WO2011024955A1 - TGF-βII型受容体に結合する核酸およびその使用 - Google Patents

TGF-βII型受容体に結合する核酸およびその使用 Download PDF

Info

Publication number
WO2011024955A1
WO2011024955A1 PCT/JP2010/064612 JP2010064612W WO2011024955A1 WO 2011024955 A1 WO2011024955 A1 WO 2011024955A1 JP 2010064612 W JP2010064612 W JP 2010064612W WO 2011024955 A1 WO2011024955 A1 WO 2011024955A1
Authority
WO
WIPO (PCT)
Prior art keywords
tgf
aptamer
receptor
binding
type
Prior art date
Application number
PCT/JP2010/064612
Other languages
English (en)
French (fr)
Inventor
義一 中村
康子 山村
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2011024955A1 publication Critical patent/WO2011024955A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to a nucleic acid that binds to a TGF- ⁇ type II receptor and a method for using the same.
  • TGF- ⁇ Transforming Growth Factor- ⁇
  • TGF- ⁇ has a strong growth-inhibiting effect on many cells such as epithelial cells, vascular endothelial cells, blood cells, and the like. It suppresses and functions as a canceration inhibitor.
  • TGF- ⁇ is a multifunctional cytokine, and TGF- ⁇ produced by cancer cells in the late stage of canceration acts on normal tissue cells around the cancer tissue to cause angiogenesis, epithelial-mesenchymal transition, immunosuppression, It has been clarified that it induces extracellular matrix production and causes cancer invasion and metastasis.
  • TGF- ⁇ was found to be an important factor in promoting extracellular matrix production and strongly causing tissue fibrosis and inducing chronic fibrotic diseases represented by pulmonary fibrosis, chronic renal failure, and cirrhosis. Has been. Therefore, TGF- ⁇ and TGF- ⁇ receptor are considered to be important targets for cancer invasion / metastasis, elucidation of molecular mechanisms of tissue fibrosis, and drug discovery.
  • the TGF- ⁇ receptor includes a TGF- ⁇ type I receptor (hereinafter sometimes referred to as “T ⁇ RI”) and a TGF- ⁇ type II receptor (hereinafter referred to as “T ⁇ RII”), both of which have a serine / threonine kinase region in the cell. In some cases).
  • T ⁇ RI TGF- ⁇ type I receptor
  • T ⁇ RII TGF- ⁇ type II receptor
  • Smad2 Smad3, and Smad4
  • Smad2 or Smad3 present in the cytoplasm binds to the intracellular domain of activated T ⁇ RI, and is phosphorylated and activated by the serine / threonine kinase of T ⁇ RI. Thereafter, Smad2 and Smad3 are released from T ⁇ RI, form a heterocomplex with Smad4 in the cytoplasm, move to the nucleus, and function as a transcription factor.
  • T ⁇ RII is an essential cell surface molecule for binding to TGF- ⁇ , and T ⁇ RI alone cannot bind to TGF- ⁇ . Therefore, if the binding of TGF- ⁇ to T ⁇ RII can be inhibited, it is possible to suppress cancer invasion / metastasis and tissue fibrosis induced by TGF- ⁇ . So far, as an inhibitor of breast cancer metastasis targeting T ⁇ RII, solubilized T ⁇ RII (hereinafter sometimes referred to as “sT ⁇ RII”), solubilized T ⁇ RII and immunoglobulin Fc region fusion protein (sT ⁇ RII-Fc) Development is underway.
  • sT ⁇ RII solubilized T ⁇ RII
  • sT ⁇ RII-Fc immunoglobulin Fc region fusion protein
  • sT ⁇ RII and sT ⁇ RII-Fc have a large molecular weight, and because they require a sugar chain modification after protein translation, mass purification is not easy.
  • RNA having a random sequence having an appropriate length including a PCR primer sequence (including a T7 polymerase sequence on one end) is synthesized, and this is solid-phased and bound to a target molecule. After washing the unbound RNA, the RNA bound to the target molecule is recovered, amplified by RT-PCR, and used as an RNA template for the next round. By repeating this, an RNA aptamer that specifically binds to the target molecule is obtained.
  • RNA aptamer that specifically binds to a target molecule, but also to obtain RNA having a physiological activity that promotes or inhibits the function of the target molecule. This suggests that the obtained aptamer can be applied as a pharmaceutical by targeting the pathogenic protein.
  • Advantages of drug discovery using this SELEX method compared to conventional drug discovery are as follows: (1) Screening can be performed from a larger population than conventional chemical screening. (2) A large amount can be easily synthesized in a test tube. (3) Not immunogenic. (4) Chemical improvement can be easily performed. (5) It can target proteins that are highly conserved and difficult to produce antibodies. Etc.
  • Patent Document 1 discloses an RNA aptamer that specifically binds to a TGF- ⁇ type III receptor obtained by using the SELEX method.
  • FIG. 3 is a view showing a binding analysis between the aptamer of the present invention and a human solubilized TGF- ⁇ type II receptor or a complex of TGF- ⁇ / human solubilized TGF- ⁇ type II receptor.
  • ST ⁇ RII represents a human solubilized TGF- ⁇ II type receptor
  • T ⁇ -sT ⁇ RII represents a complex of TGF- ⁇ and a human solubilized TGF- ⁇ II type receptor.
  • SEQ ID NO: 1 73 base length: 2RA5
  • SEQ ID NO: 2 2RA5S1 from which 2RA5 has been deleted by 9 bases
  • SEQ ID NO: 3 14 bases of 2RA5
  • the deleted 2RA5S2 each secondary structure and the Kd value of binding to T ⁇ RII are shown.
  • FIG. 3 shows that the aptamer of the present invention inhibits the cell growth inhibitory action of TGF- ⁇ .
  • the present invention elucidates the physiological function of TGF- ⁇ by obtaining an aptamer characterized by binding to TGF- ⁇ type II receptor and inhibiting the binding of TGF- ⁇ and TGF- ⁇ type II receptor.
  • an object is to provide a substance that can be used for analysis, diagnosis, and treatment of the onset mechanism of diseases caused by excess TGF- ⁇ .
  • the present inventors prepared an RNA aptamer for a TGF- ⁇ type II receptor (T ⁇ RII), which is one of TGF- ⁇ receptors, as a candidate for such a substance. That is, SELEX was performed using T ⁇ RII as a target, and the binding activity between the obtained aptamer and the target was examined, and its usefulness was shown. The present invention has been completed based on these findings.
  • T ⁇ RII TGF- ⁇ type II receptor
  • the gist of the present invention is as follows.
  • the aptamer according to [1] which is either (a) or (b) below: (A) an aptamer comprising all or part of a nucleotide sequence selected from any one of SEQ ID NOs: 1 to 3, wherein the 2 ′ position of the ribose of the pyrimidine nucleotides contained in the aptamer is the same or different and is a fluorine atom Or an aptamer substituted with
  • a method of quantification [8] A prophylactic or therapeutic agent for a disease caused by the action of TGF- ⁇ , comprising the aptamer according to any one of [1] to [4] or the complex according to [5] or [6]; [9] A disease caused by the action of TGF- ⁇ , comprising administering the aptamer according to any one of [1] to [4] or the complex according to [5] or [6] Prevention or treatment methods; [10] The aptamer according to any one of [1] to [4] or the complex according to [5] or [6] for the prevention or treatment of a disease caused by the action of TGF- ⁇ .
  • the present invention provides an aptamer that has the ability to bind to a TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor.
  • Such aptamers are aptamers that inhibit the function of TGF- ⁇ .
  • the aptamer of the present invention is useful for treating diseases caused by excessive TGF- ⁇ expression.
  • the present invention provides an aptamer that has the ability to bind to a TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor.
  • TGF- ⁇ is a multifunctional cytokine that induces cell growth inhibition, angiogenesis, epithelial-mesenchymal transition, immunosuppression, extracellular matrix production, and the like.
  • TGF- ⁇ binds to a TGF- ⁇ type II receptor on the cell surface
  • the TGF- ⁇ type II receptor phosphorylates and activates the TGF- ⁇ type I receptor.
  • the intracellular signaling molecule is phosphorylated by the activated TGF- ⁇ type I receptor and activated, a TGF- ⁇ signal is transmitted into the cell.
  • the TGF- ⁇ , TGF- ⁇ type I receptor and TGF- ⁇ type II receptor shown in the present invention are produced in an animal body, and are produced using mammalian cells such as mice, insect cells, cells such as E. coli. Can also be produced by chemical synthesis. Moreover, if it is produced by cultured cells or chemical synthesis, a mutant can be produced easily.
  • “mutant” means an amino acid sequence in which one to several amino acids are substituted or a part of various proteins, and originally TGF- ⁇ , TGF- ⁇ type I receptor and TGF- ⁇ type II receptor are It means a protein or peptide having at least one activity. When an amino acid is substituted, the substituted amino acid can be either a natural or non-natural amino acid.
  • the TGF- ⁇ , TGF- ⁇ type I receptor and TGF- ⁇ type II receptor referred to in the present invention include these variants.
  • Aptamer refers to a nucleic acid molecule having binding activity to a predetermined target molecule. Aptamers can inhibit the activity of a given target molecule by binding to the given target molecule.
  • the aptamer of the present invention may preferably be an RNA aptamer, a modified RNA aptamer or a mixture thereof.
  • the aptamer of the present invention may also be in a linear or cyclic form.
  • the aptamer of the present invention has a binding ability to a TGF- ⁇ type II receptor and is characterized by inhibiting the binding between TGF- ⁇ and a TGF- ⁇ type II receptor.
  • the aptamer of the present invention competitively inhibits the binding between TGF- ⁇ and the TGF- ⁇ type II receptor by binding to the TGF- ⁇ binding region of the TGF- ⁇ type II receptor. Therefore, the aptamer of the present invention can inhibit the binding between TGF- ⁇ and TGF- ⁇ type II receptor.
  • Examples of such aptamers include aptamers including a nucleotide sequence selected from any one of SEQ ID NOs: 1 to 3.
  • “having the ability to bind to a TGF- ⁇ type II receptor” means having a higher binding activity to a TGF- ⁇ type II receptor than the RNA pool of a random sequence.
  • the aptamer of the present invention is not particularly limited as long as it can bind to the TGF- ⁇ type II receptor and inhibit the binding between TGF- ⁇ and the TGF- ⁇ type II receptor, and the existing aptamer can be easily used.
  • such aptamer may be, for example, “an aptamer containing a part of a nucleotide sequence selected from any one of SEQ ID NOS: 1 to 3, which comprises TGF- ⁇ II An aptamer that binds to a type I receptor and inhibits the binding of TGF- ⁇ to a type TGF- ⁇ receptor ”.
  • the aptamer of the present invention has nucleotide substitutions, deletions, insertions or additions as long as it binds to the TGF- ⁇ type II receptor and can inhibit the binding of TGF- ⁇ to the TGF- ⁇ type II receptor. It also includes aptamers.
  • the number of nucleotides that may be substituted, deleted, inserted or added is not particularly limited, but is usually 1 to 5, preferably 1 to 3.
  • an aptamer comprising a part of a nucleotide sequence selected from any one of SEQ ID NOs: 1 to 3, which binds to a TGF- ⁇ type II receptor and receives TGF- ⁇ and TGF- ⁇ type II receptor.
  • aptamers that inhibit binding to the body include
  • N1 and N2 represent nucleobases capable of complementary base pairing with each other by 3 base pairs
  • N3 and N4 represent nucleobases capable of 4 base pair complementary base pairing with each other
  • N5 represents one nucleobase
  • N6 and N7 represent nucleobases capable of 5 base pair complementary base pairing with each other
  • N8 represents at least 4 nucleobases
  • the 3 ′ terminal base of N2 and the 5 ′ terminal base of N3 are continuous
  • N4 3 ′ terminal base and N5 are continuous
  • the 5 ′ terminal bases of N5 and N6 are continuous
  • N7 3 ′ terminal base and N8 5 ′ terminal base are continuous
  • the straight line connecting each of N1 to N8 indicates a hydrogen bond between nucleobases
  • the curve connecting each of N1 to N8 indicates a loop portion.
  • nucleic acid bases capable of complementary base pairing of 3 base pairs to each other represented by N1 and N2 means “three nucleic acids capable of forming complementary base pairs with each other across the loop portion” “Base”, for example, when N1 is GGG, N2 is CCC.
  • Nucleobase capable of complementary base pairing of 4 base pairs to each other represented by N3 and N4 means “four nucleobases capable of forming complementary base pairs with each other across the loop portion” For example, when N3 is CGGG, N4 is CCCG.
  • Nucleobase capable of complementary base pairing of 5 base pairs to each other represented by N6 and N7 means “5 nucleobases capable of forming complementary base pairs with each other across a loop part"
  • N6 is GGCCG
  • N7 is CGGCC
  • the “one nucleobase” represented by N5 may be any nucleobase, for example, selected from the group consisting of A (adenine), C (cytosine), G (guanine) and U (uracil). Nucleobase. A is preferred.
  • the “at least 4 nucleobases” represented by N8 may be any nucleobase, for example, selected from the group consisting of A (adenine), C (cytosine), G (guanine) and U (uracil).
  • each of the 'terminal bases is not particularly limited.
  • a phosphodiester bond such as a 3'-5' phosphodiester bond or a 2'-5 'phosphodiester bond, or a part of oxygen constituting the phosphodiester bond Or the phosphorothioate bond etc. which substituted all by the sulfur atom are mentioned.
  • the aptamer of the present invention may have an activity of inhibiting the binding between any mammalian TGF- ⁇ and TGF- ⁇ type II receptor.
  • mammals include, for example, primates (eg, humans, monkeys), rodents (eg, mice, rats, guinea pigs), and pets, livestock and working animals (eg, dogs, cats, horses, cows). , Goats, sheep, pigs).
  • the length of the aptamer of the present invention is not particularly limited, and can usually be about 10 to about 200 nucleotides, for example, about 100 nucleotides or less, preferably about 75 nucleotides or less. If the total number of nucleotides is small, chemical synthesis and mass production are easier, and the merit in cost is also great. In addition, chemical modification is easy, the in vivo stability is high, and the toxicity is considered low.
  • Each nucleotide contained in the aptamer of the present invention is a nucleotide containing a hydroxy group at the 2 ′ position of ribose (eg, ribose of pyrimidine nucleotide, ribose of purine nucleotide) (ie, unsubstituted nucleotide), or Same or different, a nucleotide in which the hydroxy group is substituted (modified) with an arbitrary atom or group at the 2 ′ position of ribose (in the present invention, sometimes referred to as “substituted nucleotide” or “modified nucleotide”) ).
  • ribose eg, ribose of pyrimidine nucleotide, ribose of purine nucleotide
  • a nucleotide in which the hydroxy group is substituted (modified) with an arbitrary atom or group at the 2 ′ position of ribo
  • the aptamer of the present invention can also be an aptamer in which at least one of the pyrimidine nucleotides is a modified nucleotide.
  • the aptamer of the present invention is also a nucleotide in which at least one of pyrimidine nucleotides, preferably all pyrimidine nucleotides are substituted with a fluorine atom at the 2′-position of ribose, or the same or different, and any atom described above.
  • a nucleotide preferably a nucleotide substituted with an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group.
  • the aptamer of the present invention is also (A) an aptamer that binds to a TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor, and is selected from any one of SEQ ID NOs: 1 to 3 From the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, wherein the 2 ′ position of the ribose of the pyrimidine nucleotides contained in the aptamer is the same or different and is a fluorine atom.
