WO2008038346A1 - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
WO2008038346A1
WO2008038346A1 PCT/JP2006/319146 JP2006319146W WO2008038346A1 WO 2008038346 A1 WO2008038346 A1 WO 2008038346A1 JP 2006319146 W JP2006319146 W JP 2006319146W WO 2008038346 A1 WO2008038346 A1 WO 2008038346A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladder
semiconductor device
gate electrode
stress
gate
Prior art date
Application number
PCT/JP2006/319146
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Yamada
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008536226A priority Critical patent/JP5018780B2/en
Priority to PCT/JP2006/319146 priority patent/WO2008038346A1/en
Publication of WO2008038346A1 publication Critical patent/WO2008038346A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a field effect transistor capable of independently controlling biaxial strain in a plane and applying an appropriate strain to a channel region. And a manufacturing method thereof.
  • Si-MOSFET silicon insulated gate field effect transistor
  • a strain introducing technique for improving carrier mobility is used.
  • tensile strain is introduced in the channel region in the gate length direction
  • pMOSFETs compressive strain is introduced in the gate length direction.
  • shallow 'trench' isolation (STI) 102, gate insulating film 103, polysilicon gate 105 and mono-silicide silicide (CoSi) 106, extension 104, sidewall spacer 107, source 'Drain impurity diffusion region 108 is formed by a general CMOS process. Thereafter, a Si nitride film 111 having a high tensile stress is deposited on the entire surface, and the high tensile stress Si nitride film 111 on the pMOSFET is selectively etched to leave the high tensile stress Si nitride film 111 only on the nMOSFET.
  • a nitride film 112 is deposited on the entire surface, and the high compressive stress Si nitride film 112 on the nMOSFET is selectively etched, leaving the high compressive stress Si nitride film 112 only on the pMOSFET.
  • the tensile stress film 111 is formed on the nMOSFET, and the compressive stress film 112 is formed on the pMOSFET.
  • the stress film 111 introduces tensile strain in the gate length direction and compressive strain in the height direction in the channel region of the nMOSFET.
  • the stress film 112 introduces compressive strain in the gate length direction and tensile strain in the height direction in the pMOSFET.
  • a tensile stress film with an intrinsic stress of 1.6 GPa using a tensile stress film with an intrinsic stress of 1.6 GPa, a tensile strain of about 0.3% in the gate length direction and a compressive strain of about 0.3% in the height direction were obtained. It is done.
  • a compressive stress film with an intrinsic stress of 2 GPa can be used to obtain a compressive strain of about 0.4% in the gate length direction and a tensile strain of about 0.5% in the height direction.
  • FIG. 2 shows another known method of obtaining the distortion effect.
  • SiGe silicon germanium
  • SiC silicon carbon
  • a method for introducing strain is studied using a virtual MOSFET structure.
  • a gate pattern 205 is formed by lithography on a Si (100) substrate, and a recess structure is formed by dry etching in the source and drain regions using the gate pattern 205 as a mask. At this time, the etching side surface is tapered.
  • the natural oxide film in the recess region is removed with dilute hydrofluoric acid, and SiC is selectively grown for the nMOSFET.
  • SiC is selectively grown for the nMOSFET.
  • tensile strain in the gate length direction and compressive strain in the height direction are introduced into the channel region of the nMOSFET, respectively.
  • SiGe is selectively grown in the recess. This introduces compressive strain in the gate length direction and tensile strain in the height direction into the channel region of the pMOSFET.
  • the strain in the gate length direction and the height direction can be controlled, but the strain in the gate width direction cannot be controlled.
  • in-plane biaxial strain control will be indispensable in order to further improve carrier mobility.
  • FIG. 3 shows a known method using biaxial strain (for example, see Non-Patent Document 4).
  • This method uses a relaxed virtual substrate using SiGe.
  • the SiGe buffer layer 302 is epitaxially grown on the Si substrate 301 by the CVD method.
  • the SiGe buffer layer 302 relaxes the lattice strain of SiGe by changing the Ge ratio stepwise from 0 to 20% and increasing the film thickness to 1.5 / zm or more.
  • a 600 nm relaxed Si Ge layer 303 and a 75 nm p + Si Ge layer 304 are grown. Then 23 ⁇
  • a thin strained Si layer 305 of m is grown.
  • the above epitaxial growth is performed at 700-750 ° C using dichlorosilane (SiH C1) and GeH.
  • SiH C1 dichlorosilane
  • GeH germane
  • MOS device 310 To manufacture MOS device 310. Note that the strained Si layer 305 is thinned to about 12 nm due to thermal oxidation in the process. This completes the device with biaxial tensile strain introduced in the in-plane direction. As the strain amount at this time, a tensile strain of about 1% is obtained in the biaxial direction.
  • Non-Patent Document 1 S. Pidin et al., IEDM2004 Technical Digest, pp. 213— 2 16
  • Non-Patent Document 2 S. Pidin et al., 2004 Symposium on VLSI Technology Digest, pp. 54-55
  • Non-Patent Document 3 Kah— Wee Ang et al., Appl. Phys. Lett., 86, 093102 (20 05)
  • Non-Patent Document 4 K. Rim et al., IEEE Trans. Electron Devices, 47, 1406 (2000)
  • the present invention provides a semiconductor device capable of independently controlling the strain in the channel length direction and the channel width direction without greatly changing the basic structure of the Si-MOSFET and applying an appropriate strain to the channel region. And it makes it a subject to provide the manufacturing method. Means for solving the problem
  • the semiconductor device includes:
  • the ladder has a compressive stress
  • the gate electrode has a compressive stress or a bow I tension stress that is smaller than the ladder's compressive stress.
  • a tensile stress is inherent in the ladder, and a tensile stress or a compressive stress that is smaller than the tensile stress of the ladder is inherent in the gate electrode.
  • the channel region forms an n-type channel
  • the work function of the ladder is larger than the work function of the gate electrode
  • the channel region forms a p-type channel
  • the work function of the ladder is smaller than the work function of the gate electrode
  • one-dimensional quantum confinement (quantum wire) can be realized by controlling strain in the channel width direction independently and performing band control in the channel region.
  • FIG. 1 is a diagram showing an example of a known strain introduction structure.
  • FIG. 2 is a diagram showing another example of a known strain introduction structure.
  • FIG. 3 is a diagram showing another example of a known strain introduction structure.
  • FIG. 4 is a schematic view showing a gate structure of a semiconductor device according to an embodiment of the present invention.
  • FIG. 5 is a schematic plan view showing a gate structure of the semiconductor device of the embodiment.
  • FIG. 6 is a schematic cross-sectional view in the channel width direction along the line AA ′ in FIG. 5, showing the stress applied in the channel width direction.
  • FIG. 7 is a schematic cross-sectional view in the channel length direction along the line BB ′ in FIG. 5, showing the stress applied to the nMOSFET.
  • FIG. 8 is a schematic cross-sectional view in the channel length direction along the line BB ′ of FIG. 5, showing the stress applied to the pMOSFET.
  • FIG. 9 shows a modification of the semiconductor device of the embodiment, in which a strain applying layer selectively grown in the source / drain region of the nMOSFET is used in place of the stress film covering the gate electrode or the stress film.
  • FIG. 10 shows a modification of the semiconductor device according to the embodiment, in which a strain application layer selectively grown in the source / drain regions of the pMOSFET is used instead of or together with the stress film covering the gate electrode.
  • FIG. 11A is a diagram for explaining the confinement effect in the channel region immediately below the ladder.
  • FIG. 11B is a diagram showing a band change due to the work function of the ladder (G1) and the metal gate (G2) in the nMOSFET in the configuration of FIG. 11A.
  • FIG. 11C is a diagram showing a band change due to the work function of the ladder (G1) and the metal gate (G2) in the pnMOSFET in the configuration of FIG. 11A.
  • FIG. 11D is a diagram showing a band change when the ladder is formed of an insulating film that applies compressive stress as a modification of FIG. 11A.
  • FIG. 12 is a view showing an example in which a ladder is made of a metal that applies compressive stress as a modification of FIG.
  • FIG. 13A A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG 13B A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG. 13C is a manufacturing process diagram of the semiconductor device according to one embodiment of the present invention.
  • FIG 13E A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG 13G A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG. 131 A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a gate structure of the semiconductor device 10 according to one embodiment of the present invention. is there.
  • the semiconductor device 10 is located on a semiconductor substrate 11 via a gate insulating film 13 and has a gate electrode 16 to which a gate voltage is applied, and a ladder 15 inserted between the gate insulating film 13 and the gate electrode 16.
  • the ladder 15 is arranged in the channel width direction (y-axis direction in FIG. 4), and each stripe constituting the ladder extends in a direction parallel to the current flow (X-axis direction).
  • the ladder structure 15 constituting the first part of the gate and the gate electrode 16 constituting the second part of the gate constitute a gate structure 19.
  • a source / drain impurity diffusion region (hereinafter simply referred to as “source / drain”) 14 is formed in the semiconductor substrate 11 with the gate electrode 16 interposed therebetween.
  • a side wall spacer 17 is provided on the side wall of the gate electrode 16, and a stress film 20 is formed so as to cover the gate electrode 16 and the side wall spacer 17.
  • the stress film 20 mainly controls strain in the channel length direction (X-axis direction).
  • the ladder 15 mainly serves to control strain in the channel width direction (y-axis direction).
  • the stress film 20 and the ladder 15 can control the biaxial strain independently of each other.
  • FIG. 5 is a schematic plan view of the semiconductor device 10 of the embodiment. At least a part of the gate electrode 16 extends between the source region 14s and the drain region 14d.
  • a channel region (not shown in FIG. 5) is formed in the surface region of the semiconductor substrate between the source region 14s and the drain region 14d.
  • the ladder 15 is arranged in a direction (y-axis direction or channel width direction) orthogonal to the current flow. There is no limit to the number of stripes that make up ladder 15, but there must be at least one space between the stripes.
  • FIG. 6 is a schematic cross-sectional view along the line AA ′ in FIG.
  • the ladder (hereinafter referred to as “G1” as appropriate) 15 is made of a material that applies tensile stress (ie, inherently contains tensile stress), and is a gate electrode (hereinafter referred to as “G2” as appropriate).
  • G1 tensile stress
  • G2 gate electrode
  • 16 is made of a material that gives compressive stress (ie, compressive stress is inherent).
  • the ladder 15 is an electrode formed by vapor deposition of gold (Au), and a plurality of stripes are arranged in the y-axis (channel width) direction through a space 18 of lOOnm or less.
  • the metal gate 16 is TiN formed by sputtering.
  • the ladder region (Gl) 15 that applies tensile stress and the metal gate 16 that applies compressive stress can generate strain in the y-axis direction in the channel region. For example, when Au with an intrinsic stress of 0.5 GPa and TiN with an intrinsic stress of 2 GPa are used, a strain of about 0.5% can be applied.
  • each ladder 15 in the channel region is referred to as a sub-channel region.
  • the ladder 15 When the tensile stress of the ladder 15 is sufficiently large, the ladder 15 alone can apply sufficient strain in the channel width direction (y-axis direction).
  • the stress applied to the metal gate 16 may be a tensile stress sufficiently smaller than that of the ladder 15, no stress, or a state of applying compressive stress!
  • the stress application state of the ladder 15 is no stress or gives a compressive stress sufficiently smaller than that of the metal gate 16. Even in the state of applying a tensile stress, it may be a deviation.
  • the materials of the ladder 15 and the metal gate 16 are different. However, even if the same material is used, different stresses are applied by changing the film formation method and the film formation conditions, as will be described later. It can have characteristics.
  • FIG. 7 and FIG. 8 are schematic cross-sectional views along the line BB ′ of FIG.
  • Fig. 7 shows the strain introduction of nMOSFET
  • Fig. 8 shows the strain introduction of pMOSFET.
  • a silicon nitride film 20T which is a stress film for applying a tensile stress
  • a silicon nitride film 20C which is a stress film that applies compressive stress
  • These stress films function as a strain-introducing layer.
  • tensile strain occurs in the X-axis direction and compressive strain in the z-axis direction.
  • compressive strain in the X-axis direction z-axis causess tensile strain in the direction.
  • strain is also generated in the y-axis direction. In-plane strain in the two axes (X-axis and y-axis) and the height direction Strain is generated.
  • Methods other than the stress film 20 may be used for applying strain in the channel length (x-axis) direction and height (z-axis) direction.
  • a strain applying layer may be provided in the source / drain region of the MOSFET instead of the stress film 20 or together with the stress film 20.
  • a Si C strained layer 21T with a small lattice constant of SU is selectively grown in the source and drain regions of the nMOSFET, and the SiGe strain with a large lattice constant of SU is also used for the pMOSFET.
  • the application layer 21C is selectively grown.
