JP6118724B2 - Ngfに対するアプタマー及びその用途 - Google Patents

Ngfに対するアプタマー及びその用途 Download PDF

Info

Publication number
JP6118724B2
JP6118724B2 JP2013536469A JP2013536469A JP6118724B2 JP 6118724 B2 JP6118724 B2 JP 6118724B2 JP 2013536469 A JP2013536469 A JP 2013536469A JP 2013536469 A JP2013536469 A JP 2013536469A JP 6118724 B2 JP6118724 B2 JP 6118724B2
Authority
JP
Japan
Prior art keywords
seq
aptamer
ngf
idt
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013536469A
Other languages
English (en)
Other versions
JPWO2013047844A1 (ja
Inventor
玲 金
玲 金
久尚 平松
久尚 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimoto Pharmaceutical Corp
Ribomic Inc
Original Assignee
Fujimoto Pharmaceutical Corp
Ribomic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimoto Pharmaceutical Corp, Ribomic Inc filed Critical Fujimoto Pharmaceutical Corp
Publication of JPWO2013047844A1 publication Critical patent/JPWO2013047844A1/ja
Application granted granted Critical
Publication of JP6118724B2 publication Critical patent/JP6118724B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/317Chemical structure of the backbone with an inverted bond, e.g. a cap structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/344Position-specific modifications, e.g. on every purine, at the 3'-end
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、NGFに対するアプタマー及びその用途に関する。
神経成長因子NGF(nerve growth factor)は1951年に同定された最初のニューロトロフィンであり、末梢および中枢ニューロンの発達・生存に係わる重要な分泌タンパク質である。118個のアミノ酸からなり、分子量は13kDaで、分子内に3ヶ所のS−S結合を有する。
NGFの受容体には高親和性のチロシンキナーゼ型受容体TrkAと低親和性の腫瘍壊死因子受容体スーパーファミリーに属するp75が知られている。これらの受容体はホモ二量体もしくはヘテロ二量体として作用し神経系の発生と維持に深く係わっている。TrkAは一回膜貫通型受容体で細胞内ドメインにチロシンキナーゼ構造を持つ。NGFが結合するとチロシンリン酸化が起こり、下流にシグナルが伝わり、その細胞の分化促進や生存維持に働く。
TrkAのファミリー受容体としてTrkBとTrkCが知られている。TrkBはBDNFおよびNT−4/5と結合し、TrkCはNT−3と結合する。p75はTrkAに比べてリガンド特異性が低く、NGF以外にもBDNF、NT−3、NT−4/5と結合する。p75は一回膜貫通型受容体であるが、細胞質側にチロシンキナーゼドメインはない。TrkA同様、神経細胞だけでなく非神経細胞にも発現している。この受容体は細胞の分化促進や生存維持に関与しているほか、アポトーシスの誘導や細胞遊走とも関係していることが知られている。結晶構造解析の結果から、ホモ二量体のNGFはTrkAと2:2で結合するが、p75とは2:1で結合することが示唆された。ホモ二量体のNGFがTrkAとp75のヘテロ二量体に結合することもある。
NGFは神経系において重要な役割を担っていることはよく知られている。コリン作動性ニューロンの生存を維持する作用を有することが明らかにされており、アルツハイマー病と何らかの関連があると考えられている。また、老齢ラットの脳内にNGFを投与すると、記憶障害の改善が認められることから、老人性痴呆の治療薬としても期待されている。
またNGFは炎症と関連があり、炎症性疾患の患者や炎症性動物モデルでNGFの発現上昇が観察されている。例えば、全身性エリテマトーデス、多発性硬化症、乾癬、関節炎、間質性膀胱炎、喘息などがそれに当たる。関節リウマチの患者の滑液中のNGFの濃度が上昇していることが報告されている。また、関節リウマチモデルラットのNGFの発現の向上、関節炎モデルマウスで肥満細胞の増加とNGFの発現の向上が報告されている。
NGFは痛みと深く関わる。ヒトにNGFを皮下投与すると、筋肉痛のような深部痛が数日続き、注入部位の痛覚過敏が生じる。NGFノックアウトマウスとTrkAノックアウトマウスは無髄神経が欠損し痛みを感じなくなる。成熟ラットに1mg/kgのNGFを腹腔内投与すると、侵害性熱や機械刺激に対する痛覚過敏が生じる。NGFのトランスジェニックマウスは炎症症状を伴わない痛覚過敏を示す。また、先天性無痛無汗症(CIPA)の患者のTrkA遺伝子に異常があること、NGFの遺伝子に異常があると痛覚が低下することが知られている。
以上より、NGF阻害剤は侵害受容性疼痛、炎症性疼痛、神経因性疼痛、癌性疼痛、線維筋痛などの疼痛の治療薬として利用可能であることが理解できる。
ところで、近年、RNAアプタマーの治療薬、診断薬、試薬への応用が注目されており、いくつかのRNAアプタマーが臨床段階あるいは実用化段階に入っている。2004年12月には世界初のRNAアプタマー医薬であるMacugenが加齢黄斑変性症の治療薬として米国で承認された。RNAアプタマーとはタンパク質などの標的物質に特異的に結合するRNAのことで、SELEX(Systematic Evolution of Ligands by Exponential Enrichment)を用いて作製することができる(特許文献1〜3)。SELEXとは、1014個程度の異なるヌクレオチド配列を持つRNAのプールから、標的物質に特異的に結合するRNAを選別してくる方法である。使用されるRNAは40残基程度のランダム配列をプライマー配列で挟み込んだ構造をしている。このRNAプールを標的物質と会合させて、フィルターなどを用いて標的物質に結合したRNAのみ回収する。回収したRNAはRT−PCRで増幅し、これを次のラウンドの鋳型として用いる。この作業を10回程度繰り返すことにより、標的物質と特異的に結合するRNAアプタマーを取得することができる場合がある。
アプタマー医薬は抗体医薬と同様に細胞外因子を標的にすることができるが、既に公表されている多くの学術論文等を参考にすると、いくつかの点で抗体医薬を上回る可能性がある。例えば、アプタマーは抗体よりも結合力と特異性が高い場合が多々ある。また、免疫排除を受けにくく、抗体特有の抗体依存性細胞障害(ADCC)や補体依存性細胞障害(CDC)などの副作用は起こらない。デリバリーの観点では、アプタマーは抗体の1/10程度のサイズであるので、目的の部位まで薬物を送達させることはより容易である。アプタマーは化学合成により生産されるので、各種修飾を容易に入れることができ、大量生産によるコストダウンが可能である。一方で、一般にアプタマーの血中半減期は抗体よりも短い。しかし、この点も毒性を考慮した場合はメリットとなる場合がある。以上の点より、同じ分子を標的にした医薬品であっても、アプタマー医薬は抗体医薬に勝る可能性がある。
本発明者らは、NGFに結合し、NGFとNGF受容体との結合を阻害するアプタマーを製造し、これがNGFによる神経突起伸長活性を阻害することを見出した(特許文献4)。一方、特許文献5には、自動化されたSELEXによって得られたNGFに対するアプタマーが記載されており、また特許文献6には、特許文献4で得られたアプタマーの改変体および修飾体が記載されている。
国際公開WO91/19813号 国際公開WO94/08050号 国際公開WO95/07364号 国際公開WO2010/035725号 国際公開WO02/077262号 国際公開WO03/070984号
本発明は、NGFに対するアプタマー及びその利用方法などを提供することを目的とする。特に、医薬品用途に適したNGFアプタマー、即ち、短鎖長でかつNGF活性(神経突起伸長活性、TF−1細胞増殖活性)阻害活性が高く、しかもNGFに対する特異性の高いアプタマーを提供することを目的とする。
本発明者らは、上記課題を解決するため、鋭意検討した結果、神経突起伸長阻害についてのIC50値が1nM以下の、従来公知のNGFアプタマーに比べて顕著に高い神経突起伸長阻害活性を有する、より良質なNGFアプタマーを作製することに成功し、本発明を完成するに至った。
即ち、本発明は、以下の発明などを提供するものである。
[1]式(I)で表される潜在的2次構造を形成できる、NGFと結合するアプタマー。
(式中、NはA、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであり、
N11〜N13、N21〜N23、N32〜N38およびN42〜N48は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つもしくは2つのヌクレオチド、または結合であり、
N14、N24、N31、N41、N39およびN49は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであって、
N14とN24、N31とN41およびN39とN49は互いにワトソン−クリック塩基対を形成し、
N11-N12-N13-N14とN21-N22-N23-N24の組合せでステム構造を形成できるヌクレオチド配列であり、
N31-N32-N33-N34-N35-N36-N37-N38-N39とN41-N42-N43-N44-N45-N46-N47-N48-N49の組合せでステム構造を形成できるヌクレオチド配列である。)
[2]N11〜N13、N21〜N23、N32〜N38およびN42〜N48が、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドである、上記[1]記載のアプタマー。
[3]N14がU、N24がA、N31がG、N41がC、N39がG、N49がCである、上記[1]または[2]記載のアプタマー。
[4]N32-N33-N34-N35-N36-N37-N38とN42-N43-N44-N45-N46-N47-N48で4個以上のワトソン−クリック塩基対を形成する、上記[1]〜[3]のいずれかに記載のアプタマー。
[5]以下の(a)又は(b)のいずれかである上記[1]記載のアプタマー:
(a)配列番号3、配列番号9〜13、配列番号22〜117および配列番号152〜168のいずれかから選択されるヌクレオチド配列(但し、ウラシルはチミンであってもよい)からなる核酸;
(b)上記(a)のヌクレオチド配列において、1又は数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列からなり、かつNGFと結合する核酸。
[6]塩基長が50以下である、上記[1]〜[5]のいずれかに記載のアプタマー。
[7]少なくとも1つのヌクレオチドが修飾されている、上記[1]〜[6]のいずれかに記載のアプタマー。
[8]inverted dTまたはポリエチレングリコールで修飾されている、上記[7]記載のアプタマー。
[9]inverted dTまたはポリエチレングリコールが、アプタマーの5’末端または3’末端に結合している、上記[8]記載のアプタマー。
[10]各ピリミジンヌクレオチドのリボースの2’位のヒドロキシル基が、同一または異なって、無置換であるか、水素原子、フッ素原子およびメトキシ基からなる群より選ばれる原子または基で置き換えられている、上記[7]〜[9]のいずれかに記載のアプタマー。
[11]各プリンヌクレオチドのリボースの2’位のヒドロキシル基が、同一または異なって、無置換であるか、水素原子、フッ素原子およびメトキシ基からなる群より選ばれる原子または基で置き換えられている、上記[7]〜[9]のいずれかに記載のアプタマー。
[12]NGFの神経突起伸長活性および/または細胞増殖活性を阻害する、上記[1]〜[11]のいずれかに記載のアプタマー。
[13]上記[1]〜[12]のいずれかに記載のアプタマーを含む、医薬組成物。
[14]上記[1]〜[12]のいずれかに記載のアプタマーを含む、抗疼痛剤。
[15]上記[1]〜[12]のいずれかに記載のアプタマーを含む、抗炎症剤。
[16]上記[1]〜[12]のいずれかに記載のアプタマーを、それを必要とする対象に投与することを特徴とする、疼痛又は炎症を伴う疾患を治療又は予防する方法。
[17]疼痛又は炎症を伴う疾患の治療又は予防のための、上記[1]〜[12]のいずれかに記載のアプタマー。
本発明のアプタマーまたは核酸は、上記の構成をとることにより優れたNGF阻害活性、特に高い神経突起伸長阻害活性を示すので、疼痛や炎症性疾患などの疾患に対する医薬として有用であり得る。
配列番号3で表されるNGFアプタマーの予測される2次構造の模式図である。左上側のステム−ループ構造がコンセンサス二次構造1に相当する。 配列番号12で表されるNGFアプタマーのヌクレオチド配列に代表されるコンセンサス二次構造1を示す模式図である。 配列番号82(2)で表されるNGFアプタマー(修飾体)がNGF、NT−3およびNT−4に結合することを示すセンサーグラムである。縦軸のRUは、相対値(Relative Unit)を示し、Resp.Diff.は、反応差(Response Differences)を示す。横軸は、時間(秒)(Time(s))を示す。縦軸、横軸におけるこれらの表記は、以下の図4〜5でも同様である。 配列番号82(2)で表されるNGFアプタマー(修飾体)がNGFとNGF受容体TrkAとの結合を阻害することを示すセンサーグラムである。 配列番号82(2)で表されるNGFアプタマー(修飾体)がNGFとNGF受容体p75との結合を阻害することを示すセンサーグラムである。
本発明は、式(I)で表される潜在的2次構造:
(式中、NはA、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであり、
N11〜N13、N21〜N23、N32〜N38およびN42〜N48は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つもしくは2つのヌクレオチド、または結合であり、
N14、N24、N31、N41、N39およびN49は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであって、
N14とN24、N31とN41およびN39とN49は互いにワトソン−クリック塩基対を形成し、
N11-N12-N13-N14とN21-N22-N23-N24の組合せでステム構造を形成できるヌクレオチド配列であり、
N31-N32-N33-N34-N35-N36-N37-N38-N39とN41-N42-N43-N44-N45-N46-N47-N48-N49の組合せでステム構造を形成できるヌクレオチド配列である。)
を形成できる、NGFと結合するアプタマー(以下、「本発明のアプタマー」と記載する)を提供する。上記ヌクレオチド配列は後述する修飾を受けていてもよい。
アプタマーとは、所定の標的分子に対する結合活性を有する核酸分子をいう。アプタマーは、所定の標的分子に対して結合することにより、所定の標的分子の活性を阻害し得る。本発明のアプタマーは、NGFに対して結合活性を有するアプタマーである。好ましい態様によれば、本発明のアプタマーはNGFに結合し、NGFとNGF受容体との結合を阻害することによって、NGFの活性を阻害し得る。
本発明のアプタマーは、RNA、DNA、修飾核酸又はそれらの混合物などの核酸であり得る。従って、以下において、本発明のアプタマーは「本発明の核酸」と読み替えて表される場合もあり得る。
一本鎖核酸は種々の2次構造をとることができる。「潜在的2次構造」とは、ある一本鎖核酸が、その1次構造からみて熱力学的にとり得る2次構造を意味するが、特に本発明のアプタマーにおける潜在的2次構造は、実施例5に記載のMFOLDプログラムを用いて予測することができる2次構造である。従って、上記式(I)で表される2次構造をとり得る1次構造を有する限り、現に当該2次構造をとっていない核酸であっても、本発明のアプタマーに包含される。
よって好ましくは、本発明のアプタマーは、その1次構造からみて熱力学的に安定に上記式(I)で表される2次構造をとり得る核酸分子であり、この意味において、本発明のアプタマーは式(I)で表わされる潜在的2次構造を形成できるアプタマーである。
式(I)で表される潜在的2次構造は、いわゆる「ステム−ループ構造」であり、特にN11-N12-N13-N14とN21-N22-N23-N24との組合せにより形成され得るステム構造と、N31-N32-N33-N34-N35-N36-N37-N38-N39とN41-N42-N43-N44-N45-N46-N47-N48-N49との組合せにより形成され得るステム構造との間にループ構造(本明細書中、「インターナルループ1」と記載する)を有し、さらに、N39とN49との間にループ構造(本明細書中、「ループ2」と記載する)を有することを特徴とする。
「ステム構造」とは、核酸分子内の相補性を有する部分ヌクレオチド配列同士がワトソン−クリック塩基対(G-CもしくはA-U/T)を形成した構造をいうが、本明細書においては、N11-N12-N13-N14とN21-N22-N23-N24およびN31-N32-N33-N34-N35-N36-N37-N38-N39とN41-N42-N43-N44-N45-N46-N47-N48-N49は完全相補的である必要はなく、ミスマッチおよび/またはG-U/Tのwobblingを許容するものである。すなわち、ステム構造を形成する部分ヌクレオチド配列両末端のヌクレオチド同士がワトソン−クリック塩基対を形成していれば、必ずしもそれ以外のヌクレオチド同士の全てがワトソン−クリック塩基対を形成している必要はない。
式(I)中、ループ2部分に位置する「N」はA、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであるが、好ましい一実施態様においては「N」はGであり得る。
式(I)中、N11〜N13、N21〜N23、N32〜N38およびN42〜N48は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つもしくは2つのヌクレオチド、または結合を示す。Ni(iは11〜13、21-23、32〜38、42〜48から選ばれる整数)が「2つのヌクレオチド」である場合、当該2つのヌクレオチドは同一であっても異なっていてもよい。また、Niが「2つのヌクレオチド」もしくは「結合」である場合、好ましくはN11〜N13、N21〜N23、N32〜N38およびN42〜N48の各部分配列中に2個以下、より好ましくは1個以下の頻度で含まれる。従って、一方のステム構造を形成するN11〜N14およびN21〜N24は、好ましくは2〜6個、より好ましくは3〜5個のヌクレオチド長をそれぞれ有し、もう一方のステム構造を形成するN31〜N39およびN41〜N49は、好ましくは7〜11個、より好ましくは8〜10個のヌクレオチド長をそれぞれ有する。
なお上記「結合」とは、単結合を意味し、式(I)中の任意のNiが「結合」という場合は、当該ヌクレオチドに隣接するヌクレオチド同士がホスホジエステル結合によって連結していることを示す。
特に好ましくは、N11〜N13、N21〜N23、N32〜N38およびN42〜N48は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドである。従って2次構造を形成する部分の両末端を含むステム構造のステム長は、好ましくは4ヌクレオチド以下であり、また2つのループに挟まれる内部ステム構造のステム長は、好ましくは9ヌクレオチドである。
また、式(I)中、N14、N24、N31、N41、N39およびN49は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであって、N14とN24、N31とN41およびN39とN49は互いにワトソン−クリック塩基対(G-CもしくはA-U/T)を形成する。従って、2次構造を形成する部分の両末端を含むステム構造は少なくともインターナルループ1部分側末端で塩基対を形成しており、2つのループに挟まれる内部ステム構造はその両端で塩基対形成している。より好ましくは、N14がU、N24がA、N31がG、N41がC、N39がG、N49がCである。
一方、前記のように定義したとおり、「ステム構造」におけるN11-N12-N13とN21-N22-N23、およびN32-N33-N34-N35-N36-N37-N38とN42-N43-N44-N45-N46-N47-N48については完全相補的である必要はない(全てワトソン−クリック塩基対を形成する必要はない)が、ステム構造を形成し得る(ステム内にループ(バブル)が形成されない)程度の相補性を有している必要がある。具体的には、各ステム構造内に3個の連続するミスマッチもしくはG-U/Tのwobblingが含まれる場合にはループが形成され得るため、各ステム構造は3個の連続するミスマッチもしくはG-U/Tのwobblingを含まないことが望ましい。また、N11-N12-N13とN21-N22-N23、およびN32-N33-N34-N35-N36-N37-N38とN42-N43-N44-N45-N46-N47-N48のそれぞれにおいて、50%以上、好ましくは60%以上、より好ましくは70%以上がワトソン−クリック塩基対を形成するヌクレオチド同士であることが望ましい。
本発明はまた、以下の(a)又は(b)のいずれかのヌクレオチド配列からなる核酸を提供する。
(a)配列番号3、配列番号9〜13、配列番号22〜117および配列番号152〜168のいずれかから選択されるヌクレオチド配列(但し、ウラシルはチミンであってもよい)。
(b)上記(a)のヌクレオチド配列において、1又は数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列であり、かつNGFと結合する配列。
これらの核酸は、上記式(I)で表される潜在的2次構造を形成することができる。
なお、配列上のいずれのウラシルもチミンへ置き換えることができるが、置き換えられるウラシルは、本発明のアプタマーが有する活性を保つべく、好ましくは、前記潜在的2次構造におけるインターナルループ1部分およびループ2部分以外の部分におけるウラシルであり得る。
本願明細書において「配列番号」で特定される配列とは、各アプタマー又は核酸のヌクレオチド配列を意味し、例えば「配列番号1の配列を含む核酸」とは、配列番号1の配列を含む天然の核酸、修飾核酸またはその両方で構成される核酸を意味する。配列表には、各アプタマーの配列番号の塩基配列を記載している。