  • An aptamer substituted with a selected atom or group (B) An aptamer that binds to a TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor, and is selected from any one of SEQ ID NOs: 1 to 3 1 to 5 (preferably 1 to 3, more preferably 1 or 2) nucleotides comprising all or part of the nucleotide sequence substituted, deleted, inserted or added, An aptamer in which the ribose 2 ′ position of pyrimidine nucleotides contained in the aptamer is the same or different and is a fluorine atom or substituted with an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group ; (C) a connected product selected from the group consisting of a plurality of connected products of (a), a plurality of connected products of (b), and a plurality of connected products of (a) and (b); It can
  • the aptamer characterized in that it binds to the TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and the TGF- ⁇ type II receptor in (a), comprising: Including a part of a nucleotide sequence selected from any one of 3 to 3, wherein the 2 ′ position of the ribose of the pyrimidine nucleotide contained in the aptamer is the same or different and is a fluorine atom, or a hydrogen atom, a hydroxy group and a methoxy group
  • Examples of an aptamer substituted with an atom or group selected from the group consisting of groups are aptamers comprising a part of the nucleotide sequence selected from any of the above-mentioned “SEQ ID NOs: 1 to 3”
  • SEQ ID NOs: 1 to 3 As an example of an aptamer that binds to a TGF- ⁇ type II receptor and inhibits the binding of TGF- ⁇ to a TGF- ⁇ type II
  • the aptamer characterized in that it binds to the TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and TGF- ⁇ type II receptor in (b),
  • a nucleotide sequence selected from any one of 1 to 3 a nucleotide sequence in which 1 to 5 (preferably 1 to 3, more preferably 1 or 2) nucleotides are substituted, deleted, inserted or added
  • the ribose 2 ′ position of the pyrimidine nucleotides contained in the aptamer is the same or different and is a fluorine atom or an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group
  • Examples of the substituted aptamer include a part of the nucleotide sequence selected from any of the aforementioned “SEQ ID NOs: 1 to 3”.
  • nucleotides from the aptamer described as an example of an aptamer that binds to TGF- ⁇ type II receptor and inhibits binding of TGF- ⁇ to TGF- ⁇ type II receptor From the group consisting of a hydrogen atom, a hydroxy group, and a methoxy group, wherein the 2′-position of the ribose of the pyrimidine nucleotide that is deleted, inserted or added and is the same or different is a fluorine atom. Aptamers that are substituted with a selected atom or group are included.
  • the aptamer (b) can also be obtained by introducing a mutation into the aptamer (a) and performing SELEX described later again.
  • the aptamer thus obtained may have a higher binding activity and physiological activity than the RNA of (a).
  • aptamers suitable for various purposes can be produced by introducing mutations into RNA.
  • connection can be performed by tandem coupling.
  • a linker may be used for the connection.
  • Linkers include nucleotide chains (eg, 1 to about 20 nucleotides), non-nucleotide chains (eg, — (CH 2 ) n -linker, — (CH 2 CH 2 O) n -linker, hexaethylene glycol linker, TEG linker , A linker containing a peptide, a linker containing a —S—S— bond, a linker containing a —CONH— bond, and a linker containing a —OPO 3 — bond).
  • the number of the plurality of connected objects is not particularly limited as long as it is 2 or more, but may be 2, 3, or 4, for example.
  • the aptamer of the present invention may be one in which the sugar residue (eg, ribose) of each nucleotide is modified in order to enhance the binding property, stability, drug delivery property, etc. to the TGF- ⁇ type II receptor.
  • the site modified in the sugar residue include those in which the oxygen atom at the 2′-position, 3′-position and / or 4′-position of the sugar residue is replaced with another atom.
  • modifications include fluorination, O-alkylation (eg, O-methylation, O-ethylation), O-allylation, S-alkylation (eg, S-methylation, S-ethylation). ), S-allylation, amination (eg, —NH 2 ).
  • Such modification of sugar residues can be performed by a method known per se (for example, Sproat et al., (1991) Nucl. Acid. Res. 19, 733-738; Cotton et al., (1991)). Nucl. Acid. Res. 19, 2629-2635; Hobbs et al., (1973) Biochemistry 12, 5138-5145).
  • the aptamer of the present invention may be one in which a nucleobase (eg, purine or pyrimidine) is modified (eg, chemically substituted) in order to enhance the binding property to the TGF- ⁇ type II receptor.
  • a nucleobase eg, purine or pyrimidine
  • modifications include 5-position pyrimidine modification, 6- and / or 8-position purine modification, modification with exocyclic amine, substitution with 4-thiouridine, substitution with 5-bromo or 5-iodo-uracil.
  • the phosphate group contained in the aptamer of the present invention may be modified so as to be resistant to nuclease and hydrolysis.
  • the P (O) O group may be P (O) S (thioate), P (S) S (dithioate), P (O) NR 2 (amidate), P (O) R, R (O) OR ′. , CO or CH 2 (formacetal) or 3′-amine (—NH—CH 2 —CH 2 —) optionally substituted [wherein each R or R ′ is independently H Or substituted or unsubstituted alkyl (eg, methyl, ethyl)].
  • the linking group include —O—, —N—, and —S—, which can be bonded to adjacent nucleotides through these linking groups. Modifications may also include 3 ′ and 5 ′ modifications such as capping.
  • Modifications are further made of polyethylene glycol, amino acids, peptides, inverted dT, nucleic acids, nucleosides, Myristoy, Lithocholic-oleyl, Docosanyl, Lauroyl, Stearoyl, Palmitoyl, Oleoyl, Linoleoyl, other lipids, vitamins, steroids, cholesterol, steroids It can be performed by adding a fluorescent substance, an anticancer agent, a toxin, an enzyme, a radioactive substance, biotin, a column carrier, or the like to the end.
  • the length of the added nucleic acid is not particularly limited, but is preferably 100 mer or less, and more preferably 30 mer or less.
  • the column carrier include agarose and sepharose. See, for example, US Pat. Nos. 5,660,985 and 5,756,703 for such modifications.
  • the aptamer of the present invention can be chemically synthesized by the disclosure in the present specification and a method known per se in the technical field.
  • Aptamers bind to a target substance by various binding modes such as ionic bonds using the negative charge of the phosphate group, hydrophobic bonds and hydrogen bonds using ribose, hydrogen bonds using nucleobases and stacking bonds.
  • the ionic bond utilizing the negative charge of the phosphate group that exists in the number of constituent nucleotides is strong and binds to the positive charge of lysine or arginine present on the surface of the protein. For this reason, nucleobases that are not involved in direct binding to the target substance can be substituted.
  • the stem structure portion is already base-paired and faces the inside of the double helix structure, so that the nucleobase is difficult to bind directly to the target substance. Therefore, the activity of the aptamer is often not reduced even if the base pair is replaced with another base pair. Even in a structure that does not form a base pair, such as a loop structure, base substitution is possible when the nucleobase is not involved in direct binding to the target molecule.
  • the modification of the 2 'position of ribose in rare cases, the functional group at the 2' position of ribose may directly interact with the target molecule, but in many cases it is irrelevant and can be replaced with other modified molecules. Is possible.
  • aptamers often retain their activity unless functional groups involved in direct binding to the target molecule are replaced or deleted. It is also important that the overall three-dimensional structure does not change significantly.
  • Aptamers are produced by the SELEX method and its improved methods (for example, AD Ellington et al., (1990) Nature, 346, 818-822; C. Tuerk et al., (1990) Science, 249, 505-510). It can be produced by using.
  • the SELEX method by increasing the number of rounds or using a competitive substance, aptamers having a stronger binding power to the target substance are concentrated and selected. Therefore, by adjusting the number of rounds of SELEX and / or changing the competition state, aptamers with different binding strengths, aptamers with different binding modes, aptamers with the same binding strength or binding mode but different base sequences You may be able to get it.
  • the SELEX method includes an amplification process by PCR. By introducing a mutation by using manganese ions in the process, it becomes possible to perform SELEX with more diversity.
  • An aptamer obtained by SELEX is a nucleic acid having a high affinity for a target substance, which does not mean binding to the active site of the target substance. Therefore, it should be noted that the aptamer obtained by SELEX does not necessarily affect the function of the target substance.
  • the active aptamer thus selected can be further improved in performance by performing optimized SELEX.
  • a template in which a part of an aptamer having a predetermined sequence is made into a random sequence or a template in which about 10 to 30% of a random sequence is doped is prepared, and SELEX is performed again.
  • the aptamer obtained by SELEX has a length of about 70 nucleotides, and it is difficult to make it as a medicine as it is. Therefore, it may be shortened to a length of about 50 nucleotides or less which can be easily chemically synthesized.
  • the aptamer of the present invention is not particularly limited as long as it can bind to the TGF- ⁇ type II receptor and inhibit the binding between TGF- ⁇ and the TGF- ⁇ type II receptor.
  • an aptamer that inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor which includes a part of a nucleotide sequence selected from any one of SEQ ID NOs: 1 to 3.
  • the aptamer of the present invention is an aptamer that binds to the TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and the TGF- ⁇ type II receptor, and is selected from any one of SEQ ID NOs: 1 to 3. Also included are aptamers that contain all or part of the nucleotide sequence to be processed.
  • the aptamer obtained by SELEX may vary in ease of subsequent minimization depending on the primer design.
  • Aptamers can be easily modified because they can be chemically synthesized. Aptamers can predict their secondary structure using the MFOLD program. It is also possible to predict the three-dimensional structure by X-ray analysis or NMR analysis. With these structure predictions, it is possible to predict which nucleotides can be substituted or deleted, and where new nucleotides can be inserted. Aptamers of the predicted new sequence can be easily chemically synthesized, and whether or not the aptamer retains activity can be confirmed by an existing assay system. Further, the modification can be designed or altered to a high degree as well as the length of the sequence.
  • aptamers can be highly designed or modified.
  • the present invention also includes a predetermined sequence (eg, a sequence corresponding to a portion selected from a stem portion, an internal loop portion, a hairpin loop portion, and a single-stranded portion: hereinafter, abbreviated as a fixed sequence if necessary).
  • a predetermined sequence eg, a sequence corresponding to a portion selected from a stem portion, an internal loop portion, a hairpin loop portion, and a single-stranded portion: hereinafter, abbreviated as a fixed sequence if necessary.
  • the method for producing such aptamer is as follows:
  • (N) a represents a nucleotide chain consisting of a N
  • (N) b represents a nucleotide chain consisting of b N
  • N is the same or different, respectively, A, G
  • It is a nucleotide selected from the group consisting of C, U and T (preferably A, G, C and U).
  • a and b are the same or different and may be any number, for example, 1 to about 100, preferably 1 to about 50, more preferably 1 to about 30, even more preferably 1 to about 20 or 1 Can be from about 10 to about 10.
  • Each of a single type of nucleic acid molecule or a plurality of types of nucleic acid molecules eg, a library of nucleic acid molecules having different numbers of a, b, etc.
  • primer sequences eg, a library of nucleic acid molecules having different numbers of a, b, etc.
  • primer sequences i
  • ii Producing an aptamer comprising a fixed sequence using the corresponding primer pair.
  • the present invention also provides a complex comprising the aptamer of the present invention and a functional substance bound thereto.
  • the bond between the aptamer and the functional substance in the complex of the present invention can be a covalent bond or a non-covalent bond.
  • the complex of the present invention may be a conjugate of the aptamer of the present invention and one or more (eg, 2 or 3) of the same or different functional substances.
  • the functional substance is not particularly limited as long as it newly adds some function to the aptamer of the present invention or can change (eg, improve) some property that can be retained by the aptamer of the present invention.
  • Examples of the functional substance include proteins, peptides, amino acids, lipids, carbohydrates, monosaccharides, polynucleotides, and nucleotides.
  • Examples of functional substances include, for example, affinity substances (eg, biotin, streptavidin, polynucleotides having affinity for target complementary sequences, antibodies, glutathione sepharose, histidine), labeling substances (eg, fluorescent substances, Luminescent substances, radioisotopes), enzymes (eg, horseradish peroxidase, alkaline phosphatase), drug delivery vehicles (eg, liposomes, microspheres, peptides, polyethylene glycols), drugs (eg, calicheamicin and duocarmycin) Used in missile therapy, nitrogen mustard analogs such as cyclophosphamide, melphalan, ifosfamide or trophosphamide, ethyleneimines such as thiotepa, nitrosourea such as carmustine, temozo
  • ⁇ унк ⁇ ионент may eventually be removed. Furthermore, it may be a peptide that can be recognized and cleaved by an enzyme such as thrombin, matrix metal protease (MMP), Factor X, or a polynucleotide that can be cleaved by a nuclease or a restriction enzyme.
  • an enzyme such as thrombin, matrix metal protease (MMP), Factor X, or a polynucleotide that can be cleaved by a nuclease or a restriction enzyme.
  • the aptamer or complex of the present invention can be used as a medicine or a diagnostic agent, a test agent, or a reagent.
  • the aptamer or complex of the present invention inhibits intracellular signal transduction of TGF- ⁇ through the TGF- ⁇ type II receptor, and thus, for example, various diseases caused by the action of TGF- ⁇ , such as the action of TGF- ⁇ . It is useful as a medicament, diagnostic agent, test agent, reagent, etc. for various fibrosis caused by tissue fibrosis or various diseases associated with tissue fibrosis.
  • variant diseases resulting from the action of TGF- ⁇ include renal diseases (eg, renal fibrosis, nephritis, renal failure, nephrosclerosis, etc.), lung diseases (eg, pulmonary fibrosis, pneumonia, etc.) ), Liver disease (eg, liver tissue fibrosis, cirrhosis, hepatitis, etc.), skin disease (eg, wound, scleroderma, psoriasis, keloid, etc.), arthritis (eg, rheumatoid arthritis, osteoarthritis, etc.), Examples include vascular diseases (eg, vascular restenosis, rheumatic vasculitis, etc.). Examples of “various diseases associated with tissue fibrosis” include cancer in various organs (particularly cancer invasion and metastasis), arteriosclerosis, and the like.
  • the medicament of the present invention may be formulated with a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers include excipients such as sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone , Gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethylcellulose, hydroxypropyl starch, sodium-glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate , Aerosil, Talc, Lubricant such as sodium lauryl sulfate, Citric acid, Menthol, Glycyllysine / Ammonium salt, Fragrance, such as Glycine, Orange powder, Sodium benzoate Preservatives such as sodium, sodium bisulfite, methylparaben, propylpara
