WO2011061923A1 - In-Ga-Zn-O系スパッタリングターゲット - Google Patents
In-Ga-Zn-O系スパッタリングターゲット Download PDFInfo
- Publication number
- WO2011061923A1 WO2011061923A1 PCT/JP2010/006714 JP2010006714W WO2011061923A1 WO 2011061923 A1 WO2011061923 A1 WO 2011061923A1 JP 2010006714 W JP2010006714 W JP 2010006714W WO 2011061923 A1 WO2011061923 A1 WO 2011061923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- target
- sputtering target
- sintered body
- structure represented
- Prior art date
Links
- 238000005477 sputtering target Methods 0.000 title claims abstract description 51
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 54
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 50
- 229910052738 indium Inorganic materials 0.000 claims abstract description 33
- 238000005245 sintering Methods 0.000 claims description 38
- 229910052760 oxygen Inorganic materials 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 31
- 239000004065 semiconductor Substances 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000011029 spinel Substances 0.000 claims description 13
- 229910052596 spinel Inorganic materials 0.000 claims description 13
- 239000011701 zinc Substances 0.000 description 106
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 64
- 239000013078 crystal Substances 0.000 description 50
- 239000010408 film Substances 0.000 description 46
- 239000011787 zinc oxide Substances 0.000 description 32
- 239000010409 thin film Substances 0.000 description 27
- 238000002441 X-ray diffraction Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 19
- 239000002994 raw material Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 238000000465 moulding Methods 0.000 description 15
- 230000009467 reduction Effects 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 11
- 238000009448 modified atmosphere packaging Methods 0.000 description 11
- 238000005498 polishing Methods 0.000 description 10
- 206010021143 Hypoxia Diseases 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000001354 calcination Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- -1 oxygen ions Chemical class 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 5
- 238000011946 reduction process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 150000002472 indium compounds Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 241000519995 Stachys sylvatica Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002259 gallium compounds Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000001028 reflection method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910016523 CuKa Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021513 gallium hydroxide Inorganic materials 0.000 description 1
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6585—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/664—Reductive annealing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Definitions
- the present invention relates to a sputtering target for producing an oxide thin film such as an oxide semiconductor or a transparent conductive film, particularly for producing a thin film transistor.
- Amorphous oxide films made of indium oxide, zinc oxide, and gallium oxide have visible light transmission properties and wide electrical characteristics from conductors and semiconductors to insulators. It is attracting attention as a semiconductor film.
- the oxide film As a method for forming the oxide film, there are physical film formation such as sputtering, pulse laser deposition (PLD), and vapor deposition, and chemical film formation such as a sol-gel method. As a method for uniformly forming a film, physical film formation such as a sputtering method has been mainly studied.
- an oxide thin film is formed by physical film formation such as sputtering
- a target made of an oxide sintered body is used in order to form a film uniformly, stably and efficiently (at a high film formation rate). It is common.
- oxide film for example, an oxide film made of indium oxide, zinc oxide, or gallium oxide can be given.
- targets mainly sputtering targets
- homologous crystal forms such as InGaZnO 4 and In 2 Ga 2 ZnO 7 .
- Patent Documents 1 to 4 disclose targets including a homologous structure of InGaZnO 4 (InGaO 3 (ZnO)).
- the homologous structure is less prone to oxygen vacancies, it is necessary to reduce the resistance by reducing oxygen at high temperatures (Patent Document 1). Therefore, a production method (Patent Document 3) that does not generate a highly insulating Ga 2 O 3 crystal phase, a method of adding a positive tetravalent metal (Patent Document 4), a hexagonal layered compound of InGaZnO 4 and ZnGa 2 O 4
- the target (patent document 4) which consists of a mixture of these spinel structures is examined.
- problems such as limited effects and difficulty in management due to increased constituent elements.
- Patent Document 5 various thin film transistors have been studied by changing the composition ratio of indium oxide, zinc oxide and gallium oxide.
- the specific resistance was still high because the examination of the target in each composition was insufficient.
- Patent Document 6 there has been a problem that the Ga content ratio of the thin film is extremely reduced to about two-thirds of the Ga content ratio of the target. This suggests that the properties of the target are inappropriate, but no study has been made on the properties of the target and its improvement.
- An object of the present invention is to provide a target for forming an oxide semiconductor film having a low specific resistance without performing a reduction treatment.
- the oxide target containing In, Ga, and Zn contains a structure having a larger In content than the surroundings (hereinafter referred to as an In-rich structure). It was found that a target having a low specific resistance can be produced without performing reduction treatment, particularly reduction treatment at high temperature. This is presumed to be because oxygen deficiency is easily caused by including an In-rich structure. Furthermore, it has been found that an In-rich structure can be generated in an oxide sintered body containing In, Ga, and Zn by selecting an elemental composition ratio (atomic ratio) and manufacturing conditions.
- this target has a low In content
- the generation of nodules during sputtering is extremely small compared to targets containing a large amount of In, such as ITO, and defects due to particles generated due to abnormal discharge due to nodules when a thin film transistor is produced. It was found that generation can be expected to be reduced.
- the present inventors completed the present invention by finding that a semiconductor element produced using a target made of this oxide sintered body, particularly a thin film transistor, has excellent TFT characteristics and a sputtering target suitable for the production of a semiconductor element can be produced. It was.
- a sputtering target comprising an oxide sintered body containing a structure containing In, Ga and Zn and having a higher In content than the surroundings and a structure containing Ga and Zn more than the surroundings.
- the sputtering target according to 1 above wherein the oxygen content of the tissue having a high In content is lower than that of the surrounding tissue.
- the sputtering target according to 1 or 2 above wherein the structure having a large In content has a connecting structure of 15 ⁇ m or more. 4.
- an atomic ratio of In, Ga, and Zn of the oxide sintered body satisfies the following formula. In / (In + Ga + Zn) ⁇ 0.65 0.10 ⁇ Ga / (In + Ga + Zn) 0.10 ⁇ Zn / (In + Ga + Zn) 0.60 ⁇ In / (In + Ga) 0.51 ⁇ In / (In + Zn) 10. 10.
- a method for producing a semiconductor element comprising a step of forming an oxide film using the sputtering target according to any one of 1 to 11 above.
- a target for forming an oxide semiconductor film having a low specific resistance can be provided without performing a reduction treatment.
- ADVANTAGE OF THE INVENTION According to this invention, the sputtering target which has the outstanding film-forming property, especially the sputtering target for oxide semiconductor film formation can be provided.
- FIG. 6 is a photomicrograph showing a dispersed MAP of In, Ga, Zn by EPMA of the oxide produced in Example 4.
- 6 is a photomicrograph showing dispersion MAP of In, Ga, Zn, O by EPMA of the oxide sintered body produced in Example 4.
- 6 is a photomicrograph showing a connection structure of an In-rich structure in an In, Ga, Zn, O dispersed MAP of an oxide sintered body produced in Example 4.
- FIG. 6 is a photomicrograph showing a calculation example of an aspect ratio of an In-rich structure of an oxide sintered body produced in Example 4.
- Example 7 is a chart obtained by X-ray diffraction measurement (Cuk ⁇ ray) of the oxide sintered body obtained in Example 6.
- 2 is a photomicrograph showing dispersion MAP of In, Ga, Zn, O by EPMA of the oxide sintered body produced in Example 1.
- 4 is a photomicrograph showing a dispersion MAP of In, Ga, Zn, O by EPMA of an oxide sintered body produced in Example 2.
- the sputtering target of the present invention includes a structure containing In, Ga, and Zn, having a higher In content than the surroundings, and a structure having a higher Ga and Zn content than the surroundings. It is characterized by comprising an oxide sintered body.
- An In-rich structure refers to a structure in which the In content is greater than the surroundings.
- the Ga and Zn rich structure refers to a structure in which both Ga and Zn contents are larger than the surroundings.
- FIG. 2 shows a dispersion MAP of In, Ga, Zn, and O of the oxide sintered body obtained in Example 4 described later.
- the In rich structure and the Ga, Zn rich structure are mixed.
- the measurement by EPMA can be performed by the following apparatus and conditions, for example.
- the oxide constituting the target of the present invention preferably has an oxygen deficiency.
- the amount of oxygen deficiency is preferably in the range of 3 ⁇ 10 ⁇ 5 to 3 ⁇ 10 ⁇ 1 , and more preferably in the range of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 . When it is within the above range, the specific resistance is easily lowered.