上記(b)において、置換、欠失、挿入又は付加されるヌクレオチド数は、例えば約1〜10個、好ましくは1〜6個、より好ましくは1〜5個、さらに好ましくは1〜3個、最も好ましくは1個もしくは2個であり得る。
上記(b)において、置換、欠失、挿入又は付加されるヌクレオチドの位置は特に限定されないが、本発明のアプタマーが有する活性を保つべく、好ましくは前記潜在的2次構造におけるインターナルループ1部分およびループ2部分以外の部分におけるヌクレオチドであり得る。
本発明のアプタマーまたは核酸のヌクレオチド長は特に制限されないが、通常、34〜約200ヌクレオチドであるが、好ましくは34〜約100ヌクレオチドであり、より好ましくは36〜60ヌクレオチドであり、さらに好ましくは38〜44ヌクレオチドである。また、本発明のアプタマーまたは核酸の塩基長は、好ましくは50以下であり、より好ましく44以下である。上記式(I)で表される潜在的2次構造を形成できる範囲で総ヌクレオチド数を少なくすることにより、アプタマーの化学合成及び大量生産がより容易となり、かつコスト面でのメリットも大きい。また、このようなアプタマーは化学修飾が容易であり、生体内安定性を向上させやすく、毒性が低いと考えられる。
本発明のアプタマーはまた、上記(a)のヌクレオチド配列からなる核酸の複数の連結物、上記(b)のヌクレオチド配列からなる核酸の複数の連結物、並びに上記(a)のヌクレオチド配列からなる核酸及び上記(b)のヌクレオチド配列からなる核酸の複数の連結物からなる群より選ばれる連結物であり得る。
これらの連結物も、NGFに結合し且つ/又はNGFの活性(NGF受容体との結合活性等)を阻害し得る。
ここで連結はタンデム結合にて行われ得る。また、連結に際し、リンカーを利用してもよい。リンカーとしては、ヌクレオチド鎖(例、1〜約20ヌクレオチド)、非ヌクレオチド鎖(例、−(CH−リンカー、−(CHCHO)−リンカー、ヘキサエチレングリコールリンカー、TEGリンカー、ペプチドを含むリンカー、−S−S−結合を含むリンカー、−CONH−結合を含むリンカー、−OPO−結合を含むリンカー)が挙げられる。上記複数の連結物における複数とは、2以上であれば特に限定されないが、例えば2個、3個又は4個であり得る。
本発明のアプタマーに含まれる各ヌクレオチドはそれぞれ、同一又は異なって、リボース(例、ピリミジンヌクレオチドのリボース、プリンヌクレオチドのリボース)の2’位においてヒドロキシル基を含むヌクレオチド(即ち、未置換であるヌクレオチド)であるか、あるいはリボースの2’位において、ヒドロキシル基が、任意の原子又は基で置き換えられているヌクレオチドであり得る。このような任意の原子又は基としては、例えば、水素原子、フッ素原子又は−O−アルキル基(例、−O−Me基)、−O−アシル基(例、−O−CHO基)、アミノ基(例、−NH基)で置き換えられているヌクレオチドが挙げられる。以下にリボースの2’位において、ヒドロキシル基が水素原子、フッ素原子、−O−Me基で置き換えられた場合をそれぞれ示す。
本発明のアプタマーはまた、少なくとも1種(例、1、2、3又は4種)のヌクレオチドが、リボースの2’位において、ヒドロキシル基、又は上述した任意の原子又は基、例えば、水素原子、フッ素原子、ヒドロキシル基及び−O−Me基からなる群より選ばれる少なくとも2種(例、2、3又は4種)の基を含むヌクレオチドであり得る。
本発明のアプタマーはまた、全てのピリミジンヌクレオチドが、リボースの2’位において、同一または異なって、フッ素原子で置換されるヌクレオチドであるか、又は上述した任意の原子又は基、好ましくは、水素原子、ヒドロキシル基及びメトキシ基からなる群より選ばれる原子または基で置換されているヌクレオチドであり得る。
本発明のアプタマーはまた、全てのプリンヌクレオチドが、リボースの2’位において、同一または異なって、ヒドロキシル基で置換されるヌクレオチドであるか、又は上述した任意の原子又は基、好ましくは、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子または基で置換されるヌクレオチドであり得る。
本発明のアプタマーはまた、全てのヌクレオチドが、リボースの2’位において、ヒドロキシル基、又は上述した任意の原子又は基、例えば、水素原子、フッ素原子、ヒドロキシル基及び−O−Me基からなる群より選ばれる同一の基を含むヌクレオチドであり得る。
尚、本明細書においては、アプタマーを構成するヌクレオチドをRNAと仮定して(すなわち糖基をリボースと仮定して)、ヌクレオチド中の糖基への修飾の態様を説明するが、これは、アプタマーを構成するヌクレオチドからDNAが除外されることを意味するものではなく、適宜DNAへの修飾として読み替えられる。例えば、アプタマーを構成するヌクレオチドがDNAである場合、リボースの2’位のヒドロキシル基のXへの置き換えは、デオキシリボースの2’位の一方の水素原子のXへの置き換えとして読み替えられる。
なお本発明のアプタマーにおいて、ウラシルをチミンに置換することによって、NGFに対する結合性、NGFとNGF受容体との結合阻害活性、NGFの神経突起伸長阻害活性、NGFの細胞増殖阻害活性、アプタマーの安定性、薬物送達性、血液中での安定性等を高めることが可能である。
本発明のアプタマーが結合するNGFは公知のニューロトロフィンであり、末梢および中枢ニューロンの発達・生存に係わる重要な分泌タンパク質である。本発明におけるNGFは、特にβタイプのNGFを意味する。ヒトβ−NGFのアミノ酸配列はAccession Number NP002497、P01138、AAI26151、AAI26149、CAB75625で表されるものであるが、変異の入ったものや、その機能ドメイン、ペプチド断片であってもよい。また、モノマーだけでなくダイマーや多量体であってもよい。さらにヒト以外の哺乳動物、例えば、霊長類(例、サル)、げっ歯類(例、マウス、ラット、モルモット)、並びにペット、家畜及び使役動物(例、イヌ、ネコ、ウマ、ウシ、ヤギ、ヒツジ、ブタ)由来のNGFも含まれる。
本発明のアプタマーは、NGFに結合し、NGFとNGF受容体との結合を阻害することによって、NGFの活性を阻害する。NGFとNGF受容体との結合を阻害し得る限り、本発明のアプタマーはNGFのいかなる部分に結合してもよい。
本明細書中、「NGFに対する阻害活性」とはNGFが保有する任意の活性に対する阻害能を意味する。例えば、NGFがNGF受容体に結合することを阻害する活性、NGFがNGF受容体に結合することによって生じる、NGF受容体の下流のシグナル伝達(Ras−MAPキナーゼ経路、PI3キナーゼ経路)の阻害、TRPV1、SP、BDNFなどの発現上昇の阻害、肥満細胞などから放出されるHA、BK、PG、NGF、その他サイトカインの発現の阻害活性、さらに、NGFにより誘導される神経細胞の分化、生存、神経突起伸長、血管透過性の増大、T細胞やB細胞の免疫応答の増強、リンパ球の分化、肥満細胞や赤白血病細胞、癌細胞など各種細胞の増殖などの阻害、NGFにより誘発される疼痛、痛覚過敏の軽減などが挙げられる。
本発明のアプタマーが有する好ましい「NGFに対する阻害活性」は、NGFがNGF受容体に結合することを阻害する活性であり、NGFにより誘導される神経突起伸長活性を阻害する活性、NGFにより誘導される細胞増殖活性を阻害する活性などである。
本発明のアプタマーは、生理的な緩衝液(例えば溶液A:実施例1参照)中で、NGFへ結合する。本発明のアプタマーは、例えば以下の試験により検出可能な程度の強度で、NGFへ結合する。
測定にはBIAcore社製のBIAcore2000を用いる。センサーチップにアプタマーを固定化する。固定化量は1000RUとする。0.3MのNaClを含有する生理的な緩衝液(溶液A:実施例1参照)によりNGF溶液(0.5μM)を調製する。このNGF溶液を20μL注入し、NGFのアプタマーへの結合を検出する。40ヌクレオチドからなるランダムなヌクレオチドを含むRNAをネガティブコントロールとし、該コントロールRNAと比較してNGFが有意に強くアプタマーに結合した場合、該アプタマーはNGFへの結合能を有すると判定する。
本明細書中、「NGF受容体」とはNGFが結合する細胞表面タンパク質を意味する。NGF受容体としては、TrkAとp75が知られている。本発明でいうNGF受容体とは、天然のアミノ酸配列を含むタンパク質であってもよいし、その変異体であってもよい。ここで「その変異体」とは、「NGF受容体」のアミノ酸が数個置換されたものやその一部分のアミノ酸配列であって、NGFに対して結合活性を有し、かつNGFとNGF受容体との結合を阻害するタンパク質またはペプチドを意味する。
本発明のアプタマーは、NGFに結合し、NGFとNGF受容体との結合を阻害するアプタマーである。NGFのNGF受容体への結合をアプタマーが阻害するか否かは、例えば以下の試験により評価することができる。
測定にはBIAcore社製のBIAcore2000を用いる。CM5センサーチップにNGF受容体とFcとの融合タンパク質(例えば、TrkA−Fc(175−TK,R&D systems)又はp75−Fc(R&D systems))を固定化する。固定化量は500〜700RUとする。生理的な緩衝液(溶液A:実施例1参照)中でNGF(0.1μM)とアプタマー(0.2μM)を混合し、30分かけてサンプルとなる混合液を調製する。この混合液をBIAcore2000に注入し、NGFのNGF受容体への結合を検出する。
一態様において、本発明のアプタマーは、NGFとTrkAとの結合およびNGFとp75との結合を両方阻害し得る。
本発明のアプタマーは、NGFの神経突起伸長活性および/またはNGFの細胞増殖活性を阻害するアプタマーである。NGFの神経突起伸長活性を本発明のアプタマーが阻害するか否かは、例えば、実施例3に記載の試験により評価することができる。また、NGFの細胞増殖活性を本発明のアプタマーが阻害するか否かは、例えば、実施例8に記載の試験により評価することができる。
本発明のアプタマーは、NGFの神経突起伸長活性を50%阻害する濃度(IC50または50%阻害濃度)が1nM以下であることを特徴とする。従来公知のNGFアプタマーはNGFの神経突起伸長活性に対するIC50値が数nM程度であるので、本発明のアプタマーは、神経突起伸長阻害活性に関しより優れた特性を有する。
また、好ましい実施態様においては、本発明のアプタマーは、NGFの細胞増殖活性に対するIC50値も1nM以下である。
一方、本発明のアプタマーが、NGF以外のニューロトロフィン、具体的には、脳由来神経栄養因子(BDNF)、ニューロトロフィン−3(NT−3)およびニューロトロフィン4/5(NT−4/5)の細胞増殖活性を阻害する活性を有するかについては、アプタマーによって異なっている。ここでBDNF、NT−3及びNT−4/5の用語は、それぞれヒトを含む、全哺乳類種のBDNF、NT−3及びNT−4/5を意味する。
他のニューロトロフィン(BDNF、NT−3、NT−4/5)の細胞増殖阻害活性の程度は、実施例16に記載の試験により評価することができる。実施例16および表2に記載の本発明のアプタマーの細胞増殖阻害活性は、NGFに対してIC50値が0.1nM以下であるのに対して、BDNFに対するIC50値は1000nM以上であり、本発明のアプタマーはBDNFの細胞増殖活性を阻害しないといえるが、NT−3に対しては0.97nMから10nM以上であり;またNT−4に対しては3nM以下から30nM以上である;というように、NT−3およびNT−4の細胞増殖活性については、アプタマーによって異なっている。
本発明のアプタマーは、NGFに対する結合性、NGFとNGF受容体との結合阻害活性、NGFの神経突起伸長阻害活性、NGFの細胞増殖阻害活性、アプタマーの安定性、薬物送達性、血液中での安定性等を高めるため、各ヌクレオチドの糖残基(例、リボース)が修飾されたものであってもよい。糖残基において修飾される部位としては、例えば、糖残基の2’位、3’位及び/又は4’位の酸素原子を他の原子に置き換えたものなどが挙げられる。修飾の種類としては、例えば、フルオロ化、O−アルキル化(例、O−メチル化、O−エチル化)、O−アリル化、S−アルキル化(例、S−メチル化、S−エチル化)、S−アリル化、アミノ化(例、−NH)が挙げられる。他にも、4’位の酸素を硫黄に置き換えた4’−SRNA、2’位と4’位とをメチレンを介して架橋したLNA(Locked Nucleic Acid)、3’位の水酸基をアミノ基に置き換えた3’−N−ホスホロアミデート核酸などを例として挙げることができる。このような糖残基の改変は、自体公知の方法により行うことができる(例えば、Sproat et al.,(1991)Nucle.Acid.Res.19,733−738;Cotton et al.,(1991)Nucl.Acid.Res.19,2629−2635;Hobbs et al.,(1973)Biochemistry 12,5138−5145参照)。
本発明のアプタマーはまた、NGFに対する結合性、NGFとNGF受容体との結合阻害活性、NGFの神経突起伸長阻害活性、NGFの細胞増殖阻害活性、アプタマーの安定性、薬物送達性、血液中での安定性等を高めるため、核酸塩基(例、プリン、ピリミジン)が改変(例、化学的置換)されたものであってもよい。このような改変としては、例えば、5位ピリミジン改変、6および/または8位プリン改変(O−メチル修飾など)、環外アミンでの改変、4−チオウリジンでの置換、5−ブロモ又は5−ヨード−ウラシルでの置換、5−アミノ酸タイプの修飾、5−トリプトファン側鎖の修飾が挙げられる。また、ヌクレアーゼ及び加水分解に対して耐性であるように、本発明のアプタマーに含まれるリン酸基が改変されていてもよい。例えば、アプタマーのホスフェート部分が、P(O)S(チオエート)、P(S)S(ジチオエート)、P(O)NR(アミデート)、P(O)R、P(O)OR’、CO又はCH(ホルムアセタール)、P(O)BH(ボラノホスフェート)又は3’−アミン(−NH−CH−CH−)で置き換えられていてもよい〔ここで各々のR又はR’は独立して、Hであるか、あるいは置換されているか、又は置換されていないアルキル(例、メチル、エチル)である〕。
連結基としては、−O−、−N−又は−S−が例示され、これらの連結基を通じて隣接するヌクレオチドに結合し得る。
改変はまた、キャッピングのような3’及び5’の改変を含んでもよい。
改変はさらに、ポリエチレングリコール(以下、「PEG」と記載する場合がある)、アミノ酸、ペプチド、inverted dT、Myristoyl、Lithocolic−oleyl、Docosanyl、Lauroyl、Stearoyl、Palmitoyl、Oleoyl、Linoleoyl、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質、ビオチンなどを末端に付加することにより行われ得る。このような改変については、例えば、米国特許第5,660,985号、同第5,756,703号を参照のこと。
特に、改変がPEGの末端付加によって行われる場合、PEGの分子量は特に限定されないが、好ましくは1000〜100000、より好ましくは30000〜90000である。PEGは、直鎖状であってもよいし、二つ以上の鎖に分岐したもの(マルチアームPEG)であってもよい。
このようなPEGとしては特に限定されず、当業者であれば市販あるいは公知のPEGを適宜選択して用いることができる(例えば、http://www.peg−drug.com/peg_product/branched.htmlを参照のこと)が、本発明のアプタマーに適用するPEGの好適例として具体的には、分子量40000の2分岐GS型PEG(SUNBRIGHT GL2−400GS2 日油社製)、分子量40000の2分岐TS型PEG(SUNBRIGHT GL2−400TS 日油社製)、分子量40000の4分岐TS型PEG(SUNBRIGHT GL4−400TS 日油社製)、分子量80000の2分岐TS型PEG(SUNBRIGHT GL2−800TS 日油社製)、または分子量80000の4分岐TS型PEG(SUNBRIGHT GL4−800TS 日油社製)などが挙げられる。
この場合、本発明のアプタマーは、PEGが末端に直接付加されていてもよいが、その末端にPEGと結合可能な基を有するリンカーなどが付加され、それを介してPEGを本発明のアプタマーに付加することがより好ましい。
PEGと本発明のアプタマーのリンカーとしては特に限定されず、炭素鎖数や官能基などを結合部位やPEGの種類などに応じて適宜選択することができる。このようなリンカーとしては、例えばアミノ基を有するリンカーが挙げられ、具体的には、5’末端に付加する場合は、ssH Linker(SAFC)またはDMS(O)MT−AMINO−MODIFIER(GLEN RESEARCH)が、3’末端に付加する場合は、TFA Amino C−6 lcaa CPG(ChemGenes)などが例示される。このリンカーを選択した場合、PEGには、例えばN−hydroxysuccinimideの活性基を付加した上で、これをリンカー側のアミノ基と反応させることで、本発明のアプタマーとPEGとをリンカーを介して結合することができる。
なおPEGやリンカーとしては、市販のものを好ましく用いることができる。またPEG、リンカーおよび本発明のアプタマーの結合に関する反応条件などは、当業者であれば適宜設定することが可能である。
本発明のアプタマーは、本明細書中の開示及び当該技術分野における自体公知の方法により化学合成することができる。アプタマーは、リン酸基の負電荷を利用したイオン結合、リボースを利用した疎水結合および水素結合、核酸塩基を利用した水素結合やスタッキング結合など多様な結合様式により標的物質と結合する。特に、構成ヌクレオチドの数だけ存在するリン酸基の負電荷を利用したイオン結合は強く、タンパク質の表面に存在するリジンやアルギニンの正電荷と結合する。このため、標的物質との直接的な結合に関わっていない核酸塩基は置換することができる。特に、ステム構造の部分は既に塩基対が作られており、また、二重らせん構造の内側を向いているので、核酸塩基は、標的物質と直接結合し難い。従って、塩基対を他の塩基対に置換してもアプタマーの活性は減少しない場合が多い。ループ構造など塩基対を作っていない構造においても、核酸塩基が標的分子との直接的な結合に関与していない場合に、塩基の置換が可能である。リボースの2’位の修飾に関しては、まれにリボースの2’位の官能基が標的分子と直接的に相互作用していることがあるが、多くの場合無関係であり、他の修飾分子に置換可能である。このようにアプタマーは、標的分子との直接的な結合に関与している官能基を置換または削除しない限り、その活性を保持していることが多い。また、全体の立体構造が大きく変わらないことも重要である。
アプタマーは、SELEX及びその改良法(例えば、Ellington et al.,(1990)Nature,346,818−822;Tuerk et al.,(1990)Science,249,505−510)を利用することで作製することができる。SELEXではラウンド数を増やしたり、競合物質を使用したりすることで、標的物質に対してより結合力の強いアプタマーが濃縮され、選別されてくる。よって、SELEXのラウンド数を調節したり、及び/又は競合状態を変化させたりすることで、結合力が異なるアプタマー、結合形態が異なるアプタマー、結合力や結合形態は同じであるが塩基配列が異なるアプタマーを得ることができる場合がある。また、SELEXにはPCRによる増幅過程が含まれるが、その過程でマンガンイオンを使用するなどして変異を入れることで、より多様性に富んだSELEXを行うことが可能となる。
SELEXで得られるアプタマーは標的物質に対して親和性が高い核酸であり、そのことは標的物質の活性部位に結合することを意味しない。従って、SELEXで得られるアプタマーは必ずしも標的物質の機能に作用するとは限らない。NGFは塩基性タンパク質であり、核酸が非特異的に結合しやすいと考えられる。活性部位に結合しないアプタマーはその標的物質の活性に影響を及ぼさない。
このようにして選ばれた活性のあるアプタマーに基づき、より高い活性を有するアプタマーを獲得するために取得されたアプタマーの配列を基にしたSELEXを行うことが出来る。具体的な方法とは、ある配列が決まっているアプタマーの一部をランダム配列にしたテンプレートや10〜30%程度のランダム配列をドープしたテンプレートを作製して、再度SELEXを行うものである。
SELEXで得られるアプタマーは80ヌクレオチド程度の長さがあり、これをそのまま医薬にすることは難しい。そこで、試行錯誤を繰り返し、容易に化学合成ができる約60ヌクレオチド以下、より好ましくは約50ヌクレオチド以下、最も好ましくは45ヌクレオチド以下の長さまで短くする必要がある。SELEXで得られるアプタマーはそのプライマー設計に依存して、その後の最小化作業のしやすさが変わる。うまくプライマーを設計しないと、SELEXによって活性のあるアプタマーが選別できたとしても、その後の開発が不可能となる。
アプタマーは化学合成が可能であるので改変が容易である。アプタマーはMFOLDプログラムを用いて二次構造を予測したり、X線解析やNMR解析によって立体構造を予測したりすることで、どのヌクレオチドを置換または欠損することが可能か、また、どこに新たなヌクレオチドを挿入可能かある程度予測することができる。予測された新しい配列のアプタマーは容易に化学合成することができ、そのアプタマーが活性を保持しているかどうか既存のアッセイ系により確認することができる。
得られたアプタマーの標的物質との結合に重要な部分が、上記のような試行錯誤を繰り返すことにより特定できた場合、その配列の両端に新しい配列を付加しても、多くの場合活性は変化しない。そしてこのような新しい配列の長さは特に限定されるものではない。
修飾に関しても配列と同様に高度に設計又は改変可能である。
以上のように、アプタマーは高度に設計又は改変可能である。本発明はまた、所定の配列(例、ステム部分、インターナルループ部分、ヘアピンループ部分及び一本鎖部分から選ばれる部分に対応する配列:以下、必要に応じて固定配列と省略する)を含むアプタマーを高度に設計又は改変可能であるアプタマーの製造方法を提供する。
例えば、このようなアプタマーの製造方法は、下記:
〔上記において、(N)aはa個のNからなるヌクレオチド鎖を示し、(N)bは、b個のNからなるヌクレオチド鎖を示し、Nはそれぞれ、同一又は異なって、A、G、C、U及びT(好ましくは、A、G、C及びU)からなる群より選ばれるヌクレオチドである。a、bはそれぞれ、同一又は異なって、任意の数であり得るが、例えば1〜約100個、好ましくは1〜約50個、より好ましくは1〜約30個、さらにより好ましくは1〜約20個又は1〜約10個であり得る。〕で表されるヌクレオチドからなる単一種の核酸分子又は複数種の核酸分子(例、a、bの数等が異なる核酸分子のライブラリ)、及びプライマー用配列(i)、(ii)にそれぞれ対応するプライマー対を用いて、固定配列を含むアプタマーを製造することを含む。
本発明のアプタマーとして好ましくは、配列番号82で表される配列を含み、かつヌクレオチド長が50以下であることを特徴とする、NGFに結合するアプタマーである。
配列番号82で表される配列は本発明のアプタマーがNGFに結合し、NGFの活性、特に神経突起伸長活性、細胞増殖活性を阻害するなど、本発明のアプタマーとして機能する上で重要な部分であるが、これらの配列の両端に新しい配列を付加しても本発明のアプタマーとしての機能が損なわれることはない。またこれらの配列は、前記した糖残基の修飾・核酸塩基やリン酸基の改変などを受けていてもよい。
すなわち本発明のアプタマーとして、
配列番号82で表される配列を含み、かつヌクレオチド長が50以下であることを特徴とする、NGFに結合するアプタマーであって、
(i)少なくとも1種のヌクレオチドが、リボースの2’位において、ヒドロキシル基が、水素原子、フッ素原子、−O−アルキル基、−O−アシル基またはアミノ基で置き換えられている、アプタマー;
