WO2010146840A1 - Substrate transfer device - Google Patents

Substrate transfer device Download PDF

Info

Publication number
WO2010146840A1
WO2010146840A1 PCT/JP2010/003978 JP2010003978W WO2010146840A1 WO 2010146840 A1 WO2010146840 A1 WO 2010146840A1 JP 2010003978 W JP2010003978 W JP 2010003978W WO 2010146840 A1 WO2010146840 A1 WO 2010146840A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
arms
conversion mechanism
portions
carrier
Prior art date
Application number
PCT/JP2010/003978
Other languages
French (fr)
Japanese (ja)
Inventor
相澤真也
中尾裕利
吾郷健二
浅石隆
南展史
中村伸悟
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011519556A priority Critical patent/JPWO2010146840A1/en
Priority to CN2010800257699A priority patent/CN102460674A/en
Publication of WO2010146840A1 publication Critical patent/WO2010146840A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/043Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • B25J9/107Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms of the froglegs type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to a substrate transfer apparatus for transferring a substrate to be processed such as a semiconductor substrate or a glass substrate.
  • a multi-chamber type vacuum processing apparatus in which a plurality of processing chambers are arranged around a transfer chamber is known.
  • This type of vacuum processing apparatus is provided with a substrate transfer device for automatically loading and unloading a substrate from the transfer chamber to each processing chamber.
  • Patent Document 1 listed below describes a robot that transports a substrate in a vacuum chamber.
  • This robot has a pair of two arms connected to each other, supports a carrier on which one object to be transported is supported by the pair of arms, and transports the object to be transported by simultaneously driving the pair of arms.
  • the robot includes a rotation restraining mechanism unit including gears respectively coupled to one end on the carrier side of a pair of arms supporting the carrier as means for linearly moving the carrier.
  • multi-chamber type vacuum processing apparatuses tend to narrow an opening for transporting a substrate between a transport chamber and a processing chamber for the purpose of improving exhaust efficiency in the processing chamber and reducing temperature change in the processing chamber. There is. For this reason, it is necessary to reduce the thickness of the front end portion of the substrate transfer apparatus that passes through the opening. Therefore, the robot is designed to reduce the thickness of the rotation restraint mechanism by providing a single stage bearing for supporting the gears.
  • an object of the present invention is to provide a substrate transport device that can reduce the thickness of a mechanism portion for linearly moving a substrate.
  • a substrate transport apparatus is a substrate transport apparatus that transports a substrate, and includes a drive unit, a pair of first arms, and a pair of second arms, A carrier and a conversion mechanism are provided.
  • Each of the pair of first arms has a first end connected to the drive unit, and a second end located on the opposite side of the first end.
  • the carrier supports the substrate.
  • the conversion mechanism is disposed between the fourth end of the second arm and the carrier, and converts the rotational motion of the first and second arms into a linear motion of the carrier.
  • the conversion mechanism includes a main body and a bearing member.
  • the main body has a coupling surface coupled to the carrier and a pair of shaft portions inserted through the ring portions.
  • the bearing member is mounted between the outer peripheral surface of the shaft portion and the inner peripheral surface of the ring portion, and is aligned with the gear portion in the radial direction of the shaft portion.
  • a substrate transport apparatus is a substrate transport apparatus that transports a substrate, and includes a drive unit, a pair of first arms, a pair of second arms, a carrier, and a conversion mechanism. It comprises.
  • Each of the pair of first arms has a first end connected to the drive unit, and a second end located on the opposite side of the first end.
  • the carrier supports the substrate.
  • the conversion mechanism is disposed between the fourth end of the second arm and the carrier, and converts the rotational motion of the first and second arms into a linear motion of the carrier.
  • the conversion mechanism includes a main body and a bearing member.
  • the main body has a coupling surface coupled to the carrier and a pair of shaft portions inserted through the ring portions.
  • the bearing member is mounted between the outer peripheral surface of the shaft portion and the inner peripheral surface of the ring portion, and is aligned with the gear portion in the radial direction of the shaft portion.
  • the shaft portion of the main body constitutes the rotation shaft of each ring portion.
  • the pair of ring portions are engaged with each other via a gear portion formed on the outer peripheral surface thereof, and the inner peripheral surface of each ring portion is supported by the shaft portion via a bearing member.
  • the rotational motions of the first and second arms by the drive unit are converted into the linear motion of the carrier.
  • the gear portion and the bearing member constituting the conversion mechanism are arranged to face each other in the radial direction of the shaft portion. Therefore, when the axial direction of the shaft portion of the conversion mechanism is the thickness direction, the thickness of the conversion mechanism can be reduced as compared with the case where the gear portion and the bearing member are arranged so as to be stacked in the thickness direction. Thereby, the conversion mechanism can be thinned.
  • the second arm may include a first member and a second member.
  • the first member is connected to the first arm and has the third end.
  • the second member is attached to the first member and has the fourth end.
  • the thickness of the conversion mechanism when the axial direction of the shaft portion is the thickness direction, is equal to or less than the thickness of the first member. Further, the thickness of the first member on the fourth end side is smaller than the thickness of the third end of the first member. Thus, the conversion mechanism or the tip region of the second arm including the conversion mechanism can be configured to be thinner than the third end side.
  • the main body includes a first surface parallel to the rotation direction of the first and second arms, and a second surface positioned below the first surface. Have each.
  • the pair of shaft portions and the coupling surface are formed on the second surface.
  • FIG. 1 and 2 are perspective views showing a substrate transfer apparatus according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of the substrate transfer apparatus 1 as viewed from above
  • FIG. 2 is a perspective view of the substrate transfer apparatus 1 as viewed from below.
  • the carrier is not shown.
  • the x axis and the y axis are horizontal axes orthogonal to each other, and the xy plane corresponds to a horizontal plane.
  • the z axis is a vertical axis orthogonal to the x axis and the y axis.
  • the substrate transfer apparatus 1 is configured as a substrate transfer apparatus having a first transfer robot 10 and a second transfer robot 20.
  • the first transfer robot 10 mainly includes a pair of common arms 11a and 11b (first arm), a pair of first operating arms 12a and 12b (second arm), a conversion mechanism unit 13, and a carrier.
  • the second transfer robot 20 mainly includes a pair of common arms 11a and 11b, a pair of second operating arms 22a and 22b (second arms), a conversion mechanism unit 23, and a carrier 24. Yes.
  • the substrate transfer apparatus 1 is installed inside a transfer chamber in a multi-chamber type vacuum processing apparatus, for example.
  • the vacuum processing apparatus has a plurality of vacuum processing chambers around the transfer chamber. These vacuum processing chambers include various processing chambers such as a load / unload chamber for loading and / or unloading a substrate, a film forming chamber (a sputtering chamber, a CVD chamber, etc.), and a heat treatment chamber.
  • the substrate transfer apparatus 1 is for delivering a substrate between a plurality of vacuum processing chambers in the evacuated transfer chamber, and is installed, for example, at the bottom (in the xy plane) of the transfer chamber.
  • the substrate transport apparatus 1 has a drive unit 2 having a drive shaft 21 as shown in FIG.
  • the drive unit 2 is installed outside the transfer chamber, and typically includes an electric motor, a cylinder device, and the like.
  • the drive shaft 21 passes through the bottom of the transfer chamber in an airtight manner in the z-axis direction and is connected to the base end portions 111a and 111b (first end portions) of the common arms 11a and 11b.
  • the base end portions 111a and 111b are arranged so as to overlap each other as illustrated.
  • the drive shaft 21 has first and second drive shafts 21a and 21b arranged concentrically.
  • the first drive shaft 21a is connected to the base end portion 111a
  • the second The drive shaft 21b is connected to the base end portion 111b.
  • the drive unit 2 rotates the common arms 11a and 11b in the xy plane, or vertically moves in the z-axis direction.
  • the common arms 11a and 11b are made of a metal material such as an aluminum alloy, for example.
  • Connecters 3a and 3b are attached to the other end portions (second end portions) of the common arms 11a and 11b, respectively.
  • the couplers 3a and 3b have first rotary shafts 31a and 31b that rotatably support the first operating arms 12a and 12b in the xy plane, and second operating arms 22a and 22b that can rotate in the xy plane. And second rotating shafts 32a and 32b to be supported.
  • the first and second operating arms 12a, 12b, 22a, 22b are made of a metal material such as an aluminum alloy, for example.
  • the first operating arms 12a and 12b include end portions 121a and 121b (third end portions) connected to the first rotating shafts 31a and 31b, and end portions 122a and 122b (connected to the conversion mechanism portion 13). A fourth end).
  • the conversion mechanism unit 13 converts the rotational motion of the common arms 11a and 11b and the first operating arms 12a and 12b in the xy plane into a linear motion of the carrier 14 in the xy plane.
  • the carrier 14 has a support surface 14a on which a glass substrate, a semiconductor substrate or the like is placed, and enters a vacuum processing chamber (not shown) to deliver the substrate.
  • the second operating arms 22a and 22b include end portions 221a and 221b (third end portions) connected to the second rotating shafts 32a and 32b, and an end portion 222a connected to the conversion mechanism portion 23. , 222b (fourth end).
  • the conversion mechanism unit 23 converts the rotational motion of the common arms 11a and 11b and the second operating arms 22a and 22b in the xy plane into a linear motion of the carrier 24 in the xy plane.
  • the carrier 24 has a support surface 24a on which a glass substrate, a semiconductor substrate or the like is placed, and enters a vacuum processing chamber (not shown) to deliver the substrate.
  • the carriers 14 and 24 are made of, for example, a metal material such as an aluminum alloy, and the shape thereof is not limited to the illustrated one.
  • the conversion mechanism sections 13 and 23 have the same configuration. Hereinafter, details of the conversion mechanism unit 13 and its peripheral configuration will be described.
  • the first transfer robot 10 is simply referred to as the transfer robot 10
  • the first operation arms 12a and 12b are simply referred to as the operation arms 12a and 12b.
  • FIGS. 3 and 5 show the configuration of the conversion mechanism unit 13.
  • 3 is a bottom view of the transfer robot 10 as viewed from below
