WO2011061923A1 - In-Ga-Zn-O系スパッタリングターゲット - Google Patents

In-Ga-Zn-O系スパッタリングターゲット Download PDF

Info

Publication number
WO2011061923A1
WO2011061923A1 PCT/JP2010/006714 JP2010006714W WO2011061923A1 WO 2011061923 A1 WO2011061923 A1 WO 2011061923A1 JP 2010006714 W JP2010006714 W JP 2010006714W WO 2011061923 A1 WO2011061923 A1 WO 2011061923A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
target
sputtering target
sintered body
structure represented
Prior art date
Application number
PCT/JP2010/006714
Other languages
English (en)
French (fr)
Inventor
矢野公規
糸瀬将之
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/265,039 priority Critical patent/US8858844B2/en
Priority to KR1020117019081A priority patent/KR101164762B1/ko
Priority to CN201080013169.0A priority patent/CN102362004B/zh
Publication of WO2011061923A1 publication Critical patent/WO2011061923A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to a sputtering target for producing an oxide thin film such as an oxide semiconductor or a transparent conductive film, particularly for producing a thin film transistor.
  • Amorphous oxide films made of indium oxide, zinc oxide, and gallium oxide have visible light transmission properties and wide electrical characteristics from conductors and semiconductors to insulators. It is attracting attention as a semiconductor film.
  • the oxide film As a method for forming the oxide film, there are physical film formation such as sputtering, pulse laser deposition (PLD), and vapor deposition, and chemical film formation such as a sol-gel method. As a method for uniformly forming a film, physical film formation such as a sputtering method has been mainly studied.
  • an oxide thin film is formed by physical film formation such as sputtering
  • a target made of an oxide sintered body is used in order to form a film uniformly, stably and efficiently (at a high film formation rate). It is common.
  • oxide film for example, an oxide film made of indium oxide, zinc oxide, or gallium oxide can be given.
  • targets mainly sputtering targets
  • homologous crystal forms such as InGaZnO 4 and In 2 Ga 2 ZnO 7 .
  • Patent Documents 1 to 4 disclose targets including a homologous structure of InGaZnO 4 (InGaO 3 (ZnO)).
  • the homologous structure is less prone to oxygen vacancies, it is necessary to reduce the resistance by reducing oxygen at high temperatures (Patent Document 1). Therefore, a production method (Patent Document 3) that does not generate a highly insulating Ga 2 O 3 crystal phase, a method of adding a positive tetravalent metal (Patent Document 4), a hexagonal layered compound of InGaZnO 4 and ZnGa 2 O 4
  • the target (patent document 4) which consists of a mixture of these spinel structures is examined.
  • problems such as limited effects and difficulty in management due to increased constituent elements.
  • Patent Document 5 various thin film transistors have been studied by changing the composition ratio of indium oxide, zinc oxide and gallium oxide.
  • the specific resistance was still high because the examination of the target in each composition was insufficient.
  • Patent Document 6 there has been a problem that the Ga content ratio of the thin film is extremely reduced to about two-thirds of the Ga content ratio of the target. This suggests that the properties of the target are inappropriate, but no study has been made on the properties of the target and its improvement.
  • An object of the present invention is to provide a target for forming an oxide semiconductor film having a low specific resistance without performing a reduction treatment.
  • the oxide target containing In, Ga, and Zn contains a structure having a larger In content than the surroundings (hereinafter referred to as an In-rich structure). It was found that a target having a low specific resistance can be produced without performing reduction treatment, particularly reduction treatment at high temperature. This is presumed to be because oxygen deficiency is easily caused by including an In-rich structure. Furthermore, it has been found that an In-rich structure can be generated in an oxide sintered body containing In, Ga, and Zn by selecting an elemental composition ratio (atomic ratio) and manufacturing conditions.
  • this target has a low In content
  • the generation of nodules during sputtering is extremely small compared to targets containing a large amount of In, such as ITO, and defects due to particles generated due to abnormal discharge due to nodules when a thin film transistor is produced. It was found that generation can be expected to be reduced.
  • the present inventors completed the present invention by finding that a semiconductor element produced using a target made of this oxide sintered body, particularly a thin film transistor, has excellent TFT characteristics and a sputtering target suitable for the production of a semiconductor element can be produced. It was.
  • a sputtering target comprising an oxide sintered body containing a structure containing In, Ga and Zn and having a higher In content than the surroundings and a structure containing Ga and Zn more than the surroundings.
  • the sputtering target according to 1 above wherein the oxygen content of the tissue having a high In content is lower than that of the surrounding tissue.
  • the sputtering target according to 1 or 2 above wherein the structure having a large In content has a connecting structure of 15 ⁇ m or more. 4.
  • an atomic ratio of In, Ga, and Zn of the oxide sintered body satisfies the following formula. In / (In + Ga + Zn) ⁇ 0.65 0.10 ⁇ Ga / (In + Ga + Zn) 0.10 ⁇ Zn / (In + Ga + Zn) 0.60 ⁇ In / (In + Ga) 0.51 ⁇ In / (In + Zn) 10. 10.
  • a method for producing a semiconductor element comprising a step of forming an oxide film using the sputtering target according to any one of 1 to 11 above.
  • a target for forming an oxide semiconductor film having a low specific resistance can be provided without performing a reduction treatment.
  • ADVANTAGE OF THE INVENTION According to this invention, the sputtering target which has the outstanding film-forming property, especially the sputtering target for oxide semiconductor film formation can be provided.
  • FIG. 6 is a photomicrograph showing a dispersed MAP of In, Ga, Zn by EPMA of the oxide produced in Example 4.
  • 6 is a photomicrograph showing dispersion MAP of In, Ga, Zn, O by EPMA of the oxide sintered body produced in Example 4.
  • 6 is a photomicrograph showing a connection structure of an In-rich structure in an In, Ga, Zn, O dispersed MAP of an oxide sintered body produced in Example 4.
  • FIG. 6 is a photomicrograph showing a calculation example of an aspect ratio of an In-rich structure of an oxide sintered body produced in Example 4.
  • Example 7 is a chart obtained by X-ray diffraction measurement (Cuk ⁇ ray) of the oxide sintered body obtained in Example 6.
  • 2 is a photomicrograph showing dispersion MAP of In, Ga, Zn, O by EPMA of the oxide sintered body produced in Example 1.
  • 4 is a photomicrograph showing a dispersion MAP of In, Ga, Zn, O by EPMA of an oxide sintered body produced in Example 2.
  • the sputtering target of the present invention includes a structure containing In, Ga, and Zn, having a higher In content than the surroundings, and a structure having a higher Ga and Zn content than the surroundings. It is characterized by comprising an oxide sintered body.
  • An In-rich structure refers to a structure in which the In content is greater than the surroundings.
  • the Ga and Zn rich structure refers to a structure in which both Ga and Zn contents are larger than the surroundings.
  • FIG. 2 shows a dispersion MAP of In, Ga, Zn, and O of the oxide sintered body obtained in Example 4 described later.
  • the In rich structure and the Ga, Zn rich structure are mixed.
  • the measurement by EPMA can be performed by the following apparatus and conditions, for example.
  • the oxide constituting the target of the present invention preferably has an oxygen deficiency.
  • the amount of oxygen deficiency is preferably in the range of 3 ⁇ 10 ⁇ 5 to 3 ⁇ 10 ⁇ 1 , and more preferably in the range of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 . When it is within the above range, the specific resistance is easily lowered.
  • the amount of oxygen deficiency is a value obtained by subtracting the number of oxygen ions contained in one mole of oxide crystal from the number of stoichiometric oxygen ions in mole units.
  • the number of oxygen ions contained in the oxide crystal can be calculated, for example, by measuring the amount of carbon dioxide produced by heating the oxide crystal in carbon powder using an infrared absorption spectrum.
  • the number of stoichiometric oxygen ions can be calculated from the mass of the oxide crystal.
  • the amount of oxygen deficiency can be adjusted according to the sintering conditions, the atmosphere during sintering, the temperature rise, and the temperature drop. Moreover, it can also adjust by performing a reduction process after sintering. If an In-rich structure is provided, it is easy to adjust the oxygen deficiency within the above range without performing a reduction treatment after sintering.
  • the oxygen content of the tissue having a large In content is smaller than that of the surrounding tissue.
  • the structure around the In-rich structure means a Ga, Zn-rich structure surrounding the In-rich structure and other structures.
  • the oxygen content of the In-rich structure is lower than the oxygen content of the Ga, Zn rich structure and other structures.
  • FIG. 3 showing the dispersion MAP of In, Ga, Zn, and O of the oxide sintered body obtained in Example 4 described later, the oxygen content of the In-rich structure is You can see that there are fewer than organizations.
  • the structure having a large In content has a connection structure of 15 ⁇ m or more.
  • FIG. 4 shows an enlarged view of an EPMA image of the oxide sintered body obtained in Example 4 to be described later.
  • a portion indicated by a dotted line in FIG. 4 is a connection structure of an In-rich structure.
  • the In-rich structure has a connected structure with a length of 15 ⁇ m or more, the specific resistance can be lowered by conducting through the In-rich structure.
  • the length of the connecting structure is more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the width of the connecting structure is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the aspect ratio of the connecting structure having a length of 15 ⁇ m or more is preferably 1.5 or more, more preferably 2 or more, and particularly preferably 3 or more.
  • connection structure refers to an elliptical long axis and short axis that circumscribe the connection structure.
  • long axis ⁇ short axis be the aspect ratio. The higher the aspect ratio of the connection structure, the lower the specific resistance can be expected.
  • FIG. 1 An example of the measurement of the aspect ratio in the target obtained in Example 4 described later is shown in FIG.
  • connection structure The length, width, and aspect ratio of the connection structure are randomly selected from 20 connection structures from an EPMA photograph and averaged.
  • the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a homologous structure represented by InGaZnO 4 .
  • XRD X-ray diffraction measurement
  • X-ray diffraction measurement ⁇ Equipment: Ultimate-III manufactured by Rigaku Corporation -X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) ⁇ 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) ⁇ Sampling interval: 0.02 ° ⁇ Slit DS, SS: 2/3 °, RS: 0.6 mm
  • the bixbite structure (or rare earth oxide C-type crystal structure) represented by In 2 O 3 is a cubic system having a space group of (T h 7 , I a3 ), and Mn 2 O 3 (I) Also called type oxide crystal structure. Sc 2 O 3 , Y 2 O 3 , Tl 2 O 3 , Pu 2 O 3 , Am 2 O 3 , Cm 2 O 3 , In 2 O 3 , ITO (In 2 O 3 doped with Sn of about 10 wt% or less ) Shows this crystal structure ("Transparent conductive film technology", edited by the Japan Society for the Promotion of Science, Transparent Oxide Optical / Electronic Materials 166th Committee (Ohm, March 30, 1999)).
  • the bixbite structure represented by In 2 O 3 (rare earth oxide C-type crystal structure) is shown by JCPDS card no. This can be confirmed by showing the pattern of 6-0416.
  • the crystal structure of the rare earth oxide C-type has a stoichiometric ratio of M 2 X from a fluorite-type crystal structure which is one of the crystal structures of a compound represented by MX 2 (M: cation, X: anion). for 3, a structure in which one is missing the four anions.
  • the anion usually oxygen in the case of an oxide
  • the anion is coordinated to the cation, and the remaining two anion sites are empty (the empty anion sites are both quasi-ion sites).
  • a rare earth oxide C-type crystal structure in which oxygen (anion) is coordinated to 6 positive ions (cations) has an oxygen octahedral ridge sharing structure. When the oxygen octahedron ridge sharing structure is present, the ns orbitals of the p metal that is a cation overlap each other to form an electron conduction path, and the effective mass is reduced and high electron mobility is exhibited.
  • the bixbyite structure (rare earth oxide C-type crystal structure) represented by In 2 O 3 is a JCPDS card no. If the 6-0416 pattern is shown, the stoichiometric ratio may deviate from M 2 X 3 . That is, it may be M 2 O 3-d .
  • m 1 of the crystal structure represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) is InGaO 3 (ZnO).
  • a crystal structure represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) is called a “hexagonal layered compound” or “a crystal structure of a homologous phase”, and several crystal layers of different substances are stacked. It is a crystal consisting of a “natural superlattice” structure with a combined long period.
  • each thin film layer When the crystal cycle or thickness of each thin film layer is on the order of nanometers, depending on the combination of the chemical composition of these layers and the thickness of the layers, it differs from the properties of a single substance or a mixed crystal in which each layer is uniformly mixed. Unique characteristics can be obtained.
