WO2016136611A1 - 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット - Google Patents
酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット Download PDFInfo
- Publication number
- WO2016136611A1 WO2016136611A1 PCT/JP2016/054832 JP2016054832W WO2016136611A1 WO 2016136611 A1 WO2016136611 A1 WO 2016136611A1 JP 2016054832 W JP2016054832 W JP 2016054832W WO 2016136611 A1 WO2016136611 A1 WO 2016136611A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered body
- igzo
- sputtering
- oxide sintered
- bulk resistance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
- C01G15/006—Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6585—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention is generally referred to as oxide (“IGZO") consisting of indium (In), gallium (Ga), zinc (Zn), oxygen (O), and inevitable impurities.
- IGZO oxide
- the present invention relates to an IGZO sintered body and a sputtering target made of the oxide sintered body.
- ⁇ -Si amorphous silicon
- TFT thin film transistor
- the IGZO film is mainly formed by sputtering a target made from an IGZO sintered body.
- the sintered body having the (111) composition has a problem that it is difficult to adjust the crystal grain size because the crystal grains grow rapidly. If the crystal grain size becomes too large, cracks are likely to occur due to the crystal grain size, and the strength of the sintered body is significantly reduced.
- Patent Documents 1 to 6 describe that in an IGZO sintered body basically having a (111) composition, the bending strength of the sintered body is increased by a specific sintering method.
- the growth of crystal grains can be achieved by using a microwave heating furnace, or in the case of an electric furnace using an ordinary general resistance heater, by shortening the sintering time to 1 to 2 hours. It suppresses and raises the bending strength.
- this microwave heating can be rapidly heated and sintered for a short time, but heating unevenness due to local heating occurs, and the size of the furnace is limited, so the size of the sintered body is also limited. This is not suitable for mass production.
- the sintering time is extremely shortened in an electric furnace, the growth of crystal grains can be suppressed, but the structure becomes uneven between the surface layer and the inside of the sintered body, and warpage and distortion occur in the sintered body. Or a significant decrease in yield.
- the IGZO sintered body is required to have a sufficiently low bulk resistance in order to enable stable DC sputtering.
- the bulk resistance is high, DC sputtering becomes difficult, and even if DC sputtering is possible, it is necessary to input a large amount of electric power in order to obtain a practical film formation rate.
- the bulk resistance is high, the probability of abnormal discharge is increased, and there is a problem in that the generation of particles causes an adverse effect on the film, and the sputtering target is cracked or cracked.
- Patent Documents 1 to 6 there is a description that the film was formed by DC sputtering in the examples, but there is no specific description regarding the bulk resistance of the sintered body.
- An object of the present invention is to provide an IGZO oxide sintered body having high bending strength and low bulk resistance.
- the sputtering target made of the sintered body can remarkably suppress cracking of the target and generation of particles during film formation, and can form a good thin film.
- the present inventors have conducted intensive research. As a result, by appropriately adjusting the composition and sintering conditions of the IGZO sintered body, the bending resistance of the sintered body (sputtering target) is improved. It was found that the strength can be increased and the bulk resistance can be lowered. As a result, good DC sputtering can be achieved, and the quality of the obtained thin film can be improved. Based on the above findings, the present inventors provide the following invention. 1) An oxide sintered body made of indium (In), gallium (Ga), zinc (Zn), oxygen (O) and inevitable impurities, having a bending strength of 50 MPa or more and a bulk resistance of 100 m ⁇ cm or less.
- the present invention relates to an IGZO-based oxide sintered body composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O), and inevitable impurities.
- IGZO-based oxide sintered body composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O), and inevitable impurities.
- the oxide sintered body of the present invention is composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O) and inevitable impurities, has a bending strength of 50 MPa or more, and has a bulk resistance. It is 100 m ⁇ cm or less. If the bending strength is less than 50 MPa, cracks may occur in the target during sputtering, and if the bulk resistance exceeds 100 m ⁇ cm, even during DC sputtering is possible, during long-time sputtering. In some cases, abnormal discharge may occur. In some cases, DC does not cause discharge, and RF sputtering must be used.
