WO2019004248A1 - 高分子化合物及びそれを用いた発光素子 - Google Patents

高分子化合物及びそれを用いた発光素子 Download PDF

Info

Publication number
WO2019004248A1
WO2019004248A1 PCT/JP2018/024289 JP2018024289W WO2019004248A1 WO 2019004248 A1 WO2019004248 A1 WO 2019004248A1 JP 2018024289 W JP2018024289 W JP 2018024289W WO 2019004248 A1 WO2019004248 A1 WO 2019004248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
represented
groups
Prior art date
Application number
PCT/JP2018/024289
Other languages
English (en)
French (fr)
Inventor
龍二 松本
結希 廣井
吉田 大泰
大介 福島
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/620,605 priority Critical patent/US11021568B2/en
Priority to CN201880042746.5A priority patent/CN110799571B/zh
Priority to JP2019526961A priority patent/JP7173006B2/ja
Priority to KR1020207001947A priority patent/KR102526389B1/ko
Priority to EP18824800.9A priority patent/EP3647338A4/en
Publication of WO2019004248A1 publication Critical patent/WO2019004248A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to a polymer compound and a light emitting device using the same.
  • Patent Document 1 a polymer compound represented by the following formula is studied (Patent Document 1).
  • a light emitting element manufactured using the above-described polymer compound does not necessarily have a sufficient luminance life. Then, this invention aims at providing a high molecular compound useful to manufacture of the light emitting element which is excellent in the brightness
  • the present invention provides the following [1] to [15].
  • a polymer compound comprising a constituent unit having a residue of a compound represented by the formula (1) and a constituent unit having no residue of the compound represented by the formula (1).
  • Ring A, ring B and ring C each independently represent an aromatic hydrocarbon ring or a heteroaromatic ring, and these rings may have a substituent.
  • Rx represents an aryl group or an alkyl group, and these groups may have a substituent.
  • Y 1 represents N—Ry, a sulfur atom or a selenium atom.
  • Y 2 and Y 3 each independently represent an oxygen atom, N—Ry, a sulfur atom or a selenium atom.
  • Ry represents a hydrogen atom, an aryl group, a monovalent heterocyclic group, or an alkyl group, and these groups may have a substituent. When there are a plurality of Ry, they may be the same or different. Ry may be bonded to the A ring, the B ring or the C ring directly or via a linking group.
  • n3 is 0 or 1; When n3 is 0, -Y 3 -is absent.
  • nA is an integer of 0 to 5.
  • n is 1 or 2;
  • Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • L A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent It is also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. If L A is plurally present, they may be the same or different.
  • Q represents a residue of the compound represented by the formula (1). ] [In the formula, m is an integer of 1 to 4; mA is an integer of 0-5. When there are a plurality of mAs, they may be the same or different. c is 0 or 1; Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are bonded, and these groups each have a substituent
  • Ar 4 , Ar 5 and Ar 6 are each directly bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, or bonded through an oxygen atom or a sulfur atom And may form a ring.
  • K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups each have a substituent It is also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. If K A there are a plurality, they may be the same or different.
  • Q ′ represents a residue of a compound represented by the above formula (1), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups each have a substituent May be When a plurality of Q 'are present, they may be the same or different. However, at least one Q ′ is a residue of the compound represented by the formula (1).
  • d, e, f and g are each independently an integer of 0 to 2.
  • pA is an integer of 0 to 5. When two or more pA exist, they may be the same or different.
  • J A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent It is also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. If J A there are a plurality, they may be the same or different.
  • Ar 7 , Ar 8 and Ar 9 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of Ar 7 , Ar 8 and Ar 9 exist, they may be the same or different.
  • R X4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R X4 When a plurality of R X4 are present, they may be the same or different.
  • Q ′ ′ represents a residue of the compound represented by the above formula (1).
  • [4] The polymer compound according to any one of [1] to [3], wherein X is a boron atom.
  • [5] The polymer compound according to any one of [1] to [4], wherein Y 1 , Y 2 and Y 3 are N-Ry.
  • Y 1 , Y 2 and Y 3 are N-Ry.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 each independently represent a bond, a hydrogen atom, an alkyl group, a cycloalkyl group , An alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent.
  • one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is a bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is a bond.
  • Ry, Ar 4 , Ar 6 , K A and mA have the same meanings as described above.
  • Ry ′ represents a direct bond, an arylene group, a divalent heterocyclic group, or an alkylene group, and these groups may have a substituent.
  • Plural Ry's may be the same or different.
  • Ar 7 , Ar 8 , Ar 9 , R X4 , J A , pA, d, e, f and g have the same meanings as described above.
  • the constituent unit having no residue of the compound represented by the above formula (1) is selected from the group consisting of the constituent unit represented by the formula (X) and the constituent unit represented by the formula (Y)
  • Each of a 1 and a 2 is independently an integer of 0 to 2.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are bonded These groups may have a substituent.
  • Ar X2 and Ar X4 When a plurality of Ar X2 and Ar X4 exist, they may be the same or different.
  • R X1 , R X2 and R X3 independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R X2 and R X3 may be the same or different.
  • Ar Y 1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one type of arylene group and at least one type of divalent heterocyclic group are bonded, The group may have a substituent.
  • the structural unit represented by the formula (Y) is a structural unit represented by the formula (Y-1) or a structural unit represented by the formula (Y-2), according to [10] Polymer compound.
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent
  • Plural R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • R Y1 represents the same meaning as described above.
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • the total amount of the structural unit represented by the formula (2) and the structural unit represented by the formula (2 ′) is 0. 0 to the total amount of all the structural units contained in the polymer compound.
  • a light emitting device comprising an organic layer containing the polymer compound according to any one of [1] to [13].
  • a polymer compound useful for the production of a light emitting device excellent in luminance life it is possible to provide a polymer compound useful for the production of a light emitting device excellent in luminance life. Further, according to the present invention, a composition containing the polymer compound and a light emitting device containing the polymer compound can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond to the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the “low molecular weight compound” means a compound having no molecular weight distribution and having a molecular weight of 1 ⁇ 10 4 or less.
  • the "constituent unit” means a unit which is present one or more in the polymer compound.
  • the “alkyl group” may be linear or branched.
  • the carbon atom number of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, not including the carbon atom number of the substituent.
  • the carbon atom number of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, not including the carbon atom number of the substituent.
  • the alkyl group may have a substituent, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a 2-butyl group, an isobutyl group, a tert-butyl group, a pentyl group and an isoamyl group 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like (for example, a trifluoromethyl group
  • the number of carbon atoms of the "cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group and a cyclohexylethyl group.
  • the “aryl group” means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the carbon atom number of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the carbon atom number of the substituent.
  • the aryl group may have a substituent, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2 -Pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and hydrogen atom in these groups Are groups substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like.
  • the "alkoxy group” may be linear or branched.
  • the carbon atom number of the linear alkoxy group is usually 1 to 40, preferably 4 to 10, not including the carbon atom number of the substituent.
  • the carbon atom number of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, not including the carbon atom number of the substituent.
  • the alkoxy group may have a substituent, and examples thereof include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a tert-butyloxy group, a pentyloxy group, a hexyloxy group, And heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3, 7-dimethyloctyloxy group, lauryloxy group, and a hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, Examples thereof include groups substituted with a cycloalkoxy group, an aryl group, a fluorine atom and the like.
  • the carbon atom number of the "cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the carbon atom number of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, and examples thereof include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Pyrenyloxy groups and groups in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom or the like can be mentioned.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) means p out of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from the heterocyclic compound. Means the remaining atomic groups excluding the hydrogen atom of Among p-valent heterocyclic groups, carbon atoms constituting the ring or the remaining atomic groups obtained by removing p hydrogen atoms from hydrogen atoms directly bonded to a hetero atom from an aromatic heterocyclic compound "P-valent aromatic heterocyclic group” is preferred.
  • the “aromatic heterocyclic compound” is a complex such as oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole etc.
  • Compounds in which the ring itself exhibits aromaticity, and heterocycles such as phenoxazine, phenothiazine, dibenzoborole, dibenzosilole, benzopyran and the like themselves do not exhibit aromaticity, but an aromatic ring is fused to the heterocycle. It means a compound.
  • the carbon atom number of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, not including the carbon atom number of the substituent.
  • the monovalent heterocyclic group may have a substituent, and examples thereof include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and the like Groups in which a hydrogen atom in any of the groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or the like.
  • halogen atom represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • amino group may have a substituent and is preferably a substituted amino group.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • substituted amino group examples include dialkylamino group, dicycloalkylamino group and diarylamino group.
  • amino group examples include dimethylamino, diethylamino, diphenylamino, bis (4-methylphenyl) amino, bis (4-tert-butylphenyl) amino, and bis (3,5-di-tert-). And butylphenyl) amino.
  • alkenyl group may be linear or branched.
  • the carbon atom number of the linear alkenyl group is usually 2 to 30, preferably 3 to 20, not including the carbon atom number of the substituent.
  • the carbon atom number of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the carbon atom number of the substituent.
  • the number of carbon atoms of the "cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and cycloalkenyl group may have a substituent, and examples thereof include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4- Examples include pentenyl group, 1-hexenyl group, 5-hexenyl group, 7-octenyl group, and groups in which these groups have a substituent.
  • alkynyl group may be linear or branched.
  • the carbon atom number of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the carbon atom number of the branched alkynyl group is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and cycloalkynyl group may have a substituent, and examples thereof include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4- Examples include pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the "arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon.
  • the carbon atom number of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, not including the carbon atom number of the substituent.
  • the arylene group may have a substituent, and examples thereof include phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrendiyl group, dihydrophenanthrendiyl group, naphthacene diyl group, fluorenediyl group, pyrene diyl group, perylene diyl group, There may be mentioned a chrysendiyl group and a group in which these groups have a substituent, and preferably a group represented by the formula (A-1) to the formula (A-20).
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • Plural R and R a may be respectively the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the carbon atom number of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, more preferably 4 to 15, not including the carbon atom number of the substituent.
  • the divalent heterocyclic group may have a substituent, and examples thereof include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, and the like.
  • Preferred are dihydroacridines, furans, thiophenes, azoles, diazoles and triazoles, and divalent groups in which two hydrogen atoms of hydrogen atoms directly bonded to ring carbon atoms or hetero atoms are removed, preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
  • the “substituent” is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group And a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the polymer compound of the present invention comprises a constituent unit having a residue of the compound represented by the formula (1) and a constituent unit having no residue of the compound represented by the formula (1).
  • the residue of the compound represented by the formula (1) is a group in which one or two or more hydrogen atoms have been removed from the skeleton structure of the compound represented by the formula (1) (that is, a moiety other than a substituent). is there.
  • the residue of the compound represented by the formula (1) may be present in any of the main chain, side chain and terminal of the polymer compound.
  • the constituent unit having a residue of the compound represented by the formula (1) and the constituent unit not having a residue of the compound represented by the formula (1) are each contained in the polymer compound alone. Or two or more may be included.
  • the carbon atom number of the aromatic hydrocarbon ring represented by A ring, B ring and C ring is usually 6 to 60, preferably 6 to 18, not including the carbon atom number of the substituent. More preferably, it is 6 to 10, and particularly preferably 6.
  • the aromatic hydrocarbon ring include benzene, fluorene, naphthalene, anthracene and phenanthrene, preferably benzene.
  • the carbon atom number of the aromatic heterocyclic ring represented by A ring, B ring and C ring is usually 2 to 60, preferably 3 to 20, not including the carbon atom number of the substituent. Preferably it is 4-15.
  • the aromatic heterocyclic ring include pyridine, diazabenzene, azanaphthalene, diazanaphthalene, carbazole, indolocarbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan and thiophene. .
  • the luminance life of the light emitting device of the present invention is excellent, and preferably an alkyl group, an aryl group, a monovalent heterocyclic group, or It is a substituted amino group, more preferably an alkyl group, an aryl group or a substituted amino group, and these groups may have a substituent.
  • CA As a detailed structure (CA) of ring A, for example, structures represented by formula (CA01) to formula (CA38) can be mentioned, and the luminance life of the light emitting element of the present invention is excellent. It is a structure represented by formula (CA19), more preferably a structure represented by formula (CA01) to formula (CA05), still more preferably a structure represented by formula (CA01).
  • R a represents the same meaning as described above.
  • the hydrogen atom may be replaced by a substituent which may be possessed by ring A.
  • R Y2 represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • two or more R Y2 are present R Y2's may combine with each other to form a ring.
  • Plural R Y2 may be the same or different.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When two or more R Y4 exist, they may be the same or different. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • CB of ring B for example, structures represented by formula (CB01) to formula (CB24) can be mentioned, and since the device life is excellent, it is preferable to use a formula (CB01) to formula (CB13) It is a structure represented, more preferably a structure represented by Formula (CB01) to Formula (CB05), and particularly preferably a structure represented by Formula (CB01).
  • R Y2 , R Y4 and R a represent the same meaning as described above.
  • the hydrogen atom may be replaced by a substituent which may be possessed by the B ring.
  • Examples of the detailed structure (CC) of the C ring include the structures represented by the formulas (CC01) to (CC24), and preferably the structures represented by the formulas (CC01) to (CC13) More preferably, it is a structure represented by Formula (CC01) to Formula (CC05), and more preferably a structure represented by Formula (CC01).
  • R Y2 , R Y4 and R a represent the same meaning as described above.
  • the hydrogen atom may be replaced by a substituent which may be possessed by the C ring.
  • R Y2 is preferably both an alkyl group or a cycloalkyl group, both are an aryl group, both are a monovalent heterocyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent group. It is a heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • a group represented by —C (R Y2 ) C (R Y2 ) —
  • the combination of two R Y2 therein is preferably both an alkyl group or a cycloalkyl group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group, and these groups have a substituent May be
  • R Y2 in the group are preferably an alkyl group which may have a substituent or a cycloalkyl group which may have a substituent.
  • a plurality of R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded, and in the case where R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented by is preferably a group represented by the formula (Y-B1) to the formula (Y-B5), more preferably a group represented by the formula (Y-B3), and these groups May have a substituent.
  • R Y2 represents the same meaning as described above.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group It is a group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • the luminance life of the light emitting device of the present invention is excellent, so preferably, the A ring is represented by Formula (CA01) to Formula (CA05).
  • the ring B is a structure represented by the formula (CB01) to the formula (CB05), and the ring C is a structure represented by the formula (CC01) to the formula (CC05), more preferably Is a structure in which ring A is represented by formula (CA01), a structure in which ring B is represented by formula (CB01) to formula (CB05), and ring C is a group represented by formula (CC01) to formula (CC05) And more preferably a structure in which the ring A is a structure represented by formula (CA01), a structure in which a ring B is a structure represented by formula (CB01), and a ring C a It is a structure represented by CC01).
  • N3 is preferably 0 because the luminance life of the light emitting device of the present invention is more excellent.
  • Y 1 , Y 2 and Y 3 are preferably N-Ry or a sulfur atom since the stability of the polymer compound of the present invention is good, and more preferably N-Ry It is Ry.
  • At least one of Y 1 , Y 2 and Y 3 is preferably N-Ry because the stability of the polymer compound of the present invention is good, and Y 1 , Y 2 and More preferably, all of Y 3 are N-Ry. However, when n3 is 0, both Y 1 and Y 2 are N-Ry.
