WO2007060716A1 - トレンチゲートパワー半導体装置 - Google Patents

トレンチゲートパワー半導体装置 Download PDF

Info

Publication number
WO2007060716A1
WO2007060716A1 PCT/JP2005/021490 JP2005021490W WO2007060716A1 WO 2007060716 A1 WO2007060716 A1 WO 2007060716A1 JP 2005021490 W JP2005021490 W JP 2005021490W WO 2007060716 A1 WO2007060716 A1 WO 2007060716A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench gate
region
gate power
semiconductor device
power semiconductor
Prior art date
Application number
PCT/JP2005/021490
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Takemori
Yuji Watanabe
Fuminori Sasaoka
Kazushige Matsuyama
Kunihito Oshima
Masato Itoi
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to US12/094,312 priority Critical patent/US7939886B2/en
Priority to PCT/JP2005/021490 priority patent/WO2007060716A1/ja
Priority to EP05809501.9A priority patent/EP1959495B1/en
Priority to JP2007546318A priority patent/JP5047805B2/ja
Publication of WO2007060716A1 publication Critical patent/WO2007060716A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Definitions

  • the present invention relates to a trench gate power semiconductor device.
  • FIG. 17 is a cross-sectional view of a conventional trench gate power semiconductor device 900.
  • the conventional trench gate power semiconductor device 900 includes a p-type semiconductor substrate 910 (not shown) and an n + type epitaxial layer 911 (see FIG. Not shown), an n-type epitaxial layer 912 (first conductivity type semiconductor layer) disposed on the n-type epitaxial layer 911, and a P formed near the top surface of the n-type epitaxial layer 912.
  • Type body region 920 second conductivity type body region
  • the trench gate power semiconductor device includes a gate 918 formed in a trench 914 with a gate insulating film 916 interposed therebetween.
  • An emitter region 922 is formed near the upper surface of the p-type body region 920 in the inter-groove region sandwiched between the groove 914 and the groove 914.
  • An insulating layer 928 is formed on the upper portion of the groove 914, and an emitter electrode 932 is formed on the insulating layer 928.
  • a force sword electrode 934 (not shown) is formed on the lower surface of the p-type semiconductor substrate 910.
  • peripheral region GR further outside outermost groove 914 is connected to and surrounds p-type body region 920.
  • the p-type semiconductor region 920a is formed.
  • the p-type semiconductor region 920a is formed deeper than the p-type body region 920 in order to maintain a high breakdown voltage.
  • the p-type semiconductor region 920a and the p-type body region 920 are connected to the emitter electrode 932 via the contact hole CH on the upper surface of the side diffusion region SD and the upper surface of the margin region MR adjacent to the side diffusion region SD. Yes.
  • the emitter region 922 is not formed on the upper surface of the margin region MR.
  • the symbol CR indicates a cell region.
  • the gate voltage is turned on. Voltage force When the voltage is turned off, a relatively large amount of holes H generated in the vicinity of the side diffusion region SD pass through the side diffusion region SD and are collected by the emitter electrode 932. When the voltage is returned to the OFF voltage, holes are collected quickly, and a high-speed switching operation can be achieved (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 9270512 (FIGS. 1 and 2)
  • the present invention has been made to solve the above-described problems, and a trench capable of efficiently recovering holes generated in the cell region and further increasing the switching operation speed.
  • An object is to provide a gate power semiconductor device.
  • a trench gate power semiconductor device includes a first conductivity type semiconductor layer and a second conductivity type formed in the vicinity of the upper surface of the first conductivity type and opposite to the first conductivity type.
  • a carrier extraction region is formed.
  • the second conductivity type is formed in a part of the region of the first conductivity type semiconductor layer facing the second conductivity type body region.
  • the carrier extraction region is formed in the cell region. It is possible to form a carrier extraction region of the second conductivity type at the site where the collection is desired. Therefore, it is possible to efficiently collect holes generated in the cell region via the carrier extraction region of the second conductivity type, and a trench gate power semiconductor device capable of achieving higher switching speed. Can be provided.
  • the second conductivity type carrier extraction region is a part or all of a part of the plurality of grooves. It is preferred to be formed so as to cover.
  • the second conductivity type carrier extraction region can be formed so as to cover a part or all of the groove in the region where holes are to be collected. It becomes possible to collect the halls efficiently. Also, in this case, since it becomes possible to form the second conductivity type carrier extraction region only in a part or all of the necessary grooves of the plurality of grooves, the on-resistance is increased more than necessary.
  • the second conductivity type carrier extraction region is a part of the outermost groove formed in the plurality of grooves or It is preferred to be formed so as to cover the entire area.
  • the second conductivity type carrier extraction region can be formed so as to cover a part or the entire region of the groove in a region where holes are likely to be generated. Can be recovered more efficiently.
  • the second conductivity type carrier extraction region is sandwiched between two adjacent grooves of the plurality of grooves. It is preferably formed in a part or all of the part of the inter-groove region in the inter-groove region.
  • This configuration also makes it possible to form the second conductivity type carrier extraction region in part or all of the inter-groove region in the region where holes are to be collected. Therefore, it becomes possible to efficiently collect the holes.
  • the second conductive type carrier extraction region can be formed only in part or all of the necessary inter-groove region among the plural inter-groove regions. Increase the resistance There is no end to it.