(ii)PEG、アミノ酸、ペプチド、inverted dT、Myristoyl、Lithocolic−oleyl、Docosanyl、Lauroyl、Stearoyl、Palmitoyl、Oleoyl、Linoleoyl、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質またはビオチンが末端に付加されている、アプタマー;
(iii)(i)および(ii)の要件を満足するアプタマー;
などを、好ましい具体例として挙げることができる。
本発明はまた、本発明のアプタマー及びそれに結合した機能性物質を含む複合体を提供する。本発明の複合体におけるアプタマーと機能性物質との間の結合は共有結合、又は非共有結合であり得る。本発明の複合体は、本発明のアプタマーと1以上(例、2又は3個)の同種又は異種の機能性物質とが結合したものであり得る。機能性物質は、本発明のアプタマーに何らかの機能を新たに付加するもの、あるいは本発明のアプタマーが保持し得る何らかの特性を変化(例、向上)させ得るものである限り特に限定されない。機能性物質としては、例えば、タンパク質、ペプチド、アミノ酸、脂質、糖質、単糖、ポリヌクレオチド、ヌクレオチドが挙げられる。機能性物質としてはまた、例えば、親和性物質(例、ビオチン、ストレプトアビジン、標的相補配列に対して親和性を有するポリヌクレオチド、抗体、グルタチオンセファロース、ヒスチジン)、標識用物質(例、蛍光物質、発光物質、放射性同位体)、酵素(例、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ)、薬物送達媒体(例、リポソーム、ミクロスフェア、ペプチド、ポリエチレングリコール類)、薬物(例、カリケアマイシンやデュオカルマイシンなどミサイル療法に使用されているもの、シクロフォスファミド、メルファラン、イホスファミドまたはトロホスファミドなどのナイトロジェンマスタード類似体、チオテパなどのエチレンイミン類、カルムスチンなどのニトロソ尿素、テモゾロミドまたはダカルバジンなどのアルキル化剤、メトトレキセートまたはラルチトレキセドなどの葉酸類似代謝拮抗剤、チオグアニン、クラドリビンまたはフルダラビンなどのプリン類似体、フルオロウラシル、テガフールまたはゲムシタビンなどのピリミジン類似体、ビンブラスチン、ビンクリスチンまたはビンオレルビンなどのビンカアルカロイド及びその類似体、エトポシド、タキサン、ドセタキセルまたはパクリタキセルなどのポドフィロトキシン誘導体、ドキソルビシン、エピルビシン、イダルビシン及びミトキサントロンなどのアントラサイクリン類及び類似体、ブレオマイシン及びミトマイシンなどの他の細胞毒性抗生物質、シスプラチン、カルボプラチン及びオキザリプラチンなどの白金化合物、ペントスタチン、ミルテフォシン、エストラムスチン、トポテカン、イリノテカン及びビカルタミド)、毒素(例、リシン毒素、リア毒素及びベロ毒素)が挙げられる。これらの機能性分子は最終的に取り除かれる場合がある。更に、トロンビンやマトリックスメタロプロテアーゼ(MMP)、FactorXなどの酵素が認識して切断することができるペプチド、ヌクレアーゼや制限酵素が切断できるポリヌクレオチドであってもよい。
本発明のアプタマー及び複合体は、例えば、医薬又は診断薬、検査薬、試薬、飲料水や食品の添加剤、増強剤、緩和剤として使用され得る。
本発明のアプタマー及び複合体は、NGFに結合し、NGFとNGF受容体との結合を阻害することによって、NGFの機能を阻害する活性を有し得る。上述のように、NGFは疼痛や炎症と深く関わっている。従って、本発明のアプタマー及び複合体は、疼痛や炎症を伴う疾患を治療又は予防するための医薬(抗疼痛剤、抗炎症剤等)として有用である。
ここで疼痛としては侵害受容性疼痛(筋肉痛、背部痛、上肢痛、鞭打ち損傷、関節痛、変形性関節症、痛風、慢性関節リウマチ、頭痛、片頭痛、緊張型頭痛、群発頭痛、二次性頭痛、口腔顔面痛、歯痛、抜歯後カウザルギー、幻歯痛、内臓痛、心臓痛、腹痛、中間痛、月経困難、陣痛、腎臓痛、尿管痛、膀胱痛など)、炎症性疼痛、神経因性疼痛(糖尿病性ニューロパチー、中毒性ニューロパチー、術後痛、幻肢痛、断端部痛、反射性交感神経性ジストロフィー、カウザルギー、帯状疱疹後痛、三叉神経痛、中枢性疼痛)、癌性疼痛(内臓器官への癌浸潤による痛み、癌組織の血管浸潤による血管閉塞で生じる痛み、骨転移の痛み、脳内転移に伴う痛み、癌組織の末梢神経浸潤による痛み)、線維筋痛などが挙げられる。
ここで炎症に伴う疾患としては、特に限定されるものではないが、全身性エリテマトーデス、多発性硬化症、乾癬、変形性関節症、慢性関節リウマチ、間質性膀胱炎、喘息などが挙げられる。
上記癌としては、特に限定されるものではないが、食道癌、甲状腺癌、膀胱癌、大腸癌、胃癌、膵臓癌、胸部癌、肝臓癌、肺癌、非小細胞肺癌、乳癌、ニューロブラストーマ、グリオブラストーマ、子宮癌、子宮頚癌、卵巣癌、ウィルムス腫瘍、前立腺癌などが挙げられる。
NGFはその受容体TrkAに結合するとTrkAのチロシンリン酸化およびTrkA下流のRas−MAPK、PLC−γ、PI3Kなどを活性化させ、神経細胞の生存や分化といった生理的作用を発揮する。一方、p75受容体を介するシグナル経路では細胞死を誘導する。従って、本発明のアプタマー及び複合体は、これらのシグナル伝達経路の活性化に関係した疾患の医薬又は診断薬、検査薬、試薬として使用され得る。これらのシグナル伝達経路の活性化に関係した疾患としては、上記疼痛や炎症性疾患、癌が挙げられる。
本発明のアプタマー及び複合体が医薬、診断薬、検査薬、試薬などとして用いられる場合、それが投与される対象としては特に限定されないが、例えば、霊長類(例、ヒト、サル)、げっ歯類(例、マウス、ラット、モルモット)、並びにペット、家畜及び使役動物(例、イヌ、ネコ、ウマ、ウシ、ヤギ、ヒツジ、ブタ)が挙げられる。
本発明のアプタマー及び複合体は、NGFに特異的に結合し得る。従って、本発明のアプタマー及び複合体は、NGF検出用プローブとして有用である。該プローブは、NGFのインビボイメージング、血中濃度測定、組織染色、ELISA等に有用である。また、該プローブは、NGFが関与する疾患(疼痛や炎症を伴う疾患等)の診断薬、検査薬、試薬等として有用である。
また、そのNGFへの特異的結合に基づき、本発明のアプタマー及び複合体はNGFの分離精製用リガンドとして使用され得る。
また、本発明のアプタマー及び複合体は、恋愛などの精神的状態を調べるための検査薬や精神状態を調整するための医薬、調整剤、増強剤、緩和剤として使用され得る。
また、本発明のアプタマー及び複合体は、薬物送達剤として使用され得る。
本発明の医薬は、医薬上許容される担体が配合されたものであり得る。医薬上許容される担体としては、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロキシプロピルスターチ、ナトリウム−グリコール−スターチ、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エアロジル、タルク、ラウリル硫酸ナトリウム等の滑剤、クエン酸、メントール、グリシルリシン・アンモニウム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤、カカオ脂、ポリエチレングリコール、白灯油等のベースワックスなどが挙げられるが、それらに限定されるものではない。
経口投与に好適な製剤は、水、生理食塩水、オレンジジュースのような希釈液に有効量のリガンドを溶解させた液剤、有効量のリガンドを固体や顆粒として含んでいるカプセル剤、サッシェ剤又は錠剤、適当な分散媒中に有効量の有効成分を懸濁させた懸濁液剤、有効量の有効成分を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等である。
また、本発明の医薬は必要により、味のマスキング、腸溶性あるいは持続性などの目的のため、自体公知の方法でコーティングすることができる。コーティングに用いられるコーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリオキシエチレングリコール、ツイーン80、プルロニックF68、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギット(ローム社製、ドイツ,メタアクリル酸・アクリル酸共重合体)および色素(例、ベンガラ、二酸化チタンなど)などが用いられる。当該医薬は、速放性製剤、徐放性製剤のいずれであってもよい。徐放の基材としては、例えば、リポソーム、アテロコラーゲン、ゼラチン、ヒドロキシアパタイト、PLGAなどが挙げられる。
非経口的な投与(例えば、静脈内投与、皮下投与、筋肉内投与、局所投与、腹腔内投与、経鼻投与、経肺投与など)に好適な製剤としては、水性及び非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性及び非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分及び医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌の溶媒に溶解又は懸濁すればよい状態で保存することもできる。また、徐放製剤も好適な製剤として挙げることができる。徐放製剤としては、人工骨や生体分解性もしくは非分解性スポンジ、バッグ、薬剤ポンプ、浸透圧ポンプなど、体内に埋め込まれた担体もしくは容器からの徐放形態、あるいは体外から継続的もしくは断続的に体内もしくは局所に送達されるデバイス等が挙げられる。生体分解性の基材としては、リポソーム、カチオニックリポソーム、Poly(lactic−co−glycolic)acid(PLGA)、アテロコラーゲン、ゼラチン、ヒドロキシアパタイト、多糖シゾフィランなどが挙げられる。更に注射液剤や徐放製剤以外にも、吸入剤、軟膏剤も可能である。吸入剤の場合、凍結乾燥状態の有効成分を微細化し適当な吸入デバイスを用いて吸入投与する。吸入剤には、更に必要に応じて従来使用されている界面活性剤、油、調味料、シクロデキストリンまたはその誘導体等を適宜配合することができる。
ここで界面活性剤としては、例えばオレイン酸、レシチン、ジエチレングリコールジオレエート、テトラヒドロフルフリルオレエート、エチルオレエート、イソプロピルミリステート、グリセリルトリオレエート、グリセリルモノラウレート、グリセリルモノオレエート、グリセリルモノステアレート、グリセリルモノリシノエート、セチルアルコール、ステアリルアルコール、ポリエチレングリコール400、セチルピリジニウムクロリド、ソルビタントリオレエート(商品名スパン85)、ソルビタンモノオレエート(商品名スパン80)、ソルビタンモノラウレート(商品名スパン20)、ポリオキシエチレン硬化ヒマシ油(商品名HCO−60)、ポリオキシエチレン(20)ソルビタンモノラウレート(商品名ツイーン20)、ポリオキシエチレン(20)ソルビタンモノオレエート(商品名ツイーン80)、天然資源由来のレシチン(商品名エピクロン)、オレイルポリオキシエチレン(2)エーテル(商品名ブリジ92)、ステアリルポリオキシエチレン(2)エーテル(商品名ブリジ72)、ラウリルポリオキシエチレン(4)エーテル(商品名ブリジ30)、オレイルポリオキシエチレン(2)エーテル(商品名ゲナポル0−020)、オキシエチレンとオキシプロピレンとのブロック共重合体(商品名シンペロニック)等が挙げられる。油としては、例えばトウモロコシ油、オリーブ油、綿実油、ヒマワリ油等が挙げられる。また、軟膏剤の場合、適当な医薬上許容される基剤(黄色ワセリン、白色ワセリン、パラフィン、プラスチベース、シリコーン、白色軟膏、ミツロウ、豚油、植物油、親水軟膏、親水ワセリン、精製ラノリン、加水ラノリン、吸水軟膏、親水プラスチベース、マクロゴール軟膏等)を用い、有効成分と混合し製剤化し使用する。
吸入剤は常法に従って製造することができる。すなわち、上記本発明のアプタマー及び複合体を粉末または液状にして、吸入噴射剤および/または担体中に配合し、適当な吸入容器に充填することにより製造することができる。また上記本発明のアプタマー及び複合体が粉末の場合は通常の機械的粉末吸入器を、液状の場合はネブライザー等の吸入器をそれぞれ使用することもできる。ここで噴射剤としては従来公知のものを広く使用でき、フロン−11、フロン−12、フロン−21、フロン−22、フロン−113、フロン−114、フロン−123、フロン−142c、フロン−134a、フロン−227、フロン−C318、1,1,1,2−テトラフルオロエタン等のフロン系化合物、プロパン、イソブタン、n−ブタン等の炭化水素類、ジエチルエーテル等のエーテル類、窒素ガス、炭酸ガス等の圧縮ガス等を例示できる。
本発明の医薬の投与量は、有効成分の種類・活性、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なるが、通常、成人1日あたり有効成分量として約0.0001〜約100mg/kg、例えば約0.0001〜約10mg/kg、好ましくは約0.005〜約1mg/kgであり得る。
本発明はまた、本発明のアプタマー及び複合体が固定化された固相担体を提供する。固相担体としては、例えば、基板、樹脂、プレート(例、マルチウェルプレート)、フィルター、カートリッジ、カラム、多孔質材が挙げられる。基板は、DNAチップやプロテインチップなどに使われているものなどであり得、例えば、ニッケル−PTFE(ポリテトラフルオロエチレン)基板やガラス基板、アパタイト基板、シリコーン基板、アルミナ基板などで、これらの基板にポリマーなどのコーティングを施したものが挙げられる。樹脂としては、例えば、アガロース粒子、シリカ粒子、アクリルアミドとN,N’−メチレンビスアクリルアミドの共重合体、ポリスチレン架橋ジビニルベンゼン粒子、デキストランをエピクロロヒドリンで架橋した粒子、セルロースファイバー、アリルデキストランとN,N’−メチレンビスアクリルアミドの架橋ポリマー、単分散系合成ポリマー、単分散系親水性ポリマー、セファロース、トヨパールなどが挙げられ、また、これらの樹脂に各種官能基を結合させた樹脂も含まれる。本発明の固相担体は、例えば、NGFの精製、及びNGFの検出、定量に有用であり得る。
本発明のアプタマー及び複合体は、自体公知の方法により固相担体に固定できる。例えば、親和性物質(例、上述したもの)や所定の官能基を本発明のアプタマー及び複合体に導入し、次いで当該親和性物質や所定の官能基を利用して固相担体に固定化する方法が挙げられる。本発明はまた、このような方法を提供する。所定の官能基は、カップリング反応に供することが可能な官能基であり得、例えば、アミノ基、チオール基、ヒドロキシル基、カルボキシル基が挙げられる。本発明はまた、このような官能基が導入されたアプタマーを提供する。
本発明はまた、NGFの精製及び濃縮方法を提供する。特に本発明はNGFを他のファミリータンパク質から分離することが可能である。本発明の精製及び濃縮方法は、本発明の固相担体にNGFを吸着させ、吸着したNGFを溶出液により溶出させることを含み得る。本発明の固相担体へのNGFの吸着は自体公知の方法により行うことができる。例えば、NGFを含有する試料(例、細菌又は細胞の培養物又は培養上清、血液)を、本発明の固相担体又はその含有物に導入する。NGFの溶出は、中性溶液等の溶出液を用いて行うことができる。中性溶出液は特に限定されるものではないが、例えばpH約6〜約9、好ましくはpH約6.5〜約8.5、より好ましくはpH約7〜約8であり得る。中性溶液はまた、例えば、尿素、キレート剤(例、EDTA)、カリウム塩(例、KCl)、マグネシウム塩(例、MgCl)、界面活性剤(例、ツイーン20、Triton、NP40)、グリセリンを含むものであり得る。本発明の精製及び濃縮方法はさらに、NGFの吸着後、洗浄液を用いて固相担体を洗浄することを含み得る。洗浄液としては、例えば、尿素、キレート剤(例、EDTA)、Tris、酸、アルカリ、Transfer RNA、DNA、ツイーン20などの表面活性剤、NaClなどの塩を含むものなどが挙げられる。本発明の精製及び濃縮方法はさらに、固相担体を加熱処理することを含み得る。かかる工程により、固相担体の再生、滅菌が可能である。
本発明はまた、NGFの検出及び定量方法を提供する。特に本発明はNGFを他のファミリータンパク質と区別して検出及び定量することができる。本発明の検出及び定量方法は、本発明のアプタマーを利用して(例、本発明の複合体及び固相担体の使用により)NGFを測定することを含み得る。NGFの検出及び定量方法は、抗体の代わりに本発明のアプタマーを用いること以外は、免疫学的方法と同様の方法により行われ得る。従って、抗体の代わりに本発明のアプタマーをプローブとして用いることにより、酵素免疫測定法(EIA)(例、直接競合ELISA、間接競合ELISA、サンドイッチELISA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、ウエスタンブロット法、免疫組織化学的染色法、セルソーティング法等の方法と同様の方法により、検出及び定量を行うことができる。また、PET等の分子プローブとしても、使用することができる。このような方法は、例えば、生体又は生物学的サンプルにおけるNGF量の測定、NGFが関連する疾患の診断に有用であり得る。
本明細書中で挙げられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、本明細書での引用により、その全てが明示されたと同程度に本明細書に組み込まれるものである。
以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明は下記実施例等に何ら制約されるものではない。
実施例1:NGFアプタマーの作製1
NGFに特異的に結合するRNAアプタマーはSELEX法を用いて作製した。SELEXはEllingtonらの方法(Ellington and Szostak,Nature 346,818−822,1990)及びTuerkらの方法(Tuerk and Gold,Science 249,505−510,1990)を参考にして行った。標的物質としてヒトNGF(R&D Systems社製)を用いた。
最初のラウンドで用いたRNA(40N)は、化学合成によって得られたDNAをDuraScribeTMT7 Transcription Kit(Epicentre社製)を用いて転写して得た。キットに含まれるNTPのうち、2’−OH ATPは2’−デオキシアデノシン 5’−三リン酸(2’−H ATPまたはdATP、GE Healthcare社製)に入れ替えて、ほかの基質はキットにあるものを使用した。この方法によって得られたRNAはピリミジンヌクレオチドのリボースの2’位がフルオロ化されたもので、プリンヌクレオチドであるGはRNAタイプ、AはDNAタイプである。DNA鋳型として以下に示す40ヌクレオチドのランダム配列の両端にプライマー配列を持った長さ83ヌクレオチドのDNAを用いた。DNA鋳型とプライマーは化学合成によって作製した。
DNA鋳型1:
5’−gaggatccatgtatgcgcacata−40n−cttctggtcgaagttctccc−3’(配列番号118)
プライマーFwd1:
5’−cggaattctaatacgactcactatagggagaacttcgaccagaag−3’(配列番号119)
プライマーRev1:
5’−gaggatccatgtatgcgcacata−3’(配列番号120)
上記配列において、nはa,g,c又はtのいずれか一つを示す。プライマーFwd1はT7 RNAポリメラーゼのプロモーター配列を含んでいる。最初のラウンドで用いたRNAプールのバリエーションは理論上1014であった。
SELEXを10ラウンド行った後、PCR産物をpGEM−T Easyベクター(Promega社製)にクローニングし、大腸菌株DH5α(Toyobo社製)にトランスフォーメーションした。シングルコロニーからプラスミドを抽出後、DNAシーケンサー(ABI PRISM3100、ABI社製)で塩基配列を決定した。48クローンを調べたところ、45配列を決定することができた。そのうち2配列ずつ同じものが7種類、残り31配列はシングル配列であった。SELEXをさらに3ラウンド追加して再度配列を調べたところ、更なる収束が見られた。
10と13ラウンドで収束が見られた配列および幾つかのシングル配列のNGFに対する結合活性を表面プラズモン共鳴法により評価した。
測定装置はBIAcore社製のBIAcore2000を使用し、センサーチップとしてアミノ基と反応するCM5を用いた。ヒトNGFは固定化溶液(10mM酢酸ナトリウム、pH6)に溶解し25〜40μg/mlとした。タンパク質側のアミノ基とチップ側のカルボキシル基の反応にはEthyl−3−carbodiimide hydrochlorideとN−hydroxysuccinimideを用いた。反応後、ethanolamine−HClによるブロッキングを行った。NGFの固定化量は3000〜4000RUとした。アナライト用のアプタマーは0.15μM〜0.5μMに調製した。ランニングバッファーには溶液Aを用いた。ここで溶液Aとは145mM塩化ナトリウム、5.4mM塩化カリウム、1.8mM塩化カルシウム、0.8mM塩化マグネシウム、20mMトリス(pH7.6)、0.05% ツイーン20の混合溶液である。再生用液として1M NaClと50mM NaOHの混合溶液を用いた。NGFはFC2に固定化し、FC1の結果を引くことで最終的なセンサーグラムとした。
34配列の結合活性を測定したところ、全てのRNAがコントロールの40Nよりも有意にNGFに結合することがわかった。ここで40Nとは40ヌクレオチドのランダム配列を含む、1ラウンド目に使用したRNAプールのことである。以上より、これらのRNAはNGFに結合するアプタマーであることが示された。
実施例2:NGFとNGF受容体の結合を阻害するアプタマー
実施例1で得られたアプタマーがNGFとNGF受容体(TrkAとp75)の結合を阻害するかどうか、表面プラズモン共鳴法を用いて調べた。
BIAcore社のプロトコールに従って、CM5センサーチップにProtein A(21181,PIERCE)を固定化した。そこに、IgGのFc部分が融合したヒトTrkA−Fc(175−TK,R&D systems)あるいはヒトP75(367−NR,R&D systems)を約700〜1200RU固定化した。アナライトとしてNGF(0.1μM)とアプタマー(0.3μM)を混合して30分保持したものをインジェクションした。もしアプタマーがNGFとTrkAあるいはp75の結合を阻害する場合はセンサーグラムのシグナルは上がらないが、もし阻害しない場合は三者複合体を形成しシグナルが上がることが予想される。また、NGFがアプタマーよりも受容体に強く結合する場合は、アプタマーがはずれて、NGFが受容体と結合する場合もある。阻害実験を開始する前にTrkAあるいはp75にNGFが結合することを確認した。
34配列の阻害活性を測定したところ、全てのアプタマーがNGFとTrkAあるいはp75の結合を阻害することがわかった。特に配列番号1、2、3、4、5、7で表わされるアプタマーは強い阻害活性を示した。以上より、これらのRNAはNGFとNGF受容体の結合を阻害するアプタマーであることが示された。
実施例3:アプタマーの神経突起伸長阻害活性
PC12細胞のサブクローンであるNeuroscreen−1細胞を用いて、実施例1で得たアプタマーの神経突起伸長阻害活性を評価した。