  • FIG. 4 is a perspective view of the conversion mechanism 13 as viewed from below
  • FIG. 5 is a view of the conversion mechanism 13 as viewed from the x-axis direction.
  • each of the operating arms 12a and 12b includes a combination of main arm members 30a and 30b (first member) and auxiliary arm members 40a and 40b (second member).
  • the main arm members 30a and 30b are provided with mounting holes 301a and 301b for assembling the auxiliary arm members 40a and 40b at the end opposite to the ends 121a and 121b.
  • step portions 302a and 302b are formed on the lower surfaces of the main arm members 30a and 30b, respectively.
  • the main arm members 30a and 30b have a thickness (z-axis direction) between the common arms 11a and 11b and the conversion mechanism 13 side with the stepped portions 302a and 302b as a boundary.
  • the conversion mechanism 13 side is formed thinner than the common arms 11a and 11b.
  • the rigidity of the main arm members 30a and 30b can be ensured by increasing the thickness of the common arms 11a and 11b.
  • the auxiliary arm members 40a and 40b constitute second end portions 122a and 122b of the operating arms 12a and 12b, respectively, and as shown in FIG. 5, plate portions 41a and 41b and annular ring portions 42a and 42b.
  • the plate portions 41a and 41b have a rectangular shape formed in parallel to the xy plane, and are inserted through the mounting holes 301a and 301b of the main arm members 30a and 30b.
  • the plate portions 41a and 41b are slidable with respect to the mounting holes 301a and 301b, and can be fixed at a predetermined position by a plurality of fasteners S1 (FIG. 1).
  • the ring portions 42 a and 42 b constitute a part of the conversion mechanism portion 13 and connect the main arm members 30 a and 30 b to the conversion mechanism portion 13. Details of the conversion mechanism unit 13 will be described below.
  • the conversion mechanism section 13 includes a metal main body 130 including a pedestal section 133 and a pair of shaft members 131a and 131b.
  • the pair of shaft members 131 a and 131 b are attached to the lower surface side of the pedestal portion 133.
  • the base portion 133 of the main body 130 has a coupling surface 134 coupled to the carrier 14 as shown in FIG.
  • the pedestal portion 133 has a thin region formed on the lower surface thereof via the step portion 133 s, and the lower surface of the thin region serves as a coupling surface 134.
  • the coupling surface 134 is joined to the upper surface of the base of the carrier 14 via a plurality of fasteners S2 (FIG. 1).
  • the height (depth) of the stepped portion 133s is set to be equal to the thickness of the base portion of the carrier 14. Further, the thickness of the thin region of the pedestal part 133 constituting the coupling surface 134 is set to be equal to or less than the thickness of the substrate supported by the carrier 14.
  • the shaft members 131a and 131b are each formed in a cylindrical shape having the same diameter.
  • the shaft members 131a and 131b pass through the ring portions 42a and 42b of the auxiliary arm members 40a and 40b, and are fixed to the pedestal portion 133 via the fasteners 132a and 132b.
  • Bearing members 60a and 60b are mounted between the outer peripheral surfaces of the shaft members 131a and 131b and the inner peripheral surfaces of the ring portions 42a and 42b, respectively, and auxiliary arm members 40a and 40b are provided around the shaft members 131a and 131b. It can be turned.
  • the bearing members 60a and 60b are each composed of a single bearing component.
  • the type of the bearing component is not particularly limited, but in this embodiment, a two-point support type bearing component is used. Examples of this type of bearing component include angular bearings (angular ball bearings), bearing components including vacuum grease as a lubricant, and the like. A four-point support bearing part may be employed.
  • the bearing members 60a and 60b are provided between a peripheral edge portion 42c that protrudes radially inward from the upper ends of the ring portions 42a and 42b and a step portion 131s that protrudes radially outward from the outer peripheral surface of the shaft members 131a and 131b. It is fixed with respect to the main body 130 so as to be sandwiched.
  • gear portions 50a and 50b are provided on the outer peripheral surfaces of the ring portions 42a and 42b, respectively.
  • the gear portions 50a and 50b are engaged with each other, whereby the ring portions 42a and 42b rotate around the shaft members 131a and 131b in conjunction with each other. That is, the ring portions 42a and 42b rotate around the shaft members 131a and 131b at the same rotation angle at the same time.
  • the gear portions 50a and 50b are constituted by annular gear parts respectively mounted on the outer peripheral surfaces of the ring portions 42a and 42b.
  • As the gear parts 50a and 50b for example, gear parts excellent in wear resistance subjected to vacuum quenching can be used.
  • the gear portions 50a and 50b may be directly formed on the outer peripheral surfaces of the ring portions 42a and 42b.
  • the gear portions 50a and 50b are connected to the ring portions 42a and 42b together with the support plates 70a and 70b by a plurality of fasteners 71a and 71b for attaching the annular support plates 70a and 70b to the lower surfaces of the ring portions 42a and 42b. Fixed.
  • the lower surfaces of the support plates 70a and 70b belong to the same plane as the lower surfaces of the auxiliary arm members 40a and 40b.
  • the bearing members 60a and 60b and the gear portions 50a and 50b are juxtaposed so as to face each other in the radial direction of the shaft members 131a and 131b with the ring portions 42a and 42b interposed therebetween.
  • the bearing members 60a and 60b and the gear portions 50a and 50b are respectively arranged on the inner peripheral side and the outer peripheral side of the ring portions 42a and 42b so as to be located on the same plane.
  • the operating arms 12a and 12b are configured so that the common arm is rotated by rotating the ring portions 42a and 42b of the auxiliary arm members 40a and 40b around the shaft members 131a and 131b. It follows the rotational movement of 11a, 11b. At this time, since the ring portions 42a and 42b are engaged with each other via the gear portions 50a and 50b, the ring portions 42a and 42b rotate in synchronization with each other and in the reverse direction. As a result, the carrier 14 is linearly moved in the xy plane without rotating around the z axis.
  • the first transfer robot 10 is configured as described above. Further, the second transfer robot 20 is configured similarly to the first transfer robot 10. Next, a typical operation of the substrate transport apparatus 1 of the present embodiment configured as described above will be described.
  • the drive unit 2 linearly moves the carriers 14 and 24 by rotating the first and second drive shafts 21a and 21b constituting the drive shaft 21 in opposite directions. That is, in the state shown in FIG. 1, when the drive shaft 21a is rotated clockwise and the drive shaft 21b is rotated counterclockwise as viewed from above, the carriers 14 and 24 move in the ( ⁇ x) direction, respectively. . Conversely, when the drive shaft 21a is rotated counterclockwise and the drive shaft 21b is rotated clockwise as viewed from above, the carriers 14 and 24 move in the (+ x) direction, respectively.
  • the drive unit 2 rotates the first and second drive shafts 21a and 21b in the same direction, thereby turning the first and second transfer robots 10 and 20 around the z-axis. Further, the drive unit 2 moves the first and second transfer robots 10 and 20 up and down by extending and contracting the first and second drive shafts 21a and 21b in the z-axis direction.
  • the carriers 14 and 24 are moved to an arbitrary spatial position. Accordingly, the substrate can be accurately transported from a predetermined transport position to another transport position using the carriers 14 and 24.
  • the gear parts 50a and 50b and the bearing members 60a and 60b which comprise the conversion mechanism parts 13 and 23 are opposed to the radial direction of the shaft members 131a and 131b, respectively.
  • the thickness of the conversion mechanism portions 13 and 23 can be reduced, and the conversion mechanism portions 13 and 23 can be thinned. It becomes possible.
  • the thickness of the conversion mechanism portions 13 and 23 can be suppressed to be equal to or less than the thickness (T) of the distal end portion of the main arm members 30 a and 30 b to which the auxiliary arm members 40 a and 40 b are attached.
  • the operating arms 12a and 12b are composed of two members, the main arm member 30 and the auxiliary arm member 40.
  • the ring parts 42a and 42b of the auxiliary arm members 40a and 40b can be configured as a part of the conversion mechanism parts 13 and 23, and the assemblability of the substrate transfer apparatus 1 including the thin conversion mechanism can be improved.
  • the end portions 122a and 122b (222a and 222b) of the operation arms 12a and 12b (22a and 22b) have thicknesses from the end portions 121a and 121b (221a and 221b). Is also formed thin.
  • operation arms 12a and 12b (22a, 22b) containing the conversion mechanism part 13 (23) can be comprised thinner than the edge part 121a, 121b (221a, 221b) side.
  • the carrier 14 (24) is coupled to the lower surface side of the pedestal part 133 of the conversion mechanism part 13 (23).
  • the thickness of the carrier 14 (24) including the thickness of the substrate is suppressed below the thickness of the conversion mechanism part 13 (23). It becomes possible.
  • the tip regions of the operating arms 12a and 12b can be configured to be thin. Thereby, an opening for transferring the substrate between the transfer chamber and the vacuum processing chamber can be formed narrow, and a highly productive vacuum processing apparatus can be configured.
  • FIG. 6 is a schematic cross-sectional view of the main part showing an example of the configuration of the substrate processing apparatus provided with the substrate transfer apparatus 1.
  • the illustrated vacuum processing apparatus 8 includes a transfer chamber 80, a vacuum processing chamber 81, and a gate valve 82 that connects them.
  • the substrate transfer apparatus 1 is installed inside the transfer chamber 80.
  • the vacuum processing chamber 81 has an opening 81w for carrying the substrate W in and out of the transfer chamber 80
  • the gate valve 82 has a valve body (not shown) for opening and closing the opening 81w.
  • the gate valve 82 opens the opening 81w, and the carrier 14 of the substrate transport apparatus 1 enters the vacuum processing chamber 81 and carries the substrate W therein.
  • the height of the opening 81 w can be made smaller than before.
  • the thickness of the conversion mechanism unit 13 can be suppressed to 14 mm or less.
  • the height dimension of the opening 81w can be set in the range of 25 mm to 30 mm.
  • the tip regions of the operating arms 12a and 12b are formed to have a thickness dimension equivalent to that of the conversion mechanism unit 13. As a result, as shown in FIG. 6, the tip regions of the operating arms 12 a and 12 b can enter the vacuum processing chamber 81, and the workability of carrying in and carrying out the substrate W can be improved.
  • the substrate transfer apparatus 1 including the first transfer robot 10 and the second transfer robot 20 has been described as an example.
  • the substrate transfer apparatus not including the second transfer robot is also described.
  • the present invention is applicable.
  • the drive unit 2 having the first and second drive shafts 21a and 21b arranged concentrically has been described as an example.
  • both drive shafts are arranged non-concentrically.
  • a biaxial drive unit may be employed.
  • each base end portion of the pair of common arms is connected to the corresponding drive shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