- the amount of oxygen deficiency is a value obtained by subtracting the number of oxygen ions contained in one mole of oxide crystal from the number of stoichiometric oxygen ions in mole units.
- the number of oxygen ions contained in the oxide crystal can be calculated, for example, by measuring the amount of carbon dioxide produced by heating the oxide crystal in carbon powder using an infrared absorption spectrum.
- the number of stoichiometric oxygen ions can be calculated from the mass of the oxide crystal.
- the amount of oxygen deficiency can be adjusted according to the sintering conditions, the atmosphere during sintering, the temperature rise, and the temperature drop. Moreover, it can also adjust by performing a reduction process after sintering. If an In-rich structure is provided, it is easy to adjust the oxygen deficiency within the above range without performing a reduction treatment after sintering.
- the oxygen content of the tissue having a large In content is smaller than that of the surrounding tissue.
- the structure around the In-rich structure means a Ga, Zn-rich structure surrounding the In-rich structure and other structures.
- the oxygen content of the In-rich structure is lower than the oxygen content of the Ga, Zn rich structure and other structures.
- FIG. 3 showing the dispersion MAP of In, Ga, Zn, and O of the oxide sintered body obtained in Example 4 described later, the oxygen content of the In-rich structure is You can see that there are fewer than organizations.
- the structure having a large In content has a connection structure of 15 ⁇ m or more.
- FIG. 4 shows an enlarged view of an EPMA image of the oxide sintered body obtained in Example 4 to be described later.
- a portion indicated by a dotted line in FIG. 4 is a connection structure of an In-rich structure.
- the In-rich structure has a connected structure with a length of 15 ⁇ m or more, the specific resistance can be lowered by conducting through the In-rich structure.
- the length of the connecting structure is more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
- the width of the connecting structure is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
- the aspect ratio of the connecting structure having a length of 15 ⁇ m or more is preferably 1.5 or more, more preferably 2 or more, and particularly preferably 3 or more.
- connection structure refers to an elliptical long axis and short axis that circumscribe the connection structure.
- long axis ⁇ short axis be the aspect ratio. The higher the aspect ratio of the connection structure, the lower the specific resistance can be expected.
- FIG. 1 An example of the measurement of the aspect ratio in the target obtained in Example 4 described later is shown in FIG.
- connection structure The length, width, and aspect ratio of the connection structure are randomly selected from 20 connection structures from an EPMA photograph and averaged.
- the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a homologous structure represented by InGaZnO 4 .
- XRD X-ray diffraction measurement
- X-ray diffraction measurement ⁇ Equipment: Ultimate-III manufactured by Rigaku Corporation -X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) ⁇ 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) ⁇ Sampling interval: 0.02 ° ⁇ Slit DS, SS: 2/3 °, RS: 0.6 mm
- the bixbite structure (or rare earth oxide C-type crystal structure) represented by In 2 O 3 is a cubic system having a space group of (T h 7 , I a3 ), and Mn 2 O 3 (I) Also called type oxide crystal structure. Sc 2 O 3 , Y 2 O 3 , Tl 2 O 3 , Pu 2 O 3 , Am 2 O 3 , Cm 2 O 3 , In 2 O 3 , ITO (In 2 O 3 doped with Sn of about 10 wt% or less ) Shows this crystal structure ("Transparent conductive film technology", edited by the Japan Society for the Promotion of Science, Transparent Oxide Optical / Electronic Materials 166th Committee (Ohm, March 30, 1999)).
- the bixbite structure represented by In 2 O 3 (rare earth oxide C-type crystal structure) is shown by JCPDS card no. This can be confirmed by showing the pattern of 6-0416.
- the crystal structure of the rare earth oxide C-type has a stoichiometric ratio of M 2 X from a fluorite-type crystal structure which is one of the crystal structures of a compound represented by MX 2 (M: cation, X: anion). for 3, a structure in which one is missing the four anions.
- the anion usually oxygen in the case of an oxide
- the anion is coordinated to the cation, and the remaining two anion sites are empty (the empty anion sites are both quasi-ion sites).
- a rare earth oxide C-type crystal structure in which oxygen (anion) is coordinated to 6 positive ions (cations) has an oxygen octahedral ridge sharing structure. When the oxygen octahedron ridge sharing structure is present, the ns orbitals of the p metal that is a cation overlap each other to form an electron conduction path, and the effective mass is reduced and high electron mobility is exhibited.
- the bixbyite structure (rare earth oxide C-type crystal structure) represented by In 2 O 3 is a JCPDS card no. If the 6-0416 pattern is shown, the stoichiometric ratio may deviate from M 2 X 3 . That is, it may be M 2 O 3-d .
- m 1 of the crystal structure represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) is InGaO 3 (ZnO).
- a crystal structure represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) is called a “hexagonal layered compound” or “a crystal structure of a homologous phase”, and several crystal layers of different substances are stacked. It is a crystal consisting of a “natural superlattice” structure with a combined long period.
- each thin film layer When the crystal cycle or thickness of each thin film layer is on the order of nanometers, depending on the combination of the chemical composition of these layers and the thickness of the layers, it differs from the properties of a single substance or a mixed crystal in which each layer is uniformly mixed. Unique characteristics can be obtained.
- the crystal structure of the homologous phase can be confirmed, for example, because the X-ray diffraction pattern directly measured from the powder obtained by pulverizing the target or the target matches the crystal structure X-ray diffraction pattern of the homologous phase assumed from the composition ratio. Specifically, it can be confirmed from the coincidence with the crystal structure X-ray diffraction pattern of the homologous phase obtained from a JCPDS (Joint Committee of Powder Diffraction Standards) card. In the case of InGaO 3 (ZnO), JCPDS card no. 38-1104.
- JCPDS Joint Committee of Powder Diffraction Standards
- the lattice constant a of the bixbyite structure represented by In 2 O 3 is preferably 10.14 or less, more preferably 10.10 or less, and particularly preferably 10.08 or less.
- the lattice constant a is obtained by XRD fitting. If the lattice constant is small, it can be expected that the specific resistance can be lowered by improving the mobility.
- the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 .
- the crystal structure represented by ZnGa 2 O 4 is the JCPDS card no. As long as the pattern 38-1240 is shown, the stoichiometric ratio may be shifted. That is, it may be ZnGa 2 O 4-d .
- the oxygen deficiency d is preferably in the range of 3 ⁇ 10 ⁇ 5 to 3 ⁇ 10 ⁇ 1 . d can be adjusted by sintering conditions, atmosphere during sintering, temperature rise, temperature drop, or the like. Moreover, it can also adjust by carrying out a reduction process after sintering.
- the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5. .
- the homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is an In—Ga—Zn-based oxide containing indium element (In), gallium element (Ga), and zinc element (Zn).
- the following condition 1 is satisfied.
- Condition 1 In the chart obtained by X-ray diffraction measurement (Cuk ⁇ ray), diffraction peaks are observed in the following regions A to E.
- A. Incident angle (2 ⁇ ) 7.0 ° to 8.4 ° (preferably 7.2 ° to 8.2 °)
- B. 2 ⁇ 30.6 ° -32.0 ° (preferably 30.8 ° -31.8 °)
- C. 2 ⁇ 33.8 ° to 35.8 ° (preferably 34.3 ° to 35.3 °)
- D. 2 ⁇ 53.5 ° to 56.5 ° (preferably 54.1 ° to 56.1 °)
- E. 2 ⁇ 56.5 ° to 59.5 ° (preferably 57.0 ° to 59.0 °)
- the main peak is the strongest peak (peak with the highest peak height) in the range 2 ⁇ of 5 to 80 °, and the sub peak is the second strongest peak (peak with the highest peak height). ).
- Condition 3 In the chart obtained by X-ray diffraction measurement (Cuk ⁇ ray), diffraction peaks are observed in the following F to K regions.
- F. 2 ⁇ 14.8 ° to 16.2 ° (preferably 15.0 ° to 16.0 °)
- G. 2 ⁇ 22.3 ° to 24.3 ° (preferably 22.8 ° to 23.8 °)
- H. 2 ⁇ 32.2 ° to 34.2 ° (preferably 32.7 ° to 33.7 °)
- I. 2 ⁇ 43.1 ° to 46.1 ° (preferably 43.6 ° to 45.6 °)
- J. et al. 2 ⁇ 46.2 ° to 49.2 ° (preferably 46.7 ° to 48.7 °)
- K. 2 ⁇ 62.7 ° to 66.7 ° (preferably 63.7 ° to 65.7 °)
- FIG. 1 An example of a chart obtained by X-ray diffraction measurement (Cuk ⁇ line) of a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is shown in FIG.