コラーゲンタイプIVでコートした96ウェル平底プレートに1ウェルあたり2500個の細胞を2.5%ウマ血清と1.25%胎児ウシ血清を含むRPMI−1640培地で1日培養した。そこに室温もしくは37℃にて30分間から1時間無血清のRPMI−1640培地中で予め反応させたヒトNGF(最終濃度0.38nMあるいは1.14nM)とアプタマー(最終濃度500〜0.01nM)の混合溶液を添加した。2日後にCellomics Neurite Outgrowth Kit(Thermo Scientific社製)を使用して細胞質と核を染色し、Cellomics ArrayScan VTI(Thermo Scientific社製)によって1細胞あたりの神経突起長を測定した。NGFのみの添加の際に得られた1細胞あたりの神経突起長を阻害活性0%、NGF無添加で2日間培養して得られた1細胞あたりの神経突起長を阻害活性100%として、NGFとアプタマーを混合添加した場合に得られた1細胞あたりの神経突起長から、アプタマーの阻害活性を求めた。
実施例1で得られた34種類のアプタマーの阻害活性を調べたところ、配列番号1〜8で表されるアプタマーが10nM添加することで神経突起伸長を強く阻害することがわかった。他のアプタマーは10nMで顕著な阻害を示さなかった。
以下にそれぞれの配列番号に対応する実際に得られたヌクレオチド配列を示す。大文字はRNA、小文字はDNA、ヌクレオチドにおける括弧はその2’位の修飾を示し、Fはフッ素原子を示す(以下同様)。
配列番号1:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GaC(F)GaC(F)C(F)aaC(F)U(F)C(F)GU(F)C(F)U(F)C(F)U(F)U(F)aU(F)GGaU(F)U(F)U(F)aC(F)GU(F)GaaC(F)C(F)C(F)GU(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号2:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)C(F)C(F)aaaC(F)GGGaC(F)U(F)U(F)U(F)aU(F)aC(F)C(F)U(F)C(F)U(F)GaGU(F)C(F)GC(F)C(F)U(F)aC(F)GC(F)U(F)C(F)C(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号3:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号4:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)aC(F)GU(F)U(F)aGU(F)aC(F)GU(F)U(F)U(F)GC(F)aU(F)aU(F)GU(F)aC(F)aaC(F)C(F)U(F)U(F)GC(F)aU(F)aC(F)GaU(F)aC(F)GU(F)aGaU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号5:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)aGaaGaGGaC(F)U(F)aGU(F)U(F)GC(F)U(F)aaU(F)GC(F)C(F)C(F)U(F)GGU(F)U(F)C(F)GU(F)C(F)GC(F)U(F)aU(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号6:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号7:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGaC(F)GC(F)aC(F)C(F)U(F)C(F)U(F)U(F)aU(F)C(F)aC(F)aC(F)aU(F)GC(F)GU(F)C(F)aGC(F)C(F)U(F)U(F)GU(F)GaU(F)aC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号8:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGaU(F)C(F)C(F)aC(F)U(F)GGU(F)aC(F)U(F)aC(F)GU(F)GaC(F)C(F)C(F)C(F)GC(F)aU(F)aGGC(F)aaU(F)C(F)C(F)U(F)GC(F)U(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
実施例4:アプタマーの短鎖化
配列番号3および6で表わされるアプタマーの短鎖化を行った。MFOLDプログラム(Zuker,Nucleic Acids Res.31,3406−3415,2003)を用いてRNAの2次構造を予測し、その構造を参考にしながら短鎖化した。短鎖化体は、目的の配列のDNAを化学合成により作製し、DuraScribe T7 Transcription Kit(Epicentre社製)を用いて転写することで得られた。転写産物はDNase処理の後、フェノール・クロロホルム処理によりタンパク質を除去し、エタノール沈殿により回収した。回収されたRNAの純度はポリアクリルアミド電気泳動法で、量は吸光度測定法で確認した。実際に作製した短鎖化体の配列は以下の通りである。
配列番号9:配列番号3で表わされるアプタマーの改変体で73ヌクレオチドの長さのRNA
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)
配列番号10:配列番号3で表わされるアプタマーの改変体で68ヌクレオチドの長さのRNA
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)G
配列番号11:配列番号3で表わされるアプタマーの改変体で46ヌクレオチドの長さのRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号12:配列番号3で表わされるアプタマーの改変体で40ヌクレオチドの長さのRNA
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号13:配列番号3で表わされるアプタマーの改変体で42ヌクレオチドの長さのRNA
GGGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号121:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号122:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号123:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GU(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号124:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GGU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)U(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号125:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)U(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号126:配列番号11で表わされるアプタマーの改変体でステム2から1塩基対を取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)GU(F)U(F)U(F)C(F)C(F)GU(F)C(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号127:配列番号13で表わされるアプタマーの改変体で、ステム2から1塩基対を取り除いたRNA
GGGGU(F)C(F)C(F)U(F)C(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGU(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号128:配列番号13で表わされるアプタマーの改変体で、ステム2から1塩基対を取り除いたRNA
GGGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aU(F)U(F)U(F)C(F)C(F)GU(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号129:配列番号13で表わされるアプタマーの改変体で、ステム1から1塩基対を取り除いたRNA
GGGGC(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)C(F)C(F)C(F)C(F)
配列番号130:配列番号11で表わされるアプタマーの改変体で、ループ2からUを一つ取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号131:配列番号11で表わされるアプタマーの改変体で、ループ2からCを二つ取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号132:配列番号11で表わされるアプタマーの改変体で、ループ2からGを一つ取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)
配列番号133:配列番号13で表わされるアプタマーの改変体で、ループ2からUを一つ取り除いたRNA
GGGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GC(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号134:配列番号11で表わされるアプタマーの改変体で、インターナルループ1からUを一つ取り除いたRNA
GGGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)aU(F)GU(F)GC(F)
配列番号135:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からCを一つ取り除いたRNA
GGGGU(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号136:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からUを一つ取り除いたRNA
GGGGU(F)C(F)C(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号137:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からCとUを一つずつ取り除いたRNA
GGGGU(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)aC(F)C(F)C(F)C(F)
配列番号138:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からCとGを一つずつ取り除いたRNA
GGGGU(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)U(F)U(F)aC(F)C(F)C(F)C(F)
配列番号139:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からUを2つ取り除いたRNA
GGGGU(F)C(F)C(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)GU(F)U(F)aC(F)C(F)C(F)C(F)
配列番号140:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からUとGを一つずつ取り除いたRNA
GGGGU(F)C(F)C(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)U(F)U(F)aC(F)C(F)C(F)C(F)
配列番号141:配列番号13で表わされるアプタマーの改変体で、インターナルループ1からUを2つ取り除いたRNA
GGGGU(F)C(F)C(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)aC(F)C(F)C(F)C(F)
配列番号14:配列番号6で表わされるアプタマーの改変体で78ヌクレオチドの長さのアプタマー
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGa
配列番号15:配列番号6で表わされるアプタマーの改変体で73ヌクレオチドの長さのアプタマー
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)
配列番号16:配列番号6で表わされるアプタマーの改変体で63ヌクレオチドの長さのアプタマー
C(F)GaC(F)C(F)aGaaGU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)
配列番号17:配列番号6で表わされるアプタマーの改変体で58ヌクレオチドの長さのアプタマー
aGaaGU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)
配列番号18:配列番号6で表わされるアプタマーの改変体で48ヌクレオチドの長さのアプタマー
U(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)G
配列番号19:配列番号6で表わされるアプタマーの改変体で46ヌクレオチドの長さのアプタマー
GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)
配列番号20:配列番号6で表わされるアプタマーの改変体で50ヌクレオチドの長さのアプタマー
GU(F)GC(F)aaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)GC(F)GC(F)
配列番号21:配列番号6で表わされるアプタマーの改変体で48ヌクレオチドの長さのアプタマー
GGGaaU(F)aC(F)U(F)U(F)U(F)C(F)GC(F)GGC(F)aU(F)aU(F)GU(F)GC(F)aaaC(F)C(F)U(F)U(F)GC(F)C(F)aC(F)GaC(F)U(F)aU(F)GU(F)C(F)C(F)C(F)
これらのアプタマーのNGFに対する結合活性を実施例1と同様に表面プラズモン共鳴法を用いて評価した。その結果、配列番号9〜21で表わされるRNAはコントロールの40Nよりも有意にNGFに結合することがわかった。一方、配列番号121〜141で表わされるRNAは、配列番号11または13で表わされるアプタマーと比べて結合量が大きく低下した。
実施例2と同様に表面プラズモン共鳴法によりNGFとその受容体(TrkAおよびp75)の結合阻害を評価したところ、配列番号9〜16で表わされるアプタマーが高い阻害活性を有していることがわかった。
実施例3と同様な方法で神経突起伸長阻害活性を調べたところ、配列番号9〜21で表わされるアプタマーは10nMの濃度で高い阻害活性を示すことがわかった。一方、配列番号127、128、131、133、135、141で表わされるアプタマーは10nMで顕著な阻害活性を示さなかった。
実施例5:配列番号3で表わされるアプタマーおよびその短鎖化体の二次構造予測
配列番号3、9〜13および配列番号121〜141で表わされるRNAの二次構造をMFOLDプログラムを用いて予測した。活性を有しているアプタマーは全て配列番号12で表わされるアプタマーの二次構造を含んでいた(図1)。この二次構造は5’末端から、ステム1、インターナルループ1、ステム2、ループ2の4つの構造で特徴付けられた(図2)。ステム1は4塩基対、インターナルループ1は3ヌクレオチドと4ヌクレオチド、ステム2は9塩基対、ループ2は7ヌクレオチドから構成されている。
配列番号121〜128で表わされるRNAはステム2から1塩基対を除いたものであるが、その全ての活性が大きく低下した。よって、ステム2は9塩基対必要であることが示唆された。
配列番号12および13で表わされるアプタマーは配列番号11で表わされるアプタマーの改変体であり、ステム1をG−Cペアーに置き換えたものである。配列番号12および13で表わされるアプタマーは配列番号11と同等の神経突起伸長阻害活性を示した。よって、ステム1はステム構造である限りどのようなベースペアーであっても活性に大きく影響しないことが示唆された。一方、配列番号129で表わされるRNAは配列番号13で表わされるアプタマーのステム1からU−a塩基対を除いたものであるが、活性が大きく低下した。よって、ステム1の4番目の塩基対はU−aである必要があることがわかった。
配列番号130〜133で表わされるRNAはループ2から1ヌクレオチド取り除いたRNAであるが、その全ての活性が大きく低下した。従って、ループ2は7ヌクレオチドで構成される必要があることが示唆された。
配列番号134〜141で表わされるRNAはインターナルループ1のヌクレオチドを1つまたは2つ取り除いたRNAであるが、その全ての活性が大きく低下した。従って、インターナルループ1は全部で7ヌクレオチドで構成される必要があることが示唆された。
以下、図2で規定される構造をコンセンサス二次構造1と呼ぶ。
実施例6:NGFアプタマーの作製2
実施例1と異なるプライマーを用いてSELEXを行い、コンセンサス二次構造1を有するアプタマーが取得できるかどうか検討した。以下に使用したDNA鋳型とプライマー配列を示す。
DNA鋳型2:
5’−ccagttgttggtgacaatgcnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngcagctccacaggcttccc(配列番号142)
プライマーFwd2:
5’−taatacgactcactatagggaagcctgtggagctgc(配列番号143)
プライマーRev2:
5’−gcattgtcaccaacaactgg(配列番号144)
上記配列において、nはa,g,c又はtのいずれか一つを示す。プライマーFwd2はT7 RNAポリメラーゼのプロモーター配列を含んでいる。最初のラウンドで用いたRNAプールのバリエーションは理論上1014であった。
SELEXは実施例1と同様に行った。SELEXを10ラウンド行った後、48クローンを調べたところ、46配列を決定することができた。そのうち、5クローン同じものが1配列、3クローン同じものが4配列、2クローン同じものが3配列、計8配列が収束した。残り23配列はシングル配列であった。
収束が見られた8配列を選び、NGFに対する結合活性を表面プラズモン共鳴法により評価した。測定方法は実施例1と同様であった。その結果、全ての配列がNGFに僅かしか結合しなかった。
シングル配列も含めて全ての配列の二次構造をMFOLDプログラムを用いて予測したところ、コンセンサス二次構造1を含む配列は存在しなかった。
実施例7:NGFアプタマーの作製3
配列番号12で表わされる配列に15%のランダム配列をドープし、その両端に実施例1と同様なプライマー配列を付加したRNAプールを用いてSELEXを行った。SELEXは実施例1とほぼ同様に行った。その鋳型の配列を以下に示す。
鋳型3:
5’−gaggatccatgtatgcgcacata−acagccacggagacggaaactacgcagcaggatgtgccaa−cttctggtcgaagttctccc−3’(配列番号145)
そのうち、下線で示した塩基配列は以下の通りである。
:a(85%),g(5%),c(5%),t(5%)
:a(5%),g(85%),c(5%),t(5%)
:a(5%),g(5%),c(85%),t(5%)
:a(5%),g(5%),c(5%),t(85%)
4ラウンド終了後に48クローンの配列を確認したところ、約半分は配列番号12を含んだ配列で、残りは数箇所に変異が入った配列であった。配列番号12と同じ配列を除去するため、配列番号12のアンチセンスオリゴをRNAプールに加えて、さらに3ラウンドSELEXを追加した。アンチセンスオリゴの配列は以下の通りである。
5’−agacggaaactacgcagcagga−3’−(配列番号146)
アンチセンスオリゴはRNAプールに対して10倍量加えた。得られたRNAの配列を確認したところ、約半分は配列番号12で表わされる配列に数箇所変異が入った配列で、残りは配列番号12で表わされる配列と全く異なる配列であった。
4および7ラウンドから配列番号22〜37で表わされる計16配列を選び、NGFに対する結合活性およびNGFとNGF受容体の結合阻害活性を調べた。測定は実施例1および2に示した通りで表面プラズモン共鳴法を用いた。測定の結果、すべての配列がコントロールの40Nよりも有意にNGFに結合し、NGFとNGF受容体の結合を阻害することがわかった。また、神経突起伸長阻害活性を実施例3と同様な方法で測定した。その結果、全ての配列が10nMの濃度で高い阻害活性を示した。以下にそれぞれの配列番号に対応する実際に得られたヌクレオチド配列を示す。
配列番号22:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号23:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号24:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号25:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号26:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号27:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号28:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)aU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号29:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)C(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaaGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号30:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaaGGU(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)aC(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号31:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)C(F)U(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号32:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GGaGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号33:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)C(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)aaU(F)C(F)U(F)U(F)GGU(F)GGC(F)GU(F)GU(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号34:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)C(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号35:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号36:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGGU(F)aC(F)GU(F)U(F)aGU(F)aC(F)GU(F)U(F)U(F)GC(F)aU(F)aU(F)GU(F)aC(F)aaC(F)C(F)U(F)U(F)GC(F)aU(F)aC(F)GaU(F)aC(F)GU(F)aGGU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号37:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)aC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号22〜37で表わされるアプタマーの二次構造をMFOLDプログラムを用いて予測した。その結果、配列番号30、33、36で表わされるアプタマー以外のアプタマーは全てコンセンサス二次構造1を含んでいることがわかった。それらのインターナルループ1の配列は全て5’側がCCUで3’側がUGUUであった(図2)。また、ループ2は5’−UUUCCXU−3’で表わされるコンセンサス配列を含んでいた。ここでXはA、G、C、Uのいずれかである。ステム1の最後の塩基対は全てU−aであった。ステム2の1、5、6、8、9番目の塩基対はそれぞれG−C、C−G、G−C、a−U、G−Cであった。2〜4および7番目はいくつかの異なる塩基対が存在した。