Provided is a substrate transfer device wherein the thickness of a mechanism portion to linearly move a substrate can be reduced. The substrate transfer device is comprised of a drive portion (2), a pair of common arms (11a, 11b) coupled to the drive portion (2), a pair of operation arms (12a, 12b) coupled to the common arms, a carrier (14), and a conversion mechanism portion (13). The conversion mechanism portion (13) converts rotational movements of the arms to a linear movement of the carrier (14). The conversion mechanism portion (13) is comprised of a pair of shaft members (131a, 131b) and ring portions (42a, 42b) formed in the tips of the operation arms (12a, 12b). The ring portion rotates about the shaft member. Gear portions (50a, 50b) are formed on the outer peripheral surfaces of the ring portions, and are engaged with each other to rotate the ring portions in conjunction with each other. Bearing members (60a, 60b) are disposed between the ring portions and the shaft portions. The bearing portions and the gear portions are arranged so as to be opposed to each other in the radial directions of the shaft members.

Description

基板搬送装置Substrate transfer device
 本発明は、半導体基板、ガラス基板等の被処理基板を搬送するための基板搬送装置に関する。 The present invention relates to a substrate transfer apparatus for transferring a substrate to be processed such as a semiconductor substrate or a glass substrate.
 近年、搬送室の周囲に複数の処理室が配置されたマルチチャンバ型の真空処理装置が知られている。この種の真空処理装置は、搬送室から各処理室へ基板を自動的に搬入・搬出するための基板搬送装置が設置されている Recently, a multi-chamber type vacuum processing apparatus in which a plurality of processing chambers are arranged around a transfer chamber is known. This type of vacuum processing apparatus is provided with a substrate transfer device for automatically loading and unloading a substrate from the transfer chamber to each processing chamber.
 下記特許文献1には、真空チャンバ内で基板を搬送するロボットが記載されている。このロボットは、連結された二本の腕を一対有し、一対の腕で一つの被搬送物を載せるキャリアを支え、上記一対の腕を同時に駆動することにより、被搬送物を搬送する。さらに、上記ロボットは、キャリアを直線運動させる手段として、キャリアを支える一対の各腕のキャリア側の一端にそれぞれ結合された歯車を含む回転拘束機構部を備えている。 Patent Document 1 listed below describes a robot that transports a substrate in a vacuum chamber. This robot has a pair of two arms connected to each other, supports a carrier on which one object to be transported is supported by the pair of arms, and transports the object to be transported by simultaneously driving the pair of arms. Further, the robot includes a rotation restraining mechanism unit including gears respectively coupled to one end on the carrier side of a pair of arms supporting the carrier as means for linearly moving the carrier.
 近年、マルチチャンバ型の真空処理装置は、処理室内の排気効率の向上、処理室内の温度変化の低減等を目的として、搬送室と処理室との間で基板を搬送する開口を狭く形成する傾向がある。このため、上記開口を通過する基板搬送装置の先端部の薄型化が必要となっている。そこで、上記ロボットは、上記各歯車を支持する軸受を単段とすることにより、回転拘束機構部の薄型化を図るようにしている。 In recent years, multi-chamber type vacuum processing apparatuses tend to narrow an opening for transporting a substrate between a transport chamber and a processing chamber for the purpose of improving exhaust efficiency in the processing chamber and reducing temperature change in the processing chamber. There is. For this reason, it is necessary to reduce the thickness of the front end portion of the substrate transfer apparatus that passes through the opening. Therefore, the robot is designed to reduce the thickness of the rotation restraint mechanism by providing a single stage bearing for supporting the gears.
特開2000-317877号公報(段落[0021]、図3)JP 2000-317877 A (paragraph [0021], FIG. 3)
 しかしながら、特許文献1に記載のロボットは、上記歯車とこれを支持する軸受とが、それらの軸心方向に積み重なるようにして配置されているため、回転拘束機構部の薄型化に制限があるという問題がある。 However, in the robot described in Patent Document 1, the gears and the bearings that support the gears are arranged so as to be stacked in the axial direction thereof, so that there is a limitation in thinning the rotation restraint mechanism. There's a problem.
 以上のような事情に鑑み、本発明の目的は、基板を直線運動させるための機構部の薄型化を図ることができる基板搬送装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a substrate transport device that can reduce the thickness of a mechanism portion for linearly moving a substrate.
 上記目的を達成するため、本発明の一形態に係る基板搬送装置は、基板を搬送する基板搬送装置であって、駆動部と、一対の第1のアームと、一対の第2のアームと、キャリアと、変換機構とを具備する。
 上記一対の第1のアームは、上記駆動部と連結される第1の端部と、上記第1の端部とは反対側に位置する第2の端部とをそれぞれ有する。
 上記一対の第2のアームは、上記第1のアームの上記第2の端部に回転自在に取り付けられる第3の端部と、上記第3の端部とは反対側に位置し、外周面にギヤ部が形成された円環状のリング部を含む第4の端部とをそれぞれ有する。上記一対の第2のアームは、上記第4の端部が上記ギヤ部を介して相互に係合する。
 上記キャリアは、上記基板を支持する。
 上記変換機構は、上記第2のアームの上記第4の端部と上記キャリアとの間に配置され、上記第1及び第2のアームの回転運動を上記キャリアの直線運動に変換する。上記変換機構は、本体と、ベアリング部材とを含む。上記本体は、上記キャリアと結合される結合面及び上記各リング部に挿通される一対の軸部を有する。上記ベアリング部材は、上記軸部の外周面と上記リング部の内周面との間にそれぞれ装着され、上記軸部の径方向において上記ギヤ部と並ぶ。
In order to achieve the above object, a substrate transport apparatus according to an aspect of the present invention is a substrate transport apparatus that transports a substrate, and includes a drive unit, a pair of first arms, and a pair of second arms, A carrier and a conversion mechanism are provided.
Each of the pair of first arms has a first end connected to the drive unit, and a second end located on the opposite side of the first end.
A pair of second arms, a third end rotatably attached to the second end of the first arm, and an outer peripheral surface located on the opposite side of the third end; And a fourth end portion including an annular ring portion in which a gear portion is formed. The fourth end of the pair of second arms is engaged with each other via the gear portion.
The carrier supports the substrate.
The conversion mechanism is disposed between the fourth end of the second arm and the carrier, and converts the rotational motion of the first and second arms into a linear motion of the carrier. The conversion mechanism includes a main body and a bearing member. The main body has a coupling surface coupled to the carrier and a pair of shaft portions inserted through the ring portions. The bearing member is mounted between the outer peripheral surface of the shaft portion and the inner peripheral surface of the ring portion, and is aligned with the gear portion in the radial direction of the shaft portion.
本発明の実施形態に係る基板搬送装置の上方側から見た斜視図である。It is the perspective view seen from the upper side of the board | substrate conveyance apparatus which concerns on embodiment of this invention. 上記基板搬送装置の下方側から見た斜視図である。It is the perspective view seen from the downward side of the said board | substrate conveyance apparatus. 上記基板搬送装置の変換機構部周辺の底面図である。It is a bottom view around the conversion mechanism part of the substrate transport apparatus. 上記基板搬送装置の変換機構部周辺の斜視図である。It is a perspective view around the conversion mechanism part of the said board | substrate conveyance apparatus. 上記基板搬送装置の変換機構部の断面図である。It is sectional drawing of the conversion mechanism part of the said board | substrate conveyance apparatus. 上記基板搬送装置を備えた真空処理装置の要部の概略断面図である。It is a schematic sectional drawing of the principal part of the vacuum processing apparatus provided with the said board | substrate conveyance apparatus.
 本発明の一実施形態に係る基板搬送装置は、基板を搬送する基板搬送装置であって、駆動部と、一対の第1のアームと、一対の第2のアームと、キャリアと、変換機構とを具備する。
 上記一対の第1のアームは、上記駆動部と連結される第1の端部と、上記第1の端部とは反対側に位置する第2の端部とをそれぞれ有する。
 上記一対の第2のアームは、上記第1のアームの上記第2の端部に回転自在に取り付けられる第3の端部と、上記第3の端部とは反対側に位置し、外周面にギヤ部が形成された円環状のリング部を含む第4の端部とをそれぞれ有する。上記一対の第2のアームは、上記第4の端部が上記ギヤ部を介して相互に係合する。
 上記キャリアは、上記基板を支持する。
 上記変換機構は、上記第2のアームの上記第4の端部と上記キャリアとの間に配置され、上記第1及び第2のアームの回転運動を上記キャリアの直線運動に変換する。上記変換機構は、本体と、ベアリング部材とを含む。上記本体は、上記キャリアと結合される結合面及び上記各リング部に挿通される一対の軸部を有する。上記ベアリング部材は、上記軸部の外周面と上記リング部の内周面との間にそれぞれ装着され、上記軸部の径方向において上記ギヤ部と並ぶ。
A substrate transport apparatus according to an embodiment of the present invention is a substrate transport apparatus that transports a substrate, and includes a drive unit, a pair of first arms, a pair of second arms, a carrier, and a conversion mechanism. It comprises.