- An oxide crystal that satisfies the above conditions is not a JCPDS (Joint Committee of Powder Diffraction Standards) card, and is a new crystal that has not been confirmed so far.
- JCPDS Joint Committee of Powder Diffraction Standards
- An X-ray diffraction chart of a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is a crystal structure represented by InGaO 3 (ZnO) 2 (JCPDS: 40-0252) and In 2 O 3 (ZnO). ) 2 (JCPDS: 20-1442) It is similar to the crystal structure shown. However, this oxide has a peak peculiar to InGaO 3 (ZnO) 2 (the peak in the region A) and a peak peculiar to In 2 O 3 (ZnO) 2 (the peaks in the regions D and E), and InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 have peaks that are not observed (region B above).
- InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 have different new periodicities. That is, an oxide having a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is different from InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 .
- this peak is between the main peaks of In 2 O 3 (ZnO) 2 and InGaO 3 (ZnO) 2 , that is, between 31 ° and 32 °. Therefore, it is shifted to a lower angle side than the main peak of InGaO 3 (ZnO) 2 (it seems that the interstitial distance is widened), and is higher than the main peak of In 2 O 3 (ZnO) 2. There is a shift (it seems that the distance between lattices is narrowed).
- FIG. 7 shows a process of estimating the structural formula In 1.5 Ga 0.5 Zn 2 O 5 of the new crystal structure based on the known crystal structure.
- the atomic ratio of In, Ga, and Zn of the oxide sintered body satisfies the following formula. 0.20 ⁇ In / (In + Ga + Zn) ⁇ 0.70 0.01 ⁇ Ga / (In + Ga + Zn) ⁇ 0.50 0.05 ⁇ Zn / (In + Ga + Zn) ⁇ 0.60
- Ga / (In + Ga + Zn) is less than 0.01, the moisture resistance may decrease, or the photocurrent may increase. If it exceeds 0.50, the mobility may decrease.
- Zn / (In + Ga + Zn) is less than 0.05, the residue may increase during wet etching. If it exceeds 0.60, the moisture resistance may be lowered, or the etching rate may become too fast during wet etching, which may make control difficult.
- the region 1 is particularly preferably within the following range. Ga / (In + Ga + Zn) ⁇ 0.45 0.10 ⁇ Zn / (In + Ga + Zn) ⁇ 0.40 In / (In + Ga) ⁇ 0.60
- the region 2 is particularly preferably within the following range. In / (In + Ga + Zn) ⁇ 0.65 0.10 ⁇ Ga / (In + Ga + Zn) 0.10 ⁇ Zn / (In + Ga + Zn) 0.60 ⁇ In / (In + Ga) 0.51 ⁇ In / (In + Zn) Within the range of the region 1 or the region 2, it is easier to generate two layers of an In rich structure and a Ga, Zn rich structure.
- region 1 is preferable in that advantages such as low photocurrent, improved chemical resistance, and difficulty in being normally on can be expected.
- Region 1 further suppresses an increase in photocurrent and a decrease in chemical resistance when the atomic ratio of In, Ga and Zn in the oxide sintered body satisfies the following formula. Can be reduced. 0.30 ⁇ In / (In + Ga + Zn) Zn / (In + Ga + Zn) ⁇ 0.35 In / (In + Ga) ⁇ 0.56
- sintering is preferably performed at 1100 to 1380 ° C. for 1 to 100 hours.
- the sintering temperature is more preferably 1200 to 1350 ° C., and particularly preferably 1250 to 1320 ° C. If the temperature is 1380 ° C. or higher, the bixbyite structure represented by In 2 O 3 may be lost.
- Zn (zinc) may evaporate, the composition ratio may shift, the target resistivity may increase, an unexpected crystal type may be generated, sintering may require a large amount of energy, and the cost may increase. . If the temperature is lower than 1100 ° C., the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
- the heating rate (room temperature to 400 ° C.) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
- a holding time in which the temperature rise is stopped between 600 and 1100 ° C. for 0.2 hours or more and 10 hours or less is provided, and increasing the temperature in two steps or more increases the uniformity and makes it difficult to crack. This is particularly preferable.
- the amount of Ga, which is a scarce resource, can be reduced, and the generation of Ga 2 O 3 , which is a high-resistance material, can be suppressed without limiting the specific surface area of the raw material.
- the region 2 is preferable in that it can be expected to have advantages such as high mobility and low S value when a thin film transistor is manufactured.
- Region 2 can further suppress an increase in photocurrent and a decrease in chemical resistance when the atomic ratio of In, Ga and Zn in the oxide sintered body satisfies the following formula. Restrictions can be reduced. 0.20 ⁇ Ga / (In + Ga + Zn) Zn / (In + Ga + Zn) ⁇ 0.30
- the sintering is preferably performed at 1100 to 1600 ° C. for 1 to 100 hours.
- the sintering temperature is more preferably 1200 to 1490 ° C., particularly preferably 1300 to 1480 ° C.
- Zn (zinc) evaporates and the composition ratio is shifted, the specific resistance of the target is increased, an unexpected crystal type is generated, a large amount of energy is required for sintering, and the cost is increased. There is a risk. If it is 1100 ° C. or lower, the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
- the heating rate (room temperature to 400 ° C.) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
- the heating rate (400 ° C. to sintering temperature) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
- a holding time in which the temperature rise is stopped between 600 and 1100 ° C. for 0.2 hours or more and 10 hours or less is provided, and increasing the temperature in two steps or more increases the uniformity and makes it difficult to crack. This is particularly preferable.
- the target of the present invention may contain a metal element other than the above-described In, Ga, Zn, for example, Sn, Ge, Si, Ti, Zr, and Hf, as long as the effects of the present invention are not impaired.
- the oxide sintered body preferably further contains Sn at an atomic ratio satisfying the following formula from the viewpoint of easily suppressing the increase in specific resistance due to the formation of a lower oxide and the formation of a tin compound having a high resistance. . 0.0001 ⁇ Sn / (In + Ga + Zn + Sn) ⁇ 0.10
- the following range is preferable because an advantage that the uniformity of the thickness of the semiconductor layer can be expected when a back channel etch type thin film transistor is manufactured. 0.01 ⁇ Sn / (In + Ga + Zn + Sn) ⁇ 0.05
- the target of the present invention preferably contains substantially only In, Ga, Zn and O or only In, Ga, Zn, Sn and O.
- “Substantially containing only the above elements” means that no additional elements are contained other than impurities that are inevitably included in the production process. Specifically, the concentration of elements other than the above elements is less than 10 ppm.
- the relative density of the sintered body constituting the target of the present invention is preferably 95% or more, more preferably 96% or more, and particularly preferably 97% or more. If it is less than 95%, the target may be easily broken or abnormal discharge may be easily generated.
- the relative density is a density calculated relative to the theoretical density calculated from the weighted average. The density calculated from the weighted average of the density of each raw material is the theoretical density, which is defined as 100%.
- the specific resistance is preferably 0.01 m ⁇ cm or more and 20 m ⁇ cm or less, more preferably 0.1 m ⁇ cm or more and 10 m ⁇ cm or less, and particularly preferably 0.2 m ⁇ cm or more and 5 m ⁇ cm or less.
- the specific resistance exceeds 20 m ⁇ cm, if DC sputtering is continued for a long time, a spark is generated due to abnormal discharge, the target is cracked, and particles ejected by the spark adhere to the deposition substrate, and the performance as an oxide semiconductor film May be reduced.
- the specific resistance is smaller than 0.01 m ⁇ cm, the resistance of the target becomes smaller than that of the particles, and abnormal discharge may occur due to scattered particles.
- the sputtering target manufacturing method of the present invention (hereinafter referred to as the target manufacturing method of the present invention) is a molded body made of oxide powder containing In as a main component and oxide powder containing Ga and Zn as main components. It is preferable to fabricate and sinter. By adopting the above production method, it is easy to obtain a target composed of a structure having a large In content and a structure having a large Ga and Zn content. For example, by sintering a compact including an oxide having a spinel structure represented by ZnGa 2 O 4 , a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 are obtained. Including the target of the present invention can be obtained.
