、市販のPMMA(ポリメチルメタクリレート)を用いた。本実施例では、PMMAと評価対象の化合物をトルエン中で溶解させた後、スピンコーティング法により石英製の透明支持基板(10mm×10mm)上に厚さ10nmの薄膜を形成してサンプルを作製した。サンプルの濃度は1質量%とした。
吸収特性と発光特性の評価
 サンプルの吸収スペクトルの測定は、紫外可視近赤外分光光度計((株)島津製作所、UV-2600)を用いて行った。また、サンプルの蛍光スペクトルおよび燐光スペクトルの測定は、分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて行った。
 蛍光スペクトルの測定に対しては、室温で340nm前後の適切な励起波長で励起しフォトルミネッセンスを測定した。燐光スペクトルの測定に対しては、付属の冷却ユニットを使用して、前記サンプルを液体窒素に浸した状態(温度77K)で測定した。燐光スペクトルを観測するため、光学チョッパを使用して励起光照射から測定開始までの遅れ時間を調整した。サンプルは適切な励起波長で励起しフォトルミネッセンスを測定した。
 第3成分の各化合物については、室温における吸収スペクトルのピークトップと発光スペクトルのピークトップの差からストークスシフトを求めた。
 また、絶対PL量子収率測定装置(浜松ホトニクス(株)製、C9920-02G)を用いて蛍光量子収率(PLQY)を測定した。
 さらに、直流電流を連続的に印加して発光強度が初期の50%になるまでの時間を測定し、素子寿命(LT50)を評価した。
蛍光寿命(遅延蛍光)の評価
 蛍光寿命測定装置(浜松ホトニクス(株)製、C11367-01)を用いて300Kで蛍光寿命を測定した。具体的には、適切な励起波長で測定される極大発光波長において蛍光寿命の早い発光成分と遅い発光成分を観測した。蛍光を発光する一般的な有機電界発光材料の室温における蛍光寿命測定では、熱による3重項成分の失活により、燐光に由来する3重項成分が関与する遅い発光成分が観測されることはほとんどない。評価対象の化合物において遅い発光成分が観測された場合は、励起寿命の長い3重項エネルギーが熱活性化により1重項エネルギーに移動して遅延蛍光として観測されたことを示すことになる。ここでは、遅延蛍光の蛍光寿命をTau(Delay)として測定した。
E(S,Sh)、E(T,Sh)、E(S,PT)、E(T,PT)およびΔE(ST)の算出
 一重項励起エネルギー準位E(S,Sh)は、蛍光スペクトルのピーク短波長側の肩を通る接線とベースラインとの交点における波長BSh(nm)から、E(S,Sh)=1240/BShで算出した。また、三重項励起エネルギー準位E(T,Sh)は、燐光スペクトルのピーク短波長側の肩を通る接線とベースラインとの交点における波長CSh(nm)から、E(T,Sh)=1240/CShで算出した。さらに蛍光スペクトルの極大ピーク発光波長も測定した。
 本明細書では、第1成分の一重項励起エネルギー準位をE(1,S,Sh)、第2成分の一重項励起エネルギー準位をE(2,S,Sh)、第3成分の一重項励起エネルギー準位をE(3,S,Sh)、第1成分の三重項励起エネルギー準位をE(1,T,Sh)、第2成分の三重項励起エネルギー準位をE(2,T,Sh)、第3成分の三重項励起エネルギー準位をE(3,T,Sh)と表示する。
 ΔE(ST)はE(S,Sh)とE(T,Sh)のエネルギー差である。ΔE(ST)=E(S,Sh)-E(T,Sh)で定義される。また、ΔE(ST)は、例えば、"Purely organic electroluminescent material realizing 100% conversion from electricity to light", H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Katsuaki, S. Kubo,T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.に記載の方法でも算出することができる。
 本明細書では、第1成分のΔE(ST)をΔE(1,ST,Sh)、第2成分のΔE(ST)をΔE(2,ST,Sh)、第3成分のΔE(ST)をΔE(3,ST,Sh)と表示する。
 実施例と比較例で用いた第1成分の化合物について基礎物性を測定した結果を以下の表にまとめて示す。
Figure JPOXMLDOC01-appb-T000192
 実施例と比較例で用いた第2成分の化合物について基礎物性を測定した結果を以下の表にまとめて示す。
Figure JPOXMLDOC01-appb-T000193
 実施例と比較例で用いた第3成分の化合物について基礎物性を測定した結果を以下の表にまとめて示す。表中、R-BD2は燐光スペクトルを観測できず、E(3,T,Sh)が非常に低いことが示唆された。また、表中「N.D.」は測定していないことを示す。
Figure JPOXMLDOC01-appb-T000194
Figure JPOXMLDOC01-appb-T000195
 以下の表に、主な化合物の蛍光スペクトルの極大ピーク発光波長を測定した結果を示す。
Figure JPOXMLDOC01-appb-T000196
3.有機電界発光素子の作製
 有機電界発光素子を作製し、電圧を印加して電流密度、輝度、色度および外部量子効率を測定した。作製した有機電界発光素子の構成として、まず以下の構成A(表1)を選定して評価した。構成Aは熱活性化型遅延蛍光用材料に適合した構成である。構成Aは文献(Adv. Mater. 2016, 28, 2777-2781)で示された高い効率を期待できる素子構成である。ただし、本発明の化合物の適用はこれらの構成に限定されず、各層の膜厚や構成材料は本発明の化合物の基礎物性によって適宜変更することができる。
<実施例1-1から1-3および比較例1-1から1-4>
 スパッタリングにより200nmの厚さに製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、NPD、TcTa、mCP、第1成分(mCBP)、第2成分(下の表に記載の化合物)、第3成分(ED1)およびTSPO1をそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着し、次に、TcTaを加熱して膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成した。次に、mCPを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、下の表に記載される第1成分、第2成分および第3成分を同時に加熱して膜厚20nmになるように共蒸着して発光層を形成した。第1成分、第2成分および第3成分の質量比が下の表に記載される比になるように蒸着速度を調節した。次に、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。以上の各層の蒸着速度は0.01~1nm/秒とした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機電界発光素子を得た。このとき、アルミニウムの蒸着速度は1nm~10nm/秒になるように調節した。
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
 作製した実施例1-1から1-3および比較例1-1から1-4の各有機電界発光素子について、ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅および外部量子効率を測定した。結果を下の表に示す。なお、下の表におけるE(S,Sh)の関係およびE(T,Sh)の関係は、第1成分、第2成分および第3成分のエネルギー準位の大小関係を示している。例えば、E(S,Sh)の関係において「1>2>3」と表示されているものは、E(1,S,Sh)>E(2,S,Sh)>E(3,S,Sh)であることを意味している。
Figure JPOXMLDOC01-appb-T000201
 発光色は、実施例1-1から1-3、比較例1-3および比較例1-4が深い青色(ディープブルー)であり、比較例1-1が空色(スカイブルー)から緑がかった青色(グリニッシュブルー)であり、比較例1-2が青色(ブルー)であった。
 実施例1-1から1-3と比較例1-1から1-4を比較すると、E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係を満たす第1成分、第2成分および第3成分を組み合わせて発光層に用いたときに、色味が良好で半値幅が狭く、外部量子収率が高くなることが確認された。発光層に第3成分を用いなかったときは半値幅が広くなって外部量子効率が低下し、発光層に第2成分を用いなかった場合は外部量子効率が低下する結果となった。また、発光層に用いる第2成分の構造により与える特性は異なり、D-A-D型の構造を有する2PXZ-TAZを用いた実施例1-1が最も高い外部量子効率を与えることが確認された。
<実施例1-4から1-11および比較例1-5>
 下の表に記載される材料を用いた点を変更し、その他は実施例1-1と同じ手順により、実施例1-4から1-11および比較例1-5の有機電界発光素子を製造した。実施例1-4、比較例1-5、実施例1-5では第3成分の化合物を替え、実施例1-6から1-11では第1成分の化合物を替えている。
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
 作製した実施例1-4から1-11および比較例1-5の各有機電界発光素子について、実施例1-1と同様にITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅および外部量子効率を測定した。結果を下の表に示す。
Figure JPOXMLDOC01-appb-T000205
 実施例1-4から1-11および比較例1-5では、いずれもE(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係式を満たす第1成分、第2成分および第3成分を組み合わせて発光層に用いているが、第3成分としてホウ素原子を有さない化合物であるR-BD2を用いた比較例1-5よりも、第3成分としてホウ素原子を有する化合物を用いた実施例1-4から1-11の方が半値幅が小さくて外部量子効率が高かった。