Each of the pair of first arms has a first end connected to the drive unit, and a second end located on the opposite side of the first end.
A pair of second arms, a third end rotatably attached to the second end of the first arm, and an outer peripheral surface located on the opposite side of the third end; And a fourth end portion including an annular ring portion in which a gear portion is formed. The fourth end of the pair of second arms is engaged with each other via the gear portion.
The carrier supports the substrate.
The conversion mechanism is disposed between the fourth end of the second arm and the carrier, and converts the rotational motion of the first and second arms into a linear motion of the carrier. The conversion mechanism includes a main body and a bearing member. The main body has a coupling surface coupled to the carrier and a pair of shaft portions inserted through the ring portions. The bearing member is mounted between the outer peripheral surface of the shaft portion and the inner peripheral surface of the ring portion, and is aligned with the gear portion in the radial direction of the shaft portion.
 上記変換機構において、本体の軸部は、各リング部の回転軸を構成する。一対のリング部は、それらの外周面に形成されたギヤ部を介して相互に係合し、各リング部の内周面はベアリング部材を介して軸部に支持される。この変換機構により、駆動部による第1及び第2のアームの回転運動がキャリアの直線運動に変換される。
 上記基板搬送装置において、変換機構を構成するギヤ部とベアリング部材は、軸部の径方向においてそれぞれ対向するように並んでいる。したがって、変換機構の軸部の軸方向を厚み方向としたときに、ギヤ部とベアリング部材とが上記厚み方向に積み重なるようにして配置される場合と比較して、変換機構の厚みを小さくできる。これにより、変換機構の薄型化が図れるようになる。
In the conversion mechanism, the shaft portion of the main body constitutes the rotation shaft of each ring portion. The pair of ring portions are engaged with each other via a gear portion formed on the outer peripheral surface thereof, and the inner peripheral surface of each ring portion is supported by the shaft portion via a bearing member. By this conversion mechanism, the rotational motions of the first and second arms by the drive unit are converted into the linear motion of the carrier.
In the substrate transport apparatus, the gear portion and the bearing member constituting the conversion mechanism are arranged to face each other in the radial direction of the shaft portion. Therefore, when the axial direction of the shaft portion of the conversion mechanism is the thickness direction, the thickness of the conversion mechanism can be reduced as compared with the case where the gear portion and the bearing member are arranged so as to be stacked in the thickness direction. Thereby, the conversion mechanism can be thinned.
 上記第2のアームは、第1の部材と、第2の部材とを含んでもよい。上記第1の部材は、上記第1のアームと連結され、上記第3の端部を有する。上記第2の部材は、上記第1の部材に取り付けられ、上記第4の端部を有する。
 これにより、上記各リング部を上記変換機構の一部として構成でき、薄型の変換機構を備えた基板搬送装置の組み立て性を向上させることができる。
The second arm may include a first member and a second member. The first member is connected to the first arm and has the third end. The second member is attached to the first member and has the fourth end.
Thereby, each said ring part can be comprised as a part of said conversion mechanism, and the assembly property of the board | substrate conveyance apparatus provided with the thin conversion mechanism can be improved.
 本発明の一実施形態では、上記軸部の軸方向を厚み方向としたとき、上記変換機構の厚みは、上記第1の部材の厚み以下とする。また、上記第1の部材の上記第4の端部側の厚みは、上記第1の部材の上記第3の端部の厚みよりも小さい。
 これにより、変換機構あるいは変換機構を含む第2のアームの先端領域を、第3の端部側よりも薄く構成することができる。
In one embodiment of the present invention, when the axial direction of the shaft portion is the thickness direction, the thickness of the conversion mechanism is equal to or less than the thickness of the first member. Further, the thickness of the first member on the fourth end side is smaller than the thickness of the third end of the first member.
Thus, the conversion mechanism or the tip region of the second arm including the conversion mechanism can be configured to be thinner than the third end side.
 さらに、本発明の一実施形態では、上記本体は、上記第1及び第2のアームの回転方向に平行な第1の面と、上記第1の面より下方に位置する第2の面とをそれぞれ有する。この場合、上記一対の軸部及び上記結合面は、上記第2の面に形成される。これにより、キャリアを含む変換機構の厚みの増大を抑えることが可能となる。 Furthermore, in one embodiment of the present invention, the main body includes a first surface parallel to the rotation direction of the first and second arms, and a second surface positioned below the first surface. Have each. In this case, the pair of shaft portions and the coupling surface are formed on the second surface. Thereby, it becomes possible to suppress an increase in the thickness of the conversion mechanism including the carrier.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[全体構成]
 図1及び図2は本発明の一実施形態に係る基板搬送装置を示す斜視図である。ここで、図1は、基板搬送装置1を上方側から見た斜視図、図2は、基板搬送装置1を下方側から見た斜視図である。図2においては、キャリアの図示は省略されている。図中、x軸及びy軸は、互いに直交する水平軸であり、xy平面は、水平面に対応する。また、z軸は、x軸及びy軸に直交する鉛直軸である。
[overall structure]
1 and 2 are perspective views showing a substrate transfer apparatus according to an embodiment of the present invention. Here, FIG. 1 is a perspective view of the substrate transfer apparatus 1 as viewed from above, and FIG. 2 is a perspective view of the substrate transfer apparatus 1 as viewed from below. In FIG. 2, the carrier is not shown. In the figure, the x axis and the y axis are horizontal axes orthogonal to each other, and the xy plane corresponds to a horizontal plane. The z axis is a vertical axis orthogonal to the x axis and the y axis.
 本実施形態の基板搬送装置1は、第1の搬送ロボット10と、第2の搬送ロボット20とを有する基板搬送装置として構成されている。第1の搬送ロボット10は、主として、一対の共通アーム11a、11b(第1のアーム)と、一対の第1の作動アーム12a、12b(第2のアーム)と、変換機構部13と、キャリア14とで構成されている。第2の搬送ロボット20は、主として、一対の共通アーム11a、11bと、一対の第2の作動アーム22a、22b(第2のアーム)と、変換機構部23と、キャリア24とで構成されている。 The substrate transfer apparatus 1 according to the present embodiment is configured as a substrate transfer apparatus having a first transfer robot 10 and a second transfer robot 20. The first transfer robot 10 mainly includes a pair of common arms 11a and 11b (first arm), a pair of first operating arms 12a and 12b (second arm), a conversion mechanism unit 13, and a carrier. 14. The second transfer robot 20 mainly includes a pair of common arms 11a and 11b, a pair of second operating arms 22a and 22b (second arms), a conversion mechanism unit 23, and a carrier 24. Yes.
 基板搬送装置1は、例えばマルチチャンバ型の真空処理装置における搬送室の内部に設置される。上記真空処理装置は、搬送室の周囲に複数の真空処理室を有する。これら真空処理室は、基板を搬入及び/又は搬出するロード/アンロード室、成膜室(スパッタ室、CVD室等)、熱処理室などの各種処理室が含まれる。基板搬送装置1は、真空排気された搬送室の内部において複数の真空処理室間で基板を受け渡すためのものであり、例えば、搬送室の底部(xy平面内)に設置される。 The substrate transfer apparatus 1 is installed inside a transfer chamber in a multi-chamber type vacuum processing apparatus, for example. The vacuum processing apparatus has a plurality of vacuum processing chambers around the transfer chamber. These vacuum processing chambers include various processing chambers such as a load / unload chamber for loading and / or unloading a substrate, a film forming chamber (a sputtering chamber, a CVD chamber, etc.), and a heat treatment chamber. The substrate transfer apparatus 1 is for delivering a substrate between a plurality of vacuum processing chambers in the evacuated transfer chamber, and is installed, for example, at the bottom (in the xy plane) of the transfer chamber.
 基板搬送装置1は、図1に示すように、駆動シャフト21を有する駆動部2を有する。駆動部2は、搬送室の外方に設置され、典型的には電動機、シリンダ装置などで構成されている。駆動シャフト21は、搬送室の底部をz軸方向に気密に貫通し、共通アーム11a、11bの各基端部111a、111b(第1の端部)に連結されている。各基端部111a、111bは、図示するように相互に重ねて配置されている。駆動シャフト21は、図2に示すように、同心的に配置された第1及び第2の駆動軸21a、21bを有し、第1の駆動軸21aは基端部111aに連結され、第2の駆動軸21bは基端部111bに連結されている。駆動部2は、共通アーム11a、11bをxy面内で回転させ、あるいは、z軸方向に上下移動させる。 The substrate transport apparatus 1 has a drive unit 2 having a drive shaft 21 as shown in FIG. The drive unit 2 is installed outside the transfer chamber, and typically includes an electric motor, a cylinder device, and the like. The drive shaft 21 passes through the bottom of the transfer chamber in an airtight manner in the z-axis direction and is connected to the base end portions 111a and 111b (first end portions) of the common arms 11a and 11b. The base end portions 111a and 111b are arranged so as to overlap each other as illustrated. As shown in FIG. 2, the drive shaft 21 has first and second drive shafts 21a and 21b arranged concentrically. The first drive shaft 21a is connected to the base end portion 111a, and the second The drive shaft 21b is connected to the base end portion 111b. The drive unit 2 rotates the common arms 11a and 11b in the xy plane, or vertically moves in the z-axis direction.