  • the strain applying layers 21T and 21C function as strain introducing layers that cause strain in the channel length direction in the channel region.
  • the gate structure 19 covered with the sidewall spacer 17 is formed on the gate insulating film 13 on the Si (100) substrate 11.
  • the gate structure 19 includes the ladder (G1) 15 and the gate electrode (metal gate: G2) 16 arranged in the channel width direction.
  • this gate structure 19 as a mask, recesses are formed in the source / drain regions by dry etching, impurities are implanted, the surface is cleaned with dilute hydrofluoric acid or the like, and then a strain applying layer 21 is grown.
  • the SiC layer 21T is selectively formed at 600 ° C by chemical vapor deposition (CVD).
  • Si C is S
  • SiGe layer 21C at 600 ° C by D method. This forms Si Ge in the source and drain regions.
  • Si Ge is about 1% larger than the lattice constant of Si
  • nMOSFET using a SiC layer 21T with an intrinsic stress of 1.6 GPa, a tensile strain of about 0.3% in the gate length direction and a compressive strain of about 0.2% in the height direction can be obtained.
  • pMOSF ET using an intrinsic stress—2GPa SiGe layer 21C, a compressive strain of about 0.6% in the gate length direction and a tensile strain of about 0.4% in the height direction can be obtained.
  • in-plane biaxial strain can be reduced in the channel region. It can be generated separately. That is, the ladder 15 controls the strain in the channel width direction, and the stress film 20 and the Z or strain applying layer 21 function as a strain introduction layer in the channel length direction. Can be controlled.
  • biaxial tensile strain is applied to the subchannel region (see FIG. 6) immediately below the ladder 15 in the channel region in the x and y axis directions.
  • tensile strain is applied in the X-axis direction and compressive strain is applied in the y-axis direction, so it is regarded as uniaxial tensile strain.
  • FIG. 11A to FIG. 11C are diagrams for explaining the reason why the carrier mobility is improved in the channel region by the above-described configuration.
  • the conduction band of Si is known to be larger than that of uniaxial due to biaxial tensile strain. That is, as shown in FIG. 11A, the conduction band (Ec) in the conduction band of the subchannel region (see FIG. 6) just below the ladder 15 is lower than the region just below the space 18. Therefore, electrons flow dominantly in the subchannel region, and biaxial tensile strain is generated in the nMOSFET, which makes it possible to confine electrons in the subchannel region.
  • the valence band energy of Si increases the energy of the valence band due to uniaxial compressive strain. That is, as shown in FIG. 11A, the energy of the conduction band is higher in the valence band of the subchannel region than in the region immediately below the space 18. Therefore, the positive holes flow dominantly in the subchannel region, and in the pMOSFET, holes can be confined in the subchannel region where uniaxial compressive strain is generated.
  • the in-plane biaxial strain can be controlled independently.
  • nMOSFET when 0.3% tensile strain is applied in the x-axis (channel length) direction and 0.5% tensile strain is applied in the y-axis (channel width) direction, mobility is improved from the piezoresistance coefficient.
  • the effect of improving mobility by about 1.9 times is obtained compared to the case of one axis.
  • FIG. 11B and FIG. 11C are diagrams for explaining the confinement of carriers in the subchannels immediately below the ladder 15.
  • the ladder (G1) 15 and the metal gate (G2) 16 are formed of metals having different work functions.
  • Fig. 11B shows the band change according to the work function difference in nMOS
  • Fig. 11C shows the band change according to the work function difference in pMOS.
  • the ladder (G1) 15 uses a metal having a work function larger than that of the metal gate (G2) 16.
  • the conduction band of Si directly under the ladder (G1) is compared with that under the metal gate (G2) 16 due to the difference in work function. Since the energy increases, it becomes stronger than the confinement force of electrons in the channel region under the metal gate (G2) 16.
  • the ladder (G1) 15 uses a metal having a work function smaller than that of the metal gate (G2) 16.
  • the metal gate (G2) 16 For example, if aluminum (A1) is used for ladder (G1) 15 and TiN is used for metal gate (G2) 16, the valence valence band of Si just below ladder (G1) 15 due to the difference in work function (gate) Since the energy is lower than that under G2) 16, the effect is stronger than the confinement of holes in the channel region under metal gate (G2) 16.
  • FIG. 11D is a diagram showing carrier confinement when the ladder 15 is formed of an insulator such as a silicon nitride film.
  • the electric field exerted directly below the insulator ladder 25 is weaker than Si just below the metal gate 26, so that the bending of the band is reduced. Thereby, the confinement of carriers in the channel region becomes stronger.
  • Band bending is shown in Fig. 1. As indicated by ID, control is possible by the film thickness of the insulating film (ladder 15).
  • FIG. 12 shows a modification of FIG.
  • the ladder 25 is formed of a metal that applies compressive stress
  • the metal gate 26 is formed of a metal that applies tensile stress.
  • the width of the ladder or space is reduced in the gate structure into which the ladder is introduced, the strain applied to the channel region increases and the change in the band increases. This results in stronger carrier confinement. If the ladder width or space width is reduced to about 10 nm or less, carriers are confined in a very narrow region, and a quantum effect occurs. Thereby, a quantum wire FET can also be realized.
  • FIG. 13A to FIG. 13K are manufacturing process diagrams of a semiconductor device according to an embodiment of the present invention.
  • the Si (100) substrate 31 is used, and the 110> direction is used as the channel direction.
  • Dummy gate removal is performed on this substrate 31 by a conventional damascene metal gate manufacturing process.
  • a well region (not shown) is formed in a predetermined region of the Si substrate 31, and an element isolation region (not shown) such as STI is formed.
  • a silicon oxide film 32, a polysilicon film 32, and a silicon nitride film 34 are sequentially formed.
  • the Si oxide film 32 is formed by, for example, a thermal oxidation method, and the polysilicon film 33 and the silicon nitride film 34 are respectively formed by a CVD method.
  • the dummy gate 35 is formed by patterning the silicon nitride film 34 and the polysilicon film 33 by a normal lithography method and etching method. Dummy game Using the substrate 35 as a mask, impurities are implanted into the substrate 31 to form extensions 36.
  • sidewall spacers 37 are formed, impurities are implanted at a high concentration using the dummy gate 35 and the sidewall spacers 37 as masks, and heat treatment is performed. Source / drain regions 39 are formed. Thereafter, a silicon nitride film 38 for an etching stopper is deposited on the entire surface by the CVD method.
  • a silicon oxide film 40 is deposited on the entire surface by the CVD method. Subsequently, using the silicon nitride film 38 as a stopper, the Si oxide film 40 is polished and planarized by the CMP method.
  • the silicon nitride film 38 (34) and the polysilicon film 33 on the dummy gate are removed with, for example, hot phosphoric acid and a hydrazine solution. Further, the silicon oxide film 32 as a sacrificial gate insulating film is removed with a dilute hydrofluoric acid solution to form an opening 41.
  • a gate insulating film 53 is formed on the surface of the silicon substrate 31 in the opening 41 by a thermal oxidation method.
  • a ladder (G 1) 55 is formed in the opening 41.
  • the ladder 55 is patterned by, for example, depositing TiN and performing lift-off or dry etching.
  • the ladder interval (space width) is preferably less than lOOnm in order to effectively apply strain.
  • the number of ladder spaces is an arbitrary number of 1 or more.
  • TiN for Ladder 55 is adjusted to be a stress film that gives no stress or tensile stress.
  • a piezoelectric element is used to apply longitudinal vibration to the substrate at a predetermined excitation frequency (for example, 100 Hz), and the amplitude is adjusted by the applied voltage. By doing so, the internal stress can be adjusted in a wide range from no stress to tensile stress (for details, refer to JP-A-2004-68058).
  • a metal film 56 for example, titanium nitride (TiN) 56 is deposited on the entire surface so as to cover the ladder (G 1) 55 by a sputtering method.
  • TiN formed by sputtering has a large amount of compressive stress!
  • the TiN ladder film 55 and the TiN metal gate 56 remain in the opening by polishing the TiN sputtering film 56 by the CMP method.
  • Ladder 55 and gate electrode The metal structure 56 constitutes a gate structure 59.
  • tensile strain in the channel width direction is generated by the tensile stress of the TiN ladder 55 and the compressive stress of the TiN metal gate 56 by sputtering.
  • the Si oxide film 40 is removed, for example, with a buffered hydrofluoric acid solution.
  • a Si nitride film 60 to be a stress film is formed by a CVD method and dry etching.
  • a tensile stress film is selectively formed on the nMOSFET, and a compressive stress film is selectively formed on the pMOSFET.
  • the main process is completed, and thereafter, a normal wiring process and the like are performed, and the semiconductor device 10 is completed.
  • the ladder 55 when the ladder 55 is formed of an insulator instead of TiN, it can be manufactured in the same process.
  • the ladder 25 is made of a material that applies compressive stress
  • the dummy gate is removed and the gate insulating film 53 is formed in the same process as in FIGS. 13A to 13F.
  • TiN is deposited by sputtering, and a ladder 55 is formed by dry etching.
  • TiN produced by sputtering has a strong compressive stress.
  • nMOSFET and pMOSFET When metals with different work functions are used for nMOSFET and pMOSFET as shown in Fig. 11B, the dummy gate is removed by the steps from Fig. 13A to Fig. 13F to form the gate insulating film 53, and then to Fig. 13G.
  • the ladder 55 is formed in a corresponding process.
  • both nMO S and pMOS use TiN as the ladder, and the force that makes the work function of the metal gate different from each other.
  • the work function of the ladder differs between nMOS and pMOS, and the metal gate is made of the same material. May be formed.
  • Au is deposited on the nMOSFET, and the ladder 55 is selectively deposited by lift-off. At this time, tensile stress is inherent in the deposited Au.
  • aluminum (A1) is deposited on the pMOSFET, and a ladder 55 having a different work function is formed by lift-off. At this time, weak compressive stress is inherent in A1 by vapor deposition.
  • TiN is deposited by sputtering and flattened by CMP to form a metal gate (electrode body) 56.
  • the weak compressive stress of the A1 gate grid 55 is not a problem because the stress of the TiN metal gate 56 is large.
  • the semiconductor device 10 with a controlled work function is formed. This technique increases carrier confinement and further improves performance.
  • band control is performed by applying an appropriate strain in directions of two or more axes, and one-dimensional quantum confinement (quantum wire) is realized. .
  • quantum wire quantum wire
  • a quantum wire MOSFET can be realized while maintaining the basic flow of the conventional Si process, so that simplification of the process and improvement in the degree of freedom in design can be expected. .
  • the channel region cannot be etched unlike the conventional quantum wire, it is possible to suppress scattering due to surface roughness, which leads to further high-speed FET operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A semiconductor device comprises a silicon substrate (11), a gate electrode (16) located across a gate insulator (13) on the silicon substrate, and ladders (15) which are located between the gate insulator and the gate electrode, have an inherent stress different from that of the gate electrode, and are arrayed in a direction perpendicular to the direction of a current flowing through a channel region immediately beneath the gate electrode.

Description

明 細 書  Specification
半導体装置およびその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体装置及びその製造方法に関し、特に、面内での 2軸方向のひず みを独立に制御し、チャネル領域に適切なひずみを印加することのできる電界効果ト ランジスタと、その製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a field effect transistor capable of independently controlling biaxial strain in a plane and applying an appropriate strain to a channel region. And a manufacturing method thereof.
背景技術  Background art
[0002] 電界効果トランジスタ (FET)の性能向上のため、量子効果を利用した素子の研究 が行われている。特に、化合物半導体においては、量子井戸構造が比較的容易に 作製できるため、さまざまな研究が行われている。また、近年では SiZSiGeヘテロ接 合を量子効果チャネル領域に利用した FETの開発も行われている。しかし、これらの 素子構造は、広く利用されている Si絶縁ゲート型 FET(Si— MOSFET)の構造と大 きく異なるため、従来の MOSプロセスにそのまま適用することが困難である。  [0002] In order to improve the performance of field effect transistors (FETs), devices using quantum effects have been studied. In particular, in compound semiconductors, quantum well structures can be fabricated relatively easily, and various studies have been conducted. In recent years, FETs using SiZSiGe heterojunctions in the quantum effect channel region have also been developed. However, these device structures are very different from the widely used Si-insulated gate FET (Si-MOSFET) structures, so it is difficult to apply them directly to conventional MOS processes.
[0003] 一方、シリコン絶縁ゲート型電界効果トランジスタ(Si— MOSFET)において、キヤ リア移動度向上のためのひずみ導入技術が用いられている。この場合、 nMOSFET に対しては、チャネル領域にゲート長方向へ引張ひずみを、 pMOSFETに対しては ゲート長方向に圧縮ひずみを導入する。  [0003] On the other hand, in a silicon insulated gate field effect transistor (Si-MOSFET), a strain introducing technique for improving carrier mobility is used. In this case, for nMOSFETs, tensile strain is introduced in the channel region in the gate length direction, and for pMOSFETs, compressive strain is introduced in the gate length direction.