  • Preparations suitable for oral administration include a solution in which an effective amount of a ligand is dissolved in a diluent such as water, physiological saline, orange juice, a capsule containing an effective amount of the ligand as a solid or a granule, a sachet or Examples thereof include tablets, suspensions in which an effective amount of an active ingredient is suspended in a suitable dispersion medium, and emulsions in which a solution in which an effective amount of an active ingredient is dissolved is dispersed in an appropriate dispersion medium and emulsified.
  • a diluent such as water, physiological saline, orange juice
  • a capsule containing an effective amount of the ligand as a solid or a granule a sachet or Examples thereof include tablets, suspensions in which an effective amount of an active ingredient is suspended in a suitable dispersion medium, and emulsions in which a solution in which an effective amount of an active ingredient is dissolved is dispersed
  • the medicament of the present invention can be coated by a method known per se for the purpose of taste masking, enteric solubility or sustainability, if necessary.
  • a coating agent used for coating for example, hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxymethylcellulose acetate succinate, Eudragit (manufactured by Rohm, Germany, methacrylic acid / acrylic acid copolymer) and pigments (eg, Bengala, titanium dioxide, etc.) are used.
  • the medicine may be either an immediate release preparation or a sustained release preparation. Examples of the sustained release substrate include liposomes, atelocollagen, gelatin, hydroxyapatite, and PLGA.
  • Suitable formulations for parenteral administration are aqueous and non-aqueous isotonic.
  • parenteral administration eg, intravenous, subcutaneous, intramuscular, topical, intraperitoneal, nasal, pulmonary
  • aqueous and non-aqueous isotonic are aqueous and non-aqueous isotonic.
  • sterile injection solutions which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • aqueous and non-aqueous sterile suspensions can be mentioned, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile solvent immediately before use.
  • inhalants and ointments are also possible.
  • the lyophilized active ingredient is refined and administered by inhalation using an appropriate inhalation device.
  • conventionally used surfactants, oils, seasonings, cyclodextrins or derivatives thereof can be appropriately blended as necessary.
  • the dose of the medicament of the present invention varies depending on the type / activity of the active ingredient, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc.
  • the amount of active ingredient may be about 0.0001 to about 100 mg / kg, such as about 0.0001 to about 10 mg / kg, preferably about 0.005 to about 1 mg / kg.
  • the present invention also provides a solid phase carrier on which the aptamer or complex of the present invention is immobilized.
  • the solid phase carrier include a substrate, a resin, a plate (eg, multiwell plate), a filter, a cartridge, a column, and a porous material.
  • the substrate may be one used for DNA chips, protein chips, etc., for example, nickel-PTFE (polytetrafluoroethylene) substrate, glass substrate, apatite substrate, silicon substrate, alumina substrate, etc. And the like coated with a polymer or the like.
  • the resin examples include agarose particles, silica particles, copolymers of acrylamide and N, N′-methylenebisacrylamide, polystyrene-crosslinked divinylbenzene particles, particles obtained by crosslinking dextran with epichlorohydrin, cellulose fibers, and allyldextran.
  • examples include N, N'-methylenebisacrylamide cross-linked polymers, monodisperse synthetic polymers, monodisperse hydrophilic polymers, sepharose, and Toyopearl.
  • the solid phase carrier of the present invention can be useful for, for example, purification of TGF- ⁇ type II receptor, detection of TGF- ⁇ type II receptor, quantification of TGF- ⁇ type II receptor, and the like.
  • the aptamer or complex of the present invention can be immobilized on a solid support by a method known per se.
  • an affinity substance for example, one described above
  • a predetermined functional group is introduced into the aptamer or complex of the present invention, and then immobilized on a solid phase carrier using the affinity substance or the predetermined functional group.
  • a method is mentioned.
  • the present invention also provides such a method.
  • the predetermined functional group may be a functional group that can be subjected to a coupling reaction, and examples thereof include an amino group, a thiol group, a hydroxy group, and a carboxyl group.
  • the present invention also provides an aptamer having such a functional group introduced therein.
  • the present invention also provides a method for detecting and quantifying the TGF- ⁇ type II receptor.
  • the detection and quantification method of the present invention may comprise measuring the TGF- ⁇ type II receptor utilizing the aptamer of the present invention (eg, by using the complex of the present invention and a solid phase carrier).
  • the method for detecting and quantifying the TGF- ⁇ type II receptor can be performed by the same method as the immunological method except that the aptamer of the present invention is used instead of the antibody.
  • an enzyme immunoassay eg, direct competition ELISA, indirect competition ELISA, sandwich ELISA
  • radioimmunoassay RIA
  • fluorescence immunoassay FIA
  • Western blotting eg, use as a substitute for secondary antibody in Western blotting
  • immunohistochemical staining cell sorting, and similar methods
  • Such a method may be useful, for example, for measuring the amount of TGF- ⁇ type II receptor in a biological or biological sample.
  • Example 1 Purification of recombinant TGF- ⁇ type II receptor Human solubilized TGF- ⁇ type II receptor (sT ⁇ RII-8His) in which the intracellular domain and transmembrane domain are deleted and the C-terminus is labeled with histidine (His) ) Expression vector was constructed. This expression vector was then introduced into FreeStyle 293 cells using 293fectin-transfection reagent (Invitrogen). Subsequently, recombinant sT ⁇ RII-8His was purified from the culture supernatant using TALON Metal Affinity Resins (Clontech).
  • Example 2 Cell culture The FreeStyle 293 cell line was cultured using a FreeStyle 293 expression medium (manufactured by Invitrogen).
  • the 293T cell line is DMEM (Invitrogen)
  • the Hep3B cell line is MEM (Invitrogen)
  • the SNU-16 cell line is RPMI1640 (Invitrogen)
  • 10% fetal bovine serum JRH Biosciences
  • 100 units / ml penicillin ⁇ 100 ⁇ g / ml streptomycin (Invitrogen) was added and cultured.
  • RNA aptamer by the SELEX method was obtained by the method of Ellington et al. (Ellington AD and Szostak JW, in vitro selection of RNA molecules that binds specific 46: -822, 1990), and the method of Tuerk et al. (Tuerk C. and Gold L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteria9 T4 DNA 9 Ie purified
  • the N40 random RNA pool used in the SELEX method was prepared from a chemically synthesized template having the following F1 primer and a random sequence of 40 bases (commissioned from Operon Biotechnology and Invitrogen).
  • the random sequence template was amplified by PCR using Ex Taq Hot Start Version (manufactured by Takara Bio Inc.).
  • the promoter sequence of T7 RNA polymerase contained in the F1 primer was used to generate a DuraScribe T7 Transcript Kits ( (Epicentre Technologies, Inc.) was used for in vitro transcription, phenol extraction and gel filtration to obtain an N40 random RNA pool.
  • RNA binding of sT ⁇ RII-8His immobilized on TALON Metal Affinity Resins or Ni-NTA Agarose (Qiagen) to the RNA in the N40 random RNA pool was performed by buffer A [20 mM Tris-HCl, 80 mM potassium acetate, 2.5 mM magnesium acetate. acetate, 1 mM dithiothreitol].
  • buffer A 20 mM Tris-HCl, 80 mM potassium acetate, 2.5 mM magnesium acetate. acetate, 1 mM dithiothreitol.
  • sT ⁇ RII-8His and RNA bound thereto were released using 300 mM imidazole.
  • RT-PCR was performed based on this RNA to amplify the DNA template, and then transcription was performed in vitro to prepare the next round RNA pool.
  • the cDNA corresponding to the concentrated RNA was cloned into pGEM T-EASY Vector (Promega) and transformed into E. coli strain DH5 ⁇ (Toyobo). A clone was obtained. After extracting the plasmid DNA, the base sequence was determined with a DNA sequencer Model 3100 (manufactured by ABI) using the following sequence primers. As a result, 20 kinds of converged RNA were obtained.
  • F1 primer 5′- TAATACGACTCACTATA GGGACACAATGACG-3 ′ (T7 promoter sequence is underlined) (SEQ ID NO: 5)
  • Random sequence template 5′-CTCTCATGTCGGGCCGTTA-N40-CGTCCATTGGTCCCTATATGGAGTCGTTTA-3 ′ (SEQ ID NO: 6)
  • Sequence primer 5'-GTTTTCCCAGTCACGAC-3 '
  • MFOLD program was applied to the obtained base sequence to predict RNA secondary structure.
  • Example 4 Analysis of binding reaction rate by surface plasmon resonance The binding activity of converged RNA to T ⁇ RII was examined by surface plasmon resonance analysis.
  • the 5 ′ end of poly (dT) 16 oligonucleotide was biotinylated and immobilized on a streptavidin sensor chip (GE Healthcare Bioscience). Furthermore, convergent RNA having poly (A) 16 added to the 3 ′ end was added and immobilized. Subsequently, sT ⁇ RII (manufactured by R & D Systems) or T ⁇ -sT ⁇ RII was added, and surface plasmon resonance analysis was performed using BIACORE 2000 (manufactured by Biacore AB) to measure the binding reaction rate (FIG. 1).
  • RNA binds to sT ⁇ RII or T ⁇ -sT ⁇ RII an optical change occurs, and an increase in Resonance Units is observed on the sensorgram.
  • the measurement was performed using non-specific binding between the N40 random RNA pool and sT ⁇ RII or T ⁇ -sT ⁇ RII as a background.
  • the obtained sensorgram was analyzed with BIAevaluation (manufactured by BIACORE) software, and the dissociation constant (Kd value) was calculated.
  • Kd value dissociation constant
  • 13 types were anti-T ⁇ RII RNA aptamers having binding ability to sT ⁇ RII.
  • the calculated bond dissociation constant (Kd) was 2.9 ⁇ 10 ⁇ 9 M to 10.4 ⁇ 10 ⁇ 9 M.
  • Example 5 Cell staining with fluorescently labeled RNA or fluorescently labeled antibody Next, it was examined whether the anti-T ⁇ RII RNA aptamer can bind to T ⁇ RII expressed on the cell membrane. N40 random RNA pools and RNA aptamers were labeled with Alexa Fluor 488 using ULYSIS Nucleic Acid Labeling Kits (Invitrogen). Subsequently, it was confirmed that the labeled aptamer bound to sT ⁇ RII in the same manner as the unlabeled RNA aptamer by surface plasmon resonance analysis.
  • a human fetal kidney cell line 293T cultured on Poly-D-Lycine BioCoat culture slides was used with FuGENE 6 Transfection Reagent (Roche Applied Science II). Introduced into sex, the human TGF- ⁇ type II receptor was expressed. After 48 hours, cells were fixed with 4% paraformaldehyde. Further, after blocking with 10% BSA-PBS, the cells were stained with Alexa Fluor 488-labeled RNA or anti-human T ⁇ RII antibody (Santa Cruz) and Alexa Fluor 488-labeled anti-rabbit IgG antibody (Invitrogen). Cell nuclear DNA was stained with DAPI Nucleic Acid Stain (manufactured by Invitrogen).
  • RNA aptamer that recognizes TGF- ⁇ binding region Is there an RNA aptamer that recognizes the TGF- ⁇ binding region of T ⁇ RII among 13 types of anti-T ⁇ RII RNA aptamers capable of binding to sT ⁇ RII? Searched for no.
  • the RNA aptamer was immobilized on the streptavidin sensor chip, and sT ⁇ RII or sT ⁇ RII (T ⁇ -sT ⁇ RII) previously bound with TGF- ⁇ was added to perform surface plasmon resonance analysis (FIG. 2).
  • RNA aptamer named 2RA5 bound to sT ⁇ RII, but not to T ⁇ -sT ⁇ RII.
  • 12 other RNA aptamers, including an aptamer named 2RA1 bound to both sT ⁇ RII and T ⁇ -sT ⁇ RII.
  • 2RA5 is an RNA aptamer comprising the nucleotide sequence represented by SEQ ID NO: 1 (hereinafter, the RNA aptamer comprising the nucleotide sequence represented by SEQ ID NO: 1 may be referred to as “2RA5”).
  • RNA aptamer 2RA5 obtained in Example 6 was transformed into T ⁇ RII or a complex of TGF- ⁇ and T ⁇ RII (T ⁇ -II) from a cell lysate. It was examined whether or not (T ⁇ RII) could be separated.
  • Polyester (A) 16 was added to each 3 ′ end of N40 random RNA and RNA aptamer (2RA1, 2RA5) and Oligotex-dT30 Super (manufactured by Takara Bio Inc.) was immobilized on Oligo (dT) 30 Immobilized via base pairing.
  • T ⁇ RII-HA 293T cells expressing hemagglutinin (HA) -labeled human T ⁇ RII
  • T ⁇ RII-HA 293T cells expressing hemagglutinin (HA) -labeled human T ⁇ RII
  • HA hemagglutinin
  • 2 mM DSS 2 mM DSS
  • T ⁇ RII were cross-linked to obtain a cell lysate.
  • Oligotex-dT30 Super immobilized with RNA and cell lysate were mixed and reacted, and then washed with PBS.
  • RNA and the protein binding thereto were recovered from Oligotex-dT30 Super and analyzed by Western blotting using SDS-PAGE and peroxidase (HRP) -labeled anti-HA monoclonal antibody.
  • HRP peroxidase
  • Example 8 Inhibition of TGF- ⁇ signal transduction by RNA aptamer
  • Smad2 and Smad3 which are TGF- ⁇ signaling molecules present in the cytoplasm, are activated. Activated Smad2 and Smad3 form a heterocomplex with Smad4, and move from the cytoplasm to the nucleus to function as a transcription factor.
  • FLAG-tagged Smad3 FLAG-Smad3
  • Smad4 T ⁇ RI, T ⁇ RII expression plasmids were introduced into 293T cells and FLAG-Smad3 expression plasmids were introduced into human hepatoma cell line Hep3B and expressed, and stimulated with TGF- ⁇ , FLAG-Smad3 Intranuclear translocation was observed. Therefore, cells were stimulated with TGF- ⁇ in the presence of sT ⁇ RII, N40 random RNA, and RNA aptamer (2RA1, 2RA5), and FLAG-Smad3 nuclear translocation was anti-FLAG monoclonal antibody and Alexa Fluor 568-labeled anti-mouse IgG antibody. Was observed.
  • Example 9 The size of 2RA5 was attempted for the purpose of reducing the number of bases and reducing the molecular weight while maintaining the ability of the RNA aptamer to bind to a shortened target substance. Based on the secondary structure predicted by the MFOLD program of 2RA5, a plurality of deletion mutants of 2RA5 were prepared, and the binding ability of each deletion mutant to sT ⁇ RII was examined by surface plasmon resonance analysis.
  • the RNA aptamer named “2RA5S1” deleted by 9 bases from 2RA5 of 73 base length and the RNA aptamer named “2RA5S2” deleted by 14 bases are similar to the secondary structure similar to 2RA5. (Fig. 3).
  • the nucleotide sequences of 2RA5S1 and 2RA5S2 are shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively.
  • Example 10 Inhibition test of TGF- ⁇ cell growth inhibitory action by RNA aptamer Human gastric cancer cell line SNU-16 maintains reactivity to TGF- ⁇ , and when stimulated with TGF- ⁇ , cell growth is strongly suppressed.
  • SNU-16 cells were stimulated with TGF- ⁇ in the presence of anti-human T ⁇ RII antibody, N40 random RNA, 2RA1, 2RA5, or 2RA5S1 to examine whether the cell growth inhibitory action of TGF- ⁇ was inhibited (Fig. 4).
  • RNA aptamer was added, and allowed to stand at 37 ° C., 5% CO 2 for 1 hour. Thereafter, medium or 40 pM TGF- ⁇ was added and cultured for 16 hours.
  • Cell Proliferation Reagent WST-1 (Roche Applied Science) was added and allowed to stand at 37 ° C., 5% CO 2 for 4 hours, and then the absorbance of the sample was measured at a wavelength of 450 nm using a microplate reader. The reference wavelength was 655 nm.
  • the present invention provides an aptamer that has the ability to bind to a TGF- ⁇ type II receptor and inhibits the binding between TGF- ⁇ and a TGF- ⁇ type II receptor.
  • Such aptamers are aptamers that inhibit the function of TGF- ⁇ .
  • the aptamer of the present invention is useful for treating diseases caused by excessive TGF- ⁇ expression.
  • SEQ ID NO: 1 is a nucleic acid capable of binding to the TGF- ⁇ type II receptor.
  • SEQ ID NO: 2 is a nucleic acid capable of binding to the TGF- ⁇ type II receptor.
  • SEQ ID NO: 3 is a nucleic acid capable of binding to the TGF- ⁇ type II receptor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Rheumatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pulmonology (AREA)
  • Microbiology (AREA)
  • Pain & Pain Management (AREA)
  • Vascular Medicine (AREA)