 共通アーム11a、11bは、例えばアルミニウム合金等の金属材料で構成される。共通アーム11a、11bの他端部(第2の端部)には、連結具3a、3bがそれぞれ取り付けられている。連結具3a、3bは、第1の作動アーム12a、12bをxy平面内で回転自在に支持する第1の回転軸31a、31bと、第2の作動アーム22a、22bをxy平面内で回転自在に支持する第2の回転軸32a、32bとを有する。 The common arms 11a and 11b are made of a metal material such as an aluminum alloy, for example. Connecters 3a and 3b are attached to the other end portions (second end portions) of the common arms 11a and 11b, respectively. The couplers 3a and 3b have first rotary shafts 31a and 31b that rotatably support the first operating arms 12a and 12b in the xy plane, and second operating arms 22a and 22b that can rotate in the xy plane. And second rotating shafts 32a and 32b to be supported.
 第1及び第2の作動アーム12a、12b、22a,22bは、例えばアルミニウム合金等の金属材料で構成される。第1の作動アーム12a、12bは、第1の回転軸31a、31bに連結される端部121a、121b(第3の端部)と、変換機構部13に連結される端部122a、122b(第4の端部)とを有する。変換機構部13は、共通アーム11a、11b及び第1の作動アーム12a、12bのxy平面内における回転運動を、キャリア14のxy平面内における直線運動に変換する。キャリア14は、ガラス基板や半導体基板等が載置される支持面14aを有し、図示しない真空処理室に進入して基板を受け渡す。 The first and second operating arms 12a, 12b, 22a, 22b are made of a metal material such as an aluminum alloy, for example. The first operating arms 12a and 12b include end portions 121a and 121b (third end portions) connected to the first rotating shafts 31a and 31b, and end portions 122a and 122b (connected to the conversion mechanism portion 13). A fourth end). The conversion mechanism unit 13 converts the rotational motion of the common arms 11a and 11b and the first operating arms 12a and 12b in the xy plane into a linear motion of the carrier 14 in the xy plane. The carrier 14 has a support surface 14a on which a glass substrate, a semiconductor substrate or the like is placed, and enters a vacuum processing chamber (not shown) to deliver the substrate.
 同様に、第2の作動アーム22a、22bは、第2の回転軸32a、32bに連結される端部221a、221b(第3の端部)と、変換機構部23に連結される端部222a、222b(第4の端部)とを有する。変換機構部23は、共通アーム11a、11b及び第2の作動アーム22a、22bのxy平面内における回転運動を、キャリア24のxy平面内における直線運動に変換する。キャリア24は、ガラス基板や半導体基板等が載置される支持面24aを有し、図示しない真空処理室に進入して基板を受け渡す。キャリア14、24は、例えばアルミニウム合金等の金属材料で構成されており、その形状は図示のものに限られない。 Similarly, the second operating arms 22a and 22b include end portions 221a and 221b (third end portions) connected to the second rotating shafts 32a and 32b, and an end portion 222a connected to the conversion mechanism portion 23. , 222b (fourth end). The conversion mechanism unit 23 converts the rotational motion of the common arms 11a and 11b and the second operating arms 22a and 22b in the xy plane into a linear motion of the carrier 24 in the xy plane. The carrier 24 has a support surface 24a on which a glass substrate, a semiconductor substrate or the like is placed, and enters a vacuum processing chamber (not shown) to deliver the substrate. The carriers 14 and 24 are made of, for example, a metal material such as an aluminum alloy, and the shape thereof is not limited to the illustrated one.
 変換機構部13、23はそれぞれ同一の構成を有している。以下、変換機構部13及びその周辺構成の詳細について説明する。また、以下の説明では、便宜上、第1の搬送ロボット10を単に搬送ロボット10と、第1の作動アーム12a、12bを単に作動アーム12a、12bとそれぞれ称する。 The conversion mechanism sections 13 and 23 have the same configuration. Hereinafter, details of the conversion mechanism unit 13 and its peripheral configuration will be described. In the following description, for the sake of convenience, the first transfer robot 10 is simply referred to as the transfer robot 10, and the first operation arms 12a and 12b are simply referred to as the operation arms 12a and 12b.
[変換機構部の周辺構成]
 図3~図5は、変換機構部13の構成を示している。ここで、図3は、搬送ロボット10を下方側から見た底面図、図4は変換機構部13を下方側から見たときの斜視図、図5は変換機構部13をx軸方向から見たときの断面図である。図3及び図4においては、キャリアの図示は省略されている。
[Peripheral structure of conversion mechanism]
3 to 5 show the configuration of the conversion mechanism unit 13. 3 is a bottom view of the transfer robot 10 as viewed from below, FIG. 4 is a perspective view of the conversion mechanism 13 as viewed from below, and FIG. 5 is a view of the conversion mechanism 13 as viewed from the x-axis direction. FIG. In FIGS. 3 and 4, the carrier is not shown.
 図3及び図4に示すように、作動アーム12a、12bはそれぞれ、主アーム部材30a、30b(第1の部材)と、補助アーム部材40a、40b(第2の部材)との結合体で構成されている。主アーム部材30a、30bは、端部121a、121bとは反対側の端部に、補助アーム部材40a、40bを組み付けるための取付孔301a、301bを備えている。 As shown in FIGS. 3 and 4, each of the operating arms 12a and 12b includes a combination of main arm members 30a and 30b (first member) and auxiliary arm members 40a and 40b (second member). Has been. The main arm members 30a and 30b are provided with mounting holes 301a and 301b for assembling the auxiliary arm members 40a and 40b at the end opposite to the ends 121a and 121b.
 また、主アーム部材30a、30bの下面側には段部302a、302bがそれぞれ形成されている。これにより、図1及び図2に示すように、主アーム部材30a、30bは、段部302a、302bを境として、共通アーム11a、11b側と変換機構部13側とで厚み(z軸方向)が異なり、共通アーム11a、11b側よりも変換機構部13側の方が薄く形成されている。また、共通アーム11a、11b側の厚みを大きくすることで、主アーム部材30a、30bの剛性を確保することができる。 Further, step portions 302a and 302b are formed on the lower surfaces of the main arm members 30a and 30b, respectively. As a result, as shown in FIGS. 1 and 2, the main arm members 30a and 30b have a thickness (z-axis direction) between the common arms 11a and 11b and the conversion mechanism 13 side with the stepped portions 302a and 302b as a boundary. However, the conversion mechanism 13 side is formed thinner than the common arms 11a and 11b. Moreover, the rigidity of the main arm members 30a and 30b can be ensured by increasing the thickness of the common arms 11a and 11b.
 補助アーム部材40a、40bは、作動アーム12a、12bの第2の端部122a、122bをそれぞれ構成し、図5に示すように、板部41a、41bと、環状のリング部42a、42bとを有する。板部41a、41bは、xy平面に平行に形成された長方形状を有し、主アーム部材30a,30bの取付孔301a、301bに挿通されている。板部41a、41bは、取付孔301a,301bに対して摺動自在であり、所定の位置で複数本の締結具S1(図1)によって固定可能とされている。 The auxiliary arm members 40a and 40b constitute second end portions 122a and 122b of the operating arms 12a and 12b, respectively, and as shown in FIG. 5, plate portions 41a and 41b and annular ring portions 42a and 42b. Have. The plate portions 41a and 41b have a rectangular shape formed in parallel to the xy plane, and are inserted through the mounting holes 301a and 301b of the main arm members 30a and 30b. The plate portions 41a and 41b are slidable with respect to the mounting holes 301a and 301b, and can be fixed at a predetermined position by a plurality of fasteners S1 (FIG. 1).
 一方、リング部42a、42bは、変換機構部13の一部を構成し、主アーム部材30a、30bを変換機構部13に連結させる。以下、変換機構部13の詳細について説明する。 On the other hand, the ring portions 42 a and 42 b constitute a part of the conversion mechanism portion 13 and connect the main arm members 30 a and 30 b to the conversion mechanism portion 13. Details of the conversion mechanism unit 13 will be described below.
 変換機構部13は、図5に示すように、台座部133と、一対の軸部材131a、131bとを含む金属製の本体130を有する。一対の軸部材131a、131bは、台座部133の下面側に取り付けられている。 As shown in FIG. 5, the conversion mechanism section 13 includes a metal main body 130 including a pedestal section 133 and a pair of shaft members 131a and 131b. The pair of shaft members 131 a and 131 b are attached to the lower surface side of the pedestal portion 133.
 本体130の台座部133は、図4に示すように、キャリア14と結合される結合面134を有する。台座部133は、その下面に段部133sを介して形成された薄肉領域を有しており、この薄肉領域の下面が結合面134とされている。結合面134は、複数本の締結具S2(図1)を介してキャリア14の基部上面に接合される。 The base portion 133 of the main body 130 has a coupling surface 134 coupled to the carrier 14 as shown in FIG. The pedestal portion 133 has a thin region formed on the lower surface thereof via the step portion 133 s, and the lower surface of the thin region serves as a coupling surface 134. The coupling surface 134 is joined to the upper surface of the base of the carrier 14 via a plurality of fasteners S2 (FIG. 1).