  • Ry is preferably a hydrogen atom, an aryl group which may have a substituent, or a monovalent heterocyclic ring which may have a substituent, because the luminance life of the light emitting device of the present invention is more excellent. It is a group, more preferably a hydrogen atom or an aryl group which may have a substituent, and still more preferably an aryl group which may have a substituent.
  • the linking group is, for example, a divalent group such as -O-, -S- or -CH 2- , boron And trivalent groups such as atoms.
  • Ry When Ry is linked to the A ring, B ring or C ring via a trivalent group, it is usually linked to the A ring and the substituent on the A ring, or linked to the B ring and the substituent on the B ring Or linked to a C ring and a substituent on the C ring.
  • Examples of the structure in which Ry is directly or linked to the A ring, B ring or C ring via a linking group include structures represented by Formula (E01) to Formula (E16).
  • the constituent unit having a residue of the compound represented by Formula (1) is preferably a constituent unit represented by Formula (2), Formula (2 ′) or Formula (3).
  • nA is preferably 0 or 1, and more preferably 0, because the luminance life of the light emitting device of the present invention is more excellent.
  • N is preferably 1, because the luminance life of the light emitting device of the present invention is more excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent, because the luminance life of the light emitting device of the present invention is more excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, not including the number of carbon atoms of the substituent. is there.
  • the arylene group moiety excluding the n substituents of the aromatic hydrocarbon group represented by Ar 3 is preferably a group represented by Formula (A-1) to Formula (A-20), More preferably, a group represented by Formula (A-1), Formula (A-2), Formula (A-6) to Formula (A-10), Formula (A-19) or Formula (A-20) And more preferably a group represented by Formula (A-1), Formula (A-2), Formula (A-7), Formula (A-9) or Formula (A-19), Groups may have a substituent.
  • the carbon atom number of the heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 3 to 30, and more preferably 4 to 18, not including the carbon atom number of the substituent.
  • the divalent heterocyclic group moiety excluding the n substituents of the heterocyclic group represented by Ar 3 is preferably a group represented by Formula (AA-1) to Formula (AA-34) is there.
  • the aromatic hydrocarbon group and the heterocyclic group represented by Ar 3 may have a substituent, and as the substituent, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group can be mentioned Groups, halogen atoms, monovalent heterocyclic groups and cyano groups.
  • the alkylene group represented by L A is usually 1 to 20, preferably 1 to 15, and more preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkylene group represented by L A is usually 3 to 20, not including the number of carbon atoms of the substituent.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group and an octylene group.
  • substituent which the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom and a cyano group.
  • Arylene group represented by L A may have a substituent.
  • the arylene group includes o-phenylene, m-phenylene and p-phenylene.
  • substituent which the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom and a cyano group.
  • aryl group represented by R ' a phenyl group, a naphthyl group, and a fluorenyl group are mentioned.
  • substituent which the aryl group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom and a cyano group. It can be mentioned.
  • the structural unit represented by the formula (2) may be contained alone or in combination of two or more in the polymer compound.
  • mA is preferably 0 or 1, and more preferably 0, because the luminance life of the light emitting device of the present invention is more excellent.
  • M is preferably 2, because the luminance life of the light emitting device of the present invention is more excellent.
  • C is preferably 0, because the polymer compound of the present invention can be easily produced and the luminance life of the light emitting device of the present invention is more excellent.
  • Ar 5 is preferably an aromatic hydrocarbon group which may have a substituent, because the luminance life of the light emitting device of the present invention is more excellent.
  • the definition and examples of the divalent heterocyclic group moiety excluding the m substituents of the heterocyclic group represented by Ar 5 are the divalent heterocyclic group represented by Ar X2 in the formula (X) described later It is the same as the definition and example of the part.
  • divalent groups other than m substituents of a group in which at least one aromatic hydrocarbon ring represented by Ar 5 and at least one hetero ring are directly bonded are represented by the formula (described later) It is the same as the definition or example of the divalent group in which at least one arylene group represented by Ar X2 in X) and at least one divalent heterocyclic group are directly bonded.
  • Ar 4 and Ar 6 are preferably arylene groups which may have a substituent, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • the definitions and examples of the arylene group and divalent heterocyclic group represented by Ar 4 and Ar 6 are respectively the arylene group and divalent heterocyclic ring represented by Ar X1 and Ar X3 in Formula (X) described later. The same as the definition and example of the group.
  • the group represented by Ar 4 , Ar 5 and Ar 6 may have a substituent, and as the substituent, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, A halogen atom, a monovalent heterocyclic group and a cyano group can be mentioned.
  • alkylene group, cycloalkylene group, arylene group and divalent heterocyclic group represented by K A are respectively the alkylene group, cycloalkylene group, arylene group and divalent hetero group represented by L A The same as the definition and the example of the ring group.
  • K A is preferably an alkylene group, an arylene group or a group represented by —NR′—, because K can facilitate the production of the polymer compound of the present invention, and more preferably a phenylene group, an alkylene group or — N (C 6 H 5 )-, and these groups may have a substituent.
  • the constituent unit represented by the formula (2 ′) may be contained alone or in combination of two or more kinds in the polymer compound.
  • the total amount of the constituent unit represented by the formula (2) and the constituent unit represented by the formula (2 ′) contained in the polymer compound of the present invention is excellent in the stability of the polymer compound, and thus the polymer compound
  • the amount is preferably 0.1 to 50 mol%, more preferably 0.1 to 30 mol%, still more preferably 0.1 to 10 mol%, particularly preferably 0.5 to 50 mol%, based on the total amount of all the structural units contained in 5 mol%.
  • Examples of the structural unit represented by the formula (2) include structural units represented by the formulas (2-1) to (2-17).
  • Examples of the structural unit represented by the formula (2 ′) include structural units represented by the formulas (2′-1) to (2′-14).
  • Structural units more preferably structural units represented by Formula (2-5) to Formula (2-14), or Formula (2′-1) to Formula (2′-6), and Preferably, they are structural units represented by Formula (2-5) to Formula (2-10), or Formula (2′-1) to Formula (2′-3).
  • the structural unit represented by the formula (2) for example, the structural unit represented by the formula (31), the formula (32), the formula (35), the formula (36), the formula (38) and the formula (32) And the structural unit represented by Formula (31) or (32), and more preferably the structural unit represented by Formula (31). .
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , Ry, Ry ', Ar 3 , L A and nA are as defined above Represents the same meaning.
  • R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ , R 8 ′ , R 9 ′ , R 10 ′ and R 11 ′ are each independently a bond, a hydrogen atom, an alkyl group, a cycloalkyl group, It represents an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent.
  • one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is a bond.
  • One of ' , R 10' and R 11 ' is a bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 which are not a bond in the structural units represented by the formulas (31), (32) and (39)
  • the structural unit represented by (49) is mentioned, Preferably it is a structural unit represented by Formula (41) or Formula (42), More preferably, it is a structural unit represented by Formula (41).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , Ry, Ry ', Ar 4 , Ar 6 , K A , and mA are , Represents the same meaning as described above.
  • R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ , R 8 ′ , R 9 ′ , R 10 ′ and R 11 ′ represent the same meaning as described above.
  • one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is a bond.
  • One of ' , R 10' and R 11 ' is a bond.
  • d, e, f and g are preferably 0 or 1, and more preferably 0, because the luminance life of the light emitting device of the present invention is more excellent.
  • PA is preferably 0 or 1, and more preferably 0, because the luminance life of the light emitting device of the present invention is more excellent.
  • Alkylene group represented by J A is not including the carbon atom number of substituent is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10. Cycloalkylene group represented by J A is not including the carbon atom number of substituent is usually 3 to 20.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group and an octylene group.
  • substituent which the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom and a cyano group.
  • Arylene group represented by J A may have a substituent.
  • the arylene group include o-phenylene group, m-phenylene group and p-phenylene group.
  • the substituent which the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom and a cyano group.
  • Ar 7 , Ar 8 and Ar 9 each are preferably an arylene group which may have a substituent, because the luminance life of the light emitting device of the present invention is more excellent.
  • the number of carbon atoms of the arylene group represented by Ar 7 , Ar 8 and Ar 9 is usually 6 to 60, preferably 6 to 30, and more preferably 6 regardless of the number of carbon atoms of the substituent. It is ⁇ 18.
  • the arylene group represented by Ar 7 , Ar 8 and Ar 9 is preferably a group represented by Formula (A-1) to Formula (A-20), and more preferably a group represented by Formula (A-1) A group represented by Formula (A-2), Formula (A-6) to Formula (A-10), Formula (A-19) or Formula (A-20), and more preferably A-1), a group represented by the formula (A-2), a formula (A-7), a formula (A-9) or a formula (A-19), these groups each having a substituent May be
  • the carbon atom number of the divalent heterocyclic group represented by Ar 7 , Ar 8 and Ar 9 is usually 2 to 60, preferably 3 to 30, not including the carbon atom number of the substituent. More preferably, it is 4-18.
  • the divalent heterocyclic group represented by Ar 7 , Ar 8 and Ar 9 is preferably a group represented by Formula (AA-1) to Formula (AA-34).
  • the arylene group and divalent heterocyclic group represented by Ar 7 , Ar 8 and Ar 9 may have a substituent, and as the substituent, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group And aryl groups, aryloxy groups, halogen atoms, monovalent heterocyclic groups and cyano groups.
  • R X4 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • Examples of the structural unit represented by the formula (3) include structural units represented by the formulas (3-1) to (3-12). Among these, since the luminance life of the light emitting device of the present invention is excellent, the structural units represented by formulas (3-1) to (3-6) are preferable, and more preferably A structural unit represented by the formula (3-3), more preferably a structural unit represented by the formula (3-1).
  • Examples of the structural unit represented by the formula (3) include the structural unit represented by the formula (51) and the structural units represented by the formulas (52) to (55). Or the structural unit represented by Formula (51) or the structural unit represented by Formula (53), More preferably, it is a structural unit represented by Formula (51).
  • R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 , R 31 , Ry, Ry ', Ar 7 , Ar 8 , Ar 9 , J A , R X4 , pA, d, e, f and g have the same meaning as described above.
  • R X4 ′ represents a direct bond, an alkylene group, a cycloalkylene group, an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar 9 ′ represents a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group, and these groups may have a substituent.
  • one of R 24 , R 25 , R 26 and R 27 is a bond
  • one of R 28 , R 29 , R 30 and R 31 is a bond
  • one of R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 and R 31 is a bond
  • one of R 21 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 and R 31 is a bond.
  • one of R 21 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , R 30 and R 31 is a bond.
  • Examples of the structural unit represented by the formula (3) include structural units represented by the formulas (3-101) to (3-129).
  • the total amount of the structural units represented by the formula (3) is preferably 0.1 to 50 moles relative to the total amount of all the structural units contained in the polymer compound because the stability of the polymer compound of the present invention is excellent. %, More preferably 0.1 to 30 mol%, still more preferably 0.1 to 10 mol%, particularly preferably 0.5 to 5 mol%.
  • the structural unit a 1 represented by the formula (X) is preferably 1, because the luminance life of the light emitting device of the present invention is more excellent.
  • the luminance lifetime of the light emitting device of the present invention is more excellent, it is preferably 0.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent It is also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by Formula (A-1) or Formula (A-9), and still more preferably represented by Formula (A-1) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by Formula (AA-1), Formula (AA-2) or Formula (AA-7) to Formula (AA-26) These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably arylene groups which may have a substituent.
  • the arylene group represented by Ar X2 and Ar X4 is more preferably represented by Formula (A-1), Formula (A-6), Formula (A-7), Formula (A-9) to Formula (A-11) Or a group represented by formula (A-19), and these groups may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • the more preferable ranges are the same as the more preferable ranges and the further preferable ranges of the arylene group and the divalent heterocyclic group represented by Ar X1 and Ar X3 respectively.
  • Examples of the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one bivalent heterocyclic group are directly bonded to each other include, for example, groups represented by the following formulas: These may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • Ar X2 and Ar X4 are preferably arylene groups which may have a substituent.
  • the substituent which the group represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. It may be done.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formulas (X-1) to (X-7), and more preferably a formula (X-3) to a formula (X) -7), and more preferably structural units represented by Formula (X-3) to Formula (X-6).
  • R X4 and R X5 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, halogen atom, monovalent heterocyclic group or cyano Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • Plural R X5 s may be the same or different, and adjacent R X5 s may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • the structural unit represented by the formula (X) is excellent in hole transportability, and is preferably 0.1 to 50 mol%, more preferably 0.5 based on the total amount of all structural units contained in the polymer compound. It is -30 mol%, more preferably 1 to 8 mol%, particularly preferably 1 to 5 mol%.
  • structural units represented by the formula (X) for example, structural units represented by the formulas (X1-1) to (X1-7) can be mentioned, with preference given to the formula (X1-1) and the formula (X1) And 5) a structural unit represented by formula (X1-7).
  • the arylene group represented by the structural unit Ar Y1 represented by the formula (Y) is more preferably represented by the formula (A-1), the formula (A-6), the formula (A-7) or the formula (A-9) A group represented by formula (A-11), formula (A-13) or formula (A-19), and more preferably a group represented by formula (A-1), formula (A-7) or formula (A) -9) or a group represented by Formula (A-19), and particularly preferably a group represented by Formula (A-1) or Formula (A-9), and these groups have a substituent It may be done.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a group represented by the formula (AA-4), a formula (AA-10), a formula (AA-13), a formula (AA-15) or a formula (AA-18).
  • a group represented by formula (AA-20), more preferably represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) may have a substituent.
  • the ranges are respectively the same as the more preferable range and the further preferable range of the arylene group and the divalent heterocyclic group represented by Ar Y1 described above.
  • Examples of the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded to each other include at least one represented by Ar X2 and Ar X4 in the formula (X)
  • the same groups as the divalent group in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded to each other can be mentioned.
  • the substituent which the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or an aryl group, and these groups may be further substituted You may have.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1) to (Y-7), and from the viewpoint of the luminance life of the light emitting device of the present invention, And preferably a structural unit represented by the formula (Y-1) or the formula (Y-2), and from the viewpoint of the electron transportability, it is preferably a table represented by the formula (Y-3) or the formula (Y-4) Preferably, from the viewpoint of hole transportability, they are structural units represented by formulas (Y-5) to (Y-7).
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • the constitutional unit represented by the formula (Y-1) is preferably a constitutional unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Plural R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, still more preferably Is an alkyl group or an aryl group, and these groups may have a substituent.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably both an alkyl group or a cycloalkyl group, both an aryl group, and both of which are monovalent A ring group, or one of which is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one of which is an alkyl group or a cycloalkyl group and the other of which is an aryl group; May have a substituent.
  • R Y2 's may be bonded to each other to form a ring together with the atoms to which each is attached, and when R Y2 forms a ring, a group represented by —C (R Y2 ) 2 — Is preferably a group represented by formula (Y-A1) to formula (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent It may be done.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — in X Y1 is an alkyl group or a cycloalkyl group which may have a substituent. It is. More than one R Y2 may be bonded to each other to form a ring with the atoms to which each is attached, and in the case where R Y2 forms a ring, -C (R Y2 ) 2 -C (R Y2 ) 2-
  • the group represented is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are substituted It may have a group.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent May be
  • R Y1 has the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent May be
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-11) to (Y-30).
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is more excellent in the luminance life of the light emitting device of the present invention, and thus the total amount of all the structural units contained in the polymer compound Preferably, it is 50 to 99.5 mol%, more preferably 70 to 99.5 mol%.
  • the structural unit which is a group of is preferably 1 to 30 mol%, more preferably 1 to 30 mol%, based on the total amount of all the structural units contained in the polymer compound, because the charge transportability of the light emitting device of the present invention is excellent. It is 1 to 10 mol%.
  • polymer compound of the present invention examples include polymer compounds P-1 to P-16.
  • the “other constituent unit” does not include the residue of the compound represented by the formula (1), and the formula (2), the formula (2 ′), the formula (3), the formula (X) and the formula It means a constitutional unit other than the constitutional unit represented by (Y).
  • the end group of the polymer compound of the present invention is preferably such that the light emission characteristics and the luminance life may be reduced when the polymer compound is used for the preparation of a light emitting device if the polymerization active group remains as it is. It is a stable group.
  • the terminal group is preferably a group conjugated with the main chain, and includes a group bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • the polymer compound of the present invention may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be other embodiments, but plural kinds of raw materials It is preferable that it is a copolymer formed by copolymerizing a monomer.
  • a raw material monomer used for condensation polymerization By reacting the compound represented by the formula (1) with a compound having a group selected from the group consisting of a substituent group A and a substituent group B described later, a raw material monomer used for condensation polymerization can be obtained (described below See equation). By subjecting this raw material monomer to condensation polymerization, a structural unit having a residue of the compound represented by Formula (1) is derived.
  • the compound used for manufacture of the high molecular compound of this invention may be generically called a "raw material monomer.”
  • Q represents the same meaning as described above.
  • d represents an integer of 1 to 4;
  • Z C0 represents a group selected from the group consisting of a substituent group A and a substituent group B described later. When two or more Z C0 exist, they may be the same or different.
  • a compound represented by Formula (M-1), Formula (M-4) or Formula (M-5) is obtained as a raw material monomer used for condensation polymerization.
  • This raw material monomer is a constituent unit having no residue of the compound represented by Formula (1).
  • the polymer compound of the present invention includes, for example, a compound represented by Formula (M-1), a compound represented by Formula (M-2), and / or a compound represented by Formula (M-3) It can be produced by subjecting another compound (for example, a compound represented by the formula (M-4) and / or a compound represented by the formula (M-5)) to condensation polymerization.
  • the polymer compound of the present invention includes, for example, a compound represented by the formula (M-1), at least one compound selected from the group of compounds represented by the formula (M-6), and the like It can be produced by condensation polymerization of a compound (for example, a compound represented by the formula (M-4) and / or a compound represented by the formula (M-5).
  • nA, n, Ar 3, L A, Q, mA, m, c, Ar 4 ⁇ Ar 6, K A, Q ', Ar Y1, a 1, a 2, Ar X1 ⁇ Ar X4, and R X1 ⁇ R X3 represents the same meaning as described above.
  • Z C1 to Z C10 each independently represent a group selected from the group consisting of Substituent Group A and Substituent Group B.
  • Z C11 and Z C12 each independently represent a group selected from the group consisting of Substituent Group A and Substituent Group B.
  • Z C1 , Z C2 , Z C3 , Z C4 , Z C5 , Z C6 , Z C11 and Z C12 are groups selected from Substituent Group A, Z C7 , Z C8 , Z C9 and Z C10 are And Z C1 , Z C2 , Z C3 , Z C4 , Z C5 , Z C6 , Z C11 and Z C12 are groups selected from Substituent Group B by selecting a group selected from Substituent Group B; C7 , Zc8 , Zc9 and Zc10 select a group selected from the substituent group A.
  • ⁇ Substituent group A> Chlorine atom, bromine atom, iodine atom, —O—S ( O) 2 R C1 (wherein, R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent)
  • R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent
  • a group represented by —BF 3 Q ′ (wherein, Q ′ represents Li, Na, K, Rb or Cs); A group represented by the formula -MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom); A group represented by —ZnY ′ ′ (wherein Y ′ ′ represents a chlorine atom, a bromine atom or an iodine atom); -Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is And groups which may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are attached.
  • Examples of the group represented by —B (OR C2 ) 2 include groups represented by the following formulae.
  • the compound having a group selected from the substituent group A and the compound having a group selected from the substituent group B are condensation-polymerized by a known coupling reaction to form a group selected from the substituent group A and the substituent group B And a carbon atom bonded to a group selected from Therefore, if a compound having two groups selected from the substituent group A and a compound having two groups selected from the substituent group B are subjected to a known coupling reaction, condensation polymerization results in condensation of these compounds. Polymers can be obtained.
  • the condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but if necessary, it may be carried out in the coexistence of a phase transfer catalyst.
  • a catalyst for example, bis (triphenylphosphine) palladium (II) dichloride, bis (tris-o-methoxyphenylphosphine) palladium (II) dichloride, tetrakis (triphenylphosphine) palladium (0), tris (dibenzylideneacetone) And palladium complexes such as palladium acetate, palladium acetate, etc., tetrakis (triphenylphosphine) nickel (0), [1,3-bis (diphenylphosphino) propane) nickel (II) dichloride, bis (1,4) Transition metal complexes such as nickel complexes such as cyclooctadiene) nickel (0); these transition metal complexes further include triphenylphosphine, tri (o-tolyl) phosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine,
  • the amount of the catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal based on the total number of moles of the raw material monomer.
  • a base and a phase transfer catalyst for example, inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate and the like; tetrabutyl ammonium fluoride, tetraethyl ammonium hydroxide, tetra hydroxide hydroxide Organic bases such as butyl ammonium; phase transfer catalysts such as tetrabutyl ammonium chloride and tetrabutyl ammonium bromide.
  • the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of the base and phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of the raw material monomers.
  • the solvent examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is usually 10 to 100,000 parts by mass with respect to 100 parts by mass in total of the raw material monomers.
  • the reaction temperature of the condensation polymerization is usually ⁇ 100 to 200 ° C.
  • the reaction time of the condensation polymerization is usually 1 hour or more.
  • Post-treatment of the polymerization reaction is carried out by a known method, for example, a method of removing water-soluble impurities by liquid separation, adding a reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate and drying it.
  • the method of making it etc. is carried out alone or in combination.
  • the purity of the polymer compound is low, it can be purified by a usual method such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography and the like.
  • composition of the present invention comprises at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent; And a molecular compound.
  • composition containing the polymer compound of the present invention and a solvent is suitable for producing a light emitting device using a printing method such as an inkjet printing method or a nozzle printing method.
  • the viscosity of the ink may be adjusted according to the type of printing method, but in the case where a solution such as an inkjet printing method is applied to a printing method via a discharge device, in order to prevent clogging at the discharge and flying deflection. And preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • chlorinated solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene, etc .
  • ether solvents such as tetrahydrofuran, dioxane, anisole, 4-methylanisole; toluene,
  • Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane and bicyclohexyl
  • the compounding amount of the solvent is usually 1000 to 100000 parts by mass, preferably 2000 to 20000 parts by mass with respect to 100 parts by mass of the polymer compound of the present invention.
  • the solvents may be used alone or in combination of two or more.
  • Hole transport materials are classified into low molecular weight compounds and high molecular weight compounds, and high molecular weight compounds are more preferable.
  • the polymer compound include polyvinylcarbazole and derivatives thereof; polyarylenes having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the macromolecular compound may be a compound having an electron accepting moiety bound thereto. Examples of the electron accepting moiety include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone and the like, with preference given to fullerene.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass with respect to 100 parts by mass of the polymer compound of the present invention.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the low molecular weight compound for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and And diphenoquinone, as well as their derivatives.
  • a high molecular compound polyphenylene, polyfluorene, and these derivatives are mentioned, for example.
  • the polymer compound may be doped with metal.
  • the compounding amount of the electron transporting material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass with respect to 100 parts by mass of the polymer compound of the present invention.
  • the electron transporting material may be used alone or in combination of two or more.
  • the hole injecting material and the electron injecting material are classified into low molecular weight compounds and high molecular weight compounds, respectively.
  • metal phthalocyanines such as copper phthalocyanine; Carbon; Metal oxides, such as molybdenum and tungsten; Metal fluorides, such as lithium fluoride, sodium fluoride, cesium fluoride, potassium fluoride, etc. are mentioned, for example.
  • the polymer compound for example, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, and polyquinoxaline and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain, etc. And conductive polymers.
  • the compounding amount of the hole injecting material and the electron injecting material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by weight per 100 parts by mass of the polymer compound of the present invention. It is a mass part.
  • the hole injecting material and the electron injecting material may be used alone or in combination of two or more.
  • the conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm. is there.
  • the conductive polymer can be doped with an appropriate amount of ions in order to bring the conductivity of the conductive polymer into such a range.
  • the type of ion to be doped is an anion if it is a hole injecting material, and a cation if it is an electron injecting material.
  • the anion include polystyrene sulfonate ion, alkyl benzene sulfonate ion and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion and tetrabutyl ammonium ion. Only one ion or two or more ions may be doped.
  • Light emitting materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the low molecular weight compounds include, for example, naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and a triplet light emitting complex having iridium, platinum or europium as a central metal.
  • polymer compound for example, phenylene group, naphthalenediyl group, fluorenedyl group, phenanthrendiyl group, dihydrophenanthrendiyl group, group represented by formula (X), carbazole diyl group, phenoxazine diyl group, phenothiazine diyl Examples thereof include polymer compounds containing a group, an anthracenediyl group, a pyrenediyl group and the like.
  • the light emitting material may contain a low molecular weight compound and a high molecular weight compound, and preferably contains a triplet light emitting complex and a high molecular weight compound.
  • a triplet light emitting complex iridium complexes such as metal complexes represented by the formulas Ir-1 to Ir-5 are preferable.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or an aryl group Represents an oxy group, a monovalent heterocyclic group or a halogen atom, and these groups may have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 are present in plurality, they may be the same or different.
  • a D2 represents an anionic bidentate ligand
  • a D1 and A D2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom bonded to an iridium atom, and these The atom of may be an atom constituting a ring.
  • n D1 represents 1, 2 or 3 and n D2 represents 1 or 2.
  • At least one of R D1 to R D8 is preferably a group represented by the formula (DA).
  • R D11 to R D20 is a group represented by the formula (DA).
  • R D1 to R D8 and R D11 to R D20 is a group represented by the formula (DA).
  • R 21 to R D26 is a group represented by the formula (DA).
  • RD31 to RD37 is a group represented by the formula (DA).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • G DA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. The plurality of TDAs may be the same or different.
  • m DA1 , m DA2 and m DA3 are usually an integer of 10 or less, preferably 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 and m DA3 are the same integer.
  • G DA is preferably a group represented by formulas (GDA-11) to (GDA-15), and these groups may have a substituent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDAs When there are a plurality of RDAs , they may be the same or different.
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent May be
  • Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by Formula (ArDA-1) to Formula (ArDA-3).
  • R DA has the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple R DBs , they may be the same or different. ]
  • T DA is preferably a group represented by Formula (TDA-1) to Formula (TDA-3).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (D-A) is preferably a group represented by the formula (D-A1) to the formula (D-A3).
  • R p1 , R p2 and R p3 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • the plurality of np1 may be the same or different.
  • np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and still more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • Examples of the anionic bidentate ligand represented by -A D1 --- A D2- include a ligand represented by the following formula.
  • the metal complex represented by the formula Ir-1 is preferably a metal complex represented by the formula Ir-11 to Ir-13.
  • the metal complex represented by the formula Ir-2 is preferably a metal complex represented by the formula Ir-21.
  • the metal complex represented by the formula Ir-3 is preferably a metal complex represented by the formulas Ir-31 to Ir-33.
  • the metal complex represented by the formula Ir-4 is preferably a metal complex represented by the formulas Ir-41 to Ir-43.
  • the metal complex represented by the formula Ir-5 is preferably a metal complex represented by the formula Ir-51 to Ir-53.
  • n D2 represents 1 or 2; D represents a group represented by formula (DA).
  • a plurality of D may be the same or different.
  • R DC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R DC may be the same or different.
  • R DD represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Plural R DD may be the same or different.
  • the metal complex shown below is mentioned, for example.
  • the compounding amount of the light emitting material is usually 0.1 to 400 parts by mass with respect to 100 parts by mass of the polymer compound of the present invention.
  • the light emitting materials may be used alone or in combination of two or more.
  • the antioxidant may be a compound which is soluble in the same solvent as the polymer compound of the present invention and does not inhibit light emission and charge transport, and examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass with respect to 100 parts by mass of the polymer compound of the present invention.
  • the antioxidant may be used alone or in combination of two or more.
  • the light emitting device of the present invention is a light emitting device provided with an organic layer containing the polymer compound of the present invention.
  • the light emitting device of the present invention has, for example, an electrode comprising an anode and a cathode, and a layer containing the polymer compound of the present invention provided between the electrodes.
  • the layer containing the polymer compound of the present invention is usually at least one layer of a light emitting layer, a hole transporting layer, a hole injecting layer, an electron transporting layer and an electron injecting layer, preferably a light emitting layer .
  • Each of these layers contains a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material.
  • Each of these layers is prepared by dissolving a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material in the above-mentioned solvent to prepare an ink, for example, spin coating, casting Method, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary It can be formed by a coating method or a nozzle coating method.
  • the light emitting element has a light emitting layer between the anode and the cathode.
  • the light emitting device of the present invention preferably has at least one of a hole injecting layer and a hole transporting layer between the anode and the light emitting layer from the viewpoint of the hole injecting property and the hole transporting property, From the viewpoint of injectability and electron transportability, it is preferable to have at least one of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • the hole transport layer As materials of the hole transport layer, the electron transport layer, the light emitting layer, the hole injection layer, and the electron injection layer, in addition to the polymer compound of the present invention, the above-mentioned hole transport material, electron transport material, light emission Materials, hole injection materials, and electron injection materials can be mentioned.
  • vacuum evaporation from powder for example A method, a method by film formation from a solution or molten state may be mentioned, and when using a polymer compound, for example, a method by film formation from a solution or molten state may be mentioned.
  • the order, number, and thickness of the layers to be stacked may be adjusted in consideration of the light emission efficiency and the device life.
  • the substrate in the light emitting element may be any substrate that can form an electrode and does not change chemically when forming an organic layer, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferred that the electrode furthest from the substrate be transparent or translucent.
  • Examples of the material of the anode include conductive metal oxides and semitransparent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. Conductive compounds; complexes of silver, palladium and copper (APC); NESA, gold, platinum, silver, copper.
  • the material of the cathode includes, for example, metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc and indium; alloys of two or more of them; one of them And alloys thereof with one or more species of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminium alloy, indium-silver alloy, lithium-aluminium alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminium alloy.
  • the anode and the cathode may each have a laminated structure of two or more layers.
  • a planar anode and a cathode may be arranged to overlap.
  • a method of installing a mask provided with a pattern-like window on the surface of a planar light-emitting element is used.
  • both the anode and the cathode may be formed in stripes and arranged orthogonal to each other.
  • Partial color display and multi-color display can be performed by a method of separately coating a plurality of types of polymer compounds different in emission color and a method of using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like.
  • These display devices can be used as displays of computers, televisions, portable terminals, and the like.
  • a planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar light source for illumination. If a flexible substrate is used, it can be used as a curved light source and a display device.
  • the polystyrene equivalent number average molecular weight (Mn) of the polymer compound and the polystyrene equivalent weight average molecular weight (Mw) are any of the following size exclusion chromatography (SEC) using tetrahydrofuran as a mobile phase: Determined by The SEC measurement conditions are as follows.
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase flowed at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used.
  • LC-MS was measured by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg / mL, and about 1 ⁇ L was injected into LC-MS (manufactured by Agilent, trade name: 1290 Infinity LC and 6230 TOF LC / MS).
  • the mobile phase of LC-MS was used while changing the ratio of acetonitrile and tetrahydrofuran, and flowed at a flow rate of 1.0 mL / min.
  • SUMIPAX ODS Z-CLUE manufactured by Sumika Analysis Center, inner diameter: 4.6 mm, length: 250 mm, particle diameter 3 ⁇ m
  • NMR NMR was measured by the following method. About 5 to 10 mg of a sample to be measured was added to about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, they were dissolved in methylene dichloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA 300, or manufactured by JEOL RESONANCE, trade name: JNM-ECZ400S / L1).
  • HPLC high performance liquid chromatography
  • an ODS column having SUMIPAX ODS Z-CLUE (manufactured by Sumika Analysis Center, inner diameter: 4.6 mm, length: 250 mm, particle diameter 3 ⁇ m) or equivalent performance was used.
  • a detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 1a (29.6 g, colorless oil).
  • the HPLC area percentage value of compound 1a was 99.2%.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 1b (14.9 g, colorless oil).
  • the HPLC area percentage value of compound 1b was 99.0%.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 1c (9.2 g, colorless oil).
  • the HPLC area percentage value of compound 1c was 92.2%.
  • the reaction vessel was changed to a nitrogen gas atmosphere, Compound 1c (7.5 g) and tert-butylbenzene (56 mL) were added, and after cooling to 0 ° C., t-BuLi ⁇ pentane solution was maintained there while maintaining 0 ° C. (1.5 M, 9.6 mL) was added slowly. The resulting mixture was stirred at 60 ° C. for 3 hours, and then pentane was distilled off under reduced pressure. The resulting mixture was cooled to ⁇ 50 ° C., BBr 3 (4.5 g) was added, and the mixture was stirred at ⁇ 50 ° C. for 0.5 hour. The resulting mixture was heated to 120 ° C. and allowed to react at 120 ° C.
  • Synthesis Example 3 Synthesis and Acquisition of Compounds 3 to 8 and Compounds 11 to 12
  • Compound 3 was synthesized according to the method described in JP-A-2010-189630.
  • Compound 4 was synthesized according to the method described in JP-A-2007-512249.
  • Compound 5 was synthesized according to the method described in JP-A-2008-106241.
  • the compound 6 used the commercial item.
  • Compound 7 was synthesized according to the method described in WO 2009/131255.
  • Compound 8 was synthesized according to the method described in WO 2016/031639.
  • Synthesis Example 4 Synthesis of Polymer Compound 1 (Step 1) After setting the inside of the reaction vessel to an inert gas atmosphere, compound 3 (3.995 g), compound 4 (6.237 g), compound 5 (0.519 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (7.1) mg) and toluene (190 mL) were added and heated to 105.degree. (Step 2) Thereafter, a 20% by mass aqueous tetraethylammonium hydroxide solution (28 mL) was dropped thereto, and the mixture was refluxed for 4 hours.
  • phenylboronic acid 97.5 mg
  • 20% by mass aqueous tetraethylammonium hydroxide 28 mL
  • dichlorobis tris-o-methoxyphenylphosphine
  • palladium 7. mg
  • the resulting reaction mixture was cooled, and then washed twice with water, twice with a 10% by mass aqueous hydrochloric acid solution, twice with a 3% by mass aqueous ammonia solution, and twice with water.
  • the resulting solution was added dropwise to methanol and stirred, whereupon a precipitate formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The resulting solution was added dropwise to methanol and stirred, whereupon a precipitate formed. The obtained precipitate was collected by filtration and dried to obtain 6.65 g of polymer compound 1.
  • the Mn of the polymer compound 1 was 2.6 ⁇ 10 4
  • the Mw was 1.4 ⁇ 10 5 .
  • the polymer compound 1 has a structural unit derived from the compound 3, a structural unit derived from the compound 4, and a structural unit derived from the compound 5 in the theoretical value determined from the amount of the feed material: 50: It is a copolymer comprised by the molar ratio of 42.5: 7.5.
  • Step 1 Synthesis of Polymer Compound 2
  • compound 2 (0.104 g)
  • compound 6 0.502 g
  • compound 7 0.628 g
  • dichlorobis tris-o-methoxyphenylphosphine
  • toluene 27 mL
  • Step 2 After that, a 10% by mass aqueous tetraethylammonium hydroxide solution (18 mL) was added dropwise thereto, and the mixture was refluxed for 4 hours.
  • the resulting solution was added dropwise to methanol and stirred, whereupon a precipitate formed.
  • the obtained precipitate was collected by filtration and dried to obtain 0.68 g of polymer compound 2.
  • the Mn of the polymer compound 2 was 4.5 ⁇ 10 4
  • the Mw was 1.1 ⁇ 10 5 .
  • the polymer compound 2 has a theoretical value determined from the amount of the feed materials: the constituent unit derived from the compound 6, the constituent unit derived from the compound 7, and the constituent unit derived from the compound 2: 45 It is a copolymer comprised by the molar ratio of 50: 5.
  • Step 1 Synthesis of Polymer Compound 3
  • (Step 1) is “in the reaction vessel with an inert gas atmosphere, then Compound 8 (0.096 g), Compound 6 (0.916 g), Compound Polymer compound 3 in the same manner as in Example 1 except that 7 (1.119 g), dichlorobis (phenylphosphine) palladium (1.5 mg) and toluene (47 mL) were mixed and heated to 105.degree. I got 1.1 g.
  • the Mn of the polymer compound 3 was 5.0 ⁇ 10 4
  • the Mw was 1.1 ⁇ 10 5 .
  • the polymer compound 3 is a theoretical value determined from the amount of the charged raw material, and the constituent unit derived from the compound 6, the constituent unit derived from the compound 7, and the constituent unit derived from the compound 8 are 45: It is a copolymer comprised by the molar ratio of 50: 5.
  • Example D1 Production and Evaluation of Light-Emitting Element D1 An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method. Form a hole injection material ND-3202 (manufactured by Nissan Chemical Industries) on the anode to a thickness of 35 nm by spin coating, and heat it on a hot plate at 240 ° C for 15 minutes in an air atmosphere. Thus, a hole injection layer was formed. The polymer compound 1 was dissolved in xylene at a concentration of 0.6% by mass.
  • ND-3202 manufactured by Nissan Chemical Industries
  • a film is formed to a thickness of 20 nm by spin coating on the hole injection layer, and positive heating is performed by heating at 200 ° C. for 30 minutes on a hot plate under a nitrogen gas atmosphere. A hole transport layer was formed.
  • the polymer compound 2 was dissolved in xylene at a concentration of 1.3% by mass.
  • a film is formed to a thickness of 60 nm by spin coating on the hole transport layer, and light emission is obtained by heating at 150 ° C. for 10 minutes on a hot plate under a nitrogen gas atmosphere. A layer was formed.
  • sodium fluoride is about 7 nm on the light emitting layer and then on the sodium fluoride layer as a cathode.
  • Aluminum was deposited to about 120 nm.
  • sealing was performed using a glass substrate, to fabricate a light emitting device D1.
  • the maximum external quantum yield was 4.1%, and EL emission having a maximum peak wavelength of the emission spectrum at 460 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.142, 0.071).
  • driving was performed at a constant current density, and the time change of luminance was measured. The time for the luminance to reach 60% of the initial luminance was 44 hours.
  • Example D2 Production and Evaluation of Light-Emitting Element D2
  • the composition of Polymer Compound 2 and Polymer Compound 3 was used in place of Polymer Compound 2 in a mass ratio of 50:50.
  • a light emitting device D2 was produced in the same manner as in Example D1.
  • the maximum external quantum yield was 3.3%, and EL emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.145, 0.067).
  • driving was performed at a constant current density, and the time change of luminance was measured. The time for the luminance to reach 60% of the initial luminance was 54 hours.
  • Example CD1 Comparative Example CD1 Production and Evaluation of Light Emitting Element CD1
  • a light emitting element CD1 was produced in the same manner as in Example D1, except that the polymer compound 3 was used in place of the polymer compound 1 in Example D1.
  • the maximum external quantum yield was 3.1%
  • EL emission having the maximum peak wavelength of the light emission spectrum at 440 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.156, 0.063).
  • driving was performed with a constant current, and the time change of luminance was measured. The time for the luminance to reach 60% of the initial luminance was 38 hours.
  • reaction vessel was changed to an argon gas atmosphere, and then compound 9-1 (169.5 g), 4-hexylaniline (84.8 g), Pd 2 (dba) 3 (dba) 0.75 (6.26 g), t-Bu 3 PHBF 4 (3.33 g), t-BuONa (55.13 g) and toluene (2117 mL) were added and stirred at 20 ° C. for 1.5 hours.
  • the resulting mixture was filtered through a short column stacked with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 9-2 (181.3 g, oil).
  • the HPLC area percentage value of compound 9-2 was 99%.
  • the required amount of compound 9-2 was obtained by repeating these operations.
  • the reaction vessel was changed to an argon gas atmosphere, then 1-bromo-2,3-dichlorobenzene (77.2 g), compound 9-2 (197.5 g), Pd 2 (dba) 3 (dba) 0.75 (6.11 g), t-Bu 3 PHBF 4 (3.24 g), t-BuONa (53.3 g) and toluene (1337 g) were added and stirred at 50 ° C. for 4 hours. The resulting mixture was cooled to room temperature and then filtered through a short column stacked with silica gel and celite. The obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 9-4 (149 g, colorless oil).
  • the HPLC area percentage value of compound 9-4 was 94.5%.
  • reaction vessel was changed to a nitrogen gas atmosphere, compound 9-4 (132.4 g) and tert-butylbenzene (811 mL) were added, and after cooling to 0 ° C., t-BuLi ⁇ pentane solution (1.5 M, 151 mL) was added added. The resulting mixture was stirred at 40 ° C. for 1 hour and then at 50 ° C. for 1 hour. The resulting mixture was cooled to ⁇ 50 ° C., BBr 3 (27.7 mL) was added, and the mixture was stirred at ⁇ 50 ° C. for 0.5 hours.
  • the resulting mixture was warmed to 0 ° C., and N, N-diisopropylamine (48.8 mL) was added. The temperature of the resulting mixture was raised to 60 ° C., and pentane was distilled off. The resulting mixture was heated to 120 ° C. and allowed to react for 3 hours. The resulting mixture was cooled to room temperature, aqueous sodium acetate solution and ethyl acetate were added, and the obtained organic layer was washed with ion-exchanged water. The obtained organic layer was concentrated under reduced pressure to obtain a yellow oil.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 9-5 (16.4 g, yellow solid).
  • the HPLC area percentage value of compound 9-5 was 96.9%.
  • the resulting mixture was filtered through a short silica gel column, and the obtained filtrate was concentrated under reduced pressure to give a yellow oil.
  • the obtained oil was recrystallized with heptane to obtain a pale yellow powder.
  • the obtained powder was recrystallized with a mixed solution of toluene and ethanol, and dried to give compound 9-6 (7.56 g, yellow powder).
  • the HPLC area percentage value of compound 9-6 was 90.7%.
  • the reaction vessel was changed to a nitrogen gas atmosphere, and then 1,3,5-tribromobenzene (10.4 g), compound 9-6 (7.5 g), toluene (112 mL) and tetrakis (triphenylphosphine) palladium (0) ( 0.228 g) was added, and then 12 mass% tetrabutylammonium hydroxide aqueous solution (43 g) was added, and the mixture was heated to reflux for 3 hours. The resulting mixture was cooled to room temperature, then the aqueous layer was separated, and the resulting organic layer was washed twice with water.
  • the obtained crude product was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 10-2 (5.26 g, pale red white powder).
  • the HPLC area percentage value of compound 10-2 was 89.8%.
  • the obtained crude product was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 10-3 (13.16 g, pale yellow solid).
  • the HPLC area percentage value of compound 10-3 was 99.3%.
  • the reaction vessel was an argon gas atmosphere, compound 10-2 (5.20 g), compound 10-3 (5.25g), Pd 2 ( dba) 3 (dba) 0.75 (0.452g), t-Bu 3 PHBF 4 (0.252 g), t-BuONa (2.39 g) and toluene (104 mL) were added and stirred at 50 ° C. for 2 hours.
  • the resulting mixture was cooled to room temperature and then filtered through a short column stacked with silica gel and celite. The obtained filtrate was concentrated under reduced pressure to obtain a brown solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain compound 10-4 (5.69 g, white solid).
  • the HPLC area percentage value of compound 10-4 was 98.4%.
  • reaction vessel was changed to a nitrogen gas atmosphere, and then compound 10-4 (4.60 g), o-dichlorobenzene (64 mL) and BBr 3 (3.3 g) were added, and the mixture was stirred at 140 ° C. for 6 hours.
  • the resulting mixture was cooled to room temperature, then toluene (64 mL) and N, N-diisopropylamine (7.9 mL) were added and stirred.
  • the resulting mixture was filtered through a short column stacked with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a brown oil.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), concentrated under reduced pressure, and dried to obtain a yellow powder.
  • the obtained powder was recrystallized with a mixed solvent of toluene and acetonitrile to give compound 10-5 (1.55 g, yellow solid).
  • the HPLC area percentage value of compound 10-5 was 99.3%.
  • the required amount of compound 10-5 was obtained by repeating these operations.
  • the obtained oil was recrystallized with acetonitrile to obtain a pale yellow powder.
  • the obtained powder was dissolved in a mixed solvent of toluene and heptane, and then activated carbon was added and stirred. The resulting mixture was filtered using celite, concentrated under reduced pressure, and dried to give a yellow powder.
  • the obtained powder was recrystallized with a mixed solution of toluene and acetonitrile, and the operation of drying was repeated twice to obtain Compound 10 (1.48 g, yellow powder).
  • the HPLC area percentage value of compound 10 was 99.8%.
  • Example 2 Synthesis of polymer compound 4 After setting the inside of the reaction vessel to an inert gas atmosphere, compound 6 (0.633 g), compound 8 (0.063 g), compound 7 (0.723 g), compound 9 (0.026 g) Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.02 mg) and toluene (24.2 g) were mixed and heated to 80.degree. Then, 10 mass% tetraethylammonium hydroxide aqueous solution (20 mL) was dripped there, and it was made to reflux for 4.5 hours.
  • phenylboronic acid 55.8 mg
  • dichlorobis tris-o-methoxyphenylphosphine
  • palladium 1.01 mg
  • the reaction solution was washed once with water, twice with 10% by mass aqueous hydrochloric acid solution, twice with 3% by mass aqueous ammonia solution, and twice with water.
  • the water was removed by distilling the obtained organic layer under reduced pressure.
  • the resulting solution was purified by passing it through a column packed with a mixture of alumina and silica gel.
  • the obtained solution was added dropwise to methanol and stirred, and then the obtained precipitate was collected by filtration and dried, to obtain 0.54 g of polymer compound 4.
  • the Mn of the polymer compound 4 was 4.5 ⁇ 10 4
  • the Mw was 1.1 ⁇ 10 5 .
  • the polymer compound 4 is a theoretical value determined from the amount of the raw materials charged, and the structural unit derived from the compound 6, the structural unit derived from the compound 8, the structural unit derived from the compound 7, and the compound 9 It is a copolymer in which the constituent units to be derived are constituted at a molar ratio of 45: 5: 49: 1.
  • phenylboronic acid 112.2 g
  • dichlorobis tris-o-methoxyphenylphosphine
  • palladium 2.13 mg
  • the reaction solution was washed once with water, twice with 10 wt% aqueous hydrochloric acid solution, twice with 3 wt% aqueous ammonia solution, and twice with water.
  • the water was removed by distilling the obtained organic layer under reduced pressure.
  • the resulting solution was purified by passing it through a column packed with a mixture of alumina and silica gel.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.06 g of polymer compound Polymer compound 5.
  • the Mn of the polymer compound 5 was 7.7 ⁇ 10 4 and the Mw was 1.7 ⁇ 10 5 .
  • the polymer compound 5 is a theoretical value determined from the amount of the raw materials charged, and the structural unit derived from the compound 6, the structural unit derived from the compound 8, the structural unit derived from the compound 10, and the compound 7 It is a copolymer in which the constituent units to be derived are constituted at a molar ratio of 44: 5: 1: 50.
  • Synthesis Example 8 Synthesis of Polymer Compound 6 Polymer compound 6 was synthesized according to the method of polymer example 1 described in WO 2014/102543.
  • Example D3 Production and Evaluation of Light-Emitting Element D3 An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method. Form a hole injection material ND-3202 (manufactured by Nissan Chemical Industries) on the anode to a thickness of 35 nm by spin coating, and heat it on a hot plate at 240 ° C for 15 minutes in an air atmosphere. Thus, a hole injection layer was formed. The polymer compound 6 was dissolved in xylene at a concentration of 0.6% by mass.
  • ND-3202 manufactured by Nissan Chemical Industries
  • a film is formed to a thickness of 20 nm by spin coating on the hole injection layer, and positive heating is performed by heating at 200 ° C. for 30 minutes on a hot plate under a nitrogen gas atmosphere. A hole transport layer was formed.
  • the polymer compound 4 was dissolved in xylene at a concentration of 1.3% by mass.
  • a film is formed to a thickness of 60 nm by spin coating on the hole transport layer, and light emission is obtained by heating at 150 ° C. for 10 minutes on a hot plate under a nitrogen gas atmosphere. A layer was formed.
  • sodium fluoride is about 7 nm on the light emitting layer and then on the sodium fluoride layer as a cathode.
  • Aluminum was deposited to about 120 nm.
  • sealing was performed using a glass substrate, to fabricate a light emitting device D3.
  • the maximum external quantum yield was 8.1%, and EL emission having the maximum peak wavelength of the emission spectrum at 465 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.131, 0.095).
  • driving was performed at a constant current density, and the time change of luminance was measured. The time for the luminance to reach 50% of the initial luminance was 42 hours.
  • Example D4 Production and Evaluation of Light Emitting Element D4
  • a light emitting element D4 was produced in the same manner as in Example D3, except that the polymer compound 5 was used instead of the polymer compound 4 in Example D3. .
  • the maximum external quantum yield was 7.8%, and EL light emission having a maximum peak wavelength of the light emission spectrum at 450 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.149, 0.045).
  • driving was performed at a constant current density, and the time change of luminance was measured. The time for the luminance to reach 50% of the initial luminance was 44 hours.
  • Example CD2 Comparative Example CD2 Production and Evaluation of Light Emitting Element CD2
  • a light emitting element CD2 was produced in the same manner as in Example D3, except that the polymer compound 3 was used in place of the polymer compound 4 in Example D3.
  • the maximum external quantum yield was 7.0%, and EL emission having a maximum peak wavelength of the emission spectrum at 440 nm was observed.
  • the CIE 1931 chromaticity coordinates at this time were (0.153, 0.055).
  • driving was performed at a constant current density, and the time change of luminance was measured. The time for the luminance to reach 50% of the initial luminance was 21 hours.
  • a polymer compound useful for the production of a light emitting device excellent in luminance life it is possible to provide a polymer compound useful for the production of a light emitting device excellent in luminance life. Further, according to the present invention, a composition containing the polymer compound and a light emitting device containing the polymer compound can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Optics & Photonics (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供する。 式(1)で表される化合物の残基を有する構成単位と、前記式(1)で表される化合物の残基を有さない構成単位とを含む、高分子化合物。 [式中、 A環、B環及びC環は、芳香族炭化水素環等を表す。 Xは、ホウ素原子等を表す。 Y1、Y2及びY3は、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表す。 n3は、0又は1である。n3が0である場合、-Y3-は存在しない。]

Description

高分子化合物及びそれを用いた発光素子
 本発明は、高分子化合物及びそれを用いた発光素子に関する。
 発光素子に用いられる発光材料としては、例えば、下記式で表される高分子化合物が検討されている(特許文献1)。
Figure JPOXMLDOC01-appb-C000012
国際公開公報第2013/013753号
 しかしながら、上記の高分子化合物を用いて製造される発光素子は、輝度寿命が必ずしも十分ではない。
 そこで、本発明は、輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供することを目的とする。
 本発明は、以下の[1]~[15]を提供する。
[1]式(1)で表される化合物の残基を有する構成単位と、前記式(1)で表される化合物の残基を有さない構成単位とを含む、高分子化合物。
Figure JPOXMLDOC01-appb-C000013
[式中、
 A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
 Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
 Y1は、N-Ry、硫黄原子又はセレン原子を表す。Y2及びY3は、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
 n3は、0又は1である。n3が0である場合、-Y3-は存在しない。]
[2]前記式(1)で表される化合物の残基を有する構成単位が、式(2)又は式(2')で表される構成単位である、[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000014
[式中、
 nAは、0~5の整数である。
 nは、1又は2である。
 Ar3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
 Qは、前記式(1)で表される化合物の残基を表す。]
Figure JPOXMLDOC01-appb-C000015
[式中、
 mは1~4の整数である。
 mAは0~5の整数である。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 cは0又は1である。
 Ar4及びAr6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが結合した基を表し、これらの基は置換基を有していてもよい。
 Ar4、Ar5及びAr6は、それぞれ、該基が結合している窒素原子に結合している該基以外の基と、直接結合して、又は、酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
 KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
 Q’は、前記式(1)で表される化合物の残基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Q’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのQ’は、前記式(1)で表される化合物の残基である。]
[3]前記式(1)で表される化合物の残基を有する構成単位が、式(3)で表される構成単位である、[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000016
[式中、
 d、e、f及びgは、それぞれ独立に、0~2の整数である。
 pAは、0~5の整数である。pAが複数存在する場合、それらは同一でも異なっていてもよい。
 Jは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Jが複数存在する場合、それらは同一でも異なっていてもよい。
 Ar7、Ar8及びAr9は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Ar7、Ar8及びAr9が複数存在する場合、それらは各々同一でも異なっていてもよい。
 RX4は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX4が複数存在する場合、それらは同一でも異なっていてもよい。
 Q’’は、前記式(1)で表される化合物の残基を表す。]
[4]前記Xがホウ素原子である、[1]~[3]のいずれかに記載の高分子化合物。
[5]前記Y1、Y2及びY3がN-Ryである、[1]~[4]のいずれかに記載の高分子化合物。
[6]前記n3が0である、[1]~[5]のいずれかに記載の高分子化合物。
[7]前記式(2)で表される構成単位が式(31)で表される構成単位である、[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000017
[式中、
 R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は置換アミノ基を表し、これらの基は置換基を有していてもよい。但し、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11のうちの1つは結合手である。
 Ry、Ar3、LA及びnAは、前記と同じ意味を表す。]
[8]前記式(2')で表される構成単位が式(41)で表される構成単位である、[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000018
[式中、
 R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は、置換アミノ基を表し、これらの基は置換基を有していてもよい。但し、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11のうちの1つは結合手である。
 Ry、Ar4、Ar6、KA及びmAは、前記と同じ意味を表す。]
[9]前記式(3)で表される構成単位が式(51)で表される構成単位である、[3]に記載の高分子化合物
Figure JPOXMLDOC01-appb-C000019
[式中、
 R21、R22、R23、R24、R25、R26、R27、R28、R29、R30及びR31は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は、置換アミノ基を表し、これらの基は置換基を有していてもよい。
 Ry’は、直接結合、アリーレン基、2価の複素環基、又はアルキレン基を表し、これらの基は置換基を有していてもよい。複数存在するRy’は、同一でも異なっていてもよい。
 Ar7、Ar8、Ar9、RX4、J,pA、d、e、f及びgは、前記と同じ意味を表す。]
[10]前記式(1)で表される化合物の残基を有さない構成単位が、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位である、[1]~[9]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000020
[式中、
 a1及びa2は、それぞれ独立に、0~2の整数である。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000021
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが結合した2価の基を表し、これらの基は置換基を有していてもよい。]
[11]前記式(Y)で表される構成単位が、式(Y-1)で表される構成単位又は式(Y-2)で表される構成単位である、[10]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000022
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000023
[式中、
 RY1は前記と同じ意味を表す。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又は-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
[12]前記式(2)で表される構成単位、及び式(2')で表される構成単位の合計量が、高分子化合物に含まれる全構成単位の合計量に対して、0.1~50モル%である、[2]、[4]~[8]、[10]及び[11]のいずれかに記載の高分子化合物。
[13]前記式(3)で表される構成単位の合計量が、高分子化合物に含まれる全構成単位の合計量に対して、0.1~50モル%である、[3]~[6]及び[9]~[11]のいずれかに記載の高分子化合物。
[14]正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種の材料と、[1]~[13]のいずれかに記載の高分子化合物と、を含有する組成物。
[15][1]~[13]のいずれかに記載の高分子化合物を含有する有機層を備えた発光素子。
 本発明によれば、輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、この高分子化合物を含有する組成物及びこの高分子化合物を含有する発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[式中、R及びRaは、前記と同じ意味を表す。]
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。
 <高分子化合物>
 本発明の高分子化合物は、前記式(1)で表される化合物の残基を有する構成単位と、前記式(1)で表される化合物の残基を有さない構成単位とを含む。式(1)で表される化合物の残基とは、式(1)で表される化合物の骨格構造(即ち、置換基以外の部分)から水素原子を1個又は2個以上除いた基である。式(1)で表される化合物の残基は、高分子化合物の主鎖、側鎖及び末端のいずれに存在していてもよい。式(1)で表される化合物の残基を有する構成単位及び式(1)で表される化合物の残基を有さない構成単位は、各々、高分子化合物中に、1種のみ含まれていても2種以上含まれていてもよい。
 [式(1)で表される化合物]
 A環、B環及びC環で表される芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~18であり、より好ましくは6~10であり、特に好ましくは6である。芳香族炭化水素環としては、例えば、ベンゼン、フルオレン、ナフタレン、アントラセン、フェナントレンが挙げられ、好ましくはベンゼンである。
 A環、B環及びC環で表される芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは3~20であり、より好ましくは4~15である。芳香族複素環としては、例えば、ピリジン、ジアザベンゼン、アザナフタレン、ジアザナフタレン、カルバゾール、インドロカルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェンが挙げられる。
 A環、B環、及びC環が有していてもよい置換基としては、本発明の発光素子の輝度寿命が優れるので、好ましくは、アルキル基、アリール基、1価の複素環基、又は置換アミノ基であり、より好ましくは、アルキル基、アリール基、又は置換アミノ基であり、これらの基は置換基を有していてもよい。
 次に、A環、B環及びC環のより詳しい構造(CA、CB及びCC)を説明する。
Figure JPOXMLDOC01-appb-C000035
 A環の詳しい構造(CA)としては、例えば、式(CA01)~式(CA38)で表される構造が挙げられ、本発明の発光素子の輝度寿命が優れるので、好ましくは、式(CA01)~式(CA19)で表される構造であり、より好ましくは、式(CA01)~式(CA05)で表される構造であり、更に好ましくは、式(CA01)で表される構造である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
[式中、
 Raは、前記と同じ意味を表す。
 水素原子は、A環が有していてもよい置換基に置き換わっていてもよい。
 RY2は、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。-C(RY2)2-、-CRY2=CRY2-、又は-C(RY2)2-C(RY2)2-で表される基において、複数存在するRY2のうち、2個のRY2が互いに結合して環を形成していてもよい。複数存在するRY2は、同一でも異なっていてもよい。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RY4が複数存在する場合、それらは同一でも異なっていてもよい。]
 RY2は、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 B環の詳しい構造(CB)としては、例えば、式(CB01)~式(CB24)で表される構造が挙げられ、素子寿命が優れるので、好ましくは、式(CB01)~式(CB13)で表される構造であり、より好ましくは、式(CB01)~式(CB05)で表される構造であり、特に好ましくは、式(CB01)で表される構造である。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
[式中、RY2、RY4及びRaは、前記と同じ意味を表す。水素原子は、B環が有していてもよい置換基に置き換わっていてもよい。]
 C環の詳しい構造(CC)としては、例えば、式(CC01)~式(CC24)で表される構造が挙げられ、好ましくは、式(CC01)~式(CC13)で表される構造であり、より好ましくは、式(CC01)~式(CC05)で表される構造であり、更に好ましくは、式(CC01)で表される構造である。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
[式中、RY2、RY4及びRaは、前記と同じ意味を表す。水素原子は、C環が有していてもよい置換基に置き換わっていてもよい。]
 式(CA02)~式(CA05)、式(CB02)~式(CB05)、及び式(CC02)~式(CC05)において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。-C(RY2)2-で表される基における2個のRY2が互いに結合して、該炭素原子と共に環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000046
 式(CA09)~式(CA12)、式(CB08)~式(CB10)、及び式(CC08)~式(CC10)において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 式(CA13)~式(CA16)、式(CB11)、式(CB12)、式(CC11)、及び式(CC12)において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000047
[式中、RY2は前記と同じ意味を表す。]
 式(CA20)~式(CA26)、式(CB14)~式(CB18)、及び式(CC14)~式(CC18)において、RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 本発明の高分子化合物において、A環、B環及びC環の組み合わせとしては、本発明の発光素子の輝度寿命が優れるので、好ましくは、A環が式(CA01)~式(CA05)で表される構造であり、B環が式(CB01)~式(CB05)で表される構造であり、且つ、C環が式(CC01)~式(CC05)で表される構造であり、より好ましくは、A環が式(CA01)で表される構造であり、B環が式(CB01)~式(CB05)で表される構造であり、且つ、C環が式(CC01)~式(CC05)で表される構造であり、更に好ましくは、A環が式(CA01)で表される構造であり、B環が式(CB01)で表される構造であり、且つ、C環が式(CC01)で表される構造である。
 式(1)中、Xは、本発明の発光素子の輝度寿命がより優れるので、好ましくは、ホウ素原子、リン原子、P=O、又はアルミニウム原子であり、より好ましくは、ホウ素原子、又はP=Oであり、更に好ましくはホウ素原子である。
 n3は、本発明の発光素子の輝度寿命がより優れるので、好ましくは0である。
 式(1)中、Y1、Y2及びY3は、本発明の高分子化合物の安定性が良好になるので、好ましくは、N-Ry、又は硫黄原子であり、より好ましくは、N-Ryである。
 式(1)中、Y1、Y2及びY3の少なくとも一つは、本発明の高分子化合物の安定性が良好になるので、N-Ryであることが好ましく、Y1、Y2及びY3の全てがN-Ryであることがより好ましい。但し、n3が0である場合、Y1及びY2の双方がN-Ryである。
 Ryは、本発明の発光素子の輝度寿命がより優れるので、好ましくは、水素原子、置換基を有していてもよいアリール基、又は、置換基を有していてもよい1価の複素環基であり、より好ましくは、水素原子、又は、置換基を有していてもよいアリール基であり、更に好ましくは、置換基を有していてもよいアリール基である。
 Ryが連結基を介して、A環、B環又はC環と結合している場合、連結基としては、例えば、-O-、-S-、-CH2-等の2価の基、ホウ素原子等の3価の基が挙げられる。
 Ryが3価の基を介してA環、B環又はC環と結合する場合、通常、A環とA環上の置換基と連結するか、B環とB環上の置換基と連結するか、C環とC環上の置換基と連結する。
 Ryが直接又は連結基を介してA環、B環又はC環と結合した構造としては、例えば、式(E01)~式(E16)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
[式中、A環、B環、C環、X、Y2、Y3、及びn3は、前記と同じ意味を表す。]
 式(1)で表される化合物としては、式(1-201)~式(1-220)、式(1-301)~式(1-305)、及び、式(1-401)~式(1-432)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 式(1)で表される化合物の残基を有する構成単位は、式(2)、式(2')又は式(3)で表される構成単位であることが好ましい。
 [式(2)で表される構成単位]
 nAは、本発明の発光素子の輝度寿命がより優れるので、好ましくは0又は1であり、より好ましくは0である。
 nは、本発明の発光素子の輝度寿命がより優れるので、好ましくは1である。
 Ar3は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Ar3で表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Ar3で表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Ar3で表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Ar3で表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Ar3で表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が挙げられる。
 LAで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。LAで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子及びシアノ基が挙げられる。
 LAで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、o-フェニレン、m-フェニレン、p-フェニレンが挙げられる。アリーレン基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基が挙げられる。
 R’で表されるアリール基としては、フェニル基、ナフチル基、及びフルオレニル基が挙げられる。該アリール基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基が挙げられる。
 Qで表される式(1)で表される化合物の残基の定義、好ましい範囲及び例は、上述した式(1)で表される化合物の残基の定義、好ましい範囲及び例と同様である。
 式(2)で表される構成単位は、高分子化合物中に、1種のみ含まれていても2種以上含まれていてもよい。
 [式(2')で表される構成単位]
 mAは、本発明の発光素子の輝度寿命がより優れるので、好ましくは0又は1であり、より好ましくは0である。
 mは、本発明の発光素子の輝度寿命がより優れるので、好ましくは2である。
 cは、本発明の高分子化合物の製造が容易になり、かつ、本発明の発光素子の輝度寿命がより優れるので、好ましくは0である。
 Ar5は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Ar5で表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、後述する式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Ar5で表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、後述する式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Ar5で表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、後述する式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Ar4及びAr6は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar4及びAr6で表されるアリーレン基及び2価の複素環基の定義や例は、各々、後述する式(X)におけるArX1及びArX3で表されるアリーレン基及び2価の複素環基の定義や例と同じである。
 Ar4、Ar5及びAr6で表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が挙げられる。
 KAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、LAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 KAは、本発明の高分子化合物の製造が容易になるので、好ましくはアルキレン基、アリーレン基、又は-NR’-で表される基であり、更に好ましくは、フェニレン基、アルキレン基又は-N(C65)-であり、これらの基は置換基を有していてもよい。
 Q'で表される式(1)で表される化合物の残基の定義、好ましい範囲及び例は、上述した式(1)で表される化合物の残基の定義、好ましい範囲及び例と同様である。
 式(2')で表される構成単位は、高分子化合物中に、1種のみ含まれていても2種以上含まれていてもよい。
 本発明の高分子化合物に含まれる式(2)で表される構成単位、及び式(2')で表される構成単位の合計量は、高分子化合物の安定性が優れるので、高分子化合物に含まれる全構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.1~10モル%であり、特に好ましくは0.5~5モル%である。
 [式(2)又は式(2')で表される構成単位の好ましい態様]
 式(2)で表される構成単位としては、例えば、式(2-1)~式(2-17)で表される構成単位が挙げられる。式(2')で表される構成単位としては、例えば、式(2'-1)~式(2'-14)で表される構成単位が挙げられる。これらの中でも、本発明の発光素子の輝度寿命が優れるので、好ましくは式(2-1)~式(2-14)、又は式(2'-1)~式(2'-9)で表される構成単位であり、より好ましくは式(2-5)~式(2-14)、又は式(2'-1)~式(2'-6)で表される構成単位であり、更に好ましくは式(2-5)~式(2-10)、又は式(2'-1)~式(2'-3)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
[式中、Q及びQ'は、前記と同じ意味を表す。円弧は直接結合を表す。]
 式(2)で表される構成単位としては、例えば、前記式(31)で表される構成単位と、式(32)、式(35)、式(36)、式(38)及び式(39)で表される構成単位とが挙げられ、好ましくは、式(31)又は式(32)で表される構成単位であり、より好ましくは、式(31)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
[式中、
 R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、Ry、Ry'、Ar3、LA、及びnAは、前記と同じ意味を表す。
 R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’は、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は置換アミノ基を表し、これらの基は置換基を有していてもよい。
 但し、式(32)において、R1、R2、R3、R4、R5、R6、R、R、R9、R10及びR11のうちの1つは結合手であり、式(38)において、R1、R4、R5、R6、R9、R10、R11、R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’のうちの1つは結合手である。]
 式(31)、式(32)及び式(39)で表される構成単位において、結合手ではないR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’の好ましい範囲は、水素原子であるか、A環、B環、及びC環が有していてもよい置換基の好ましい範囲と同じである。
 式(2')で表される構成単位としては、例えば、前記式(41)で表される構成単位と、式(42)、式(45)、式(46)、式(48)及び式(49)で表される構成単位とが挙げられ、好ましくは式(41)又は式(42)で表される構成単位であり、より好ましくは式(41)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
[式中、
 R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、Ry、Ry'、Ar4、Ar6、KA、及びmAは、前記と同じ意味を表す。
 R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’は、前記と同じ意味を表す。
 但し、式(42)において、R1、R2、R3、R4、R5、R6、R、R、R9、R10及びR11のうちの1つは結合手であり、式(48)において、R1、R4、R5、R6、R9、R10、R11、R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’のうちの1つは結合手である。]
 式(41)、式(42)及び式(48)で表される構成単位において、結合手ではないR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R4’、R5’、R6’、R7’、R8’、R9’、R10’及びR11’の好ましい範囲は、水素原子であるか、A環、B環、及びC環が有していてもよい置換基の好ましい範囲と同じである。
 式(2)及び式(2')で表される構成単位としては、例えば、式(2-101)~式(2-104)、及び式(2'-101)~式(2'-104)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 [式(3)で表される構成単位]
 d、e、f及びgは、本発明の発光素子の輝度寿命がより優れるので、好ましくは、0又は1であり、より好ましくは0である。
 pAは、本発明の発光素子の輝度寿命がより優れるので、好ましくは0又は1であり、より好ましくは0である。
 Jで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。JAで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子及びシアノ基が挙げられる。
 Jで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基が挙げられる。アリーレン基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基が挙げられる。
 Ar7、Ar8及びAr9は、本発明の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar7、Ar8及びAr9で表されるアリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Ar7、Ar8及びAr9で表されるアリーレン基としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Ar7、Ar8及びAr9で表される2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Ar7、Ar8及びAr9で表される2価の複素環基としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Ar7、Ar8及びAr9で表されるアリーレン基及び2価の複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が挙げられる。
 RX4は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 Q’’で表される式(1)で表される化合物の残基の定義、好ましい範囲及び例は、上述した式(1)で表される化合物の残基の定義、好ましい範囲及び例と同様である。
 [式(3)で表される構成単位の好ましい態様]
 式(3)で表される構成単位としては、例えば、式(3-1)~式(3-12)で表される構成単位が挙げられる。これらの中でも、本発明の発光素子の輝度寿命が優れるので、好ましくは、式(3-1)~式(3-6)で表される構成単位であり、より好ましくは、式(3-1)~式(3-3)で表される構成単位であり、更に好ましくは、式(3-1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
[式中、Q’’及び円弧は、前記と同じ意味を表す。]
 式(3)で表される構成単位としては、例えば、前記式(51)で表される構成単位と、式(52)~式(55)で表される構成単位とが挙げられ、好ましくは、式(51)で表される構成単位又は式(53)で表される構成単位であり、より好ましくは、式(51)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
[式中、
 R21、R22、R23、R24、R25、R26、R27、R28、R29、R30、R31、Ry、Ry'、Ar7、Ar8、Ar9、J、RX4、pA、d、e、f及びgは、前記と同じ意味を表す。
 RX4’は、直接結合、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar9’は、3価の芳香族炭化水素基または3価の複素環基を表し、これらの基は置換基を有していてもよい。
 但し、式(52)において、R24、R25、R26及びR27のうちの1つは結合手であり、且つ、R28、R29、R30及びR31のうちの1つは結合手であり、式(53)において、R21、R22、R23、R24、R25、R26、R27、R28、R29、R30及びR31のうちの1つは結合手であり、式(55)において、R21、R24、R25、R26、R27、R28、R29、R30、及びR31のうちの1つは結合手である。]
 式(3)で表される構成単位としては、例えば、式(3-101)~式(3-129)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 式(3)で表される構成単位の合計量は、本発明の高分子化合物の安定性が優れるので、高分子化合物に含まれる全構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.1~10モル%であり、特に好ましくは0.5~5モル%である。
 [式(1)で表される化合物の残基を有さない構成単位]
 式(1)で表される化合物の残基を有さない構成単位としては、例えば、式(X)で表される構成単位及び式(Y)で表される構成単位が挙げられる。
 式(X)で表される構成単位、及び、式(Y)で表される構成単位は、各々、高分子化合物中に、1種のみ含まれていても2種以上含まれていてもよい。
 ・式(X)で表される構成単位
 a1は、本発明の発光素子の輝度寿命がより優れるので、好ましくは1である。
 a2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは0である。
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~式(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2及びArX4で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000088
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位としては、好ましくは式(X-1)~式(X-7)で表される構成単位であり、より好ましくは式(X-3)~式(X-7)で表される構成単位であり、更に好ましくは式(X-3)~式(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位は、正孔輸送性が優れるので、高分子化合物に含まれる全構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは0.5~30モル%であり、更に好ましくは1~8モル%であり、特に好ましくは1~5モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-7)で表される構成単位が挙げられ、好ましくは式(X1-1)及び式(X1-5)~式(X1-7)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 ・式(Y)で表される構成単位
 ArY1で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)又は式(A-19)で表される基であり、更に好ましくは式(A-1)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、特に好ましくは式(A-1)又は式(A-9)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは式(AA-4)、式(AA-10)、式(AA-13)、式(AA-15)、式(AA-18)又は式(AA-20)で表される基であり、更に好ましくは式(AA-4)、式(AA-10)、式(AA-18)又は式(AA-20)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(X)のArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArY1で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基又はアリール基であり、より好ましくはアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)~式(Y-7)で表される構成単位が挙げられ、本発明の発光素子の輝度寿命の観点からは、好ましくは式(Y-1)又は式(Y-2)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-3)又は式(Y-4)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-5)~式(Y-7)で表される構成単位である。
 式(Y-1)中、RY1は、好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure JPOXMLDOC01-appb-C000096
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 式(Y-2)中、RY2は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基、シクロアルキル基又はアリール基であり、更に好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000097
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000098
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000099
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000100
[式中、
 RY1は前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000101
[式中、
 RY1は前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-11)~式(Y-30)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本発明の発光素子の輝度寿命がより優れるので、高分子化合物に含まれる全構成単位の合計量に対して、好ましくは50~99.5モル%であり、より好ましくは70~99.5モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、本発明の発光素子の電荷輸送性が優れるので、高分子化合物に含まれる全構成単位の合計量に対して、好ましくは1~30モル%であり、より好ましくは1~10モル%である。
 本発明の高分子化合物としては、例えば、高分子化合物P-1~P-16が挙げられる。ここで、「その他の構成単位」とは、式(1)で表される化合物の残基を含まず、式(2)、式(2')、式(3)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000108