  • the crystal structure of the homologous phase can be confirmed, for example, because the X-ray diffraction pattern directly measured from the powder obtained by pulverizing the target or the target matches the crystal structure X-ray diffraction pattern of the homologous phase assumed from the composition ratio. Specifically, it can be confirmed from the coincidence with the crystal structure X-ray diffraction pattern of the homologous phase obtained from a JCPDS (Joint Committee of Powder Diffraction Standards) card. In the case of InGaO 3 (ZnO), JCPDS card no. 38-1104.
  • JCPDS Joint Committee of Powder Diffraction Standards
  • the lattice constant a of the bixbyite structure represented by In 2 O 3 is preferably 10.14 or less, more preferably 10.10 or less, and particularly preferably 10.08 or less.
  • the lattice constant a is obtained by XRD fitting. If the lattice constant is small, it can be expected that the specific resistance can be lowered by improving the mobility.
  • the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 .
  • the crystal structure represented by ZnGa 2 O 4 is the JCPDS card no. As long as the pattern 38-1240 is shown, the stoichiometric ratio may be shifted. That is, it may be ZnGa 2 O 4-d .
  • the oxygen deficiency d is preferably in the range of 3 ⁇ 10 ⁇ 5 to 3 ⁇ 10 ⁇ 1 . d can be adjusted by sintering conditions, atmosphere during sintering, temperature rise, temperature drop, or the like. Moreover, it can also adjust by carrying out a reduction process after sintering.
  • the oxide sintered body includes a bixbite structure represented by In 2 O 3 and a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5. .
  • the homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is an In—Ga—Zn-based oxide containing indium element (In), gallium element (Ga), and zinc element (Zn).
  • the following condition 1 is satisfied.
  • Condition 1 In the chart obtained by X-ray diffraction measurement (Cuk ⁇ ray), diffraction peaks are observed in the following regions A to E.
  • A. Incident angle (2 ⁇ ) 7.0 ° to 8.4 ° (preferably 7.2 ° to 8.2 °)
  • B. 2 ⁇ 30.6 ° -32.0 ° (preferably 30.8 ° -31.8 °)
  • C. 2 ⁇ 33.8 ° to 35.8 ° (preferably 34.3 ° to 35.3 °)
  • D. 2 ⁇ 53.5 ° to 56.5 ° (preferably 54.1 ° to 56.1 °)
  • E. 2 ⁇ 56.5 ° to 59.5 ° (preferably 57.0 ° to 59.0 °)
  • the main peak is the strongest peak (peak with the highest peak height) in the range 2 ⁇ of 5 to 80 °, and the sub peak is the second strongest peak (peak with the highest peak height). ).
  • Condition 3 In the chart obtained by X-ray diffraction measurement (Cuk ⁇ ray), diffraction peaks are observed in the following F to K regions.
  • F. 2 ⁇ 14.8 ° to 16.2 ° (preferably 15.0 ° to 16.0 °)
  • G. 2 ⁇ 22.3 ° to 24.3 ° (preferably 22.8 ° to 23.8 °)
  • H. 2 ⁇ 32.2 ° to 34.2 ° (preferably 32.7 ° to 33.7 °)
  • I. 2 ⁇ 43.1 ° to 46.1 ° (preferably 43.6 ° to 45.6 °)
  • J. et al. 2 ⁇ 46.2 ° to 49.2 ° (preferably 46.7 ° to 48.7 °)
  • K. 2 ⁇ 62.7 ° to 66.7 ° (preferably 63.7 ° to 65.7 °)
  • FIG. 1 An example of a chart obtained by X-ray diffraction measurement (Cuk ⁇ line) of a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is shown in FIG.
  • An oxide crystal that satisfies the above conditions is not a JCPDS (Joint Committee of Powder Diffraction Standards) card, and is a new crystal that has not been confirmed so far.
  • JCPDS Joint Committee of Powder Diffraction Standards
  • An X-ray diffraction chart of a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is a crystal structure represented by InGaO 3 (ZnO) 2 (JCPDS: 40-0252) and In 2 O 3 (ZnO). ) 2 (JCPDS: 20-1442) It is similar to the crystal structure shown. However, this oxide has a peak peculiar to InGaO 3 (ZnO) 2 (the peak in the region A) and a peak peculiar to In 2 O 3 (ZnO) 2 (the peaks in the regions D and E), and InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 have peaks that are not observed (region B above).
  • InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 have different new periodicities. That is, an oxide having a homologous structure represented by In 1.5 Ga 0.5 Zn 2 O 5 is different from InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 .
  • this peak is between the main peaks of In 2 O 3 (ZnO) 2 and InGaO 3 (ZnO) 2 , that is, between 31 ° and 32 °. Therefore, it is shifted to a lower angle side than the main peak of InGaO 3 (ZnO) 2 (it seems that the interstitial distance is widened), and is higher than the main peak of In 2 O 3 (ZnO) 2. There is a shift (it seems that the distance between lattices is narrowed).
  • FIG. 7 shows a process of estimating the structural formula In 1.5 Ga 0.5 Zn 2 O 5 of the new crystal structure based on the known crystal structure.
  • the atomic ratio of In, Ga, and Zn of the oxide sintered body satisfies the following formula. 0.20 ⁇ In / (In + Ga + Zn) ⁇ 0.70 0.01 ⁇ Ga / (In + Ga + Zn) ⁇ 0.50 0.05 ⁇ Zn / (In + Ga + Zn) ⁇ 0.60
  • Ga / (In + Ga + Zn) is less than 0.01, the moisture resistance may decrease, or the photocurrent may increase. If it exceeds 0.50, the mobility may decrease.
  • Zn / (In + Ga + Zn) is less than 0.05, the residue may increase during wet etching. If it exceeds 0.60, the moisture resistance may be lowered, or the etching rate may become too fast during wet etching, which may make control difficult.
  • the region 1 is particularly preferably within the following range. Ga / (In + Ga + Zn) ⁇ 0.45 0.10 ⁇ Zn / (In + Ga + Zn) ⁇ 0.40 In / (In + Ga) ⁇ 0.60
  • the region 2 is particularly preferably within the following range. In / (In + Ga + Zn) ⁇ 0.65 0.10 ⁇ Ga / (In + Ga + Zn) 0.10 ⁇ Zn / (In + Ga + Zn) 0.60 ⁇ In / (In + Ga) 0.51 ⁇ In / (In + Zn) Within the range of the region 1 or the region 2, it is easier to generate two layers of an In rich structure and a Ga, Zn rich structure.
  • region 1 is preferable in that advantages such as low photocurrent, improved chemical resistance, and difficulty in being normally on can be expected.
  • Region 1 further suppresses an increase in photocurrent and a decrease in chemical resistance when the atomic ratio of In, Ga and Zn in the oxide sintered body satisfies the following formula. Can be reduced. 0.30 ⁇ In / (In + Ga + Zn) Zn / (In + Ga + Zn) ⁇ 0.35 In / (In + Ga) ⁇ 0.56
  • sintering is preferably performed at 1100 to 1380 ° C. for 1 to 100 hours.
  • the sintering temperature is more preferably 1200 to 1350 ° C., and particularly preferably 1250 to 1320 ° C. If the temperature is 1380 ° C. or higher, the bixbyite structure represented by In 2 O 3 may be lost.
  • Zn (zinc) may evaporate, the composition ratio may shift, the target resistivity may increase, an unexpected crystal type may be generated, sintering may require a large amount of energy, and the cost may increase. . If the temperature is lower than 1100 ° C., the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
  • the heating rate (room temperature to 400 ° C.) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
  • a holding time in which the temperature rise is stopped between 600 and 1100 ° C. for 0.2 hours or more and 10 hours or less is provided, and increasing the temperature in two steps or more increases the uniformity and makes it difficult to crack. This is particularly preferable.
  • the amount of Ga, which is a scarce resource, can be reduced, and the generation of Ga 2 O 3 , which is a high-resistance material, can be suppressed without limiting the specific surface area of the raw material.
  • the region 2 is preferable in that it can be expected to have advantages such as high mobility and low S value when a thin film transistor is manufactured.
  • Region 2 can further suppress an increase in photocurrent and a decrease in chemical resistance when the atomic ratio of In, Ga and Zn in the oxide sintered body satisfies the following formula. Restrictions can be reduced. 0.20 ⁇ Ga / (In + Ga + Zn) Zn / (In + Ga + Zn) ⁇ 0.30
  • the sintering is preferably performed at 1100 to 1600 ° C. for 1 to 100 hours.
  • the sintering temperature is more preferably 1200 to 1490 ° C., particularly preferably 1300 to 1480 ° C.
  • Zn (zinc) evaporates and the composition ratio is shifted, the specific resistance of the target is increased, an unexpected crystal type is generated, a large amount of energy is required for sintering, and the cost is increased. There is a risk. If it is 1100 ° C. or lower, the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
  • the heating rate (room temperature to 400 ° C.) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
  • the heating rate (400 ° C. to sintering temperature) is preferably 5 ° C./min or less, more preferably 0.2 to 3 ° C./min, and particularly preferably 0.4 to 1 ° C./min.
  • a holding time in which the temperature rise is stopped between 600 and 1100 ° C. for 0.2 hours or more and 10 hours or less is provided, and increasing the temperature in two steps or more increases the uniformity and makes it difficult to crack. This is particularly preferable.
  • the target of the present invention may contain a metal element other than the above-described In, Ga, Zn, for example, Sn, Ge, Si, Ti, Zr, and Hf, as long as the effects of the present invention are not impaired.
  • the oxide sintered body preferably further contains Sn at an atomic ratio satisfying the following formula from the viewpoint of easily suppressing the increase in specific resistance due to the formation of a lower oxide and the formation of a tin compound having a high resistance. . 0.0001 ⁇ Sn / (In + Ga + Zn + Sn) ⁇ 0.10
  • the following range is preferable because an advantage that the uniformity of the thickness of the semiconductor layer can be expected when a back channel etch type thin film transistor is manufactured. 0.01 ⁇ Sn / (In + Ga + Zn + Sn) ⁇ 0.05
  • the target of the present invention preferably contains substantially only In, Ga, Zn and O or only In, Ga, Zn, Sn and O.
  • “Substantially containing only the above elements” means that no additional elements are contained other than impurities that are inevitably included in the production process. Specifically, the concentration of elements other than the above elements is less than 10 ppm.
  • the relative density of the sintered body constituting the target of the present invention is preferably 95% or more, more preferably 96% or more, and particularly preferably 97% or more. If it is less than 95%, the target may be easily broken or abnormal discharge may be easily generated.
  • the relative density is a density calculated relative to the theoretical density calculated from the weighted average. The density calculated from the weighted average of the density of each raw material is the theoretical density, which is defined as 100%.
  • the specific resistance is preferably 0.01 m ⁇ cm or more and 20 m ⁇ cm or less, more preferably 0.1 m ⁇ cm or more and 10 m ⁇ cm or less, and particularly preferably 0.2 m ⁇ cm or more and 5 m ⁇ cm or less.
  • the specific resistance exceeds 20 m ⁇ cm, if DC sputtering is continued for a long time, a spark is generated due to abnormal discharge, the target is cracked, and particles ejected by the spark adhere to the deposition substrate, and the performance as an oxide semiconductor film May be reduced.
  • the specific resistance is smaller than 0.01 m ⁇ cm, the resistance of the target becomes smaller than that of the particles, and abnormal discharge may occur due to scattered particles.
  • the sputtering target manufacturing method of the present invention (hereinafter referred to as the target manufacturing method of the present invention) is a molded body made of oxide powder containing In as a main component and oxide powder containing Ga and Zn as main components. It is preferable to fabricate and sinter. By adopting the above production method, it is easy to obtain a target composed of a structure having a large In content and a structure having a large Ga and Zn content. For example, by sintering a compact including an oxide having a spinel structure represented by ZnGa 2 O 4 , a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 are obtained. Including the target of the present invention can be obtained.
  • oxide powder having a bixbyite structure represented by the oxide powder and In 2 O 3 having a spinel structure represented by ZnGa 2 O 4 oxides having a spinel structure represented by ZnGa 2 O 4 in the in the molded body was prepared containing an oxide having a bixbyite structure represented by 2 O 3, the sintering the molded body, bixbyite structure and ZnGa 2 O 4, represented by in 2 O 3
  • An oxide sintered body including a bixbite structure represented by In 2 O 3 and a spinel structure represented by ZnGa 2 O 4 is easily produced. There is an advantage that you can.
  • An oxide having a spinel structure represented by ZnGa 2 O 4 as a raw material can be manufactured, for example, as follows.
  • ZnO powder and Ga 2 O 3 powder are mixed at a ratio of the Zn: Ga atomic ratio of 1: 2, and baked to synthesize a powder having a spinel structure represented by ZnGa 2 O 4 .
  • ZnO powder and Ga 2 O 3 powder are mixed at a ratio where the atomic ratio of Zn and Ga is 1: 2, calcined, and then pulverized.
  • Compounding step is a step of mixing a metal oxide that is a raw material of the sputtering target.
  • powders such as indium compound powder, gallium compound powder, and zinc compound powder are used.
  • the indium compound include indium oxide and indium hydroxide.
  • the gallium compound include gallium oxide and gallium hydroxide.
  • the zinc compound include zinc oxide and zinc hydroxide.
  • an oxide is preferable because it is easy to sinter and it is difficult to leave a by-product.
  • the purity of the raw material is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, and particularly preferably 4N (99.99% by mass) or more.
  • the purity is lower than 2N, the durability is deteriorated.
  • impurities may enter the liquid crystal side and burning may occur.
  • a target such as a metal oxide
  • an ordinary mixing and pulverizing machine such as a wet ball mill, a bead mill or an ultrasonic device.
  • the mixing and grinding time is usually 0.5 to 60 hours, preferably 6 to 48 hours, and more preferably 8 to 36 hours. If it is less than 0.5 hours, there is a risk of poor appearance such as white spots and black spots due to poor dispersion of the raw materials. If it is longer than 60 hours, there is a possibility that an unexpected crystal form may be formed by reaction during mixing.