 段部133sの高さ(深さ)は、キャリア14の基部の厚みと同等に設定されている。また、結合面134を構成する台座部133の薄肉領域の厚みは、キャリア14によって支持される基板の厚み以下とされている。 The height (depth) of the stepped portion 133s is set to be equal to the thickness of the base portion of the carrier 14. Further, the thickness of the thin region of the pedestal part 133 constituting the coupling surface 134 is set to be equal to or less than the thickness of the substrate supported by the carrier 14.
 軸部材131a、131bは、それぞれ同一の直径を有する円柱形状に形成されている。軸部材131a、131bは、補助アーム部材40a、40bのリング部42a,42bを貫通し、締結具132a、132bを介して台座部133に固定されている。軸部材131a、131bの外周面とリング部42a、42bの内周面との間にはベアリング部材60a、60bがそれぞれ装着されており、軸部材131a、131bの周りに補助アーム部材40a、40bが回動可能とされている。 The shaft members 131a and 131b are each formed in a cylindrical shape having the same diameter. The shaft members 131a and 131b pass through the ring portions 42a and 42b of the auxiliary arm members 40a and 40b, and are fixed to the pedestal portion 133 via the fasteners 132a and 132b. Bearing members 60a and 60b are mounted between the outer peripheral surfaces of the shaft members 131a and 131b and the inner peripheral surfaces of the ring portions 42a and 42b, respectively, and auxiliary arm members 40a and 40b are provided around the shaft members 131a and 131b. It can be turned.
 ベアリング部材60a、60bは、それぞれ単一のベアリング部品で構成されている。ベアリング部品の種類は特に限定されないが、本実施形態では、2点支持式のベアリング部品が用いられる。この種のベアリング部品としては、例えば、アンギュラベアリング(アンギュラ玉軸受)、真空グリスを潤滑材として含むベアリング部品等が挙げられる。4点支持式のベアリング部品が採用されてもよい。ベアリング部材60a、60bは、リング部42a、42bの上端から径内方側へ突出する周縁部42cと、軸部材131a、131bの外周面から径外方側へ突出する段部131sとの間で挟持されるように、本体130に対して固定されている。 The bearing members 60a and 60b are each composed of a single bearing component. The type of the bearing component is not particularly limited, but in this embodiment, a two-point support type bearing component is used. Examples of this type of bearing component include angular bearings (angular ball bearings), bearing components including vacuum grease as a lubricant, and the like. A four-point support bearing part may be employed. The bearing members 60a and 60b are provided between a peripheral edge portion 42c that protrudes radially inward from the upper ends of the ring portions 42a and 42b and a step portion 131s that protrudes radially outward from the outer peripheral surface of the shaft members 131a and 131b. It is fixed with respect to the main body 130 so as to be sandwiched.
 一方、リング部42a、42bの外周面には、それぞれギヤ部50a、50bが設けられている。各ギヤ部50a、50bは相互に係合し、これにより、各リング部42a、42bは相互に連動して、軸部材131a、131bの周りを回転する。すなわち、各リング部42a、42bは、軸部材131a、131bの周りに、それぞれ同一の回転角で同時に回転する。 On the other hand, gear portions 50a and 50b are provided on the outer peripheral surfaces of the ring portions 42a and 42b, respectively. The gear portions 50a and 50b are engaged with each other, whereby the ring portions 42a and 42b rotate around the shaft members 131a and 131b in conjunction with each other. That is, the ring portions 42a and 42b rotate around the shaft members 131a and 131b at the same rotation angle at the same time.
 本実施形態において、ギヤ部50a、50bは、リング部42a、42bの外周面にそれぞれ装着された環状のギヤ部品で構成されている。ギヤ部50a、50bとしては、例えば真空焼入れ処理が施された耐摩耗性に優れるギヤ部品を用いることができる。ギヤ部50a、50bは、リング部42a、42bの外周面に直接形成されてもよい。ギヤ部50a、50bは、リング部42a、42bの下面側に環状の支持プレート70a、70bを取り付ける複数本の締結具71a、71bによって、支持プレート70a、70bとともに、リング部42a、42bに対して固定される。支持プレート70a、70bの下面は、補助アーム部材40a、40bの下面と同一の平面内に属している。 In the present embodiment, the gear portions 50a and 50b are constituted by annular gear parts respectively mounted on the outer peripheral surfaces of the ring portions 42a and 42b. As the gear parts 50a and 50b, for example, gear parts excellent in wear resistance subjected to vacuum quenching can be used. The gear portions 50a and 50b may be directly formed on the outer peripheral surfaces of the ring portions 42a and 42b. The gear portions 50a and 50b are connected to the ring portions 42a and 42b together with the support plates 70a and 70b by a plurality of fasteners 71a and 71b for attaching the annular support plates 70a and 70b to the lower surfaces of the ring portions 42a and 42b. Fixed. The lower surfaces of the support plates 70a and 70b belong to the same plane as the lower surfaces of the auxiliary arm members 40a and 40b.
 図5に示すように、ベアリング部材60a、60bと、ギヤ部50a、50bとは、リング部42a、42bを挟んで、軸部材131a、131bの径方向において相互に対向するように並置されている。特に本実施形態では、ベアリング部材60a、60bとギヤ部50a、50bとはほぼ同一平面上に位置するように、リング部42a、42bの内周側及び外周側にそれぞれ配置されている。これにより、これらベアリング部材及びギヤ部が軸部材の軸方向に積み重なるように配置される構成と比較して、変換機構部13の厚み寸法を小さく抑えることが可能となる。 As shown in FIG. 5, the bearing members 60a and 60b and the gear portions 50a and 50b are juxtaposed so as to face each other in the radial direction of the shaft members 131a and 131b with the ring portions 42a and 42b interposed therebetween. . In particular, in the present embodiment, the bearing members 60a and 60b and the gear portions 50a and 50b are respectively arranged on the inner peripheral side and the outer peripheral side of the ring portions 42a and 42b so as to be located on the same plane. Thereby, compared with the structure arrange | positioned so that these bearing members and gear parts may be piled up in the axial direction of a shaft member, it becomes possible to restrain the thickness dimension of the conversion mechanism part 13 small.
 以上のようにして構成される変換機構部13は、作動アーム12a、12bは、補助アーム部材40a、40bのリング部42a、42bを軸部材131a、131bの周りに回動させることによって、共通アーム11a、11bの回転動作に追従する。このとき、リング部42a、42bはギヤ部50a、50bを介して相互に係合しているため、互いに同期して、かつ逆方向に回転する。その結果、キャリア14は、z軸のまわりに回転することなく、xy平面内において直線的に移動される。 In the conversion mechanism portion 13 configured as described above, the operating arms 12a and 12b are configured so that the common arm is rotated by rotating the ring portions 42a and 42b of the auxiliary arm members 40a and 40b around the shaft members 131a and 131b. It follows the rotational movement of 11a, 11b. At this time, since the ring portions 42a and 42b are engaged with each other via the gear portions 50a and 50b, the ring portions 42a and 42b rotate in synchronization with each other and in the reverse direction. As a result, the carrier 14 is linearly moved in the xy plane without rotating around the z axis.
 第1の搬送ロボット10は以上のようにして構成される。また、第2の搬送ロボット20も、第1の搬送ロボット10と同様に構成される。次に、以上のようにして構成される本実施形態の基板搬送装置1の典型的な動作について説明する。 The first transfer robot 10 is configured as described above. Further, the second transfer robot 20 is configured similarly to the first transfer robot 10. Next, a typical operation of the substrate transport apparatus 1 of the present embodiment configured as described above will be described.
[基板搬送装置の動作]
 駆動部2は、駆動シャフト21を構成する第1及び第2の駆動軸21a及び21bをそれぞれ逆方向に回転させることで、キャリア14、24を直線移動させる。すなわち、図1に示す状態において、上方から見て駆動軸21aを時計周りに、同じく駆動軸21bを反時計周りにそれぞれ回動させると、キャリア14、24はそれぞれ(-x)方向に移動する。逆に、上方から見て駆動軸21aを反時計周りに、同じく駆動軸21bを時計周りにそれぞれ回転させると、キャリア14、24はそれぞれ(+x)方向に移動する。
[Operation of substrate transfer device]
The drive unit 2 linearly moves the carriers 14 and 24 by rotating the first and second drive shafts 21a and 21b constituting the drive shaft 21 in opposite directions. That is, in the state shown in FIG. 1, when the drive shaft 21a is rotated clockwise and the drive shaft 21b is rotated counterclockwise as viewed from above, the carriers 14 and 24 move in the (−x) direction, respectively. . Conversely, when the drive shaft 21a is rotated counterclockwise and the drive shaft 21b is rotated clockwise as viewed from above, the carriers 14 and 24 move in the (+ x) direction, respectively.
 一方、駆動部2は、第1及び第2の駆動軸21a、21bをそれぞれ同じ方向に回転させることで、第1及び第2の搬送ロボット10、20をz軸の周りに旋回させる。さらに、駆動部2は、第1及び第2の駆動軸21a、21bをz軸方向に伸縮させることによって、第1及び第2の搬送ロボット10、20を上下移動させる。 On the other hand, the drive unit 2 rotates the first and second drive shafts 21a and 21b in the same direction, thereby turning the first and second transfer robots 10 and 20 around the z-axis. Further, the drive unit 2 moves the first and second transfer robots 10 and 20 up and down by extending and contracting the first and second drive shafts 21a and 21b in the z-axis direction.
 以上のようにして、キャリア14、24は、任意の空間位置へ移動される。これにより、キャリア14、24を用いて所定の搬送位置から他の搬送位置へ基板を精度よく搬送することができる。 As described above, the carriers 14 and 24 are moved to an arbitrary spatial position. Accordingly, the substrate can be accurately transported from a predetermined transport position to another transport position using the carriers 14 and 24.
 ここで、本実施形態の基板搬送装置1においては、変換機構部13、23を構成するギヤ部50a、50bとベアリング部材60a、60bは、それぞれ軸部材131a、131bの径方向に対向するように配置されている。したがって、ギヤ部とベアリング部材とがz軸方向に積み重なって配置される構成と比較して、変換機構部13、23の厚みを小さくすることができ、変換機構部13、23の薄型化を図ることが可能となる。変換機構部13、23の厚みとしては、図5に示すように、補助アーム部材40a、40bが取り付けられる主アーム部材30a、30bの先端部の厚み(T)以下に抑えることができる。 Here, in the board | substrate conveyance apparatus 1 of this embodiment, the gear parts 50a and 50b and the bearing members 60a and 60b which comprise the conversion mechanism parts 13 and 23 are opposed to the radial direction of the shaft members 131a and 131b, respectively. Has been placed. Therefore, compared to a configuration in which the gear portion and the bearing member are stacked in the z-axis direction, the thickness of the conversion mechanism portions 13 and 23 can be reduced, and the conversion mechanism portions 13 and 23 can be thinned. It becomes possible. As shown in FIG. 5, the thickness of the conversion mechanism portions 13 and 23 can be suppressed to be equal to or less than the thickness (T) of the distal end portion of the main arm members 30 a and 30 b to which the auxiliary arm members 40 a and 40 b are attached.
 また、本実施形態の基板搬送装置1において、作動アーム12a、12b(22a,22b)は、主アーム部材30及び補助アーム部材40の2つの部材で構成されている。これにより、補助アーム部材40a、40bのリング部42a、42bを変換機構部13、23の一部として構成でき、薄型の変換機構を備えた基板搬送装置1の組み立て性を向上させることができる。 In the substrate transfer apparatus 1 of the present embodiment, the operating arms 12a and 12b (22a and 22b) are composed of two members, the main arm member 30 and the auxiliary arm member 40. Thereby, the ring parts 42a and 42b of the auxiliary arm members 40a and 40b can be configured as a part of the conversion mechanism parts 13 and 23, and the assemblability of the substrate transfer apparatus 1 including the thin conversion mechanism can be improved.
 また、本実施形態の基板搬送装置1において、作動アーム12a、12b(22a、22b)の端部122a、122b(222a、222b)側の厚みは、端部121a、121b(221a、221b)側よりも薄く形成されている。これにより、変換機構部13(23)を含む作動アーム12a、12b(22a、22b)の先端領域を、端部121a、121b(221a、221b)側よりも薄く構成することができる。 In the substrate transfer apparatus 1 according to the present embodiment, the end portions 122a and 122b (222a and 222b) of the operation arms 12a and 12b (22a and 22b) have thicknesses from the end portions 121a and 121b (221a and 221b). Is also formed thin. Thereby, the front-end | tip area | region of the action | operation arms 12a and 12b (22a, 22b) containing the conversion mechanism part 13 (23) can be comprised thinner than the edge part 121a, 121b (221a, 221b) side.
 さらに、本実施形態の基板搬送装置1においては、変換機構部13(23)の台座部133の下面側にキャリア14(24)が結合されている。これにより、キャリア14(24)が台座部133の上面側に結合される場合と比較して、基板の厚みを含むキャリア14(24)の厚みを変換機構部13(23)の厚み以下に抑えることが可能となる。 Furthermore, in the substrate transfer apparatus 1 of the present embodiment, the carrier 14 (24) is coupled to the lower surface side of the pedestal part 133 of the conversion mechanism part 13 (23). Thereby, compared with the case where the carrier 14 (24) is combined with the upper surface side of the pedestal part 133, the thickness of the carrier 14 (24) including the thickness of the substrate is suppressed below the thickness of the conversion mechanism part 13 (23). It becomes possible.
 以上のように、本実施形態によれば、作動アーム12a、12b(22a、22b)の先端領域を薄く構成することができる。これにより、搬送室と真空処理室との間で基板を搬送する開口を狭く形成することができ、生産性の高い真空処理装置を構成することが可能となる。 As described above, according to the present embodiment, the tip regions of the operating arms 12a and 12b (22a and 22b) can be configured to be thin. Thereby, an opening for transferring the substrate between the transfer chamber and the vacuum processing chamber can be formed narrow, and a highly productive vacuum processing apparatus can be configured.
 図6は、基板搬送装置1を備えた基板処理装置の構成の一例を示す要部の模式的断面図である。図示する真空処理装置8は、搬送室80と、真空処理室81と、これらの間を接続するゲートバルブ82とを有する。基板搬送装置1は、搬送室80の内部に設置されている。真空処理室81は、搬送室80との間で基板Wを搬入出するための開口81wを有し、ゲートバルブ82は、開口81wを開閉する弁体(図示略)を有している。図示の例では、ゲートバルブ82が開口81wを開放し、基板搬送装置1のキャリア14が真空処理室81の内部へ進入して基板Wを搬入する様子を示している。 FIG. 6 is a schematic cross-sectional view of the main part showing an example of the configuration of the substrate processing apparatus provided with the substrate transfer apparatus 1. The illustrated vacuum processing apparatus 8 includes a transfer chamber 80, a vacuum processing chamber 81, and a gate valve 82 that connects them. The substrate transfer apparatus 1 is installed inside the transfer chamber 80. The vacuum processing chamber 81 has an opening 81w for carrying the substrate W in and out of the transfer chamber 80, and the gate valve 82 has a valve body (not shown) for opening and closing the opening 81w. In the illustrated example, the gate valve 82 opens the opening 81w, and the carrier 14 of the substrate transport apparatus 1 enters the vacuum processing chamber 81 and carries the substrate W therein.
 図6に示すように、本実施形態の基板搬送装置1によれば、変換機構部13を従来よりも薄型化できるため、開口81wの高さ寸法を従来よりも小さく構成することができる。一例を挙げると、本実施形態によれば、変換機構部13の厚みを14mm以下に抑えることができる。この場合、開口81wの高さ寸法を25mm~30mmの範囲に設定することができる。 As shown in FIG. 6, according to the substrate transfer apparatus 1 of the present embodiment, since the conversion mechanism unit 13 can be made thinner than before, the height of the opening 81 w can be made smaller than before. For example, according to this embodiment, the thickness of the conversion mechanism unit 13 can be suppressed to 14 mm or less. In this case, the height dimension of the opening 81w can be set in the range of 25 mm to 30 mm.
 また、本実施形態の基板搬送装置1においては、作動アーム12a、12bの先端領域が変換機構部13と同等の厚み寸法に形成されている。これにより、図6に示すように、作動アーム12a、12bの先端領域を真空処理室81内に進入させることが可能となり、基板Wの搬入及び搬出作業性を高めることが可能となる。 Further, in the substrate transfer apparatus 1 of the present embodiment, the tip regions of the operating arms 12a and 12b are formed to have a thickness dimension equivalent to that of the conversion mechanism unit 13. As a result, as shown in FIG. 6, the tip regions of the operating arms 12 a and 12 b can enter the vacuum processing chamber 81, and the workability of carrying in and carrying out the substrate W can be improved.
 以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることはなく、本発明の技術的思想に基いて種々の変形が可能である。 The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
 例えば以上の実施形態では、第1の搬送ロボット10と第2の搬送ロボット20とを備えた基板搬送装置1を例に挙げて説明したが、第2の搬送ロボットを具備しない基板搬送装置にも本発明は適用可能である。 For example, in the above embodiment, the substrate transfer apparatus 1 including the first transfer robot 10 and the second transfer robot 20 has been described as an example. However, the substrate transfer apparatus not including the second transfer robot is also described. The present invention is applicable.
 また、以上の実施形態では、同心的に配置された第1及び第2の駆動軸21a、21bを有する駆動部2を例に挙げて説明したが、両駆動軸が非同心的に配置された2軸の駆動部を採用してもよい。この場合、一対の共通アームの各基端部は、それぞれ対応する駆動軸と連結されることになる。 In the above embodiment, the drive unit 2 having the first and second drive shafts 21a and 21b arranged concentrically has been described as an example. However, both drive shafts are arranged non-concentrically. A biaxial drive unit may be employed. In this case, each base end portion of the pair of common arms is connected to the corresponding drive shaft.
 1…基板搬送装置
 2…駆動部
 8…真空処理装置
 10、20…搬送ロボット
 11a、11b…共通アーム
 12a、12b、22a、22b…作動アーム
 13、23…変換機構部
 13、24…キャリア