- the atomic ratio of In, Ga and Zn in the oxide sintered body preferably satisfies the following formula. 0.314 ⁇ In / (In + Ga + Zn) ⁇ 0.342 0.314 ⁇ Ga / (In + Ga + Zn) ⁇ 0.342 0.325 ⁇ Zn / (In + Ga + Zn) ⁇ 0.364
- bulk resistance capable of high-strength and stable DC sputtering can be imparted by changing the composition from (111) to Zn-rich.
- the amount of each component may fluctuate during mixing, mixing, sintering, etc. of the raw material powder.
- the oxide sintered body of the present invention preferably has an average crystal grain size of 6 to 22 ⁇ m.
- the mechanical strength can be increased. If the average particle size exceeds 22 ⁇ m, the mechanical strength decreases, and if excessive power is applied during sputtering, the thermal expansion difference between the sputtering target (sintered body) and the backing plate bonding the target There is a possibility that cracks may occur in the sintered body due to the stress generated by.
- the sintering may not be sufficiently advanced. In such an insufficient sintering, a sufficient reaction is not performed between the raw materials, and the composition becomes It becomes non-uniform or many pores are generated in the sintered body.
- Such non-uniform composition and the presence of pores cause a decrease in the bending strength of the sintered body and an increase in the variation in the bending strength. Furthermore, the pores cause arcing and particles during sputtering, which adversely affects the film characteristics.
- the oxide sintered body of the present invention preferably has a sintered body density of 6.10 g / cm 3 or more.
- the densification of the sintered body increases the uniformity of the sputtered film and is excellent in that the generation of particles can be significantly reduced during sputtering. It has the effect.
- a typical example of the manufacturing process of the oxide sintered body of the present invention is as follows. Indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), and zinc oxide (ZnO) are prepared as raw materials. In order to avoid an adverse effect on electrical characteristics due to impurities, it is desirable to use a raw material having a purity of 4N or higher. Each raw material is weighed so as to have a predetermined composition ratio. These raw materials contain impurities inevitably contained.
- each raw material is added and mixed so that the oxide sintered body has a predetermined composition ratio. If mixing is inadequate at this time, each component in the target will segregate, causing abnormal discharge such as arcing during sputtering or particle generation. Is preferred. Furthermore, by finely pulverizing and granulating the mixed powder, the moldability and sinterability of the mixed powder can be improved, and a high-density sintered body can be obtained.
- a means for mixing and grinding for example, a commercially available mixer, a ball mill, a bead mill or the like can be used, and as a means for granulating, for example, a commercially available spray dryer can be used.
- the mixed powder is filled in a mold and uniaxially pressed under a condition that the surface pressure is 400 to 1000 kgf / cm 2 and held for 1 to 3 minutes to obtain a molded body. If the surface pressure is less than 400 kgf / cm 2 , a molded body having a sufficient density cannot be obtained. In addition, it is difficult to improve the density of the molded body beyond a certain value even if excessive surface pressure is applied. In principle, density distribution tends to occur in the molded body with uniaxial pressing, and deformation and cracking during sintering Therefore, a surface pressure of 1000 kgf / cm 2 or more is not particularly required for production.
- this molded body is double-vacuum packed with vinyl and subjected to CIP (cold isostatic pressure method) under the condition that the pressure is 1500 to 4000 kgf / cm 2 and held for 1 to 3 minutes. If the pressure is less than 1500 kgf / cm 2 , sufficient CIP effect cannot be obtained. On the other hand, even if a pressure of 4000 kgf / cm 2 or more is applied, the density of the molded body is hardly improved beyond a certain value. Therefore, a surface pressure of 4000 kgf / cm 2 or more is not particularly required for production.
- the compact is sintered in an air atmosphere or an oxygen atmosphere at a temperature of 1300 to 1430 ° C. and a holding time of 10 to 24 hours to obtain a sintered body.
- the sintering temperature is lower than 1300 ° C., it is difficult to release oxygen from the sintered body, the oxygen defect concentration decreases, and the carrier concentration decreases (that is, the bulk resistance increases), which is not preferable.
- the sintering temperature is 1430 ° C. or higher, the size of the crystal grains in the sintered body becomes too large, which may reduce the mechanical strength of the sintered body.
- the holding time is less than 10 hours, a sintered body having a sufficient density cannot be obtained, and if the holding time is longer than 24 hours, it is not preferable from the viewpoint of production cost.