Abstract

 本発明は、TGF-βならびにTGF-βII型受容体の生理機能の解明、およびTGF-βにより引き起こされる疾患の発症機構の解析、診断および治療に利用可能な物質の提供を目的とする。 本発明は、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマー;当該アプタマーを用いることを特徴とするTGF-βII型受容体の検出方法;当該アプタマーを含む医薬などを提供する。

Description

TGF-βII型受容体に結合する核酸およびその使用
 本発明は、TGF-βII型受容体に結合する核酸およびその使用方法に関するものである。
 Transforming Growth Factor-β(以下、「TGF-β」と記載)は上皮細胞、血管内皮細胞、血球系細胞など多くの細胞に対し強い増殖抑制作用を示し、癌化初期においては癌細胞の増殖を抑制し癌化抑制因子として機能する。しかし、TGF-βは多機能性のサイトカインであり、癌化後期になると癌細胞が産生するTGF-βが癌組織周辺の正常組織細胞に作用し血管新生、上皮-間葉移行、免疫抑制、細胞外マトリックスの産生などを誘導し、癌の浸潤・転移を引き起こすことが明らかにされている。さらに、TGF-βは細胞外マトリックス産生を促進し組織の線維化を強く引き起こし、肺線維症、慢性腎不全、肝硬変に代表される慢性線維性疾患を誘発する重要な因子であることが見出されている。したがって、TGF-βおよびTGF-β受容体は、癌の浸潤・転移、組織線維化の分子機構の解明、創薬における重要な標的になると考えられる。
 TGF-β受容体は、ともに細胞内にセリン/スレオニンキナーゼ領域を有するTGF-βI型受容体(以下、「TβRI」と記載する場合がある)とTGF-βII型受容体(以下、「TβRII」と記載する場合がある)からなる複合体である。近年、TGF-β受容体複合体の下流で機能するシグナル伝達分子であるSmad転写因子ファミリー(Smad2、Smad3およびSmad4)が同定され、TGF-βの主要なシグナル伝達経路が明らかにされつつある。TGF-βがTβRIIに結合すると、TβRIIのセリン/スレオニンキナーゼによりTβRIがリン酸化を受け活性化される。細胞質に存在するSmad2またはSmad3は活性化されたTβRIの細胞内ドメインに結合し、TβRIのセリン/スレオニンキナーゼによりリン酸化され活性化される。その後、Smad2およびSmad3はTβRIから遊離し、細胞質内のSmad4とヘテロ複合体を形成し核へと移行し転写因子として機能する。
 このように、TβRIIはTGF-βとの結合に不可欠な細胞表面分子であり、TβRI単独ではTGF-βに結合できない。したがって、TβRIIへのTGF-βの結合を阻害できればTGF-βにより誘導される癌の浸潤・転移、組織線維化を抑制することも可能である。これまでTβRIIを標的とした乳癌転移の阻害剤として、可溶化型TβRII(以下、「sTβRII」と記載する場合がある)、可溶化型TβRIIと免疫グロブリンFc領域との融合たんぱく質(sTβRII-Fc)の開発が進められている。in vitro実験系でその阻害効果が確認され、また、MMTV-neuトランスジェニックマウスを用いたin vivo実験系でも乳癌の肺、肝臓、脾臓への転移が抑制されることが報告されている。しかし、sTβRIIやsTβRII-Fcは分子量が大きく、また、たんぱく質の翻訳後に糖鎖修飾が必要なことなどから、その大量精製は容易ではない。
 ところで、in vitroで標的分子と特異的に結合するRNAを選択かつ濃縮する手法として、SELEX法と呼ばれる手法が開発されている(非特許文献1参照)。SELEX法は、PCRプライマー用の配列(一方にはT7ポリメラーゼの配列を含む)を両端に含む適当な長さのランダム配列を持つRNAを合成し、これを固相化し標的分子と結合させる。結合しなかったRNAを洗浄後、標的分子と結合したRNAを回収し、RT-PCRで増幅後、次のラウンドで用いるRNAのテンプレートとする。これを繰り返すことにより標的分子と特異的に結合するRNAアプタマーを取得する。この方法では、標的分子と特異的に結合するRNA配列を明らかにできるだけでなく、標的分子の機能を促進、あるいは阻害するような生理活性を持つRNAを取得することが可能である。このことは病因たんぱく質を標的とすることにより、得られたアプタマーが医薬品として応用できることを示唆している。従来の創薬に比べこのSELEX法を用いた創薬の優れている点として(1)従来の化学物質のスクリーニングより大規模の母集団よりスクリーニングを行える。(2)試験管内で容易に大量合成することができる。(3)免疫原性がない。(4)容易に化学的改良を行える。(5)保存性が高く抗体の作製が困難なたんぱく質を標的にできる。などがあげられる。例えば特許文献1には、SELEX法を用いて得られた、TGF-βIII型受容体と特異的に結合するRNAアプタマーが開示されている。
特開2007-43917号公報
C.Tuerk&L.Gold,Science 249:505-510,1990
収束したRNAの一部とヒト可溶化型TGF-βII型受容体との結合解析を示す図である。2RA5、2RA1、2RA6および2RA8は、それぞれ収束した20種類のRNAアプタマーの一部を示す。 本発明のアプタマーと、ヒト可溶化型TGF-βII型受容体またはTGF-β/ヒト可溶化型TGF-βII型受容体の複合体との結合解析を示す図である。「sTβRII」はヒト可溶化型TGF-βII型受容体を示し、「Tβ-sTβRII」はTGF-βとヒト可溶化型TGF-βII型受容体との複合体を示す。 本発明のアプタマーを短鎖化した欠失変異体の予想される二次構造を示す図である。配列番号1で表されるアプタマー(73塩基長:2RA5)、配列番号2で表されるアプタマー(2RA5を9塩基欠失させた2RA5S1)、および配列番号3で表されるアプタマー(2RA5を14塩基欠失させた2RA5S2)それぞれの二次構造とTβRIIに対する結合のKd値を示した。 本発明のアプタマーがTGF-βの細胞増殖抑制作用を阻害することを示す図である。
 本発明は、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマーを得ることによって、TGF-βの生理機能の解明、ならびに過剰なTGF-βにより引き起こされる疾患の発症機構の解析、診断および治療に利用可能な物質を提供することなどを目的とする。
 本発明者らは、このような物質の候補としてTGF-β受容体の1つであるTGF-βII型受容体(TβRII)に対するRNAアプタマーを作製した。すなわち、TβRIIを標的としてSELEXを行い、得られたアプタマーと標的との結合活性を調べ、その有用性を示した。本発明はこれらの知見に基づいて完成されたものである。
 すなわち本発明の要旨は以下の通りである。
[1]TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマー;
[2]配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含む、[1]に記載のアプタマー;
[3]ピリミジンヌクレオチドの少なくとも一つが修飾ヌクレオチドである、[2]に記載のアプタマー;
[4]以下(a)または(b)のいずれかである、[1]に記載のアプタマー:
(a)配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含むアプタマーであって、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー;
(b)配列番号1~3のいずれかから選択されるヌクレオチド配列において、1~5個のヌクレオチドが置換、欠失、挿入または付加されたヌクレオチド配列の全部または一部を含むアプタマーであって、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー;
[5][1]~[4]のいずれか一に記載のアプタマーおよび機能性物質を含む複合体;
[6]機能性物質が、親和性物質、標識用物質、酵素、薬物送達媒体または薬物である、[5]に記載の複合体;
[7][1]~[4]のいずれか一に記載のアプタマーあるいは[5]または[6]に記載の複合体を用いることを特徴とする、TGF-βII型受容体を検出および/または定量する方法;
[8][1]~[4]のいずれか一に記載のアプタマーあるいは[5]または[6]に記載の複合体を含む、TGF-βの作用に起因する疾患の予防または治療薬;
[9][1]~[4]のいずれか一に記載のアプタマーあるいは[5]または[6]に記載の複合体を投与することを特徴とする、TGF-βの作用に起因する疾患の予防または治療方法;
[10]TGF-βの作用に起因する疾患の予防または治療のための、[1]~[4]のいずれか一に記載のアプタマーあるいは[5]または[6]に記載の複合体。
 本発明により、TGF-βII型受容体に対する結合能を有し、TGF-βとTGF-βII型受容体との結合を阻害するアプタマーが提供される。このようなアプタマーは、TGF-βの機能を阻害するアプタマーである。本発明のアプタマーは、過剰なTGF-β発現により引き起こされる疾患の治療等に有用である。
 本発明は、TGF-βII型受容体に対する結合能を有し、TGF-βとTGF-βII型受容体との結合を阻害するアプタマーを提供する。
 TGF-βとは、細胞増殖抑制、血管新生、上皮-間葉移行、免疫抑制、細胞外マトリックス産生などを誘導する多機能性のサイトカインである。TGF-βが細胞表面のTGF-βII型受容体に結合すると、TGF-βII型受容体によりTGF-βI型受容体がリン酸化され、活性化される。活性化されたTGF-βI型受容体により細胞内シグナル伝達分子がリン酸化され、活性化されると、細胞内へTGF-βのシグナルが伝えられる。
 本発明で示されるTGF-β、TGF-βI型受容体およびTGF-βII型受容体は、動物体内で作られるほか、マウスなどの哺乳細胞、昆虫細胞、大腸菌などの細胞を用いて作製することができ、化学合成によっても製造することができる。また培養細胞や化学合成によって作製する場合であれば、容易に変異体を作製することができる。ここで「変異体」とは、アミノ酸が1~数個置換されたものや各種タンパク質の一部分のアミノ酸配列を意味し、本来TGF-β、TGF-βI型受容体およびTGF-βII型受容体が有している少なくとも一つ以上の活性を有しているタンパク質またはペプチドを意味する。アミノ酸が置換される場合、置換アミノ酸は天然または非天然のいずれのアミノ酸であってもよい。本発明で言うTGF-β、TGF-βI型受容体およびTGF-βII型受容体は、これらの変異体を含む。
 アプタマーとは、所定の標的分子に対する結合活性を有する核酸分子をいう。アプタマーは、所定の標的分子に対して結合することにより、所定の標的分子の活性を阻害し得る。本発明のアプタマーは、好ましくはRNAアプタマー、修飾RNAアプタマーまたはそれらの混合物であり得る。本発明のアプタマーはまた、直鎖状または環状の形態であり得る。
 本発明のアプタマーはTGF-βII型受容体への結合能を有し、TGF-βとTGF-βII型受容体との結合を阻害することを特徴とする。具体的には、本発明のアプタマーはTGF-βII型受容体のTGF-β結合領域に結合することで、TGF-βとTGF-βII型受容体との結合を競合的に阻害する。従って本発明のアプタマーはTGF-βとTGF-βII型受容体との結合を阻害することができる。このようなアプタマーとしては、例えば配列番号1~3のいずれかから選択されるヌクレオチド配列を含むアプタマーが挙げられる。ここで「TGF-βII型受容体への結合能を有する」とは、ランダム配列のRNAプールより高いTGF-βII型受容体への結合活性を有していることを意味する。
 また本発明のアプタマーは、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することができる限り特に限定されず、既存のアプタマーを利用しやすくする目的で短鎖化したものであってもよく、そのようなアプタマーとしては、例えば「配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含むアプタマーであって、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマー」が挙げられる。
 本発明のアプタマーは、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することができる限り、ヌクレオチドが置換、欠失、挿入または付加されたアプタマーも含むものである。置換、欠失、挿入または付加してもよいヌクレオチド数としては特に限定されないが、通常1~5個、好ましくは1~3個である。
 本明細書中、「配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含むアプタマーであって、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマー」の例としては、下記式
Figure JPOXMLDOC01-appb-C000001
(式中、
 N1およびN2は、互いに3塩基対の相補的塩基対合が可能な核酸塩基を示し、
 N3およびN4は、互いに4塩基対の相補的塩基対合が可能な核酸塩基を示し、
 N5は、1個の核酸塩基を示し、
 N6およびN7は、互いに5塩基対の相補的塩基対合が可能な核酸塩基を示し、
 N8は、少なくとも4個の核酸塩基を示し、
 N2の3’末端側塩基とN3の5’末端側塩基は連続し、
 N4の3’末端側塩基とN5は連続し、
 N5とN6の5’末端側塩基は連続し、
 N7の3’末端側塩基とN8の5’末端側塩基は連続し、
 N1~N8のそれぞれをつなぐ直線は、核酸塩基間の水素結合を示し、そして
 N1~N8のそれぞれをつなぐ曲線は、ループ部分を示す。)で表される二次構造を採るヌクレオチド配列を含み、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマーが挙げられる。