- oxide powder having a bixbyite structure represented by the oxide powder and In 2 O 3 having a spinel structure represented by ZnGa 2 O 4 oxides having a spinel structure represented by ZnGa 2 O 4 in the in the molded body was prepared containing an oxide having a bixbyite structure represented by 2 O 3, the sintering the molded body, bixbyite structure and ZnGa 2 O 4, represented by in 2 O 3
- An oxide sintered body including a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 is easily produced. There is an advantage that you can.
- An oxide having a spinel structure represented by ZnGa 2 O 4 as a raw material can be manufactured, for example, as follows.
- ZnO powder and Ga 2 O 3 powder are mixed at a ratio of the Zn: Ga atomic ratio of 1: 2, and baked to synthesize a powder having a spinel structure represented by ZnGa 2 O 4 .
- ZnO powder and Ga 2 O 3 powder are mixed at a ratio where the atomic ratio of Zn and Ga is 1: 2, calcined, and then pulverized.
- Compounding step is a step of mixing a metal oxide that is a raw material of the sputtering target.
- powders such as indium compound powder, gallium compound powder, and zinc compound powder are used.
- the indium compound include indium oxide and indium hydroxide.
- the gallium compound include gallium oxide and gallium hydroxide.
- the zinc compound include zinc oxide and zinc hydroxide.
- an oxide is preferable because it is easy to sinter and it is difficult to leave a by-product.
- the purity of the raw material is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, and particularly preferably 4N (99.99% by mass) or more.
- the purity is lower than 2N, the durability is deteriorated.
- impurities may enter the liquid crystal side and burning may occur.
- a target such as a metal oxide
- an ordinary mixing and pulverizing machine such as a wet ball mill, a bead mill or an ultrasonic device.
- the mixing and grinding time is usually 0.5 to 60 hours, preferably 6 to 48 hours, and more preferably 8 to 36 hours. If it is less than 0.5 hours, there is a risk of poor appearance such as white spots and black spots due to poor dispersion of the raw materials. If it is longer than 60 hours, there is a possibility that an unexpected crystal form may be formed by reaction during mixing.
- the specific surface areas (BET specific surface areas) of indium oxide, gallium oxide and zinc oxide are usually 3 to 18 m 2 / g, 3 to 18 m 2 / g, and 3 to 18 m 2 / g, respectively, preferably 7 to 16 m 2. / G, 7 to 16 m 2 / g, 3 to 10 m 2 / g, more preferably 7 to 15 m 2 / g, 7 to 15 m 2 / g, and 4 to 10 m 2 / g, particularly preferably each. 11 to 15 m 2 / g, 11 to 15 m 2 / g, and 4 to 5 m 2 / g.
- the specific surface area (BET specific surface area) of each metal compound as a target raw material can be measured by the method described in JIS Z 8830.
- the calcination process is a process provided as needed, in which a mixture of compounds that are raw materials of the sputtering target is obtained and then the mixture is calcined.
- calcination it is easy to increase the density, which is preferable, but there is a risk of increasing the cost. Therefore, it is more preferable that the density can be increased without performing calcination.
- the metal oxide mixture is preferably heat-treated at 500 to 1200 ° C. for 1 to 100 hours. This is because the thermal decomposition of the indium compound, the zinc compound, and the tin compound may be insufficient under heat treatment conditions of less than 500 ° C. or less than 1 hour. On the other hand, when the heat treatment condition exceeds 1200 ° C. or exceeds 100 hours, coarsening of the particles may occur.
- heat treatment in the temperature range of 800 to 1200 ° C. for 2 to 50 hours.
- the calcined product obtained here is pulverized before the following molding step and firing step.
- the molding step is a step of pressure-molding a mixture of metal oxides (or calcined product when the calcining step is provided) to form a compact. By this process, it is formed into a shape suitable as a target.
- the obtained calcined fine powder can be granulated and then molded into a desired shape by pressure molding.
- Examples of the molding method that can be used in this step include mold molding, cast molding, injection molding, and the like, and a homogeneous sintered body (target) having a high sintering density and a low specific resistance is obtained.
- CIP cold isostatic pressure
- HIP hot isostatic pressure
- the surface pressure is preferably maintained at 800 to 3000 kgf / cm 2 for 0.5 to 20 minutes. Further, if the surface pressure is 800 kgf / cm 2 or less, the density after sintering may not increase or the resistance may increase. If the surface pressure is 3000 kgf / cm 2 or more, the apparatus may become too large and uneconomical. If the holding time is 0.5 minutes or less, the density after sintering may not increase or the resistance may increase. If it is longer than 20 minutes, it may take too much time and be uneconomical.
- molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
- the thickness of the molded body is usually 6 mm or more, preferably 8 mm or more, particularly preferably 10 mm or more. If it is less than 6 mm, it shrinks during sintering and becomes too thin, resulting in uneven thermal conductivity, and an unexpected crystal form may be formed, and the crystal grain size may become too large.
- a sintering process is a process of baking the molded object obtained at the said formation process.
- the sintering is preferably performed in an oxygen gas atmosphere or under an oxygen gas pressure.
- the oxygen gas atmosphere refers to an atmosphere containing 50% or more of oxygen, and under pressurized oxygen gas, the atmosphere containing 90% or more (preferably 98% or more) of oxygen gas is preferably 1 to The pressure is applied at 5 atmospheres, more preferably 2 to 4 atmospheres. Sintering in an atmosphere that does not contain sufficient oxygen gas will result in sublimation of ZnO or the like, and the oxidation state will be inadequate, and the density of the target obtained will not be sufficiently improved, resulting in abnormalities during sputtering. In some cases, the occurrence of discharge cannot be sufficiently suppressed.
- Sintering may be performed under the above conditions according to the crystal structure of the objective sintered body, but is usually performed at 1100 to 1600 ° C. for 1 to 100 hours. 1200 to 1490 ° C is more preferable, and 1300 to 1480 ° C is particularly preferable.
- the temperature is 1600 ° C. or higher, Zn (zinc) evaporates and the composition ratio is shifted, the specific resistance of the target is increased, an unexpected crystal type is generated, a large amount of energy is required for sintering, and the cost is increased. There is a risk. If it is 1100 ° C. or lower, the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
- the temperature lowering rate (cooling rate) during firing is usually 4 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, further preferably 0.8 ° C./min or less, particularly preferably. Is 0.5 ° C./min or less.
- the crystal form of this invention is easy to be obtained as it is 4 degrees C / min or less. In addition, cracks are unlikely to occur when the temperature drops.
- the temperature rise may be stopped once during the temperature rise and held at the holding temperature, and sintering may be performed in two or more stages.
- Reduction process is a process provided as needed which performs a reduction process in order to reduce the bulk resistance of the sintered compact obtained at the said sintering process as the whole target.
- Examples of the reduction method that can be applied in this step include a method using a reducing gas, vacuum firing, or reduction using an inert gas.
- nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
- reduction treatment inorganic gas atmosphere such as argon or nitrogen, hydrogen atmosphere, or heat treatment in vacuum or low pressure
- reduction treatment is preferably not performed.
- reduction treatment since the specific resistance of the target of the present invention is low even without performing reduction treatment, reduction treatment is usually unnecessary.
- Processing step is to cut the sintered body obtained by sintering as described above into a shape suitable for mounting on a sputtering apparatus, and to mount a jig such as a backing plate. It is the process provided as needed for attaching.
- the thickness of the sintered body before grinding is preferably 5.5 mm or more, more preferably 6 mm or more, and particularly preferably 8 mm or more.
- the grinding is usually 0.2 mm or more on one side, preferably 0.5 mm or more, more preferably 2 mm or more.
- the sintered body is ground with, for example, a surface grinder so that the surface roughness Ra is 5 ⁇ m or less.
- the sputtering surface of the sputtering target may be further mirror-finished so that the average surface roughness Ra is 1000 angstroms or less.
- a known polishing technique such as mechanical polishing, chemical polishing, mechanochemical polishing (a combination of mechanical polishing and chemical polishing) can be used.
- polishing to # 2000 or more with a fixed abrasive polisher (polishing liquid: water) or lapping with loose abrasive lapping (abrasive: SiC paste, etc.), and then lapping by changing the abrasive to diamond paste Can be obtained by:
- a polishing method is not particularly limited.
- the thickness of the target is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm.
- the surface is preferably finished with a 200 to 10,000 diamond grindstone, and particularly preferably with a 400 to 5,000 diamond grindstone. If a diamond grindstone smaller than No. 200 or larger than 10,000 is used, the target may be easily broken. It is preferable that the target has a surface roughness Ra of 0.5 ⁇ m or less and has a non-directional ground surface. If Ra is larger than 0.5 ⁇ m or the polished surface has directivity, abnormal discharge may occur or particles may be generated.
- the sputtering target is obtained by bonding the target material to the backing plate as described above. Further, a plurality of target materials may be attached to one backing plate to substantially form one target.
- ultrasonic cleaning can also be performed. This ultrasonic cleaning is effective by performing multiple oscillations at a frequency of 25 to 300 KHz. For example, ultrasonic cleaning is preferably performed by multiplying twelve types of frequencies in 25 KHz increments between frequencies of 25 to 300 KHz.
- the oxide semiconductor film manufactured using the target of the present invention is useful as a semiconductor layer (channel layer) of a thin film transistor.
- the obtained thin film transistor exhibits excellent TFT characteristics such as high mobility, low S value, and low photocurrent.
- the method for manufacturing a semiconductor element of the present invention includes a step of forming an oxide film using the sputtering target of the present invention.
- the oxide film manufactured using the target of the present invention has high hole mobility and shows a carrier density suitable for use as a semiconductor.
- the semiconductor element manufactured by the method for manufacturing a semiconductor element of the present invention is particularly useful as a thin film transistor.
- Example 1 Production of target A target was produced under the following conditions.
- molding Press molding, surface pressure 400 kgf / cm 2 , 1 minute hold CIP (hydrostatic pressure press), surface pressure 2000 kgf / cm 2 , 1 minute hold
- sintering electric furnace temperature rising rate 1 ° C./min sintering temperature 1400 ° C Sintering time 20 hours Sintering atmosphere Atmosphere
- Post-treatment No heat treatment was performed under reducing conditions.
- the upper and lower surfaces and sides were cut with a diamond cutter, and the surface was ground with a surface grinder to obtain a target material having a surface roughness Ra of 5 ⁇ m or less.
- the surface of the obtained sintered body for target was air blown, and further subjected to ultrasonic cleaning for 3 minutes, and then bonded to an oxygen-free copper backing plate with indium solder to obtain a target.
- the surface roughness Ra of the target was 0.5 ⁇ m or less and had a ground surface with no directionality.
- Relative density (%) (density measured by Archimedes method) ⁇ (theoretical density) ⁇ 100
- Electron probe microanalyzer (EPMA measurement) A target surface portion was cut out and measured under the following conditions.
- the target had a connected structure of In-rich structure with a length of 15 ⁇ m or more.
- the amount of oxygen deficiency was calculated by measuring the amount of carbon dioxide produced by heating in carbon powder with an infrared absorption spectrum.
- the oxygen deficiency was 8 ⁇ 10 ⁇ 3 .
- FIG. 8 shows a chart obtained by X-ray diffraction measurement (Cuk ⁇ ray) on the target surface obtained in Example 1.
- a change of less than 5% was evaluated as A, 5% or more but less than 10% was evaluated as B, and 10% or more was evaluated as C.
- the film formation rate was determined by dividing the film thickness measured with a stylus type surface shape measuring instrument (Kosaka Laboratory Ltd. ET3000) by the film formation time.
- Target film formation characteristics (a) Abnormal discharge The number of abnormal discharges that occurred during 96-hour continuous film formation was measured. The number of abnormal discharges was evaluated as A for less than 5 times, B for 5 times or more and less than 20 and C for 20 times or more.
- Nodule generation density Nodule generation area / Sputtering target area
- composition ratio of target and thin film Comparison of composition ratio between target and thin film Using a thin film produced by sputtering, the difference in composition ratio between the target and the thin film was evaluated.
- the composition ratio of the thin film was determined by analysis by ICP analysis.
- the composition ratio of the target and the thin film was almost the same (the composition ratio of each element of the thin film was within ⁇ 2% of the composition ratio of each element of the target).
- the substrate used was a silicon substrate 10 with a thermal oxide film.
- the silicon substrate was used as the gate electrode 12, and the thermal oxide film (100 nm) was used as the gate insulating film 14.
- a film was formed by RF sputtering using the target prepared in (1) above, and then a semiconductor film (channel layer) 20 having a thickness of 25 nm was formed by wet etching. Then, it heat-processed for 60 minutes at 300 degreeC in air
- the input RF power was 200 W.
- the substrate temperature was 50 ° C.
- Examples 2 to 9 and Comparative Examples 1 to 4 Targets and TFTs were prepared and evaluated in the same manner as in Example 1 except that the compositions and conditions shown in Table 1-1 or Table 1-2 were used. The results are shown in Table 1-1 and Table 1-2.
- Example 10 ZnO powder and Ga 2 O 3 powder were mixed at a ratio where the atomic ratio of Zn and Ga was 1: 2, calcined, and then a compact was formed using the pulverized raw material powder and In 2 O 3 raw material powder.
- the compact contained a crystal form represented by ZnGa 2 O 4 (confirmed by analysis by X-ray diffraction).
- a target and a TFT were produced and evaluated in the same manner as in Example 1 except that this molded body was used and the composition and conditions shown in Table 1-1 were used. The results are shown in Table 1-1.
- FIGS. 9 to 11 show charts obtained by X-ray diffraction measurement (Cuk ⁇ rays) on the target surfaces obtained in Examples 2, 3 and 6.
- FIG. 12 and 13 show micrographs showing dispersed MAPs of In, Ga, Zn, and O by EPMA of the oxide sintered bodies produced in Examples 1 and 2. The photomicrographs of the oxide sintered body produced in Example 4 using EPMA are shown in FIGS.
- the sputtering target of the present invention Since the sputtering target of the present invention has a low specific resistance, no reduction treatment is required, and the cost can be reduced.
- the sputtering target of the present invention is useful as a target for forming an oxide semiconductor film. ADVANTAGE OF THE INVENTION According to this invention, the sputtering target which has the outstanding film-forming property, especially the sputtering target for oxide semiconductor film formation can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
1.In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなるスパッタリングターゲット。
2.前記Inの含有量が多い組織の酸素含有量が、周囲の組織よりも少ない、上記1に記載のスパッタリングターゲット。
3.前記Inの含有量が多い組織が、15μm以上の連結構造を有している、上記1又は2に記載のスパッタリングターゲット。
4,前記酸化物焼結体が、In2O3で表されるビックスバイト構造とInGaZnO4で表されるホモロガス構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
5.前記酸化物焼結体が、In2O3で表されるビックスバイト構造とZnGa2O4で表されるスピネル構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
6.前記酸化物焼結体が、In2O3で表されるビックスバイト構造とIn1.5Ga0.5Zn2O5で表されるホモロガス構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
7.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記1~6のいずれかに記載のスパッタリングターゲット。
0.20≦In/(In+Ga+Zn)≦0.70
0.01≦Ga/(In+Ga+Zn)≦0.50
0.05≦Zn/(In+Ga+Zn)≦0.60
8.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記7に記載のスパッタリングターゲット。
Ga/(In+Ga+Zn)≦0.45
0.10≦Zn/(In+Ga+Zn)≦0.40
In/(In+Ga)<0.60
9.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記7に記載のスパッタリングターゲット。
In/(In+Ga+Zn)≦0.65
0.10≦Ga/(In+Ga+Zn)
0.10≦Zn/(In+Ga+Zn)
0.60≦In/(In+Ga)
0.51≦In/(In+Zn)
10.前記酸化物焼結体が、さらに下記式を満たす原子比でSnを含有する、上記1~9のいずれかに記載のスパッタリングターゲット。
0.0001<Sn/(In+Ga+Zn+Sn)<0.10
11.実質的にIn,Ga,Zn及びOのみを含有する、上記1~9のいずれかに記載のスパッタリングターゲット。
12.ZnGa2O4で表されるスピネル構造を持つ酸化物を含む成形体を焼結する工程を含む、上記5に記載のスパッタリングターゲットの製造方法。
13.上記1~11のいずれかに記載のスパッタリングターゲットを用いて酸化物膜を成膜する工程を含む、半導体素子の製造方法。
本発明によれば、優れた成膜性を有するスパッタリングターゲット、特に酸化物半導体膜形成用のスパッタリングターゲットを提供することができる。
Ga,Znリッチ組織とは、Ga及びZnの含有量がともに周囲より多い組織をいう。Ga,Znリッチ組織を備えていることにより、Ga単独領域が現れることによる高抵抗化を抑制することが期待できる。
また、Ga単独領域の生成によるターゲット組成とスパッタで作製した膜の組成比の相違や異常放電の発生を抑制することも期待できる。
例えば、後述する実施例4で得られた酸化物焼結体のIn,Ga,Zn,Oの分散MAPを図2に示す。図2からわかるように、本発明のターゲットを構成する酸化物焼結体では、Inリッチ組織とGa,Znリッチ組織とが混在した状態となっている。
装置名:日本電子株式会社
JXA-8200
測定条件
加速電圧:15kV
照射電流:50nA
照射時間(1点当りの):50mS
Inリッチ組織の周囲の組織とは、Inリッチ組織を取り囲むGa,Znリッチ組織、その他の組織を意味する。
例えば、後述する実施例4で得られた酸化物焼結体のEPMA画像の拡大図を図4に示す。図4における点線で示した部分がInリッチ組織の連結構造である。
・装置:(株)リガク製Ultima-III
・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ-θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
A.入射角(2θ)=7.0°~8.4°(好ましくは7.2°~8.2°)
B.2θ=30.6°~32.0°(好ましくは30.8°~31.8°)
C.2θ=33.8°~35.8°(好ましくは34.3°~35.3°)
D.2θ=53.5°~56.5°(好ましくは54.1°~56.1°)
E.2θ=56.5°~59.5°(好ましくは57.0°~59.0°)
F.2θ=14.8°~16.2°(好ましくは15.0°~16.0°)
G.2θ=22.3°~24.3°(好ましくは22.8°~23.8°)
H.2θ=32.2°~34.2°(好ましくは32.7°~33.7°)
I.2θ=43.1°~46.1°(好ましくは43.6°~45.6°)
J.2θ=46.2°~49.2°(好ましくは46.7°~48.7°)
K.2θ=62.7°~66.7°(好ましくは63.7°~65.7°)
上記公知の結晶構造を基に、上記新規結晶構造の構造式In1.5Ga0.5Zn2O5を推定した過程を図7に示す。
0.20≦In/(In+Ga+Zn)≦0.70
0.01≦Ga/(In+Ga+Zn)≦0.50
0.05≦Zn/(In+Ga+Zn)≦0.60
0.51≦In/(In+Zn)
0.35≦In/(In+Ga+Zn)≦0.60
0.15≦Ga/(In+Ga+Zn)≦0.45
0.10≦Zn/(In+Ga+Zn)≦0.45
領域1
In/(In+Ga)<0.60
領域2
0.60≦In/(In+Ga)
Ga/(In+Ga+Zn)≦0.45
0.10≦Zn/(In+Ga+Zn)≦0.40
In/(In+Ga)<0.60
In/(In+Ga+Zn)≦0.65
0.10≦Ga/(In+Ga+Zn)
0.10≦Zn/(In+Ga+Zn)
0.60≦In/(In+Ga)
0.51≦In/(In+Zn)
上記領域1あるいは領域2の範囲内であると、Inリッチ組織とGa,Znリッチ組織の2層をより生成させやすい。
0.30≦In/(In+Ga+Zn)
Zn/(In+Ga+Zn)≦0.35
In/(In+Ga)<0.56
0.20<Ga/(In+Ga+Zn)
Zn/(In+Ga+Zn)<0.30
さらに、600~1100℃の間で0.2時間以上10時間以下の昇温を止めた保持時間を設け、2段階以上の段階的に昇温させることが均一性が増す、クラックが入りにくくなるという点で特に好ましい。
0.0001<Sn/(In+Ga+Zn+Sn)<0.10
0.01<Sn/(In+Ga+Zn+Sn)<0.05
0.015≦Sn/(In+Ga+Zn+Sn)≦0.045
0.02≦Sn/(In+Ga+Zn+Sn)≦0.04
上記製造方法をとることで、Inの含有量が多い組織とGa及びZnの含有量が多い組織からなるターゲットを得やすい。
例えば、ZnGa2O4で表されるスピネル構造を持つ酸化物を含む成形体を焼結することで、In2O3で表されるビックスバイト構造とZnGa2O4で表されるスピネル構造を含む本発明のターゲットを得ることができる。
ZnO粉及びGa2O3粉をZnとGaの原子比が1:2となる割合で混合し、焼成し、ZnGa2O4で表されるスピネル構造を持つ粉体を合成する。あるいは、同様にZnO粉及びGa2O3粉をZnとGaの原子比が1:2となる割合で混合し仮焼後、粉砕する。
(1)配合工程
配合工程は、スパッタリングターゲットの原料である金属酸化物を混合する工程である。
仮焼工程は、スパッタリングターゲットの原料である化合物の混合物を得た後、この混合物を仮焼する、必要に応じて設けられる工程である。
仮焼を行うと、密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げられることがより好ましい。
成形工程は、金属酸化物の混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成形して成形体とする工程である。この工程により、ターゲットとして好適な形状に成形する。仮焼工程を設けた場合には得られた仮焼物の微粉末を造粒した後、加圧成形により所望の形状に成形することができる。
また、プレス成形(一軸プレス)後に、冷間静水圧(CIP)、熱間静水圧(HIP)等を行い2段階以上の成形工程を設けると再現性を高めるという点で好ましい。
焼結工程は、上記成形工程で得られた成形体を焼成する工程である。
還元工程は、上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体として低減するために還元処理を行う、必要に応じて設けられる工程である。
尚、本発明のターゲットは、還元処理を行わなくても比抵抗が低いため、通常は、還元処理は不要である。
加工工程は、上記のようにして焼結して得られた焼結体を、さらにスパッタリング装置への装着に適した形状に切削加工し、またバッキングプレート等の装着用治具を取り付けるための、必要に応じて設けられる工程である。
(1)ターゲットの作製
下記条件でターゲットを作製した。
(a)原料
In2O3 、純度4N、アジア物性材料社製
Ga2O3 、純度4N、アジア物性材料社製
ZnO 、純度4N、高純度化学社製
(b)混合:ボールミルで24時間混合した。
(c)造粒:自然乾燥
(d)成形:
プレス成形、面圧400kgf/cm2、1分保持
CIP(静水圧加圧装置)、面圧2000kgf/cm2、1分保持
(e)焼結:電気炉
昇温速度 1℃/分
焼結温度 1400℃
焼結時間 20時間
焼結雰囲気 大気
(f)後処理:還元条件下での熱処理は行わなかった。
(g)加工:厚さ6mmの焼結体を厚さ5mmに研削・研磨した。
得られたターゲット用焼結体の評価は下記の方法で行った。
(a)元素組成比(原子比)
誘導プラズマ発光分析装置(ICP-AES)により測定した。
抵抗率計(三菱化学(株)製、ロレスタ)を使用し四探針法(JIS R 1637)に基づき測定、10箇所の平均値を比抵抗値とした。
原料粉の密度から計算した理論密度と、アルキメデス法で測定した焼結体の密度から、下記計算式にて算出した。
相対密度(%)=(アルキメデス法で測定した密度)÷(理論密度)×100
ターゲット用焼結体の表面を下記条件で直接測定し、結晶型を決定した。
・装置:(株)リガク製Ultima-III
・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ-θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
ターゲット表面部分を切り出し、下記条件で測定した。
装置名:日本電子株式会社
JXA-8200
測定条件
加速電圧:15kV
照射電流:50nA
照射時間(1点当りの):50mS
北窓昼光下、50cm離れた場所から焼結体を目視し、下記に分類した。
A:色むらがほとんどない
B:色むらが若干ある
C:色むらがある
(A)成膜速度の安定性(変動)
1000時間連続放電(成膜)前後の成膜速度を比較した。
(a)異常放電
96時間連続成膜で発生した異常放電回数を測定した。
異常放電回数が5回未満をA、5回以上20未満をB、20回以上をCと評価した。
以下のとおり評価した。
96時間連続成膜後の成膜後のスパッタリングターゲットの写真からノジュールで被覆された面積を計算し、以下の式で発生密度を計算した。
ノジュール発生密度=ノジュール発生面積÷スパッタリングターゲット面積
10-2以内:A、10-1以内:B、10-1超:C