[0004] 一例として、図 1に示すように、高引張応力を有するシリコン窒化膜 111と、高圧縮 応力を有するシリコン窒化膜 112を、それぞれ nMOSFETと pMOSFETに、選択的 に堆積することにより、チャネル領域にひずみを印加する方法が知られている(例え ば、非特許文献 1および 2参照)。  [0004] As an example, as shown in FIG. 1, by selectively depositing a silicon nitride film 111 having a high tensile stress and a silicon nitride film 112 having a high compressive stress on an nMOSFET and a pMOSFET, respectively, A method of applying a strain to a region is known (for example, see Non-Patent Documents 1 and 2).
[0005] 図 1の方法では、シャロ一'トレンチ 'アイソレーション(STI) 102、ゲート絶縁膜 103 、ポリシリコンゲート 105およびコノ ノレトシリサイド(CoSi) 106、エクステンション 104、 サイドウォールスぺーサ 107、ソース'ドレイン不純物拡散領域 108を、一般的な CM OSプロセスにより作成する。その後、高引張応力を持つ Si窒化膜 111を全面に堆積 し、 pMOSFET上の高引張応力 Si窒化膜 111を選択的にエッチングし、 nMOSFE T上にのみ、高引張応力 Si窒化膜 111を残す。次に、同様に高圧縮応力を持つ Si 窒化膜 112を全面に堆積し、 nMOSFET上の高圧縮応カSi窒化膜112を選択的に エッチングし、 pMOSFET上にのみ高圧縮応力 Si窒化膜 112を残す。以上により、 n MOSFET上には引張応力膜 111、 pMOSFET上には圧縮応力膜 112が形成され る。 [0005] In the method of FIG. 1, shallow 'trench' isolation (STI) 102, gate insulating film 103, polysilicon gate 105 and mono-silicide silicide (CoSi) 106, extension 104, sidewall spacer 107, source 'Drain impurity diffusion region 108 is formed by a general CMOS process. Thereafter, a Si nitride film 111 having a high tensile stress is deposited on the entire surface, and the high tensile stress Si nitride film 111 on the pMOSFET is selectively etched to leave the high tensile stress Si nitride film 111 only on the nMOSFET. Next, Si with high compressive stress as well A nitride film 112 is deposited on the entire surface, and the high compressive stress Si nitride film 112 on the nMOSFET is selectively etched, leaving the high compressive stress Si nitride film 112 only on the pMOSFET. As described above, the tensile stress film 111 is formed on the nMOSFET, and the compressive stress film 112 is formed on the pMOSFET.
[0006] 応力膜 111により、 nMOSFETのチャネル領域にはゲート長方向に引張ひずみ、 高さ方向に圧縮ひずみが導入される。一方、応力膜 112により、 pMOSFETにはゲ ート長方向に圧縮ひずみ、高さ方向に引張ひずみが導入される。具体的には、 nM OSFETについては、真性応力 1. 6GPaの引張応力膜を用いて、ゲート長方向に約 0. 3%の引張ひずみ、高さ方向に約 0. 3%の圧縮ひずみが得られる。また、 pMOS FETについては、真性応力 2GPaの圧縮応力膜を用いてゲート長方向に約 0. 4 %の圧縮ひずみ、高さ方向に約 0. 5%の引張ひずみが得られる。  [0006] The stress film 111 introduces tensile strain in the gate length direction and compressive strain in the height direction in the channel region of the nMOSFET. On the other hand, the stress film 112 introduces compressive strain in the gate length direction and tensile strain in the height direction in the pMOSFET. Specifically, for nM OSFETs, using a tensile stress film with an intrinsic stress of 1.6 GPa, a tensile strain of about 0.3% in the gate length direction and a compressive strain of about 0.3% in the height direction were obtained. It is done. For pMOS FET, a compressive stress film with an intrinsic stress of 2 GPa can be used to obtain a compressive strain of about 0.4% in the gate length direction and a tensile strain of about 0.5% in the height direction.
[0007] 図 2は、歪み効果を得る別の公知方法を示す。図 2の方法では、ソース'ドレイン領 域に Siと格子定数が異なるシリコンゲルマニウム(SiGe)や、シリコンカーボン(SiC) などを選択成長させ、チャネル領域にひずみを生じさせる(たとえば、非特許文献 3 参照)。この文献では、仮想的な MOSFET構造を用いて、ひずみの導入方法を検 討している。この構造を作製するには、 Si (100)基板上に、ゲートパターン 205をリソ グラフィにより形成し、それをマスクとしてソース'ドレイン領域にドライエッチングにより リセス構造を形成する。この時、エッチング側面がテーパー状になる。次に、希フッ酸 によりリセス領域の自然酸ィ匕膜を除去し、 nMOSFET用に、 SiCを選択成長させる。 これにより、 nMOSFETのチャネル領域に、それぞれゲート長方向の引張ひずみと、 高さ方向の圧縮ひずみが導入される。また、 pMOSFET用には、リセス内に SiGeを 選択成長させる。これにより、 pMOSFETのチャネル領域には、ゲート長方向の圧縮 ひずみと、高さ方向の引張ひずみが導入される。  [0007] FIG. 2 shows another known method of obtaining the distortion effect. In the method shown in Fig. 2, silicon germanium (SiGe) or silicon carbon (SiC), which has a different lattice constant from Si, is selectively grown in the source and drain regions to cause distortion in the channel region (for example, Non-Patent Document 3 reference). In this document, a method for introducing strain is studied using a virtual MOSFET structure. In order to produce this structure, a gate pattern 205 is formed by lithography on a Si (100) substrate, and a recess structure is formed by dry etching in the source and drain regions using the gate pattern 205 as a mask. At this time, the etching side surface is tapered. Next, the natural oxide film in the recess region is removed with dilute hydrofluoric acid, and SiC is selectively grown for the nMOSFET. As a result, tensile strain in the gate length direction and compressive strain in the height direction are introduced into the channel region of the nMOSFET, respectively. For pMOSFET, SiGe is selectively grown in the recess. This introduces compressive strain in the gate length direction and tensile strain in the height direction into the channel region of the pMOSFET.
[0008] し力しながら、これらの方法では、ゲート長方向と高さ方向のひずみは制御可能で あるが、ゲート幅方向のひずみが制御できない。今後、よりキャリアの移動度を向上さ せていくためには、面内の 2軸方向のひずみ制御が必要不可欠となってくる。  However, in these methods, the strain in the gate length direction and the height direction can be controlled, but the strain in the gate width direction cannot be controlled. In the future, in-plane biaxial strain control will be indispensable in order to further improve carrier mobility.
[0009] 図 3は、 2軸のひずみを利用する公知の方法を示す (たとえば、非特許文献 4参照) 。この方法では、 SiGeを用いた緩和仮想基板を利用する。 [0010] まず、 Si基板 301上に CVD法により SiGe緩衝層 302をェピタキシャル成長させる 。この SiGe緩衝層 302は、 Ge比率を 0から 20%に段階的に変化させ、膜厚を 1. 5 /z m以上にすることによって、 SiGeの格子ひずみを緩和させている。次に 600nmの 緩和 Si Ge 層 303と、 75nmの p + Si Ge 層 304を成長させる。その後、 23ηFIG. 3 shows a known method using biaxial strain (for example, see Non-Patent Document 4). This method uses a relaxed virtual substrate using SiGe. First, the SiGe buffer layer 302 is epitaxially grown on the Si substrate 301 by the CVD method. The SiGe buffer layer 302 relaxes the lattice strain of SiGe by changing the Ge ratio stepwise from 0 to 20% and increasing the film thickness to 1.5 / zm or more. Next, a 600 nm relaxed Si Ge layer 303 and a 75 nm p + Si Ge layer 304 are grown. Then 23η
0. 8 0. 2 0. 8 0. 2 0. 8 0. 2 0. 8 0. 2
mの薄いひずみ Si層 305を成長させる。以上のェピタキシャル成長はジクロロシラン (SiH C1 )および GeHを使用し、 700〜750°Cで行われる。また、ェピタキシャル層 A thin strained Si layer 305 of m is grown. The above epitaxial growth is performed at 700-750 ° C using dichlorosilane (SiH C1) and GeH. In addition, Epitaxial layer
2 2 4 2 2 4
はジボラン(B H )により in— situドープされている。その後、通常の CMOSプロセス  Is in-situ doped with diborane (B H). Then normal CMOS process
2 6  2 6
により MOSデバイス 310を製作する。なお、プロセスにおける熱酸ィ匕などにより、ひ ずみ Si層 305は 12nm程度に薄くなる。以上により、面内方向に 2軸の引張ひずみを 導入したデバイスが完成する。この時のひずみ量として、 2軸方向に 1%程度の引張 ひずみが得られる。  To manufacture MOS device 310. Note that the strained Si layer 305 is thinned to about 12 nm due to thermal oxidation in the process. This completes the device with biaxial tensile strain introduced in the in-plane direction. As the strain amount at this time, a tensile strain of about 1% is obtained in the biaxial direction.
非特許文献 1 : S. Pidin et al. , IEDM2004 Technical Digest, pp. 213— 2 16  Non-Patent Document 1: S. Pidin et al., IEDM2004 Technical Digest, pp. 213— 2 16
非特許文献 2 : S. Pidin et al. , 2004 Symposium on VLSI Technology Digest, pp. 54— 55  Non-Patent Document 2: S. Pidin et al., 2004 Symposium on VLSI Technology Digest, pp. 54-55
非特許文献 3 : Kah— Wee Ang et al. , Appl. Phys. Lett. , 86, 093102 (20 05)  Non-Patent Document 3: Kah— Wee Ang et al., Appl. Phys. Lett., 86, 093102 (20 05)
非特許文献 4: K. Rim et al. , IEEE Trans. Electron Devices, 47, 1406 (2000)  Non-Patent Document 4: K. Rim et al., IEEE Trans. Electron Devices, 47, 1406 (2000)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力し、図 3の方法では、 nMOSFETに対しては効果的なひずみの導入が可能で あるが、 pMOSFETに対しては、逆に移動度を制限させる方向に働いてしまう。した がって、 CMOSFETにおけるキャリア移動度を向上させるためには、 2軸方向の歪を 独立に制御する必要がある。  [0011] With the method shown in Fig. 3, effective strain can be introduced for the nMOSFET, but the mobility is limited for the pMOSFET. Therefore, in order to improve the carrier mobility in CMOSFET, it is necessary to control the biaxial strain independently.
[0012] そこで、本発明は、 Si— MOSFETの基本構造を大きく変えることなぐチャネル長 方向と、チャネル幅方向のひずみを独立に制御し、チャネル領域に適切なひずみを 印加することのできる半導体装置と、その製造方法を提供することを課題とする。 課題を解決するための手段 [0012] Therefore, the present invention provides a semiconductor device capable of independently controlling the strain in the channel length direction and the channel width direction without greatly changing the basic structure of the Si-MOSFET and applying an appropriate strain to the channel region. And it makes it a subject to provide the manufacturing method. Means for solving the problem
[0013] 本発明では上記課題を解決するために、ゲート絶縁膜とゲート電極の間に、ゲート 電極と異なる応力を有し、チャネル幅方向に配列されるラダーを挿入することによつ て、チャネル領域に、チャネル幅方向へのひずみを独立して生じさせる。  In the present invention, in order to solve the above problem, by inserting a ladder having a stress different from that of the gate electrode and arranged in the channel width direction between the gate insulating film and the gate electrode, A strain in the channel width direction is independently generated in the channel region.
[0014] 具体的には、第 1の側面では、半導体装置は、  [0014] Specifically, in the first aspect, the semiconductor device includes:
(a)シリコン基板と、  (a) a silicon substrate;
(b)前記シリコン基板上にゲート絶縁膜を介して位置するゲート電極と、  (b) a gate electrode located on the silicon substrate via a gate insulating film;
(c)前記ゲート絶縁膜とゲート電極の間に位置し、前記ゲート電極直下のチャネル領 域に流れる電流の方向と直交する方向に配列され、前記ゲート電極と異なる応力が 内在するラダーと、  (c) a ladder located between the gate insulating film and the gate electrode, arranged in a direction orthogonal to the direction of the current flowing in the channel region immediately below the gate electrode, and having a different stress from the gate electrode;
を備える。  Is provided.