 30a、30b…主アーム部材
 40a、40b…補助アーム部材
 42a、42b…リング部
 50a、50b…ギヤ部
 60a、60b…ベアリング部材
 80…搬送室
 81…真空処理室
 81w…開口
 82…ゲートバルブ
 130…本体
 131a、131b…軸部材
 134…結合面
 W…基板
DESCRIPTION OF SYMBOLS 1 ... Substrate transfer apparatus 2 ... Drive part 8 ... Vacuum processing apparatus 10, 20 ... Transfer robot 11a, 11b ... Common arm 12a, 12b, 22a, 22b ... Actuating arm 13, 23 ... Conversion mechanism part 13, 24 ... Carrier

30a, 30b ... main arm members 40a, 40b ... auxiliary arm members 42a, 42b ... ring portions 50a, 50b ... gear portions 60a, 60b ... bearing members 80 ... transfer chamber 81 ... vacuum processing chamber 81w ... opening 82 ... gate valve 130 ... Body 131a, 131b ... Shaft member 134 ... Bonding surface W ... Board

Claims (5)

  1.  基板を搬送する基板搬送装置であって、
     駆動部と、
     前記駆動部と連結される第1の端部と、前記第1の端部とは反対側に位置する第2の端部とをそれぞれ有する一対の第1のアームと、
     前記第1のアームの前記第2の端部に回転自在に取り付けられる第3の端部と、前記第3の端部とは反対側に位置し、外周面にギヤ部が形成された円環状のリング部を含む第4の端部とをそれぞれ有し、前記第4の端部が前記ギヤ部を介して相互に係合する一対の第2のアームと、
     前記基板を支持するキャリアと、
     前記第2のアームの前記第4の端部と前記キャリアとの間に配置され、前記第1及び第2のアームの回転運動を前記キャリアの直線運動に変換する変換機構であって、前記キャリアと結合される結合面及び前記各リング部に挿通される一対の軸部を有する本体と、前記軸部の外周面と前記リング部の内周面との間にそれぞれ装着され、前記軸部の径方向において前記ギヤ部と並ぶベアリング部材とを含む変換機構と
     を具備する基板搬送装置。
    A substrate transfer device for transferring a substrate,
    A drive unit;
    A pair of first arms each having a first end connected to the drive unit and a second end located on the opposite side of the first end;
    A third end portion rotatably attached to the second end portion of the first arm and an annular shape located on the opposite side of the third end portion and having a gear portion formed on an outer peripheral surface A pair of second arms each having a fourth end portion including a ring portion, and the fourth end portions engage with each other via the gear portion,
    A carrier for supporting the substrate;
    A conversion mechanism that is disposed between the fourth end of the second arm and the carrier, and converts the rotational motion of the first and second arms into a linear motion of the carrier, wherein the carrier A main body having a coupling surface coupled to the ring portion and a pair of shaft portions inserted through the ring portions, and mounted between an outer peripheral surface of the shaft portion and an inner peripheral surface of the ring portion, A substrate transport apparatus comprising: a conversion mechanism including a bearing member aligned with the gear portion in the radial direction.
  2.  請求項1に記載の基板搬送装置であって、
     前記第2のアームは、
     前記第1のアームと連結され、前記第3の端部を有する第1の部材と、
     前記第1の部材に取り付けられ、前記第4の端部を有する第2の部材とを含む
     基板搬送装置。
    The substrate transfer apparatus according to claim 1,
    The second arm is
    A first member coupled to the first arm and having the third end;
    And a second member attached to the first member and having the fourth end.
  3.  請求項2に記載の基板搬送装置であって、
     前記変換機構は、前記軸部の軸方向に厚み方向を有し、
     前記変換機構の厚みは、前記第1の部材の厚み以下である
     基板搬送装置。
    The substrate transfer apparatus according to claim 2,
    The conversion mechanism has a thickness direction in an axial direction of the shaft portion,
    The thickness of the conversion mechanism is equal to or less than the thickness of the first member.
  4.  請求項3に記載の基板搬送装置であって、
     前記第1の部材の前記第4の端部側の厚みは、前記第1の部材の前記第3の端部の厚みよりも小さい
     基板搬送装置。
    It is a board | substrate conveyance apparatus of Claim 3, Comprising:
    The thickness of the 4th edge part side of the said 1st member is smaller than the thickness of the said 3rd edge part of the said 1st member.
  5.  請求項4に記載の基板搬送装置であって、
     前記本体は、前記第1及び第2のアームの回転方向に平行な第1の面と、前記第1の面より下方に位置する第2の面とをそれぞれ有し、
     前記一対の軸部及び前記結合面はそれぞれ、前記第2の面に形成されている
     基板搬送装置。
    It is a board | substrate conveyance apparatus of Claim 4, Comprising:
    The main body has a first surface parallel to the rotation direction of the first and second arms, and a second surface located below the first surface, respectively.
    The pair of shaft portions and the coupling surface are each formed on the second surface.
PCT/JP2010/003978 2009-06-15 2010-06-15 Substrate transfer device WO2010146840A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519556A JPWO2010146840A1 (en) 2009-06-15 2010-06-15 Substrate transfer device
CN2010800257699A CN102460674A (en) 2009-06-15 2010-06-15 Substrate transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009141935 2009-06-15
JP2009-141935 2009-06-15

Publications (1)

Publication Number Publication Date
WO2010146840A1 true WO2010146840A1 (en) 2010-12-23

Family

ID=43356171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003978 WO2010146840A1 (en) 2009-06-15 2010-06-15 Substrate transfer device

Country Status (4)

Country Link
JP (1) JPWO2010146840A1 (en)
KR (1) KR20120023701A (en)
CN (1) CN102460674A (en)
WO (1) WO2010146840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049113A (en) * 2011-08-31 2013-03-14 Yaskawa Electric Corp Robot arm structure, and robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129685A (en) * 1990-09-20 1992-04-30 Ulvac Japan Ltd Transfer arm
JPH10249782A (en) * 1997-02-14 1998-09-22 Applied Materials Inc Mechanically clamping robot wrist
JPH10329059A (en) * 1997-05-30 1998-12-15 Daihen Corp Conveying robot device for two-arm system
JP2002059386A (en) * 1999-12-02 2002-02-26 Komatsu Ltd Conveying robot
JP2007019216A (en) * 2005-07-07 2007-01-25 Rorze Corp Transfer robot for board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4129685B2 (en) * 2004-01-09 2008-08-06 ソニー株式会社 In-vehicle device system and control method for in-vehicle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129685A (en) * 1990-09-20 1992-04-30 Ulvac Japan Ltd Transfer arm
JPH10249782A (en) * 1997-02-14 1998-09-22 Applied Materials Inc Mechanically clamping robot wrist
JPH10329059A (en) * 1997-05-30 1998-12-15 Daihen Corp Conveying robot device for two-arm system
JP2002059386A (en) * 1999-12-02 2002-02-26 Komatsu Ltd Conveying robot
JP2007019216A (en) * 2005-07-07 2007-01-25 Rorze Corp Transfer robot for board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049113A (en) * 2011-08-31 2013-03-14 Yaskawa Electric Corp Robot arm structure, and robot

Also Published As

Publication number Publication date
JPWO2010146840A1 (en) 2012-11-29
CN102460674A (en) 2012-05-16
KR20120023701A (en) 2012-03-13

Similar Documents

Publication Publication Date Title
US11978649B2 (en) Substrate processing apparatus
TWI609557B (en) Motor modules, multi-axis motor drive assemblies, multi-axis robot apparatus, and electronic device manufacturing systems and methods
JP7328183B2 (en) Substrate transport apparatus with multiple movable arms that utilizes a mechanical switch mechanism
TWI433765B (en) Industrial robotic arm and collection processing device
JP4452279B2 (en) Drive source and transfer robot
TWI441720B (en) Industrial robotic arm
KR101160242B1 (en) Rotation introducing mechanism, substrate transfer device, and vacuum treating apparatus
US8882430B2 (en) Industrial robot
JP5627599B2 (en) Transfer arm and transfer robot including the same
CN103476551A (en) Dual arm robot
WO2012036189A1 (en) Conveyance device, substrate processing system, and attitude control mechanism
WO2014106914A1 (en) Industrial robot
WO2010146840A1 (en) Substrate transfer device
JP5996857B2 (en) Drive device and substrate processing system
TWI840052B (en) Substrate transfer robot
JP2007019216A (en) Transfer robot for board
KR102552870B1 (en) Wafer transfer robot apparatus based on direct drive motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025769.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519556

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789220

Country of ref document: EP

Kind code of ref document: A1