 また、式(i)の化合物であるRD-3を第3成分として用いた実施例1-5よりも、式(i)の二量体に相当する式(ii)の化合物であるRD-1やED1を第3成分として用いた実施例1-4および1-6から1-11の方が半値幅が小さくて、より好ましい特性を示した。また、実施例の中では、E(1,T,Sh)>E(3,T,Sh)>E(2,T,Sh)である実施例1-4および1-6から1-11の方が、E(1,T,Sh)>E(2,T,Sh)>E(3,T,Sh)である実施例1-5よりも、半値幅が小さくて外部量子効率も同等以上であった。特に、ジアリールアミノ基で置換された構造を有するED1を第3成分として用いた場合には、特に半値幅が小さくて外部量子効率が高く、有機電界発光素子としての特性が一段と優れたものであることが確認された。
<実施例1-12から1-15および比較例1-6>
 下の表に記載される材料を用いた点を変更し、その他は実施例1-1と同じ手順により、実施例1-4から1-11および比較例1-5の有機電界発光素子を製造した。これらの具体例では、第2成分の化合物を替えている。
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-C000207
 作製した実施例1-12から1-15および比較例1-6の各有機電界発光素子について、実施例1-1と同様にITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅および外部量子効率を測定した。結果を下の表に示す。
Figure JPOXMLDOC01-appb-T000208
 E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係を満たす第1成分、第2成分および第3成分を組み合わせて発光層に用いた実施例1-12から1-15が、E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係を満たさない比較例1-6よりも半値幅が狭く、外部量子収率が高かった。また、実施例1-12から1-15の結果は、第2成分の種類を替えても、良好な特性が維持されることを示している。
<実施例1-16から1-26>
 下の表に記載される材料を用いて、電子輸送層を厚み10nmの電子輸送層1と厚み20nmの電子輸送層2の2層形成して構成Bとした点を変更し、その他は実施例1-1と同じ手順により、実施例1-16から1-26の有機電界発光素子を製造した。実施例1-23の電子輸送層2は、BPy-TP2およびLiqを加熱してそれぞれの比が質量比で7:3になるように膜厚20nmに蒸着することにより形成した。また、実施例1-24の電子輸送層2は、SF3-TRZおよびLiqを加熱してそれぞれの比が質量比で7:3になるように膜厚20nmに蒸着することにより形成した。
Figure JPOXMLDOC01-appb-T000209
Figure JPOXMLDOC01-appb-C000210
 作製した実施例1-16から1-26の各有機電界発光素子について、実施例1-1と同様にITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅、外部量子効率を測定し、さらに素子寿命(LT50)も測定した。結果を下の表に示す。
Figure JPOXMLDOC01-appb-T000211
 実施例1-16から1-26において、電子輸送層を2層形成した有機電界発光素子においても良好な特性を示すことが確認された。また、いずれの有機電界発光素子も十分な素子寿命を有することが確認された。
<実施例1-27から1-55および比較例1-7>
 下の表に記載される材料を用いた点を変更し、その他は実施例1-14と同じ手順により、実施例1-27から1-55および比較例1-7の構成Bの有機電界発光素子を製造した。実施例1-27から1-55では、式(ii)で表される多様な化合物を第3成分として用いて評価した。
Figure JPOXMLDOC01-appb-T000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
 作製した実施例1-27から1-55と比較例1-7の各有機電界発光素子について、実施例1-16と同様にITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅、外部量子効率、素子寿命(LT50)を測定した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000217
  実施例1-27から1-55および比較例1-7では、いずれもE(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)を満たす第1成分、第2成分および第3成分を組み合わせて発光層に用いているが、第3成分としてホウ素原子を有さない化合物であるR-BD2を用いた比較例1-7よりも、第3成分としてホウ素原子を有する化合物を用いた実施例1-27から1-55の方が半値幅が小さくて外部量子効率が高く素子寿命も長かった。
 実施例1-27から1-38および1-40から1-55は、いずれもE(1,T,Sh)>E(3,T,Sh)≧E(2,T,Sh)の関係式を満たすため、素子寿命が長く外部量子効率も高かった。一方、E(1,T,Sh)>E(2,T,Sh)>E(3,T,Sh)である有機電界発光素子のうち、実施例1-39はΔE(3,ST,Sh)が0.08eVで十分に低いことから、半値幅が小さく外部量子効率が高かった。一方、比較例1-7は、第3成分であるR-BD2からの燐光発光が認められず、ΔE(3,ST,Sh)が大きいことから、半値幅が大きくて外部量子効率が低かった。
 実施例1-27から1-55は、いずれも式(ii)で表される構造を有する。式(i)の骨格が二量化した多量体骨格を有するとともに、骨格が対称形を有していることから、良好な特性を示すものと考えられる。
<実施例1-56から1-72および比較例1-8>
 下の表に記載される材料を用いた点を変更し、その他は実施例1-14と同じ手順により、実施例1-56から1-72および比較例1-8の構成Bの有機電界発光素子を製造した。実施例1-56から1-72では、式(i)で表される多様な化合物を第3成分として用いて評価した。
Figure JPOXMLDOC01-appb-T000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
 作製した実施例1-56から1-72と比較例1-8の各有機電界発光素子について、実施例1-16と同様にITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、蛍光ピーク波長、半値幅、外部量子効率、素子寿命(LT50)を測定した。E(3,T,Sh)が0.3eV未満であって、ΔE(2,ST,Sh)がΔE(3,ST,Sh)よりも大きい実施例1-56から1-66および比較例1-8の測定結果を以下の表に示す。また、E(3,T,Sh)が0.3eV以上であって、ΔE(3,ST,Sh)がΔE(2,ST,Sh)よりも大きい実施例1-67から1-72の測定結果について、後掲の表に示す。
Figure JPOXMLDOC01-appb-T000221
 その結果、E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係を満たす第1成分、第2成分および第3成分を組み合わせて発光層に用いた実施例1-56から1-72の素子寿命(LT50)が長い反面、E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)の関係を満たさない比較例1-8の素子寿命(LT50)が短いことが確認された。
 実施例1-56から1-72の半値幅は22~30nmの範囲内であり、外部量子効率は12.0~16.8%の範囲内であり、素子寿命(LT50)は82~116時間の範囲内であった。いずれも良好な特性ではあるが、上記の実施例1-27から1-55の方がさらに良好な特性を示した。このことは、式(i)で表される構造を有する化合物を第3成分として用いる場合よりも、式(ii)のように式(i)が多量化した構造を有する化合物を第3化合物として用いる方が、特性が一段と良好になることを示している。
 この傾向は、実施例1-27から1-72で用いた第3成分の化合物を基本骨格の構造別に分類して、各基本骨格ごとに半値幅、外部量子効率および素子寿命(LT50)の各データを平均してグラフにした図8からも明らかである。図8では、B2N2O2、B2N4、B2O2N2、BN2、BN2/BNO、BN2/BON、BONf、BOnN、BN2、BONの各基本骨格を有する化合物別に半値幅、外部量子効率および素子寿命(LT50)を平均してグラフ化した結果を順に示している。基本骨格を示すB2N2O2、B2N4、B2O2N2、BN2、BN2/BNO、BN2/BON、BONf、BOnN、BN2、BONは、本明細書で参照している第3成分の各化合物の略号の一部として含まれている。図7には、これらの各基本骨格を有する化合物のTau(Delay)とストークスシフトを平均してグラフ化した結果も示す。図7と図8を見ると、Tau(Delay)が小さいものが素子寿命(LT50)が長く、また、半値幅が狭くて、外部量子効率も高い傾向があることがうかがえる。式(ii)で表される化合物は式(i)で表される化合物よりもTau(Delay)が小さく、式(ii)で表される化合物を第3成分として用いた有機電界発光素子の特性がより優れたものになっている。式(ii)で表される化合物の中でも、特にB2N4の基本骨格を有する化合物が好ましい。
 Tau(Delay)が小さい式(ii)で表される化合物を第3成分として用いた実施例1-27から1-55の測定結果に基づいて、基本骨格に置換する置換基の種類と半値幅、外部量子効率および素子寿命(LT50)の関係をグラフ化して図10に示した。図9には、置換基ごとのTau(Delay)とストークスシフトの平均値のグラフを示す。図9および図10では、カルバゾリル(Cz)、ジフェニルアミノ(DPA)、ジフェニルアミノとフッ素原子の両方(DPA&F)、フェニル(Ph)、tert-ブチル(tBu)で置換された化合物に分けてグラフ化している。なお、ジフェニルアミノ(DPA)とフェニル(Ph)はアルキル置換されているものを含む。図9および図10より、ジフェニルアミノ(DPA)で置換されている化合物がTau(Delay)もストークスシフトもともに小さくて、素子寿命(LT50)が長く、また、半値幅が狭くて、外部量子効率も高い。ただし、ジフェニルアミノとともにフッ素原子でも置換されたDPA&Fは、素子寿命(LT50)がジフェニルアミノ単独で置換された場合ほど長くない。置換基としてはジフェニルアミノ(DPA)が素子特性の改善に特に優れた効果を示し、カルバゾリル(Cz)、フェニル(Ph)、tert-ブチル(tBu)も良好な効果を示す。