実施例8:アプタマーの細胞増殖阻害活性(TF−1アッセイ)
TF−1細胞を用いた増殖阻害評価系により配列番号22〜37で表わされるアプタマーの阻害活性を評価した。
ヒト赤白血病細胞株であるTF−1細胞(ATCC Number:CRL−2003)にレトロウイルスベクターを用いて二つのNGF受容体(ヒトTrkAおよびヒトp75)遺伝子を導入し、二つの受容体を同時に安定的に高発現する細胞を作製した。この細胞を20%の胎児ウシ血清を含むRPMI−1640培地に懸濁し、白色の96ウェル平底プレートに1ウェルあたり1000個(50μL)の細胞を播種した。そこに室温にて30分間無血清のRPMI−1640培地中で予め反応させたヒトNGF(最終濃度0.076nM)とアプタマー(最終濃度30〜0.01nM)の混合溶液50μLを添加し、3日後にCellTiter−Glo Luminescent Cell Viability Assay(Promega社製)のCellTiter−Glo試薬を各ウェルに100μL添加後、マイクロプレートリーダーにより化学発光を測定し、NGF刺激によるTF−1細胞の増殖を評価した。NGFのみの添加で細胞を3日間培養して得られた1ウェルあたりの発光量を阻害活性0%、NGF無添加で3日間培養して得られた1ウェルあたりの発光量を阻害活性100%として、NGFとアプタマーを混合添加した場合に得られた1ウェルあたりの発光量から、アプタマーの阻害活性を求めた。その結果、これら全てのアプタマーが10nMの濃度で高い阻害活性を有していることがわかった。
WO2010/035725A1に記載された配列番号62と68で表わされるアプタマーの阻害活性を比較のために調べた。その結果、それぞれのIC50は6.1および7.5nMであった。
実施例9:アプタマーの短鎖化2
高い阻害活性を示した配列番号23、25、26、27、28、29、31、32、34および35で表わされるアプタマーの短鎖化を、コンセンサス二次構造1を参考にしておこなった。NGFに対する結合活性を実施例1と同様に表面プラズモン共鳴法を用いて測定したところ、全ての短鎖化体がNGFに強く結合した。また、神経突起伸長阻害活性とTF−1細胞増殖阻害活性を実施例3および8と同様な方法で測定したところ、10nMの濃度で強い阻害活性を示した。以下にそれらの実際に得られたヌクレオチド配列を示す。
配列番号38:(配列番号26の短鎖化体)
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号39:(配列番号27の短鎖化体)
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号40:(配列番号28の短鎖化体)
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)aU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号41:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaaGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号42:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)C(F)U(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号43:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GGaGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号44:
GGGU(F)C(F)C(F)U(F)GC(F)C(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号45:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号46:(配列番号25の短鎖化体)
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号47:(配列番号26の短鎖化体)
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
これらのアプタマーの二次構造をMFOLDプログラムを用いて予測したところ、その全てがコンセンサス二次構造1で示される構造であった。
実施例10:NGFアプタマーの作製4
配列番号12で表わされる配列に21%のランダム配列をドープし、その両端に実施例1と同様なプライマー配列を付加したRNAプールを用いてSELEXを行った。SELEXは実施例1と同様に行った。その鋳型の配列を以下に示す。
鋳型3:
5’−gaggatccatgtatgcgcacata−acagccacggagacggaaactacgcagcaggatgtgccaa−cttctggtcgaagttctccc−3’(配列番号145)
そのうち、下線で示した塩基配列は以下のとおりである。
:a(79%),g(7%),c(7%),t(7%)
:a(7%),g(79%),c(7%),t(7%)
:a(7%),g(7%),c(79%),t(7%)
:a(7%),g(7%),c(7%),t(79%)
4ラウンド終了後に48クローンの配列を確認したところ収束は見られなかった。そこでさらに3ラウンドを追加した。5、6、7ラウンドそれぞれ48クローンの配列を確認したところ、ラウンドが進むにつれて配列に収束が見られた。7ラウンド目ではほとんどの配列が収束していた。
5、6、7ラウンドから、計14配列を選び、表面プラズモン共鳴法でNGFに対する結合活性を調べた。測定方法は実施例1に示した通りである。測定の結果、すべての配列がコントロールの40Nよりも有意にNGFに結合した。以下にそれらの実際に得られたヌクレオチド配列を示す。
配列番号48:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号49:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)U(F)GC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号50:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGC(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GaC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号51:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aC(F)C(F)C(F)U(F)GC(F)U(F)aC(F)GGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号52:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)U(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号53:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)U(F)GC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号54:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GaU(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GU(F)C(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号55:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号56:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GU(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)aU(F)GGU(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号57:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)aGGC(F)aC(F)GU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GU(F)GU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号58:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GaC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号59:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)U(F)GC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号60:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)GGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号61:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)U(F)aGC(F)aC(F)aU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGU(F)U(F)GU(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
これらのアプタマーの二次構造をMFOLDプログラムを用いて予測したところ、その全てにコンセンサス二次構造1で示される構造が見られた。それらのインターナルループ1の配列は全て5’側がCCUで3’側がUGUUであった。また、ループ2は5’−UUUCCXU−3’で表わされるコンセンサス配列を含んでいた。ここでXはGまたはUのいずれかである。ステム2は1、3、8、9番目の塩基対がそれぞれG−C、U−G、a−U、G−Cであった。2および4〜7番目はいくつかの異なる塩基対が存在した。
これらのアプタマーに対して実施例4と同様に短鎖化を行った。その結果、すべてのアプタマーで結合活性を保持したままコンセンサス二次構造1と同様な構造まで短鎖化することができた。
実施例3および8と同様に、神経突起伸長阻害活性とTF−1細胞増殖阻害活性を評価した。その結果、これらのアプタマーは全て10nMの濃度で高い阻害活性を示した。以下にそれらの実際に得られたヌクレオチド配列を示す。
配列番号62:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号63:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号64:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号65:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)aC(F)GGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号66:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)U(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号67:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GC(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号68:
GGGU(F)C(F)C(F)U(F)GaU(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号69:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号70:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GU(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)aU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号71:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GU(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号72:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号73:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号74:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)aGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GGU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号75:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
実施例11:NGFアプタマーの作製5
コンセンサス二次構造1のステム2をランダム配列にした以下のような鋳型を用いて、実施例1と同様なSELEXを行った。
鋳型4:
5’−gaggatccatgtatgcgcacataacagnnnnnnngacggaaacnnnnnnncaggatgtgccaacttctggtcgaagttctccc−3’(配列番号147)
7ラウンド終了後に48クローンの配列を確認したところ、配列の収束が見られなかった。そこで、さらに3ラウンドを追加した。10ラウンド終了後48クローンの配列を確認したところ、約半数の配列に収束がみられ、残り半数はシングル配列であった。その内、17配列を選び、表面プラズモン共鳴法でNGFに対する結合活性を調べた。測定方法は実施例1に示した通りである。測定の結果、すべての配列がコントロールである40Nよりも有意にNGFに結合することがわかった。
上記のアプタマーに対して実施例4と同様に短鎖化を行った。その結果、すべてのアプタマーで結合活性を保持したままコンセンサス二次構造1と同様な構造まで短鎖化することができた。以下にそれらの実際に得られたヌクレオチド配列を示す。
配列番号76:
GGGU(F)C(F)C(F)U(F)GaU(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aaU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号77:
GGGU(F)C(F)C(F)U(F)GaC(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aGU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号78:
GGGU(F)C(F)C(F)U(F)GGC(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号79:
GGGU(F)C(F)C(F)U(F)GGU(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aaC(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号80:
GGGU(F)C(F)C(F)U(F)GGC(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aGU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号81:
GGGU(F)C(F)C(F)U(F)GGU(F)GaU(F)aaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)aU(F)C(F)aC(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号82:
GGGU(F)C(F)C(F)U(F)GGaU(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号83:
GGGU(F)C(F)C(F)U(F)GU(F)aC(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GU(F)aC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号84:
GGGU(F)C(F)C(F)U(F)GU(F)C(F)GC(F)U(F)aaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)U(F)GC(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号85:
GGGU(F)C(F)C(F)U(F)GaGU(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)aU(F)aC(F)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号86:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号87:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号88:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GaaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号89:
GGGU(F)C(F)C(F)U(F)GU(F)GGaaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)C(F)C(F)aC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号90:
GGGU(F)C(F)C(F)U(F)GC(F)GU(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aU(F)GC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号91:
GGGU(F)C(F)C(F)U(F)GC(F)C(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aGGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号92:
GGGU(F)C(F)C(F)U(F)GaC(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGU(F)C(F)U(F)GU(F)aC(F)C(F)C(F)
これらのアプタマーの神経突起伸長阻害活性は、NGFのみ添加の際に得られた1細胞あたりの神経突起長を阻害活性0%、NGF無添加で2日間培養して得られた1細胞あたりの神経突起長を阻害活性100%として、NGFとアプタマーを混合添加した場合に得られた1細胞あたりの神経突起長から算出した。50%阻害濃度(IC50)は、50%阻害活性を挟む上下二点の濃度より求めた。実験の結果を表1に示す。表1においてIC50値を「<X」と記載したものは、記載した濃度Xが測定最低濃度であった場合において阻害活性が50%以上であったことを示す。実験したすべてのアプタマーが強い阻害活性を示した。その一部のIC50値を表1に示す。
TF−1細胞増殖阻害活性については、NGFのみの添加で細胞を3日間培養して得られた1ウェルあたりの発光量を阻害活性0%、NGF無添加で3日間培養して得られた1ウェルあたりの発光量を阻害活性100%として、NGFとアプタマーを混合添加した場合に得られた1ウェルあたりの発光量から、アプタマーの阻害活性を算出した。50%阻害濃度(IC50)は、50%阻害活性を挟む上下二点の濃度より求めた。結果を表1に示す。IC50値を「<X」と記載したものは、記載した濃度Xが測定最低濃度であった場合において阻害活性が50%以上であったことを示す。実験の結果、配列番号81、84、86、89以外のアプタマーはIC50値が1nM以下であることがわかった。
これらのアプタマーのインターナルループ1の配列は全て5’側がCCUで3’側がUGUUであった。また、ループ2は5’UUUCCXU3’で表わされるコンセンサス配列を含んでいた。ここでXはGまたはUのいずれかである。ステム1の最後の塩基対は全てU−aであった。ステム2は1、8、9番目の塩基対がそれぞれG−C、a−U、G−Cであった。2〜7番目はいくつかの異なる塩基対が存在した。