- HP hot press
- HIP hot isostatic pressing
- the bending strength is measured by a three-point bending test in accordance with JIS R1601: 2008. Specifically, the sample total length: 40 mm ⁇ 0.1 mm, width: 4 mm ⁇ 0.1 mm, thickness: 3 mm ⁇ 0.1 mm, distance between fulcrums: 30 mm ⁇ 0.1 mm, crosshead speed: 0.5 mm / min And the average value for 10 samples.
- the average grain size is sampled from a total of five points from the center and four corners of the rectangular flat plate target. For each sample, an SEM image of 300 times is taken for an arbitrary surface of the target cross section, five straight lines are drawn on the photographed image, and the length at which each straight line intersects with the crystal particles is defined as the code length. An average value is obtained, and a value obtained by multiplying this by a coefficient of 1.78 is defined as a crystal grain size.
- the sintered body density was determined by Archimedes method, and the bulk resistance was determined by the four-point probe method.
- the measurement results at each of the five samples taken near the center and four corners of the rectangular flat plate target were divided by the number of measurement points. As an average value.
- Example 1 After weighing In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder so that the composition ratio of the sintered body is 1.00: 1.00: 1.01 as the atomic ratio of In, Ga, and Zn These powders were mixed and finely pulverized by a wet process, and then dried and granulated with a spray dryer to obtain a mixed powder. Next, this mixed powder was uniaxially pressed at a surface pressure of 400 to 1000 kgf / cm 2 to obtain a molded body. Next, the obtained molded body was double vacuum packed with vinyl, CIP molded at 1500 to 4000 kgf / cm 2 , and then sintered in an oxygen atmosphere at a temperature of 1430 ° C. for 20 hours.
- the IGZO sintered body thus obtained had a bending strength of 55 MPa, and a bulk resistance of 36.0 m ⁇ cm, which was high and low resistance. Moreover, the average particle diameter of the sintered body was 20.8 ⁇ m, and the sintered body had a high density of 6.3 g / cm 3 . The results are shown in Table 1.
- Examples 2 to 4, Comparative Example 1 After weighing In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder so that the composition ratio of the sintered body is the atomic ratio of In, Ga, and Zn described in Table 1, these powders are used. The mixture was mixed and pulverized in a wet manner, and then dried and granulated with a spray dryer to obtain a mixed powder. Next, this mixed powder was uniaxially pressed at a surface pressure of 400 to 1000 kgf / cm 2 to obtain a molded body. Next, the obtained molded body was double vacuum packed with vinyl, CIP molded at 1500 to 4000 kgf / cm 2 , and then sintered in an oxygen atmosphere at a temperature of 1430 ° C. for 20 hours.
- the IGZO sintered bodies obtained under the conditions of Examples 2 to 4 had a bending strength of 50 MPa or more, a bulk resistance of 100 m ⁇ cm or less, and a high strength and low resistance. Moreover, the average particle diameter of the sintered compact was 22 ⁇ m or less, and the sintered compact had a high density of 6.10 g / cm 3 or more. On the other hand, the IGZO sintered body obtained under the conditions of Comparative Example 1 exhibited a low bending strength of 33 MPa, although the bulk resistance was low.
- Example 5 After weighing In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder so that the composition ratio of the sintered body is the atomic ratio of In, Ga, and Zn described in Table 1, these powders are used.
- the mixture was mixed and pulverized in a wet manner, and then dried and granulated with a spray dryer to obtain a mixed powder.
- this mixed powder was uniaxially pressed at a surface pressure of 400 to 1000 kgf / cm 2 to obtain a molded body.
- the obtained molded body was double vacuum packed with vinyl, CIP molded at 1500 to 4000 kgf / cm 2 , and then sintered in an oxygen atmosphere at a temperature of 1350 ° C. for 10 hours.
- the IGZO sintered bodies obtained under the conditions of Examples 5 to 6 each had a bending strength of 50 MPa or more, a bulk resistance of 100 m ⁇ cm or less, and a high strength and low resistance. Moreover, the average particle diameter of the sintered compact was 22 ⁇ m or less, and the sintered compact had a high density of 6.10 g / cm 3 or more.
- Examples 7 to 10, Comparative Example 3 After weighing In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder so that the composition ratio of the sintered body is the atomic ratio of In, Ga, and Zn described in Table 1, these powders are used. The mixture was mixed and pulverized in a wet manner, and then dried and granulated with a spray dryer to obtain a mixed powder. Next, this mixed powder was uniaxially pressed at a surface pressure of 400 to 1000 kgf / cm 2 to obtain a molded body. Next, the resulting molded body was vacuum packed twice with vinyl, CIP molded at 1500 to 4000 kgf / cm 2 , and then sintered in an oxygen atmosphere at a temperature of 1300 ° C. for 20 hours.
- the IGZO sintered bodies obtained under the conditions of Examples 7 to 10 each had a bending strength of 50 MPa or more, a bulk resistance of 100 m ⁇ cm or less, and a high strength and low resistance. Moreover, the average particle diameter of the sintered compact was 22 ⁇ m or less, and the sintered compact had a high density of 6.10 g / cm 3 or more. On the other hand, the IGZO sintered body obtained under the conditions of Comparative Example 3 showed a high bulk resistance exceeding 100 m ⁇ cm, although the bending strength was high.
- FIG. 1 shows the relationship between the bending strength and bulk resistance of the IGZO sintered bodies in the above Examples and Comparative Examples.
- the oxide sintered body of the present invention can be a sputtering target that achieves both high bending strength and low bulk resistance.
- DC sputtering is performed using this target, there is no cracking of the target and generation of particles. Therefore, a high quality thin film can be formed.
- the oxide semiconductor film of the present invention is particularly useful as an active layer of a TFT in a backplane such as a flat panel display or a flexible panel display.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
1)インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなる酸化物焼結体であって、抗折強度が50MPa以上、バルク抵抗が100mΩcm以下、であることを特徴とするIGZO焼結体。
2)In、Ga、Znの原子数比が、以下の式を満たすことを特徴とする上記1)記載のIGZO焼結体。
0.314≦In/(In+Ga+Zn)≦0.342
0.314≦Ga/(In+Ga+Zn)≦0.342
0.325≦Zn/(In+Ga+Zn)≦0.364
3)平均結晶粒径が6~22μmであることを特徴とする上記1)又は2)記載のIGZO焼結体。
4)焼結体密度が6.10g/cm3以上であることを特徴とする上記1)~3)のいずれか一に記載のIGZO焼結体。
5)上記1)~4)のいずれか一に記載のIGZO焼結体からなる平板又は円筒形のスパッタリングターゲット。
0.314≦In/(In+Ga+Zn)≦0.342
0.314≦Ga/(In+Ga+Zn)≦0.342
0.325≦Zn/(In+Ga+Zn)≦0.364
IGZO焼結体において、(111)組成からZn-richの組成とすることにより高強度かつ安定したDCスパッタリングが可能なバルク抵抗を付与することができる。
なお、原料粉末の配合、混合、焼結等の際に、各成分量が変動することがあり、例えば、目標組成がIn:Ga:Zn=1:1:1の場合、In:Ga:Zn=1±0.02:1±0.02:1±0.02の変動が生じるので、事実上、Zn-richとならない場合があるが、そのこと自体が発明を否定する根拠とならない。
原料として、酸化インジウム(In2O3)、酸化ガリウム(Ga2O3)、及び酸化亜鉛(ZnO)を用意する。不純物による電気特性への悪影響を避けるため、純度4N以上の原料を用いることが望ましい。各々の原料を所定の組成比となるように秤量する。なお、これらの原料には不可避的に含有される不純物が含まれる。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比がIn、Ga及びZnの原子比で1.00:1.00:1.01となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1430℃で20時間焼結した。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比が、表1に記載されるIn、Ga及びZnの原子比となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1430℃で20時間焼結した。