[0015] 良好な構成例では、ラダーには圧縮応力が内在し、ゲート電極には、ラダーの圧縮 応力よりも小さ 、圧縮応力または弓 I張応力が内在する。  In a favorable configuration example, the ladder has a compressive stress, and the gate electrode has a compressive stress or a bow I tension stress that is smaller than the ladder's compressive stress.
[0016] 別の構成例では、ラダーには、引張応力が内在し、ゲート電極には、ラダーの引張 応力よりも小さい引張応力または圧縮応力が内在する。 In another configuration example, a tensile stress is inherent in the ladder, and a tensile stress or a compressive stress that is smaller than the tensile stress of the ladder is inherent in the gate electrode.
[0017] さらに別の構成例では、チャネル領域は n型チャネルを構成し、前記ラダーの仕事 関数は、ゲート電極の仕事関数よりも大きい。 In yet another configuration example, the channel region forms an n-type channel, and the work function of the ladder is larger than the work function of the gate electrode.
[0018] さらに別の構成例では、チャネル領域は p型チャネルを構成し、前記ラダーの仕事 関数は、ゲート電極の仕事関数よりも小さい。 In yet another configuration example, the channel region forms a p-type channel, and the work function of the ladder is smaller than the work function of the gate electrode.
[0019] 第 2の側面では、半導体装置の製造方法を提供する。この方法は、 In a second aspect, a method for manufacturing a semiconductor device is provided. This method
(a)シリコン基板上に、側壁がサイドウォールスぺーサで覆われたダミー電極を形成 し、  (a) forming a dummy electrode with a sidewall spacer covered with a sidewall spacer on a silicon substrate;
(b)前記ダミー電極を除去してサイドウォールスぺーサ間に開口を形成し、  (b) removing the dummy electrode to form an opening between the sidewall spacers;
(c)前記開口内に、第 1の方向に延びるラダーを形成し、  (c) forming a ladder extending in the first direction in the opening;
(d)前記開口内に、前記ラダーと異なる応力を有する材料で、前記ラダーを覆うゲー ト電極を形成する  (d) forming a gate electrode covering the ladder with a material having a stress different from that of the ladder in the opening;
工程を含む。  Process.
発明の効果 [0020] 上述の手法で、チャネル幅方向へのひずみを独立して制御し、チャネル領域での バンド制御を行って、 1次元量子閉じ込め(量子細線)を実現することができる。 The invention's effect [0020] With the method described above, one-dimensional quantum confinement (quantum wire) can be realized by controlling strain in the channel width direction independently and performing band control in the channel region.
[0021] これにより、 Si— MOSFETの性能が向上する。 [0021] This improves the performance of the Si-MOSFET.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]公知のひずみ導入構造の一例を示す図である。 FIG. 1 is a diagram showing an example of a known strain introduction structure.
[図 2]公知のひずみ導入構造の別の例を示す図である。  FIG. 2 is a diagram showing another example of a known strain introduction structure.
[図 3]公知のひずみ導入構造の別の例を示す図である。  FIG. 3 is a diagram showing another example of a known strain introduction structure.
[図 4]本発明の一実施形態に係る半導体装置のゲート構造を示す概略図である。  FIG. 4 is a schematic view showing a gate structure of a semiconductor device according to an embodiment of the present invention.
[図 5]実施形態の半導体装置のゲート構造を示す概略平面図である。  FIG. 5 is a schematic plan view showing a gate structure of the semiconductor device of the embodiment.
[図 6]図 5の A— A'ラインに沿ったチャネル幅方向の概略断面図であり、チャネル幅 方向に与えられる応力を示す図である。  FIG. 6 is a schematic cross-sectional view in the channel width direction along the line AA ′ in FIG. 5, showing the stress applied in the channel width direction.
[図 7]図 5の B— B'ラインに沿ったチャネル長方向の概略断面図であり、 nMOSFET に与えられる応力を示す図である。  FIG. 7 is a schematic cross-sectional view in the channel length direction along the line BB ′ in FIG. 5, showing the stress applied to the nMOSFET.
[図 8]図 5の B— B'ラインに沿ったチャネル長方向の概略断面図であり、 pMOSFET に与えられる応力を示す図である。  FIG. 8 is a schematic cross-sectional view in the channel length direction along the line BB ′ of FIG. 5, showing the stress applied to the pMOSFET.
[図 9]実施形態の半導体装置の変形例であり、ゲート電極を覆う応力膜に代えて、あ るいは応力膜とともに、 nMOSFETのソース ·ドレイン領域に選択成長させたひずみ 印加層を用いる構成を示す図である。  FIG. 9 shows a modification of the semiconductor device of the embodiment, in which a strain applying layer selectively grown in the source / drain region of the nMOSFET is used in place of the stress film covering the gate electrode or the stress film. FIG.
[図 10]実施形態の半導体装置の変形例であり、ゲート電極を覆う応力膜に代えて、 あるいは応力膜とともに、 pMOSFETのソース ·ドレイン領域に選択成長させたひず み印加層を用いる構成を示す図である。  FIG. 10 shows a modification of the semiconductor device according to the embodiment, in which a strain application layer selectively grown in the source / drain regions of the pMOSFET is used instead of or together with the stress film covering the gate electrode. FIG.
[図 11A]ラダー直下のチャネル領域での閉じ込め効果を説明するための図である。  FIG. 11A is a diagram for explaining the confinement effect in the channel region immediately below the ladder.
[図 11B]図 11Aの構成で、 nMOSFETにおけるラダー(G1)とメタルゲート(G2)の仕 事関数によるバンドの変化を示す図である。  FIG. 11B is a diagram showing a band change due to the work function of the ladder (G1) and the metal gate (G2) in the nMOSFET in the configuration of FIG. 11A.
[図 11C]図 11Aの構成で、 pnMOSFETにおけるラダー(G1)とメタルゲート(G2)の 仕事関数によるバンドの変化を示す図である。  FIG. 11C is a diagram showing a band change due to the work function of the ladder (G1) and the metal gate (G2) in the pnMOSFET in the configuration of FIG. 11A.
[図 11D]図 11Aの変形例として、ラダーを、圧縮応力を与える絶縁膜で構成する場合 のバンドの変化を示す図である。 圆 12]図 6の変形例として、ラダーを、圧縮応力を与える金属で構成する例を示す図 である。 FIG. 11D is a diagram showing a band change when the ladder is formed of an insulating film that applies compressive stress as a modification of FIG. 11A. [12] FIG. 12 is a view showing an example in which a ladder is made of a metal that applies compressive stress as a modification of FIG.
圆 13A]本発明の一実施形態に係る半導体装置の製造工程図である。  13A] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention. FIG.
圆 13B]本発明の一実施形態に係る半導体装置の製造工程図である。  13B] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13C]本発明の一実施形態に係る半導体装置の製造工程図である。  FIG. 13C is a manufacturing process diagram of the semiconductor device according to one embodiment of the present invention.
圆 13D]本発明の一実施形態に係る半導体装置の製造工程図である。  13D] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13E]本発明の一実施形態に係る半導体装置の製造工程図である。  13E] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13F]本発明の一実施形態に係る半導体装置の製造工程図である。  13F] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13G]本発明の一実施形態に係る半導体装置の製造工程図である。  13G] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13H]本発明の一実施形態に係る半導体装置の製造工程図である。  13H] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 131]本発明の一実施形態に係る半導体装置の製造工程図である。  FIG. 131] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13J]本発明の一実施形態に係る半導体装置の製造工程図である。  13J] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
圆 13K]本発明の一実施形態に係る半導体装置の製造工程図である。  13K] A manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
符号の説明  Explanation of symbols
[0023] 10 半導体装置  [0023] 10 Semiconductor device
11、 31 半導体基板  11, 31 Semiconductor substrate
13、 53 ゲート絶縁膜  13, 53 Gate insulation film
14、 39 ソース'ドレイン  14, 39 Source'Drain
15、 55 ラダー(G1)  15, 55 Ladder (G1)
16、 56 ゲート電極(G2)  16, 56 Gate electrode (G2)
17 サイドウォールスぺーサ  17 Sidewall spacer
19、 59 ゲート構造  19, 59 Gate structure
20C、20T、60 応力膜 (ひずみ導入層)  20C, 20T, 60 Stress film (strain introduced layer)
21C、21T ひずみ印加層(ひずみ導入層)  21C, 21T strain application layer (strain introduction layer)
35 ダミー電極  35 Dummy electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025] 図 4は、本発明の一実施形態に係る半導体装置 10のゲート構造を示す概略図で ある。半導体装置 10は、半導体基板 11上にゲート絶縁膜 13を介して位置し、ゲート 電圧が印加されるゲート電極 16と、ゲート絶縁膜 13とゲート電極 16の間に挿入され るラダー 15を有する。ラダー 15は、チャネル幅方向(図 4の y軸方向)に配列され、ラ ダーを構成するストライプの一本一本は、電流の流れと平行な方向(X軸方向)に延 びる。ゲートの第 1部分を構成するラダー 15と、ゲートの第 2部分を構成するゲート電 極 16で、ゲート構造 19を構成する。 FIG. 4 is a schematic diagram showing a gate structure of the semiconductor device 10 according to one embodiment of the present invention. is there. The semiconductor device 10 is located on a semiconductor substrate 11 via a gate insulating film 13 and has a gate electrode 16 to which a gate voltage is applied, and a ladder 15 inserted between the gate insulating film 13 and the gate electrode 16. The ladder 15 is arranged in the channel width direction (y-axis direction in FIG. 4), and each stripe constituting the ladder extends in a direction parallel to the current flow (X-axis direction). The ladder structure 15 constituting the first part of the gate and the gate electrode 16 constituting the second part of the gate constitute a gate structure 19.
[0026] ゲート電極 16を挟んで、半導体基板 11にソース ·ドレイン不純物拡散領域 (以下、 単に「ソース'ドレイン」と称する) 14が形成されている。ゲート電極 16の側壁にはサイ ドウォールスぺーサ 17が設けられ、ゲート電極 16およびサイドウォールスぺーサ 17 を覆って、応力膜 20が形成されている。  A source / drain impurity diffusion region (hereinafter simply referred to as “source / drain”) 14 is formed in the semiconductor substrate 11 with the gate electrode 16 interposed therebetween. A side wall spacer 17 is provided on the side wall of the gate electrode 16, and a stress film 20 is formed so as to cover the gate electrode 16 and the side wall spacer 17.
[0027] 応力膜 20は、主としてチャネル長方向(X軸方向)へのひずみを制御する。一方、ラ ダー 15は、主としてチャネル幅方向(y軸方向)へのひずみを制御する役割を果たす 。応力膜 20と、ラダー 15とにより、 2軸方向のひずみを互いに独立して制御すること ができる。  [0027] The stress film 20 mainly controls strain in the channel length direction (X-axis direction). On the other hand, the ladder 15 mainly serves to control strain in the channel width direction (y-axis direction). The stress film 20 and the ladder 15 can control the biaxial strain independently of each other.
[0028] 図 5は、実施形態の半導体装置 10の概略平面図である。ゲート電極 16の少なくと も一部は、ソース領域 14sとドレイン領域 14dの間に延びる。ゲート電圧の印加により FIG. 5 is a schematic plan view of the semiconductor device 10 of the embodiment. At least a part of the gate electrode 16 extends between the source region 14s and the drain region 14d. By applying gate voltage
、ソース領域 14sとドレイン領域 14dの間の半導体基板の表面領域にチャネル領域( 図 5では不図示)が形成される。 A channel region (not shown in FIG. 5) is formed in the surface region of the semiconductor substrate between the source region 14s and the drain region 14d.
[0029] ラダー 15は、電流の流れと直交する方向(y軸方向またはチャネル幅方向)に配列 される。ラダー 15を構成するストライプの数に制限はないが、ストライプとストライプの 間のスペース 18力 少なくとも 1つ存在するようにする。 [0029] The ladder 15 is arranged in a direction (y-axis direction or channel width direction) orthogonal to the current flow. There is no limit to the number of stripes that make up ladder 15, but there must be at least one space between the stripes.
[0030] 図 6は、図 5の A— A'ラインに沿った概略断面図である。図 6の例では、ラダー(以 下、適宜「G1」と称する) 15は、引張応力を与える(すなわち、引張応力が内在する) 材料で構成され、ゲート電極 (以下、適宜「G2」と称する) 16は、圧縮応力を与える( すなわち圧縮応力が内在する)材料で構成される。 FIG. 6 is a schematic cross-sectional view along the line AA ′ in FIG. In the example of FIG. 6, the ladder (hereinafter referred to as “G1” as appropriate) 15 is made of a material that applies tensile stress (ie, inherently contains tensile stress), and is a gate electrode (hereinafter referred to as “G2” as appropriate). 16 is made of a material that gives compressive stress (ie, compressive stress is inherent).