実施例12:NGFアプタマーの作製6
NGFは阻害するがNT−3およびNT−4は阻害しないアプタマーを作製するために新たなSELEXを行った。最初のプールとして、実施例9と10の最初に用いたRNAプールを1:1で混合したものを使用した。セレクション前のRNAプールにNT−3(R&D Systems社製、294pmol)、NT−4(R&D Systems社製、179pmol)およびBDNF(R&D Systems社製、148pmol)を混合し、これをNGF(380pmol)が固定化されたビーズに加えた。
4ラウンド終了後に48クローンの配列を確認したところ、配列の収束が見られなかった。シングル配列の中に配列番号27、28、34、64、72と同じ配列のものがあった。新規な14配列を選び、MFOLDプログラムを用いて二次構造を予測したところ、全てコンセンサス二次構造1を含んでいた。そこで、これらのアプタマーをコンセンサス二次構造1と同様に40merまで短鎖化した。これらの短鎖化体のNGFとNT−3に対する結合活性を表面プラズモン共鳴法で測定した。測定方法は実施例1に示したように、BIAcore社製のBIAcore2000を使用し、センサーチップとしてアミノ基と反応するCM5を用いた。タンパク質の固定化は実施例1と同様にEthyl−3−carbodiimide hydrochlorideとN−hydroxysuccinimideを用いて行った。ヒトNGFあるいはNT−3は固定化溶液(10mM酢酸ナトリウム、pH6)に溶解し25〜40μg/mlとして使用した。タンパク質固定化後、ethanolamine−HClによるブロッキングを行った。NGFとNT−3の固定化量はそれぞれ3,000〜4,000RUと3,000〜5,000RUとした。アナライト用のアプタマーは0.15μM〜0.5μMに調製した。ランニングバッファーと再生用液は実施例1と同様であった。NT−3はFC2に、NGFはFC3に固定化し、それぞれFC1の結果を引くことで最終的なセンサーグラムとした。その結果、7配列がNGFに強く結合することがわかった。一方、NT−3に対してはどれもほとんど結合しなかった。
実施例3と同様に神経突起伸長阻害活性を測定したところ、配列番号93〜98で表わされるアプタマーが10nMで強い阻害活性を示した。以下に各配列番号に対応する実際に得られたヌクレオチド配列を示す。
配列番号93:
GGGU(F)C(F)C(F)U(F)GC(F)C(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GC(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号94:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GGaGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号95:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)aU(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号96:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aU(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号97:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)aC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号98:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)aC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)aC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
これらのアプタマーのインターナルループ1の配列は全て5’側がCCUで3’側がUGUUであった。また、ループ2は5’UUUCCXU3’で表わされるコンセンサス配列を含んでいた。ここでXはGまたはaのいずれかである。ステム1の最後の塩基対は全てU−aであった。ステム2は2、5、8、9番目の塩基対がそれぞれC−G、C−G、a−U、G−Cであった。他はいくつかの異なる塩基対が存在した。
SELEXを7ラウンドまで追加し48クローンの配列を確認したところ、大半の配列は一種類の配列に収束した。残りの中からシングル13配列を選び、上記と同様に表面プラズモン共鳴法でNGFおよびNT−3に対する結合活性を調べた。測定の結果、7配列がNGFに強く結合することがわかった。一方、NT−3に対してはどれもほとんど結合しなかった。
これらのアプタマーの二次構造をMFOLDプログラムを用いて予測したところ、どれもコンセンサス二次構造1を含んでいなかった。実施例3と同様に神経突起伸長阻害活性を測定したところ、配列番号99および100で表わされるアプタマーが10nMで強い阻害活性を示した。一方、実施例8と同様にTF−1細胞増殖阻害活性を測定したところ、どれも阻害活性を示さなかった。以下に各配列番号に対応する実際に得られたヌクレオチド配列を示す。
配列番号99:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGU(F)C(F)C(F)aaaC(F)GGGaC(F)U(F)U(F)U(F)aU(F)aC(F)C(F)U(F)C(F)U(F)GaGU(F)C(F)GC(F)C(F)U(F)U(F)U(F)GC(F)U(F)C(F)C(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
配列番号100:
GGGaGaaC(F)U(F)U(F)C(F)GaC(F)C(F)aGaaGaC(F)C(F)aaaC(F)GGaC(F)U(F)U(F)U(F)aU(F)aC(F)C(F)U(F)C(F)U(F)GaGU(F)C(F)GC(F)C(F)U(F)aU(F)GC(F)U(F)C(F)C(F)U(F)aU(F)GU(F)GC(F)GC(F)aU(F)aC(F)aU(F)GGaU(F)C(F)C(F)U(F)C(F)
実施例13:NGFアプタマーの作製7
NGFは阻害するがNT−3およびNT−4は阻害しないアプタマーを作製するために新たなSELEXを実施例12と同様に行った。最初に用いたRNAプールの鋳型とプライマーは以下の通りである。
鋳型5:
5’−gaggatccatgtatgcgcacatnnnnggatacgagnnnnnnnctcttatccnnnatgtgccaacttctggtcgaagttctccc−3’(配列番号148)
そのうち、下線で示した塩基配列は以下の通りである。
:a(70%),g(10%),c(10%),t(10%)
:a(10%),g(70%),c(10%),t(10%)
:a(10%),g(10%),c(70%),t(10%)
:a(10%),g(10%),c(10%),t(70%)
プライマーFwd3:
5’−taatacgactcactatagggagaacttcgaccagaagttggcaca(配列番号149)
プライマーRev3:
5’−gaggatccatgtatgcgcaca(配列番号150)
鋳型配列は配列番号82で表わされる配列を基にしており、コンセンサス二次構造1のステム2に30%のランダム配列をドープし、インターナルループ1とループ2部分を完全なランダム配列(n)にした。
4ラウンド終了後に48クローンの配列を確認したところ、21クローンは配列番号22で表わされる配列と一致していた。残りの配列のうち2クローンは同一の配列で、他はシングル配列であった。そのうちの13配列を選び、二次構造をMFOLDプログラムで予測したところ、コンセンサス二次構造1の構造を有していた。そこで、それらのアプタマーをコンセンサス二次構造1と同様になるように40merまで短鎖化した。短鎖化したアプタマーの結合活性を実施例12と同様に表面プラズモン共鳴法で確認した。NT−4はNT−3と同様に測定した。その結果、短鎖化体がNGFと強く結合することがわかった。一方、NT−3およびNT−4との結合は弱かった。
また、これらの短鎖化体に対して実施例3と同様に神経突起伸長阻害活性を測定したところ、配列番号101、および102で表わされるアプタマーのIC50値が1nM以下の強い阻害活性を示した(表1)。一方、実施例8と同様にTF−1細胞増殖阻害活性を測定したところ、同じ2アプタマーのIC50値は1nM以上であった。以下に各配列番号に対応する実際に得られたヌクレオチド配列を示す。
配列番号101:
GGGU(F)C(F)C(F)U(F)GaC(F)GU(F)aU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GU(F)aU(F)GU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号102:
GGGU(F)C(F)C(F)U(F)GaGC(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)aU(F)GC(F)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
実施例14:高速シーケンサーを用いた配列解析
コンセンサス二次構造1を有するアプタマーで、NGFは阻害するが他のニューロトロフィンは阻害しないアプタマーを得るために、高速シーケンサーGS FLX(Roche社製)を用いてシーケンス解析を行った。実施例1ではサンガーシーケンスにより48クローンの配列解析を行ったが、高速シーケンサーを用いると数万配列の解析が可能となる。測定およびデータ解析はOperon社で実施し、サンプル調製はOperon社のプロトコールに従って行った。測定対象のDNAは実施例8で行われたSELEXで得られた7、9、10ラウンド、実施例12で行われたSELEXで得られた4および5ラウンド、実施例13で行われたSELEXで得られた3および4ラウンド終了後のDNAプールを等モルずつ混合したプールとした。
得られたシーケンス配列の総数は69249であった。そのうち、FLXプライマー配列が完全一致または1塩基置換している配列で、且つ、N40の部分の配列長が40である配列は40077配列であった。これらの配列の二次構造をRNAfoldプログラムを用いて予測した。コンセンサス二次構造1と同じ構造を含む配列は22453配列存在した。実施例10、12、13でサンガーシーケンスにより得られた配列と比較したところ、99%が新規配列であった。新規の配列のうち、収束していた配列は1615種類であり、シングル配列は4168配列であった。これらの中から高頻度で出現した新規52配列を選び、コンセンサス二次構造1の形になるように40merまで短鎖化した。また、実施例13でサンガーシークエンスにより得られたシングル配列を10配列拾い直し、同様に40merまで短鎖化した。
短鎖化した配列は表面プラズモン共鳴法でNGF、NT−3、NT−4との結合を測定した。測定は実施例13と同様に行った。その結果、すべての配列がNGFと結合したが、特に以下に示す15配列が強く結合した。一方、NT−3およびNT−4とはほとんど結合しなかった。
そこで、それら15配列の神経突起伸長阻害活性を実施例3と同様な方法で測定した。その結果、すべてのアプタマーのIC50値が1nM以下であることがわかった(表1)。また、TF−1細胞増殖阻害活性を実施例8と同様な方法で測定したところ、配列番号111、112、114〜117で表わされるアプタマーはIC50値が1nM以下であった(表1)。
以下に各配列番号に対応する実際に得られたヌクレオチド配列を示す。なお、配列番号111は実施例13でサンガーシーケンスにより得られた配列である。
配列番号103:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号104:
GGGU(F)C(F)C(F)U(F)GaU(F)GU(F)C(F)aaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)GaU(F)GU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号105:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)U(F)aaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)aGU(F)GaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号106:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)aGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号107:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GaaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)U(F)C(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号108:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号109:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)U(F)U(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号110:
GGGU(F)C(F)C(F)U(F)GC(F)C(F)GC(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)GU(F)GGC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号111:
GGGU(F)C(F)C(F)U(F)GU(F)C(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aGaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号112:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号113:
GGGU(F)C(F)C(F)U(F)GC(F)U(F)GU(F)GU(F)aGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)GC(F)aU(F)GGU(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号114:
GGGU(F)C(F)C(F)U(F)GaC(F)aaaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)U(F)GU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号115:
GGGU(F)C(F)C(F)U(F)GU(F)C(F)U(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)aGaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号116:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GaaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
配列番号117:
GGGU(F)C(F)C(F)U(F)GU(F)U(F)GaaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)C(F)aaC(F)U(F)GU(F)U(F)aC(F)C(F)C(F)
これらのアプタマーのインターナルループ1の配列は全て5’側がCCUで3’側がUGUUであった。また、ループ2は5’UUUCCXU3’で表わされるコンセンサス配列を含んでいた。ここでXはGまたはUのいずれかである。ステム1の最後の塩基対は全てU−aであった。ステム2は8および9番目の塩基対がそれぞれa−U、G−Cであった。1〜7番目はいくつかの異なる塩基対が存在した。
実施例15:短鎖化したアプタマーの修飾
アプタマーの血液中での安定性を高めるために、リボースの2’位の修飾を変えた改変体を作製した。
以下にそれぞれの修飾体の配列を示す。ヌクレオチドにおける括弧は、その2’位の修飾を示し、Fはフッ素原子、MはO−メチル基、LはLocked Nucleic Acid(LNA)を示す。大文字はRNA、小文字はDNA、idTはinverted dTを示す。リンカーは5’末端の場合はssH Linker(SAFC)またはDMS(O)MT−AMINO−MODIFIFIER C6(GLENRESEARCH)を、3’末端の場合はTFA Amino C−6 lcaa CPG(ChemGenes)を用いた。PEG40GS2は分子量40000の2分岐GS型(SUNBRIGHT GL2−400GS2 日油社製)、PEG40TS2は分子量40000の2分岐TS型(SUNBRIGHT GL2−400TS 日油社製)、PEG40TS4は分子量40000の4分岐TS型(SUNBRIGHT GL4−400TS 日油社製)、PEG80TS2は分子量80000の2分岐TS型(SUNBRIGHT GL2−800TS 日油社製)、PEG80TS4は分子量80000の4分岐TS型(SUNBRIGHT GL4−800TS 日油社製)である。
配列番号38(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)U(F)C(F)G(M)C(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号151:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)GC(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号152:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)G(M)C(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号153:
PEG40GS2-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)G(M)C(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号154:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)G(M)C(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-PEG40GS2
配列番号155:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)C(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)aC(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号62(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)G(M)G(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号66(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)aU(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)U(F)U(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号68(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GaU(F)G(M)C(F)G(M)U(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)G(M)C(F)G(M)U(F)G(M)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号71(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)aU(F)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)G(M)U(F)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号74(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)G(M)C(F)aG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)G(M)U(F)G(M)G(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号76(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GaU(F)U(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aaU(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号77(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GaC(F)U(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aG(M)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号78(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)C(F)C(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)G(M)G(M)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号78(2):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)C(F)C(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)U(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号78(3):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)C(M)C(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)U(F)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号78(4):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)C(M)C(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)U(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号79(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)U(F)U(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aaC(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号80(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)C(F)U(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aG(M)U(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(2):