 ここでN1およびN2で表される「互いに3塩基対の相補的塩基対合が可能な核酸塩基」とは、「ループ部分を挟んで互いに相補的塩基対を形成することができる3個の核酸塩基」を意味し、例えばN1がGGGの場合、N2はCCCである。N3およびN4で表される「互いに4塩基対の相補的塩基対合が可能な核酸塩基」とは、「ループ部分を挟んで互いに相補的塩基対を形成することができる4個の核酸塩基」を意味し、例えばN3がCGGGの場合、N4はCCCGである。N6およびN7で表される「互いに5塩基対の相補的塩基対合が可能な核酸塩基」とは、「ループ部分を挟んで互いに相補的塩基対を形成することができる5個の核酸塩基」を意味し、例えばN6がGGCCGの場合、N7はCGGCCである。
 N5で表される「1個の核酸塩基」はどのような核酸塩基であってもよく、例えばA(アデニン)、C(シトシン)、G(グアニン)およびU(ウラシル)からなる群から選択される核酸塩基である。好ましくはAである。
 N8で示される「少なくとも4個の核酸塩基」はどのような核酸塩基であってもよく、例えばA(アデニン)、C(シトシン)、G(グアニン)およびU(ウラシル)からなる群から選択される核酸塩基を4個以上結合させたものである。当該4個の核酸塩基のうち、はじめの4塩基は好ましくはGACAである。
 連続する、N2の3’末端側塩基とN3の5’末端側塩基、N4の3’末端側塩基とN5、N5とN6の5’末端側塩基およびN7の3’末端側塩基とN8の5’末端側塩基のそれぞれの結合態様は特に限定されず、例えば3’-5’ホスホジエステル結合、2’-5’ホスホジエステル結合などのホスホジエステル結合や、ホスホジエステル結合を構成する酸素の一部または全部を硫黄原子で置換したホスホロチオエート結合などが挙げられる。
 本発明のアプタマーは、任意の哺乳動物のTGF-βとTGF-βII型受容体との結合を阻害する活性を有し得る。このような哺乳動物としては、例えば、霊長類(例、ヒト、サル)、げっ歯類(例、マウス、ラット、モルモット)、並びにペット、家畜及び使役動物(例、イヌ、ネコ、ウマ、ウシ、ヤギ、ヒツジ、ブタ)が挙げられる。
 本発明のアプタマーの長さは特に限定されず、通常、約10~約200ヌクレオチドであり得るが、例えば約100ヌクレオチド以下であり、好ましくは約75ヌクレオチド以下であり得る。総ヌクレオチド数が少なければ、化学合成及び大量生産がより容易であり、かつコスト面でのメリットも大きい。また、化学修飾も容易であり、生体内安定性も高く、毒性も低いと考えられる。
 本発明のアプタマーに含まれる各ヌクレオチドは、それぞれリボース(例、ピリミジンヌクレオチドのリボース、プリンヌクレオチドのリボース)の2’位においてヒドロキシ基を含むヌクレオチド(即ち、未置換であるヌクレオチド)であるか、あるいは同一又は異なって、リボースの2’位において、ヒドロキシ基が、任意の原子又は基で置換(修飾)されているヌクレオチド(本発明において、「置換ヌクレオチド」または「修飾ヌクレオチド」と記載する場合がある)であり得る。
 このような任意の原子又は基としては、例えば、水素原子、フッ素原子、-O-アルキル基(例、-O-Me基)、-O-アシル基(例、-O-CHO基)又はアミノ基(例、-NH基)で置換されているヌクレオチドが挙げられる。本発明のアプタマーはまた、ピリミジンヌクレオチドの少なくとも一つが修飾ヌクレオチドであるようなアプタマーであり得る。
 本発明のアプタマーはまた、ピリミジンヌクレオチドの少なくとも一つ、好ましくは全てのピリミジンヌクレオチドが、リボースの2’位においてフッ素原子で置換されるヌクレオチドであるか、あるいは同一または異なって、上述した任意の原子又は基、好ましくは、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子または基で置換されているヌクレオチドであり得る。
 本発明のアプタマーはまた、
(a)TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマーであって、配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含み、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー;
(b)TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマーであって、配列番号1~3のいずれかから選択されるヌクレオチド配列において、1~5個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが置換、欠失、挿入または付加されたヌクレオチド配列の全部または一部を含み、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー;
(c)上記(a)の複数の連結物、上記(b)の複数の連結物、上記(a)及び(b)の複数の連結物からなる群より選ばれる連結物;
であり得る。
 上記アプタマーのうち、(a)における「TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマーであって、配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含み、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー」の例としては、前記した「配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含むアプタマーであって、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマー」の例として記載したアプタマーのうち、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマーが挙げられる。
 また上記アプタマーのうち、(b)における「TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマーであって、配列番号1~3のいずれかから選択されるヌクレオチド配列において、1~5個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが置換、欠失、挿入または付加されたヌクレオチド配列の一部を含み、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー」の例としては、前記した「配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含むアプタマーであって、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマー」の例として記載したアプタマーから1~5個のヌクレオチドが置換、欠失、挿入または付加されており、かつ該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマーが挙げられる。
 上記(b)のアプタマーは、(a)のアプタマーに変異を導入し、後述のSELEXを再度行うことでも得ることができる。このようにして得られるアプタマーは(a)のRNAよりも結合活性や生理活性が高い可能性がある。このようにRNAに変異を導入することにより、種々の目的に合ったアプタマーを作製することができる。
 上記(c)において連結はタンデム結合にて行われ得る。また、連結に際し、リンカーを利用してもよい。リンカーとしては、ヌクレオチド鎖(例、1~約20ヌクレオチド)、非ヌクレオチド鎖(例、-(CH-リンカー、-(CHCHO)-リンカー、ヘキサエチレングリコールリンカー、TEGリンカー、ペプチドを含むリンカー、-S-S-結合を含むリンカー、-CONH-結合を含むリンカー、-OPO-結合を含むリンカー)が挙げられる。上記複数の連結物における複数とは、2以上であれば特に限定されないが、例えば2個、3個又は4個であり得る。
 本発明のアプタマーは、TGF-βII型受容体に対する結合性、安定性、薬物送達性等を高めるため、各ヌクレオチドの糖残基(例、リボース)が修飾されたものであってもよい。糖残基において修飾される部位としては、例えば、糖残基の2’位、3’位及び/又は4’位の酸素原子を他の原子に置き換えたものなどが挙げられる。修飾の種類としては、例えば、フルオロ化、O-アルキル化(例、O-メチル化、O-エチル化)、O-アリル化、S-アルキル化(例、S-メチル化、S-エチル化)、S-アリル化、アミノ化(例、-NH)が挙げられる。このような糖残基の改変は、自体公知の方法により行うことができる(例えば、Sproat et al.,(1991)Nucl.Acid.Res.19,733-738;Cotton et al.,(1991)Nucl.Acid.Res.19,2629-2635;Hobbs et al.,(1973)Biochemistry 12,5138-5145参照)。
 本発明のアプタマーはまた、TGF-βII型受容体に対する結合性等を高めるため、核酸塩基(例、プリン、ピリミジン)が改変(例、化学的置換)されたものであってもよい。このような改変としては、例えば、5位ピリミジン改変、6および/または8位プリン改変、環外アミンでの改変、4-チオウリジンでの置換、5-ブロモ又は5-ヨード-ウラシルでの置換が挙げられる。また、ヌクレアーゼ及び加水分解に対して耐性であるように、本発明のアプタマーに含まれるリン酸基が改変されていてもよい。例えば、P(O)O基が、P(O)S(チオエート)、P(S)S(ジチオエート)、P(O)NR(アミデート)、P(O)R、R(O)OR’、CO又はCH(ホルムアセタール)又は3’-アミン(-NH-CH-CH-)で置換されていてもよい〔ここで各々のR又はR’は独立して、Hであるか、あるいは置換されているか、又は置換されていないアルキル(例、メチル、エチル)である〕。
 連結基としては、-O-、-N-又は-S-が例示され、これらの連結基を通じて隣接するヌクレオチドに結合し得る。
 改変はまた、キャッピングのような3’及び5’の改変を含んでもよい。
 改変はさらに、ポリエチレングリコール、アミノ酸、ペプチド、inverted dT、核酸、ヌクレオシド、Myristoyl、Lithocolic-oleyl、Docosanyl、Lauroyl、Stearoyl、Palmitoyl、Oleoyl、Linoleoyl、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質、ビオチン、カラム担体などを末端に付加することにより行われ得る。核酸を付加する場合、付加される核酸の長さは特に限定されないが、100mer以下であることが好ましく、30mer以下であることが更に好ましい。上記カラム担体としては、例えばアガロースやセファロースが挙げられる。このような改変については、例えば、米国特許第5,660,985号、同第5,756,703号を参照のこと。
 本発明のアプタマーは、本明細書中の開示及び当該技術分野における自体公知の方法により化学合成することができる。アプタマーは、リン酸基の負電荷を利用したイオン結合、リボースを利用した疎水結合および水素結合、核酸塩基を利用した水素結合やスタッキング結合など多様な結合様式により標的物質と結合する。特に、構成ヌクレオチドの数だけ存在するリン酸基の負電荷を利用したイオン結合は強く、タンパク質の表面に存在するリジンやアルギニンの正電荷と結合する。このため、標的物質との直接的な結合に関わっていない核酸塩基は置換することができる。特に、ステム構造の部分は既に塩基対が作られており、また、二重らせん構造の内側を向いているので、核酸塩基は、標的物質と直接結合し難い。従って、塩基対を他の塩基対に置換してもアプタマーの活性は減少しない場合が多い。ループ構造など塩基対を作っていない構造においても、核酸塩基が標的分子との直接的な結合に関与していない場合に、塩基の置換が可能である。リボースの2’位の修飾に関しては、まれにリボースの2’位の官能基が標的分子と直接的に相互作用していることがあるが、多くの場合無関係であり、他の修飾分子に置換可能である。このようにアプタマーは、標的分子との直接的な結合に関与している官能基を置換または削除しない限り、その活性を保持していることが多い。また、全体の立体構造が大きく変わらないことも重要である。
 アプタマーは、SELEX法及びその改良法(例えば、A.D. Ellington et al.,(1990)Nature,346,818-822;C. Tuerk et al.,(1990)Science,249,505-510)を利用することで作製することができる。SELEX法ではラウンド数を増やしたり、競合物質を使用することで、標的物質に対してより結合力の強いアプタマーが濃縮され、選別されてくる。よって、SELEXのラウンド数を調節したり、及び/又は競合状態を変化させることで、結合力が異なるアプタマー、結合形態が異なるアプタマー、結合力や結合形態は同じであるが塩基配列が異なるアプタマーを得ることができる場合がある。また、SELEX法にはPCRによる増幅過程が含まれるが、その過程でマンガンイオンを使用するなどして変異を入れることで、より多様性に富んだSELEXを行うことが可能となる。
 SELEXで得られるアプタマーは標的物質に対して親和性が高い核酸であり、そのことは標的物質の活性部位に結合することを意味しない。従って、SELEXで得られるアプタマーは必ずしも標的物質の機能に作用するとは限らないことに注意すべきである。このようにして選ばれた活性のあるアプタマーは、最適化SELEXを行うことで、更に高性能化することが可能である。最適化SELEXとは、ある配列が決まっているアプタマーの一部をランダム配列にしたテンプレートや10~30%程度のランダム配列をドープしたテンプレートを作製して、再度SELEXを行うものである。
 SELEXで得られるアプタマーは70ヌクレオチド程度の長さがあり、これをそのまま医薬にすることは難しい。そこで容易に化学合成ができる50ヌクレオチド程度以下の長さまで短くする場合がある。このような本発明のアプタマーとしては、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することができる限り特に限定されるものではないが、例えば、配列番号1~3のいずれかから選択されるヌクレオチド配列の一部を含む、TGF-βとTGF-βII型受容体との結合を阻害するアプタマーが挙げられる。すなわち本発明のアプタマーには、TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害するアプタマーであって、配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含むアプタマーも含まれる。
 SELEXで得られるアプタマーはそのプライマー設計に依存して、その後の最小化作業のしやすさが変わる場合がある。
 アプタマーは化学合成が可能であるので容易に改変することができる。アプタマーはMFOLDプログラムを用いてその二次構造を予測することができる。またX線解析やNMR解析により立体構造を予測することも可能である。これらの構造予測により、どのヌクレオチドを置換または欠損することが可能か、また、どこに新たなヌクレオチドを挿入可能か否かを予測することができる。予測された新しい配列のアプタマーは容易に化学合成することができ、そのアプタマーが活性を保持しているかどうかは、既存のアッセイ系により確認することができる。また、修飾に関しても配列の長さと同様に高度に設計又は改変可能である。
 以上のように、アプタマーは高度に設計又は改変可能である。本発明はまた、所定の配列(例、ステム部分、インターナルループ部分、ヘアピンループ部分及び一本鎖部分から選ばれる部分に対応する配列:以下、必要に応じて固定配列と省略する)を含むアプタマーを高度に設計又は改変可能であるアプタマーの製造方法を提供する。
 例えば、このようなアプタマーの製造方法は、下記:
Figure JPOXMLDOC01-appb-C000002
〔上記において、(N)aはa個のNからなるヌクレオチド鎖を示し、(N)bは、b個のNからなるヌクレオチド鎖を示し、Nはそれぞれ、同一又は異なって、A、G、C、U及びT(好ましくは、A、G、C及びU)からなる群より選ばれるヌクレオチドである。a、bはそれぞれ、同一又は異なって、任意の数であり得るが、例えば1~約100、好ましくは1~約50、より好ましくは1~約30、さらにより好ましくは1~約20又は1~約10であり得る。〕で表されるヌクレオチド配列からなる単一種の核酸分子又は複数種の核酸分子(例、a、bの数等が異なる核酸分子のライブラリ)、及びプライマー用配列(i)、(ii)にそれぞれ対応するプライマー対を用いて、固定配列を含むアプタマーを製造することを含む。
 本発明はまた、本発明のアプタマー及びそれに結合した機能性物質を含む複合体を提供する。本発明の複合体におけるアプタマーと機能性物質との間の結合は共有結合、または非共有結合であり得る。本発明の複合体は、本発明のアプタマーと1以上(例、2又は3個)の同種又は異種の機能性物質とが結合したものであり得る。機能性物質は、本発明のアプタマーに何らかの機能を新たに付加するもの、あるいは本発明のアプタマーが保持し得る何らかの特性を変化(例、向上)させ得るものである限り特に限定されない。機能性物質としては、例えば、タンパク質、ペプチド、アミノ酸、脂質、糖質、単糖、ポリヌクレオチド、ヌクレオチドが挙げられる。機能性物質としてはまた、例えば、親和性物質(例、ビオチン、ストレプトアビジン、標的相補配列に対して親和性を有するポリヌクレオチド、抗体、グルタチオンセファロース、ヒスチジン)、標識用物質(例、蛍光物質、発光物質、放射性同位体)、酵素(例、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ)、薬物送達媒体(例、リポソーム、ミクロスフェア、ペプチド、ポリエチレングリコール類)、薬物(例、カリケアマイシンやデュオカルマイシンなどミサイル療法に使用されているもの、シクロフォスファミド、メルファラン、イホスファミドまたはトロホスファミドなどのナイトロジェンマスタード類似体、チオテパなどのエチレンイミン類、カルムスチンなどのニトロソ尿素、テモゾロミドまたはダカルバジンなどのリースト剤、メトトレキセートまたはラルチトレキセドなどの葉酸類似代謝拮抗剤、チオグアニン、クラドリビンまたはフルダラビンなどのプリン類似体、フルオロウラシル、テガフールまたはゲムシタビンなどのピリミジン類似体、ビンブラスチン、ビンクリスチンまたはビンオレルビンなどのビンカアルカロイド及びその類似体、エトポシド、タキサン、ドセタキセルまたはパクリタキセルなどのポドフィロトキシン誘導体、ドキソルビシン、エピルビシン、イダルビシン及びミトキサントロンなどのアントラサイクリン類及び類似体、ブレオマイシン及びミトマイシンなどの他の細胞毒性抗生物質、シスプラチン、カルボプラチン及びオキザリプラチンなどの白金化合物、ペントスタチン、ミルテフォシン、エストラムスチン、トポテカン、イリノテカン及びビカルタミド)、毒素(例、リシン毒素、リア毒素及びベロ毒素)が挙げられる。これらの機能性分子は最終的に取り除かれる場合がある。更に、トロンビンやマトリックスメタルプロテアーゼ(MMP)、FactorXなどの酵素が認識して切断することができるペプチド、ヌクレアーゼや制限酵素が切断できるポリヌクレオチドであってもよい。
 本発明のアプタマーまたは複合体は、医薬又は診断薬、検査薬、試薬として使用され得る。特に本発明のアプタマーまたは複合体はTGF-βII型受容体を介したTGF-βの細胞内シグナル伝達を阻害するので、例えばTGF-βの作用に起因する種々の疾患、TGF-βの作用により惹起される各種臓器での組織繊維症、または組織繊維症を伴う種々の疾患の医薬、診断薬、検査薬、試薬などとして有用である。
 ここで、「TGF-βの作用に起因する種々の疾患」としては、腎疾患(例、腎繊維症、腎炎、腎不全、腎硬化症など)、肺疾患(例、肺繊維症、肺炎など)、肝臓疾患(例、肝臓組織繊維症、肝硬変、肝炎など)、皮膚疾患(例、創傷、強皮症、乾癬、ケロイドなど)、関節炎(例、慢性関節リウマチ、変形性関節症など)、血管疾患(例、血管再狭窄、リウマチ性血管炎など)が挙げられる。また「組織繊維症を伴う種々の疾患」としては、種々臓器における癌(特に癌の浸潤、転移)、動脈硬化症などが挙げられる。
 本発明の医薬は、医薬上許容される担体が配合されたものであり得る。医薬上許容される担体としては、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロキシプロピルスターチ、ナトリウム-グリコール-スターチ、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エアロジル、タルク、ラウリル硫酸ナトリウム等の滑剤、クエン酸、メントール、グリシルリシン・アンモニウム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤、カカオ脂、ポリエチレングリコール、白灯油等のベースワックスなどが挙げられるが、それらに限定されるものではない。
 経口投与に好適な製剤は、水、生理食塩水、オレンジジュースのような希釈液に有効量のリガンドを溶解させた液剤、有効量のリガンドを固体や顆粒として含んでいるカプセル剤、サッシェ剤又は錠剤、適当な分散媒中に有効量の有効成分を懸濁させた懸濁液剤、有効量の有効成分を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等である。
 また、本発明の医薬は必要により、味のマスキング、腸溶性あるいは持続性などの目的のため、自体公知の方法でコーティングすることができる。コーティングに用いられるコーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリオキシエチレングリコール、ツイーン80、プルロニックF68、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギット(ローム社製、ドイツ,メタアクリル酸・アクリル酸共重合体)および色素(例、ベンガラ、二酸化チタンなど)などが用いられる。当該医薬は、速放性製剤、徐放性製剤のいずれであってもよい。徐放の基材としては、例えば、リポソーム、アテロコラーゲン、ゼラチン、ヒドロキシアパタイト、PLGAなどが挙げられる。
 非経口的な投与(例えば、静脈内投与、皮下投与、筋肉内投与、局所投与、腹腔内投与、経鼻投与、経肺投与など)に好適な製剤としては、水性及び非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性及び非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分及び医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌の溶媒に溶解又は懸濁すればよい状態で保存することもできる。更に注射液剤以外にも、吸入剤、軟膏剤も可能である。吸入剤の場合、凍結乾燥状態の有効成分を微細化し適当な吸入デバイスを用いて吸入投与する。吸入剤には、更に必要に応じて従来より使用されている界面活性剤、油、調味料、シクロデキストリンまたはその誘導体等を適宜配合することができる。
 本発明の医薬の投与量は、有効成分の種類・活性、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なるが、通常、成人1日あたり有効成分量として約0.0001~約100mg/kg、例えば約0.0001~約10mg/kg、好ましくは約0.005~約1mg/kgであり得る。
 本発明はまた、本発明のアプタマーまたは複合体が固定化された固相担体を提供する。固相担体としては、例えば、基板、樹脂、プレート(例、マルチウェルプレート)、フィルター、カートリッジ、カラム、多孔質材が挙げられる。基板は、DNAチップやプロテインチップなどに使われているものなどであり得、例えば、ニッケル-PTFE(ポリテトラフルオロエチレン)基板やガラス基板、アパタイト基板、シリコン基板、アルミナ基板などで、これらの基板にポリマーなどのコーティングを施したものが挙げられる。樹脂としては、例えば、アガロース粒子、シリカ粒子、アクリルアミドとN,N’-メチレンビスアクリルアミドの共重合体、ポリスチレン架橋ジビニルベンゼン粒子、デキストランをエピクロロヒドリンで架橋した粒子、セルロースファイバー、アリルデキストランとN,N’-メチレンビスアクリルアミドの架橋ポリマー、単分散系合成ポリマー、単分散系親水性ポリマー、セファロース、トヨパールなどが挙げられ、また、これらの樹脂に各種官能基を結合させた樹脂も含まれる。本発明の固相担体は、例えばTGF-βII型受容体の精製、TGF-βII型受容体の検出、TGF-βII型受容体の定量などに有用であり得る。
 本発明のアプタマーまたは複合体は、自体公知の方法により固相担体に固定できる。例えば、親和性物質(例、上述したもの)や所定の官能基を本発明のアプタマーまたは複合体に導入し、次いで当該親和性物質や所定の官能基を利用して固相担体に固定化する方法が挙げられる。本発明はまた、このような方法を提供する。所定の官能基は、カップリング反応に供することが可能な官能基であり得、例えば、アミノ基、チオール基、ヒドロキシ基、カルボキシル基が挙げられる。本発明はまた、このような官能基が導入されたアプタマーを提供する。
 本発明はまた、TGF-βII型受容体の検出及び定量方法を提供する。本発明の検出及び定量方法は、本発明のアプタマーを利用して(例、本発明の複合体及び固相担体の使用により)TGF-βII型受容体を測定することを含み得る。TGF-βII型受容体の検出及び定量方法は、抗体の代わりに本発明のアプタマーを用いること以外は、免疫学的方法と同様の方法により行われ得る。従って、抗体の代わりに本発明のアプタマーを用いることにより、酵素免疫測定法(EIA)(例、直接競合ELISA、間接競合ELISA、サンドイッチELISA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、ウエスタンブロット法(例、ウエスタンブロット法における二次抗体の代わりとしての使用)、免疫組織化学的染色法、セルソーティング法等の方法と同様の方法により、検出及び定量を行うことができる。このような方法は、例えば、生体又は生物学的サンプルにおけるTGF-βII型受容体量の測定に有用であり得る。
 本明細書中で挙げられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、本明細書での引用により、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 以下、本発明の実験の手法を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するものであって、本発明の範囲を限定するものではない。
[実施例1]組換えTGF-βII型受容体の精製
 細胞内ドメインおよび細胞膜貫通ドメインを欠失させ、C末端をヒスチジン(His)標識したヒト可溶化型TGF-βII型受容体(sTβRII-8His)の発現ベクターを構築した。次いでこの発現ベクターを、293fectin-トランスフェクション試薬(Invitrogen社製)を用いて、FreeStyle 293細胞へ導入した。次いで培養上清からTALON Metal Affinity Resins(Clontech社製)を用いて、組換えsTβRII-8Hisを精製した。
[実施例2]細胞培養
 FreeStyle 293細胞株は、FreeStyle 293発現培地(Invitrogen社製)を用いて培養した。293T細胞株はDMEM(Invitrogen社)に、Hep3B細胞株はMEM(Invitrogen社)に、SNU-16細胞株はRPMI1640(Invitrogen社)に10%ウシ胎児血清(JRH Biosciences社)、100単位/mlペニシリン-100μg/mlストレプトマイシン(Invitrogen社)を添加して培養した。
[実施例3]RNAアプタマーの選択
 SELEX法によるRNAアプタマーの取得はEllingtonらの方法(Ellington A.D. and Szostak J.W.,In vitro selection of RNA molecules that bind specific ligands,Nature,346:818-822,1990)、およびTuerkらの方法(Tuerk C. and Gold L.,Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,Science,249:505-510,1990)を改良した方法、すなわち精製したsTβRII-8Hisを、TALON Metal Affinity ResinsまたはNi-NTA Agaroseに固相化し、40塩基のランダム配列を持つRNAプール(N40ランダムRNAプール)に対するSELEX法を行うことで得た。具体的には、以下のとおりである。
 まずSELEX法に用いたN40ランダムRNAプールは、化学合成した下記のF1プライマーと40塩基のランダム配列を持つテンプレート(オペロンバイオテクノロジー社、Invitrogen社に合成依頼)より作製した。ランダム配列テンプレートはEx Taq Hot Start Version(タカラバイオ社製)をもちいたPCRによって増幅させ、このDNA断片を転写のテンプレートとして、F1プライマーに含まれるT7 RNAポリメラーゼのプロモーター配列により、DuraScribe T7 Transcription Kits(Epicentre Technologies社製)をもちいてin vitroで転写し、フェノール抽出とゲルろ過により精製し、N40ランダムRNAプールとした。
 TALON Metal Affinity ResinsまたはNi-NTA Agarose(Qiagen社製)に固相化したsTβRII-8HisとN40ランダムRNAプール内のRNAの結合は、バッファーA[20mM Tris-HCl,80mM potassium acetate,2.5mM magnesium acetate,1mM dithiothreitol]中で行った。
 TALON Metal Affinity ResinsまたはNi-NTA AgaroseをバッファーAで洗浄した後、300mMイミダゾールを用いてsTβRII-8Hisとこれに結合したRNAを遊離させた。このRNAを基にRT-PCRを行ってDNAテンプレートを増幅した後、in vitroで転写を行い、次のラウンドのRNAプールを作製した。
 6ラウンドまでこのサイクルを回した後、濃縮されてきたRNAに対応するcDNAをpGEM T-EASY Vector(Promega社製)にクローン化し、大腸菌株DH5α(東洋紡績社製)を形質転換して単一クローンを得た。プラスミドDNAを抽出後、以下のシークエンスプライマーを用いてDNAシークエンサーModel 3100(ABI社製)により塩基配列を決定した。その結果、20種類の収束したRNAが得られた。
(配列番号4)F1プライマー:
5’-TAATACGACTCACTATAGGGACACAATGGACG-3’(T7プロモーター配列を下線で示した)
(配列番号5)ランダム配列テンプレート:
5’-CTCTCATGTCGGCCGTTA-N40-CGTCCATTGTGTCCCTATAGTGAGTCGTATTA-3’ 
(配列番号6)シークエンスプライマー:
5’-GTTTTCCCAGTCACGAC-3’
 得られた塩基配列に対してMFOLDプログラムを適用し、RNAの二次構造予測を行った。
[実施例4]表面プラズモン共鳴による結合反応速度の解析
 収束したRNAのTβRIIへの結合活性を表面プラズモン共鳴解析により検討した。poly(dT)16オリゴヌクレオチドの5’末端をビオチン化し、ストレプトアビジンセンサーチップ(GEヘルスケアバイオサイエンス社)上に固定化した。さらに3’末端にpoly(A)16を付加した、収束RNAを添加して固定化した。
 次いで、sTβRII(R&D Systems社製)、あるいはTβ-sTβRIIを添加し、BIACORE 2000(Biacore AB社製)を用いて表面プラズモン共鳴解析を行うことで、結合反応速度を測定した(図1)。RNAとsTβRII、あるいはTβ-sTβRIIが結合すると光学的な変化が起こり、センサーグラム上でResonance Unitsの上昇が観察される。N40ランダムRNAプールとsTβRII、あるいはTβ-sTβRIIとの非特異的な結合をバックグラウンドとして測定を行った。得られたセンサーグラムをBIAevaluation(BIACORE社製)ソフトウェアで解析し、解離定数(Kd値)を算出した。収束したRNAのうち、13種類がsTβRIIに対し結合能を有する抗TβRIIRNAアプタマーであった。算出した結合解離定数(Kd)は、2.9×10-9M~10.4×10-9Mであった。
[実施例5]蛍光標識RNA、あるいは蛍光標識抗体による細胞染色
 次に、抗TβRIIRNAアプタマーが細胞膜上で発現されるTβRIIに結合できるか検討した。
 N40ランダムRNAプールおよびRNAアプタマーは、ULYSIS Nucleic Acid Labeling Kits(Invitrogen社製)を用いてAlexa Fluor 488で標識した。
 次いで標識されたアプタマーが、表面プラズモン共鳴解析により非標識RNAアプタマーと同様にsTβRIIに結合することを確認した。
 Poly-D-Lysine BioCoat culture slides(BD Biosciences社製)上で培養したヒト胎児腎細胞株293Tに対して、FuGENE 6 Transfection Reagent(Roche Applied Science社製)を用いてヒトTβRIIの発現プラスミドを一過性に導入し、ヒトTGF-βII型受容体を発現させた。48時間後に細胞を4%パラフォルムアルデヒドで固定した。さらに、10%BSA-PBSでブロッキングした後、Alexa Fluor 488標識RNA、あるいは抗ヒトTβRII抗体(SantaCruz社製)とAlexa Fluor 488標識抗ウサギIgG抗体(Invitrogen社製)を用いて細胞を染色した。細胞核DNAはDAPI Nucleic Acid Stain(Invitrogen社製)で染色した。VECTASHIELD Mounting Medium(Vector Laboratories社製)を用いて包埋し、倒立型リサーチ顕微鏡IX71(オリンパス社)で蛍光を観察した。
 Alexa Fluor 488標識抗TβRIIRNAアプタマーを用いてヒトTβRII発現293T細胞を染色すると、抗ヒトTβRII抗体を用いた免疫染色と同様に蛍光が観察されたが、親株である293T細胞を染色しても蛍光は観察されなかった。一方、Alexa Fluor 488標識N40ランダムRNAを用いてヒトTβRII発現293T細胞、親株293T細胞を染色したが、どちらも蛍光は観察されなかった。これらの結果から、得られた抗TβRIIRNAアプタマーが、抗ヒトTβRII抗体と同様に、細胞表面に発現するTβRIIを特異的に認識し、結合することが示された。
[実施例6]TGF-β結合領域を認識する抗TβRIIRNAアプタマーの探索
 sTβRIIに対し結合能を有する13種類の抗TβRIIRNAアプタマーの中に、TβRIIのTGF-β結合領域を認識するRNAアプタマーがあるか否かを検索した。
 上述のようにストレプトアビジンセンサーチップにRNAアプタマーを固定化し、sTβRII、あるいは予めTGF-βを結合させたsTβRII(Tβ-sTβRII)を添加し表面プラズモン共鳴解析を行った(図2)。13種類のアプタマーのうち、2RA5と名づけられたRNAアプタマーはsTβRIIに結合したが、Tβ-sTβRIIとは結合しなかった。一方、2RA1と名づけられたアプタマーを含む他の12種類のRNAアプタマーは、sTβRIIおよびTβ-sTβRIIの両方と結合した。
 以上の結果、2RA5のみがTβRIIのTGF-β結合領域を認識しこの領域に結合していることがわかった。2RA5は配列番号1で示されるヌクレオチド配列からなるRNAアプタマーである(以下、配列番号1で示されるヌクレオチド配列からなるRNAアプタマーを「2RA5」と記載する場合がある)。
[実施例7]RNAアプタマーによるTβRII、Tβ-TβRIIの沈降
 さらに、実施例6で得られたRNAアプタマーである2RA5が、細胞可溶化物からTβRII、あるいはTGF-βとTβRIIの複合体(Tβ-TβRII)を分離できるか否かを検討した。
 N40ランダムRNA、RNAアプタマー(2RA1、2RA5)のそれぞれの3’末端にpoly(A)16を付加し、Oligo(dT)30を固定化したラテックス粒子、Oligotex-dT30 Super(タカラバイオ社製)に塩基対合を介して固定化した。次いでヘムアグルチニン(HA)標識ヒトTβRII(TβRII-HA)を発現させた293T細胞を、未刺激で、あるいはTGF-βで刺激した後、2mM DSS(Pierce社製)で処理して結合したTGF-βとTβRIIとを架橋し、細胞可溶化物とした。RNAを固定化したOligotex-dT30 Superと細胞可溶化物とを混合し、反応させた後、PBSで洗浄した。Oligotex-dT30 SuperからRNAとそれに結合するたんぱく質を回収し、SDS-PAGEおよびペルオキシダーゼ(HRP)標識抗HAモノクローナル抗体を用いたウェスタンブロッティングにより解析した。当該ウェスタンブロッティングでは、Amersham ECL Plus Westerm Blotting Detection Reagents(GEヘルスケア社製)とHRPを反応させ、LAS-1000 Plus(富士フィルム社製)で検出し、TβRII、Tβ-TβRIIがRNAアプタマーにより沈降されたか解析した。
 その結果、2RA5はTβRIIを分離したが、Tβ-TβRIIは分離できなかった。一方、2RA1はTβRIIのみならずTβ-TβRIIも分離し、N40ランダムRNAはどちらも分離しなかった。以上の結果から2RA5がTβRIIのTGF-β結合領域に結合していることが明らかとなり、2RA5がTGF-βとTβRIIとの結合を阻害しTGF-βの生理作用を抑制する可能性が示唆された。
[実施例8]RNAアプタマーによるTGF-βシグナル伝達の抑制
 次に、本発明のRNAアプタマーがin vitroにおいてTGF-βとTβRIIとの結合を阻害し、TGF-βのシグナル伝達を抑制するか検討した。
 TGF-βがTβRIIに結合すると、細胞質内に存在するTGF-βのシグナル伝達分子であるSmad2、Smad3が活性化される。活性化されたSmad2、Smad3はSmad4とヘテロ複合体を形成し、細胞質から核へと移行し転写因子として機能するようになる。FLAG標識Smad3(FLAG-Smad3)、Smad4、TβRI、TβRIIの発現プラスミドを293T細胞へ、FLAG-Smad3の発現プラスミドをヒト肝癌細胞株Hep3Bへ導入、発現させ、TGF-βで刺激すると、FLAG-Smad3の核内移行が観察された。そこで、細胞をsTβRII、N40ランダムRNA、RNAアプタマー(2RA1、2RA5)それぞれの存在下でTGF-βで刺激し、FLAG-Smad3の核内移行を抗FLAGモノクローナル抗体とAlexa Fluor 568標識抗マウスIgG抗体を用いて観察した。
 その結果、sTβRIIと同様に、2RA5存在下においてFLAG-Smad3の核内移行が著明に阻害された。これに対し、N40ランダムRNA、2RA1存在下ではFLAG-Smad3の核内移行は阻害されなかった。以上の結果から、2RA5はTβRIIへのTGF-βの結合を阻害することで、TGF-βを介したシグナル伝達経路を阻害し、TGF-β由来の生理作用を抑制できることがわかった。
[実施例9]RNAアプタマーの短鎖化
 標的物質に対する結合能を維持したまま塩基数を減らし、分子量を減少させる目的で、2RA5の小型化を試みた。
 2RA5のMFOLDプログラムによって予想された二次構造をもとに、2RA5の複数の欠損変異体を作製し、表面プラズモン共鳴解析により各欠損変異体のsTβRIIに対する結合能を調べた。73塩基長の2RA5から9塩基欠失させた「2RA5S1」と名づけられたRNAアプタマー、そして14塩基欠失させた「2RA5S2」と名づけられたRNAアプタマーは、2RA5とよく似た二次構造と同様の結合活性を有していた(図3)。
 2RA5S1、2RA5S2の塩基配列は、配列番号2、配列番号3にそれぞれ示される。
[実施例10]RNAアプタマーによるTGF-β細胞増殖抑制作用の阻害試験
 ヒト胃癌細胞株SNU-16はTGF-βに対する反応性を維持しており、TGF-βで刺激すると強く細胞増殖が抑制される。そこで、anti-human TβRII抗体、N40ランダムRNA、2RA1、2RA5、あるいは2RA5S1存在下でSNU-16細胞をTGF-βで刺激し、TGF-βの細胞増殖抑制作用が阻害されるか検討した(図4)。
 細胞を96穴プレートに播種し、培地、anti-human TβRII抗体(R&D Systems社)、N40ランダムRNAプール、あるいはRNAアプタマーを加え、37℃、5%COで1時間静置した。その後、培地、あるいは40pMのTGF-βを加え、16時間培養した。Cell Proliferation Reagent WST-1(Roche Applied Science社)を加え、37℃、5%COで4時間静置した後、マイクロプレートリーダーを用いてサンプルの吸光度を450nmの波長で測定した。リファレンス波長は655nmとした。
 その結果、anti-human TβRII抗体と同様に、2RA5または2RA5S1存在下で、TGF-βにより誘導される細胞増殖抑制が著明に阻害された。一方、N40ランダムRNA、あるいは2RA1存在下ではこのような細胞増殖抑制の阻害は見られなかった。これらの結果から、2RA5、2RA5S1がin vitroにおいてTGF-βの細胞増殖抑制作用を阻害することが明らかとなった。
 本発明により、TGF-βII型受容体に対する結合能を有し、TGF-βとTGF-βII型受容体との結合を阻害するアプタマーが提供される。このようなアプタマーは、TGF-βの機能を阻害するアプタマーである。本発明のアプタマーは、過剰なTGF-β発現により引き起こされる疾患の治療等に有用である。
 本願は、日本で出願された特願2009-198813(出願日:2009年8月28日)を基礎としており、それらの内容は本明細書に全て包含されるものである。
 配列番号1は、TGF-βII型受容体に対する結合能を有する核酸である。
 配列番号2は、TGF-βII型受容体に対する結合能を有する核酸である。
 配列番号3は、TGF-βII型受容体に対する結合能を有する核酸である。