として、3段階で評価した。
スパッタリングで作製した薄膜を用いてターゲットと薄膜の組成比の違いを評価した。薄膜の組成比はICP分析法で分析して求めた。ターゲットと薄膜の組成比はほぼ同一(薄膜の各元素の組成比がターゲットの各元素の組成比の±2%以内)であった。
完成したスパッタリングターゲットを用いて、図1に示すチャンネルストッパー型薄膜トランジスタ1を作製し、評価した。
薄膜トランジスタの評価は、以下のように実施した。
半導体パラメーターアナライザー(ケースレー4200)を用い、室温、遮光環境下で測定した。
光照射下と遮光環境下の測定を比較し、閾値電圧(Vth)の変動が2V以内のものをA、2Vを超えるものをBとして2段階で評価した。
表1-1又は表1-2の組成・条件とした以外は実施例1と同様にターゲット及びTFTを作製・評価した。結果を表1-1及び表1-2に示す。
ZnO粉及びGa2O3粉をZnとGaの原子比が1:2となる割合で混合し仮焼後、粉砕した原料粉及びIn2O3原料粉を用い成形体を成形した。成形体はZnGa2O4で表される結晶型を含んでいた(X線回折で解析して確認した)。この成形体を用い、表1-1に示す組成・条件とした以外は、実施例1と同様にターゲット及びTFTを作製・評価した。結果を表1-1に示す。
実施例1及び2で作製した酸化物焼結体のEPMAによるIn,Ga,Zn,Oの分散MAPを示す顕微鏡写真を図12及び図13に示した。実施例4で作製した酸化物焼結体のEPMAによる顕微鏡写真を図2~5に示した。
本発明のスパッタリングターゲットは、酸化物半導体膜形成用のターゲットとして有用である。
本発明によれば、優れた成膜性を有するスパッタリングターゲット、特に酸化物半導体膜形成用のスパッタリングターゲットを提供することができる。
この明細書に記載の文献の内容を全てここに援用する。
Claims (13)
- In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなるスパッタリングターゲット。
- 前記Inの含有量が多い組織の酸素含有量が、周囲の組織よりも少ない、請求項1に記載のスパッタリングターゲット。
- 前記Inの含有量が多い組織が、15μm以上の連結構造を有している、請求項1又は2に記載のスパッタリングターゲット。
- 前記酸化物焼結体が、In2O3で表されるビックスバイト構造とInGaZnO4で表されるホモロガス構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
- 前記酸化物焼結体が、In2O3で表されるビックスバイト構造とZnGa2O4で表されるスピネル構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
- 前記酸化物焼結体が、In2O3で表されるビックスバイト構造とIn1.5Ga0.5Zn2O5で表されるホモロガス構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
- 前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項1~6のいずれか1項に記載のスパッタリングターゲット。
0.20≦In/(In+Ga+Zn)≦0.70
0.01≦Ga/(In+Ga+Zn)≦0.50
0.05≦Zn/(In+Ga+Zn)≦0.60 - 前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項7に記載のスパッタリングターゲット。
Ga/(In+Ga+Zn)≦0.45
0.10≦Zn/(In+Ga+Zn)≦0.40
In/(In+Ga)<0.60 - 前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項7に記載のスパッタリングターゲット。
In/(In+Ga+Zn)≦0.65
0.10≦Ga/(In+Ga+Zn)
0.10≦Zn/(In+Ga+Zn)
0.60≦In/(In+Ga)
0.51≦In/(In+Zn) - 前記酸化物焼結体が、さらに下記式を満たす原子比でSnを含有する、請求項1~9のいずれか1項に記載のスパッタリングターゲット。
0.0001<Sn/(In+Ga+Zn+Sn)<0.10 - 実質的にIn,Ga,Zn及びOのみを含有する、請求項1~9のいずれか1項に記載のスパッタリングターゲット。
- ZnGa2O4で表されるスピネル構造を持つ酸化物を含む成形体を焼結する工程を含む、請求項5に記載のスパッタリングターゲットの製造方法。
- 請求項1~11のいずれか1項に記載のスパッタリングターゲットを用いて酸化物膜を成膜する工程を含む、半導体素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/265,039 US8858844B2 (en) | 2009-11-18 | 2010-11-16 | In—Ga—Zn—O type sputtering target |
KR1020117019081A KR101164762B1 (ko) | 2009-11-18 | 2010-11-16 | In-Ga-Zn-O계 스퍼터링 타겟 |
CN201080013169.0A CN102362004B (zh) | 2009-11-18 | 2010-11-16 | In-Ga-Zn-O系溅射靶 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-262800 | 2009-11-18 | ||
JP2009262800A JP4875135B2 (ja) | 2009-11-18 | 2009-11-18 | In−Ga−Zn−O系スパッタリングターゲット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011061923A1 true WO2011061923A1 (ja) | 2011-05-26 |
Family
ID=44059410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006714 WO2011061923A1 (ja) | 2009-11-18 | 2010-11-16 | In-Ga-Zn-O系スパッタリングターゲット |
Country Status (6)
Country | Link |
---|---|
US (1) | US8858844B2 (ja) |
JP (1) | JP4875135B2 (ja) |
KR (2) | KR101164762B1 (ja) |
CN (2) | CN103334085A (ja) |
TW (2) | TWI403463B (ja) |
WO (1) | WO2011061923A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153491A1 (ja) * | 2011-05-10 | 2012-11-15 | 出光興産株式会社 | In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101590429B1 (ko) * | 2008-07-15 | 2016-02-01 | 토소가부시키가이샤 | 복합 산화물 소결체, 복합 산화물 소결체의 제조방법, 스퍼터링 타겟 및 박막의 제조방법 |
JP4875135B2 (ja) | 2009-11-18 | 2012-02-15 | 出光興産株式会社 | In−Ga−Zn−O系スパッタリングターゲット |
JP5591523B2 (ja) * | 2009-11-19 | 2014-09-17 | 出光興産株式会社 | 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット |
JP5206716B2 (ja) * | 2010-03-23 | 2013-06-12 | 住友電気工業株式会社 | In−Ga−Zn系複合酸化物焼結体およびその製造方法 |
JP2012236729A (ja) * | 2011-05-10 | 2012-12-06 | Idemitsu Kosan Co Ltd | In−Ga−Zn系酸化物及びその製造方法 |
JP5301021B2 (ja) * | 2011-09-06 | 2013-09-25 | 出光興産株式会社 | スパッタリングターゲット |
JP6143423B2 (ja) | 2012-04-16 | 2017-06-07 | 株式会社半導体エネルギー研究所 | 半導体装置の製造方法 |
JP6068232B2 (ja) * | 2012-05-30 | 2017-01-25 | 株式会社神戸製鋼所 | 薄膜トランジスタの半導体層用酸化物、薄膜トランジスタ、表示装置およびスパッタリングターゲット |
JP5883990B2 (ja) * | 2013-03-29 | 2016-03-15 | Jx金属株式会社 | Igzoスパッタリングターゲット |
JP6224338B2 (ja) * | 2013-04-11 | 2017-11-01 | 株式会社半導体エネルギー研究所 | 半導体装置、表示装置及び半導体装置の作製方法 |
JP2015030858A (ja) * | 2013-07-31 | 2015-02-16 | 株式会社アルバック | スパッタリングターゲットの製造方法 |
WO2015118724A1 (ja) * | 2014-02-07 | 2015-08-13 | リンテック株式会社 | 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス |
JP6629509B2 (ja) * | 2014-02-21 | 2020-01-15 | 株式会社半導体エネルギー研究所 | 酸化物半導体膜 |
JP6358083B2 (ja) * | 2014-02-27 | 2018-07-18 | 住友金属鉱山株式会社 | 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 |
JP6387823B2 (ja) * | 2014-02-27 | 2018-09-12 | 住友金属鉱山株式会社 | 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 |
JP6166207B2 (ja) * | 2014-03-28 | 2017-07-19 | 出光興産株式会社 | 酸化物焼結体及びスパッタリングターゲット |
CN105209405B (zh) * | 2014-03-28 | 2017-07-11 | 吉坤日矿日石金属株式会社 | 氧化物烧结体和包含该氧化物烧结体的溅射靶 |
US10161031B2 (en) * | 2015-02-27 | 2018-12-25 | Jx Nippon Mining & Metals Corporation | Oxide sintered compact and sputtering target formed from said oxide sintered compact |
WO2016152349A1 (ja) * | 2015-03-23 | 2016-09-29 | Jx金属株式会社 | 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット |
WO2017037564A1 (en) * | 2015-08-28 | 2017-03-09 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, transistor, and semiconductor device |
JP6254308B2 (ja) * | 2016-04-19 | 2017-12-27 | 株式会社コベルコ科研 | 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法 |
WO2017212363A1 (en) * | 2016-06-06 | 2017-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering apparatus, sputtering target, and method for forming semiconductor film with the sputtering apparatus |
KR102188417B1 (ko) * | 2017-03-31 | 2020-12-08 | 제이엑스금속주식회사 | 스퍼터링 타깃 및 그 제조 방법 |
JP6364561B1 (ja) * | 2017-05-18 | 2018-07-25 | 株式会社コベルコ科研 | 酸化物焼結体およびスパッタリングターゲット |
JP6364562B1 (ja) * | 2017-05-19 | 2018-07-25 | 株式会社コベルコ科研 | 酸化物焼結体およびスパッタリングターゲット |
CN111312852B (zh) * | 2019-11-26 | 2020-10-20 | 中国科学院上海微系统与信息技术研究所 | 氧化镓半导体结构、日盲光电探测器及制备方法 |