idT-G(M)G(M)G(M)U(M)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(3):
idT-G(M)G(M)G(M)U(F)C(F)C(M)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(4):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(5):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(M)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(6):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(7):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(M)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(8):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(M)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(9):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(M)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(10):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(M)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(11):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(M)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(12):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(M)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(13):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(M)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(14):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(M)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(15):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(M)U(F)aC(F)C(F)C(F)-idT
配列番号82(16):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(M)C(F)C(F)-idT
配列番号82(17):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(M)C(F)-idT
配列番号82(18):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(M)-idT
配列番号82(19):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(M)C(M)G(M)U(F)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(20):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(F)aU(M)C(F)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(21):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(F)G(M)U(M)aU(M)C(F)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(22):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(F)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(23):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(F)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(24):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(F)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(25):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(26):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(M)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(27):
idT-G(M)G(M)G(M)U(F)cC(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号156:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)tU(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号157:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)tU(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(30):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)cC(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(31):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)cU(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号158:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)tGU(F)U(F)aC(F)C(F)C(F)-idT
配列番号159:
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)taC(F)C(F)C(F)-idT
配列番号160:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号161:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)tGU(M)U(F)aC(M)C(M)C(M)-idT
配列番号162:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)tGU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(37):
idT-G(M)G(M)G(M)U(M)C(F)C(M)uGG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(38):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)uU(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(39):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)uC(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(40):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)uC(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(41):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)uaC(M)C(M)C(M)-idT
配列番号82(42):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(43):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aA(M)G(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(44):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)A(M)aG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(45):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(46):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(47):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(48):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号163:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)tGU(M)uaC(M)C(M)C(M)-idT
配列番号164:
idT-G(M)G(M)G(M)U(M)C(F)C(M)uGG(M)aU(M)aaG(M)aG(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)tGU(M)U(F)aC(M)C(M)C(M)-idT
配列番号165:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)tGU(M)uA(M)C(M)C(M)C(M)-idT
配列番号166:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)A(M)G(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)tGU(M)uA(M)C(M)C(M)C(M)-idT
配列番号167:
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)A(M)G(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)tGU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号168:
idT-G(M)G(M)G(M)U(M)C(F)C(M)uGG(M)A(M)U(M)aaG(M)A(M)G(M)tU(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)tGU(M)uA(M)C(M)C(M)C(M)-idT
配列番号82(55):
PEG80TS4-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号82(56):
PEG40GS2-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GG(M)aU(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(F)G(M)U(F)C(F)U(F)C(F)G(M)U(F)aU(F)C(F)C(F)U(F)GU(F)U(F)aC(F)C(F)C(F)-idT
配列番号82(57):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)sGG(M)A(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(58):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GsG(M)A(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(59):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)saaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(60):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)asaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(61):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aasG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(62):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)sGU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(63):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)A(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)U(M)C(M)C(M)U(F)GsU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(64):
PEG40TS2-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GG(M)aU(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)aU(M)C(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号87(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GC(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GGGC(F)U(F)GU(F)U(F)aC(M)C(M)C(M)-idT
配列番号87(2):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GC(F)U(F)C(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)GGGC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号87(3):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GC(F)U(F)C(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)G(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号87(4):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GC(M)U(M)C(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)G(M)C(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号87(5):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GC(M)U(M)C(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)G(M)G(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号88(1):
idT-GGGU(F)C(F)C(F)U(F)GU(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GaaC(F)U(F)GU(F)U(F)aC(M)C(M)C(M)-idT
配列番号88(2):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GU(F)U(F)C(F)aaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)GaaC(F)U(F)GU(F)U(F)aC(M)C(M)C(M)-idT
配列番号88(3):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GU(F)U(F)C(F)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)GaaC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号88(4):
idT-G(M)G(M)G(M)U(M)C(F)C(M)U(F)GU(M)U(M)C(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)G(M)aaC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号89(1):
idT-G(M)G(M)G(M)U(F)C(F)C(F)U(F)GU(F)GGaaGaGU(F)U(F)U(F)C(F)C(F)GU(F)C(F)U(F)C(F)GU(F)C(F)C(F)aC(F)U(F)GU(F)U(F)aC(M)C(M)C(M)-idT
配列番号89(2):
idT-G(M)G(M)G(M)U(F)C(F)C(M)U(F)GU(F)GGaaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)C(F)C(F)aC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号89(3):
idT-G(M)G(M)G(M)U(F)C(F)C(M)U(F)GU(F)G(M)G(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)C(F)C(F)aC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号89(4):
idT-G(M)G(M)G(M)U(F)C(F)C(M)U(F)GU(M)G(M)G(M)aaG(M)aG(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)C(M)C(M)aC(M)U(F)GU(M)U(F)aC(M)C(M)C(M)-idT
配列番号89(5):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GU(M)G(M)G(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)C(M)C(M)A(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号111(1):
G(M)G(M)G(M)U(M)C(F)C(M)U(F)GU(M)C(M)U(M)aaG(M)A(M)G(M)U(F)U(F)U(F)C(F)C(M)G(M)U(M)C(F)U(F)C(M)G(M)U(M)A(M)G(M)A(M)C(M)U(F)GU(M)U(F)A(M)C(M)C(M)C(M)-idT
配列番号82(2)で表わされるRNAのNGF、NT−3、NT−4に対する結合活性を実施例13と同様に表面プラズモン共鳴法で測定した。その結果、いずれのタンパク質に対しても結合活性を有していることがわかった(図3)。また、配列番号82(2)で表わされるアプタマーがNGFとその受容体であるTrkAまたはp75の結合を阻害するかどうか、実施例2と同様に表面プラズモン共鳴法を用いて調べた。その結果、NGFと両受容体の結合をともに強く阻害することがわかった(図4と5)。
上記の全ての修飾体に対して神経突起伸長阻害活性を実施例3と同様な方法で測定した。その結果、配列番号62(1)以外の全ての修飾体のIC50値が1nM以下であった(表1)。特に配列番号162で表わされるアプタマーのIC50値は0.033nMであった。また、TF−1細胞増殖阻害活性を実施例8と同様な方法で測定したところ、ほとんどのアプタマーのIC50値は1nM以下であった(表1)。特に配列番号162で表わされるアプタマーのIC50値は0.014nMであった。配列番号62(1)で表わされるアプタマーのIC50値は0.49nMであった。
以上より、本アプタマーはリボースの2’位の修飾を変えても阻害活性を保持できることが示された。
実施例16:TF−1細胞増殖阻害評価系による他のニューロトロフィンとの交差性の確認