実施例2~4の条件で得られたIGZO焼結体は、抗折強度がいずれも50MPa以上であり、バルク抵抗が100mΩcm以下と、高強度かつ低抵抗のものが得られた。また、焼結体の平均粒径は22μm以下であり、焼結体密度は6.10g/cm3以上と高密度のものが得られた。一方、比較例1の条件で得られたIGZO焼結体は、バルク抵抗が低いものの、抗折強度が33MPaと低い値を示した。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比が、表1に記載されるIn、Ga及びZnの原子比となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1350℃で10時間焼結した。
実施例5~6の条件で得られたIGZO焼結体は、抗折強度がいずれも50MPa以上であり、バルク抵抗が100mΩcm以下と、高強度かつ低抵抗のものが得られた。また、焼結体の平均粒径は22μm以下であり、焼結体密度は6.10g/cm3以上と高密度のものが得られた。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比が、表1に記載されるIn、Ga及びZnの原子比となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1300℃で20時間焼結した。
実施例7~10の条件で得られたIGZO焼結体は、抗折強度がいずれも50MPa以上であり、バルク抵抗が100mΩcm以下と、高強度かつ低抵抗のものが得られた。また、焼結体の平均粒径は22μm以下であり、焼結体密度は6.10g/cm3以上と高密度のものが得られた。一方、比較例3の条件で得られたIGZO焼結体は、抗折強度が高いものの、バルク抵抗が100mΩcm超と高い値を示した。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比が、表1に記載されるIn、Ga及びZnの原子比となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1250℃で20時間焼結した。比較例4~8の条件で得られたIGZO焼結体は、いずれも抗折強度が高いものの、バルク抵抗が100mΩcm超と高い値を示した。また、比較例7、8の焼結体では、結晶粒径は小さいものの、焼結体中のポアが多く見られた。
In2O3粉、Ga2O3粉、ZnO粉を、焼結体の組成比が、表1に記載されるIn、Ga及びZnの原子比となるように秤量した後、これらの粉末を湿式で混合・微粉砕し、その後、スプレードライヤーで乾燥・造粒して、混合粉末を得た。次に、この混合粉末を面圧400~1000kgf/cm2で一軸プレスして成形体を得た。次に得られた成形体をビニールで2重に真空パックし、1500~4000kgf/cm2でCIP成型した後、酸素雰囲気中、温度1430℃で5時間焼結した。得られたIGZO焼結体は、結晶粒径が小さいものの、焼結体中のポアが多く、ターゲットとして用いた場合には、スパッタ時にアーキングやパーティクルの発生が懸念されるものであった。
Claims (5)
- インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)及び不可避的不純物からなる酸化物焼結体であって、抗折強度が50MPa以上、バルク抵抗が100mΩcm以下、であることを特徴とするIGZO焼結体。
- In、Ga、Znの原子数比が、以下の式を満たすことを特徴とする請求項1記載のIGZO焼結体。
0.314≦In/(In+Ga+Zn)≦0.342
0.314≦Ga/(In+Ga+Zn)≦0.342
0.325≦Zn/(In+Ga+Zn)≦0.364 - 平均結晶粒径が6~22μmであることを特徴とする請求項1又は2記載のIGZO焼結体。
- 焼結体密度が6.10g/cm3以上であることを特徴とする請求項1~3のいずれか一項に記載のIGZO焼結体。
- 請求項1~4のいずれか一項に記載のIGZO焼結体からなる平板又は円筒形のスパッタリングターゲット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/553,379 US10161031B2 (en) | 2015-02-27 | 2016-02-19 | Oxide sintered compact and sputtering target formed from said oxide sintered compact |
CN201680007587.6A CN107428616B (zh) | 2015-02-27 | 2016-02-19 | 氧化物烧结体和包含该氧化物烧结体的溅射靶 |
KR1020177019045A KR101932369B1 (ko) | 2015-02-27 | 2016-02-19 | 산화물 소결체 및 그 산화물 소결체로 이루어지는 스퍼터링 타깃 |
JP2017502320A JP6293359B2 (ja) | 2015-02-27 | 2016-02-19 | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-037734 | 2015-02-27 | ||
JP2015037734 | 2015-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016136611A1 true WO2016136611A1 (ja) | 2016-09-01 |
Family
ID=56788502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054832 WO2016136611A1 (ja) | 2015-02-27 | 2016-02-19 | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット |
Country Status (6)
Country | Link |
---|---|
US (1) | US10161031B2 (ja) |
JP (1) | JP6293359B2 (ja) |
KR (1) | KR101932369B1 (ja) |
CN (1) | CN107428616B (ja) |
TW (1) | TWI634089B (ja) |
WO (1) | WO2016136611A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200034561A (ko) | 2018-09-21 | 2020-03-31 | 제이엑스금속주식회사 | 소결체, 스퍼터링 타깃 및 소결체의 제조 방법 |
WO2023189834A1 (ja) * | 2022-03-29 | 2023-10-05 | 出光興産株式会社 | スパッタリングターゲット、スパッタリングターゲットの製造方法、結晶酸化物薄膜、薄膜トランジスタ、及び電子機器 |
JP7566804B2 (ja) | 2021-01-13 | 2024-10-15 | Jx金属株式会社 | Igzoスパッタリングターゲット |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102188417B1 (ko) * | 2017-03-31 | 2020-12-08 | 제이엑스금속주식회사 | 스퍼터링 타깃 및 그 제조 방법 |
JP6523510B1 (ja) * | 2018-03-30 | 2019-06-05 | Jx金属株式会社 | スパッタリングターゲット |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163441A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及びその製造方法 |
WO2009148154A1 (ja) * | 2008-06-06 | 2009-12-10 | 出光興産株式会社 | 酸化物薄膜用スパッタリングターゲットおよびその製造法 |
JP2015024944A (ja) * | 2012-12-27 | 2015-02-05 | 東ソー株式会社 | 酸化物焼結体、スパッタリングターゲットおよびその製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3636914B2 (ja) | 1998-02-16 | 2005-04-06 | 株式会社日鉱マテリアルズ | 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット |
RU2380455C2 (ru) | 2005-06-28 | 2010-01-27 | Ниппон Майнинг Энд Металз Ко., Лтд. | Распыляемая мишень на основе оксид галлия-оксид цинка, способ формирования прозрачной проводящей пленки и прозрачная проводящая пленка |
US7686985B2 (en) | 2005-06-28 | 2010-03-30 | Nippon Mining & Metals Co., Ltd | Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film, and transparent conductive film |
US7674404B2 (en) | 2005-12-08 | 2010-03-09 | Nippon Mining & Metals Co., Ltd. | Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film |
US7699965B2 (en) | 2006-03-17 | 2010-04-20 | Nippon Mining & Metals Co., Ltd. | Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor |
JP5358891B2 (ja) | 2006-08-11 | 2013-12-04 | 日立金属株式会社 | 酸化亜鉛焼結体の製造方法 |
US8007693B2 (en) | 2006-08-24 | 2011-08-30 | Jx Nippon Mining & Metals Corporation | Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target |
CN103320755A (zh) | 2006-12-13 | 2013-09-25 | 出光兴产株式会社 | 溅射靶及氧化物半导体膜 |
WO2009084537A1 (ja) | 2007-12-27 | 2009-07-09 | Nippon Mining & Metals Co., Ltd. | a-IGZO酸化物薄膜の製造方法 |
CN102016112B (zh) | 2008-06-10 | 2012-08-08 | Jx日矿日石金属株式会社 | 溅射用氧化物烧结体靶及其制造方法 |
US9663405B2 (en) * | 2009-06-05 | 2017-05-30 | Jx Nippon Mining & Metals Corporation | Oxide sintered compact, its production method, and raw material powder for producing oxide sintered compact |
JP4875135B2 (ja) * | 2009-11-18 | 2012-02-15 | 出光興産株式会社 | In−Ga−Zn−O系スパッタリングターゲット |
JP5591523B2 (ja) * | 2009-11-19 | 2014-09-17 | 出光興産株式会社 | 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット |
JP5339100B2 (ja) | 2011-09-22 | 2013-11-13 | 住友金属鉱山株式会社 | Zn−Si−O系酸化物焼結体とその製造方法およびスパッタリングターゲットと蒸着用タブレット |
JP2013129545A (ja) | 2011-12-20 | 2013-07-04 | Tosoh Corp | Igzo焼結体、その製造方法及びスパッタリングターゲット |
US9147706B2 (en) * | 2012-05-29 | 2015-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having sensor circuit having amplifier circuit |
JP2014005538A (ja) | 2012-06-26 | 2014-01-16 | Samsung Corning Precision Materials Co Ltd | 酸化亜鉛系スパッタリングターゲット、その製造方法、およびこれを通じて蒸着された遮断膜を有する薄膜トランジスタ |
JP5904056B2 (ja) | 2012-08-22 | 2016-04-13 | 東ソー株式会社 | Igzo焼結体、その製造方法及びスパッタリングターゲット |
JP5998712B2 (ja) | 2012-07-30 | 2016-09-28 | 東ソー株式会社 | Igzo焼結体、及びスパッタリングターゲット並びに酸化物膜 |
JP2014111818A (ja) * | 2012-11-09 | 2014-06-19 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014105383A (ja) | 2012-11-29 | 2014-06-09 | Tosoh Corp | 円筒型スパッタリングターゲットおよびその製造方法 |
JP2014114473A (ja) | 2012-12-07 | 2014-06-26 | Tosoh Corp | 平板型スパッタリングターゲットおよびその製造方法 |
JP6070171B2 (ja) * | 2012-12-25 | 2017-02-01 | 東ソー株式会社 | Igzo焼結体およびスパッタリングターゲット |
JP2014125422A (ja) | 2012-12-27 | 2014-07-07 | Tosoh Corp | 酸化物焼結体、酸化物焼結体スパッタリングターゲットおよびその製造方法 |
JP5883990B2 (ja) * | 2013-03-29 | 2016-03-15 | Jx金属株式会社 | Igzoスパッタリングターゲット |
WO2016152349A1 (ja) * | 2015-03-23 | 2016-09-29 | Jx金属株式会社 | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット |
-
2016
- 2016-02-19 US US15/553,379 patent/US10161031B2/en active Active
- 2016-02-19 CN CN201680007587.6A patent/CN107428616B/zh active Active
- 2016-02-19 KR KR1020177019045A patent/KR101932369B1/ko active IP Right Grant
- 2016-02-19 WO PCT/JP2016/054832 patent/WO2016136611A1/ja active Application Filing
- 2016-02-19 JP JP2017502320A patent/JP6293359B2/ja active Active
- 2016-02-26 TW TW105105773A patent/TWI634089B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163441A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及びその製造方法 |
WO2009148154A1 (ja) * | 2008-06-06 | 2009-12-10 | 出光興産株式会社 | 酸化物薄膜用スパッタリングターゲットおよびその製造法 |
JP2015024944A (ja) * | 2012-12-27 | 2015-02-05 | 東ソー株式会社 | 酸化物焼結体、スパッタリングターゲットおよびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200034561A (ko) | 2018-09-21 | 2020-03-31 | 제이엑스금속주식회사 | 소결체, 스퍼터링 타깃 및 소결체의 제조 방법 |
JP7566804B2 (ja) | 2021-01-13 | 2024-10-15 | Jx金属株式会社 | Igzoスパッタリングターゲット |
WO2023189834A1 (ja) * | 2022-03-29 | 2023-10-05 | 出光興産株式会社 | スパッタリングターゲット、スパッタリングターゲットの製造方法、結晶酸化物薄膜、薄膜トランジスタ、及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JP6293359B2 (ja) | 2018-03-14 |
CN107428616A (zh) | 2017-12-01 |
US10161031B2 (en) | 2018-12-25 |
KR101932369B1 (ko) | 2018-12-24 |
TW201704185A (zh) | 2017-02-01 |
JPWO2016136611A1 (ja) | 2017-06-01 |
TWI634089B (zh) | 2018-09-01 |
KR20170093239A (ko) | 2017-08-14 |
CN107428616B (zh) | 2020-10-23 |
US20180073132A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5205696B2 (ja) | 酸化ガリウム系焼結体およびその製造方法 | |
JP6293359B2 (ja) | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット | |
WO2014042138A1 (ja) | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 | |
WO2013141254A1 (ja) | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 | |
JP6285076B2 (ja) | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット | |
JP5884001B1 (ja) | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット | |
KR101945145B1 (ko) | 산화물 소결체 | |
CN109071361B (zh) | 氧化物烧结体和溅射靶、及其制造方法 | |
JP5081960B2 (ja) | 酸化物焼結体及び酸化物半導体薄膜 | |
JP6722736B2 (ja) | 焼結体および、スパッタリングターゲット | |
JP5367660B2 (ja) | 酸化物焼結体及び酸化物半導体薄膜 | |
JP7566804B2 (ja) | Igzoスパッタリングターゲット | |
JP6133531B1 (ja) | 酸化物焼結体 | |
JP2023124649A (ja) | スパッタリングターゲット部材及びスパッタリングターゲット部材の製造方法 | |
WO2017183263A1 (ja) | 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16755357 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2017502320 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177019045 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553379 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16755357 Country of ref document: EP Kind code of ref document: A1 |