JP7384777B2 (ja) * | 2019-12-16 | 2023-11-21 | 株式会社神戸製鋼所 | 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット |
TWI799766B (zh) * | 2020-12-16 | 2023-04-21 | 進化光學有限公司 | 使用濺鍍技術製作半導體薄膜之方法 |
KR20220170469A (ko) * | 2021-06-23 | 2022-12-30 | 케이브이머티리얼즈 주식회사 | 산화물 반도체 스퍼터링용 타겟 및 이를 이용한 박막 트랜지스터 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163442A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及び酸化物半導体膜 |
JP2008280216A (ja) * | 2007-05-11 | 2008-11-20 | Idemitsu Kosan Co Ltd | In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット |
JP2008285760A (ja) * | 2001-08-02 | 2008-11-27 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、透明導電膜およびそれらの製造法 |
WO2009148154A1 (ja) * | 2008-06-06 | 2009-12-10 | 出光興産株式会社 | 酸化物薄膜用スパッタリングターゲットおよびその製造法 |
JP2010047829A (ja) * | 2008-08-20 | 2010-03-04 | Toyoshima Seisakusho:Kk | スパッタリングターゲットおよびその製造方法 |
WO2010070832A1 (ja) * | 2008-12-15 | 2010-06-24 | 出光興産株式会社 | 複合酸化物焼結体及びそれからなるスパッタリングターゲット |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3644647B2 (ja) | 1995-04-25 | 2005-05-11 | Hoya株式会社 | 導電性酸化物およびそれを用いた電極 |
US20040222089A1 (en) | 2001-09-27 | 2004-11-11 | Kazuyoshi Inoue | Sputtering target and transparent electroconductive film |
CN1869277B (zh) * | 2002-08-02 | 2010-09-29 | 出光兴产株式会社 | 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底 |
CN100549219C (zh) * | 2005-06-28 | 2009-10-14 | 日矿金属株式会社 | 氧化镓-氧化锌系溅射靶、透明导电膜的形成方法及透明导电膜 |
RU2380455C2 (ru) * | 2005-06-28 | 2010-01-27 | Ниппон Майнинг Энд Металз Ко., Лтд. | Распыляемая мишень на основе оксид галлия-оксид цинка, способ формирования прозрачной проводящей пленки и прозрачная проводящая пленка |
JP4761868B2 (ja) * | 2005-07-27 | 2011-08-31 | 出光興産株式会社 | スパッタリングターゲット、その製造方法及び透明導電膜 |
JP5058469B2 (ja) | 2005-09-06 | 2012-10-24 | キヤノン株式会社 | スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法 |
JP5205696B2 (ja) | 2006-02-24 | 2013-06-05 | 住友金属鉱山株式会社 | 酸化ガリウム系焼結体およびその製造方法 |
JP5127183B2 (ja) | 2006-08-23 | 2013-01-23 | キヤノン株式会社 | アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法 |
JP4231967B2 (ja) * | 2006-10-06 | 2009-03-04 | 住友金属鉱山株式会社 | 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池 |
CN103320755A (zh) | 2006-12-13 | 2013-09-25 | 出光兴产株式会社 | 溅射靶及氧化物半导体膜 |
JP5143410B2 (ja) * | 2006-12-13 | 2013-02-13 | 出光興産株式会社 | スパッタリングターゲットの製造方法 |
CN103258857B (zh) | 2007-12-13 | 2016-05-11 | 出光兴产株式会社 | 使用了氧化物半导体的场效应晶体管及其制造方法 |
JP4875135B2 (ja) | 2009-11-18 | 2012-02-15 | 出光興産株式会社 | In−Ga−Zn−O系スパッタリングターゲット |
-
2009
- 2009-11-18 JP JP2009262800A patent/JP4875135B2/ja active Active
-
2010
- 2010-11-16 CN CN2013102094920A patent/CN103334085A/zh active Pending
- 2010-11-16 CN CN201080013169.0A patent/CN102362004B/zh active Active
- 2010-11-16 US US13/265,039 patent/US8858844B2/en active Active
- 2010-11-16 KR KR1020117019081A patent/KR101164762B1/ko active IP Right Grant
- 2010-11-16 WO PCT/JP2010/006714 patent/WO2011061923A1/ja active Application Filing
- 2010-11-16 KR KR1020117019144A patent/KR20120068752A/ko not_active Application Discontinuation
- 2010-11-18 TW TW099139786A patent/TWI403463B/zh active
- 2010-11-18 TW TW102111017A patent/TWI481564B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008285760A (ja) * | 2001-08-02 | 2008-11-27 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、透明導電膜およびそれらの製造法 |
JP2008163442A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及び酸化物半導体膜 |
JP2008280216A (ja) * | 2007-05-11 | 2008-11-20 | Idemitsu Kosan Co Ltd | In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット |
WO2009148154A1 (ja) * | 2008-06-06 | 2009-12-10 | 出光興産株式会社 | 酸化物薄膜用スパッタリングターゲットおよびその製造法 |
JP2010047829A (ja) * | 2008-08-20 | 2010-03-04 | Toyoshima Seisakusho:Kk | スパッタリングターゲットおよびその製造方法 |
WO2010070832A1 (ja) * | 2008-12-15 | 2010-06-24 | 出光興産株式会社 | 複合酸化物焼結体及びそれからなるスパッタリングターゲット |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153491A1 (ja) * | 2011-05-10 | 2012-11-15 | 出光興産株式会社 | In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法 |
US9206502B2 (en) | 2011-05-10 | 2015-12-08 | Idemitsu Kosan Co., Ltd. | In—Ga—Zn oxide sputtering target and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4875135B2 (ja) | 2012-02-15 |
TWI481564B (zh) | 2015-04-21 |
KR20110102513A (ko) | 2011-09-16 |
CN102362004A (zh) | 2012-02-22 |
KR20120068752A (ko) | 2012-06-27 |
TWI403463B (zh) | 2013-08-01 |
TW201124343A (en) | 2011-07-16 |
CN103334085A (zh) | 2013-10-02 |
US8858844B2 (en) | 2014-10-14 |
JP2011105995A (ja) | 2011-06-02 |
KR101164762B1 (ko) | 2012-07-12 |
US20120118726A1 (en) | 2012-05-17 |
CN102362004B (zh) | 2014-07-16 |
TW201328976A (zh) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4875135B2 (ja) | In−Ga−Zn−O系スパッタリングターゲット | |
JP4843083B2 (ja) | In−Ga−Zn系酸化物スパッタリングターゲット | |
JP5591523B2 (ja) | 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット | |
JP5596963B2 (ja) | スパッタリングターゲット及びそれを用いた薄膜トランジスタ | |
WO2009142289A1 (ja) | スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法 | |
US20150354053A1 (en) | Sputtering target | |
JP4891381B2 (ja) | In−Ga−Zn系焼結体、及びスパッタリングターゲット | |
KR20120091026A (ko) | In-Ga-Zn-O계 산화물 소결체 | |
JP5767015B2 (ja) | 薄膜トランジスタ | |
JP2015157755A (ja) | 複合酸化物焼結体及びそれからなるスパッタリングターゲット | |
JP5501306B2 (ja) | In−Ga−Zn−O系スパッタリングターゲット | |
JP5705642B2 (ja) | In−Ga−Zn系酸化物スパッタリングターゲット及びその製造方法 | |
WO2020027243A1 (ja) | 結晶構造化合物、酸化物焼結体、スパッタリングターゲット、結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器 | |
JP2012017258A (ja) | In−Ga−Zn系酸化物スパッタリングターゲット | |
JP2012056842A (ja) | In−Ga−Zn系酸化物、酸化物焼結体、及びスパッタリングターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080013169.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10831322 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117019081 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13265039 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10831322 Country of ref document: EP Kind code of ref document: A1 |