[0031] たとえば、ラダー 15は、金 (Au)の蒸着により形成された電極であり、 lOOnm以下 のスペース 18を介して、複数のストライプが y軸(チャネル幅)方向に配列される。メタ ルゲート 16は、スパッタリングで形成された TiNである。 [0032] 引張応力を与えるラダー(Gl) 15と、圧縮応力を与えるメタルゲート 16により、チヤ ネル領域に y軸方向のひずみを発生させることができる。たとえば、真性応力 0. 5GP aの Auと、真性応力 2GPaの TiNを使用した場合、 0. 5%程度のひずみが印加で きると考えられる。 For example, the ladder 15 is an electrode formed by vapor deposition of gold (Au), and a plurality of stripes are arranged in the y-axis (channel width) direction through a space 18 of lOOnm or less. The metal gate 16 is TiN formed by sputtering. [0032] The ladder region (Gl) 15 that applies tensile stress and the metal gate 16 that applies compressive stress can generate strain in the y-axis direction in the channel region. For example, when Au with an intrinsic stress of 0.5 GPa and TiN with an intrinsic stress of 2 GPa are used, a strain of about 0.5% can be applied.
[0033] なお、説明の便宜上、チャネル領域のうち、各ラダー 15直下の領域をサブチャネル 領域と称する。  [0033] For convenience of explanation, the region immediately below each ladder 15 in the channel region is referred to as a sub-channel region.
[0034] ラダー 15の引張応力が十分に大きい場合、ラダー 15単体でも、チャネル幅方向(y 軸方向)に十分なひずみを印加することが可能である。この場合は、メタルゲート 16 の応力印加の状態としては、ラダー 15よりも十分小さい引張応力を与える、無応力で ある、あるいは圧縮応力を与える状態の!/、ずれでもよ 、。  [0034] When the tensile stress of the ladder 15 is sufficiently large, the ladder 15 alone can apply sufficient strain in the channel width direction (y-axis direction). In this case, the stress applied to the metal gate 16 may be a tensile stress sufficiently smaller than that of the ladder 15, no stress, or a state of applying compressive stress!
[0035] 逆に、メタルゲート 16の圧縮応力が十分に大きい場合、ラダー 15の応力印加の状 態としては、メタルゲート 16よりも十分に小さい圧縮応力を与える、無応力である、あ るいは引張応力を与える状態の 、ずれでもよ 、。 [0035] On the contrary, when the compressive stress of the metal gate 16 is sufficiently large, the stress application state of the ladder 15 is no stress or gives a compressive stress sufficiently smaller than that of the metal gate 16. Even in the state of applying a tensile stress, it may be a deviation.
[0036] 図 6の例では、ラダー 15とメタルゲート 16の材料を異ならせたが、同一材料であつ ても、後述するように、成膜方法や成膜条件を変えることにより、異なる応力印加特性 を持たせることができる。 In the example of FIG. 6, the materials of the ladder 15 and the metal gate 16 are different. However, even if the same material is used, different stresses are applied by changing the film formation method and the film formation conditions, as will be described later. It can have characteristics.
[0037] 図 7および図 8は、図 5の B— B'ラインにそった概略断面図であり、チャネル長方向(FIG. 7 and FIG. 8 are schematic cross-sectional views along the line BB ′ of FIG.
X軸方向)にひずみを与える構造を説明するための図である。図 7は nMOSFETの ひずみ導入を、図 8は pMOSFETのひずみ導入を示す。 It is a figure for demonstrating the structure which gives distortion to (X-axis direction). Fig. 7 shows the strain introduction of nMOSFET, and Fig. 8 shows the strain introduction of pMOSFET.
[0038] 図 7において、 n型 MOSFET上には、引張応力を与える応力膜であるシリコン窒化 膜 20Tが選択的に堆積されている。一方、図 8において、 pMOSFET上には、圧縮 応力を与える応力膜であるシリコン窒化膜 20Cが選択的に堆積されている。これらの 応力膜はひずみ導入層として機能し、 nMOSのチャネル領域では、 X軸方向に引張 ひずみ、 z軸方向に圧縮ひずみを生じさせ、 pMOSのチャネル領域では、 X軸方向に 圧縮ひずみ、 z軸方向に引張ひずみを生じさせる。 In FIG. 7, a silicon nitride film 20T, which is a stress film for applying a tensile stress, is selectively deposited on the n-type MOSFET. On the other hand, in FIG. 8, a silicon nitride film 20C, which is a stress film that applies compressive stress, is selectively deposited on the pMOSFET. These stress films function as a strain-introducing layer. In the nMOS channel region, tensile strain occurs in the X-axis direction and compressive strain in the z-axis direction. In pMOS channel regions, compressive strain in the X-axis direction, z-axis Causes tensile strain in the direction.
[0039] これらの例では、ラダー 15を挿入したゲート構造により、 y軸方向にもひずみが発生 しており、面内での 2軸 (X軸および y軸)方向のひずみと、高さ方向へのひずみが生 成される。 [0040] チャネル長(x軸)方向、および高さ(z軸)方向へのひずみの印加については、応力 膜 20以外の方法を用いてもよい。たとえば、図 9および図 10に示すように、応力膜 2 0に代えて、あるいは応力膜 20とともに、 MOSFETのソース'ドレイン領域にひずみ 印加層を設ける構成としてもょ ヽ。 [0039] In these examples, due to the gate structure with the ladder 15 inserted, strain is also generated in the y-axis direction. In-plane strain in the two axes (X-axis and y-axis) and the height direction Strain is generated. [0040] Methods other than the stress film 20 may be used for applying strain in the channel length (x-axis) direction and height (z-axis) direction. For example, as shown in FIGS. 9 and 10, a strain applying layer may be provided in the source / drain region of the MOSFET instead of the stress film 20 or together with the stress film 20.
[0041] 図 9の例では、 nMOSFETのソース'ドレイン領域に、 SUりも格子定数の小さい Si Cひずみ印加層 21Tを選択成長させ、 pMOSFETに対しては、 SUりも格子定数の 大きい SiGeひずみ印加層 21Cを選択成長させる。ひずみ印加層 21T、 21Cは、チ ャネル領域にチャネル長方向のひずみを生じさせるひずみ導入層として機能する。  [0041] In the example of FIG. 9, a Si C strained layer 21T with a small lattice constant of SU is selectively grown in the source and drain regions of the nMOSFET, and the SiGe strain with a large lattice constant of SU is also used for the pMOSFET. The application layer 21C is selectively grown. The strain applying layers 21T and 21C function as strain introducing layers that cause strain in the channel length direction in the channel region.
[0042] ひずみ印加層 21を形成するには、 Si(100)基板 11上に、ゲート絶縁膜 13上に、 サイドウォールスぺーサ 17で覆われたゲート構造 19を形成する。ゲート構造 19は、 上述したように、チャネル幅方向に配列されるラダー(G1) 15と、ゲート電極 (メタルゲ ート: G2) 16を含む。このゲート構造 19をマスクとして、ソース'ドレイン領域にドライ エッチングによりリセスを形成し、不純物を注入した後、希フッ酸等で表面を清浄化し た後、ひずみ印加層 21を成長させる。  In order to form the strain applying layer 21, the gate structure 19 covered with the sidewall spacer 17 is formed on the gate insulating film 13 on the Si (100) substrate 11. As described above, the gate structure 19 includes the ladder (G1) 15 and the gate electrode (metal gate: G2) 16 arranged in the channel width direction. Using this gate structure 19 as a mask, recesses are formed in the source / drain regions by dry etching, impurities are implanted, the surface is cleaned with dilute hydrofluoric acid or the like, and then a strain applying layer 21 is grown.
[0043] 図 9のように、 nMOSFET用には、ジシラン(Si H )モノメチルシラン(SiH CH )、  [0043] As shown in FIG. 9, for nMOSFET, disilane (SiH) monomethylsilane (SiHCH),
2 6 3 3 塩素(C1 )を用い、化学気層成長法 (CVD法)により 600°Cで SiC層 21Tを選択成 2 6 3 3 Using SiC (C1), the SiC layer 21T is selectively formed at 600 ° C by chemical vapor deposition (CVD).
2 2
長させる。これによりソース ·ドレイン領域に Si C が形成される。 Si C は S  Make it long. This forms Si C in the source / drain regions. Si C is S
0. 99 0. 01 0. 99 0. 01 iの格子定数と比較して 0. 5%ほど小さいので、 nチャネル領域に、ゲート長方向の引 張ひずみと、高さ方向の圧縮ひずみが導入される。  0. 99 0. 01 0. 99 0. 01 Since it is 0.5% smaller than the lattice constant of i, tensile strain in the gate length direction and compressive strain in the height direction are introduced into the n-channel region. Is done.
[0044] 図 10のように、 pMOSFET用には、 Si H、モノゲルマン(GeH )、 C1を用い、 CV [0044] As shown in Fig. 10, for pMOSFET, Si H, monogermane (GeH), C1 is used, and CV
2 6 4 2  2 6 4 2
D法により 600°Cで SiGe層 21Cを選択成長させる。これによりソース'ドレイン領域に Si Ge が形成される。 Si Ge は Siの格子定数と比較して 1%ほど大きい Selectively grow SiGe layer 21C at 600 ° C by D method. This forms Si Ge in the source and drain regions. Si Ge is about 1% larger than the lattice constant of Si
0. 75 0. 25 0. 75 0. 25 0. 75 0. 25 0. 75 0. 25
ので、 pチャネル領域に、ゲート長方向の圧縮ひずみと、高さ方向の引張ひずみが導 入される。  Therefore, compressive strain in the gate length direction and tensile strain in the height direction are introduced into the p-channel region.
[0045] nMOSFETについては、真性応力 1. 6GPaの SiC層 21Tを用いて、ゲート長方向 に約 0. 3%の引張ひずみ、高さ方向に約 0. 2%の圧縮ひずみが得られる。 pMOSF ETについては、真性応力— 2GPaの SiGe層 21Cを用いて、ゲート長方向に約 0. 6 %の圧縮ひずみ、高さ方向に約 0. 4%の引張ひずみが得られる。 [0046] 上述のように、ラダー 15を導入したゲート構造(図 4)と、応力膜 20および Zまたは ひずみ印加層 21を併用することにより、チャネル領域で面内の 2軸性のひずみを個 別に生じさせることができる。すなわち、ラダー 15が、チャネル幅方向のひずみを制 御し、応力膜 20および Zまたはひずみ印加層 21がチャネル長方向のひずみ導入層 として機能するので、各軸方向へのひずみを、独立して制御することができる。 [0045] For nMOSFET, using a SiC layer 21T with an intrinsic stress of 1.6 GPa, a tensile strain of about 0.3% in the gate length direction and a compressive strain of about 0.2% in the height direction can be obtained. For pMOSF ET, using an intrinsic stress—2GPa SiGe layer 21C, a compressive strain of about 0.6% in the gate length direction and a tensile strain of about 0.4% in the height direction can be obtained. [0046] As described above, by using the gate structure with the ladder 15 introduced (Fig. 4) and the stress film 20 and the Z or strain applying layer 21 in combination, in-plane biaxial strain can be reduced in the channel region. It can be generated separately. That is, the ladder 15 controls the strain in the channel width direction, and the stress film 20 and the Z or strain applying layer 21 function as a strain introduction layer in the channel length direction. Can be controlled.
[0047] nMOSでは、チャネル領域のうち、ラダー 15直下のサブチャネル領域(図 6参照) に、 x、 y軸方向に 2軸性の引張ひずみが印加されることになる。一方、ラダー 15の存 在しないスペース 18直下の領域では、 X軸方向に引張ひずみが、 y軸方向には圧縮 ひずみが印加されるため、 1軸性の引張ひずみとみなされる。  In the nMOS, biaxial tensile strain is applied to the subchannel region (see FIG. 6) immediately below the ladder 15 in the channel region in the x and y axis directions. On the other hand, in the region directly below the space 18 where the ladder 15 does not exist, tensile strain is applied in the X-axis direction and compressive strain is applied in the y-axis direction, so it is regarded as uniaxial tensile strain.
[0048] 一方、 pMOSでは、ラダー 15直下のサブチャネル領域では、 x軸、 y軸方向に、そ れぞれ圧縮ひずみと引張ひずみが印加されるため、 1軸性の圧縮ひずみとみなすこ とができる。ラダー 15の存在しないスペース 18直下の領域には、 X軸、 y軸方向に 2 軸性の弓 I張ひずみが印加される。  [0048] On the other hand, in pMOS, in the subchannel region immediately below ladder 15, compressive strain and tensile strain are applied in the x-axis and y-axis directions, respectively, so this should be regarded as uniaxial compressive strain. Can do. In the area immediately below the space 18 where the ladder 15 does not exist, a biaxial bow I tension strain is applied in the X-axis and y-axis directions.