Claims (10)

  1.  TGF-βII型受容体に結合し、かつTGF-βとTGF-βII型受容体との結合を阻害することを特徴とするアプタマー。
  2.  配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含む、請求項1に記載のアプタマー。
  3.  ピリミジンヌクレオチドの少なくとも一つが修飾ヌクレオチドである、請求項2に記載のアプタマー。
  4.  以下(a)または(b)のいずれかである、請求項1に記載のアプタマー:
    (a)配列番号1~3のいずれかから選択されるヌクレオチド配列の全部または一部を含むアプタマーであって、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー;
    (b)配列番号1~3のいずれかから選択されるヌクレオチド配列において、1~5個のヌクレオチドが置換、欠失、挿入または付加されたヌクレオチド配列の全部または一部を含むアプタマーであって、該アプタマーに含まれるピリミジンヌクレオチドのリボースの2’位が、同一または異なってフッ素原子であるか、あるいは水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される原子または基で置換されている、アプタマー。
  5.  請求項1~4のいずれか一項に記載のアプタマーおよび機能性物質を含む複合体。
  6.  機能性物質が、親和性物質、標識用物質、酵素、薬物送達媒体または薬物である、請求項5に記載の複合体。
  7.  請求項1~4のいずれか一項に記載のアプタマーあるいは請求項5または6に記載の複合体を用いることを特徴とする、TGF-βII型受容体を検出および/または定量する方法。
  8.  請求項1~4のいずれか一項に記載のアプタマーあるいは請求項5または6に記載の複合体を含む、TGF-βの作用に起因する疾患の予防または治療薬。
  9.  請求項1~4のいずれか一項に記載のアプタマーあるいは請求項5または6に記載の複合体を投与することを特徴とする、TGF-βの作用に起因する疾患の予防または治療方法。
  10.  TGF-βの作用に起因する疾患の予防または治療のための、請求項1~4のいずれか一項に記載のアプタマーあるいは請求項5または6に記載の複合体。
PCT/JP2010/064612 2009-08-28 2010-08-27 TGF-βII型受容体に結合する核酸およびその使用 WO2011024955A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009198813A JP2011045339A (ja) 2009-08-28 2009-08-28 TGF−βII型受容体に結合する核酸およびその使用
JP2009-198813 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024955A1 true WO2011024955A1 (ja) 2011-03-03

Family

ID=43628053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064612 WO2011024955A1 (ja) 2009-08-28 2010-08-27 TGF-βII型受容体に結合する核酸およびその使用

Country Status (2)

Country Link
JP (1) JP2011045339A (ja)
WO (1) WO2011024955A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206899A (ja) * 1999-11-18 2001-07-31 Japan Tobacco Inc TGF−βII型受容体に対するヒトモノクローナル抗体及びその医薬用途
JP2004121001A (ja) * 2002-08-07 2004-04-22 Japan Tobacco Inc TGF−βII型受容体に対する高親和性モノクローナル抗体
US20050239134A1 (en) * 2004-04-21 2005-10-27 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein
JP2006055164A (ja) * 1991-10-31 2006-03-02 Whitehead Inst For Biomedical Research TGF−β型受容体cDNAおよびその用途
JP2006211905A (ja) * 2005-02-01 2006-08-17 Univ Of Tokyo 腫瘍壊死因子受容体ファミリータンパク質に結合する核酸リガンド
JP2007043917A (ja) * 2005-08-08 2007-02-22 Ribomic Inc 腫瘍成長因子β受容体III型に結合する核酸リガンド

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055164A (ja) * 1991-10-31 2006-03-02 Whitehead Inst For Biomedical Research TGF−β型受容体cDNAおよびその用途
JP2001206899A (ja) * 1999-11-18 2001-07-31 Japan Tobacco Inc TGF−βII型受容体に対するヒトモノクローナル抗体及びその医薬用途
JP2004121001A (ja) * 2002-08-07 2004-04-22 Japan Tobacco Inc TGF−βII型受容体に対する高親和性モノクローナル抗体
US20050239134A1 (en) * 2004-04-21 2005-10-27 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein
JP2006211905A (ja) * 2005-02-01 2006-08-17 Univ Of Tokyo 腫瘍壊死因子受容体ファミリータンパク質に結合する核酸リガンド
JP2007043917A (ja) * 2005-08-08 2007-02-22 Ribomic Inc 腫瘍成長因子β受容体III型に結合する核酸リガンド

Also Published As

Publication number Publication date
JP2011045339A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5704638B2 (ja) Il−17に対するアプタマー及びその使用
JP6118724B2 (ja) Ngfに対するアプタマー及びその用途
JP5190573B2 (ja) ミッドカインに対するアプタマー及びその使用
RU2590709C2 (ru) Sdf-1-связывающие нуклеиновые кислоты
ES2555160B1 (es) Aptámeros específicos de TLR-4 y usos de los mismos
JP5810356B2 (ja) キマーゼに対するアプタマー及びその使用
JP5899550B2 (ja) Fgf2に対するアプタマー及びその使用
KR20080036595A (ko) 면역글로불린 g에 결합하는 핵산과 그 이용법
WO2013186857A1 (ja) Fgf2に対するアプタマー及びその使用
JP5602020B2 (ja) Ngfに対するアプタマー及びその使用
WO2014080997A1 (ja) ミッドカインに対するアプタマー及びその用途
JPWO2009063998A1 (ja) 疎水性物質付加核酸及びその使用
WO2011024955A1 (ja) TGF-βII型受容体に結合する核酸およびその使用
JPWO2015163458A1 (ja) オートタキシンに結合しオートタキシンの生理活性を阻害するアプタマー及びその利用
WO2015147017A1 (ja) Fgf2に対するアプタマー及びその使用
JP6249453B2 (ja) Il−17に対するアプタマー及びその使用
JP4910195B2 (ja) 免疫グロブリンgに結合する核酸とその利用法
WO2019107532A1 (ja) キマーゼに対するアプタマー及びその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812004

Country of ref document: EP

Kind code of ref document: A1