 図11は、式(i)で表される化合物を第3成分として用いた実施例1-56から1-66の測定結果に基づいて、基本骨格に置換する置換基の種類とストークスシフトの平均値および半値幅の平均値との関係をグラフ化したものである。フェニル(Ph)で置換されている化合物のストークスシフトが小さくて、半値幅が狭いことが確認された。特にオルト位がアルキル置換されたフェニル基の効果が優れていた。
 図7によると、式(i)で表される化合物であるBONfとBOnNのストークスシフトが小さいことが示されている。BONfとBOnNはいずれもΔE(3,ST,Sh)が0.3eV超でやや大きいため、これらの化合物を第3成分として用いた実施例1-67から1-72はE(1,T,Sh)>E(2,T,Sh)>E(3,T,Sh)の関係にあり、また、ΔE(3,ST,Sh)>ΔE(2,ST,Sh)の関係にある。このような実施例1-67から1-72について、第3成分のストークスシフトと素子特性の評価結果を以下の表に示す。下の表の結果は、ストークスシフトが小さい方が、素子寿命(LT50)が長くなる傾向を示している。このことから、E(1,T,Sh)>E(2,T,Sh)>E(3,T,Sh)の関係にある場合であっても、第3成分としてストークスシフトが小さい化合物を用いれば素子特性を良好になることが示された。
Figure JPOXMLDOC01-appb-T000222
4.発光層形成用組成物
 次に、本発明をさらに詳細に説明するために、本発明の発光層形成用組成物の具体例とその評価結果を示すが、本発明はこれらの具体例に限定されない。
<実施例2-1から2-32>
 下の表に示す第1成分、第2成分、第3成分および第4成分を表に記載される比率で混合して攪拌することにより、発光層形成用組成物を調製した。表中、第4成分として用いているTolはトルエン、DHNpはデカヒドロナフタレン、3PxTは3-フェノキシトルエン、c6Bはシクロヘキシルベンゼン、Anisはアニソール、Xylはキシレン(混合物)、1MNpは1-メチルナフタレン、8Bはn-オクチルベンゼン、DPEはジフェニルエーテル、4FAnisは4-フルオロアニソールである。
Figure JPOXMLDOC01-appb-T000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
 調製した各発光層形成用組成物について、以下の評価を行った。
(1)溶解性評価
 インクジェット塗布用インク組成物としての有用性を評価するために、各発光層形成用組成物の濁りおよび沈殿を確認して溶解性を評価した。濁りおよび沈殿のないものを「OK」、濁りまたは沈殿が起きたものを「NG」とした。
(2)製膜性の評価
 溶解性の評価において「OK」であった発光層形成用組成物に関して、下記の手順でスピンコート成膜またはインクジェット印刷後に得られた膜の製膜性を評価した。製膜後に、膜に、ピンホールまたは析出またはムラのあるものを「×」、ピンホール、化合物の析出およびムラのないものを「○」、ピンホール、化合物の析出およびムラがなく、平滑性が高いもの(Ra<5nm)を「◎」で示した。
(スピンコート)
 厚み0.5mm、サイズ28×26mmの清浄なガラス基板に、照射エネルギー1000mJ/cm(低圧水銀灯(254ナノメートル))を照射することでUV-O処理を行った。次いで、0.3~0.6mLのインク組成物をガラス上に滴下し、スピンコート(スロープ、5秒間→500~5000rpm、10秒間→スロープ、5秒間)を行った。さらに、120℃のホットプレート上で10分間乾燥させた。
(インクジェット)
 インクジェットを用いて、100ppiのピクセル内に吐出し、100℃で乾燥させた。
 インクジェットの吐出安定性についても、インクジェット吐出開始直後と24時間連続運転後にそれぞれ評価を行った。吐出安定性が不良であるものを「×」、良好であるものを「○」、極めて良好であるものを「◎」とした。
 評価結果は下の表に示すとおりであった。なお、実施例2-27、2-31、2-32、2-33については、粘度と表面張力も併せて掲載した。
Figure JPOXMLDOC01-appb-T000226
 ホウ素原子を有さない化合物R-BD2を第3成分として用いた比較例2-2は溶解性が悪く、その後の評価を行うことができなかった。また、ホウ素原子を有する化合物であっても、分子量が大きくて無置換のR-BD1を用いた比較例2-1は溶解性が悪かった。一方、ホウ素原子を有する化合物であって、分子量が小さい無置換のR-BD3や、分子量が大きくても置換基を有する化合物を用いた実施例2-1から2-33は、溶解性、製膜性およびインクジェット吐出安定性がいずれも良好であった。
5.発光層形成用組成物を用いて作製した有機電界発光素子
 次に、有機層を塗布形成して得られる有機電界発光素子について説明する。発光層の形成する際には、発光層形成用組成物を使用した。
XLP-101の合成
 まず、特開2018-61028号公報に記載の方法に従い、下記の反応により高分子正孔輸送化合物であるXLP-101を合成した。M4の隣にM5またはM6が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。なお、下記式において、Bpinはピナコラートボリルである。
Figure JPOXMLDOC01-appb-C000227
PEDOT:PSS溶液
 市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、PEDOT:PSSの水分散液、Heraeus Holdings社製)を用いた。
Figure JPOXMLDOC01-appb-C000228
OTPD溶液の調製
 OTPD(LT-N159、Luminescence Technology Corp社製)およびIK-2(光カチオン重合開始剤、サンアプロ社製)をトルエンに溶解させ、OTPD濃度0.7質量%、IK-2濃度0.007質量%のOTPD溶液を調製した。
Figure JPOXMLDOC01-appb-C000229
XLP-101溶液の調製
 キシレンにXLP-101を0.6質量%の濃度で溶解させ、0.6質量%XLP-101溶液を調製した。
PCz溶液の調製
 PCz(ポリビニルカルバゾール)をジクロロベンゼンに溶解させ、0.7質量%PCz溶液を調製した。
Figure JPOXMLDOC01-appb-C000230
<実施例3-1>
 ITOが150nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmのPEDOT:PSS膜を成膜した(正孔注入層)。次いで、OTPD溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、露光機で露光強度100mJ/cmで露光し、100℃のホットプレート上で1時間焼成することで、溶液に不溶な膜厚30nmのOTPD膜を成膜した(正孔輸送層)。次いで、実施例2-19で調製した発光層形成用組成物をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜した。
 作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、2CzBNおよびBPy-TP2を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着した。真空槽を5×10-4Paまで減圧した後、2CzBNを加熱して膜厚10nmになるように蒸着して電子輸送層1を形成した。次いで、BPy-TP2を加熱して膜厚20nmになるように蒸着して電子輸送層2を形成した。電子輸送層を形成する際の蒸着速度は1nm/秒とした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成した。このようにして有機電界発光素子を得た。
<実施例3-2>
 実施例3-1と同様の方法で有機電界発光素子を得た。なお、正孔輸送層は、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した。
<実施例3-3>
 実施例2-19で調製した発光層形成用組成物の替わりに実施例2-2で調製した発光層形成用組成物を用いた以外、実施例3-1と同様の手順で有機電界発光素子を作製した。なお、正孔輸送層は、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した。
<実施例3-4>
 実施例2-19で調製した発光層形成用組成物の替わりに実施例2-18で調製した発光層形成用組成物を用いた以外、実施例3-1と同様の手順で有機電界発光素子を作製した。なお、正孔輸送層は、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した。
<比較例3-1>
 実施例2-18で調製した発光層形成用組成物の替わりに比較例2-2で調製した発光層形成用組成物を用いた以外、実施例3-4と同様の手順で有機電界発光素子を作製した。
<実施例3-5>
 実施例3-1と同様の方法で有機電界発光素子を得た。なお、正孔輸送層は、PCz溶液をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した。
Figure JPOXMLDOC01-appb-T000231
 本発明の発光層形成用組成物を用いて有機電界発光素子を製造できることが確認された。ホウ素を含む化合物であるR-BD3は溶解性が優れており、湿式成膜法を用いて作製された有機電界発光素子において発光が見られ、ピーク波長が青色であり、半値幅も小さく、色味が優れていた。また、実施例3-2とおよび実施例3-4を比較すると置換基を有するエミッティングドーパントを用いた素子は外部量子効率が優れていた。
6.高分子化合物を含む組成物
 本発明の発光層形成用組成物は高分子化合物や架橋性の化合物を含んでもよい。また、本発明の有機電界発光素子は高分子化合物や架橋性の化合物を含んでもよい。
<実施例4-1>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第3成分であるホウ素原子を有する構造を含む高分子を合成することができる。
Figure JPOXMLDOC01-appb-C000232
 上記ポリマーは第1成分および第3成分を分子中に含むポリマーである。第2成分である熱活性化型遅延蛍光体を加えると本発明の発光層形成用組成物である。
<実施例4-2>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第2成分である熱活性化型遅延蛍光体の構造を含む高分子を合成することができる。
Figure JPOXMLDOC01-appb-C000233
 上記ポリマーは第1成分および第2成分を分子中に含むポリマーである。第3成分であるホウ素原子を有する化合物を加えると本発明の発光層形成用組成物である。
<実施例4-3>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第2成分である熱活性化型遅延蛍光体と第3成分であるホウ素原子を有する構造を含む高分子を合成することができる。
Figure JPOXMLDOC01-appb-C000234
<実施例4-4>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第3成分であるホウ素原子を有する構造を含む高分子を合成することができる。第2成分である熱活性化型遅延蛍光体を加えると本発明の発光層形成用組成物である。
Figure JPOXMLDOC01-appb-C000235
<実施例4-5>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第3成分であるホウ素原子を有する構造を含む高分子を合成することができる。第2成分である熱活性化型遅延蛍光体を加えると本発明の発光層形成用組成物である。
Figure JPOXMLDOC01-appb-C000236
 なお、ポリマーに加える第1成分、第2成分または第3成分には、本発明で第1成分、第2成分または第3成分として用いることができる単分子を採用することができる。
 100 有機電界発光素子
 101 基板
 102 陽極
 103 正孔注入層
 104 正孔輸送層
 105 発光層
 106 電子輸送層
 107 電子注入層
 108 陰極

Claims (42)

  1.  発光層を有する有機電界発光素子であって、前記発光層が、
     第1成分として、少なくとも1種のホスト化合物と、
     第2成分として、少なくとも1種の熱活性化型遅延蛍光体と、
     第3成分として、少なくとも1種のホウ素原子を有する化合物とを含み、
    前記第1成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)、前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)としたとき、以下の関係式(1)を満たし、
     前記第1成分は、前記ホスト化合物の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよく、
     前記第2成分は、前記熱活性化型遅延蛍光体の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよく、
     前記第3成分は、前記ホウ素原子を有する化合物の水素原子2個が脱離した構造を繰り返し単位とする高分子化合物として含まれていてもよい、
    有機電界発光素子。
     関係式(1): E(1,S,Sh)≧E(2,S,Sh)≧E(3,S,Sh)
  2.  前記第3成分として、下記式(i)、(ii)および(iii)のいずれかで表される化合物、および下記式(i)で表される構造を複数有する多量体化合物の少なくとも1つを含む、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(i)中、
     A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
     XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
     式(i)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(ii)中、
     A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     YはB(ホウ素)であり、
     X、X、XおよびXは、それぞれ独立して、>O、>N-R、>CR、>Sまたは>Seであり、前記>N-RのRおよび>CRのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたは置換されていてもよいアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環、C環およびD環から選択される少なくとも1つと結合していてもよく、
     RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、
     式(ii)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(iii)中、
     A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRはアリールまたはアルキルであり、
     X、XおよびXは、それぞれ独立して、O、N-R、>CR、SまたはSeであり、前記N-RのRおよび>CRのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されてもよいシクロアルキルまたはアルキルであり、また、前記N-RのRは連結基または単結合により前記A環、B環およびC環から選択される少なくとも1つと結合していてもよく、そして、
     式(iii)で表される化合物または構造における少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されていてもよい。)
  3.  前記第3成分として、下記式(1)、(2)、(3)および(4)のいずれかで表される化合物を少なくとも1つ含む、請求項1または2に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(1)中、
      R、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     ただし、XおよびXは、同時に>CRになることはなく、
    そして、
     式(1)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (上記式(2)中、
     R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、
     YはB(ホウ素)であり、
     X、X、XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキルまたは炭素数1~6のアルキルであり、また、前記>N-RのRおよび>CRのRは、-O-、-S-、-C(-R)-または単結合により前記a環、b環、c環およびd環から選択される少なくとも1つと結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキルであり、
     ただし、X、X、X、およびXは、同時に>CRになることはなく、
    そして、
     式(2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (上記式(3)中、
      R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     X、XおよびXは、それぞれ独立して、>O、>N-R、または>CRであり、前記>N-RのRおよび>CR のRはアリール、ヘテロアリール、シクロアルキルまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     ただし、X、X、およびXは、同時に>CRになることはなく、
    そして、
     式(3)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000007
    (上記式(4)中、
     R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、また、R~R、R~R、R~R10およびR11~R14のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシおよびアリールオキシから選択される少なくとも1つで置換されていてもよく、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     Xは、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CR のRはアリール、ヘテロアリールまたはアルキルであり、これらはアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     Lは、単結合、>CR、>O、>Sまたは>N-Rであり、前記>CRおよび>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらはさらにアリール、ヘテロアリールおよびアルキルから選択される少なくとも1つで置換されていてもよく、
     ただし、XおよびLは、同時に>CRになることはなく、
    そして、
     式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
  4.  前記第3成分として、前記式(1)、(2)および(4)のいずれかで表される化合物を少なくとも1つを含み、
     前記式(1)において、XおよびXが、それぞれ独立して、>Oまたは>N-Rであり、
     前記式(2)において、X、X、XおよびXが、それぞれ独立して、>Oまたは>N-Rであり、
     前記式(4)において、Xが、>Oおよび>N-Rであり、Lが、単結合である、
     請求項3に記載の有機電界発光素子。
  5.  前記第3成分として、前記式(1)、(2)、(3)および(4)のいずれかで表される化合物を少なくとも1つを含み、その化合物に存在する環を構成する原子が、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルから選択される少なくとも1つで置換されている、請求項3または4に記載の有機電界発光素子。
  6.  前記第3成分として、前記式(2)で表される化合物を少なくとも1つを含み、その化合物に存在する環を構成する原子が、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオおよびアルキル置換シリルから選択される少なくとも1つで置換され、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよい、請求項5に記載の有機電界発光素子。
  7.  前記第3成分が、下記式で表される部分構造を含む、請求項1~6のいずれか一項に記載の有機電界発光素子。ただし、前記部分構造における水素は、それぞれ独立して、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されてもよく、これらはさらにアリール、ヘテロアリール、シクロアルキルおよびアルキルから選択される少なくとも1つで置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
  8.  前記式(1)~(4)のいずれかで表される化合物が、以下に記載のいずれかの部分構造を含む、請求項3~6のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000011
    (上記部分構造式中、
     Meはメチルを表し、tBuはt-ブチルを表し、波線は結合位置を表す。
     ただし、上記部分構造式における水素は、
     それぞれ独立して、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、前記アリールにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、前記ヘテロアリールにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、前記ジアリールアミノにおける水素はさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよい。)
  9.  前記式(1)~(4)のいずれかで表される化合物が、sp炭素、ホウ素原子に対してm位またはp位に結合するsp炭素原子、または、ホウ素に対してp位に置換する窒素原子、をいずれか1つ有する、請求項3~8のいずれか一項に記載の有機電界発光素子。
  10.  前記式(2)で表される化合物が、以下の化合物である、請求項3に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000012
  11.  前記式(2)で表される化合物が、以下の化合物である、請求項4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000013
  12.  前記第1成分が、部分構造として、カルバゾールおよびフランから選択される少なくとも一つを有する化合物である、請求項1~11のいずれか一項に記載の有機電界発光素子。
  13.  前記第1成分が、下記式(H1)、(H2)および(H3)のいずれかで表される化合物を少なくとも一つ含有する、請求項1~12のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000014
    (上記式(H1)、(H2)および(H3)中、Lは炭素数6~24のアリーレン、ヘテロアリーレン、ヘテロアリーレンアリーレンまたはアリーレンヘテロアリーレンアリーレンであり、
     上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
  14.  前記第2成分が、部分構造として、カルバゾール、フェノキサジン、アクリジン、トリアジン、ピリミジン、ピラジン、チオキサンテン、ベンゾニトリル、フタロニトリル、イソフタロニトリル、ジフェニルスルホン、トリアゾール、オキサジアゾール、チアジアゾールおよびベンゾフェノンから選択される少なくとも一つを有する、請求項1~13のいずれか一項に記載の有機電界発光素子。
  15.  前記第2成分が、下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物を少なくとも一つ含有する、請求項1~14のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000015
    (上記式(AD1)、(AD2)および(AD3)中、
     Mは、それぞれ独立して、単結合、-O-、>N-Arまたは>CArであり、
     Jは、それぞれ独立して、炭素数6~18のアリーレンであり、前記アリーレンは、フェニル、炭素数1~6のアルキルおよび炭素数3~12のシクロアルキルから選択される少なくとも1つで置換されてもよく、
     Qは、それぞれ独立して、=C(-H)-または=N-であり、
     Arは、それぞれ独立して、水素、炭素数6~18のアリール、炭素数6~18のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、前記アリールおよびヘテロアリーレンにおける少なくとも1つの水素は、フェニル、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されてもよく、
     mは、1または2であり、
     nは、2~(6-m)の整数であり、
     上記各式で表される化合物における少なくとも1つの水素は、ハロゲンまたは重水素で置換されていてもよい。)
  16.  前記第2成分が、下記式(DAD1)で表される化合物を少なくとも一つ含有する、請求項1~14のいずれか一項に記載の有機電界発光素子。
       (D-L)n-A                   (DAD1)
    (上記式(DAD1)中、Dはドナー性基であり、Lは単結合または共役連結基であり、Aはアクセプター性基であり、nは2以上であってAが置換しうる最大数以下である整数である。)
  17.  前記第2成分が、下記式(DAD2)で表される化合物を少なくとも一つ含有する、請求項16に記載の有機電界発光素子。
        D-L-A-L-D               (DAD2)
    (上記式(DAD2)中、DおよびDはそれぞれ独立してドナー性基であり、LおよびLはそれぞれ独立しては単結合または共役連結基であり、Aはアクセプター性基である。)
  18.  前記式(AD1)、(AD2)および(AD3)において、
     Mは、それぞれ独立して、単結合、-O-または>N-Arであり、
     Jは、それぞれ独立して、フェニレンであり、前記フェニレンは、炭素数1~4のアルキルで置換されてもよく、
     Qは、それぞれ独立して、=Nーであり、
     Arは、それぞれ独立して、水素またはフェニルであり、前記フェニルは、フェニル、炭素数1~4のアルキルで置換されてもよく、
     mは、1または2であり、
     nは、4~(6-m)の整数である、
     請求項17に記載の有機電界発光素子。
  19.  前記第2成分の逆項間交差速度が、10-1以上である、請求項1~18のいずれか一項に記載の有機電界発光素子。
  20.  前記第3成分の遅延蛍光寿命が、0.05μsec~40μsecである、請求項1~19のいずれか一項に記載の有機電界発光素子。
  21.  前記第3成分の遅延蛍光寿命が、0.05μsec~20μsecである、請求項1~19のいずれか一項に記載の有機電界発光素子。
  22.  前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、14nm以下である、請求項1~21のいずれか一項に記載の有機電界発光素子。
  23.  前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、10nm以下である、請求項1~21のいずれか一項に記載の有機電界発光素子。
  24.  前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,Sh)およびΔE(3,ST,Sh))が以下の関係にある、請求項1~23のいずれか一項に記載の有機電界発光素子。
     ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.50 eV
     ΔE(3,ST,Sh)=E(3,S,Sh)ーE(3,T,Sh)≦ 0.20 eV
  25.  前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,Sh)およびΔE(3,ST,Sh))が以下の関係にある、請求項1~24のいずれか一項に記載の有機電界発光素子。
     ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)
     ΔE(3,ST,Sh)=E(3,S,Sh)ーE(3,T,Sh)
     ΔE(2,ST,Sh)≧ ΔE(3,ST,Sh)
  26.  前記第2成分の一重項三重項エネルギー差(ΔE(2,ST,Sh))が以下の関係にある、請求項1~25のいずれか一項に記載の有機電界発光素子。
     ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.30 eV
  27.  前記第2成分の一重項三重項エネルギー差(ΔE(2,ST,Sh))が以下の関係にある、請求項1~26のいずれか一項に記載の有機電界発光素子。
     ΔE(2,ST,Sh)=E(2,S,Sh)ーE(2,T,Sh)≦ 0.15 eV
  28.  前記第2成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、前記第2成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、前記第3成分の蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、前記第3成分の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)としたとき、これらが以下の関係にある、請求項1~27のいずれか一項に記載の有機電界発光素子。
     E(2,S,Sh)≧E(3,S,Sh)
     E(2,T,Sh)≦E(3,T,Sh)
  29.  前記第3成分の蛍光スペクトルのピークトップおよび吸収スペクトルのピークトップの差より求められるストークスシフトが、10nm以下である、請求項1~28のいずれか一項に記載の有機電界発光素子。
  30.  前記第3成分が、前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物として含まれている、請求項1~29のいずれか一項に記載の有機電界発光素子。
  31.  前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物が、前記ホスト化合物の水素原子2個が脱離した基も繰り返し単位として有する、請求項30に記載の有機電界発光素子。
  32.  前記ホウ素原子を有する化合物の水素原子2個が脱離した基を繰り返し単位とする高分子化合物が、前記遅延蛍光体の水素原子2個が脱離した基も繰り返し単位として有する、請求項30または31に記載の有機電界発光素子。
  33.  請求項1~32のいずれか一項に記載の有機電界発光素子を備えた表示装置。
  34.  請求項1~32のいずれか1項に記載の有機電界発光素子を備えた照明装置。
  35.  有機電界発光素子の発光層を塗布形成するための発光層形成用組成物であって、
     請求項1~32のいずれか一項に記載の第1成分、第2成分および第3成分に加えて、第4成分として、少なくとも1種の有機溶媒を含む、発光層形成用組成物(ただし、前記第3成分は下記化合物ではない。)。
    Figure JPOXMLDOC01-appb-C000016
  36.  前記第4成分における少なくとも1種の有機溶媒の沸点が130℃~350℃である、請求項35に記載の発光層形成用組成物。
  37.  前記第4成分が、前記第1成分、前記第2成分、および前記第3成分である化合物の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、前記良溶媒(GS)の沸点(BPGS)が前記貧溶媒(PS)の沸点(BPPS)よりも低い、請求項35または36に記載の発光層形成用組成物。
  38.  前記第1成分が発光層形成用組成物の全質量に対して0.0998質量%~4.0質量%であり、
     前記第2成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
     前記第3成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
     前記第4成分が発光層形成用組成物の全質量に対して90.0質量%~99.9質量%である、
     請求項35~37のいずれか一項に記載の発光層形成用組成物。
  39.  請求項35~38のいずれか一項に記載の発光層形成用組成物を用いて形成される発光層を有する有機電界発光素子。
  40.  請求項2に記載の式(ii)で表される化合物の少なくとも1つの水素が、下記部分構造(B)、塩素、臭素、またはヨウ素により置換された化合物。
    Figure JPOXMLDOC01-appb-C000017
    (上記部分構造(B)中、R40およびR41は、合計炭素数2~10の結合していてもよいアルキルであり、波線部は他の構造との結合部位である。)
  41.  ホウ素原子を有する化合物から水素原子2個を脱離した構造を含む繰り返し単位、熱活性化型遅延蛍光体から水素原子2個を脱離した構造を含む繰り返し単位、およびホスト化合物から水素原子2個を脱離した構造を含む繰り返し単位から選択される少なくとも2種の繰り返し単位を含む高分子化合物。
  42.  ホウ素原子を有する化合物から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種、熱活性化型遅延蛍光体から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種、およびホスト化合物から水素原子2個を脱離した構造を含む繰り返し単位の少なくとも1種を含む高分子化合物。
PCT/JP2019/033069 2018-08-23 2019-08-23 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物 WO2020040298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020538493A JP7388658B2 (ja) 2018-08-23 2019-08-23 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
KR1020217008660A KR20210050537A (ko) 2018-08-23 2019-08-23 유기전계 발광소자, 표시장치, 조명장치, 발광층형성용 조성물, 및 화합물
CN201980066048.3A CN113169285A (zh) 2018-08-23 2019-08-23 有机电致发光元件、显示装置、照明装置、发光层形成用组合物和化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018156720 2018-08-23
JP2018-156720 2018-08-23
JP2018215107 2018-11-15
JP2018-215107 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020040298A1 true WO2020040298A1 (ja) 2020-02-27

Family

ID=69593198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033069 WO2020040298A1 (ja) 2018-08-23 2019-08-23 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物

Country Status (4)

Country Link
JP (1) JP7388658B2 (ja)
KR (1) KR20210050537A (ja)
CN (1) CN113169285A (ja)
WO (1) WO2020040298A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120096A (ja) * 2019-01-22 2020-08-06 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光素子、及びそれを含む表示装置
JP2020167391A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2020218558A1 (ja) * 2019-04-26 2020-10-29 学校法人関西学院 化合物、有機デバイス用材料、発光層形成用組成物、有機電界効果トランジスタ、有機薄膜太陽電池、有機電界発光素子、表示装置、および照明装置
US20210273175A1 (en) * 2020-02-19 2021-09-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2021200252A1 (ja) 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2021230658A1 (ko) * 2020-05-12 2021-11-18 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20210138512A (ko) * 2020-05-12 2021-11-19 머티어리얼사이언스 주식회사 유기 전계 발광 소자
WO2022024664A1 (ja) * 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
WO2022045272A1 (ja) 2020-08-28 2022-03-03 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
CN114256429A (zh) * 2020-09-25 2022-03-29 江苏三月科技股份有限公司 一种敏化荧光有机电致发光器件及其应用
KR20220046465A (ko) * 2020-10-06 2022-04-14 삼성디스플레이 주식회사 발광 소자
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
CN114464747A (zh) * 2020-11-10 2022-05-10 乐金显示有限公司 有机发光二极管和包括其的有机发光装置
WO2022138790A1 (ja) * 2020-12-24 2022-06-30 三菱ケミカル株式会社 有機電界発光素子の発光層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2022138822A1 (ja) * 2020-12-23 2022-06-30 三菱ケミカル株式会社 有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
CN114685359A (zh) * 2020-12-30 2022-07-01 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
JP2022104798A (ja) * 2020-12-29 2022-07-11 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
US11472820B2 (en) 2019-05-08 2022-10-18 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices
WO2022249750A1 (ja) * 2021-05-28 2022-12-01 株式会社Kyulux トップエミッション方式の有機エレクトロルミネッセンス素子およびその設計方法
WO2022270113A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
JP2023003372A (ja) * 2021-06-23 2023-01-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023282224A1 (ja) * 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
KR20230065958A (ko) * 2020-10-06 2023-05-12 삼성디스플레이 주식회사 발광 소자
WO2023094936A1 (ja) * 2021-11-26 2023-06-01 株式会社半導体エネルギー研究所 発光デバイス、発光装置、有機化合物、電子機器、および照明装置
CN116218283A (zh) * 2023-04-13 2023-06-06 义乌清越光电技术研究院有限公司 一种用于tfb空穴传输层的量子点墨水及其应用
KR20230093426A (ko) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
KR20240035434A (ko) 2021-07-16 2024-03-15 고쿠리쓰다이가쿠호진 규슈다이가쿠 붕소 함유 화합물, 발광 재료 및 그것을 사용한 발광 소자
WO2024101071A1 (ja) * 2022-11-11 2024-05-16 住友化学株式会社 組成物及びそれを含有する発光素子、並びに化合物
WO2024143995A1 (ko) * 2022-12-28 2024-07-04 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
US12146087B2 (en) 2017-12-28 2024-11-19 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203875A (ja) * 2019-06-13 2020-12-24 学校法人関西学院 多環芳香族化合物
WO2023224400A1 (ko) * 2022-05-20 2023-11-23 경상국립대학교산학협력단 신규한 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006033A (ja) * 2014-04-23 2016-01-14 シャープ株式会社 化合物、標識剤、太陽電池モジュール、太陽光発電装置、有機薄膜太陽電池、表示装置及び有機el素子
JP2016122672A (ja) * 2013-03-18 2016-07-07 出光興産株式会社 発光装置
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
US20180123049A1 (en) * 2015-03-27 2018-05-03 Industry-Academic Cooperation Foundation, Dankook University Ortho-substituted thermally activated delayed fluorescence material and organic light-emitting device comprising same
WO2018181188A1 (ja) * 2017-03-31 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019004247A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 発光素子及びその製造に有用な高分子化合物
WO2019004248A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019062685A1 (zh) * 2017-09-29 2019-04-04 江苏三月光电科技有限公司 一种含硼有机电致发光器件及其制备方法
KR20190078541A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2019132506A1 (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2019151204A1 (ja) * 2018-02-05 2019-08-08 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2019163808A1 (ja) * 2018-02-20 2019-08-29 国立大学法人九州大学 発光性粒子の製造方法、発光性粒子およびバイオイメージング材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
WO2015136880A1 (ja) * 2014-03-11 2015-09-17 保土谷化学工業株式会社 アザフルオレン環構造を有するスピロ化合物、発光材料および有機エレクトロルミネッセンス素子
US10680186B2 (en) * 2015-03-09 2020-06-09 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound and light emitting layer-forming composition
US20200190115A1 (en) * 2017-05-16 2020-06-18 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122672A (ja) * 2013-03-18 2016-07-07 出光興産株式会社 発光装置
JP2016006033A (ja) * 2014-04-23 2016-01-14 シャープ株式会社 化合物、標識剤、太陽電池モジュール、太陽光発電装置、有機薄膜太陽電池、表示装置及び有機el素子
US20180123049A1 (en) * 2015-03-27 2018-05-03 Industry-Academic Cooperation Foundation, Dankook University Ortho-substituted thermally activated delayed fluorescence material and organic light-emitting device comprising same
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
WO2018181188A1 (ja) * 2017-03-31 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019004247A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 発光素子及びその製造に有用な高分子化合物
WO2019004248A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019062685A1 (zh) * 2017-09-29 2019-04-04 江苏三月光电科技有限公司 一种含硼有机电致发光器件及其制备方法
KR20190078541A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2019132506A1 (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2019151204A1 (ja) * 2018-02-05 2019-08-08 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2019163808A1 (ja) * 2018-02-20 2019-08-29 国立大学法人九州大学 発光性粒子の製造方法、発光性粒子およびバイオイメージング材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, SI-HYUN ET AL.: "Ideal blue thermally activated delayed fluorescence emission assisted by a thermally activated delayed fluorescence assistant dopant through a fast reverse intersystem crossing mediated cascade energy transfer process", JOURNAL OF MATERIALS CHEMISTRY C, vol. 7, 14 March 2019 (2019-03-14), pages 3082 - 3089, XP055687954 *
HOSOKAI, TAKUYA ET AL.: "Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states", SCIENCE ADVANCES, vol. 3, 10 May 2017 (2017-05-10), pages e1603282, XP055499754, DOI: 10.1126/sciadv.1603282 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12146087B2 (en) 2017-12-28 2024-11-19 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
JP7250589B2 (ja) 2019-01-22 2023-04-03 三星ディスプレイ株式會社 有機発光素子、及びそれを含む表示装置
JP2020120096A (ja) * 2019-01-22 2020-08-06 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光素子、及びそれを含む表示装置
JP2020167391A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2020203211A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2020218558A1 (ja) * 2019-04-26 2020-10-29 学校法人関西学院 化合物、有機デバイス用材料、発光層形成用組成物、有機電界効果トランジスタ、有機薄膜太陽電池、有機電界発光素子、表示装置、および照明装置
CN113784972A (zh) * 2019-04-26 2021-12-10 学校法人关西学院 化合物、有机设备用材料、发光层形成用组合物、有机场效应晶体管、有机薄膜太阳能电池、有机电致发光元件、显示装置和照明装置
US11472820B2 (en) 2019-05-08 2022-10-18 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices
US20210273175A1 (en) * 2020-02-19 2021-09-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11800793B2 (en) * 2020-02-19 2023-10-24 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2021200252A1 (ja) 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
KR20220160573A (ko) 2020-03-31 2022-12-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
WO2021230658A1 (ko) * 2020-05-12 2021-11-18 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20210138512A (ko) * 2020-05-12 2021-11-19 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR102550442B1 (ko) * 2020-05-12 2023-07-03 머티어리얼사이언스 주식회사 유기 전계 발광 소자
WO2022024664A1 (ja) * 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
EP4190879A4 (en) * 2020-07-28 2024-08-21 Sumitomo Chemical Co COMPOSITION AND ELECTROLUMINESCENT ELEMENT
KR20230057337A (ko) 2020-08-28 2023-04-28 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
WO2022045272A1 (ja) 2020-08-28 2022-03-03 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
CN114256429B (zh) * 2020-09-25 2024-06-07 江苏三月科技股份有限公司 一种敏化荧光有机电致发光器件及其应用
CN114256429A (zh) * 2020-09-25 2022-03-29 江苏三月科技股份有限公司 一种敏化荧光有机电致发光器件及其应用
KR102689550B1 (ko) * 2020-10-06 2024-07-31 삼성디스플레이 주식회사 발광 소자
KR20230065958A (ko) * 2020-10-06 2023-05-12 삼성디스플레이 주식회사 발광 소자
KR102529651B1 (ko) * 2020-10-06 2023-05-10 삼성디스플레이 주식회사 발광 소자
KR20220046465A (ko) * 2020-10-06 2022-04-14 삼성디스플레이 주식회사 발광 소자
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
KR20230093426A (ko) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
JP7246453B2 (ja) 2020-11-10 2023-03-27 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
CN114464747A (zh) * 2020-11-10 2022-05-10 乐金显示有限公司 有机发光二极管和包括其的有机发光装置
EP3995500A1 (en) * 2020-11-10 2022-05-11 LG Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
JP2022077011A (ja) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
CN114464747B (zh) * 2020-11-10 2024-04-09 乐金显示有限公司 有机发光二极管和包括其的有机发光装置
WO2022138822A1 (ja) * 2020-12-23 2022-06-30 三菱ケミカル株式会社 有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2022138790A1 (ja) * 2020-12-24 2022-06-30 三菱ケミカル株式会社 有機電界発光素子の発光層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP7288033B2 (ja) 2020-12-29 2023-06-06 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
JP2022104798A (ja) * 2020-12-29 2022-07-11 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
CN114685359A (zh) * 2020-12-30 2022-07-01 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
WO2022249750A1 (ja) * 2021-05-28 2022-12-01 株式会社Kyulux トップエミッション方式の有機エレクトロルミネッセンス素子およびその設計方法
JP7222159B2 (ja) 2021-06-23 2023-02-15 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270113A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
JP2023003372A (ja) * 2021-06-23 2023-01-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023282224A1 (ja) * 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
KR20240035434A (ko) 2021-07-16 2024-03-15 고쿠리쓰다이가쿠호진 규슈다이가쿠 붕소 함유 화합물, 발광 재료 및 그것을 사용한 발광 소자
WO2023094936A1 (ja) * 2021-11-26 2023-06-01 株式会社半導体エネルギー研究所 発光デバイス、発光装置、有機化合物、電子機器、および照明装置
WO2024101071A1 (ja) * 2022-11-11 2024-05-16 住友化学株式会社 組成物及びそれを含有する発光素子、並びに化合物
WO2024143995A1 (ko) * 2022-12-28 2024-07-04 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
CN116218283A (zh) * 2023-04-13 2023-06-06 义乌清越光电技术研究院有限公司 一种用于tfb空穴传输层的量子点墨水及其应用
CN116218283B (zh) * 2023-04-13 2024-04-05 义乌清越光电技术研究院有限公司 一种用于tfb空穴传输层的量子点墨水及其应用

Also Published As

Publication number Publication date
JPWO2020040298A1 (ja) 2021-09-24
KR20210050537A (ko) 2021-05-07
JP7388658B2 (ja) 2023-11-29
CN113169285A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP7388658B2 (ja) 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
US20240360158A1 (en) Polycyclic aromatic compound
KR102714692B1 (ko) 다환 방향족 화합물 및 그의 다량체
JP7531159B2 (ja) 多環芳香族化合物
KR102595325B1 (ko) 다환 방향족 화합물 및 발광층 형성용 조성물
WO2020045681A1 (ja) 多環芳香族化合物の発光材料を用いた有機電界発光素子
JPWO2019235452A1 (ja) ターシャリーアルキル置換多環芳香族化合物
KR20210092256A (ko) 유기 전계 발광 소자, 표시 장치, 및 조명 장치
WO2020080528A1 (ja) 多環芳香族化合物
KR20200143653A (ko) 다환 방향족 화합물
KR20220004116A (ko) 화합물, 유기 디바이스용 재료, 발광층 형성용 조성물, 유기 전계효과 트랜지스터, 유기 박막 태양전지, 유기 전계 발광 소자, 표시 장치, 및 조명 장치
JP2022074041A (ja) 多環芳香族化合物
JP2021077890A (ja) 有機電界発光素子、表示装置、および照明装置、ならびに発光層形成用組成物
KR20210043466A (ko) 다환 방향족 화합물, 유기 디바이스용 재료, 유기전계 발광소자, 표시 장치 및 조명 장치
JP2021077889A (ja) 有機電界発光素子、表示装置、および照明装置、ならびに発光層形成用組成物
WO2022185896A1 (ja) 多環芳香族化合物および有機電界発光素子
WO2022185897A1 (ja) 多環芳香族化合物
KR20230141577A (ko) 유기 전계 발광 소자
KR20240047307A (ko) 다환방향족 화합물
KR20240100291A (ko) 다환 방향족 화합물
JP2022179317A (ja) 多環芳香族化合物
CN116997557A (zh) 多环芳香族化合物及有机电致发光元件
KR20210007909A (ko) 발광층 형성용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008660

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19851825

Country of ref document: EP

Kind code of ref document: A1