  • the specific surface areas (BET specific surface areas) of indium oxide, gallium oxide and zinc oxide are usually 3 to 18 m 2 / g, 3 to 18 m 2 / g, and 3 to 18 m 2 / g, respectively, preferably 7 to 16 m 2. / G, 7 to 16 m 2 / g, 3 to 10 m 2 / g, more preferably 7 to 15 m 2 / g, 7 to 15 m 2 / g, and 4 to 10 m 2 / g, particularly preferably each. 11 to 15 m 2 / g, 11 to 15 m 2 / g, and 4 to 5 m 2 / g.
  • the specific surface area (BET specific surface area) of each metal compound as a target raw material can be measured by the method described in JIS Z 8830.
  • the calcination process is a process provided as needed, in which a mixture of compounds that are raw materials of the sputtering target is obtained and then the mixture is calcined.
  • calcination it is easy to increase the density, which is preferable, but there is a risk of increasing the cost. Therefore, it is more preferable that the density can be increased without performing calcination.
  • the metal oxide mixture is preferably heat-treated at 500 to 1200 ° C. for 1 to 100 hours. This is because the thermal decomposition of the indium compound, the zinc compound, and the tin compound may be insufficient under heat treatment conditions of less than 500 ° C. or less than 1 hour. On the other hand, when the heat treatment condition exceeds 1200 ° C. or exceeds 100 hours, coarsening of the particles may occur.
  • heat treatment in the temperature range of 800 to 1200 ° C. for 2 to 50 hours.
  • the calcined product obtained here is pulverized before the following molding step and firing step.
  • the molding step is a step of pressure-molding a mixture of metal oxides (or calcined product when the calcining step is provided) to form a compact. By this process, it is formed into a shape suitable as a target.
  • the obtained calcined fine powder can be granulated and then molded into a desired shape by pressure molding.
  • Examples of the molding method that can be used in this step include mold molding, cast molding, injection molding, and the like, and a homogeneous sintered body (target) having a high sintering density and a low specific resistance is obtained.
  • CIP cold isostatic pressure
  • HIP hot isostatic pressure
  • the surface pressure is preferably maintained at 800 to 3000 kgf / cm 2 for 0.5 to 20 minutes. Further, if the surface pressure is 800 kgf / cm 2 or less, the density after sintering may not increase or the resistance may increase. If the surface pressure is 3000 kgf / cm 2 or more, the apparatus may become too large and uneconomical. If the holding time is 0.5 minutes or less, the density after sintering may not increase or the resistance may increase. If it is longer than 20 minutes, it may take too much time and be uneconomical.
  • molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
  • the thickness of the molded body is usually 6 mm or more, preferably 8 mm or more, particularly preferably 10 mm or more. If it is less than 6 mm, it shrinks during sintering and becomes too thin, resulting in uneven thermal conductivity, and an unexpected crystal form may be formed, and the crystal grain size may become too large.
  • a sintering process is a process of baking the molded object obtained at the said formation process.
  • the sintering is preferably performed in an oxygen gas atmosphere or under an oxygen gas pressure.
  • the oxygen gas atmosphere refers to an atmosphere containing 50% or more of oxygen, and under pressurized oxygen gas, the atmosphere containing 90% or more (preferably 98% or more) of oxygen gas is preferably 1 to The pressure is applied at 5 atmospheres, more preferably 2 to 4 atmospheres. Sintering in an atmosphere that does not contain sufficient oxygen gas will result in sublimation of ZnO or the like, and the oxidation state will be inadequate, and the density of the target obtained will not be sufficiently improved, resulting in abnormalities during sputtering. In some cases, the occurrence of discharge cannot be sufficiently suppressed.
  • Sintering may be performed under the above conditions according to the crystal structure of the objective sintered body, but is usually performed at 1100 to 1600 ° C. for 1 to 100 hours. 1200 to 1490 ° C is more preferable, and 1300 to 1480 ° C is particularly preferable.
  • the temperature is 1600 ° C. or higher, Zn (zinc) evaporates and the composition ratio is shifted, the specific resistance of the target is increased, an unexpected crystal type is generated, a large amount of energy is required for sintering, and the cost is increased. There is a risk. If it is 1100 ° C. or lower, the relative density may be lowered, the specific resistance may be increased, the sintering may take time, and the cost may be increased.
  • the temperature lowering rate (cooling rate) during firing is usually 4 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, further preferably 0.8 ° C./min or less, particularly preferably. Is 0.5 ° C./min or less.
  • the crystal form of this invention is easy to be obtained as it is 4 degrees C / min or less. In addition, cracks are unlikely to occur when the temperature drops.
  • the temperature rise may be stopped once during the temperature rise and held at the holding temperature, and sintering may be performed in two or more stages.
  • Reduction process is a process provided as needed which performs a reduction process in order to reduce the bulk resistance of the sintered compact obtained at the said sintering process as the whole target.
  • Examples of the reduction method that can be applied in this step include a method using a reducing gas, vacuum firing, or reduction using an inert gas.
  • nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
  • reduction treatment inorganic gas atmosphere such as argon or nitrogen, hydrogen atmosphere, or heat treatment in vacuum or low pressure
  • reduction treatment is preferably not performed.
  • reduction treatment since the specific resistance of the target of the present invention is low even without performing reduction treatment, reduction treatment is usually unnecessary.
  • Processing step is to cut the sintered body obtained by sintering as described above into a shape suitable for mounting on a sputtering apparatus, and to mount a jig such as a backing plate. It is the process provided as needed for attaching.
  • the thickness of the sintered body before grinding is preferably 5.5 mm or more, more preferably 6 mm or more, and particularly preferably 8 mm or more.
  • the grinding is usually 0.2 mm or more on one side, preferably 0.5 mm or more, more preferably 2 mm or more.
  • the sintered body is ground with, for example, a surface grinder so that the surface roughness Ra is 5 ⁇ m or less.
  • the sputtering surface of the sputtering target may be further mirror-finished so that the average surface roughness Ra is 1000 angstroms or less.
  • a known polishing technique such as mechanical polishing, chemical polishing, mechanochemical polishing (a combination of mechanical polishing and chemical polishing) can be used.
  • polishing to # 2000 or more with a fixed abrasive polisher (polishing liquid: water) or lapping with loose abrasive lapping (abrasive: SiC paste, etc.), and then lapping by changing the abrasive to diamond paste Can be obtained by:
  • a polishing method is not particularly limited.
  • the thickness of the target is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm.
  • the surface is preferably finished with a 200 to 10,000 diamond grindstone, and particularly preferably with a 400 to 5,000 diamond grindstone. If a diamond grindstone smaller than No. 200 or larger than 10,000 is used, the target may be easily broken. It is preferable that the target has a surface roughness Ra of 0.5 ⁇ m or less and has a non-directional ground surface. If Ra is larger than 0.5 ⁇ m or the polished surface has directivity, abnormal discharge may occur or particles may be generated.
  • the sputtering target is obtained by bonding the target material to the backing plate as described above. Further, a plurality of target materials may be attached to one backing plate to substantially form one target.
  • ultrasonic cleaning can also be performed. This ultrasonic cleaning is effective by performing multiple oscillations at a frequency of 25 to 300 KHz. For example, ultrasonic cleaning is preferably performed by multiplying twelve types of frequencies in 25 KHz increments between frequencies of 25 to 300 KHz.
  • the oxide semiconductor film manufactured using the target of the present invention is useful as a semiconductor layer (channel layer) of a thin film transistor.
  • the obtained thin film transistor exhibits excellent TFT characteristics such as high mobility, low S value, and low photocurrent.
  • the method for manufacturing a semiconductor element of the present invention includes a step of forming an oxide film using the sputtering target of the present invention.
  • the oxide film manufactured using the target of the present invention has high hole mobility and shows a carrier density suitable for use as a semiconductor.
  • the semiconductor element manufactured by the method for manufacturing a semiconductor element of the present invention is particularly useful as a thin film transistor.
  • Example 1 Production of target A target was produced under the following conditions.
  • molding Press molding, surface pressure 400 kgf / cm 2 , 1 minute hold CIP (hydrostatic pressure press), surface pressure 2000 kgf / cm 2 , 1 minute hold
  • sintering electric furnace temperature rising rate 1 ° C./min sintering temperature 1400 ° C Sintering time 20 hours Sintering atmosphere Atmosphere
  • Post-treatment No heat treatment was performed under reducing conditions.
  • the upper and lower surfaces and sides were cut with a diamond cutter, and the surface was ground with a surface grinder to obtain a target material having a surface roughness Ra of 5 ⁇ m or less.
  • the surface of the obtained sintered body for target was air blown, and further subjected to ultrasonic cleaning for 3 minutes, and then bonded to an oxygen-free copper backing plate with indium solder to obtain a target.
  • the surface roughness Ra of the target was 0.5 ⁇ m or less and had a ground surface with no directionality.
  • Relative density (%) (density measured by Archimedes method) ⁇ (theoretical density) ⁇ 100
  • Electron probe microanalyzer (EPMA measurement) A target surface portion was cut out and measured under the following conditions.
  • the target had a connected structure of In-rich structure with a length of 15 ⁇ m or more.
  • the amount of oxygen deficiency was calculated by measuring the amount of carbon dioxide produced by heating in carbon powder with an infrared absorption spectrum.
  • the oxygen deficiency was 8 ⁇ 10 ⁇ 3 .
  • FIG. 8 shows a chart obtained by X-ray diffraction measurement (Cuk ⁇ ray) on the target surface obtained in Example 1.
  • a change of less than 5% was evaluated as A, 5% or more but less than 10% was evaluated as B, and 10% or more was evaluated as C.
  • the film formation rate was determined by dividing the film thickness measured with a stylus type surface shape measuring instrument (Kosaka Laboratory Ltd. ET3000) by the film formation time.
  • Target film formation characteristics (a) Abnormal discharge The number of abnormal discharges that occurred during 96-hour continuous film formation was measured. The number of abnormal discharges was evaluated as A for less than 5 times, B for 5 times or more and less than 20 and C for 20 times or more.
  • Nodule generation density Nodule generation area / Sputtering target area
  • composition ratio of target and thin film Comparison of composition ratio between target and thin film Using a thin film produced by sputtering, the difference in composition ratio between the target and the thin film was evaluated.
  • the composition ratio of the thin film was determined by analysis by ICP analysis.
  • the composition ratio of the target and the thin film was almost the same (the composition ratio of each element of the thin film was within ⁇ 2% of the composition ratio of each element of the target).
  • the substrate used was a silicon substrate 10 with a thermal oxide film.
  • the silicon substrate was used as the gate electrode 12, and the thermal oxide film (100 nm) was used as the gate insulating film 14.
  • a film was formed by RF sputtering using the target prepared in (1) above, and then a semiconductor film (channel layer) 20 having a thickness of 25 nm was formed by wet etching. Then, it heat-processed for 60 minutes at 300 degreeC in air
  • the input RF power was 200 W.
  • the substrate temperature was 50 ° C.
  • Examples 2 to 9 and Comparative Examples 1 to 4 Targets and TFTs were prepared and evaluated in the same manner as in Example 1 except that the compositions and conditions shown in Table 1-1 or Table 1-2 were used. The results are shown in Table 1-1 and Table 1-2.
  • Example 10 ZnO powder and Ga 2 O 3 powder were mixed at a ratio where the atomic ratio of Zn and Ga was 1: 2, calcined, and then a compact was formed using the pulverized raw material powder and In 2 O 3 raw material powder.
  • the compact contained a crystal form represented by ZnGa 2 O 4 (confirmed by analysis by X-ray diffraction).
  • a target and a TFT were produced and evaluated in the same manner as in Example 1 except that this molded body was used and the composition and conditions shown in Table 1-1 were used. The results are shown in Table 1-1.
  • FIGS. 9 to 11 show charts obtained by X-ray diffraction measurement (Cuk ⁇ rays) on the target surfaces obtained in Examples 2, 3 and 6.
  • FIG. 12 and 13 show micrographs showing dispersed MAPs of In, Ga, Zn, and O by EPMA of the oxide sintered bodies produced in Examples 1 and 2. The photomicrographs of the oxide sintered body produced in Example 4 using EPMA are shown in FIGS.
  • the sputtering target of the present invention Since the sputtering target of the present invention has a low specific resistance, no reduction treatment is required, and the cost can be reduced.
  • the sputtering target of the present invention is useful as a target for forming an oxide semiconductor film. ADVANTAGE OF THE INVENTION According to this invention, the sputtering target which has the outstanding film-forming property, especially the sputtering target for oxide semiconductor film formation can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなるスパッタリングターゲット。

Description

In-Ga-Zn-O系スパッタリングターゲット
 本発明は、酸化物半導体や透明導電膜等の酸化物薄膜作製用、特に薄膜トランジスタ作製用のスパッタリングターゲットに関する。
 酸化インジウム、酸化亜鉛、酸化ガリウムからなる非晶質の酸化物膜は、可視光透過性を有しかつ導電体、半導体から絶縁体まで広い電気特性を有するため、透明導電膜や(薄膜トランジスタ等に用いる)半導体膜として着目されている。
 前記酸化物膜の成膜方法としては、スパッタリング、パルスレーザーデポジション(PLD)、蒸着等の物理的な成膜やゾルゲル法等の化学的な成膜があるが、比較的低温で大面積に均一に成膜できる方法としてスパッタリング法等の物理的成膜が中心に検討されている。
 スパッタリング等の物理的成膜で酸化物薄膜を成膜する際は、均一に、安定して、効率よく(高い成膜速度で)成膜するために、酸化物焼結体からなるターゲットを用いることが一般的である。
 代表的な酸化物膜(導電膜・半導体膜)としては、例えば酸化インジウム、酸化亜鉛、酸化ガリウムからなる酸化物膜が挙げられる。これらの酸化物膜(通常非晶質膜)を作製するためのターゲット(主にスパッタリングターゲット)としては、InGaZnO、InGaZnO等ホモロガス構造の結晶型を中心に検討されている。
 例えば、特許文献1~4には、InGaZnO(InGaO(ZnO))のホモロガス構造を含むターゲットが開示されている。しかし、ホモロガス構造は酸素欠損が生じにくいため、高温での還元処理をして酸素欠損を生じさせて抵抗を下げることが必要であった(特許文献1)。そのため、絶縁性の高いGa結晶相を生成させない製造法(特許文献3)、正四価金属を添加する等の方法(特許文献4)、InGaZnOの六方晶層状化合物とZnGaのスピネル構造の混合物からなるターゲット(特許文献4)が検討されている。しかし、効果が限定的であったり、構成元素が増え管理が難しい等の課題があった。
 一方、酸化インジウム、酸化亜鉛及び酸化ガリウムの組成比を変えて種々の薄膜トランジスタを作製する検討がなされている(特許文献5)。しかし、各組成におけるターゲットの検討が不十分であったため、比抵抗はまだ高いものであった。また、金属組成比In:Ga:Zn=30:15:55のIn-Ga-Zn-O焼結体を用い非晶質酸化物半導体膜及び薄膜トランジスタを形成した例が開示されている(特許文献6)。しかし、薄膜のGaの含有比率がターゲットのGaの含有比率の3分の2程度と極端に減少してしまうという問題があった。これは、ターゲットの性状が不適切であることを示唆しているが、ターゲット性状やその改善に関する検討はなされていなかった。
特許3644647号公報 特開2007-73312号公報 特開2007-223849号公報 WO2008/072486 WO2009/075281 特開2008-53356号公報
 本発明の目的は、還元処理を行わなくても比抵抗の低い、酸化物半導体膜形成用のターゲットを提供することである。
 上記目的を達成するため、本発明者らは鋭意研究を行い、In,Ga及びZnを含む酸化物ターゲットは、周囲よりもInの含有量が多い組織(以下、Inリッチ組織という)を含んでいると、還元処理、特に高温での還元処理を行わなくても比抵抗の低いターゲットを作製しうることを見出した。これは、Inリッチ組織を含むことで酸素欠損を生じさせやすくなるためと推察される。さらに、元素の組成比(原子比)と製造条件を選定することでIn,Ga及びZnを含む酸化物焼結体中にInリッチ組織を生成させうることを見出した。さらに、このターゲットはInの含有量が少ないため、ITO等のInを多量に含むターゲットと比べスパッタ時のノジュール発生が極めて少なく、薄膜トランジスタを作製した際にノジュールによる異常放電等から発生するパーティクルによる不良発生の低減も期待できることがわかった。
 さらに、この酸化物焼結体からなるターゲットを用いて作製した半導体素子、特に薄膜トランジスタは優れたTFT特性を有し、半導体素子の作製に適したスパッタリングターゲットが作製できることを見出し、本発明を完成させた。
 本発明によれば、以下のスパッタリングターゲット、その製造方法及び半導体素子の製造方法が提供される。
1.In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなるスパッタリングターゲット。
2.前記Inの含有量が多い組織の酸素含有量が、周囲の組織よりも少ない、上記1に記載のスパッタリングターゲット。
3.前記Inの含有量が多い組織が、15μm以上の連結構造を有している、上記1又は2に記載のスパッタリングターゲット。
4,前記酸化物焼結体が、Inで表されるビックスバイト構造とInGaZnOで表されるホモロガス構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
5.前記酸化物焼結体が、Inで表されるビックスバイト構造とZnGaで表されるスピネル構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
6.前記酸化物焼結体が、Inで表されるビックスバイト構造とIn1.5Ga0.5Znで表されるホモロガス構造を含む、上記1~3のいずれかに記載のスパッタリングターゲット。
7.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記1~6のいずれかに記載のスパッタリングターゲット。
 0.20≦In/(In+Ga+Zn)≦0.70
 0.01≦Ga/(In+Ga+Zn)≦0.50
 0.05≦Zn/(In+Ga+Zn)≦0.60
8.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記7に記載のスパッタリングターゲット。
 Ga/(In+Ga+Zn)≦0.45
 0.10≦Zn/(In+Ga+Zn)≦0.40
 In/(In+Ga)<0.60
9.前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、上記7に記載のスパッタリングターゲット。
 In/(In+Ga+Zn)≦0.65
 0.10≦Ga/(In+Ga+Zn)
 0.10≦Zn/(In+Ga+Zn)
 0.60≦In/(In+Ga)
 0.51≦In/(In+Zn)
10.前記酸化物焼結体が、さらに下記式を満たす原子比でSnを含有する、上記1~9のいずれかに記載のスパッタリングターゲット。
 0.0001<Sn/(In+Ga+Zn+Sn)<0.10
11.実質的にIn,Ga,Zn及びOのみを含有する、上記1~9のいずれかに記載のスパッタリングターゲット。
12.ZnGaで表されるスピネル構造を持つ酸化物を含む成形体を焼結する工程を含む、上記5に記載のスパッタリングターゲットの製造方法。
13.上記1~11のいずれかに記載のスパッタリングターゲットを用いて酸化物膜を成膜する工程を含む、半導体素子の製造方法。
 本発明によれば、還元処理を行わなくても比抵抗の低い、酸化物半導体膜形成用のターゲットを提供することができる。
 本発明によれば、優れた成膜性を有するスパッタリングターゲット、特に酸化物半導体膜形成用のスパッタリングターゲットを提供することができる。
実施例1で得られたターゲットを用いて作製されたチャンネルストッパー型薄膜トランジスタの構成を示す模式図である。 実施例4で作製した酸化物のEPMAによるIn,Ga,Znの分散MAPを示す顕微鏡写真である。 実施例4で作製した酸化物焼結体のEPMAによるIn,Ga,Zn,Oの分散MAPを示す顕微鏡写真である。 実施例4で作製した酸化物焼結体のIn,Ga,Zn,Oの分散MAPにおける、Inリッチ組織の連結構造を示す顕微鏡写真である。 実施例4で作製した酸化物焼結体のInリッチ組織のアスペクト比の算出例を示す顕微鏡写真である。 本発明で得られるIn1.5Ga0.5Znで表されるホモロガス構造のX線回折測定(Cukα線)により得られるチャートの一例である。 新規結晶構造の構造式In1.5Ga0.5Znを推定した過程を示す図である。 実施例1で得られた酸化物焼結体のX線回折測定(Cukα線)により得られたチャートである。 実施例2で得られた酸化物焼結体のX線回折測定(Cukα線)により得られたチャートである。 実施例3で得られた酸化物焼結体のX線回折測定(Cukα線)により得られたチャートである。 実施例6で得られた酸化物焼結体のX線回折測定(Cukα線)により得られたチャートである。 実施例1で作製した酸化物焼結体のEPMAによるIn,Ga,Zn,Oの分散MAPを示す顕微鏡写真である。 実施例2で作製した酸化物焼結体のEPMAによるIn,Ga,Zn,Oの分散MAPを示す顕微鏡写真である。
 本発明のスパッタリングターゲット(以下、本発明のターゲットという)は、In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなることを特徴とする。
 Inリッチ組織を備えていると、還元処理を行わなくとも、比抵抗を下げることが容易である。
 Inリッチ組織とは、Inの含有量が周囲より多い組織をいう。
 Ga,Znリッチ組織とは、Ga及びZnの含有量がともに周囲より多い組織をいう。Ga,Znリッチ組織を備えていることにより、Ga単独領域が現れることによる高抵抗化を抑制することが期待できる。
 また、Ga単独領域の生成によるターゲット組成とスパッタで作製した膜の組成比の相違や異常放電の発生を抑制することも期待できる。
 Inリッチ組織、及びGa,Znリッチ組織を備えていることは、電子プローブマイクロアナライザ(EPMA)を用いたIn,Ga,Zn,Oの分散MAPにより確認できる。
 例えば、後述する実施例4で得られた酸化物焼結体のIn,Ga,Zn,Oの分散MAPを図2に示す。図2からわかるように、本発明のターゲットを構成する酸化物焼結体では、Inリッチ組織とGa,Znリッチ組織とが混在した状態となっている。
 EPMAによる測定は、例えば、下記の装置・条件で測定できる。
 装置名:日本電子株式会社
 JXA-8200
 測定条件
 加速電圧:15kV
 照射電流:50nA
 照射時間(1点当りの):50mS
 本発明のターゲットを構成する酸化物は酸素欠損を有することが好ましい。酸素欠損量は、3×10-5~3×10-1の範囲であることが好ましく、1×10-4~1×10-1の範囲であることがより好ましい。上記範囲内であると、比抵抗が下げやすい。
 酸素欠損量とは、1モルの酸化物結晶中に含まれる酸素イオンの数を化学量論量の酸素イオンの数から差し引いた値をモル単位で示した値である。酸化物結晶中に含まれる酸素イオンの数は、例えば、酸化物結晶を炭素粉末中で加熱させて生成する二酸化炭素の量を赤外吸収スペクトルで測定することで算出することができる。また、化学量論量の酸素イオンの数は酸化物結晶の質量から算出することができる。
 酸素欠損量は焼結条件や、焼結時、昇温時、降温時の雰囲気等で調整することができる。また、焼結後に還元処理を施すこと等によって調整することもできる。尚、Inリッチ組織を備えていると焼結後に還元処理を行わなくとも酸素欠損量を前記範囲内に調整することが容易である。
 本発明のターゲットでは、前記Inの含有量が多い組織(Inリッチ組織)の酸素含有量が、周囲の組織よりも少ないことが好ましい。
 Inリッチ組織の周囲の組織とは、Inリッチ組織を取り囲むGa,Znリッチ組織、その他の組織を意味する。
 Inリッチ組織の酸素含有量がGa,Znリッチ組織やその他の組織の酸素含有量よりも少ないことは、EPMAを用いたIn,Ga,Zn,Oの分散MAPにより確認できる。例えば、後述する実施例4で得られた酸化物焼結体のIn,Ga,Zn,Oの分散MAPを示す図3において、各組織を比較すれば、Inリッチ組織の酸素含有量が周囲の組織よりも少ないことがわかる。
 本発明のターゲットでは、前記Inの含有量が多い組織(Inリッチ組織)が、15μm以上の連結構造を有していることが好ましい。
 Inリッチ組織が15μm以上の連結構造を有していることは、EPMAを用いたIn,Ga,Zn,Oの分散MAPにより確認できる。
 例えば、後述する実施例4で得られた酸化物焼結体のEPMA画像の拡大図を図4に示す。図4における点線で示した部分がInリッチ組織の連結構造である。
 Inリッチ組織が15μm以上の長さの連結構造をしていることで、Inリッチ組織を伝わって導電することで比抵抗を下げることができる。
 連結構造の長さは、20μm以上がより好ましく、30μm以上が特に好ましい。
 連結構造の幅は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下が特に好ましい。
 長さ15μm以上の連結構造のアスペクト比は1.5以上が好ましく、2以上がより好ましく、3以上が特に好ましい。
 尚、連結構造の長さと幅とは、連結構造に外接する楕円形の長軸と短軸をいう。また、長軸÷短軸をアスペクト比とする。連結構造のアスペクト比が高いほど比抵抗が下がることが期待できる。後述する実施例4で得られたターゲットにおけるアスペクト比の測定の一例を、図5に示す。
 連結構造の長さ・幅・アスペクト比は、EPMAの写真から20個の連結構造をランダムに選び平均をとる。
 本発明のターゲットにおいては、前記酸化物焼結体が、Inで表されるビックスバイト構造とInGaZnOで表されるホモロガス構造を含むことが好ましい。
 Inで表されるビックスバイト構造とInGaZnOで表されるホモロガス構造を含むことは、X線回折測定(XRD)で確認できる。例えば、下記の装置・条件で測定できる。
 X線回折測定(XRD)
 ・装置:(株)リガク製Ultima-III
 ・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
 ・2θ-θ反射法、連続スキャン(1.0°/分)
 ・サンプリング間隔:0.02°
 ・スリット DS、SS:2/3°、RS:0.6mm
 Inで表されるビックスバイト構造(あるいは希土類酸化物C型の結晶構造)とは、(T ,Ia3)の空間群を持つ立方晶系で、Mn(I)型酸化物結晶構造とも言う。Sc、Y、Tl、Pu、Am、Cm、In、ITO(Inに10wt%程度以下のSnをドープしたもの)がこの結晶構造を示す(「透明導電膜の技術」、日本学術振興会 透明酸化物光・電子材料第166委員会 編(平成11年3月30日、オーム社))。Inで表されるビックスバイト構造(希土類酸化物C型の結晶構造)を示すことは、X線回折でJCPDSカードNo.6-0416のパターンを示すことから確認できる。
 希土類酸化物C型の結晶構造は、MX(M:陽イオン、X:陰イオン)で示される化合物の結晶構造の一つである蛍石型結晶構造から、化学量論比がMのため、陰イオンの四つに一つが抜けている構造となる。陽イオンに対して陰イオン(通常酸化物の場合は、酸素)が6配位し、残りの二つの陰イオンサイトは空となっている(空となっている陰イオンサイトは準イオンサイトとも呼ばれる)(上記の「透明導電膜の技術」)。陽イオンに酸素(陰イオン)が6配位した希土類酸化物C型の結晶構造は、酸素八面体稜共有構造を有している。酸素八面体稜共有構造を有していると、陽イオンであるp金属のns軌道が互いに重なり合って電子の伝導路を形成し、有効質量が小さくなり高い電子の移動度を示す。
 Inで表されるビックスバイト構造(希土類酸化物C型の結晶構造)は、X線回折でJCPDSカードNo.6-0416のパターンを示していれば、化学量論比がMからずれていてもよい。即ち、M3-dとなっていてもよい。
 InGaO(ZnO)(mは1~20の整数)で表される結晶構造のm=1の場合がInGaO(ZnO)である。InGaO(ZnO)(mは1~20の整数)で表される結晶構造は「六方晶層状化合物」あるいは「ホモロガス相の結晶構造」と呼ばれ、異なる物質の結晶層を何層か重ね合わせた長周期を有する「自然超格子」構造から成る結晶である。結晶周期ないし各薄膜層の厚さが、ナノメーター程度の場合、これら各層の化学組成や層の厚さの組み合わせによって、単一の物質あるいは各層を均一に混ぜ合わせた混晶の性質とは異なる固有の特性が得られる。そして、ホモロガス相の結晶構造は、例えばターゲットを粉砕したパウダーあるいはターゲットから直接測定したX線回折パターンが、組成比から想定されるホモロガス相の結晶構造X線回折パターンと一致することから確認できる。具体的には、JCPDS(Joint Committee of Powder Diffraction Standards)カードから得られるホモロガス相の結晶構造X線回折パターンと一致することから確認することができる。InGaO(ZnO)の場合は、JCPDSカードNo.38-1104である。
 Inで表されるビックスバイト構造の格子定数aは、10.14以下が好ましく、10.10以下がより好ましく、10.08以下が特に好ましい。格子定数aは、XRDのフィティングで求める。格子定数が小さいと移動度の向上によって比抵抗を下げられることが期待できる。
 本発明のターゲットにおいては、前記酸化物焼結体が、Inで表されるビックスバイト構造とZnGaで表されるスピネル構造を含むことが好ましい。
 ZnGaで表される結晶構造は、X線回折でJCPDSカードNo.38-1240のパターンを示していれば、化学量論比がずれていてもよい。即ち、ZnGa4-dとなっていてもよい。酸素欠損量dが3×10-5~3×10-1の範囲であることが好ましい。dは焼結条件や、焼結時、昇温時、降温時の雰囲気等で調整することができる。また、焼結後に還元処理をすること等によって調整することもできる。
 本発明のターゲットにおいては、前記酸化物焼結体が、Inで表されるビックスバイト構造とIn1.5Ga0.5Znで表されるホモロガス構造を含むことが好ましい。
 In1.5Ga0.5Znで表されるホモロガス構造は、インジウム元素(In)、ガリウム元素(Ga)、及び亜鉛元素(Zn)を含む、In-Ga-Zn系酸化物であって、下記の条件1を満たすことを特徴とする。さらに条件2を満たすことが好ましく、さらに条件3を満たすことが特に好ましい。
 条件1:X線回折測定(Cukα線)により得られるチャートにおいて、下記のA~Eの領域に回折ピークが観測される。
 A.入射角(2θ)=7.0°~8.4°(好ましくは7.2°~8.2°)
 B.2θ=30.6°~32.0°(好ましくは30.8°~31.8°)
 C.2θ=33.8°~35.8°(好ましくは34.3°~35.3°)
 D.2θ=53.5°~56.5°(好ましくは54.1°~56.1°)
 E.2θ=56.5°~59.5°(好ましくは57.0°~59.0°)
 条件2:2θが30.6°~32.0°(上記領域B)及び33.8°~35.8°(上記領域C)の位置に観測される回折ピークの一方がメインピークであり、他方がサブピークである。
 尚、メインピークとは、2θが5~80°の範囲で最も強度の強いピーク(ピーク高さの高いピーク)であり、サブピークとは、2番目に強度の強いピーク(ピーク高さの高いピーク)である。
 条件3:X線回折測定(Cukα線)により得られるチャートにおいて、下記のF~Kの領域に回折ピークが観測される。
 F.2θ=14.8°~16.2°(好ましくは15.0°~16.0°)
 G.2θ=22.3°~24.3°(好ましくは22.8°~23.8°)
 H.2θ=32.2°~34.2°(好ましくは32.7°~33.7°)
 I.2θ=43.1°~46.1°(好ましくは43.6°~45.6°)
 J.2θ=46.2°~49.2°(好ましくは46.7°~48.7°)
 K.2θ=62.7°~66.7°(好ましくは63.7°~65.7°)
 In1.5Ga0.5Znで表されるホモロガス構造のX線回折測定(Cukα線)により得られるチャートの例を図6に示す。
 上記条件を満たす酸化物結晶は、JCPDS(Joint Committee of Powder Diffraction Standards)カードにはなく、今まで確認されていない新規な結晶である。
 In1.5Ga0.5Znで表されるホモロガス構造のX線回折チャートは、InGaO(ZnO)(JCPDS:40-0252)で示される結晶構造及びIn(ZnO)(JCPDS:20-1442)で示される結晶構造に類似している。しかしながら、この酸化物はInGaO(ZnO)特有のピーク(上記領域Aのピーク)、及びIn(ZnO)特有のピーク(上記領域D及びEのピーク)を有し、かつ、InGaO(ZnO)及びIn(ZnO)には観測されないピーク(上記領域B)を有する。従って、InGaO(ZnO)ともIn(ZnO)とも異なる新たな周期性を有していると判断できる。即ち、In1.5Ga0.5Znで表されるホモロガス構造の酸化物は、InGaO(ZnO)及びIn(ZnO)とは異なる。
 上記領域Bのピークについて、このピークはIn(ZnO)とInGaO(ZnO)のメインピークの間、即ち、31°付近と32°付近の間にある。従って、InGaO(ZnO)のメインピークよりも低角側にシフトしており(格子間距離が広がっていると思われる)、In(ZnO)のメインピークよりも高角側にシフトしている(格子間距離が狭まっていると思われる)。
 この結晶構造は、InGaO(ZnO)(JCPDS:40-0252)の結晶構造及びIn(ZnO)(JCPDS:20-1442)の結晶構造に類似していると考えられる。
 上記公知の結晶構造を基に、上記新規結晶構造の構造式In1.5Ga0.5Znを推定した過程を図7に示す。
 本発明のターゲットにおいては、前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たすことが好ましい。
 0.20≦In/(In+Ga+Zn)≦0.70
 0.01≦Ga/(In+Ga+Zn)≦0.50
 0.05≦Zn/(In+Ga+Zn)≦0.60
 上記範囲外であると、Inリッチ組織とGa,Znリッチ組織の2層を生成させることが難しい。
 また、薄膜トランジスタとした場合に、In/(In+Ga+Zn)が0.20未満であると移動度が低くなるおそれがある。0.70超であるとノーマリーオンになるおそれがある。
 Ga/(In+Ga+Zn)が0.01未満であると耐湿性が低下するおそれや、光電流が増加するおそれがある。0.50超であると移動度が低下するおそれがある。
 Zn/(In+Ga+Zn)が0.05未満であるとウェットエッチングの際に残渣が増えるおそれがある。0.60超であると耐湿性が低下するおそれや、ウェットエッチングの際にエッチング速度が早くなりすぎて制御が難しくなるおそれがある。
 さらに、下記範囲であると薄膜トランジスタを作製した際に移動度が高くなる。さらに、得られる酸化物焼結体にInリッチ組織とGa、Znリッチ組織を生成させやすい。
 0.51≦In/(In+Zn)
 さらに好ましくは、
 0.35≦In/(In+Ga+Zn)≦0.60
 0.15≦Ga/(In+Ga+Zn)≦0.45
 0.10≦Zn/(In+Ga+Zn)≦0.45
 さらに領域1と領域2に区分される。
 領域1
 In/(In+Ga)<0.60
 領域2
 0.60≦In/(In+Ga)
 領域1は、下記範囲であると特に好ましい。
 Ga/(In+Ga+Zn)≦0.45
 0.10≦Zn/(In+Ga+Zn)≦0.40
 In/(In+Ga)<0.60
 領域2は、下記範囲であると特に好ましい。
 In/(In+Ga+Zn)≦0.65
 0.10≦Ga/(In+Ga+Zn)
 0.10≦Zn/(In+Ga+Zn)
 0.60≦In/(In+Ga)
 0.51≦In/(In+Zn)
 上記領域1あるいは領域2の範囲内であると、Inリッチ組織とGa,Znリッチ組織の2層をより生成させやすい。
 薄膜トランジスタを作製した際、光電流が少ない、耐薬品性が向上する、ノーマリーオンになりにくい等の利点が期待できる点では、領域1が好ましい。
 領域1は、さらに、前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす場合、光電流の増加や耐薬品性の低下がさらに抑制できるため、製造プロセスの制約を低減することができる。
 0.30≦In/(In+Ga+Zn)
 Zn/(In+Ga+Zn)≦0.35
 In/(In+Ga)<0.56
 領域1のスパッタリングターゲットを作製するには、焼結は、1100~1380℃で1~100時間行うことが好ましい。焼結温度は、1200~1350℃がより好ましく、1250~1320℃が特に好ましい。1380℃以上であると、Inで表されるビックスバイト構造が失われるおそれがある。また、Zn(亜鉛)が蒸発して組成比がずれる、ターゲットの比抵抗が高くなる、想定外の結晶型が生じる、焼結に多大なエネルギーが必要となりコスト高となる、等のおそれがある。1100℃未満であると相対密度が低くなる、比抵抗が高くなる、焼結に時間が掛かりコスト高となる等のおそれがある。
 昇温速度(室温~400℃)は5℃/分以下が好ましく、0.2~3℃/分がより好ましく、0.4~1℃/分が特に好ましい。
 さらに、600~1100℃の間で0.2時間以上10時間以下の昇温を止めた保持時間を設け、2段階以上の段階的に昇温させることが均一性が増す、クラックが入りにくくなるという点で特に好ましい。
 ターゲットを作製する際に、希少資源であるGaの使用量を削減できる、原料の比表面積などを制限しなくとも高抵抗物質であるGaの生成を抑制できる、ターゲットの比抵抗を下げやすい等の点、及び薄膜トランジスタを作製した際に、移動度が高い、S値が小さい等の利点が期待できる点では、領域2が好ましい。
 領域2は、さらに、前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす場合、光電流の増加や耐薬品性の低下を比較的抑制できるため、構造面での制約を低減することができる。
 0.20<Ga/(In+Ga+Zn)
 Zn/(In+Ga+Zn)<0.30
 領域2のスパッタリングターゲットを作製するには、焼結は、1100~1600℃で1~100時間行うことが好ましい。焼結温度は、1200~1490℃がより好ましく、1300~1480℃が特に好ましい。1600℃以上であると、Zn(亜鉛)が蒸発して組成比がずれる、ターゲットの比抵抗が高くなる、想定外の結晶型が生じる、焼結に多大なエネルギーが必要となりコスト高となる等のおそれがある。1100℃以下であると相対密度が低くなる、比抵抗が高くなる、焼結に時間が掛かりコスト高となる等のおそれがある。
 昇温速度(室温~400℃)は5℃/分以下が好ましく、0.2~3℃/分がより好ましく、0.4~1℃/分が特に好ましい。昇温速度(400℃~焼結温度)は5℃/分以下が好ましく、0.2~3℃/分がより好ましく、0.4~1℃/分が特に好ましい。
 さらに、600~1100℃の間で0.2時間以上10時間以下の昇温を止めた保持時間を設け、2段階以上の段階的に昇温させることが均一性が増す、クラックが入りにくくなるという点で特に好ましい。
 本発明のターゲットは、本発明の効果を損ねない範囲において、上述したIn、Ga、Zn以外の金属元素、例えば、Sn、Ge、Si、Ti、Zr及びHf等を含有していてもよい。
 本発明のターゲットにおいては、Snを含有することで、Inの含有量が多い組織の抵抗を下げられることが期待できる、Inの含有量が多い組織の生成を容易にできる場合がある、錫の低級酸化物の生成による比抵抗の上昇や抵抗の高い錫化合物の生成を抑制しやすい等の点から、前記酸化物焼結体がさらに、下記式を満たす原子比でSnを含有することが好ましい。
 0.0001<Sn/(In+Ga+Zn+Sn)<0.10
 また、バックチャンネルエッチ型の薄膜トランジスタを作製した際に、半導体層の膜厚の均一性が向上するという利点が期待できるという点で下記範囲が好ましい。
 0.01<Sn/(In+Ga+Zn+Sn)<0.05
 より好ましくは下記式を満たす。
 0.015≦Sn/(In+Ga+Zn+Sn)≦0.045
 特に好ましくは下記式を満たす。
 0.02≦Sn/(In+Ga+Zn+Sn)≦0.04
 本発明のターゲットは、実質的にIn,Ga,Zn及びOのみ又はIn,Ga,Zn,Sn及びOのみを含有することが好ましい。
 実質的に上記の元素のみを含有するとは、製造工程で不可避的に入る不純物以外には、添加元素を含まないことを意味する。具体的には、上記元素以外の元素の濃度は10ppm未満である。
 実質的に上記の元素のみを含有していると、製造時に管理すべき元素数が抑えられ、管理を簡便化できるという利点がある。
 本発明のターゲットを構成する焼結体の相対密度は95%以上が好ましく、96%以上がより好ましく、97%以上が特に好ましい。95%未満であるとターゲットが割れやすかったり、異常放電が発生しやすかったりするおそれがある。相対密度とは、加重平均より算出した理論密度に対して相対的に算出した密度である。各原料の密度の加重平均より算出した密度が理論密度であり、これを100%とする。
 比抵抗は0.01mΩcm以上20mΩcm以下が好ましく、0.1mΩcm以上10mΩcm以下がより好ましく、0.2mΩcm以上5mΩcm以下が特に好ましい。比抵抗が20mΩcm超では、長時間DCスパッタリングを続けていると、異常放電によりスパークが発生し、ターゲットが割れたり、スパークにより飛び出した粒子が成膜基板に付着し、酸化物半導体膜としての性能を低下させたりする場合がある。比抵抗が0.01mΩcmより小さい抵抗値では、ターゲットの抵抗がパーティクルの抵抗より小さくなり、飛散してきたパーティクルにより異常放電が起きるおそれがある。
 本発明のスパッタリングターゲットの製造方法(以下、本発明のターゲット製造方法という)は、Inを主成分とする酸化物粉体とGa及びZnを主成分とする酸化物粉体を原料とする成形体を作製し焼結することが好ましい。
 上記製造方法をとることで、Inの含有量が多い組織とGa及びZnの含有量が多い組織からなるターゲットを得やすい。
 例えば、ZnGaで表されるスピネル構造を持つ酸化物を含む成形体を焼結することで、Inで表されるビックスバイト構造とZnGaで表されるスピネル構造を含む本発明のターゲットを得ることができる。
 例えば、ZnGaで表されるスピネル構造を持つ酸化物粉末とInで表されるビックスバイト構造を持つ酸化物粉末から、ZnGaで表されるスピネル構造を持つ酸化物とInで表されるビックスバイト構造を持つ酸化物とを含む成形体を作製し、その成形体を焼結すると、Inで表されるビックスバイト構造とZnGaで表されるスピネル構造以外の構造の酸化物が生成しにくく、安定してInで表されるビックスバイト構造とZnGaで表されるスピネル構造を含む酸化物焼結体を作製できるという利点がある。
 原料であるZnGaで表されるスピネル構造を持つ酸化物は、例えば、次のようにして製造することができる。
 ZnO粉及びGa粉をZnとGaの原子比が1:2となる割合で混合し、焼成し、ZnGaで表されるスピネル構造を持つ粉体を合成する。あるいは、同様にZnO粉及びGa粉をZnとGaの原子比が1:2となる割合で混合し仮焼後、粉砕する。
 <ターゲットの製造工程毎の説明>
 (1)配合工程
 配合工程は、スパッタリングターゲットの原料である金属酸化物を混合する工程である。
 原料としては、インジウム化合物の粉末、ガリウム化合物の粉末、亜鉛化合物の粉末等の粉末を用いる。インジウムの化合物としては、例えば、酸化インジウム、水酸化インジウム等が挙げられる。ガリウムの化合物としては、例えば、酸化ガリウム、水酸化ガリウム等が挙げられる。亜鉛の化合物としては、例えば、酸化亜鉛、水酸化亜鉛等が挙げられる。各々の化合物として、焼結のしやすさ、副生成物の残存のし難さから、酸化物が好ましい。
 また、原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、特に好ましくは4N(99.99質量%)以上である。純度が2Nより低いと耐久性が低下する、液晶ディスプレイに用いた際に液晶側に不純物が入り、焼き付けが起こるおそれがある。
 原料の一部として金属亜鉛(亜鉛末)を用いることが好ましい。原料の一部に亜鉛末を用いるとホワイトスポットの生成を低減することができる。
 金属酸化物等のターゲットの製造に用いる原料を混合し、通常の混合粉砕機、例えば、湿式ボールミルやビーズミル又は超音波装置を用いて、均一に混合・粉砕することが好ましい。
 湿式ボールミルを用いる場合、混合粉砕の時間は、通常0.5~60時間、好ましくは6~48時間、より好ましくは8~36時間である。0.5時間未満であると原料の分散不良でホワイトスポットや黒点等の外観不良が生じるおそれがある。60時間超であると、混合時に反応して想定外の結晶型が生じるおそれがある。
 酸化インジウム、酸化ガリウム及び酸化亜鉛の比表面積(BET比表面積)は、通常各々3~18m/g、3~18m/g、3~18m/gであり、好ましくは各々7~16m/g、7~16m/g、3~10m/gであり、より好ましくは各々7~15m/g、7~15m/g、4~10m/gであり、特に好ましくは各々11~15m/g、11~15m/g、4~5m/gである。比表面積が小さすぎると焼結体中に各々の元素の凝集体が成長する、原料粉末の結晶型が残存する、想定外の結晶型が生成し性状が変化する、等のおそれがある。比表面積が大きすぎると想定外の結晶型が生成し性状が変化する、分散不良を起こし外観不良や特性のムラが生じる等のおそれがある。ターゲットの原料となる各金属化合物の比表面積(BET比表面積)は、JIS Z 8830に記載の方法によって測定することができる。
 (2)仮焼工程
 仮焼工程は、スパッタリングターゲットの原料である化合物の混合物を得た後、この混合物を仮焼する、必要に応じて設けられる工程である。
 仮焼を行うと、密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げられることがより好ましい。
 仮焼工程においては、500~1200℃で、1~100時間の条件で金属酸化物の混合物を熱処理することが好ましい。500℃未満又は1時間未満の熱処理条件では、インジウム化合物や亜鉛化合物、錫化合物の熱分解が不十分となる場合があるためである。一方、熱処理条件が、1200℃を超えた場合又は100時間を超えた場合には、粒子の粗大化が起こる場合があるためである。
 従って、特に好ましいのは、800~1200℃の温度範囲で、2~50時間の条件で、熱処理(仮焼)することである。
 尚、ここで得られた仮焼物は、下記の成形工程及び焼成工程の前に粉砕するのが好ましい。
 (3)成形工程
 成形工程は、金属酸化物の混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成形して成形体とする工程である。この工程により、ターゲットとして好適な形状に成形する。仮焼工程を設けた場合には得られた仮焼物の微粉末を造粒した後、加圧成形により所望の形状に成形することができる。
 本工程で用いることができる成形方法としては、例えば、金型成形、鋳込み成形、射出成形等も挙げられるが、焼結密度の高く、比抵抗が小さく、均質な焼結体(ターゲット)を得るためには、冷間静水圧(CIP)、熱間静水圧(HIP)等で成形するのが好ましい。単なるプレス成形(一軸プレス)であると圧力にムラ生じて、想定外の結晶型が生成してしまうおそれがある。
 また、プレス成形(一軸プレス)後に、冷間静水圧(CIP)、熱間静水圧(HIP)等を行い2段階以上の成形工程を設けると再現性を高めるという点で好ましい。
 CIP(冷間静水圧、あるいは静水圧加圧装置)を用いる場合、面圧800~3000kgf/cmで0.5~20分保持することが好ましい。また、面圧が800kgf/cm以下であると、焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。面圧3000kgf/cm以上であると装置が大きくなりすぎ不経済となるおそれがある。保持時間が0.5分以下であると焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。20分以上であると時間が掛かりすぎ不経済となるおそれがある。
 尚、成形処理に際しては、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。
 成形体の厚みは通常6mm以上、好ましくは8mm以上、特に好ましくは10mm以上である。6mm未満であると焼結時に収縮して薄くなりすぎるため熱伝導率のムラが生じ想定外の結晶型が生成する、結晶粒径が大きくなりすぎるおそれがある。
 (4)焼結工程
 焼結工程は、上記成形工程で得られた成形体を焼成する工程である。
 この場合の焼結条件としては、酸素ガス雰囲気又は酸素ガス加圧下で行うことが好ましい。本発明において、酸素ガス雰囲気とは、酸素を50%以上含有する雰囲気をいい、酸素ガス加圧下とは、酸素ガスを90%以上(好ましくは98%以上)含有する雰囲気において、好ましくは1~5気圧、さらに好ましくは2~4気圧で加圧することをいう。酸素ガスを十分に含有しない雰囲気で焼結すると、ZnO等の昇華が生じたり、また酸化状態が不十分な状態となり、得られるターゲットの密度を十分に向上させることができず、スパッタリング時の異常放電の発生を十分に抑制できなくなる場合がある。
 焼結は、目的とする焼結体の結晶構造に従って、前記条件で行えばよいが、通常1100~1600℃で1~100時間行う。1200~1490℃がより好ましく、1300~1480℃が特に好ましい。1600℃以上であると、Zn(亜鉛)が蒸発して組成比がずれる、ターゲットの比抵抗が高くなる、想定外の結晶型が生じる、焼結に多大なエネルギーが必要となりコスト高となる等のおそれがある。1100℃以下であると相対密度が低くなる、比抵抗が高くなる、焼結に時間が掛かりコスト高となる等のおそれがある。
 また、焼成時の降温速度(冷却速度)は、通常4℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、さらに好ましくは0.8℃/分以下、特に好ましくは0.5℃/分以下である。4℃/分以下であると本発明の結晶型が得られやすい。また、降温時にクラックが発生しにくい。
 また、昇温の途中で一度昇温を止め保持温度で保持し、2段階以上で焼結を行ってもよい。
 (5)還元工程
 還元工程は、上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体として低減するために還元処理を行う、必要に応じて設けられる工程である。
 本工程で適用することができる還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元等が挙げられる。
 還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素や、これらのガスと酸素との混合ガス等を用いることができる。
 不活性ガス中での焼成による還元処理の場合、窒素、アルゴンや、これらのガスと酸素との混合ガス等を用いることができる。
 本発明では、還元処理(アルゴンや窒素等の不活性ガス雰囲気、水素雰囲気、あるいは真空や低圧での熱処理)は行わないことが好ましい。還元処理を行うと、表面部と深部の抵抗値の違いを発生あるいは増幅させるおそれがある。
 尚、本発明のターゲットは、還元処理を行わなくても比抵抗が低いため、通常は、還元処理は不要である。
 (6)加工工程
 加工工程は、上記のようにして焼結して得られた焼結体を、さらにスパッタリング装置への装着に適した形状に切削加工し、またバッキングプレート等の装着用治具を取り付けるための、必要に応じて設けられる工程である。
 研削前の焼結体の厚みは5.5mm以上が好ましく、6mm以上がより好ましく、8mm以上が特に好ましい。研削は通常片面0.2mm以上、好ましくは0.5mm以上、さらに好ましくは2mm以上である。厚みの厚い焼結体を作製し、十分研削することで、均質なターゲットが作製できるというメリットがある。
 酸化物焼結体をスパッタリングターゲット素材とするには、該焼結体を例えば、平面研削盤で研削して表面粗さRaが5μm以下の素材とする。ここで、さらにスパッタリングターゲットのスパッタ面に鏡面加工を施して、平均表面粗さRaが1000オングストローム以下としてもよい。この鏡面加工(研磨)は機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、すでに知られている研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングすることによって得ることができる。このような研磨方法には特に制限はない。ターゲットの厚みは通常2~20mm、好ましくは3~12mm、特に好ましくは4~6mmである。また、表面は200~10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400~5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番より小さい、あるいは10,000番より大きいダイヤモンド砥石を使用するとターゲットが割れやすくなるおそれがある。ターゲットの表面粗さRaが0.5μm以下であり、方向性のない研削面を備えていることが好ましい。Raが0.5μmより大きかったり、研磨面に方向性があると、異常放電が起きたり、パーティクルが発生するおそれがある。
 上記のようにしてターゲット素材をバッキングプレートへボンディングすることでスパッタリングターゲットを得る。また、複数のターゲット素材を一つのバッキングプレートに取り付け、実質一つのターゲットとしてもよい。
 次に、清浄処理にはエアーブローあるいは流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。尚、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。この超音波洗浄は周波数25~300KHzの間で多重発振させて行なう方法が有効である。例えば周波数25~300KHzの間で、25KHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが良い。
 本発明のターゲットを用いて作製された酸化物半導体膜は、薄膜トランジスタの半導体層(チャンネル層)として有用である。得られる薄膜トランジスタは、移動度が高く、S値が低く、光電流が小さい等の優れたTFT特性を示す。
 本発明の半導体素子の製造方法は、上記本発明のスパッタリングターゲットを用いて酸化物膜を成膜する工程を含むことを特徴とする。
 本発明のターゲットを用いて作製された酸化物膜は、ホール移動度が高く、半導体として用いるのに適したキャリア密度を示す。
 本発明の半導体素子の製造方法によって製造された半導体素子は、特に薄膜トランジスタとして有用である。
実施例1
(1)ターゲットの作製
 下記条件でターゲットを作製した。
(a)原料
 In 、純度4N、アジア物性材料社製
 Ga 、純度4N、アジア物性材料社製
 ZnO  、純度4N、高純度化学社製
(b)混合:ボールミルで24時間混合した。
(c)造粒:自然乾燥
(d)成形:
 プレス成形、面圧400kgf/cm、1分保持
 CIP(静水圧加圧装置)、面圧2000kgf/cm、1分保持
(e)焼結:電気炉
 昇温速度 1℃/分
 焼結温度 1400℃
 焼結時間 20時間
 焼結雰囲気 大気
(f)後処理:還元条件下での熱処理は行わなかった。
(g)加工:厚さ6mmの焼結体を厚さ5mmに研削・研磨した。
 尚、上下面・側辺をダイヤモンドカッターで切断して、表面を平面研削盤で研削して表面粗さRaが5μm以下のターゲット素材とした。
(h)得られたターゲット用焼結体の表面をエアーブローし、さらに3分間超音波洗浄を行なった後、インジウム半田にて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。ターゲットの表面粗さRaは0.5μm以下であり、方向性のない研削面を備えていた。
(2)ターゲット用焼結体の評価
 得られたターゲット用焼結体の評価は下記の方法で行った。
(a)元素組成比(原子比)
 誘導プラズマ発光分析装置(ICP-AES)により測定した。
(b)比抵抗
 抵抗率計(三菱化学(株)製、ロレスタ)を使用し四探針法(JIS R 1637)に基づき測定、10箇所の平均値を比抵抗値とした。
(c)相対密度(%)
 原料粉の密度から計算した理論密度と、アルキメデス法で測定した焼結体の密度から、下記計算式にて算出した。
 相対密度(%)=(アルキメデス法で測定した密度)÷(理論密度)×100
(d)X線回折測定(XRD)
 ターゲット用焼結体の表面を下記条件で直接測定し、結晶型を決定した。
 ・装置:(株)リガク製Ultima-III
 ・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
 ・2θ-θ反射法、連続スキャン(1.0°/分)
 ・サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
(e)電子プローブマイクロアナライザ(EPMAの測定)
 ターゲット表面部分を切り出し、下記条件で測定した。
 装置名:日本電子株式会社
 JXA-8200
 測定条件
 加速電圧:15kV
 照射電流:50nA
 照射時間(1点当りの):50mS
(f)外観(色むら)
 北窓昼光下、50cm離れた場所から焼結体を目視し、下記に分類した。
 A:色むらがほとんどない
 B:色むらが若干ある
 C:色むらがある
 尚、焼結体に色むらがある場合、例えばターゲットを使用時にその状態の判断が難しくなるおそれがある。
 EPMAによる観測で、ターゲットは長さ15μm以上のInリッチ組織の連結構造を有していた。
 また、酸素欠損量を炭素粉末中で加熱させて生成する二酸化炭素の量を赤外吸収スペクトルで測定することで算出した。酸素欠損量は8×10-3であった。
 また、XRDから求めたInのビックスバイト構造の格子定数は、格子定数a=10.074であった。
 実施例1で得られたターゲット表面のX線回折測定(Cukα線)により得られたチャートを図8に示す。
(3)成膜評価
(A)成膜速度の安定性(変動)
 1000時間連続放電(成膜)前後の成膜速度を比較した。
 変動が5%未満のものをA,5%以上10%未満のものをB、10%以上のものをCと評価した。
 成膜速度(スパッタレート)は、触針式表面形状測定器((株)小坂研究所 ET3000)で測定した膜厚を成膜時間で割ることで求めた。
(B)ターゲットの成膜特性
(a)異常放電
 96時間連続成膜で発生した異常放電回数を測定した。
 異常放電回数が5回未満をA、5回以上20未満をB、20回以上をCと評価した。
(b)ノジュール(ノジュール発生密度)
 以下のとおり評価した。
 96時間連続成膜後の成膜後のスパッタリングターゲットの写真からノジュールで被覆された面積を計算し、以下の式で発生密度を計算した。
 ノジュール発生密度=ノジュール発生面積÷スパッタリングターゲット面積
 その結果、ノジュールが少ない方から順に、
 10-2以内:A、10-1以内:B、10-1超:C
 として、3段階で評価した。
(c)ターゲットと薄膜の組成比の比較
 スパッタリングで作製した薄膜を用いてターゲットと薄膜の組成比の違いを評価した。薄膜の組成比はICP分析法で分析して求めた。ターゲットと薄膜の組成比はほぼ同一(薄膜の各元素の組成比がターゲットの各元素の組成比の±2%以内)であった。
(4)TFTの作製
 完成したスパッタリングターゲットを用いて、図1に示すチャンネルストッパー型薄膜トランジスタ1を作製し、評価した。
 基板は、熱酸化膜付シリコン基板10を用いた。シリコン基板をゲート電極12、熱酸化膜(100nm)をゲート絶縁膜14とした。
 続いて、RFスパッタ法により、上記(1)で作製したターゲットを使用して成膜した後、ウェットエッチングで厚さ25nmの半導体膜(チャネル層)20を形成した。その後、大気中300℃で60分間熱処理した。
 本実施例では、投入RFパワーは200Wとした。成膜時の雰囲気は、全圧0.5Paであり、その際のガス流量比はAr:O=97:3であった。また、基板温度は50℃であった。
 厚さ5nmのMoと厚さ50nmのAlと厚さ5nmのMoをこの順で積層し、フォトリソグラフィー法(リフトオフ法)により、ソース電極30及びドレイン電極32を形成した。
 その後、大気中300℃で60分間熱処理し、チャネル長が40μmで、チャネル幅が40μmのチャンネルストッパー型薄膜トランジスタ1を作製した。
(5)TFTの評価
 薄膜トランジスタの評価は、以下のように実施した。
(a)移動度(電界効果移動度(μ))及びS値(V/decade)
 半導体パラメーターアナライザー(ケースレー4200)を用い、室温、遮光環境下で測定した。
(b)光電流の評価
 光照射下と遮光環境下の測定を比較し、閾値電圧(Vth)の変動が2V以内のものをA、2Vを超えるものをBとして2段階で評価した。
 ターゲットとTFTの作製条件、評価結果を表1-1に示す。
実施例2~9及び比較例1~4
 表1-1又は表1-2の組成・条件とした以外は実施例1と同様にターゲット及びTFTを作製・評価した。結果を表1-1及び表1-2に示す。
実施例10
 ZnO粉及びGa粉をZnとGaの原子比が1:2となる割合で混合し仮焼後、粉砕した原料粉及びIn原料粉を用い成形体を成形した。成形体はZnGaで表される結晶型を含んでいた(X線回折で解析して確認した)。この成形体を用い、表1-1に示す組成・条件とした以外は、実施例1と同様にターゲット及びTFTを作製・評価した。結果を表1-1に示す。
 実施例2、3及び6で得られたターゲット表面のX線回折測定(Cukα線)により得られたチャートを図9~11に示す。
 実施例1及び2で作製した酸化物焼結体のEPMAによるIn,Ga,Zn,Oの分散MAPを示す顕微鏡写真を図12及び図13に示した。実施例4で作製した酸化物焼結体のEPMAによる顕微鏡写真を図2~5に示した。
 また、表1-1及び表1-2中のX線回折における結晶型とJCPDSカードNo.との対応関係を表2に示す。表1-1及び表1-2中のX線回折における「-」は、XRDパターンが確認できなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のスパッタリングターゲットは、比抵抗が低いため還元処理を必要とせず、コストを低減できる。
 本発明のスパッタリングターゲットは、酸化物半導体膜形成用のターゲットとして有用である。
 本発明によれば、優れた成膜性を有するスパッタリングターゲット、特に酸化物半導体膜形成用のスパッタリングターゲットを提供することができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (13)

  1.  In,Ga及びZnを含み、周囲よりもInの含有量が多い組織と、周囲よりもGa及びZnの含有量が多い組織を備えている酸化物焼結体からなるスパッタリングターゲット。
  2.  前記Inの含有量が多い組織の酸素含有量が、周囲の組織よりも少ない、請求項1に記載のスパッタリングターゲット。
  3.  前記Inの含有量が多い組織が、15μm以上の連結構造を有している、請求項1又は2に記載のスパッタリングターゲット。
  4.  前記酸化物焼結体が、Inで表されるビックスバイト構造とInGaZnOで表されるホモロガス構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
  5.  前記酸化物焼結体が、Inで表されるビックスバイト構造とZnGaで表されるスピネル構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
  6.  前記酸化物焼結体が、Inで表されるビックスバイト構造とIn1.5Ga0.5Znで表されるホモロガス構造を含む、請求項1~3のいずれか1項に記載のスパッタリングターゲット。
  7.  前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項1~6のいずれか1項に記載のスパッタリングターゲット。
     0.20≦In/(In+Ga+Zn)≦0.70
     0.01≦Ga/(In+Ga+Zn)≦0.50
     0.05≦Zn/(In+Ga+Zn)≦0.60
  8.  前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項7に記載のスパッタリングターゲット。
     Ga/(In+Ga+Zn)≦0.45
     0.10≦Zn/(In+Ga+Zn)≦0.40
     In/(In+Ga)<0.60
  9.  前記酸化物焼結体のIn、Ga及びZnの原子比が下記の式を満たす、請求項7に記載のスパッタリングターゲット。
     In/(In+Ga+Zn)≦0.65
     0.10≦Ga/(In+Ga+Zn)
     0.10≦Zn/(In+Ga+Zn)
     0.60≦In/(In+Ga)
     0.51≦In/(In+Zn)
  10.  前記酸化物焼結体が、さらに下記式を満たす原子比でSnを含有する、請求項1~9のいずれか1項に記載のスパッタリングターゲット。
     0.0001<Sn/(In+Ga+Zn+Sn)<0.10
  11.  実質的にIn,Ga,Zn及びOのみを含有する、請求項1~9のいずれか1項に記載のスパッタリングターゲット。
  12.  ZnGaで表されるスピネル構造を持つ酸化物を含む成形体を焼結する工程を含む、請求項5に記載のスパッタリングターゲットの製造方法。
  13.  請求項1~11のいずれか1項に記載のスパッタリングターゲットを用いて酸化物膜を成膜する工程を含む、半導体素子の製造方法。
PCT/JP2010/006714 2009-11-18 2010-11-16 In-Ga-Zn-O系スパッタリングターゲット WO2011061923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/265,039 US8858844B2 (en) 2009-11-18 2010-11-16 In—Ga—Zn—O type sputtering target
KR1020117019081A KR101164762B1 (ko) 2009-11-18 2010-11-16 In-Ga-Zn-O계 스퍼터링 타겟
CN201080013169.0A CN102362004B (zh) 2009-11-18 2010-11-16 In-Ga-Zn-O系溅射靶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262800 2009-11-18
JP2009262800A JP4875135B2 (ja) 2009-11-18 2009-11-18 In−Ga−Zn−O系スパッタリングターゲット