TF−1細胞を用いてNGFアプタマーがBDNF、NT−3、NT−4を阻害するかどうか調べた。ヒト赤白血病細胞株であるTF−1細胞(ATCC Number:CRL−2003)にレトロウイルスベクターを用いて各神経栄養因子に対するヒト受容体遺伝子(TrkB、TrkC、p75)を導入し、それらの受容体を安定的に高発現する細胞を作製した。尚、BDNFへの阻害活性評価にはTrkBおよびp75を導入したTF−1細胞、NT−3に対する評価にはTrkCおよびp75を導入したTF−1細胞、そしてNT−4に対する評価にはTrkBのみを導入したTF−1細胞を使用した。これらの細胞を20%の胎児ウシ血清を含むRPMI−1640培地に懸濁し、白色の96ウェル平底プレートに1ウェルあたり1000個(50μL)の細胞を播種した。そこに室温にて30分間無血清のRPMI−1640培地中で予め反応させたヒトBDNF(最終濃度0.074nM)あるいはNT−3(最終濃度0.074nM)あるいはNT−4(最終濃度0.071nM)とアプタマー(最終濃度1μM〜0.01nM)の混合溶液50μLを添加し、3日後にCellTiter−Glo Luminescent Cell Viability Assay(Promega社製)のCellTiter−Glo試薬を各ウェルに100μL添加後、マイクロプレートリーダーにより化学発光を測定した。BDNF、NT−3あるいはNT−4のみの添加で細胞を3日間培養して得られた1ウェルあたりの発光量を阻害活性0%、BDNFあるいはNT−3あるいはNT−4無添加で3日間培養して得られた1ウェルあたりの発光量を阻害活性100%として、BDNF、NT−3あるいはNT−4とアプタマーを混合添加した場合に得られた1ウェルあたりの発光量から、アプタマーの阻害活性を算出した。阻害活性が0以下の場合は0%とした。50%阻害濃度(IC50)は、50%阻害活性を挟む上下二点の濃度より求めた。実験結果を表2に示す。IC50値を「>X」と記載したものは、記載した濃度Xが測定最高濃度であった場合に阻害活性が50%以下であったことを示す。N.D.は未測定の意味である。
実験したすべてのアプタマーが強い阻害活性を示した。その一部のIC50値を表2に示す。表2に記載の本発明のアプタマーの阻害活性は、NGFに対してIC50値が0.1nM以下であるのに対して、BDNFに対するIC50値は1000nM以上であった。NT−3に対しては0.97nMから10nM以上とアプタマーによって異なった。また、NT−4に対しては3nM以下から30nM以上と、こちらもアプタマーによって異なっていた。
実施例17:NGFアプタマーによる鎮痛作用
NGF誘発性疼痛に対するNGFアプタマーの鎮痛作用を検討する為、ラット後肢へのNGF皮下投与により引き起こされる熱性痛覚過敏モデルを使用した。実験にはJcl:SD系ラット(6週齢)を使用した。熱性痛覚過敏の指標として、足底熱刺激測定装置(Ugo Basile社製)からの肢底への赤外線照射に対する逃避行動の反応潜時を用いた。試験前日に評価系への馴化を行った。試験当日の投与前に逃避行動反応潜時を測定し、10秒以上20秒未満の個体を使用した。Vehicle(20mM Tris−HCl(pH7.6)、145mM NaCl、5.4mM KCl、0.8mM MgCl、1.8mM CaCl、0.1% BSA)にヒトβ−NGF(R&D Systems、終濃度50μg/ml)および被験物質を混合し、室温30分間のインキュベート後、左後肢底に10μl皮下投与し、5時間後に逃避行動反応潜時を測定した。配列番号153で表わされるアプタマーを、終濃度50mg/ml(NGFに対するモル比:1000倍)で投与した。コントロールとして、VehicleまたはVehicleとNGFとの混合液を同様に投与した。結果を表3に示す(Mean±SEM、n=9)。
投与5時間後で、Vehicle群に比べてNGF群で逃避行動反応潜時が有意に小さかった(p<0.01)。また、投与5時間後で、アプタマー投与群の逃避行動反応潜時がNGFのみの投与群に比べて大きかった(p<0.01)。以上の結果より、本アプタマーはNGFに起因する疼痛薬として使用可能であることがわかった。
実施例18:NGFアプタマーによる術後痛モデルにおける鎮痛作用
NGFアプタマー療法の薬効検討の為、熱性痛覚過敏が引き起こされる術後痛モデルを使用した。実験にはCrl:CD(SD)系ラット(5週齢)を使用した。カテーテルの先端を大腿静脈内に留置し、もう一方の先端をラット背部から体外へ露出した。1週間後にQuick connectインフュージョンシステム(Strategic applications incorporated社製)をラットに装着し、更に1週間後に熱性痛覚過敏を評価した。熱性痛覚過敏の指標として、足底熱刺激測定装置(Ugo Basile社製)からの肢底への赤外線照射に対する逃避行動の反応潜時を用いた。試験開始3日前に評価系への馴化を行った。試験開始日に逃避行動反応潜時を測定し、10秒以上20秒未満の個体を使用した。生理食塩水に溶解したNGFアプタマーをシリンジポンプ(テルモ社製)を用いて持続的に静脈内投与した。NGFアプタマーとしては、配列番号82(56)で表わされるアプタマー(21.2mg/240ml/kg/96hrで投与)および配列番号82(55)で表わされるアプタマー(10.08mg/240ml/kg/96hrで投与)を用いた。コントロールとして、Vehicleを同様に投与した。投与開始1時間後に右後肢底の皮膚および筋膜を切開後、屈筋を垂直に二分し、皮膚を縫合した。切開手術後、1、2、3、4日後に逃避行動反応潜時を測定した。結果を表4に示す。
Vehicle群において、投与・切開術1、2、3、4日後の逃避行動反応潜時が投与・切開術前に比べて有意に小さかった(p<0.01)。投与・切開術1、2、3、4日後において、いずれのアプタマー投与群の逃避行動反応潜時も、Vehicle群に比べて有意に大きかった(p<0.01)。実験の結果を表4および表5に示す(Mean±SEM、n=8−9)。このことから抗NGFアプタマーは術後痛モデルに対する鎮痛作用を有することが示された。
本発明のアプタマーは、疼痛や炎症性疾患などの疾患に対する医薬、あるいは診断薬、試薬として有用であり得る。本発明のアプタマー及び複合体はまた、NGFの精製及び濃縮、並びにNGFの検出及び定量に有用であり得る。
本出願は、日本で出願された特願2011-213585(出願日:2011年9月28日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (11)

  1. 式(I)
    (式中、NはA、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであり、
    N11〜N13、N21〜N23、N32〜N38およびN42〜N48は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つもしくは2つのヌクレオチド、または結合であり、
    N14、N24、N31、N41、N39およびN49は、それぞれ同一または異なって、A、G、C、UおよびTからなる群より選ばれる1つのヌクレオチドであって、
    N14とN24、N31とN41およびN39とN49は互いにワトソン−クリック塩基対を形成し、
    N11-N12-N13-N14とN21-N22-N23-N24の組合せでステム構造を形成できるヌクレオチド配列であり、
    N31-N32-N33-N34-N35-N36-N37-N38-N39とN41-N42-N43-N44-N45-N46-N47-N48-N49の組合せでステム構造を形成できるヌクレオチド配列である。)
    で表される潜在的2次構造を形成できる、NGFと結合するアプタマーであって、
    (a)配列番号38、配列番号66、配列番号68、配列番号71、配列番号74、配列番号76〜85、配列番号87〜89、配列番号101、配列番号102、配列番号104〜112、配列番号114〜117および配列番号151〜155からなる群より選択される配列番号で表されるヌクレオチド配列(但し、ウラシルはチミンであってもよい)、又は
    (b)上記(a)のヌクレオチド配列において、1ないし数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列
    を含み、NGFの神経突起伸長活性に対する50%阻害濃度が1nM以下である、アプタマー。
  2. 配列番号82で表されるヌクレオチド配列を含む、請求項1に記載のアプタマー。
  3. 塩基長が50以下である請求項1又は2に記載のアプタマー。
  4. 少なくとも1つのヌクレオチドが修飾されている、請求項1〜のいずれか1項に記載のアプタマー。
  5. inverted dTまたはポリエチレングリコールで修飾されている請求項記載のアプタマー。
  6. inverted dTまたはポリエチレングリコールが、アプタマーの5’末端または3’末端に結合している、請求項記載のアプタマー。
  7. 各ピリミジンヌクレオチドのリボースの2’位のヒドロキシル基が、同一または異なって、無置換であるか、水素原子、フッ素原子およびメトキシ基からなる群より選ばれる原子または基で置き換えられている、請求項のいずれか1項に記載のアプタマー。
  8. 各プリンヌクレオチドのリボースの2’位のヒドロキシル基が、同一または異なって、無置換であるか、水素原子、フッ素原子およびメトキシ基からなる群より選ばれる原子または基で置き換えられている、請求項のいずれか1項に記載のアプタマー。
  9. さらに、NGFの細胞増殖活性を阻害する、請求項1〜のいずれか1項に記載のアプタマー。
  10. 請求項1〜のいずれか1項に記載のアプタマーを含む、医薬組成物。
  11. 請求項1〜のいずれか1項に記載のアプタマーを含む、抗疼痛剤。
JP2013536469A 2011-09-28 2012-09-28 Ngfに対するアプタマー及びその用途 Expired - Fee Related JP6118724B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011213585 2011-09-28
JP2011213585 2011-09-28
PCT/JP2012/075252 WO2013047844A1 (ja) 2011-09-28 2012-09-28 Ngfに対するアプタマー及びその用途

Publications (2)

Publication Number Publication Date
JPWO2013047844A1 JPWO2013047844A1 (ja) 2015-03-30
JP6118724B2 true JP6118724B2 (ja) 2017-04-19

Family

ID=47995868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013536469A Expired - Fee Related JP6118724B2 (ja) 2011-09-28 2012-09-28 Ngfに対するアプタマー及びその用途

Country Status (12)

Country Link
US (1) US9567589B2 (ja)
EP (1) EP2762569B1 (ja)
JP (1) JP6118724B2 (ja)
KR (1) KR102021626B1 (ja)
CN (1) CN103946381B (ja)
AU (1) AU2012317323B2 (ja)
CA (1) CA2850346C (ja)
DK (1) DK2762569T3 (ja)
ES (1) ES2687154T3 (ja)
HU (1) HUE039439T2 (ja)
RU (1) RU2633510C2 (ja)
WO (1) WO2013047844A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2825370A1 (en) 2010-12-22 2012-06-28 President And Fellows Of Harvard College Continuous directed evolution
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US20150165054A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting caspase-9 point mutations
AU2015250584A1 (en) * 2014-04-24 2016-12-15 Ribomic Inc. Aptamer for bonding to autotaxin and inhibiting biological activity of autotaxin, and use for same
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
EP3174984B1 (en) * 2014-07-31 2020-05-06 Academia Sinica Antagonistic ctla-4 aptamers and applications thereof in enhancing immune activity
WO2016077052A2 (en) 2014-10-22 2016-05-19 President And Fellows Of Harvard College Evolution of proteases
US11299729B2 (en) 2015-04-17 2022-04-12 President And Fellows Of Harvard College Vector-based mutagenesis system
WO2017015545A1 (en) 2015-07-22 2017-01-26 President And Fellows Of Harvard College Evolution of site-specific recombinases
US11524983B2 (en) 2015-07-23 2022-12-13 President And Fellows Of Harvard College Evolution of Bt toxins
US10612011B2 (en) 2015-07-30 2020-04-07 President And Fellows Of Harvard College Evolution of TALENs
SG10202104041PA (en) 2015-10-23 2021-06-29 Harvard College Nucleobase editors and uses thereof
GB2553252B (en) 2016-01-20 2019-07-31 Vitrisa Therapeutics Inc Aptamers that block the catalytic cleft of complement Factor D
IL264565B2 (en) 2016-08-03 2024-07-01 Harvard College Adenosine nuclear base editors and their uses
JP7201153B2 (ja) 2016-08-09 2023-01-10 プレジデント アンド フェローズ オブ ハーバード カレッジ プログラム可能cas9-リコンビナーゼ融合タンパク質およびその使用
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
WO2018136827A1 (en) * 2017-01-20 2018-07-26 Vitrisa Therapeutics, Inc. Stem-loop compositions and methods for inhibiting factor d
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
BR112019019655A2 (pt) 2017-03-23 2020-04-22 Harvard College editores de nucleobase que compreendem proteínas de ligação a dna programáveis por ácido nucleico
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
WO2019010164A1 (en) 2017-07-06 2019-01-10 President And Fellows Of Harvard College EVOLUTION OF ARNT SYNTHÉTASES
EP3658573A1 (en) 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
EP3673059A4 (en) 2017-08-25 2021-09-01 President And Fellows Of Harvard College EVOLUTION OF BONT PEPTIDASES
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019056002A1 (en) 2017-09-18 2019-03-21 President And Fellows Of Harvard College CONTINUOUS EVOLUTION FOR STABILIZED PROTEINS
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11913044B2 (en) 2018-06-14 2024-02-27 President And Fellows Of Harvard College Evolution of cytidine deaminases
MX2021011426A (es) 2019-03-19 2022-03-11 Broad Inst Inc Metodos y composiciones para editar secuencias de nucleótidos.
CN112175945A (zh) * 2019-07-02 2021-01-05 苏州贝信生物技术有限公司 Ngf小干扰核酸分子及其应用
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660985A (en) 1990-06-11 1997-08-26 Nexstar Pharmaceuticals, Inc. High affinity nucleic acid ligands containing modified nucleotides
RU2198931C2 (ru) 1990-06-11 2003-02-20 Нексстар Фармасьютикалс Инк. Способ идентификации лигандов, способ получения антитела, способ отбора нуклеиновой кислоты, способ получения смеси нуклеиновых кислот, смесь нуклеиновых кислот, не встречающийся в природе нуклеиново-кислотный лиганд
JPH08501943A (ja) 1992-09-29 1996-03-05 ネクスター ファーマスーティカルズ,インコーポレイテッド 核酸リガンドおよびその製造方法
EP0724647A4 (en) 1993-09-08 2003-09-17 Gilead Sciences Inc NUCLEIC ACIDS AS LIGANDS AND IMPROVED PRODUCTION METHODS
US20030054360A1 (en) * 1999-01-19 2003-03-20 Larry Gold Method and apparatus for the automated generation of nucleic acid ligands
CA2476309A1 (en) 2002-02-15 2003-08-28 Somalogic, Inc. Methods and reagents for detecting target binding by nucleic acid ligands
US7569364B2 (en) * 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
BRPI0618315A2 (pt) * 2005-11-07 2011-08-23 Copenhagen University seqüências de peptìdeo derivadas de neurotrofina
AU2007320401B2 (en) * 2006-11-14 2012-12-06 Ribomic Inc. Aptamer against midkine and use thereof
JP5223086B2 (ja) * 2007-03-26 2013-06-26 国立大学法人東京農工大学 血管内皮増殖因子結合性アプタマー
JP5602020B2 (ja) * 2008-09-24 2014-10-08 株式会社リボミック Ngfに対するアプタマー及びその使用
TWI532842B (zh) 2009-06-11 2016-05-11 力博美科股份有限公司 針對凝乳酶之適體及其用途
JP5673992B2 (ja) * 2009-10-30 2015-02-18 国立大学法人東京農工大学 血管内皮細胞増殖因子結合性アプタマー
TWI500425B (zh) 2010-03-24 2015-09-21 Ribomic Inc 對ngf之適體及其用途

Also Published As

Publication number Publication date
RU2014117018A (ru) 2015-11-10
JPWO2013047844A1 (ja) 2015-03-30
WO2013047844A1 (ja) 2013-04-04
EP2762569B1 (en) 2018-06-13
EP2762569A4 (en) 2015-06-24
CN103946381A (zh) 2014-07-23
ES2687154T3 (es) 2018-10-23
CA2850346C (en) 2020-02-18
DK2762569T3 (en) 2018-08-27
EP2762569A1 (en) 2014-08-06
AU2012317323A1 (en) 2014-04-24
CA2850346A1 (en) 2013-04-04
HUE039439T2 (hu) 2018-12-28
US20140235701A1 (en) 2014-08-21
AU2012317323B2 (en) 2017-10-05
KR20140069216A (ko) 2014-06-09
KR102021626B1 (ko) 2019-09-16
RU2633510C2 (ru) 2017-10-12
CN103946381B (zh) 2017-06-23
US9567589B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
JP6118724B2 (ja) Ngfに対するアプタマー及びその用途
JP5027956B2 (ja) Ngfに対するアプタマー及びその使用
JP5602020B2 (ja) Ngfに対するアプタマー及びその使用
WO2013186857A1 (ja) Fgf2に対するアプタマー及びその使用
WO2014080997A1 (ja) ミッドカインに対するアプタマー及びその用途
CA2943772C (en) Aptamer for fgf2 and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6118724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees