WO2017168958A1 - 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 - Google Patents
薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 Download PDFInfo
- Publication number
- WO2017168958A1 WO2017168958A1 PCT/JP2017/001237 JP2017001237W WO2017168958A1 WO 2017168958 A1 WO2017168958 A1 WO 2017168958A1 JP 2017001237 W JP2017001237 W JP 2017001237W WO 2017168958 A1 WO2017168958 A1 WO 2017168958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- producing
- rolled
- plated
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 199
- 239000010959 steel Substances 0.000 title claims abstract description 199
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 51
- 239000006104 solid solution Substances 0.000 claims abstract description 33
- 238000007747 plating Methods 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 238000000137 annealing Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 14
- 238000005246 galvanizing Methods 0.000 claims description 12
- 238000005275 alloying Methods 0.000 claims description 10
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 2
- 239000008397 galvanized steel Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 12
- 239000002344 surface layer Substances 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 238000009749 continuous casting Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- -1 zinc-aluminum-magnesium Chemical compound 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a thin steel plate and a plated steel plate, a hot rolled steel plate manufacturing method, a cold rolled full hard steel plate manufacturing method, a thin steel plate manufacturing method, and a plated steel plate manufacturing method.
- Patent Document 1 discloses DP steel having high ductility
- Patent Document 2 discloses DP steel having excellent stretch flange formability as well as ductility.
- Such DP steel has a problem that fatigue characteristics are inferior because it has a composite structure of a hard phase and a soft phase as a basic structure, which is an obstacle to practical use in a portion where fatigue characteristics are required. It was.
- JP 58-22332 A Japanese Patent Laid-Open No. 11-350038 JP 2004-149812 A JP 11-199973 A
- Patent Document 3 and Patent Document 4 have a tensile strength (TS) of 1100 MPa or less, and higher strength is required to reduce the weight of automobiles.
- TS tensile strength
- This invention is made
- providing a plated steel sheet plated with the thin steel sheet a method for producing a hot-rolled steel sheet necessary for obtaining the thin steel sheet, a method for producing a cold-rolled full hard steel sheet, and a method for producing a plated steel sheet are also provided. Objective.
- the present inventors have conducted extensive research from the viewpoint of the composition and microstructure of the steel sheet. It was. As a result, it was found that a decrease in the average solid solution Mn concentration in the ferrite on the surface layer of the steel layer reduces the fatigue characteristics of a steel plate having a TS1180 MPa or higher.
- the fatigue strength of steel sheets is greatly affected by the surface layer of the steel, and it is known that strengthening the surface ferrite is effective in improving the fatigue characteristics of the steel sheet, particularly in a composite structure steel containing ferrite, which is a soft phase.
- a strengthening of ferrite solid solution strengthening with Mn etc. is a typical strengthening method, but Mn is an element that is more easily oxidized than Fe, and external oxidation or near the steel sheet surface layer during winding or annealing of hot rolling.
- a Mn-based oxide is formed by internal oxidation, and as a result, the solid solution Mn concentration in the ferrite decreases.
- Such a decrease in the solid solution Mn concentration in the ferrite in the vicinity of the surface layer of the base metal lowers the fatigue properties of the steel sheet, and the decrease is particularly remarkable in a steel sheet having a TS of 1180 MPa or more.
- the present inventors determined the average solid solution Mn concentration in the ferrite of the surface iron surface layer (in the present invention, the region from the surface of the iron surface to a depth of 0.5 ⁇ m). It has been found that the fatigue resistance is greatly improved by setting it to 60% or more of the average solid solution Mn concentration in the ferrite at the 1/4 position.
- the present invention is based on the above-described knowledge, and its configuration is as follows.
- C 0.08% to 0.3%
- Si 1.0% or less
- Mn 2.0% to 3.5%
- P 0.1% or less
- S 0.01% or less
- Al 0.01% or more and 0.1% or less
- N 0.015% or less
- the area ratio of martensite is 50% or more and 90% or less
- the total area ratio of ferrite and bainite is 10 to 50%
- the average solid solution Mn concentration in the ferrite in the region from the surface of the iron core to a depth of 0.5 ⁇ m Has a steel structure that is 60% or more of the average solid solution Mn concentration in the ferrite at a thickness of 1/4.
- the component composition further contains at least one selected from Ti: 0.01% to 0.2% and Nb: 0.01% to 0.2% by mass%.
- the component composition further includes, in mass%, Cr: 0.05% to 1.0%, Mo: 0.05% to 1.0%, V: 0.01% to 1.0%
- the component composition further contains at least one selected from Ca: 0.001% to 0.005% and Sb: 0.003% to 0.03% by mass%.
- [6] A plated steel sheet comprising a plated layer on the surface of the thin steel sheet according to any one of [1] to [5].
- [7] A plated steel sheet, wherein the plated layer according to [6] is a hot-dip galvanized layer.
- [8] A plated steel sheet, wherein the hot dip galvanized layer according to [7] is an alloyed hot dip galvanized layer.
- Hot rolling wherein the steel slab having the composition according to any one of [1] to [5] is hot-rolled at a coiling temperature of 350 ° C. or higher and 550 ° C. or lower. A method of manufacturing a steel sheet.
- a method for producing a cold-rolled full hard steel sheet wherein the hot-rolled steel sheet obtained by the production method according to [9] is cold-rolled at a cold reduction rate of 30 to 95%.
- the cold-rolled full hard steel sheet obtained by the production method according to [10] is heated to 800 to 900 ° C. at an average heating rate at 500 to 750 ° C. of 20 ° C./s or less and held for 10 seconds or more. At that time, annealing is performed with a dew point in a temperature range of 750 ° C. or higher set to ⁇ 40 ° C. or lower, and then cooled to 550 ° C. or lower at an average cooling rate of 3 ° C./s or higher.
- an alloying treatment is further performed in a temperature range of 480 to 560 ° C. for 5 to 60 seconds after the hot dip galvanizing treatment.
- FIG. 1 shows the relationship between FL / TS and the ratio of the average solid solution Mn concentration in ferrite in the region from the surface of the iron core to the depth of 0.5 ⁇ m with respect to the average solid solution Mn concentration in the ferrite at the 1/4 position FIG.
- the present invention is a thin steel plate and a plated steel plate, a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, a method for producing a thin steel plate, and a method for producing a plated steel plate.
- the thin steel sheet according to the present invention is made from a steel material such as a slab, and becomes a thin steel sheet through a manufacturing process of becoming a hot-rolled steel sheet and a cold-rolled full hard steel sheet. Furthermore, the plated steel sheet of the present invention is plated with the above thin steel sheet to become a plated steel sheet.
- the manufacturing method of the hot-rolled steel sheet of the present invention is a manufacturing method until obtaining the hot-rolled steel sheet in the above process.
- the method for producing a cold-rolled full hard steel plate according to the present invention is a method for obtaining a cold-rolled full hard steel plate from a hot-rolled steel plate in the above process.
- the method for producing a thin steel plate according to the present invention is a method for obtaining a thin steel plate from a cold-rolled full hard steel plate in the above process.
- the method for producing a plated steel sheet according to the present invention is a method for obtaining a plated steel sheet from a thin steel sheet in the above process.
- the component compositions of hot-rolled steel sheet, cold-rolled full hard steel sheet, thin steel sheet, and plated steel sheet are common, and the steel structures of thin steel sheet and plated steel sheet are common.
- a hot-rolled steel plate, a thin steel plate, a plated steel plate, and a manufacturing method are common.
- composition of thin steel plate and plated steel plate is mass%, C: 0.08% or more and 0.3% or less, Si: 1.0% or less, Mn: 2.0% or more and 3.5% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 0.1% or less, N: 0.015% or less, with the balance being Fe and inevitable impurities.
- the component composition may contain at least one selected from Ti: 0.01% to 0.2% and Nb: 0.01% to 0.2% by mass.
- the above component composition is in mass%, Cr: 0.05% to 1.0%, Mo: 0.05% to 1.0%, V: 0.01% to 1.0%. It may contain at least one selected.
- the above component composition may contain B: 0.0003% or more and 0.005% or less in mass%.
- the component composition may contain at least one selected from Ca: 0.001% to 0.005% and Sb: 0.003% to 0.03% in mass%.
- % representing the content of a component means “% by mass”.
- C 0.08% or more and 0.3% or less C is an essential element for generating martensite and securing a desired strength, and for that purpose, 0.08% or more is necessary. On the other hand, if it exceeds 0.3%, the weldability is reduced. Therefore, the C content is limited to a range of 0.08% to 0.3%.
- the lower limit is preferably 0.1% or more.
- the upper limit is preferably 0.25% or less.
- Si 1.0% or less Si is an element effective for strengthening steel. However, when the Si content exceeds 1.0%, chemical conversion treatment properties and plating properties are deteriorated. Therefore, the Si content is 1.0% or less. Preferably it is 0.6% or less, More preferably, it is 0.5% or less.
- Mn 2.0% or more and 3.5% or less
- Mn is an element effective for strengthening steel, and is required to be 2.0% or more to ensure a desired strength. On the other hand, if the content exceeds 3.5%, weldability and formability are reduced. Therefore, the Mn content is 2.0% or more and 3.5% or less.
- the lower limit is preferably 2.2% or more.
- the upper limit is preferably 2.8% or less.
- P 0.1% or less P is an element effective for strengthening steel, but if it exceeds 0.1% and is contained excessively, workability and toughness are reduced. Therefore, the P content is 0.1% or less.
- S 0.01% or less Since S becomes inclusions such as MnS and causes a decrease in moldability, it is preferable to be as low as possible. However, from the viewpoint of manufacturing cost, the S content is 0.01% or less.
- Al acts as a deoxidizer and is an element effective for the cleanliness of steel, and is preferably contained in the deoxidation step.
- the Al content is less than 0.01%, the effect is poor, so the lower limit is made 0.01%.
- the Al content is 0.1% or less.
- the N content is 0.015% or less.
- the N content is 0.010% or less.
- the thin steel plate and the plated steel plate in the present invention have the above-described component composition as a basic component.
- At least one selected from Ti and Nb may be contained.
- Ti and Nb are contained for the purpose of increasing the strength of the steel by precipitation strengthening.
- the lower limit of each element content is preferably set to 0.01%.
- the upper limit of each element content is preferably 0.2%.
- the Ti content the lower limit is more preferably 0.03% or more, and the upper limit is more preferably 0.1% or less.
- the Nb content the lower limit is more preferably 0.03% or more, and the upper limit is more preferably 0.1% or less.
- it may contain at least one selected from Cr, Mo, and V.
- Cr: 0.05% to 1.0%, Mo: 0.05% to 1.0%, V: 0.01% to 1.0% Cr, Mo, V increase the hardenability, It is an effective element for strengthening steel. The effect is obtained when Cr: 0.05% or more, Mo: 0.05 or more, and V: 0.01% or more. However, if it exceeds Cr: 1.0%, Mo: 1.0%, and V: 1.0%, respectively, the moldability deteriorates. Therefore, when these elements are contained, Cr: 0.05% to 1.0%, Mo: 0.05% to 1.0%, V: 0.01% to 1.0% It is preferable that About Cr content, a minimum is still more preferably 0.1% or more, and an upper limit is still more preferably 0.5% or less. For the Mo content, the lower limit is more preferably 0.1% or more, and the upper limit is more preferably 0.5% or less. Regarding the V content, the lower limit is more preferably 0.02% or more, and the upper limit is more preferably 0.5% or less.
- B may be contained.
- B 0.0003% or more and 0.005% or less B is an element having an effect of improving hardenability, and can be contained as necessary. Such an effect is obtained when the B content is 0.0003% or more. However, if it exceeds 0.005%, the effect is saturated and the cost is increased. Therefore, when it contains, it is 0.0003% or more and 0.005% or less.
- the lower limit is more preferably 0.0005% or more.
- the upper limit is more preferably 0.003% or less.
- Ca 0.001% or more and 0.005% or less
- Ca is an element effective for spheroidizing the shape of the sulfide and improving the adverse effect of the sulfide on the formability. In order to obtain this effect, 0.001% or more is necessary. However, excessive inclusion causes an increase in inclusions and causes surface and internal defects. Therefore, when it contains Ca, the content shall be 0.001% or more and 0.005% or less.
- Sb 0.003% or more and 0.03% or less
- Sb has an effect of suppressing the decarburization layer generated in the surface layer portion of the steel sheet and improving the fatigue characteristics.
- the Sb content is preferably 0.003% or more.
- the content shall be 0.003% or more and 0.03% or less.
- the lower limit is more preferably 0.005% or more.
- the upper limit is more preferably 0.01% or less.
- the balance consists of Fe and inevitable impurities.
- Martensite area ratio 50% or more and 90% or less Martensite works to increase the strength of steel.
- the area ratio with respect to the entire steel plate needs to be 50% or more.
- the area ratio of martensite is 50% or more and 90% or less.
- Total area ratio of ferrite and bainite 10-50%
- the total area ratio of ferrite and bainite needs to be 10% or more in terms of the area ratio relative to the entire steel sheet.
- the total area ratio of ferrite and bainite is 10 to 50%.
- the lower limit is preferably 20% or more.
- the upper limit is preferably 40% or less, more preferably less than 40%, and still more preferably 38% or less.
- phases other than the above may include phases such as retained austenite.
- the average solid solution Mn concentration in the ferrite in the region from the ground surface to a depth of 0.5 ⁇ m is 60% or more of the average solid solution Mn concentration in the ferrite at the 1/4 position of the plate thickness. If the average solid solution Mn concentration in the ferrite in the region up to 5 ⁇ m is less than 60% with respect to the average solid solution Mn concentration in the ferrite at a thickness of 1/4, the desired fatigue characteristics cannot be obtained. Therefore, the average solid solution Mn concentration in the ferrite in the region from the surface of the ground iron to a depth of 0.5 ⁇ m is set to 60% or more of the average solid solution Mn concentration in the ferrite at the position of the plate thickness 1 ⁇ 4. Preferably it is 80% or more. As described above, in order to suppress a decrease in the solid solution Mn concentration on the surface of the ground iron, it is necessary to control the coiling temperature in hot rolling and the dew point during annealing to appropriate conditions.
- the component composition and steel structure of the thin steel sheet are as described above.
- the thickness of the thin steel plate is not particularly limited, but is usually 0.7 to 2.3 mm.
- the plated steel sheet of the present invention is a plated steel sheet provided with a plating layer on the thin steel sheet of the present invention.
- the kind of plating layer is not specifically limited, For example, either a hot dipping layer and an electroplating layer may be sufficient.
- the plating layer may be an alloyed plating layer.
- the plated layer is preferably a galvanized layer.
- the galvanized layer may contain Al or Mg.
- hot dip zinc-aluminum-magnesium alloy plating Zn—Al—Mg plating layer
- the Al content is preferably 1% by mass or more and 22% by mass or less
- the Mg content is preferably 0.1% by mass or more and 10% by mass or less.
- Al plating etc. may be sufficient besides the above Zn plating.
- the composition of the plating layer is not particularly limited and may be a general one.
- a hot-dip galvanized layer having a plating adhesion amount of 20 to 80 g / m 2 on one side, and an alloyed hot-dip galvanized layer obtained by alloying it.
- the Fe content in the plated layer is less than 7% by mass.
- the Fe content in the plated layer is 7 to 15% by mass. %.
- steel having the component composition described in the above “component composition of thin steel sheet and plated steel sheet” is melted in a converter or the like, and is formed into a slab by a continuous casting method or the like.
- the slab is hot-rolled to form a hot-rolled steel sheet, and then pickled and cold-rolled to produce a cold-rolled full hard steel sheet that is continuously annealed.
- annealing is performed in a continuous annealing line (CAL).
- annealing is performed in a continuous hot dip galvanizing line (CGL).
- the temperature is the steel sheet surface temperature unless otherwise specified.
- the steel sheet surface temperature can be measured using a radiation thermometer or the like.
- the average cooling rate is (surface temperature before cooling ⁇ surface temperature after cooling) / cooling time.
- the production method for producing the steel slab is not particularly limited, and a known production method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Then, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Also, the slab may be formed by a known casting method such as ingot-bundling rolling or continuous slab casting.
- Heating of steel slabs To hot-roll steel slabs, a method of rolling the slab after heating, a method of rolling directly after heating the slab after continuous casting, or applying a short heat treatment to the slab after continuous casting It can be done by rolling.
- the slab heating temperature may be 1100 to 1320 ° C.
- Hot rolling conditions are as follows: the rolling temperature during hot rolling is within the range of 350 ° C. or higher and 550 ° C. or lower, and the average in the ferrite in the region from the surface of the base iron to a depth of 0.5 ⁇ m.
- the solute Mn concentration can be set to 60% or more of the average solute Mn concentration in the ferrite at the 1/4 position of the plate thickness.
- the upper limit of the coiling temperature is preferably less than 500 ° C, more preferably 480 ° C or less.
- the manufacturing method of the cold-rolled full hard steel plate of this invention is a manufacturing method of the cold-rolled full hard steel plate which cold-rolls the hot-rolled steel plate obtained with the said manufacturing method.
- the cold rolling conditions require that the cold rolling reduction be 30% or more in order to generate recrystallized ferrite during annealing and ensure workability. However, if the cold rolling reduction exceeds 95%, the rolling load is excessively increased and the productivity is hindered. Therefore, the cold rolling reduction is set to 30 to 95%.
- the lower limit is preferably 40% or more.
- the upper limit is preferably 70% or less.
- the method for producing a thin steel plate according to the present invention comprises heating the cold-rolled full hard steel plate obtained by the above production method to 800 to 900 ° C. at an average heating rate at 500 to 750 ° C. of 20 ° C./s or less and holding it for 10 seconds or more.
- the annealing is performed with the dew point in the temperature range of 750 ° C. or higher set to ⁇ 40 ° C. or lower, and then cooled to 550 ° C. or lower at an average cooling rate of 3 ° C./s or higher.
- the average heating rate at 500 to 750 ° C is 20 ° C / s or less If the average heating rate at 500 to 750 ° C exceeds 20 ° C / s, recovery and recrystallization during heating become insufficient, and it is introduced into the steel sheet by cold rolling. The rearranged dislocations remain. As a result, oxidation of Mn and Si in the vicinity of the steel sheet surface layer is promoted, so that the solid solution Mn concentration and Si concentration in the ferrite in the vicinity of the surface layer are reduced, and the fatigue characteristics of the steel sheet are deteriorated. Therefore, the average heating rate at 500 to 750 ° C. is set to 20 ° C./s or less. Preferably it is 15 degrees C / s or less.
- Heating to 800 to 900 ° C. and holding for 10 seconds or more When the heating temperature is less than 800 ° C. or the holding time is less than 10 seconds, re-austeniteization becomes insufficient and the desired martensite amount cannot be obtained after annealing. On the other hand, when the temperature exceeds 900 ° C., oxidation of Mn and Si occurs on the surface layer, and the fatigue characteristics deteriorate. Therefore, the heating condition is 800 to 900 ° C. for 10 seconds or longer. Preferably, the temperature is 830 to 880 ° C. for 30 seconds or longer.
- the dew point in the temperature range of 750 ° C or higher is -40 ° C or lower.
- the oxygen potential in the annealing process is lowered.
- the amount is reduced.
- oxidation of these elements in the vicinity of the steel sheet surface layer is suppressed, and works effectively in improving fatigue characteristics. Since such an effect is obtained when the dew point is ⁇ 40 ° C. or lower, the dew point in the temperature range of 750 ° C. or higher is set to ⁇ 40 ° C. or lower. Preferably, it is ⁇ 55 ° C. or lower.
- the lower limit of the dew point of the atmosphere is not particularly specified, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
- the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
- the upper limit of the average cooling rate is not particularly specified, but if the cooling rate is too high, the shape of the steel sheet is deteriorated, so that it is preferably 100 ° C./s or less.
- the lower limit is more preferably 5 ° C./s or more.
- the upper limit is more preferably 50 ° C./s or less.
- the method for producing a plated steel sheet according to the present invention is a method for plating a thin steel sheet.
- the plating process include a hot dip galvanizing process and a process of alloying after hot dip galvanizing.
- a plating layer may be formed by electroplating such as Zn—Ni electroalloy plating, or hot dip zinc-aluminum-magnesium alloy plating may be performed.
- Zn plating is preferable, but plating treatment using other metal such as Al plating may be used.
- the plating treatment conditions are not particularly limited. However, when hot dip galvanization is performed, the alloying treatment conditions after hot dip galvanization are preferably 5 to 60 s in a temperature range of 480 to 560 ° C. If the temperature is less than 480 ° C. or the time is less than 5 s, the alloying of the plating does not proceed sufficiently. Conversely, if the temperature exceeds 560 ° C. or the time exceeds 60 s, the alloying proceeds excessively and the powdering properties of the plating are lowered. . Therefore, the alloying conditions are preferably 480 to 560 ° C. and 5 to 60 s. More preferably, it is 10 to 40 s at 500 to 540 ° C.
- the condition of the hot dip galvanizing treatment was that the steel sheet was immersed in a plating bath having a bath temperature of 475 ° C., and then the amount of plating was variously adjusted by pulling up and gas wiping. Further, some steel plates were subjected to alloying treatment under the conditions shown in Table 2.
- the steel plate obtained as described above was measured for tensile properties, fatigue properties, steel plate structure, and average solid solution Mn concentration in ferrite as follows.
- Tensile properties were measured using a JIS No. 5 specimen taken from a direction perpendicular to the rolling direction of the steel sheet at a strain rate of 10 ⁇ 3 / s to measure tensile strength (TS) and elongation (El).
- TS was 1180 MPa or higher
- EL was 10% or higher.
- Fatigue properties were determined by measuring the fatigue limit (FL) by a double-plane bending test method with a frequency of 20 Hz, and evaluating the fatigue properties by the ratio (FL / TS) to the tensile strength (TS). An FL / TS of 0.47 or more was accepted.
- the cross-sectional structure of the steel sheet appears with a 1% nital solution, and the position of the plate thickness 1 ⁇ 4 (the position corresponding to one-fourth of the plate thickness from the surface) is scanned using a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the average solid solution Mn concentration in the ferrite was measured by analyzing with TEM-EDS using a thin film cross-section sample processed by FIB. Measurement is performed at 10 points for each of the region from the steel plate surface to 0.5 ⁇ m and the plate thickness 1/4 position, and the average value is measured in the ferrite in the region from the surface of the steel plate to the depth of 0.5 ⁇ m.
- board thickness 1/4 position was calculated
- concentration was calculated
- FIG. 1 shows the relationship between the ratio of the solid solution Mn concentration in the ferrite on the surface of the ground iron to the solid solution Mn concentration in the ferrite at the 1/4 position of the plate thickness and FL / TS.
- the average solid solution Mn concentration in the ferrite in the region from the ground surface to the depth of 0.5 ⁇ m is 60% or more of the average solid solution Mn concentration in the ferrite at a thickness of 1/4.
- FL / TS is 0.47 or more and has excellent fatigue characteristics.
- the invention examples having a dew point of ⁇ 55 ° C. or lower have high FL / TS and are further excellent in fatigue characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
[1]質量%で、C:0.08%以上0.3%以下、Si:1.0%以下、Mn:2.0%以上3.5%以下、P:0.1%以下、S:0.01%以下、Al:0.01%以上0.1%以下、N:0.015%以下を含み、残部がFeおよび不可避的不純物からなる成分組成と、鋼板全体に対する面積率で、マルテンサイトの面積率が50%以上90%以下でフェライトとベイナイトの面積率の合計が10~50%であり、地鉄表面から深さ0.5μmまでの領域のフェライト中の平均固溶Mn濃度が板厚1/4位置のフェライト中の平均固溶Mn濃度の60%以上である鋼組織とを有することを特徴とする薄鋼板。
[2]前記成分組成は、さらに、質量%で、Ti:0.01%以上0.2%以下、Nb:0.01%以上0.2%以下から選ばれる少なくとも1種を含有することを特徴とする[1]に記載の薄鋼板。
[3]前記成分組成は、さらに、質量%で、Cr:0.05%以上1.0%以下、Mo:0.05%以上1.0%以下、V:0.01%以上1.0%以下から選ばれる少なくとも1種を含有することを特徴とする[1]または[2]に記載の薄鋼板。
[4]前記成分組成は、さらに、質量%で、B:0.0003%以上0.005%以下を含有することを特徴とする[1]~[3]のいずれかに記載の薄鋼板。
[5]前記成分組成は、さらに、質量%で、Ca:0.001%以上0.005%以下、Sb:0.003%以上0.03%以下から選ばれる少なくとも1種を含有することを特徴とする[1]~[4]のいずれかに記載の薄鋼板。
[6][1]~[5]のいずれかに記載の薄鋼板の表面にめっき層を備えることを特徴とするめっき鋼板。
[7][6]に記載のめっき層が溶融亜鉛めっき層であることを特徴とするめっき鋼板。
[8][7]に記載の溶融亜鉛めっき層が合金化溶融亜鉛めっき層であることを特徴とするめっき鋼板。
[9][1]~[5]のいずれかに記載の成分組成を有する鋼スラブに熱間圧延を施すにあたり、巻取温度を350℃以上550℃以下で巻き取ることを特徴とする熱延鋼板の製造方法。
[10][9]に記載の製造方法で得られた熱延鋼板を、冷間圧下率を30~95%で冷間圧延することを特徴とする冷延フルハード鋼板の製造方法。
[11][10]に記載の製造方法で得られた冷延フルハード鋼板を、500~750℃における平均加熱速度を20℃/s以下で800~900℃まで加熱し10秒以上保持し、その際、750℃以上の温度域での露点を-40℃以下として焼鈍し、その後、3℃/s以上の平均冷却速度で550℃以下まで冷却することを特徴とする薄鋼板の製造方法。
[12][11]に記載の製造方法で得られた薄鋼板にめっき処理を施すことを特徴とするめっき鋼板の製造方法。
[13][12]に記載の製造方法において、めっき処理は溶融亜鉛めっき処理であることを特徴とするめっき鋼板の製造方法。
[14][13]に記載の製造方法において、溶融亜鉛めっき処理後、さらに480~560℃の温度域で5~60sの合金化処理を行うことを特徴とするめっき鋼板の製造方法。
薄鋼板、めっき鋼板の成分組成は、質量%で、C:0.08%以上0.3%以下、Si:1.0%以下、Mn:2.0%以上3.5%以下、P:0.1%以下、S:0.01%以下、Al:0.01%以上0.1%以下、N:0.015%以下を含み、残部がFeおよび不可避的不純物からなる。
Cはマルテンサイトを生成させ所望の強度を確保するために必須の元素であり、そのためには0.08%以上必要である。一方、0.3%を超えると溶接性の低下を招く。そのため、C含有量は0.08%以上0.3%以下の範囲に制限する。下限は、好ましくは0.1%以上である。上限は、好ましくは0.25%以下である。
Siは鋼の強化に有効な元素である。しかし、Si含有量が1.0%を超えると化成処理性やめっき性が低下する。そのため、Si含有量は1.0%以下とする。好ましくは0.6%以下であり、より好ましくは0.5%以下である。
Mnは、鋼の強化に有効な元素であり、所望の強度を確保するために2.0%以上必要である。一方、3.5%を超えて過剰に含有すると溶接性や成形性の低下を招く。したがって、Mn含有量は2.0%以上3.5%以下とする。下限は、好ましくは2.2%以上である。上限は、好ましくは2.8%以下である。
Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に含有すると、加工性や靱性の低下を招く。したがって、P含有量は0.1%以下とする。
Sは、MnSなどの介在物となって成形性の低下を招くので極力低い方がよいが、製造コストの面からS含有量は0.01%以下とする。
Alは脱酸剤として作用し、鋼の清浄度に有効な元素であり、脱酸工程で含有させることが好ましい。ここで、Al含有量が0.01%に満たないとその効果に乏しくなるので、下限を0.01%とする。しかしながら、Alの過剰な含有は製鋼時におけるスラブ品質を劣化させる。したがって、Al含有量は0.1%以下とする。
N含有量が0.015%を超えると鋼板内部に粗大なAlNが増加し疲労特性が低下する。そのため、N含有量は0.015%以下とする。好ましくは0.010%以下である。
Ti、Nbは析出強化により鋼を高強度化する目的で含有する。所望の強度を確保するためには各々の元素含有量の下限を0.01%とすることが好ましい。一方、各々の元素が0.2%を超えて含有すると効果が飽和するだけでなく成形性の低下につながる。このため、各々の元素含有量の上限は0.2%とすることが好ましい。Ti含有量については、下限はさらに好ましくは0.03%以上であり、上限はさらに好ましくは0.1%以下である。Nb含有量については、下限はさらに好ましくは0.03%以上であり、上限はさらに好ましくは0.1%以下である。
Cr、Mo、Vは焼き入れ性を上げ、鋼の強化に有効な元素である。その効果は、Cr:0.05%以上、Mo:0.05以上、V:0.01%以上で得られる。しかしながら、それぞれCr:1.0%、Mo:1.0%、V:1.0%を超えて過剰に含有すると、成形性が低下する。したがって、これらの元素を含有する場合には、Cr:0.05%以上1.0%以下、Mo:0.05%以上1.0%以下、V:0.01%以上1.0%以下であることが好ましい。Cr含有量については、下限はさらに好ましくは0.1%以上であり、上限はさらに好ましくは0.5%以下である。Mo含有量については、下限はさらに好ましくは0.1%以上であり、上限はさらに好ましくは0.5%以下である。V含有量については、下限はさらに好ましくは0.02%以上であり、上限はさらに好ましくは0.5%以下である。
Bは焼入れ性を向上する作用を有する元素であり、必要に応じて含有することができる。このような作用はB含有量が0.0003%以上で得られる。しかし、0.005%を超えて含有すると、その効果が飽和してコストアップになる。したがって、含有する場合は0.0003%以上0.005%以下とする。下限は、さらに好ましくは0.0005%以上である。上限は、さらに好ましくは0.003%以下である。
Caは硫化物の形状を球状化し成形性への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには0.001%以上必要である。しかしながら、過剰な含有は、介在物等の増加を引き起こし表面および内部欠陥などを引き起こす。したがって、Caを含有する場合は、その含有量を0.001%以上0.005%以下とする。
Sbは鋼板表層部に生じる脱炭層を抑制し疲労特性を向上させる効果を有する。このような効果の発現のためには、Sb含有量を0.003%以上とすることが好ましい。しかし、Sb含有量が0.03%を超えると鋼板製造時に圧延荷重の増大を招き、生産性の低下が懸念される。したがって、Sbを含有する場合は、その含有量を0.003%以上0.03%以下とする。下限は、さらに好ましくは0.005%以上である。上限は、さらに好ましくは0.01%以下である。
マルテンサイトは鋼の高強度化に働く。所望の強度を得るためには鋼板全体に対する面積率で50%以上必要である。しかし、面積率で90%を超えると成形性が低下する。そのため、マルテンサイトの面積率は50%以上90%以下とする。好ましくは50%以上80%以下である。
良好な延性を確保するためには、フェライトとベイナイトの面積率の合計を、鋼板全体に対する面積率で、10%以上とすることが必要である。一方、フェライトとベイナイトの合計の面積率が50%を超えると所望の強度を得ることが困難になる。そのため、フェライトとベイナイトの面積率の合計は10~50%とする。下限は、好ましくは20%以上である。上限は、好ましくは40%以下であり、より好ましくは40%未満であり、さらに好ましくは38%以下である。
地鉄表面から深さ0.5μmまでの領域のフェライト中の平均固溶Mn濃度が、板厚1/4位置のフェライト中の平均固溶Mn濃度に対して60%未満となると、所望の疲労特性が得られない。そのため、地鉄表面から深さ0.5μmまでの領域のフェライト中の平均固溶Mn濃度は、板厚1/4位置のフェライト中の平均固溶Mn濃度の60%以上とする。好ましくは80%以上である。上記のように地鉄表面の固溶Mn濃度の低下を抑制するためには、熱間圧延での巻取温度や焼鈍時の露点を適切な条件に制御する必要がある。
薄鋼板の成分組成および鋼組織は上記の通りである。また、薄鋼板の厚みは特に限定されないが、通常、0.7~2.3mmである。
本発明のめっき鋼板は、本発明の薄鋼板上にめっき層を備えるめっき鋼板である。めっき層の種類は特に限定されず、例えば、溶融めっき層、電気めっき層のいずれでもよい。また、めっき層は合金化されためっき層でもよい。めっき層は亜鉛めっき層が好ましい。亜鉛めっき層はAlやMgを含有してもよい。また、溶融亜鉛-アルミニウム-マグネシウム合金めっき(Zn-Al-Mgめっき層)も好ましい。この場合、Al含有量を1質量%以上22質量%以下、Mg含有量を0.1質量%以上10質量%以下とすることが好ましい。さらに、Si、Ni、Ce、Laから選ばれる1種以上を合計で1%以下含有していても良い。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。
次に製造条件について説明する。
上記鋼スラブ製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。
鋼スラブを熱間圧延するには、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などで行える。スラブ加熱温度は1100~1320℃とすればよい。
熱間圧延条件は、熱延圧延時の巻取温度を350℃以上550℃以下の範囲内とすることにより、地鉄表面から深さ0.5μmまでの領域のフェライト中の平均固溶Mn濃度が、板厚1/4位置のフェライト中の平均固溶Mn濃度の60%以上とすることができる。なお、巻取温度の上限は好ましくは500℃未満であり、より好ましくは480℃以下である。
本発明の冷延フルハード鋼板の製造方法は、上記製造方法で得られた熱延鋼板を冷間圧延する冷延フルハード鋼板の製造方法である。
本発明の薄鋼板の製造方法は、上記製造方法で得られた冷延フルハード鋼板を、500~750℃における平均加熱速度を20℃/s以下で800~900℃まで加熱し10秒以上保持し、その際、750℃以上の温度域での露点を-40℃以下として焼鈍し、その後、3℃/s以上の平均冷却速度で550℃以下まで冷却する方法である。
500~750℃における平均加熱速度が20℃/sを超えると加熱時の回復や再結晶が不十分となり、冷間圧延で鋼板中に導入された転位が残存する。その結果、鋼板表層付近でのMnやSiの酸化が促進され、表層付近のフェライト中の固溶Mn濃度やSi濃度の低下が生じ、鋼板の疲労特性が低下する。したがって、500~750℃における平均加熱速度を20℃/s以下とする。好ましくは15℃/s以下である。
加熱温度が800℃未満あるいは保持時間が10秒未満では、再オーステナイト化が不十分となり焼鈍後に所望のマルテンサイト量が得られない。一方、900℃を上回ると表層でのMnやSiの酸化が生じ、疲労特性が低下する。そのため、加熱条件は800~900℃で10秒以上とする。好ましくは830~880℃で30秒以上である。
焼鈍時の露点を低下させることで焼鈍工程での酸素ポテンシャルが低下し、それに伴い易酸化性元素であるMnやSiの鋼板表層部における活量が低下する。そして、これらの元素の鋼板表層付近での酸化が抑制され疲労特性の向上に有効に働く。そのような効果は露点が-40℃以下で得られることから、750℃以上の温度域での露点を-40℃以下とする。好ましくは-55℃以下である。雰囲気の露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。
平均冷却速度が3℃/s未満では、冷却時に過度なフェライトの生成やパーライトの生成により所望の強度が得られなくなるため、平均冷却速度は3℃/s以上とする。平均冷却速度の上限は特に規定しないが、冷却速度が速くなりすぎると鋼板の形状が悪くなるため100℃/s以下とすることが好ましい。下限は、さらに好ましくは5℃/s以上である。上限は、さらに好ましくは50℃/s以下である。
本発明のめっき鋼板の製造方法は、薄鋼板にめっきを施す方法である。例えば、めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍と亜鉛めっきを1ラインで連続して行ってもよい。その他、Zn-Ni電気合金めっき等の電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。また、上述のめっき層の説明で記載の通り、Znめっきが好ましいが、Alめっき等の他の金属を用いためっき処理でもよい。
Claims (14)
- 質量%で、
C:0.08%以上0.3%以下、
Si:1.0%以下、
Mn:2.0%以上3.5%以下、
P:0.1%以下、
S:0.01%以下、
Al:0.01%以上0.1%以下、
N:0.015%以下を含み、
残部がFeおよび不可避的不純物からなる成分組成と、
鋼板全体に対する面積率で、マルテンサイトの面積率が50%以上90%以下でフェライトとベイナイトの面積率の合計が10~50%であり、
地鉄表面から深さ0.5μmまでの領域のフェライト中の平均固溶Mn濃度が板厚1/4位置のフェライト中の平均固溶Mn濃度の60%以上である鋼組織とを有することを特徴とする薄鋼板。 - 前記成分組成は、さらに、質量%で、
Ti:0.01%以上0.2%以下、
Nb:0.01%以上0.2%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載の薄鋼板。 - 前記成分組成は、さらに、質量%で、
Cr:0.05%以上1.0%以下、
Mo:0.05%以上1.0%以下、
V:0.01%以上1.0%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1または2に記載の薄鋼板。 - 前記成分組成は、さらに、質量%で、
B:0.0003%以上0.005%以下を含有することを特徴とする請求項1~3のいずれかに記載の薄鋼板。 - 前記成分組成は、さらに、質量%で、
Ca:0.001%以上0.005%以下、
Sb:0.003%以上0.03%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1~4のいずれかに記載の薄鋼板。 - 請求項1~5のいずれかに記載の薄鋼板の表面にめっき層を備えることを特徴とするめっき鋼板。
- 請求項6に記載のめっき層が溶融亜鉛めっき層であることを特徴とするめっき鋼板。
- 請求項7に記載の溶融亜鉛めっき層が合金化溶融亜鉛めっき層であることを特徴とするめっき鋼板。
- 請求項1~5のいずれかに記載の成分組成を有する鋼スラブに熱間圧延を施すにあたり、巻取温度を350℃以上550℃以下で巻き取ることを特徴とする熱延鋼板の製造方法。
- 請求項9に記載の製造方法で得られた熱延鋼板を、冷間圧下率を30~95%で冷間圧延することを特徴とする冷延フルハード鋼板の製造方法。
- 請求項10に記載の製造方法で得られた冷延フルハード鋼板を、500~750℃における平均加熱速度を20℃/s以下で800~900℃まで加熱し10秒以上保持し、その際、750℃以上の温度域での露点を-40℃以下として焼鈍し、その後、3℃/s以上の平均冷却速度で550℃以下まで冷却することを特徴とする薄鋼板の製造方法。
- 請求項11に記載の製造方法で得られた薄鋼板にめっき処理を施すことを特徴とするめっき鋼板の製造方法。
- 請求項12に記載の製造方法において、めっき処理は溶融亜鉛めっき処理であることを特徴とするめっき鋼板の製造方法。
- 請求項13に記載の製造方法において、溶融亜鉛めっき処理後、さらに480~560℃の温度域で5~60sの合金化処理を行うことを特徴とするめっき鋼板の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017525419A JP6237960B1 (ja) | 2016-03-31 | 2017-01-16 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
CN202310589815.7A CN116694886A (zh) | 2016-03-31 | 2017-01-16 | 薄钢板的制造方法和镀覆钢板的制造方法 |
CN201780020510.7A CN108884534A (zh) | 2016-03-31 | 2017-01-16 | 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法 |
KR1020187027657A KR102130232B1 (ko) | 2016-03-31 | 2017-01-16 | 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법 |
MX2018011778A MX2018011778A (es) | 2016-03-31 | 2017-01-16 | Chapa de acero, chapa de acero revestida, metodo para producir chapa de acero laminada en caliente, metodo para producir chapa de acero muy dura laminada en frio, metodo para producir chapa de acero y metodo para producir chapa de acero revestida. |
CN202310583881.3A CN116694988A (zh) | 2016-03-31 | 2017-01-16 | 薄钢板和镀覆钢板、以及薄钢板的制造方法和镀覆钢板的制造方法 |
EP17773508.1A EP3418419B1 (en) | 2016-03-31 | 2017-01-16 | Thin steel sheet, plated steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet |
US16/089,846 US11453926B2 (en) | 2016-03-31 | 2017-01-16 | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070746 | 2016-03-31 | ||
JP2016-070746 | 2016-03-31 | ||
JP2016-219338 | 2016-11-10 | ||
JP2016219338 | 2016-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017168958A1 true WO2017168958A1 (ja) | 2017-10-05 |
Family
ID=59964015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001237 WO2017168958A1 (ja) | 2016-03-31 | 2017-01-16 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11453926B2 (ja) |
EP (1) | EP3418419B1 (ja) |
JP (2) | JP6237960B1 (ja) |
KR (1) | KR102130232B1 (ja) |
CN (4) | CN108884534A (ja) |
MX (1) | MX2018011778A (ja) |
WO (1) | WO2017168958A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676508B (zh) * | 2018-05-18 | 2019-11-11 | 日商日本製鐵股份有限公司 | Al系鍍敷鋼板及其製造方法 |
WO2020129403A1 (ja) * | 2018-12-21 | 2020-06-25 | Jfeスチール株式会社 | 鋼板、部材およびこれらの製造方法 |
WO2020203158A1 (ja) * | 2019-03-29 | 2020-10-08 | 日本製鉄株式会社 | 鋼板 |
KR20210092279A (ko) * | 2018-12-21 | 2021-07-23 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
WO2023188643A1 (ja) * | 2022-03-31 | 2023-10-05 | Jfeスチール株式会社 | 亜鉛めっき鋼板、部材およびそれらの製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6729835B1 (ja) * | 2018-10-31 | 2020-07-22 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
CN115181916B (zh) * | 2021-04-02 | 2023-09-12 | 宝山钢铁股份有限公司 | 1280MPa级别低碳低合金超高强度热镀锌双相钢及快速热处理热镀锌制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255100A (ja) * | 2009-03-31 | 2010-11-11 | Jfe Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011132576A (ja) * | 2009-12-25 | 2011-07-07 | Jfe Steel Corp | 高強度冷延鋼板およびその製造方法 |
JP2011195957A (ja) * | 2010-02-26 | 2011-10-06 | Sumitomo Metal Ind Ltd | 熱処理用鋼材 |
JP2011208181A (ja) * | 2010-03-29 | 2011-10-20 | Jfe Steel Corp | 化成処理性に優れた高Si冷延鋼板の製造方法 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013221198A (ja) * | 2012-04-18 | 2013-10-28 | Nippon Steel & Sumitomo Metal Corp | 冷延鋼板およびその製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822332A (ja) | 1981-08-03 | 1983-02-09 | Kawasaki Steel Corp | 延性および耐2次加工脆性の良好な低降伏比高張力薄鋼板の製造方法 |
JP3619359B2 (ja) | 1998-01-19 | 2005-02-09 | 新日本製鐵株式会社 | 疲労特性に優れた複合組織高強度冷延鋼板およびその製造方法 |
JP3478128B2 (ja) | 1998-06-12 | 2003-12-15 | Jfeスチール株式会社 | 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法 |
EP1041167B1 (en) | 1998-09-29 | 2011-06-29 | JFE Steel Corporation | High strength thin steel sheet and high strength alloyed hot-dip zinc-coated steel sheet. |
JP3945373B2 (ja) | 2002-10-28 | 2007-07-18 | Jfeスチール株式会社 | 微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法 |
JP3934604B2 (ja) * | 2003-12-25 | 2007-06-20 | 株式会社神戸製鋼所 | 塗膜密着性に優れた高強度冷延鋼板 |
JP5223360B2 (ja) * | 2007-03-22 | 2013-06-26 | Jfeスチール株式会社 | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
EP2031081B1 (de) | 2007-08-15 | 2011-07-13 | ThyssenKrupp Steel Europe AG | Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts |
JP2010018874A (ja) | 2008-07-14 | 2010-01-28 | Kobe Steel Ltd | 合金化溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板の製造方法 |
JP4924730B2 (ja) * | 2009-04-28 | 2012-04-25 | Jfeスチール株式会社 | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP4737319B2 (ja) * | 2009-06-17 | 2011-07-27 | Jfeスチール株式会社 | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 |
US9036692B2 (en) | 2010-01-18 | 2015-05-19 | Mediatek Inc. | Motion prediction method |
CN103805840B (zh) | 2012-11-15 | 2016-12-21 | 宝山钢铁股份有限公司 | 一种高成形性热镀锌超高强度钢板及其制造方法 |
JP5858032B2 (ja) | 2013-12-18 | 2016-02-10 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
EP3054025B1 (en) | 2013-12-18 | 2018-02-21 | JFE Steel Corporation | High-strength galvanized steel sheet and method for manufacturing the same |
MX2017001106A (es) | 2014-07-25 | 2017-04-27 | Jfe Steel Corp | Metodo para la fabricacion de lamina de acero galvanizada de alta resistencia. |
-
2017
- 2017-01-16 EP EP17773508.1A patent/EP3418419B1/en active Active
- 2017-01-16 CN CN201780020510.7A patent/CN108884534A/zh active Pending
- 2017-01-16 CN CN202110289284.0A patent/CN113122772A/zh active Pending
- 2017-01-16 US US16/089,846 patent/US11453926B2/en active Active
- 2017-01-16 JP JP2017525419A patent/JP6237960B1/ja active Active
- 2017-01-16 WO PCT/JP2017/001237 patent/WO2017168958A1/ja active Application Filing
- 2017-01-16 CN CN202310583881.3A patent/CN116694988A/zh active Pending
- 2017-01-16 MX MX2018011778A patent/MX2018011778A/es unknown
- 2017-01-16 CN CN202310589815.7A patent/CN116694886A/zh active Pending
- 2017-01-16 KR KR1020187027657A patent/KR102130232B1/ko active IP Right Grant
- 2017-06-06 JP JP2017111530A patent/JP6388056B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255100A (ja) * | 2009-03-31 | 2010-11-11 | Jfe Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011132576A (ja) * | 2009-12-25 | 2011-07-07 | Jfe Steel Corp | 高強度冷延鋼板およびその製造方法 |
JP2011195957A (ja) * | 2010-02-26 | 2011-10-06 | Sumitomo Metal Ind Ltd | 熱処理用鋼材 |
JP2011208181A (ja) * | 2010-03-29 | 2011-10-20 | Jfe Steel Corp | 化成処理性に優れた高Si冷延鋼板の製造方法 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013221198A (ja) * | 2012-04-18 | 2013-10-28 | Nippon Steel & Sumitomo Metal Corp | 冷延鋼板およびその製造方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676508B (zh) * | 2018-05-18 | 2019-11-11 | 日商日本製鐵股份有限公司 | Al系鍍敷鋼板及其製造方法 |
KR102547460B1 (ko) | 2018-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
JPWO2020129403A1 (ja) * | 2018-12-21 | 2021-02-15 | Jfeスチール株式会社 | 鋼板、部材およびこれらの製造方法 |
KR20210092279A (ko) * | 2018-12-21 | 2021-07-23 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
KR20210092278A (ko) * | 2018-12-21 | 2021-07-23 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
KR102547459B1 (ko) | 2018-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
WO2020129403A1 (ja) * | 2018-12-21 | 2020-06-25 | Jfeスチール株式会社 | 鋼板、部材およびこれらの製造方法 |
US12071682B2 (en) | 2018-12-21 | 2024-08-27 | Jfe Steel Corporation | Steel sheet, member, and methods for producing them |
US12077831B2 (en) | 2018-12-21 | 2024-09-03 | Jfe Steel Corporation | Steel sheet, member, and methods for producing them |
WO2020203158A1 (ja) * | 2019-03-29 | 2020-10-08 | 日本製鉄株式会社 | 鋼板 |
JPWO2020203158A1 (ja) * | 2019-03-29 | 2021-10-21 | 日本製鉄株式会社 | 鋼板 |
JP7196997B2 (ja) | 2019-03-29 | 2022-12-27 | 日本製鉄株式会社 | 鋼板 |
WO2023188643A1 (ja) * | 2022-03-31 | 2023-10-05 | Jfeスチール株式会社 | 亜鉛めっき鋼板、部材およびそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US11453926B2 (en) | 2022-09-27 |
CN116694886A (zh) | 2023-09-05 |
KR102130232B1 (ko) | 2020-07-03 |
MX2018011778A (es) | 2018-12-17 |
CN108884534A (zh) | 2018-11-23 |
EP3418419B1 (en) | 2020-11-18 |
JPWO2017168958A1 (ja) | 2018-04-05 |
JP6237960B1 (ja) | 2017-11-29 |
JP6388056B2 (ja) | 2018-09-12 |
EP3418419A4 (en) | 2019-01-23 |
EP3418419A1 (en) | 2018-12-26 |
KR20180119618A (ko) | 2018-11-02 |
US20200270717A1 (en) | 2020-08-27 |
JP2018080379A (ja) | 2018-05-24 |
CN116694988A (zh) | 2023-09-05 |
CN113122772A (zh) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6763023B2 (ja) | 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 | |
RU2418090C2 (ru) | Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства | |
JP4659134B2 (ja) | 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法 | |
KR101485236B1 (ko) | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
JP4072090B2 (ja) | 伸びフランジ成形性に優れた高強度鋼板およびその製造方法 | |
JP6388056B2 (ja) | 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法 | |
JP6503584B2 (ja) | 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および熱処理板の製造方法 | |
JP5471837B2 (ja) | 焼付硬化性冷延鋼板およびその製造方法 | |
JP6501045B1 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP6597889B2 (ja) | 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法 | |
JP6443492B2 (ja) | 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法 | |
KR20140007476A (ko) | 재질 안정성, 가공성 및 도금 외관이 우수한 고강도 용융 아연 도금 강판의 제조 방법 | |
JP6965956B2 (ja) | 高強度鋼板およびその製造方法 | |
JP2014019928A (ja) | 高強度冷延鋼板および高強度冷延鋼板の製造方法 | |
JP2022510873A (ja) | 冷間圧延熱処理鋼板及びその製造方法 | |
WO2018030502A1 (ja) | 高強度鋼板およびその製造方法 | |
CN111868282B (zh) | 钢板 | |
JP5853884B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP4528135B2 (ja) | 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法 | |
KR20180019213A (ko) | 냉연 강판, 도금 강판 및 이것들의 제조 방법 | |
JP2004244675A (ja) | 穴拡げ性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017525419 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017773508 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20187027657 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/011778 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2017773508 Country of ref document: EP Effective date: 20180917 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17773508 Country of ref document: EP Kind code of ref document: A1 |