[0049] これは、キャリアの移動度が向上するひずみの印加方向と、すべて一致する(S.E.  [0049] This coincides with the strain application direction in which the carrier mobility is improved (S.E.
Thompson et al, IEEE Trans. Electron Devices, 51, 1790 (2004)参照)。  Thompson et al, IEEE Trans. Electron Devices, 51, 1790 (2004)).
[0050] 図 11A〜図 11Cは、上述した構成により、チャネル領域でキャリアの移動度が向上 する理由を説明するための図である。 Siの伝導帯は、 2軸性の引張ひずみにより、 1 軸性よりも大きく伝導帯が分裂することが知られている。つまり、図 11Aに示すように 、ラダー 15直下のサブチャネル領域(図 6参照)の伝導帯は、スペース 18直下の領 域に比べ、伝導帯(Ec)のエネルギーが低くなる。したがって、電子はサブチャネル 領域を支配的に流れるようになり、 nMOSFETにおいて、 2軸性の引っ張りひずみが 生じて 、るサブチャネル領域への電子の閉じ込めが可能となる。  FIG. 11A to FIG. 11C are diagrams for explaining the reason why the carrier mobility is improved in the channel region by the above-described configuration. The conduction band of Si is known to be larger than that of uniaxial due to biaxial tensile strain. That is, as shown in FIG. 11A, the conduction band (Ec) in the conduction band of the subchannel region (see FIG. 6) just below the ladder 15 is lower than the region just below the space 18. Therefore, electrons flow dominantly in the subchannel region, and biaxial tensile strain is generated in the nMOSFET, which makes it possible to confine electrons in the subchannel region.
[0051] また、 Siの価電子帯は、 1軸性の圧縮ひずみにより、価電子帯のエネルギーが高く なることが知られている。つまり、図 11Aに示すように、サブチャネル領域の価電子帯 は、スペース 18直下の領域に比べ、伝導帯のエネルギーが高くなる。したがって、正 孔はサブチャネル領域を支配的に流れるようになり、 pMOSFETにおいて、 1軸性の 圧縮ひずみが生じているサブチャネル領域への正孔の閉じ込めが可能となる。  [0051] Further, it is known that the valence band energy of Si increases the energy of the valence band due to uniaxial compressive strain. That is, as shown in FIG. 11A, the energy of the conduction band is higher in the valence band of the subchannel region than in the region immediately below the space 18. Therefore, the positive holes flow dominantly in the subchannel region, and in the pMOSFET, holes can be confined in the subchannel region where uniaxial compressive strain is generated.
[0052] この結果、 nチャネル、 pチャネルともに移動度の高いキャリアが増えるため、高速な 動作が可能となる。 [0052] As a result, the number of carriers with high mobility increases in both the n channel and p channel. Operation is possible.
[0053] 実施形態のゲート構造 19では、面内の 2軸方向のひずみを独立に制御可能である 。 nMOSFETの場合、 x軸(チャネル長)方向に 0. 3%の引張ひずみ、 y軸(チャネル 幅)方向に 0. 5%の引張ひずみが印加された場合、ピエゾ抵抗係数から移動度の向 上度を見積もると、 1軸の場合と比較して 1. 9倍程度の移動度向上の効果が得られ る。 pMOSFETの場合も、 X軸方向に 0. 6%の圧縮ひずみ、 y軸方向に 0. 5%の引 張ひずみが印加される場合、 1. 8倍程度の移動度向上の効果が得られる(上記 S.E. Thompson et al, IEEE Trans. Electron Devices, 51, 1790 (2004)参照)。  [0053] In the gate structure 19 of the embodiment, the in-plane biaxial strain can be controlled independently. In the case of nMOSFET, when 0.3% tensile strain is applied in the x-axis (channel length) direction and 0.5% tensile strain is applied in the y-axis (channel width) direction, mobility is improved from the piezoresistance coefficient. When estimating the degree of mobility, the effect of improving mobility by about 1.9 times is obtained compared to the case of one axis. Also in the case of pMOSFET, when 0.6% compressive strain is applied in the X-axis direction and 0.5% tensile strain is applied in the y-axis direction, the effect of improving the mobility by about 1.8 times can be obtained ( See SE Thompson et al, IEEE Trans. Electron Devices, 51, 1790 (2004)).
[0054] 図 11Bおよび図 11Cは、ラダー 15直下のサブチャネルへのキャリアの閉じ込めを 説明するための図である。これらの例では、ラダー(G1) 15と、メタルゲート(G2) 16 は、それぞれ仕事関数の異なる金属で形成されている。図 11Bは nMOSでの仕事 関数の相違に応じたバンドの変化を、図 11Cは pMOSでの仕事関数の相違に応じ たバンドの変化を示して 、る。  FIG. 11B and FIG. 11C are diagrams for explaining the confinement of carriers in the subchannels immediately below the ladder 15. In these examples, the ladder (G1) 15 and the metal gate (G2) 16 are formed of metals having different work functions. Fig. 11B shows the band change according to the work function difference in nMOS, and Fig. 11C shows the band change according to the work function difference in pMOS.
[0055] 図 11Bに示すように、 nMOSFETでは、ラダー(G1) 15に、メタルゲート(G2) 16と 比較して仕事関数が大きい金属を用いている。例えば、ラダー(G1) 15に Au、メタル ゲート(G2) 16に TiNを用いると、仕事関数の差により、ラダー(G1)直下の Siの伝導 帯力 メタルゲート (G2) 16直下と比較してエネルギーが高くなるため、メタルゲート( G2) 16下のチャネル領域への電子の閉じ込め力 より強くなる。  As shown in FIG. 11B, in the nMOSFET, the ladder (G1) 15 uses a metal having a work function larger than that of the metal gate (G2) 16. For example, when Au is used for the ladder (G1) 15 and TiN is used for the metal gate (G2) 16, the conduction band of Si directly under the ladder (G1) is compared with that under the metal gate (G2) 16 due to the difference in work function. Since the energy increases, it becomes stronger than the confinement force of electrons in the channel region under the metal gate (G2) 16.
[0056] 図 11Cに示すように、 pMOSFETでは、ラダー(G1) 15に、メタルゲート(G2) 16と 比較して仕事関数が小さい金属を用いている。例えば、ラダー(G1) 15にアルミ-ゥ ム (A1)、メタルゲート(G2) 16に TiNを用いると、仕事関数の差によって、ラダー(G1 ) 15直下の Siの価電子帯力 メタルゲート(G2) 16直下と比較してエネルギーが低く なるため、メタルゲート(G2) 16下のチャネル領域への正孔の閉じ込め力 より強くな る効果が得られる。  As shown in FIG. 11C, in the pMOSFET, the ladder (G1) 15 uses a metal having a work function smaller than that of the metal gate (G2) 16. For example, if aluminum (A1) is used for ladder (G1) 15 and TiN is used for metal gate (G2) 16, the valence valence band of Si just below ladder (G1) 15 due to the difference in work function (gate) Since the energy is lower than that under G2) 16, the effect is stronger than the confinement of holes in the channel region under metal gate (G2) 16.
[0057] 図 11Dは、ラダー 15を絶縁体、例えばシリコン窒化膜などで形成したときのキャリア の閉じ込めを示す図である。この場合、絶縁体ラダー 25の直下に力かる電界は、メタ ルゲート 26直下の Siと比較して弱くなるため、バンドの曲がりが小さくなる。これにより 、チャネル領域へのキャリアの閉じ込めがより強くなる。なお、バンドの曲がりは、図 1 IDに示すように、絶縁膜 (ラダー 15)の膜厚によって、制御可能である。 FIG. 11D is a diagram showing carrier confinement when the ladder 15 is formed of an insulator such as a silicon nitride film. In this case, the electric field exerted directly below the insulator ladder 25 is weaker than Si just below the metal gate 26, so that the bending of the band is reduced. Thereby, the confinement of carriers in the channel region becomes stronger. Band bending is shown in Fig. 1. As indicated by ID, control is possible by the film thickness of the insulating film (ladder 15).
[0058] 図 12は、図 6の変形例を示す。図 12では、ラダー 25を、圧縮応力を与える金属で 形成し、その後、引張応力を与える金属によりメタルゲート 26を形成する。これにより 、ラダー 25直下のサブチャネル領域には、引張ひずみが印加されるため、上記の構 造と同様の効果が得られる。  FIG. 12 shows a modification of FIG. In FIG. 12, the ladder 25 is formed of a metal that applies compressive stress, and then the metal gate 26 is formed of a metal that applies tensile stress. As a result, tensile strain is applied to the subchannel region immediately below the ladder 25, so that the same effect as the above structure can be obtained.
[0059] この構造で、仕事関数の異なる金属を用いる場合、 nMOSFETでは、ラダー(G1) 25に、メタルゲート(G2) 26と比較して仕事関数が小さい金属を用いる。 pMOSFE Tでは、ラダー(G1) 25に、メタルゲート(G2) 26と比較して仕事関数が大きい金属を 用いる。これにより、ラダー 25直下のサブチャネル領域へのキャリアの閉じ込めがより 強くなる効果が得られる。  In this structure, when a metal having a different work function is used, a metal having a work function smaller than that of the metal gate (G2) 26 is used for the ladder (G1) 25 in the nMOSFET. In pMOSFE T, a metal having a larger work function than the metal gate (G2) 26 is used for the ladder (G1) 25. As a result, the effect of stronger carrier confinement in the subchannel region immediately below the ladder 25 is obtained.
[0060] ラダーを導入するゲート構造にぉ 、て、ラダーの幅、またはスペースの幅を小さくす ると、チャネル領域に印加されるひずみが大きくなり、バンドの変化が大きくなる。この 結果、キャリアの閉じ込めも強くなる。ラダーの幅またはスペース幅を 10nm程度以下 に微細化すると、キャリアが非常に狭い領域に閉じ込められるため、量子効果が生じ てくる。これにより、量子細線 FETを実現することもできる。  [0060] When the width of the ladder or space is reduced in the gate structure into which the ladder is introduced, the strain applied to the channel region increases and the change in the band increases. This results in stronger carrier confinement. If the ladder width or space width is reduced to about 10 nm or less, carriers are confined in a very narrow region, and a quantum effect occurs. Thereby, a quantum wire FET can also be realized.
[0061] この場合、従来の量子細線のようにチャネル領域をエッチングする必要がな 、ため 、表面荒れによる散乱などを抑えることができる。したがって、さらなる FETの高速ィ匕 につながる。  [0061] In this case, since it is not necessary to etch the channel region as in the case of conventional quantum wires, scattering due to surface roughness can be suppressed. Therefore, it leads to further FET high-speed operation.
[0062] 図 13A〜図 13Kは、本発明の一実施形態による半導体装置の製造工程図である 。まず、 Si (100)基板 31を用い、チャネル方向としてく 110〉方向を使用する。この基 板 31に、従来のダマシンメタルゲート製造プロセスで、ダミーゲート除去までを行う。 具体的には、図 13Aに示すように、 Si基板 31の所定の領域にゥエル領域 (不図示) を形成し、 STIなどの素子分離領域 (不図示)を形成する。その後、シリコン酸ィ匕膜 3 2、ポリシリコン膜 32、シリコン窒化膜 34を順次形成する。 Si酸化膜 32は、たとえば 熱酸化法により形成し、ポリシリコン膜 33、シリコン窒化膜 34は、それぞれ CVD法に より形成する。  FIG. 13A to FIG. 13K are manufacturing process diagrams of a semiconductor device according to an embodiment of the present invention. First, the Si (100) substrate 31 is used, and the 110> direction is used as the channel direction. Dummy gate removal is performed on this substrate 31 by a conventional damascene metal gate manufacturing process. Specifically, as shown in FIG. 13A, a well region (not shown) is formed in a predetermined region of the Si substrate 31, and an element isolation region (not shown) such as STI is formed. Thereafter, a silicon oxide film 32, a polysilicon film 32, and a silicon nitride film 34 are sequentially formed. The Si oxide film 32 is formed by, for example, a thermal oxidation method, and the polysilicon film 33 and the silicon nitride film 34 are respectively formed by a CVD method.
[0063] 次に、図 13Bに示すように、通常のリソグラフィ法とエッチング法により、シリコン窒化 膜 34とポリシリコン膜 33をパターユングして、ダミーゲート 35を形成する。ダミーゲー ト 35をマスクとして、基板 31に不純物を注入し、エクステンション 36を形成する。 Next, as shown in FIG. 13B, the dummy gate 35 is formed by patterning the silicon nitride film 34 and the polysilicon film 33 by a normal lithography method and etching method. Dummy game Using the substrate 35 as a mask, impurities are implanted into the substrate 31 to form extensions 36.