[表中、q、r、s、t及びuは、各構成単位のモル比率を表す。q+r+s+t+u=100であり、かつ、70≦q+r+s+t≦100である。]
Figure JPOXMLDOC01-appb-T000109


[表中、q’、s’、t’及びu’は、各構成単位のモル比率を表す。q’+s’+t’+u’=100であり、かつ、70≦q’+s’+t’≦100である。]
 本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性や輝度寿命が低下する可能性があるので、好ましくは安定な基である。この末端基としては、主鎖と共役結合している基が好ましく、炭素-炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。
 本発明の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
 <高分子化合物の製造方法>
 本発明の高分子化合物の製造方法について説明する。式(1)で表される化合物に後述の置換基A群及び置換基B群からなる群から選ばれる基を有する化合物をとを反応させることで、縮合重合に用いる原料モノマーが得られる(下記式参照)。この原料モノマーを縮合重合に供することで、式(1)で表される化合物の残基を有する構成単位が誘導される。なお、本明細書において、本発明の高分子化合物の製造に使用される化合物を総称して、「原料モノマー」ということがある。
Figure JPOXMLDOC01-appb-C000110
[式中、
 Qは、前記と同じ意味を表す。
 dは、1~4の整数を表す。
 ZC0は、後述の置換基A群及び置換基B群からなる群から選ばれる基を表す。ZC0が複数存在する場合、それらは同一であっても異なっていてもよい。]
 また、式(1)で表される化合物と、置換基A群及び置換基B群からなる群から選ばれる基を有する化合物とを反応させても、同様に、縮合重合に用いる原料モノマーとして、式(M-2)又は式(M-3)で表される化合物が得られる。この原料モノマーは、式(1)で表される化合物の残基を有する構成単位となる。
 これらの反応は、通常、触媒、塩基及び溶媒の存在下で行われるが、必要に応じて、相間移動触媒を共存させて行ってもよい。反応で用いる触媒としては、後述する縮合重合で用いる触媒と同様の触媒が利用できる。
 同様の反応により、縮合重合に用いる原料モノマーとして、例えば、式(M-1)、式(M-4)又は式(M-5)で表される化合物が得られる。この原料モノマーは、式(1)で表される化合物の残基を有さない構成単位となる。
 本発明の高分子化合物は、例えば、式(M-1)で表される化合物と、式(M-2)で表される化合物及び/又は式(M-3)で表される化合物と、他の化合物(例えば、式(M-4)で表される化合物及び/又は式(M-5)で表される化合物)とを縮合重合させることにより製造することができる。
 また、本発明の高分子化合物は、例えば、式(M-1)で表される化合物と、式(M-6)で表される化合物の群から選ばれる少なくとも1種の化合物と、他の化合物(例えば、式(M-4)で表される化合物及び/又は式(M-5)で表される化合物)とを縮合重合させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000111
[式中、
 nA、n、Ar3、LA、Q、mA、m、c、Ar4~Ar6、KA、Q’、ArY1、a1、a2、ArX1~ArX4、及びRX1~RX3は、前記と同じ意味を表す。
 ZC1~ZC10は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
Figure JPOXMLDOC01-appb-C000112
[式中、
 pA、d、e、f、g、J、RX4、Ar7~Ar9、及びQ’’は、前記と同じ意味を表す。
 ZC11及びZC12は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
 例えば、ZC1、ZC2、ZC3、ZC4、ZC5、ZC6、ZC11及びZC12が置換基A群から選ばれる基である場合、ZC7、ZC8、ZC9及びZC10は、置換基B群から選ばれる基を選択し、ZC1、ZC2、ZC3、ZC4、ZC5、ZC6、ZC11及びZC12が置換基B群から選ばれる基である場合、ZC7、ZC8、ZC9及びZC10は、置換基A群から選ばれる基を選択する。
 <置換基A群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)2C1(式中、RC1は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
 <置換基B群>
 -B(ORC2)2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BF3Q'(式中、Q'は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY'(式中、Y'は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY''(式中、Y''は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3)3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
 -B(ORC2)2で表される基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000113
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基及び置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。
 縮合重合は、通常、触媒、塩基及び溶媒の存在下で行われるが、必要に応じて、相間移動触媒を共存させて行ってもよい。
 触媒としては、例えば、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリス-o-メトキシフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム等のパラジウム錯体、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ(o-トリル)ホスフィン、 トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,3-ビス(ジフェニルホスフィノ)プロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、1種単独で用いても2種以上を併用してもよい。
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、1種単独で用いても2種以上を併用してもよい。
 塩基及び相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の使用量は、通常、原料モノマーの合計100質量部に対して、10~100000質量部である。
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、又は組み合わせて行う。高分子化合物の純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 <組成物>
 本発明の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群から選ばれる少なくとも1種の材料と、本発明の高分子化合物とを含有する。
 本発明の高分子化合物及び溶媒を含有する組成物(以下、「インク」ということがある。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。
 インクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりを防止するために、好ましくは25℃において1~20mPa・sである。
 溶媒は、該インク中の固形分を溶解又は均一に分散できる溶媒が好ましい。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。
 本発明の組成物において、溶媒の配合量は、本発明の高分子化合物100質量部に対して、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 溶媒は、1種単独で用いても2種以上を併用してもよい。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、高分子化合物がより好ましい。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 本発明の組成物において、正孔輸送材料の配合量は、本発明の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、1種単独で用いても2種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン、及び、ジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本発明の組成物において、電子輸送材料の配合量は、本発明の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、1種単独で用いても2種以上を併用してもよい。
 [正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、及び、ポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 本発明の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、本発明の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔注入材料及び電子注入材料は、各々、1種単独で用いても2種以上を併用してもよい。
 ・イオンドープ
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、1種のみでも2種以上でもよい。
 [発光材料]
 発光材料は、低分子化合物と高分子化合物とに分類される。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 発光材料は、低分子化合物及び高分子化合物を含んでいてもよく、好ましくは、三重項発光錯体及び高分子化合物を含む。三重項発光錯体としては、式Ir-1~Ir-5で表される金属錯体等のイリジウム錯体が好ましい。
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
[式中、
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 -AD1---AD2-は、アニオン性の2座配位子を表し、AD1及びAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
 nD1は、1、2又は3を表し、nD2は、1又は2を表す。]
 式Ir-1で表される金属錯体において、RD1~RD8の少なくとも1つは、好ましくは、式(D-A)で表される基である。
 式Ir-2で表される金属錯体において、好ましくはRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-3で表される金属錯体において、好ましくはRD1~RD8及びRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-4で表される金属錯体において、好ましくはR21~RD26の少なくとも1つは式(D-A)で表される基である。
 式Ir-5で表される金属錯体において、好ましくはRD31~RD37の少なくとも1つは式(D-A)で表される基である。
Figure JPOXMLDOC01-appb-C000117
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
 mDA1、mDA2及びmDA3は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0又は1である。mDA1、mDA2及びmDA3は、同一の整数であることが好ましい。
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000118
[式中、
 *、**及び***は、各々、ArDA1、ArDA2、ArDA3との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、好ましくは式(ArDA-1)~式(ArDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000119
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000120
[式中、RDA及びRDBは前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A3)で表される基である。
Figure JPOXMLDOC01-appb-C000121
[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。複数あるnp1は、同一でも異なっていてもよい。]
 np1は、好ましくは0~3の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。
 np2は、好ましくは0又は1であり、より好ましくは0である。
 np3は好ましくは0である。
 Rp1、Rp2及びRp3は、好ましくはアルキル基又はシクロアルキル基である。
 -AD1---AD2-で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000122
[式中、*は、Irと結合する部位を表す。]
 式Ir-1で表される金属錯体としては、好ましくは式Ir-11~Ir-13で表される金属錯体である。式Ir-2で表される金属錯体としては、好ましくは式Ir-21で表される金属錯体である。式Ir-3で表される金属錯体としては、好ましくは式Ir-31~Ir-33で表される金属錯体である。式Ir-4で表される金属錯体としては、好ましくは式Ir-41~Ir-43で表される金属錯体である。式Ir-5で表される金属錯体としては、好ましくは式Ir-51~Ir-53で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
[式中、
 nD2は、1又は2を表す。
 Dは、式(D-A)で表される基を表す。複数存在するDは、同一でも異なっていてもよい。
 RDCは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDCは、同一でも異なっていてもよい。
 RDDは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDDは、同一でも異なっていてもよい。]
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
 本発明の組成物において、発光材料の配合量は、本発明の高分子化合物100質量部に対して、通常、0.1~400質量部である。
 発光材料は、1種単独で用いても2種以上を併用してもよい。
 [酸化防止剤]
 酸化防止剤は、本発明の高分子化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 本発明の組成物において、酸化防止剤の配合量は、本発明の高分子化合物100質量部に対して、通常、0.001~10質量部である。
 酸化防止剤は、1種単独で用いても2種以上を併用してもよい。
 <発光素子>
 本発明の発光素子は、本発明の高分子化合物を含有する有機層を備えた発光素子である。本発明の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本発明の高分子化合物を含有する層とを有する。
 [層構成]
 本発明の高分子化合物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含有する。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により形成することができる。
 発光素子は、陽極と陰極の間に発光層を有する。本発明の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層、及び、電子注入層の材料としては、本発明の高分子化合物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料、及び、電子注入材料が挙げられる。
 本発明の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数、及び、厚さは、発光効率及び素子寿命を勘案して調整すればよい。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源、及び、表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)のいずれかにより求めた。なお、SECの各測定条件は、次のとおりである。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 LC-MSは、下記の方法で測定した。
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1290 Infinity LC及び6230 TOF LC/MS)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)を用いた。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300、又は、JEOL RESONANCE製、商品名:JNM-ECZ400S/L1)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 <合成例1> 化合物1の合成
(化合物1aの合成)
Figure JPOXMLDOC01-appb-C000131
 反応容器内を窒素ガス雰囲気とした後、4-ヘキシルアニリン(19.2g)、3-ブロモトリフェニルアミン(28.0g)、Pd2(dba)3(dba)0.73(1.45g)、t-Bu3PHBF4(0.75g)、t-BuONa(16.6g)及びトルエン(350mL)を加え、50℃で2.5時間撹拌した。得られた混合物を室温まで冷却した後、シリカゲルショートカラムでろ過した。得られたろ液を減圧濃縮することにより茶色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物1a(29.6g、無色オイル)を得た。化合物1aのHPLC面積百分率値は99.2%であった。
(化合物1bの合成)
Figure JPOXMLDOC01-appb-C000132
 反応容器内を窒素ガス雰囲気とした後、3-ブロモ-4,5-ジクロロトルエン(8.2g)、化合物1a(14.8g)、Pd2(dba)3(dba)0.73(0.56g)、t-Bu3PHBF4(0.30g)、t-BuONa(6.6g)及びo-キシレン(130g)を加え、50℃で2.5時間撹拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過した。得られたろ液を減圧濃縮することにより茶色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物1b(14.9g、無色オイル)を得た。化合物1bのHPLC面積百分率値は99.0%であった。
(化合物1cの合成)
Figure JPOXMLDOC01-appb-C000133
 反応容器内を窒素ガス雰囲気とした後、ビス(4-tert-ブチルフェニル)アミン(7.0g)、化合物1b(12.5g)、Pd2(dba)3(dba)0.73(0.42g)、t-Bu3PHBF4(0.23g)、t-BuONa(3.7g)及びo-キシレン(42g)を加え、50℃で10時間撹拌し、次いで、70℃で1時間攪拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過した。得られたろ液を減圧濃縮することにより茶色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物1c(9.2g、無色オイル)を得た。化合物1cのHPLC面積百分率値は92.2%であった。
(化合物1の合成)
Figure JPOXMLDOC01-appb-C000134
 反応容器内を窒素ガス雰囲気とした後、化合物1c(7.5g)及びtert-ブチルベンゼン(56mL)を加え、0℃に冷却した後、そこに、0℃を維持しながらt-BuLi・ペンタン溶液(1.5M,9.6mL)をゆっくりと加えた。得られた混合物を60℃で3時間撹拌した後、減圧下でペンタンを留去した。得られた混合物を-50℃まで冷却した後、BBr3(4.5g)を加え、-50℃で0.5時間撹拌した。得られた混合物を120℃まで昇温し、120℃で3時間反応させた。得られた混合物を室温まで冷却した後、酢酸ナトリウム水溶液及び酢酸エチルを加え、得られた有機層をイオン交換水で洗浄した。得られた有機層を減圧濃縮することにより黄色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、黄色の固体を得た。得られた固体をアセトニトリルに分散させた後、ろ過することで、化合物1(1.1g、黄色固体)を得た。化合物1のHPLC面積百分率値は99.4%であった。
 LC-MS(APCI,positive):m/z=798.5 [M+H]+
 1H-NMR(CD2Cl2,400MHz)δ(ppm):0.92(m,3H),1.36(m,6H),1.39(s,9H),1.44(s,9H),1.58(m,2H),2.08(s,3H),2.61(dd,2H),5.92(d,2H),6.19(d,1H),6.61(d,1H),6.87(dd,1H),7.02(t,2H),7.07(m,6H),7.2-7.3(m,8H),7.42(dd,1H),7.68(d,2H),8.67(d,1H),8.79(d,1H).
 <合成例2> 化合物2の合成
Figure JPOXMLDOC01-appb-C000135
 反応容器内を窒素ガス雰囲気とした後、化合物1(0.91g)、ビス(ピナコラト)ジボロン(B2pin2;0.58g)、4,4'-ジ-tert-ブチル-2,2'-ビピリジル(dtbpy;0.013g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I)ダイマー([Ir(cod)(OMe)]2;0.0155g)及びシクロヘキサン(23mL)を加え、90℃で2時間撹拌した。得られた混合物を室温まで冷却した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を分液し、有機層に不溶の固体をろ過して取り除き、得られたろ液を減圧濃縮することにより黄色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物2(0.21g、黄色オイル)を得た。化合物2のHPLC面積百分率値は97.4%であった。化合物2は、4種の異性体の混合物として得られ、そのモル比は化合物2a:化合物2b:化合物2c:化合物2d=7.5:37.1:43.0:12.4であった。
Figure JPOXMLDOC01-appb-C000136
 1H-NMR(CD2Cl2,400MHz)δ(ppm):0.92(m,3H),1.30,1.32,1.38,1.39,1.44(s,計33H),1.3-1.4(m,(6H)),1.44(s,9H),1.58(m,2H),2.08(m,3H),2.59(t,2H),5.92(m,2H),6.09(d,0.12H:化合物2d),6.11(d,0.43H:化合物2c),6.20(d,0.37H:化合物2b),6.26(d,0.08H:化合物2a),6.60(d,0.6H),6.61(d,0.4H),6.80(m,0.6H),6.86(m,0.4H),7.0-7.1(m,4.3H),7.1-7.2(m,1.2H),7.2-7.3(m,5.5H),7.4-7.5(m,2.6H),7.51(m,0.27H:化合物2d),7.59(m,1H),7.68(d,2H),7.83(m,0.13H:化合物2d),8.6-8.7(m,1H),8.79(m,1H).
 <合成例3> 化合物3~8及び化合物11~12の合成及び入手
 化合物3は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物4は、特表2007-512249号公報に記載の方法に従って合成した。
 化合物5は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物6は、市販品を用いた。
 化合物7は、国際公開第2009/131255号に記載の方法に従って合成した。
 化合物8は、国際公開第2016/031639号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000137
 <合成例4> 高分子化合物1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物3(3.995g)、化合物4(6.237g)、化合物5(0.519g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(7.1mg)及びトルエン(190mL)を加え、105℃に加熱した。
(工程2)その後、そこへ、20質量%水酸化テトラエチルアンモニウム水溶液(28mL)を滴下し、4時間還流させた。その後、そこへ、フェニルボロン酸(97.5mg),20質量%水酸化テトラエチルアンモニウム水溶液(28mL)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(7.1mg)を加え、6時間還流させた。得られた反応混合物を冷却した後、水で2回、10質量%塩酸水溶液で2回、3質量%アンモニア水で2回、水で2回洗浄した。得られた溶液をメタノールに滴下し、攪拌したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番に通液することにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物1を6.65g得た。高分子化合物1のMnは2.6×104であり、Mwは1.4×105であった。
 高分子化合物1は、仕込み原料の量から求めた理論値では、化合物3から誘導される構成単位と、化合物4から誘導される構成単位と、化合物5から誘導される構成単位とが、50:42.5:7.5のモル比で構成されてなる共重合体である。
 <実施例1> 高分子化合物2の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物2(0.104g)、化合物6(0.502g)、化合物7(0.628g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(0.86mg)及びトルエン(27mL)を混合し、105℃に加熱した。
(工程2)その後、そこへ、10質量%水酸化テトラエチルアンモニウム水溶液(18mL)を滴下し、4時間還流させた。その後、そこへ、フェニルボロン酸(48.8mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(0.9mg)を加え、6時間還流させた。得られた反応混合物を冷却した後、水で2回、10質量%塩酸水溶液で2回、3質量%アンモニア水で2回、水で2回洗浄した。得られた溶液をメタノールに滴下し、攪拌したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番に通液することにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物2を0.68g得た。高分子化合物2のMnは4.5×104であり、Mwは1.1×105であった。
 高分子化合物2は、仕込み原料の量から求めた理論値では、化合物6から誘導される構成単位と、化合物7から誘導される構成単位と、化合物2から誘導される構成単位とが、45:50:5のモル比で構成されてなる共重合体である。
 <合成例5> 高分子化合物3の合成
 実施例1において、(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物8(0.096g)、化合物6(0.916g)、化合物7(1.119g)、ジクロロビス(フェニルホスフィン)パラジウム(1.5mg)及びトルエン(47mL)を混合し、105℃に加熱した。」とする以外は、実施例1と同様にして、高分子化合物3を1.1g得た。高分子化合物3のMnは5.0×104であり、Mwは1.1×105であった。
 高分子化合物3は、仕込み原料の量から求めた理論値では、化合物6から誘導される構成単位と、化合物7から誘導される構成単位と、化合物8から誘導される構成単位とが、45:50:5のモル比で構成されてなる共重合体である。
 <実施例D1> 発光素子D1の作製と評価
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で240℃、15分間加熱することにより正孔注入層を形成した。
 キシレンに、高分子化合物1を0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱することにより正孔輸送層を形成した。
 キシレンに、高分子化合物2を1.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
 発光素子D1に電圧を印加することにより、最大外部量子収率は4.1%であり、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.142,0.071)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流密度で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の60%となるまでの時間は、44時間であった。
 <実施例D2> 発光素子D2の作製と評価
 実施例D1において、高分子化合物2に代えて、高分子化合化合物2と高分子化合物3の質量比で50:50の組成物を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
 発光素子D2に電圧を印加することにより、最大外部量子収率は3.3%であり、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.145,0.067)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流密度で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の60%となるまでの時間は、54時間であった。
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1において、高分子化合物1に代えて、高分子化合物3を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することにより、最大外部量子収率は3.1%であり、440nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.156,0.063)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の60%となるまでの時間は、38時間であった。
 <合成例6> 化合物9の合成
(化合物9-1の合成)
Figure JPOXMLDOC01-appb-C000138
 反応容器内をアルゴンガス雰囲気とした後、ビス(4-tert-ブチルフェニル)アミン(150.59g)、1-ブロモ―3-ヨードベンゼン(147g)、酢酸パラジウム(II)(1.11g)、キサントホス(Xantphos)(2.87g)、t-BuONa(72g)及びトルエン(1262mL)を加え、80℃で2時間撹拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過した。得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をメタノールに分散させた後、加熱還流した。得られた混合物を冷却した後、得られた粗生成物をろ取することで黄土色の粉末を得た。得られた粉末をメタノールに分散させて洗浄し、更にシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物9-1(190.3g、薄黄色固体)を得た。化合物9-1のHPLC面積百分率値は98.5%であった。
 1H-NMR(CDCl3,400MHz)δ(ppm):7.26(d,4H),7.16(m,1H),7.03-6.97(m,3H),6.91(ddd,1H),1.28(s,18H).
(化合物9-2の合成)
Figure JPOXMLDOC01-appb-C000139
 反応容器内をアルゴンガス雰囲気とした後、化合物9-1(169.5g)、4-ヘキシルアニリン(84.8g)、Pd2(dba)3(dba)0.75(6.26g)、t-Bu3PHBF4(3.33g)、t-BuONa(55.13g)及びトルエン(2117mL)を加え、20℃で1.5時間撹拌した。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物9-2(181.3g、オイル)を得た。化合物9-2のHPLC面積百分率値は99%であった。これらの操作を繰り返し行うことで、化合物9-2の必要量を得た。
 (化合物9-3の合成)
Figure JPOXMLDOC01-appb-C000140
 反応容器内をアルゴンガス雰囲気とした後、1-ブロモ-2,3-ジクロロベンゼン(77.2g)、化合物9-2(197.5g)、Pd2(dba)3(dba)0.75(6.11g)、t-Bu3PHBF4(3.24g)、t-BuONa(53.3g)及びトルエン(1337g)を加え、50℃で4時間撹拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過した。得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物9-3(220g、白色固体)を得た。化合物9-3のHPLC面積百分率値は99%であった。
 1H-NMR(CDCl3,400MHz)δ(ppm):7.24-7.15(m,6H),7.08(d,1H),7.07(s,1H),7.04-6.95(m,6H),6.88(d,2H),6.58(dd,1H),6.52(dd,1H),6.45(dd,1H),2.50(dd,2H),1.57(m,2H),1.28(m,24H),0.87(t,3H).
(化合物9-4の合成)
Figure JPOXMLDOC01-appb-C000141
 反応容器内を窒素ガス雰囲気とした後、ビス(4-tert-ブチルフェニル)アミン(92.0g)、化合物9-3(195.0g)、Pd2(dba)3(dba)0.75(4.38g)、t-Bu3PHBF4(2.33g)、t-BuONa(38.6g)及びトルエン(1323g)を加え、50℃で5時間撹拌し、次いで、70℃で1時間攪拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより茶色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物9-4(149g、無色オイル)を得た。化合物9-4のHPLC面積百分率値は94.5%であった。
(化合物9-5の合成)
Figure JPOXMLDOC01-appb-C000142
 反応容器内を窒素ガス雰囲気とした後、化合物9-4(132.4g)及びtert-ブチルベンゼン(811mL)を加え、0℃に冷却した後、t-BuLi・ペンタン溶液(1.5M,151mL)を加えた。得られた混合物を40℃で1時間攪拌し、次いで、50℃で1時間撹拌した。得られた混合物を-50℃まで冷却した後、BBr3(27.7mL)を加え、-50℃で0.5時間撹拌した。得られた混合物を0℃まで昇温した後、N,N-ジイソプロピルアミン(48.8mL)を加えた。得られた混合物を60℃まで昇温した後、ペンタンを留去した。得られた混合物を120℃まで昇温した後、3時間反応させた。得られた混合物を室温まで冷却した後、酢酸ナトリウム水溶液及び酢酸エチルを加え、得られた有機層をイオン交換水で洗浄した。得られた有機層を減圧濃縮することにより黄色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物9-5(16.4g、黄色固体)を得た。化合物9-5のHPLC面積百分率値は96.9%であった。
 1H-NMR(CD2Cl2,400MHz)δ(ppm):8.81(d,1H),8.66(d,1H),7.67(d,2H),7.42(dd,1H), 7.30-7.20(m,8H),7.12(t,1H),7.10(d,2H),6.99(d,4H),6.84(dd,1H),6.66(d,1H),6.33(d,1H),6.05(d,1H),5.99(d,1H),2.59(m,2H),1.61(m,2H),1.43(s,9H),1.40(s,9H),1.39-1.27(m,24H),0.89(t,3H).
(化合物9-6の合成)
Figure JPOXMLDOC01-appb-C000143
 反応容器内を窒素ガス雰囲気とした後、化合物9-5(11.60g)、ビス(ピナコラト)ジボロン(B2pin2;9.86g)、4,4’-ジ-tert-ブチル-2,2’-ビピリジル(dtbpy;0.21g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I)ダイマー([Ir(cod)(OMe)]2;0.26g)及びシクロヘキサン(232mL)を加え、90℃で9.5時間撹拌した。得られた混合物を室温まで冷却した後、メタノールを加えて反応を停止させた。得られた混合物をシリカゲルショートカラムでろ過し、得られたろ液を減圧濃縮することにより黄色のオイルを得た。得られたオイルをヘプタンにより再結晶することにより、淡黄色粉末を得た。得られた粉末を、トルエンとエタノールとの混合液で再結晶した後、乾燥させることにより、化合物9-6(7.56g、黄色粉末)を得た。化合物9-6のHPLC面積百分率値は90.7%であった。
(化合物9の合成)
Figure JPOXMLDOC01-appb-C000144
 反応容器内を窒素ガス雰囲気とした後、1,3,5-トリブロモベンゼン(10.4g)、化合物9-6(7.5g)、トルエン(112mL)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.228g)を加え、次いで、12質量%テトラブチルアンモニウムヒドロキシド水溶液(43g)を加え、3時間加熱還流した。得られた混合物を室温まで冷却した後、水層を分離し、得られた有機層を水で2回洗浄した。得られた有機層に硫酸マグネシウムを加えた後、得られた混合物をろ過し、得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をシリカゲル/アルミナショートカラムでろ過した。得られた固体をトルエンとアセトニトリルとの混合液で再結晶した後、乾燥させるという工程を3回繰り返すことにより、薄黄色固体として化合物9を6.1g得た。HPLC面積百分率値は99.7%であった。
 LC-MS(ESI,positive):1128[M+H]+
 1H-NMR(CDCl3,400MHz)δ(ppm):8.87(s,1H),8.70(d,1H),7.70(d,2H),7.46(m,2H), 7.31-7.18(m,10H),7.12(d,2H),7.03(d,4H),6.95(d,1H),6.74(d,1H),6.36(d,1H),6.09(d,2H),2.59(m,2H),1.62(m,2H),1.44(s,18H),1.32(m,24H),0.89(t,3H).
 <合成例7> 化合物10の合成
(化合物10-1の合成)
Figure JPOXMLDOC01-appb-C000145
 反応容器内をアルゴンガス雰囲気とした後、3,5-ジ-t-ブチルアニリン(4.00g)、1-ブロモ-3,5-ジ-t-ブチルベンゼン(4.77g)、Pd2(dba)3(dba)0.75(0.058g)、t-Bu3PHBF4(0.032g)、t-BuONa(2.55g)及びトルエン(143mL)を加え、30℃で1.5時間撹拌した。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより、化合物10-1(9.74g、オイル)を得た。化合物10-1のHPLC面積百分率値は96.9%であった。
(化合物10-2の合成)
Figure JPOXMLDOC01-appb-C000146
 反応容器内をアルゴンガス雰囲気とした後、化合物10-1(4.35g)、1,3-ジブロモ-5-ヨードベンゼン(4.00g)、酢酸パラジウム(0.113g)、Xantphos(0.320g)、t-BuONa(1.45g)及びトルエン(65mL)を加え、60℃から80℃まで段階的に昇温しながらで4.5時間撹拌した。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物10-2(5.26g、薄赤白色粉末)を得た。化合物10-2のHPLC面積百分率値は89.8%であった。
 (化合物10-3の合成)
Figure JPOXMLDOC01-appb-C000147
 反応容器内をアルゴンガス雰囲気とした後、2-ブロモ-5-クロロ-m-キシレン(10.00g)、p-t-ブチルアニリン(8.16g)、Pd2(dba)3(dba)0.75(0.746g)、t-Bu3PHBF4(0.416g)、t-BuONa(6.57g)及びトルエン(250mL)を加え、30℃で1時間撹拌した。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物10-3(13.16g、淡黄色固体)を得た。化合物10-3のHPLC面積百分率値は99.3%であった。
(化合物10-4の合成)
Figure JPOXMLDOC01-appb-C000148
 反応容器内をアルゴンガス雰囲気とした後、化合物10-2(5.20g)、化合物10-3(5.25g)、Pd2(dba)3(dba)0.75(0.452g)、t-Bu3PHBF4(0.252g)、t-BuONa(2.39g)及びトルエン(104mL)を加え、50℃で2時間撹拌した。得られた混合物を室温まで冷却した後、シリカゲル・セライトを積層したショートカラムでろ過した。得られたろ液を減圧濃縮することにより茶色の固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより、化合物10-4(5.69g、白色固体)を得た。化合物10-4のHPLC面積百分率値は98.4%であった。
(化合物10-5の合成)
Figure JPOXMLDOC01-appb-C000149
 反応容器内を窒素ガス雰囲気とした後、化合物10-4(4.60g)、o-ジクロロベンゼン(64mL)及びBBr3(3.3g)を加え、140℃で6時間攪拌した。得られた混合物を室温まで冷却した後、トルエン(64mL)及びN,N-ジイソプロピルアミン(7.9mL)を加え、攪拌した。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより茶色のオイルを得た。得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)により精製した後、減圧濃縮し、乾燥させることにより黄色粉末を得た。得られた粉末をトルエンとアセトニトリルとの混合溶媒で再結晶することにより、化合物10-5(1.55g、黄色固体)を得た。化合物10-5のHPLC面積百分率値は99.3%であった。これらの操作を繰り返し行うことで、化合物10-5の必要量を得た。
(化合物10の合成)
Figure JPOXMLDOC01-appb-C000150
 反応容器内を窒素ガス雰囲気とした後、化合物10-5(1.85g)、ビス(ピナコラト)ジボロン(B2pin2;1.34g)、Pd2(dba)3(dba)0.75(0.048g)、XPhos(0.089g)、酢酸カリウム(1.03g)、1,2-ジメトキシエタン(18mL)及びトルエン(4mL)を加え、85℃で12時間撹拌した。得られた混合物を室温まで冷却した後、メタノールを加えて反応を停止させた。得られた混合物をシリカゲル・セライトを積層したショートカラムでろ過し、得られたろ液を減圧濃縮することにより黄色のオイルを得た。得られたオイルをアセトニトリルで再結晶することにより、淡黄色粉末を得た。得られた粉末を、トルエンとヘプタンとの混合溶媒に溶解させた後、活性炭を加えて攪拌した。得られた混合物をセライトを用いてろ過した後、減圧濃縮し、乾燥させることにより黄色粉末を得た。得られた粉末を、トルエンとアセトニトリルとの混合液で再結晶した後、乾燥させるという操作を2回繰り返すことにより、化合物10(1.48g、黄色粉末)を得た。化合物10のHPLC面積百分率値は99.8%であった。
 LC-MS(ESI,positive):1232.9[M+H]+
 1H-NMR(CDCl3,400MHz)δ(ppm):9.12(s,2H),7.67(s,4H),7.43(d,2H),6.98(s,2H), 6.82(s,4H),6.59(d,2H),5.46(br.s,2H),1.86(s,12H),1.46(s,18H),1.36(s,24H),1.13(s,36H).
 <実施例2> 高分子化合物4の合成
 反応容器内を不活性ガス雰囲気とした後、化合物6(0.633g)、化合物8(0.063g)、化合物7(0.723g)、化合物9(0.026g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.02mg)及びトルエン(24.2g)を混合し、80℃に加熱した。その後、そこへ、10質量%水酸化テトラエチルアンモニウム水溶液(20mL)を滴下し、4.5時間還流させた。その後、そこへ、フェニルボロン酸(55.8mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.01mg)を加え、8時間還流させた。得られた反応混合物を冷却した後、反応液を水で1回、10質量%塩酸水溶液で2回、3質量%アンモニア水溶液で2回、水で2回洗浄した。得られた有機層を減圧下で蒸留することにより水分を除いた。得られた溶液を、アルミナとシリカゲルとの混合物を充填したカラムに通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物4を0.54g得た。高分子化合物4のMnは4.5×104であり、Mwは1.1×105であった。
 高分子化合物4は、仕込み原料の量から求めた理論値では、化合物6から誘導される構成単位と、化合物8から誘導される構成単位と、化合物7から誘導される構成単位と、化合物9から誘導される構成単位とが、45:5:49:1のモル比で構成された共重合体である。
 <実施例3> 高分子化合物5の合成
 反応容器内を不活性ガス雰囲気とした後、化合物6(1.267g)、化合物8(0.127g)、化合物10(0.057g)、化合物7(1.486g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(2.09mg)及びトルエン(30.5g)を混合し、80℃に加熱した。その後、そこへ、20質量%水酸化テトラエチルアンモニウム水溶液(25mL)を滴下し、3.5時間還流させた。その後、そこへ、フェニルボロン酸(112.2g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(2.13mg)を加え、5時間還流させた。得られた反応混合物を冷却した後、反応液を水で1回、10重量%塩酸水溶液で2回、3重量%アンモニア水溶液で2回、水で2回洗浄した。得られた有機層を減圧下で蒸留することにより水分を除いた。得られた溶液を、アルミナとシリカゲルとの混合物を充填したカラムに通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物高分子化合物5を1.06g得た。高分子化合物5のMnは7.7×104であり、Mwは1.7×105であった。
 高分子化合物5は、仕込み原料の量から求めた理論値では、化合物6から誘導される構成単位と、化合物8から誘導される構成単位と、化合物10から誘導される構成単位と、化合物7から誘導される構成単位とが、44:5:1:50のモル比で構成されてなる共重合体である。
 <合成例8> 高分子化合物6の合成
 高分子化合物6は、国際公開第2014/102543号に記載のポリマー実施例1の方法に従って合成した。
 <実施例D3> 発光素子D3の作製と評価
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で240℃、15分間加熱することにより正孔注入層を形成した。
 キシレンに、高分子化合物6を0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱することにより正孔輸送層を形成した。
 キシレンに、高分子化合物4を1.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D3を作製した。
 発光素子D3に電圧を印加することにより、最大外部量子収率は8.1%であり、465nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.131,0.095)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流密度で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の50%となるまでの時間は、42時間であった。
 <実施例D4> 発光素子D4の作製と評価
 実施例D3において、高分子化合物4に代えて、高分子化合化合物5を用いた以外は、実施例D3と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することにより、最大外部量子収率は7.8%であり、450nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.149,0.045)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流密度で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の50%となるまでの時間は、44時間であった。
 <比較例CD2> 発光素子CD2の作製と評価
 実施例D3において、高分子化合物4に代えて、高分子化合物3を用いた以外は、実施例D3と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することにより、最大外部量子収率は7.0%であり、440nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。この時のCIE1931色度座標は、(0.153,0.055)であった。電流密度が10mA/cm2となるように電流値を設定後、定電流密度で駆動させ、輝度の時間変化を測定した。輝度が初期輝度の50%となるまでの時間は、21時間であった。
 本発明によれば、輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、この高分子化合物を含有する組成物及びこの高分子化合物を含有する発光素子を提供することができる。

Claims (15)

  1.  式(1)で表される化合物の残基を有する構成単位と、前記式(1)で表される化合物の残基を有さない構成単位とを含む、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
     Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
     Y1は、N-Ry、硫黄原子又はセレン原子を表す。Y2及びY3は、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
     n3は、0又は1である。n3が0である場合、-Y3-は存在しない。]
  2.  前記式(1)で表される化合物の残基を有する構成単位が、式(2)又は式(2')で表される構成単位である、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     nAは、0~5の整数である。
     nは、1又は2である。
     Ar3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
     Qは、前記式(1)で表される化合物の残基を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     mは1~4の整数である。
     mAは0~5の整数である。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     cは0又は1である。
     Ar4及びAr6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが結合した基を表し、これらの基は置換基を有していてもよい。
     Ar4、Ar5及びAr6は、それぞれ、該基が結合している窒素原子に結合している該基以外の基と、直接結合して、又は、酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
     KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
     Q’は、前記式(1)で表される化合物の残基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Q’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのQ’は、前記式(1)で表される化合物の残基である。]
  3.  前記式(1)で表される化合物の残基を有する構成単位が、式(3)で表される構成単位である、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     d、e、f及びgは、それぞれ独立に、0~2の整数である。
     pAは、0~5の整数である。pAが複数存在する場合、それらは同一でも異なっていてもよい。
     Jは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Jが複数存在する場合、それらは同一でも異なっていてもよい。
     Ar7、Ar8及びAr9は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Ar7、Ar8及びAr9が複数存在する場合、それらは各々同一でも異なっていてもよい。
     RX4は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX4が複数存在する場合、それらは同一でも異なっていてもよい。
     Q’’は、前記式(1)で表される化合物の残基を表す。]
  4.  前記Xがホウ素原子である、請求項1~3のいずれか一項に記載の高分子化合物。
  5.  前記Y1、Y2及びY3がN-Ryである、請求項1~4のいずれか一項に記載の高分子化合物。
  6.  前記n3が0である、請求項1~5のいずれか一項に記載の高分子化合物。
  7.  前記式(2)で表される構成単位が式(31)で表される構成単位である、請求項2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は置換アミノ基を表し、これらの基は置換基を有していてもよい。但し、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11のうちの1つは結合手である。
     Ry、Ar3、LA及びnAは、前記と同じ意味を表す。]
  8.  前記式(2')で表される構成単位が式(41)で表される構成単位である、請求項2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は、それぞれ独立に、結合手、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は、置換アミノ基を表し、これらの基は置換基を有していてもよい。但し、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11のうちの1つは結合手である。
     Ry、Ar4、Ar6、KA及びmAは、前記と同じ意味を表す。]
  9.  前記式(3)で表される構成単位が式(51)で表される構成単位である、請求項3に記載の高分子化合物
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     R21、R22、R23、R24、R25、R26、R27、R28、R29、R30及びR31は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、又は、置換アミノ基を表し、これらの基は置換基を有していてもよい。
     Ry’は、直接結合、アリーレン基、2価の複素環基、又はアルキレン基を表し、これらの基は置換基を有していてもよい。複数存在するRy’は、同一でも異なっていてもよい。
     Ar7、Ar8、Ar9、RX4、J,pA、d、e、f及びgは、前記と同じ意味を表す。]
  10.  前記式(1)で表される化合物の残基を有さない構成単位が、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位である、請求項1~9のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     a1及びa2は、それぞれ独立に、0~2の整数である。
     ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
     RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000009
    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが結合した2価の基を表し、これらの基は置換基を有していてもよい。]
  11.  前記式(Y)で表される構成単位が、式(Y-1)で表される構成単位又は式(Y-2)で表される構成単位である、請求項10に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     RY1は前記と同じ意味を表す。
     XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又は-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
  12.  前記式(2)で表される構成単位、及び式(2')で表される構成単位の合計量が、高分子化合物に含まれる全構成単位の合計量に対して、0.1~50モル%である、請求項2、4~8、10及び11のいずれか一項に記載の高分子化合物。
  13.  前記式(3)で表される構成単位の合計量が、高分子化合物に含まれる全構成単位の合計量に対して、0.1~50モル%である、請求項3~6及び9~11のいずれか一項に記載の高分子化合物。
  14.  正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種の材料と、請求項1~13のいずれか一項に記載の高分子化合物と、を含有する組成物。
  15.  請求項1~13のいずれか一項に記載の高分子化合物を含有する有機層を備えた発光素子。
PCT/JP2018/024289 2017-06-30 2018-06-27 高分子化合物及びそれを用いた発光素子 WO2019004248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/620,605 US11021568B2 (en) 2017-06-30 2018-06-27 Polymer compound and light emitting device using the same
CN201880042746.5A CN110799571B (zh) 2017-06-30 2018-06-27 高分子化合物及使用其的发光元件
JP2019526961A JP7173006B2 (ja) 2017-06-30 2018-06-27 高分子化合物及びそれを用いた発光素子
KR1020207001947A KR102526389B1 (ko) 2017-06-30 2018-06-27 고분자 화합물 및 그것을 사용한 발광 소자
EP18824800.9A EP3647338A4 (en) 2017-06-30 2018-06-27 MACROMOLECULAR COMPOUND AND LIGHT EMITTING ELEMENT WITH USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128629 2017-06-30
JP2017128629 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004248A1 true WO2019004248A1 (ja) 2019-01-03

Family

ID=64741674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024289 WO2019004248A1 (ja) 2017-06-30 2018-06-27 高分子化合物及びそれを用いた発光素子

Country Status (6)

Country Link
US (1) US11021568B2 (ja)
EP (1) EP3647338A4 (ja)
JP (1) JP7173006B2 (ja)
KR (1) KR102526389B1 (ja)
CN (1) CN110799571B (ja)
WO (1) WO2019004248A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020045681A1 (ja) * 2018-08-31 2020-03-05 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2020203203A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用重合体及び有機電界発光素子
CN112047967A (zh) * 2019-06-07 2020-12-08 学校法人关西学院 多环芳香族化合物、反应性化合物、高分子化合物、悬挂型高分子化合物、及使用其的用途
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191229A1 (en) * 2020-03-24 2021-09-30 Cambridge Display Technology Limited Light emitting marker and assay
WO2021199948A1 (ja) 2020-03-31 2021-10-07 住友化学株式会社 組成物及びそれを含有する発光素子
CN113646356A (zh) * 2019-03-29 2021-11-12 住友化学株式会社 发光元件和发光元件用组合物
WO2022024664A1 (ja) * 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
EP3950766A4 (en) * 2019-03-29 2022-12-07 Sumitomo Chemical Company Limited LUMINESCENT ELEMENT AND COMPOSITION FOR LUMINESCENT ELEMENT
US11600787B2 (en) 2019-08-30 2023-03-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023054110A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 発光素子
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US12058927B2 (en) 2019-07-30 2024-08-06 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2024218109A1 (de) 2023-04-20 2024-10-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698519B (zh) * 2020-05-20 2023-07-04 广州华睿光电材料有限公司 一种聚合物及其在有机电子器件中的应用
CN114621271B (zh) * 2020-12-10 2024-03-29 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN114621272B (zh) * 2020-12-10 2024-03-29 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN114621273B (zh) * 2020-12-10 2024-03-22 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN114621274B (zh) * 2020-12-10 2024-03-22 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2013013753A2 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Polymers and oligomers with functionalized side groups
WO2014102543A2 (en) 2012-12-24 2014-07-03 Cambridge Display Technology Limited Polymer and device
WO2016031639A1 (ja) 2014-08-28 2016-03-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
JP2016196610A (ja) * 2015-04-06 2016-11-24 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2017018326A1 (ja) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017079267A (ja) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551428B2 (ja) * 2009-01-06 2014-07-16 ユー・ディー・シー アイルランド リミテッド 電荷輸送材料及び有機電界発光素子
US20140217378A1 (en) * 2011-06-24 2014-08-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
CN105473569B (zh) * 2013-11-13 2021-01-01 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
TWI636056B (zh) 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
US10374166B2 (en) 2014-02-18 2019-08-06 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
JP2017178919A (ja) * 2015-12-24 2017-10-05 出光興産株式会社 新規な化合物
CN108640940A (zh) 2016-07-29 2018-10-12 江苏三月光电科技有限公司 一种稳定型含硼有机电致发光化合物及其应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2013013753A2 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Polymers and oligomers with functionalized side groups
WO2014102543A2 (en) 2012-12-24 2014-07-03 Cambridge Display Technology Limited Polymer and device
WO2016031639A1 (ja) 2014-08-28 2016-03-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
JP2016196610A (ja) * 2015-04-06 2016-11-24 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2017018326A1 (ja) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017079267A (ja) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647338A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020040298A1 (ja) * 2018-08-23 2021-09-24 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
JP7388658B2 (ja) 2018-08-23 2023-11-29 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020045681A1 (ja) * 2018-08-31 2020-03-05 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
EP3950766A4 (en) * 2019-03-29 2022-12-07 Sumitomo Chemical Company Limited LUMINESCENT ELEMENT AND COMPOSITION FOR LUMINESCENT ELEMENT
WO2020203203A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用重合体及び有機電界発光素子
JP7472106B2 (ja) 2019-03-29 2024-04-22 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用重合体及び有機電界発光素子
EP3950764A4 (en) * 2019-03-29 2022-12-07 Sumitomo Chemical Company Limited ELECTROLUMINESCENT ELEMENT AND COMPOSITION FOR ELECTROLUMINESCENT ELEMENT
JPWO2020203203A1 (ja) * 2019-03-29 2020-10-08
CN113631626A (zh) * 2019-03-29 2021-11-09 日铁化学材料株式会社 有机电场发光元件用聚合物及有机电场发光元件
CN113646356A (zh) * 2019-03-29 2021-11-12 住友化学株式会社 发光元件和发光元件用组合物
CN112047967A (zh) * 2019-06-07 2020-12-08 学校法人关西学院 多环芳香族化合物、反应性化合物、高分子化合物、悬挂型高分子化合物、及使用其的用途
US12058927B2 (en) 2019-07-30 2024-08-06 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11600787B2 (en) 2019-08-30 2023-03-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191229A1 (en) * 2020-03-24 2021-09-30 Cambridge Display Technology Limited Light emitting marker and assay
WO2021199948A1 (ja) 2020-03-31 2021-10-07 住友化学株式会社 組成物及びそれを含有する発光素子
WO2022024664A1 (ja) * 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
EP4190879A4 (en) * 2020-07-28 2024-08-21 Sumitomo Chemical Co COMPOSITION AND ELECTROLUMINESCENT ELEMENT
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023054110A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 発光素子
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024218109A1 (de) 2023-04-20 2024-10-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
CN110799571B (zh) 2022-09-20
KR20200023397A (ko) 2020-03-04
EP3647338A1 (en) 2020-05-06
US20210087330A1 (en) 2021-03-25
CN110799571A (zh) 2020-02-14
KR102526389B1 (ko) 2023-04-28
EP3647338A4 (en) 2021-03-24
US11021568B2 (en) 2021-06-01
JPWO2019004248A1 (ja) 2020-04-30
JP7173006B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
JP7173006B2 (ja) 高分子化合物及びそれを用いた発光素子
JP6500891B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2021120952A (ja) 組成物の製造方法
CN108026254B (zh) 高分子化合物及使用其的发光元件
JP6323093B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2018198975A1 (ja) 発光素子
WO2016047536A1 (ja) 高分子化合物およびそれを用いた発光素子
JP6826930B2 (ja) 発光素子
JP6519108B2 (ja) 組成物およびそれを用いた発光素子
JP6642428B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2017125087A (ja) 高分子化合物及びそれを用いた発光素子
WO2018198974A1 (ja) 発光素子
JP6468928B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2015174824A (ja) 金属錯体およびそれを用いた発光素子
WO2017077904A1 (ja) 発光素子の駆動方法および発光装置
JP6825494B2 (ja) 組成物、高分子化合物及びそれらを用いた発光素子
JP6707909B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2017038613A1 (ja) 組成物及びそれを用いた発光素子
JP6804465B2 (ja) 組成物及びそれを用いた発光素子
JP2016064998A (ja) 金属錯体およびそれを用いた発光素子
JP6740643B2 (ja) 高分子化合物及びそれを用いた発光素子
JP6572682B2 (ja) 化合物及びそれを用いた発光素子
JP7354557B2 (ja) 高分子化合物及びそれを用いた発光素子
JP6907739B2 (ja) 組成物及びそれを用いた発光素子
JP6327019B2 (ja) 高分子化合物およびそれを用いた発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207001947

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018824800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018824800

Country of ref document: EP

Effective date: 20200130