Publications (1)

Publication Number Publication Date
WO2011061923A1 true WO2011061923A1 (ja) 2011-05-26

Family

ID=44059410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006714 WO2011061923A1 (ja) 2009-11-18 2010-11-16 In-Ga-Zn-O系スパッタリングターゲット

Country Status (6)

Country Link
US (1) US8858844B2 (ja)
JP (1) JP4875135B2 (ja)
KR (2) KR101164762B1 (ja)
CN (2) CN103334085A (ja)
TW (2) TWI403463B (ja)
WO (1) WO2011061923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590429B1 (ko) * 2008-07-15 2016-02-01 토소가부시키가이샤 복합 산화물 소결체, 복합 산화물 소결체의 제조방법, 스퍼터링 타겟 및 박막의 제조방법
JP4875135B2 (ja) 2009-11-18 2012-02-15 出光興産株式会社 In−Ga−Zn−O系スパッタリングターゲット
JP5591523B2 (ja) * 2009-11-19 2014-09-17 出光興産株式会社 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット
JP5206716B2 (ja) * 2010-03-23 2013-06-12 住友電気工業株式会社 In−Ga−Zn系複合酸化物焼結体およびその製造方法
JP2012236729A (ja) * 2011-05-10 2012-12-06 Idemitsu Kosan Co Ltd In−Ga−Zn系酸化物及びその製造方法
JP5301021B2 (ja) * 2011-09-06 2013-09-25 出光興産株式会社 スパッタリングターゲット
JP6143423B2 (ja) 2012-04-16 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の製造方法
JP6068232B2 (ja) * 2012-05-30 2017-01-25 株式会社神戸製鋼所 薄膜トランジスタの半導体層用酸化物、薄膜トランジスタ、表示装置およびスパッタリングターゲット
JP5883990B2 (ja) * 2013-03-29 2016-03-15 Jx金属株式会社 Igzoスパッタリングターゲット
JP6224338B2 (ja) * 2013-04-11 2017-11-01 株式会社半導体エネルギー研究所 半導体装置、表示装置及び半導体装置の作製方法
JP2015030858A (ja) * 2013-07-31 2015-02-16 株式会社アルバック スパッタリングターゲットの製造方法
WO2015118724A1 (ja) * 2014-02-07 2015-08-13 リンテック株式会社 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス
JP6629509B2 (ja) * 2014-02-21 2020-01-15 株式会社半導体エネルギー研究所 酸化物半導体膜
JP6358083B2 (ja) * 2014-02-27 2018-07-18 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6387823B2 (ja) * 2014-02-27 2018-09-12 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6166207B2 (ja) * 2014-03-28 2017-07-19 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
CN105209405B (zh) * 2014-03-28 2017-07-11 吉坤日矿日石金属株式会社 氧化物烧结体和包含该氧化物烧结体的溅射靶
US10161031B2 (en) * 2015-02-27 2018-12-25 Jx Nippon Mining & Metals Corporation Oxide sintered compact and sputtering target formed from said oxide sintered compact
WO2016152349A1 (ja) * 2015-03-23 2016-09-29 Jx金属株式会社 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット
WO2017037564A1 (en) * 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device
JP6254308B2 (ja) * 2016-04-19 2017-12-27 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
WO2017212363A1 (en) * 2016-06-06 2017-12-14 Semiconductor Energy Laboratory Co., Ltd. Sputtering apparatus, sputtering target, and method for forming semiconductor film with the sputtering apparatus
KR102188417B1 (ko) * 2017-03-31 2020-12-08 제이엑스금속주식회사 스퍼터링 타깃 및 그 제조 방법
JP6364561B1 (ja) * 2017-05-18 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
JP6364562B1 (ja) * 2017-05-19 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
CN111312852B (zh) * 2019-11-26 2020-10-20 中国科学院上海微系统与信息技术研究所 氧化镓半导体结构、日盲光电探测器及制备方法
JP7384777B2 (ja) * 2019-12-16 2023-11-21 株式会社神戸製鋼所 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット
TWI799766B (zh) * 2020-12-16 2023-04-21 進化光學有限公司 使用濺鍍技術製作半導體薄膜之方法
KR20220170469A (ko) * 2021-06-23 2022-12-30 케이브이머티리얼즈 주식회사 산화물 반도체 스퍼터링용 타겟 및 이를 이용한 박막 트랜지스터 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163442A (ja) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd スパッタリングターゲット及び酸化物半導体膜
JP2008280216A (ja) * 2007-05-11 2008-11-20 Idemitsu Kosan Co Ltd In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット
JP2008285760A (ja) * 2001-08-02 2008-11-27 Idemitsu Kosan Co Ltd スパッタリングターゲット、透明導電膜およびそれらの製造法
WO2009148154A1 (ja) * 2008-06-06 2009-12-10 出光興産株式会社 酸化物薄膜用スパッタリングターゲットおよびその製造法
JP2010047829A (ja) * 2008-08-20 2010-03-04 Toyoshima Seisakusho:Kk スパッタリングターゲットおよびその製造方法
WO2010070832A1 (ja) * 2008-12-15 2010-06-24 出光興産株式会社 複合酸化物焼結体及びそれからなるスパッタリングターゲット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644647B2 (ja) 1995-04-25 2005-05-11 Hoya株式会社 導電性酸化物およびそれを用いた電極
US20040222089A1 (en) 2001-09-27 2004-11-11 Kazuyoshi Inoue Sputtering target and transparent electroconductive film
CN1869277B (zh) * 2002-08-02 2010-09-29 出光兴产株式会社 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底
CN100549219C (zh) * 2005-06-28 2009-10-14 日矿金属株式会社 氧化镓-氧化锌系溅射靶、透明导电膜的形成方法及透明导电膜
RU2380455C2 (ru) * 2005-06-28 2010-01-27 Ниппон Майнинг Энд Металз Ко., Лтд. Распыляемая мишень на основе оксид галлия-оксид цинка, способ формирования прозрачной проводящей пленки и прозрачная проводящая пленка
JP4761868B2 (ja) * 2005-07-27 2011-08-31 出光興産株式会社 スパッタリングターゲット、その製造方法及び透明導電膜
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
JP5205696B2 (ja) 2006-02-24 2013-06-05 住友金属鉱山株式会社 酸化ガリウム系焼結体およびその製造方法
JP5127183B2 (ja) 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP4231967B2 (ja) * 2006-10-06 2009-03-04 住友金属鉱山株式会社 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池
CN103320755A (zh) 2006-12-13 2013-09-25 出光兴产株式会社 溅射靶及氧化物半导体膜
JP5143410B2 (ja) * 2006-12-13 2013-02-13 出光興産株式会社 スパッタリングターゲットの製造方法
CN103258857B (zh) 2007-12-13 2016-05-11 出光兴产株式会社 使用了氧化物半导体的场效应晶体管及其制造方法
JP4875135B2 (ja) 2009-11-18 2012-02-15 出光興産株式会社 In−Ga−Zn−O系スパッタリングターゲット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285760A (ja) * 2001-08-02 2008-11-27 Idemitsu Kosan Co Ltd スパッタリングターゲット、透明導電膜およびそれらの製造法
JP2008163442A (ja) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd スパッタリングターゲット及び酸化物半導体膜
JP2008280216A (ja) * 2007-05-11 2008-11-20 Idemitsu Kosan Co Ltd In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット
WO2009148154A1 (ja) * 2008-06-06 2009-12-10 出光興産株式会社 酸化物薄膜用スパッタリングターゲットおよびその製造法
JP2010047829A (ja) * 2008-08-20 2010-03-04 Toyoshima Seisakusho:Kk スパッタリングターゲットおよびその製造方法
WO2010070832A1 (ja) * 2008-12-15 2010-06-24 出光興産株式会社 複合酸化物焼結体及びそれからなるスパッタリングターゲット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法
US9206502B2 (en) 2011-05-10 2015-12-08 Idemitsu Kosan Co., Ltd. In—Ga—Zn oxide sputtering target and method for producing same

Also Published As

Publication number Publication date
JP4875135B2 (ja) 2012-02-15
TWI481564B (zh) 2015-04-21
KR20110102513A (ko) 2011-09-16
CN102362004A (zh) 2012-02-22
KR20120068752A (ko) 2012-06-27
TWI403463B (zh) 2013-08-01
TW201124343A (en) 2011-07-16
CN103334085A (zh) 2013-10-02
US8858844B2 (en) 2014-10-14
JP2011105995A (ja) 2011-06-02
KR101164762B1 (ko) 2012-07-12
US20120118726A1 (en) 2012-05-17
CN102362004B (zh) 2014-07-16
TW201328976A (zh) 2013-07-16

Similar Documents

Publication Publication Date Title
JP4875135B2 (ja) In−Ga−Zn−O系スパッタリングターゲット
JP4843083B2 (ja) In−Ga−Zn系酸化物スパッタリングターゲット
JP5591523B2 (ja) 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット
JP5596963B2 (ja) スパッタリングターゲット及びそれを用いた薄膜トランジスタ
WO2009142289A1 (ja) スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
US20150354053A1 (en) Sputtering target
JP4891381B2 (ja) In−Ga−Zn系焼結体、及びスパッタリングターゲット
KR20120091026A (ko) In-Ga-Zn-O계 산화물 소결체
JP5767015B2 (ja) 薄膜トランジスタ
JP2015157755A (ja) 複合酸化物焼結体及びそれからなるスパッタリングターゲット
JP5501306B2 (ja) In−Ga−Zn−O系スパッタリングターゲット
JP5705642B2 (ja) In−Ga−Zn系酸化物スパッタリングターゲット及びその製造方法
WO2020027243A1 (ja) 結晶構造化合物、酸化物焼結体、スパッタリングターゲット、結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器
JP2012017258A (ja) In−Ga−Zn系酸化物スパッタリングターゲット
JP2012056842A (ja) In−Ga−Zn系酸化物、酸化物焼結体、及びスパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013169.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117019081

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13265039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831322

Country of ref document: EP

Kind code of ref document: A1