[0064] 次に、図 13Cに示すように、サイドウォールスぺーサ 37を形成し、ダミーゲート 35お よびサイドウォールスぺーサ 37をマスクとして、高濃度に不純物を注入し、熱処理を して、ソース'ドレイン領域 39を形成する。その後、エッチングストッパ用のシリコン窒 化膜 38を CVD法により全面に堆積する。 Next, as shown in FIG. 13C, sidewall spacers 37 are formed, impurities are implanted at a high concentration using the dummy gate 35 and the sidewall spacers 37 as masks, and heat treatment is performed. Source / drain regions 39 are formed. Thereafter, a silicon nitride film 38 for an etching stopper is deposited on the entire surface by the CVD method.
[0065] 次に、図 13Dに示すように、全面にシリコン酸ィ匕膜 40を CVD法により堆積する。続 いて、シリコン窒化膜 38をストッパとして、 CMP法で Si酸ィ匕膜 40を研磨し、平坦化す る。 Next, as shown in FIG. 13D, a silicon oxide film 40 is deposited on the entire surface by the CVD method. Subsequently, using the silicon nitride film 38 as a stopper, the Si oxide film 40 is polished and planarized by the CMP method.
[0066] 次に、図 13Eに示すように、ダミーゲート上のシリコン窒化膜 38 (34)と、ポリシリコン 膜 33を、それぞれ例えば熱燐酸およびヒドラジン溶液で除去する。さらに、犠牲ゲー ト絶縁膜としてのシリコン酸ィ匕膜 32を、希フッ酸溶液で除去して、開口 41を形成する  Next, as shown in FIG. 13E, the silicon nitride film 38 (34) and the polysilicon film 33 on the dummy gate are removed with, for example, hot phosphoric acid and a hydrazine solution. Further, the silicon oxide film 32 as a sacrificial gate insulating film is removed with a dilute hydrofluoric acid solution to form an opening 41.
[0067] 次に、図 13Fに示すように、開口 41内のシリコン基板 31表面に、熱酸化法でゲート 絶縁膜 53を形成する。 Next, as shown in FIG. 13F, a gate insulating film 53 is formed on the surface of the silicon substrate 31 in the opening 41 by a thermal oxidation method.
[0068] 次に、図 13Gに示すように、開口 41内にラダー(G1) 55を形成する。ラダー 55は、 例えば TiNを蒸着し、リフトオフまたはドライエッチングなどにより、パターユングする。 ラダーの間隔 (スペース幅)は効果的にひずみを印加するため lOOnm以下とするこ とが望ましい。また、ラダーのスペースの数は、 1以上の任意の数である。ラダー 55用 の TiNは、無応力または引っ張り応力を与える応力膜となるように調節する。 TiNの 応力を調節する方法としては、たとえば、 TiNの蒸着時に、ピエゾ素子などを使用し て、基体に所定の励振周波数 (たとえば 100Hz)で縦振動を与え、かつ、その振幅を 印加電圧で調整することによって、無応力から引張応力まで広い範囲で内部応力を 調整することができる(詳細は特開 2004— 68058を参照されたい)。  Next, as shown in FIG. 13G, a ladder (G 1) 55 is formed in the opening 41. The ladder 55 is patterned by, for example, depositing TiN and performing lift-off or dry etching. The ladder interval (space width) is preferably less than lOOnm in order to effectively apply strain. The number of ladder spaces is an arbitrary number of 1 or more. TiN for Ladder 55 is adjusted to be a stress film that gives no stress or tensile stress. As a method for adjusting the stress of TiN, for example, during the deposition of TiN, a piezoelectric element is used to apply longitudinal vibration to the substrate at a predetermined excitation frequency (for example, 100 Hz), and the amplitude is adjusted by the applied voltage. By doing so, the internal stress can be adjusted in a wide range from no stress to tensile stress (for details, refer to JP-A-2004-68058).
[0069] 次に、図 13Hに示すように、ラダー(G1) 55を覆って、全面に金属膜 56、例えば窒 化チタン (TiN) 56をスパッタリング法により堆積する。スパッタリング法により形成され る TiNには大き ヽ圧縮応力が内在して!/、る。  Next, as shown in FIG. 13H, a metal film 56, for example, titanium nitride (TiN) 56 is deposited on the entire surface so as to cover the ladder (G 1) 55 by a sputtering method. TiN formed by sputtering has a large amount of compressive stress!
[0070] 次に、図 131に示すように、 CMP法により TiNスパッタリング膜 56を研磨することに より、開口内に TiNラダー 55と TiNメタルゲート 56が残る。ラダー 55と、ゲート電極と してのメタルゲート 56で、ゲート構造 59を構成する。チャネル領域には、 TiNラダー 5 5の引張応力と、スパッタリング法による TiNメタルゲート 56の圧縮応力により、チヤネ ル幅方向(電流と直交する方向)の引っ張りひずみを生じる。 Next, as shown in FIG. 131, the TiN ladder film 55 and the TiN metal gate 56 remain in the opening by polishing the TiN sputtering film 56 by the CMP method. Ladder 55 and gate electrode The metal structure 56 constitutes a gate structure 59. In the channel region, tensile strain in the channel width direction (direction perpendicular to the current) is generated by the tensile stress of the TiN ladder 55 and the compressive stress of the TiN metal gate 56 by sputtering.
[0071] 次に、図 13Jに示すように、 Si酸ィ匕膜 40を、例えば緩衝フッ酸溶液などにより除去 する)。 [0071] Next, as shown in FIG. 13J, the Si oxide film 40 is removed, for example, with a buffered hydrofluoric acid solution.
[0072] 最後に、図 13Kに示すように、応力膜となる Si窒化膜 60を CVD法とドライエツチン グにより形成する。 nMOSFETには引張応力膜を、 pMOSFETには圧縮応力膜を 選択的に形成する。以上より、主要な工程が終了し、この後、通常の配線工程等が 行われ、半導体装置 10が完成される。  [0072] Finally, as shown in FIG. 13K, a Si nitride film 60 to be a stress film is formed by a CVD method and dry etching. A tensile stress film is selectively formed on the nMOSFET, and a compressive stress film is selectively formed on the pMOSFET. As described above, the main process is completed, and thereafter, a normal wiring process and the like are performed, and the semiconductor device 10 is completed.
[0073] なお、ラダー 55を、 TiNに代えて絶縁体で形成する場合も、同様の工程で製作が 可能である。  [0073] Note that, when the ladder 55 is formed of an insulator instead of TiN, it can be manufactured in the same process.
[0074] (変形例 1)  [0074] (Modification 1)
図 12のように、ラダー 25を、圧縮応力を与える材料で構成する場合は、図 13A〜 図 13Fと同様の工程でダミーゲートを除去し、ゲート絶縁膜 53を形成する。その後、 図 13Gに対応する工程で、スパッタリング法により TiNを堆積し、ドライエッチングによ りラダー 55を形成する。スパッタリング法による TiNには、強い圧縮応力が内在して いる。  As shown in FIG. 12, when the ladder 25 is made of a material that applies compressive stress, the dummy gate is removed and the gate insulating film 53 is formed in the same process as in FIGS. 13A to 13F. Thereafter, in a process corresponding to FIG. 13G, TiN is deposited by sputtering, and a ladder 55 is formed by dry etching. TiN produced by sputtering has a strong compressive stress.
[0075] 次に、図 13Hおよび図 131に対応する工程で、 Auを蒸着し、 CMPで平坦化してメ タルゲート 56を形成する。蒸着による Auには引張応力が内在している。この結果、 チャネル領域に電流と直交するチャネル幅方向に引張ひずみが与えられる(図 12参 照)。以降の工程は、上述の工程と同様である。  Next, in a step corresponding to FIG. 13H and FIG. 131, Au is vapor-deposited and flattened by CMP to form a metal gate 56. Tensile stress is inherent in the deposited Au. As a result, tensile strain is applied to the channel region in the channel width direction perpendicular to the current (see Fig. 12). The subsequent steps are the same as those described above.
[0076] (変形例 2)  [Modification 2]
図 11Bのように、 nMOSFETと pMOSFETで、仕事関数の異なる金属を使用する 場合は、図 13A〜図 13Fまでの工程でダミーゲートを除去してゲート絶縁膜 53を形 成した後、図 13Gに対応する工程で、ラダー 55を形成する。図 11Bの例では、 nMO S、 pMOSの双方で、ラダーに TiNを用い、メタルゲートの仕事関数をそれぞれ異な らせている力 nMOSと pMOSでラダーの仕事関数を異ならせ、メタルゲートを同じ 材料で形成してもよい。 [0077] たとえば、 nMOSFET上に Auを蒸着し、リフトオフにより、ラダー 55を選択的に堆 積する。この時、蒸着による Auには引張応力が内在している。一方、 pMOSFET上 にアルミニウム (A1)を蒸着し、リフトオフにより、仕事関数の異なるラダー 55を形成す る。この時、蒸着による A1には弱い圧縮応力が内在している。 When metals with different work functions are used for nMOSFET and pMOSFET as shown in Fig. 11B, the dummy gate is removed by the steps from Fig. 13A to Fig. 13F to form the gate insulating film 53, and then to Fig. 13G. The ladder 55 is formed in a corresponding process. In the example shown in Fig. 11B, both nMO S and pMOS use TiN as the ladder, and the force that makes the work function of the metal gate different from each other. The work function of the ladder differs between nMOS and pMOS, and the metal gate is made of the same material. May be formed. [0077] For example, Au is deposited on the nMOSFET, and the ladder 55 is selectively deposited by lift-off. At this time, tensile stress is inherent in the deposited Au. On the other hand, aluminum (A1) is deposited on the pMOSFET, and a ladder 55 having a different work function is formed by lift-off. At this time, weak compressive stress is inherent in A1 by vapor deposition.
[0078] 続いて、図 13Hおよび図 131に対応する工程で、スパッタリング法により TiNを堆積 し、 CMP法により平坦ィ匕して、メタルゲート(電極本体) 56を形成する。 pMOSにお いて、 A1ゲートグリッド 55の弱い圧縮応力は、 TiNメタルゲート 56の応力が大きいの で、問題とはならない。その後、第 1の実施形態と同様の工程を行うことにより、仕事 関数を制御した半導体装置 10が形成される。この手法では、キャリアの閉じ込めが 強くなり、性能がさらに向上する。  Subsequently, in a step corresponding to FIG. 13H and FIG. 131, TiN is deposited by sputtering and flattened by CMP to form a metal gate (electrode body) 56. In pMOS, the weak compressive stress of the A1 gate grid 55 is not a problem because the stress of the TiN metal gate 56 is large. Thereafter, by performing the same process as in the first embodiment, the semiconductor device 10 with a controlled work function is formed. This technique increases carrier confinement and further improves performance.
[0079] 上述のように、本発明の半導体装置の構成では、適切なひずみを 2軸以上の方向 に印加することにより、バンド制御を行い、 1次元量子閉じ込め(量子細線)を実現し ている。これにより、 Si— MOSFETの大幅な性能向上を実現できる。  [0079] As described above, in the configuration of the semiconductor device of the present invention, band control is performed by applying an appropriate strain in directions of two or more axes, and one-dimensional quantum confinement (quantum wire) is realized. . As a result, a significant performance improvement of the Si-MOSFET can be realized.
[0080] また、本発明の製造工程では、従来の Siプロセスの基本的な流れを維持したまま、 量子細線 MOSFETを実現できるので、プロセスの簡略化、設計時の自由度の向上 などが期待できる。  [0080] Further, in the manufacturing process of the present invention, a quantum wire MOSFET can be realized while maintaining the basic flow of the conventional Si process, so that simplification of the process and improvement in the degree of freedom in design can be expected. .
[0081] また、従来の量子細線のようにチャネル領域をエッチングすることがな 、ので、表面 荒れによる散乱などを抑えることが可能となり、さらなる FETの高速ィ匕につながる。  [0081] In addition, since the channel region cannot be etched unlike the conventional quantum wire, it is possible to suppress scattering due to surface roughness, which leads to further high-speed FET operation.
[0082] 面内の 2軸方向で独立してひずみ制御が可能な Si量子細線 MOSFETの実現に より、従来の化合物半導体を利用した量子細線や SiGeZSi高電子移動度トランジス タ (HEMT)と比較して大幅なコストダウンにつながると考えられる。  [0082] Compared to conventional quantum wires using compound semiconductors and SiGeZSi high electron mobility transistors (HEMTs) by realizing Si quantum wire MOSFETs that can control strain independently in two in-plane directions. This is thought to lead to a significant cost reduction.

Claims

請求の範囲 The scope of the claims
[1] シリコン基板と、  [1] a silicon substrate;
前記シリコン基板上にゲート絶縁膜を介して位置するゲート電極と、  A gate electrode located on the silicon substrate via a gate insulating film;
前記ゲート絶縁膜とゲート電極の間に位置し、前記ゲート電極直下のチャネル領域 に流れる電流の方向と直交する方向に配列され、前記ゲート電極と異なる応力が内 在するラダーと、  A ladder located between the gate insulating film and the gate electrode, arranged in a direction orthogonal to the direction of the current flowing in the channel region immediately below the gate electrode, and having a stress different from that of the gate electrode;
を備えることを特徴とする半導体装置。  A semiconductor device comprising:
[2] 前記ラダーには、圧縮応力が内在し、  [2] The ladder has inherent compressive stress,
前記ゲート電極には、前記ラダーの圧縮応力よりも小さい圧縮応力または引張応 力が内在する  The gate electrode has a compressive stress or tensile stress smaller than that of the ladder.
ことを特徴とする請求項 1に記載の半導体装置。  The semiconductor device according to claim 1, wherein:
[3] 前記ラダーには、引張応力が内在し、 [3] Tensile stress is inherent in the ladder,
前記ゲート電極には、前記ラダーの引張応力よりも小さい引張応力または圧縮応 力が内在する  The gate electrode has a tensile stress or a compressive stress smaller than that of the ladder.
ことを特徴とする請求項 1に記載の半導体装置。  The semiconductor device according to claim 1, wherein:
[4] 前記チャネル領域は、 n型チャネルを構成し、前記ラダーの仕事関数が、前記ゲー ト電極の仕事関数よりも大きいことを特徴とする請求項 1に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the channel region constitutes an n-type channel, and a work function of the ladder is larger than a work function of the gate electrode.
[5] 前記チャネル領域は、 p型チャネルを構成し、前記ラダーの仕事関数が、前記ゲー ト電極の仕事関数よりも小さいことを特徴とする請求項 1に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the channel region constitutes a p-type channel, and a work function of the ladder is smaller than a work function of the gate electrode.
[6] 前記ラダーを構成するストライプの幅またはストライプ間のスペースは、 lOOnm以 下であることを特徴とする請求項 1に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein a width of a stripe constituting the ladder or a space between stripes is equal to or less than lOOnm.
[7] 前記ラダーは、金属で構成されることを特徴とする請求項 1〜3のいずれかに記載 の半導体装置。 [7] The semiconductor device according to any one of [1] to [3], wherein the ladder is made of metal.
[8] 前記ラダーは、絶縁膜で構成されることを特徴とする請求項 1〜3のいずれかに記 載の半導体装置。  [8] The semiconductor device according to any one of [1] to [3], wherein the ladder is made of an insulating film.
[9] 前記ゲート電極を覆って位置し、前記チャネル領域に、前記電流の流れる方向と平 行な方向にひずみを与える応力膜  [9] A stress film that covers the gate electrode and strains the channel region in a direction parallel to the direction in which the current flows.
をさらに有することを特徴とする請求項 1に記載の半導体装置。 The semiconductor device according to claim 1, further comprising:
[10] 前記ゲート電極を挟むソース ·ドレイン領域に位置し、前記チャネル領域に、前記電 流の流れる方向と平行な方向にひずみを与えるひずみ印加層 [10] A strain applying layer that is located in a source / drain region sandwiching the gate electrode and that strains the channel region in a direction parallel to the direction in which the current flows.
をさらに有することを特徴とする請求項 1または 9に記載の半導体装置。  The semiconductor device according to claim 1, further comprising:
[11] シリコン基板上に、側壁がサイドウォールスぺーサで覆われたダミー電極を形成し、 前記ダミー電極を除去してサイドウォールスぺーサ間に開口を形成し、 前記開口内に、第 1の方向に延びるラダーを形成し、 [11] A dummy electrode having a sidewall covered with a sidewall spacer is formed on the silicon substrate, the dummy electrode is removed, and an opening is formed between the sidewall spacers. Forming a ladder extending in the direction of 1,
前記開口内に、前記ラダーと異なる応力を有する材料で、前記ラダーを覆うゲート 電極を形成する  A gate electrode that covers the ladder is formed in the opening with a material having a stress different from that of the ladder.
工程を含むことを特徴とする半導体装置の製造方法。  The manufacturing method of the semiconductor device characterized by including a process.
[12] 前記ゲート電極およびサイドウォールスぺーサを覆って、前記ゲート電極直下のシ リコン基板表面領域に、前記第 1の方向と直交する方向のひずみを与える応力膜を 形成する [12] A stress film that covers the gate electrode and the sidewall spacer, and that applies strain in a direction perpendicular to the first direction is formed on a surface area of the silicon substrate immediately below the gate electrode.
工程をさらに含むことを特徴とする請求項 11に記載の半導体装置の製造方法。  12. The method for manufacturing a semiconductor device according to claim 11, further comprising a step.
[13] 前記ラダーの形成は、前記開口内に、金属をスパッタリングで堆積し、所定の間隔 のラダー形状にパターユングして形成する工程を含み、 [13] The formation of the ladder includes a step of depositing a metal in the opening by sputtering and patterning into a ladder shape with a predetermined interval.
前記ゲート電極を、金属の蒸着により形成する  The gate electrode is formed by metal deposition.
ことを特徴とする請求項 11に記載の半導体装置。  12. The semiconductor device according to claim 11, wherein:
[14] 前記ラダーの形成は、前記開口内に、金属を蒸着し、所定の間隔のラダー形状に ノターニングして形成する工程を含み、 [14] The formation of the ladder includes a step of vapor-depositing a metal in the opening and forming a ladder shape with a predetermined interval.
前記ゲート電極を、前記開口内に金属をスパッタリンして形成する  The gate electrode is formed by sputtering metal in the opening.
ことを特徴とする請求項 11に記載の半導体装置。  12. The semiconductor device according to claim 11, wherein:
[15] 前記ラダーは、前記開口内に絶縁膜をスパッタリングで形成し、所定の間隔のラダ 一形状にパターユングして形成する工程を含み、 [15] The ladder includes a step of forming an insulating film in the opening by sputtering and patterning into a ladder shape with a predetermined interval.
前記ゲート電極を、金属の蒸着により形成する  The gate electrode is formed by metal deposition.
ことを特徴とする請求項 11に記載の半導体装置。  12. The semiconductor device according to claim 11, wherein:
[16] 前記ダミーゲートおよびサイドウォーノレスぺーサをマスクとして、前記シリコン基板に n型の不純物を注入する工程をさらに含み、 [16] The method further includes the step of injecting an n-type impurity into the silicon substrate using the dummy gate and the side wall spacer as a mask.
前記ラダーを、前記ゲート電極の仕事関数よりも大き!、仕事関数を有する材料で形 成することを特徴とする請求項 11に記載の半導体装置。 The ladder is made of a material having a work function larger than the work function of the gate electrode! 12. The semiconductor device according to claim 11, wherein the semiconductor device is formed.
前記ダミーゲートおよびサイドウォーノレスぺーサをマスクとして、前記シリコン基板に p型の不純物を注入する工程をさらに含み、  Further comprising the step of implanting p-type impurities into the silicon substrate using the dummy gate and side wall spacer as a mask.
前記ラダーを、前記ゲート電極の仕事関数よりも小さ!、仕事関数を有する材料で形 成することを特徴とする請求項 11に記載の半導体装置。  12. The semiconductor device according to claim 11, wherein the ladder is made of a material having a work function that is smaller than a work function of the gate electrode.
PCT/JP2006/319146 2006-09-27 2006-09-27 Semiconductor device and its manufacturing method WO2008038346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008536226A JP5018780B2 (en) 2006-09-27 2006-09-27 Semiconductor device and manufacturing method thereof
PCT/JP2006/319146 WO2008038346A1 (en) 2006-09-27 2006-09-27 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319146 WO2008038346A1 (en) 2006-09-27 2006-09-27 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2008038346A1 true WO2008038346A1 (en) 2008-04-03

Family

ID=39229793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319146 WO2008038346A1 (en) 2006-09-27 2006-09-27 Semiconductor device and its manufacturing method

Country Status (2)

Country Link
JP (1) JP5018780B2 (en)
WO (1) WO2008038346A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010407A1 (en) * 2009-07-23 2011-01-27 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP2012124503A (en) * 2007-03-20 2012-06-28 Sony Corp Manufacturing method of semiconductor device
WO2012176503A1 (en) * 2011-06-23 2012-12-27 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
CN105140125A (en) * 2015-08-28 2015-12-09 陕西学前师范学院 Strain Ge inverted trapezoidal grid NMOS device, and preparation method
US9449974B2 (en) 2007-03-20 2016-09-20 Sony Corporation Semiconductor device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202178A (en) * 1993-12-28 1995-08-04 Toshiba Corp Semiconductor device and manufacture thereof
JPH1126765A (en) * 1997-07-09 1999-01-29 Nec Corp Field effect transistor an manufacture thereof
JP2006253318A (en) * 2005-03-09 2006-09-21 Fujitsu Ltd p-CHANNEL MOS TRANSISTOR AND ITS FABRICATION PROCESS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523093B2 (en) * 1997-11-28 2004-04-26 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2002093921A (en) * 2000-09-11 2002-03-29 Hitachi Ltd Method of manufacturing semiconductor device
JP2006120718A (en) * 2004-10-19 2006-05-11 Toshiba Corp Semiconductor device and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202178A (en) * 1993-12-28 1995-08-04 Toshiba Corp Semiconductor device and manufacture thereof
JPH1126765A (en) * 1997-07-09 1999-01-29 Nec Corp Field effect transistor an manufacture thereof
JP2006253318A (en) * 2005-03-09 2006-09-21 Fujitsu Ltd p-CHANNEL MOS TRANSISTOR AND ITS FABRICATION PROCESS

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124503A (en) * 2007-03-20 2012-06-28 Sony Corp Manufacturing method of semiconductor device
US9449974B2 (en) 2007-03-20 2016-09-20 Sony Corporation Semiconductor device and method of manufacturing the same
US9881920B2 (en) 2007-03-20 2018-01-30 Sony Corporation Semiconductor device and method of manufacturing the same
US10269801B2 (en) 2007-03-20 2019-04-23 Sony Corporation Semiconductor device and method of manufacturing the same
US10559567B2 (en) 2007-03-20 2020-02-11 Sony Corporation Semiconductor device and method of manufacturing the same
US11011518B2 (en) 2007-03-20 2021-05-18 Sony Corporation Semiconductor device and method of manufacturing the same
US11664376B2 (en) 2007-03-20 2023-05-30 Sony Group Corporation Semiconductor device and method of manufacturing the same
WO2011010407A1 (en) * 2009-07-23 2011-01-27 パナソニック株式会社 Semiconductor device and method for manufacturing same
WO2012176503A1 (en) * 2011-06-23 2012-12-27 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
US9093361B2 (en) 2011-06-23 2015-07-28 Mitsubishi Electric Corporation Semiconductor device
CN105140125A (en) * 2015-08-28 2015-12-09 陕西学前师范学院 Strain Ge inverted trapezoidal grid NMOS device, and preparation method

Also Published As

Publication number Publication date
JP5018780B2 (en) 2012-09-05
JPWO2008038346A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
CN1985374B (en) Improved strained-silicon CMOS device and method
CN100524827C (en) Normal bigri FET having improved carrier mobility and method of its formation
US9306065B2 (en) Advanced forming method and structure of local mechanical strained transistor
KR101243997B1 (en) Methods for fabricating a stressed mos device
TWI352433B (en) Stressed field effect transistors on hybrid orient
US7585704B2 (en) Method of producing highly strained PECVD silicon nitride thin films at low temperature
JP5359863B2 (en) Semiconductor device and manufacturing method thereof
JP2007536736A (en) Si-Ge based semiconductor devices with high stress liners for improved channel carrier mobility
KR101600553B1 (en) Methods for fabricating mos devices having epitaxially grown stress-inducing source and drain regions
US20080083948A1 (en) SiGe selective growth without a hard mask
US7164163B2 (en) Strained transistor with hybrid-strain inducing layer
KR20090073183A (en) Stressed field effect transistor and method for its fabrication
US20080128765A1 (en) MOSFET Device With Localized Stressor
US9978630B2 (en) Curved wafer processing method and apparatus
JP5043862B2 (en) Semiconductor structure and manufacturing method thereof (complementary metal oxide semiconductor)
WO2007046150A1 (en) Fin type semiconductor device and method for manufacturing same
US8741721B2 (en) Semiconductor device and manufacturing method thereof
US20090065807A1 (en) Semiconductor device and fabrication method for the same
JP5018780B2 (en) Semiconductor device and manufacturing method thereof
US7238567B2 (en) System and method for integrating low schottky barrier metal source/drain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536226

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810637

Country of ref document: EP

Kind code of ref document: A1