  • the second conductivity type carrier extraction region is formed in an outermost groove of the plurality of grooves and the groove. It is preferably formed in a part or all of the inter-groove region sandwiched between adjacent grooves.
  • the second conductivity type carrier extraction region is sandwiched between two adjacent grooves of the plurality of grooves and the two. Preferably, it is formed so as to cover the region between the grooves.
  • the area of the second conductivity type carrier extraction region can be increased, and holes can be efficiently recovered.
  • the second conductivity type carrier extraction region is also formed in a peripheral region further outside the outermost groove of the plurality of grooves.
  • the second conductivity type carrier extraction region is also formed in the peripheral region, which is a region where holes are generated in a relatively large amount, so that the holes can be collected more efficiently. It becomes possible.
  • the second conductivity type carrier extraction region formed in the peripheral region is a bottom surface of the second conductivity type body region. I prefer to be formed on the side.
  • the second conductivity type carrier extraction region is formed on the lower surface of the second conductivity type body region in the peripheral region, which is a region where holes are generated in a relatively large amount. Therefore, the holes can be collected more effectively.
  • the second conductivity type carrier extraction region formed in the peripheral region is the second conductivity type. It is preferred to be formed to cover the side of the body area. With this configuration, the second conductivity type carrier extraction region covers the side surface of the second conductivity type body region in the peripheral region, which is a region where holes are generated in a relatively large amount. Since the holes are formed, the holes can be collected more effectively.
  • the trench gate power semiconductor device according to any one of (1) to (9) above!
  • the second conductive type carrier extraction region is preferably formed to a position deeper than the depth of the groove! /.
  • Another trench gate power semiconductor device of the present invention includes a first conductivity type semiconductor layer and a type opposite to the first conductivity type formed near the upper surface of the first conductivity type semiconductor layer.
  • a trench gate power semiconductor device including a gate formed on the second conductivity type body region, wherein the first conductivity type is formed in the second conductivity type body region to be shallower than a depth of the second conductivity type body region.
  • the second groove is formed in the inter-groove region, and the second conductivity type carrier extraction region is further formed on the lower surface of the second groove. Since it is formed, it is possible to collect holes in the cell region and to form a second conductivity type carrier extraction region in the region. For this reason, holes generated in the cell region can be efficiently recovered through the second conductivity type carrier extraction region, and the trench gate power semiconductor capable of further increasing the switching speed can be achieved.
  • a body device can be provided.
  • the second groove is an inter-groove region sandwiched between two adjacent grooves among the plurality of grooves. It is preferable that it is formed in all the inter-groove regions. [0031] With this configuration, the second conductivity type carrier extraction region can be formed over the entire surface of the cell region, and holes can be efficiently recovered. In this case, even if the second conductivity type carrier extraction region is formed over the entire cell region, it is possible to prevent the transistor operation from being adversely affected. It wo n’t happen.
  • the second groove is an inter-groove region sandwiched between two adjacent grooves among the plurality of grooves. It is preferable that all the grooves are formed in a part of the inter-groove region.
  • the second conductivity type carrier extraction region can be formed only in a necessary portion of the cell region, so that the influence on the transistor operation is minimized. It becomes possible.
  • the second groove is an inter-groove region sandwiched between two adjacent grooves among the plurality of grooves. Of these, it is preferable to be formed in a part or all of a part of the inter-groove region.
  • the second conductive type carrier extraction region can be formed only in a necessary portion of the cell region, so that the influence on the transistor operation is minimized. It becomes possible to make things.
  • the second groove is formed in a peripheral region further outside the outermost groove of the plurality of grooves, It is preferable.
  • the second groove is further outside the outermost groove of the plurality of grooves. Also preferred to be formed in the surrounding area.
  • the second conductivity type carrier extraction region is also formed in the peripheral region, which is a region where holes are generated in a relatively large amount. It becomes possible to collect efficiently.
  • the second groove formed in the peripheral region is more than the second groove formed in the inter-groove region. Also wide
  • the second conductivity type carrier extraction region formed in the peripheral region is formed in the inter-groove region. Preferably, it is formed to a position deeper than the carrier extraction region of the second conductivity type!
  • the carrier extraction region of the second conductivity type is formed to a position deeper than the depth of the groove. I prefer to be ⁇ .
  • the trench gate power semiconductor device according to any one of (1) to (20) may be a single MOSFET.
  • the trench gate power semiconductor device according to any one of (1) to (20) is an IGB T.
  • FIG. 1 is a cross-sectional view shown for explaining a trench gate power MOSFET 1 according to a first embodiment.
  • FIG. 2 is a plan view for explaining the trench gate power MOSFET 1 according to the first embodiment.
  • FIG. 3 is a diagram showing an impurity concentration profile in the depth direction in the trench gate power MOSFET 1 according to the first embodiment.
  • FIG. 4 is a cross-sectional view shown for explaining a trench gate power MOSFET 2 according to a second embodiment.
  • FIG. 5 is a cross-sectional view for explaining a trench gate power MOSFET 3 according to a third embodiment.
  • FIG. 6 is a cross-sectional view for explaining a trench gate power MOSFET 5 according to a fifth embodiment.
  • FIG. 7 is a plan view for explaining the trench gate power MOSFET 5 according to the fifth embodiment.
  • FIG. 8 is a diagram showing an impurity concentration profile in the depth direction in the trench gate power MOSFET 5 according to the fifth embodiment.
  • FIG. 9 is a plan view for explaining the trench gate power MOSFET 6 according to the sixth embodiment.
  • FIG. 10 is a diagram showing manufacturing steps in the method for manufacturing a trench gate power MOSFET according to the seventh embodiment.
  • FIG. 11 is a diagram showing manufacturing steps in the method for manufacturing a trench gate power MOSFET according to the seventh embodiment.
  • FIG. 12 shows each manufacturing step in the method for manufacturing a trench gate power MOSFET according to the seventh embodiment.
  • FIG. 13 is a diagram showing each manufacturing process in a method for manufacturing a trench gate power MOSFET according to a modification of the seventh embodiment.
  • FIG. 14 is a diagram showing manufacturing steps in the method for manufacturing a trench gate power MOSFET according to the eighth embodiment.
  • FIG. 15 is a diagram showing manufacturing steps in the method for manufacturing a trench gate power MOSFET according to the eighth embodiment.
  • FIG. 16 is a diagram showing manufacturing steps in the method for manufacturing a trench gate power MOSFET according to the eighth embodiment.
  • FIG. 17 is a cross-sectional view of a conventional trench gate power semiconductor device 900.
  • FIG. 1 is a cross-sectional view for explaining the trench gate power MOSFET 1 according to the first embodiment.
  • FIG. 2 is a plan view for explaining the trench gate power MOSFET 1 according to the first embodiment.
  • the trench gate power MOSFET 1 includes an n ⁇ type epitaxial layer (first conductivity type semiconductor layer) 12 formed on the upper surface of the n + type silicon substrate 10, and p-type body region (second conductivity type body region) 20 formed near the upper surface of n-type epitaxial layer 12 and upper surface side force of p-type body region 20 formed to reach n-type epitaxial layer 12
  • the trench gate power MOSFET includes a plurality of trenches 14 and a gate 18 formed in the plurality of trenches 14. Further, p-type carrier extraction regions 26a, 26b, and 26c are formed in a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12.
  • reference numeral 22 indicates an n-type source region
  • reference numeral 24 indicates a p + type contact region
  • reference numerals 28 and 29 indicate insulating layers
  • reference numeral 32 indicates a source electrode
  • reference numeral 34 indicates a drain. The electrode is shown.
  • a trench gate power MOSFET can be provided.
  • the p-type carrier extraction region 26a existing in the cell region is a part of some of the plurality of grooves 14 as shown in FIG. Or it is formed to cover the whole area!
  • the holes can be collected, and the p-type carrier extraction region 26a can be formed so as to cover a part or the whole region of the groove in the part, so that the holes can be efficiently collected. become. Further, in this case, since the P-type carrier extraction region 26a can be formed only in a part or all of the necessary grooves out of the plurality of grooves 14, the on-resistance is increased more than necessary. There is nothing.
  • the p-type carrier extraction region 26a is formed so as to cover the entire region in the outermost groove among the plurality of grooves 14.
  • the p-type carrier extraction regions 26a, 26b, and 26c are the outermost grooves 14 as shown in FIGS. It is formed in a peripheral region further outside the groove formed on the side.
  • the p-type carrier extraction region 26b is formed on the lower surface side of the p-type body region 20, and the p-type carrier extraction region 26c is formed so as to cover the side surface of the p body region 20. ing.
  • the p-type carrier extraction regions 26b and 26c are formed on the lower surface of the p-type body region 20 and the side surfaces of the p-type body region 20 in the peripheral region where the holes are generated in a relatively large amount. It becomes possible to collect the holes more effectively.
  • the p-type carrier extraction regions 26a, 26b, and 26c are formed to a position deeper than the depth of the groove 14. For this reason, since the holes are prevented from colliding with the lower surface of the trench 14, damage to the gate insulating film 16 formed near the bottom surface of the trench 14 can be suppressed.
  • FIG. 3 is a diagram showing an impurity concentration profile in the depth direction in the trench gate power MOSFET 1 according to the first embodiment.
  • the p-type carrier extraction region 26a is formed to a position deeper than the p-type body region 20 as shown in FIG. Further, the impurity concentration of the p-type carrier extraction region 26a is lower than the impurity concentration of the p-type body region 20. This makes it possible to perform efficient carrier extraction.
  • FIG. 4 is a cross-sectional view for explaining the trench gate power MOSFET 2 according to the second embodiment.
  • the trench gate power MOSFET 2 according to the second embodiment has a structure that is basically similar to the trench gate power MOSFET 1 according to the first embodiment. This is different from the trench gate power MOSFET 1 according to the first embodiment. That is, in the trench gate type MOSFET 2 according to the second embodiment, the p-type carrier extraction region 26d existing in the cell region is formed in two adjacent grooves of the plurality of grooves 14, as shown in FIG. It is formed in a part of the inter-groove region of the inter-groove region sandwiched.
  • the trench gate power MOSFET 2 according to the second embodiment differs from the trench gate power MOSFET 1 according to the first embodiment in the configuration of the P-type carrier extraction region existing in the cell region! /
  • the p-type carrier extraction region 26d, 26b, 26c is formed in a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12. Therefore, it is possible to collect holes in the cell region and form the p-type carrier extraction regions 26d, 26b, and 26c in the region. For this reason, holes generated in the cell region can be efficiently collected through the p-type carrier extraction regions 26d, 26b, and 26c, and a trench that can further increase the switching speed.
  • Gate power MOSFET is a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12. Therefore, it is possible to collect holes in the cell region and form the p-type carrier extraction regions 26d, 26b, and 26c in the region. For this reason, holes generated in the cell region
  • the p-type carrier extraction region 26d can be formed in a part or all of the region. As a result, the p-type carrier extraction region 26d can be formed only in the region where the hole is to be collected, and the on-resistance is not increased more than necessary.
  • the p-type carrier extraction region 26d includes the groove 14 formed on the outermost side of the plurality of grooves 14 and the relevant one, although it is not clear from FIG. It is formed in all the regions sandwiched between the grooves 14 adjacent to the grooves 14.
  • FIG. 5 is a cross-sectional view for explaining the trench gate power MOSFET 3 according to the third embodiment.
  • the trench gate power MOSFET 3 according to the third embodiment has a structure that is basically similar to the trench gate power MOSFET 1 according to the first embodiment. This is different from the trench gate power MOSFET 1 according to the first embodiment. That is, in the trench gate part MOSFET 3 according to the third embodiment, the p-type carrier extraction region 26e existing in the cell region has two adjacent grooves 14 in the plurality of grooves 14 as shown in FIG. It is formed so as to cover the region between the grooves sandwiched between them. [0067] Thus, the trench gate power MOSFET 3 according to the third embodiment is different from the trench gate power MOSFET 1 according to the first embodiment in the configuration of the P-type carrier extraction region existing in the cell region!
  • the cell region is formed.
  • the p-type carrier extraction regions 26e, 26b, and 26c are formed in a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12, the cell region is formed.
  • the p-type carrier extraction regions 26e, 26b, and 26c are formed at the sites. For this reason, holes generated in the cell region can be efficiently recovered through the p-type carrier extraction regions 26e, 26b, and 26c, and a trench that can further increase the switching speed.
  • Gate power MOSFET since the p-type carrier extraction regions 26e, 26b, and 26c are formed in a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12, the cell region is formed.
  • the p-type carrier extraction region 26e is sandwiched between two adjacent grooves 14 of the plurality of grooves 14 and these. Since it is formed so as to cover both the inter-groove regions, the area of the p-type carrier bow I cut-out region can be increased, and holes can be recovered more efficiently.
  • the trench gate power MOSFET 4 (not shown) according to the fourth embodiment is a p-type carrier existing in a force cell region having a structure basically similar to that of the trench gate power MOSFET 1 according to the first embodiment.
  • the configuration of the extraction region is different from that of the trench gate power MOSFET 1 according to the first embodiment. That is, in the trench gate power MOSFET 4 according to the fourth embodiment, the p-type carrier extraction region existing in the cell region is the trench gate power MOSFET 1 according to the first embodiment, the trench gate power MOSFET 2 according to the second embodiment, or the implementation.
  • the trench gate power MOSFET 4 according to the fourth embodiment is different from the trench gate power MOSFETs 1, 2, and 3 according to the first to third embodiments in the configuration of the P-type carrier extraction region existing in the cell region.
  • P-type carrier extraction region is formed in a part of the region facing the p-type body region 20 in the n-type epitaxial layer 12 in the n-type epitaxial layer 12 As a result, it is possible to collect holes in the cell region and form a p-type carrier extraction region in the region. As a result, holes generated in the cell region can be efficiently recovered through the P-type carrier extraction region, resulting in a trench gate power MOSFET that can further speed up the switching operation.
  • holes are collected, and a p-type carrier extraction region appropriately selected from the above-described force of the p-type carrier extraction region is provided at the site. Since it becomes possible to arrange the p-type carrier extraction region, the holes can be collected more efficiently.
  • FIG. 6 is a cross-sectional view for explaining the trench gate power MOSFET 5 according to the fifth embodiment.
  • FIG. 7 is a plan view for explaining the trench gate power MOSFET 5 according to the fifth embodiment.
  • the trench gate power MOSFET 5 includes an n-type epitaxial layer (first conductivity type semiconductor layer) 12 and a p-type body region 20 formed in the vicinity of the upper surface of the n-type epitaxial layer 12. (Second conductivity type body region), a plurality of grooves 14 formed so as to reach the n-type epitaxial layer 12 from the upper surface side of the p-type body region 20, and the plurality of grooves 14.
  • a trench gate power MOSFET including a gate 18 and formed in the p-type body region 20 at a depth shallower than the depth of the p-type body region 20 and a source electrode 38 formed on the upper surface of the p-type body region.
  • a p-type carrier extraction region 36a, 36b is formed on the lower surface of the second groove, connected to the source electrode 38 and reaching the n-type epitaxial layer 12 on the lower surface of the second groove. ing.
  • the second groove is formed in the inter-groove region, and the p-type carrier extraction regions 36a and 36b are further formed on the lower surface of the second groove. Since it is formed, it is possible to collect holes in the cell region, and to form the p-type carrier extraction region 36a at the site. For this reason, holes generated in the cell region can be efficiently recovered through the p-type carrier extraction region 36a, and a trench gate power MOS FET that can further increase the switching speed is provided. can do.
  • the second groove is an inter-groove region sandwiched between two adjacent grooves 14 of the plurality of grooves 14 as shown in FIG. Of these, it is formed in the inter-groove region.
  • the p-type carrier bow I cut-out region 36a can be formed over the entire surface of the cell region, so that holes can be efficiently recovered. In this case, even if the p-type carrier extraction region 36a is formed over the entire cell region, it is possible to prevent the transistor operation from being adversely affected. Mona.
  • the second groove is also formed in a peripheral region further outside the outermost groove of the plurality of grooves 14. Has been.
  • the p-type carrier extraction region 36b is also formed in the peripheral region where the holes are generated in a relatively large amount, the holes can be collected more efficiently.
  • the second groove formed in the peripheral region is wider and wider than the second groove formed in the cell region.
  • the P-type carrier extraction region 36b formed in the peripheral region is deeper than the p-type carrier extraction region 36a formed in the cell region. Formed!
  • the p-type carrier extraction region 36 a is formed to a position deeper than the depth of the groove 14.
  • the portion of the p-type carrier extraction region 36a, 36b that is in contact with the second groove has a metal filled in the second groove.
  • a p + type contact layer 24 is formed to reduce the contact resistance with the layer (source electrode 38).
  • the holes collected in the p-type carrier extraction regions 36a and 36b can be efficiently discharged to the outside.
  • FIG. 8 is a diagram showing an impurity concentration profile in the depth direction in the trench gate power MOSFET 5 according to the fifth embodiment.
  • the p-type carrier extraction region 36a is formed to a position deeper than the p-type body region 20 as shown in FIG. Further, the impurity concentration of the p-type carrier extraction region 36 a is lower than the impurity concentration of the p-type body region 20. However, the P + type contact layer 24 has a higher impurity concentration than the p type body region 20. This makes it possible to perform efficient carrier extraction.
  • FIG. 9 is a plan view for explaining the trench gate power MOSFET 6 according to the sixth embodiment.
  • the trench gate power MOSFET 6 according to the sixth embodiment has the same structure as that of the trench gate power MOSFET 5 according to the fifth embodiment. This is different from the case of MOSFET5. That is, in the trench gate power MOSFET 6 according to the sixth embodiment, the grooves 14 are formed in a lattice shape as shown in FIG.
  • the trench gate power MOSFET 6 according to the sixth embodiment differs from the trench gate power MOSFET 5 according to the fifth embodiment in the layout of the trench 14, but the second trench is located in the inter-groove region.
  • P-type carrier extraction regions 36a and 36b are further formed on the lower surface of the second groove. Therefore, the p-type carrier extraction region 36a is formed in the cell region where holes are to be collected. It becomes possible. For this reason, holes generated in the cell region can be efficiently recovered via the p-type carrier extraction region 36a. Thus, a trench gate power semiconductor device capable of achieving a higher speed switching operation is obtained.
  • the manufacturing method of the trench gate power MOSFET according to the seventh embodiment is a manufacturing method of the trench gate power MOSFET for manufacturing the trench gate power MOSFET 4 according to the above-described fourth embodiment.
  • FIG. 10 to FIG. 12 are diagrams showing manufacturing steps in the method for manufacturing the trench gate power MOSFET according to the seventh embodiment.
  • the trench gate power MOSFET manufacturing method according to the seventh embodiment includes the following (a) first step to (i) ninth step in this order, as shown in FIGS.
  • n + type silicon substrate 10 having an n type epitaxial layer 12 formed on the upper surface is prepared (see FIG. 10 (a);).
  • the impurity concentration of the n-type epitaxial layer 12 is, for example, 3 ⁇ 10 + 15 / cm 3 .
  • a silicon oxide film M is selectively formed on the surface of the n-type epitaxial layer 12, and boron ions are implanted using this silicon oxide film M as a mask (for example, 2.6 X 10 1 3 cm 2 ), and boron ion implantation layers 25a, 25d, 25b, and 25c are formed.
  • boron ions are implanted using this silicon oxide film M as a mask (for example, 2.6 X 10 1 3 cm 2 ), and boron ion implantation layers 25a, 25d, 25b, and 25c are formed.
  • thermal annealing is performed (for example, 1100 ° C., 100 minutes) to form P-type diffusion layers 25a ′, 25d ′, 25b ′, and 25c ′ that become p-type carrier extraction regions (FIG. 10 (c) reference.).
  • boron ions are implanted (for example, 1.5 ⁇ 10 13 cm 2 , 50 keV;) to form a boron ion implanted layer 19.
  • Reference numeral 30 denotes a thermal oxide film having a thickness of about 20 to 40 nm.
  • (e) Fifth step Next, thermal annealing is performed (for example, 1100 ° C., 45 minutes) to form the p-type body region 20 (see FIG. 11 (e)). At this time, the p-type carrier extraction regions 26a, 26d, 26b, and 26c are formed at the same time.
  • grooves 14 are formed using a silicon oxide film (not shown) as a mask.
  • a gate insulating film 16 is formed on the inner surface of the groove 14 by thermal oxidation, and then the inside of the groove is filled with polysilicon doped with phosphorus, and the upper surface is etched back, and further the upper surface is etched. the turned into thermal acid to form a gate 18 (FIG. 11 (f) reference.) 0
  • boron ions are implanted into the portion to become the p + type contact region 24 (for example, 2 ⁇ 10 14 cm 2 ), and then thermal annealing is performed (for example, 900. C, 30 minutes) to form the p + type.
  • the outer contour region 24 is formed (see Fig. 12 (g)).
  • n + type source region 22 for example, 4 ⁇ 10 15 cm 2
  • thermal annealing for example, 1000. C, 10 minutes
  • An n + type source region 22 is formed (see FIG. 12 (h)).
  • the insulating layer 28 is formed above the trench and unnecessary insulating layers are removed, and then the source electrode 32 is formed above the insulating layer 28. Further, the drain electrode 34 is formed on the back surface (see FIG. 12 (i)).
  • the trench gate power MOSFET 4 according to the fourth embodiment can be manufactured through the steps as described above. Therefore, according to the method for manufacturing the trench gate power MOSFET according to the seventh embodiment, the trench gate power MOSFET 4 according to the fourth embodiment can be manufactured by a relatively easy method.
  • FIG. 13 is a diagram showing each manufacturing step in the method for manufacturing a trench gate power MOSFET according to a modification of the seventh embodiment.
  • the manufacturing method of the trench gate power MOSFET according to the modification of the seventh embodiment is a manufacturing method very similar to the manufacturing method of the trench gate power MOSFET according to the seventh embodiment, but the second step to the third step are the same. Is different. That is, the second to third steps in the method for manufacturing the trench gate power MOSFET according to the modification of the seventh embodiment are as follows.
  • a silicon oxide film M is selectively formed on the surface of the n-type epitaxial layer 12, and boron ions, for example, are implanted in multiple stages using the silicon oxide film M as a mask (for example, 50 keV to 2 MeV. ;), Boron ion implanted layers 25a ", 25d", 25b ", 25c" are formed (see FIG. 13 (b ')).
  • thermal annealing is performed (for example, 1000 ° C, 10 minutes) to form P-type diffusion layers 25 "', 25d"', 25b '", 25c'" 'that become p-type carrier extraction regions ( See Fig. 13 (c ');).
  • boron ions are implanted in multiple stages in the second step, so that the thermal annealing in the third step is performed.
  • the method for manufacturing a trench gate power MOSFET according to the eighth embodiment is a method for manufacturing the trench gate power MOSFET for manufacturing the trench gate power MOSFET 5 according to the fifth embodiment described above.
  • FIG. 14 to FIG. 16 are diagrams showing respective manufacturing steps in the method for manufacturing the trench gate power MOSFET according to the eighth embodiment.
  • the trench gate power MOSFET manufacturing method according to the eighth embodiment includes the following (a) first step to (i) ninth step in this order, as shown in FIGS.
  • n + type silicon substrate 10 having an n type epitaxial layer 12 formed on the upper surface is prepared (FIG. 1). 4 See (a). ;).
  • the impurity concentration of the n-type epitaxial layer 12 is, for example, 3 ⁇ 10 + 15 / cm 3 .
  • the insulating layer 29 is selectively formed, and then, for example, boron ions are implanted from the surface of the n-type epitaxial layer 12 using the insulating layer 29 as a mask (for example, 1.5 X 10 13 cm " 2 o After that, thermal annealing is performed (for example, 1100 ° C., 45 minutes) to form the p-type body region 20 (see FIG. 14B).
  • a silicon oxide film (not shown) is selectively formed on the surface of the n-type epitaxial layer 12, and the groove 14 is formed using the silicon oxide film as a mask.
  • a gate insulating film 16 is formed on the inner surface of the trench 14 by thermal oxidation, and then the trench is filled with polysilicon doped with phosphorus, and the upper surface is etched back. further to Netsusani ⁇ the top, forming a gate 18 (FIG. 14 (c) reference.) 0
  • arsenic ions are implanted into the region between the grooves 14 and 14 (for example, 4 ⁇ 10 15 cm 2 ) to form the arsenic ion implanted layer 21 (FIG. 15 (d)). reference.;).
  • the insulating layer 28 is formed, and the second groove is formed at a predetermined position in the intermediate region and the peripheral region in the inter-groove region sandwiched between the groove 14 and the groove 14 by using the insulating layer 28 as a mask ( (See Figure 15 (e).)
  • boron ions are implanted into the bottom of the second groove (for example, 2.6 ⁇ 10 15 cm ” 2 ;) to form boron ion implanted layers 35a and 35b (see FIG. 15 (f);). .
  • the source electrode 38 is formed above the insulating layer 28 (see FIG. 16H). At this time the inside of the second groove is filled with the metal constituting the source electrode 38.
  • drain electrode 34 is formed on the back surface (see FIG. 16 (i)).
  • the trench gate power MOSFET 5 according to the fifth embodiment can be manufactured through the steps as described above. Therefore, according to the method for manufacturing the trench gate power MOSFET according to the eighth embodiment, the trench gate power MOSFET 5 according to the fifth embodiment can be manufactured by a relatively easy method.
  • Embodiment 8 the method of manufacturing trench gate power MOSF ET5 according to Embodiment 5 has been described, but the present invention is not limited to this and relates to Embodiment 6. The same applies to the method of manufacturing the trench gate power MOSFET 6.
  • the present invention has been described by taking a trench gate power MOSFET as an example.
  • the present invention is not limited to this, and can be applied to a trench gate IGBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 本発明のトレンチゲートパワーMOSFET1は、n-型エピタキシャル層12と、n-型エピタキシャル層12における上面近傍に形成されたp型ボディ領域20と、p型ボディ領域20の上面側からn-型エピタキシャル層12に達するように形成された複数本の溝14と、複数本の溝14の中に形成されたゲート18とを含むトレンチゲートパワーMOSFETであって、n-型エピタキシャル層12におけるp型ボディ領域20に対向する領域のうち一部の領域には、p型キャリア引き抜き領域26a,26b,26cが形成されている。  このため、本発明のトレンチゲートパワーMOSFET1によれば、セル領域に発生するホールを、p型キャリア引き抜き領域26a,26b,26cを介して効率よく回収することが可能になり、スイッチング動作のさらなる高速化を図ることが可能なトレンチゲートパワーMOSFETを提供することができる。

Description

明 細 書
トレンチゲートパワー半導体装置
技術分野
[0001] 本発明は、トレンチゲートパワー半導体装置に関する。
背景技術
[0002] 図 17は、従来のトレンチゲートパワー半導体装置 900の断面図である。
従来のトレンチゲートパワー半導体装置 900は、図 17に示すように、 p型半導体基 板 910 (図示せず。 )及び p型半導体基板 910の表面近傍に形成された n+型ェピタキ シャル層 911 (図示せず。)と、 n型ェピタキシャル層 911上に配置された n—型ェピタ キシャル層 912 (第 1導電型の半導体層)と、 n—型ェピタキシャル層 912における上面 近傍に形成された P型ボディ領域 920 (第 2導電型のボディ領域)と、 p型ボディ領域 9 20の上面側カゝら n—型ェピタキシャル層 912に達するように形成された複数本の溝 91 4と、複数本の溝 914の中にゲート絶縁膜 916を介して形成されたゲート 918とを含 むトレンチゲートパワー半導体装置である。溝 914と溝 914とに挟まれた溝間領域に おける p型ボディ領域 920の上面近傍にはェミッタ領域 922が形成されている。溝 91 4の上部には絶縁層 928が形成され、その上層には、ェミッタ電極 932が形成されて いる。また、 p型半導体基板 910の下面には、力ソード電極 934 (図示せず。)が形成 されている。
[0003] このように構成された従来のトレンチゲートパワー半導体装置 900にお 、て、最外 周の溝 914のさらに外側の周辺領域 GRには、 p型ボディ領域 920と連結されこれを 包囲するように、 p型半導体領域 920aが形成されている。 p型半導体領域 920aは、 耐圧を高く保持するために、 p型ボディ領域 920よりも深く形成されている。 p型半導 体領域 920a及び p型ボディ領域 920は、サイド拡散領域 SDの上面及びサイド拡散 領域 SDに近接するマージン領域 MRの上面で、コンタクトホール CHを介してェミツ タ電極 932と接続されている。マージン領域 MRの上面にはェミッタ領域 922は形成 されていない。なお、図 17中、符号 CRは、セル領域を示す。
[0004] このため、従来のトレンチゲートパワー半導体装置 900によれば、ゲート電圧をオン 電圧力 オフ電圧に戻したときにサイド拡散領域 SDの付近で比較的大量に発生す るホール Hの大半はサイド拡散領域 SDを通過してェミッタ電極 932で回収されるよう になるため、ゲート電圧をオフ電圧に戻したときのホールの回収が速やかに行われる ようになり、スイッチング動作の高速ィ匕を図ることができる(例えば、特許文献 1参照。
) o
[0005] 特許文献 1 :特開平 9 270512号公報(図 1及び図 2)
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、従来のトレンチゲートパワー半導体装置 900においては、最外周の 溝 914のさらに外側の周辺領域 GRのサイド拡散領域 SDの付近で比較的大量に発 生するホール Hを回収することはできる力 ゲート電圧をオン電圧力 オフ電圧に戻 したときには、セル領域 CRにお ヽてもサイド拡散領域 SDの付近ほどではな 、がある 程度のホールは発生するため、このことがスイッチング動作のさらなる高速ィ匕を図るう えでの妨げとなってしまうという問題点があった。
[0007] そこで、本発明は上記のような問題を解決するためになされたもので、セル領域に 発生するホールを効率よく回収してスイッチング動作のさらなる高速ィ匕を図ることが可 能なトレンチゲートパワー半導体装置を提供することを目的とする。
課題を解決するための手段
[0008] (1)本発明のトレンチゲートパワー半導体装置は、第 1導電型の半導体層と、前記第 1導電型における上面近傍に形成され前記第 1導電型とは反対型の第 2導電型のボ ディ領域と、前記第 2導電型のボディ領域の上面側から前記第 1導電型の半導体層 に達するように形成された複数本の溝と、前記複数本の溝の中に形成されたゲートと を含むトレンチゲートパワー半導体装置であって、前記第 1導電型の半導体層にお ける前記第 2導電型のボディ領域に対向する領域のうち一部の領域には、第 2導電 型のキャリア引き抜き領域が形成されていることを特徴とする。
[0009] このため、本発明のトレンチゲートパワー半導体装置によれば、第 1導電型の半導 体層における第 2導電型のボディ領域に対向する領域のうち一部の領域に第 2導電 型のキャリア引き抜き領域を形成することとしたので、セル領域にぉ 、てホールの回 収を行いたい部位に第 2導電型のキャリア引き抜き領域を形成することが可能になる 。このため、セル領域に発生するホールを、第 2導電型のキャリア引き抜き領域を介し て効率よく回収することが可能になり、スイッチング動作のさらなる高速ィ匕を図ることが 可能なトレンチゲートパワー半導体装置を提供することができる。
[0010] (2)上記(1)に記載のトレンチゲートパワー半導体装置においては、前記第 2導電型 のキャリア引き抜き領域は、前記複数本の溝のうち一部の溝における一部又は全部 の領域を覆うように形成されて ヽることが好ま 、。
[0011] このように構成することにより、ホールの回収を行いたい部位における溝の一部又 は全部の領域を覆うように第 2導電型のキャリア引き抜き領域を形成することが可能 になるため、ホールを効率よく回収することが可能になる。また、この場合、複数本の 溝のうち必要な溝の一部又は全部の領域にのみ第 2導電型のキャリア引き抜き領域 を形成することが可能になるため、必要以上にオン抵抗を増大させてしまうこともない
[0012] (3)上記(2)に記載のトレンチゲートパワー半導体装置においては、前記第 2導電型 のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成された溝における 一部又は全部の領域を覆うように形成されて ヽることが好ま 、。
[0013] このように構成することにより、ホールが発生し易い部位における溝の一部又は全 部の領域を覆うように第 2導電型のキャリア引き抜き領域を形成することが可能になる ため、ホールをさらに効率よく回収することが可能になる。
[0014] (4)上記(1)に記載のトレンチゲートパワー半導体装置においては、前記第 2導電型 のキャリア引き抜き領域は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝 間領域のうち一部の溝間領域における一部又は全部の領域に形成されていることが 好ましい。
[0015] このように構成することによつても、ホールの回収を行いたい部位における溝間領 域の一部又は全部の領域に第 2導電型のキャリア引き抜き領域を形成することが可 能になるため、ホールを効率よく回収することが可能になる。また、この場合、複数本 の溝間領域のうち必要な溝間領域の一部又は全部の領域にのみ第 2導電型のキヤリ ァ引き抜き領域を形成することが可能になるため、必要以上にオン抵抗を増大させて しまうこともない。
[0016] (5)上記 (4)に記載のトレンチゲートパワー半導体装置においては、前記第 2導電型 のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成された溝と前記溝 に隣接する溝とに挟まれた溝間領域のうち一部又は全部の領域に形成されているこ とが好ましい。
[0017] このように構成することにより、ホールが発生し易い部位における溝間領域の一部 又は全部の領域に第 2導電型のキャリア引き抜き領域を形成することが可能になるた め、ホールをさらに効率よく回収することが可能になる。
[0018] (6)上記(1)に記載のトレンチゲートパワー半導体装置においては、前記第 2導電型 のキャリア引き抜き領域は、前記複数本の溝のうちの隣接する 2本の溝及びこれらに 挟まれた溝間領域を覆うように形成されて ヽることが好ま 、。
[0019] このように構成することにより、第 2導電型のキャリア引き抜き領域の面積を広くする ことが可能になるため、ホールを効率よく回収することが可能になる。
[0020] (7)上記(2)〜(6)の 、ずれかに記載のトレンチゲートパワー半導体装置にぉ ヽては
、前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成 された溝のさらに外側の周辺領域にも形成されていることが好ましい。
[0021] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域にも第 2導電型のキャリア引き抜き領域が形成されているため、ホールをさらに効 率よく回収することが可能になる。
[0022] (8)上記(7)に記載のトレンチゲートパワー半導体装置においては、前記周辺領域 に形成された前記第 2導電型のキャリア引き抜き領域は、前記第 2導電型のボディ領 域の下面側に形成されて ヽることが好ま 、。
[0023] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域における、第 2導電型のボディ領域の下面に第 2導電型のキャリア引き抜き領域が 形成されているため、ホールをさらに効果的に回収することが可能になる。
[0024] (9)上記(7)又は(8)に記載のトレンチゲートパワー半導体装置においては、前記周 辺領域に形成された前記第 2導電型のキャリア引き抜き領域は、前記第 2導電型の ボディ領域の側面を覆うように形成されて 、ることが好ま 、。 [0025] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域における、第 2導電型のボディ領域の側面を覆うように第 2導電型のキャリア引き抜 き領域が形成されているため、ホールをさらに効果的に回収することが可能になる。
[0026] (10)上記(1)〜(9)の 、ずれかに記載のトレンチゲートパワー半導体装置にお!、て は、前記第 2導電型のキャリア引き抜き領域は、前記溝の深さよりも深い位置まで形 成されて!/、ることが好まし!/、。
[0027] このように構成することにより、溝の下面にホールが衝突することが抑制されるため 、溝の底面近傍に形成されているゲート絶縁膜の損傷を抑制することが可能になる。
[0028] (11)本発明の他のトレンチゲートパワー半導体装置は、第 1導電型の半導体層と、 前記第 1導電型の半導体層における上面近傍に形成され前記第 1導電型とは反対 型の第 2導電型のボディ領域と、前記第 2導電型のボディ領域の上面側から前記第 1 導電型の半導体層に達するように形成された複数本の溝と、前記複数本の溝の中に 形成されたゲートとを含むトレンチゲートパワー半導体装置であって、前記第 2導電 型のボディ領域に、前記第 2導電型のボディ領域の深さよりも浅く形成されるとともに 、前記第 1導電型の半導体層の上面に形成される電極のうちゲート電極と異なる電 極に接続される金属層を内部に含む第 2の溝をさらに含み、前記第 2の溝の下面に は、前記金属層に接続され、前記第 1導電型の半導体層に達するように第 2導電型 のキャリア引き抜き領域が形成されていることを特徴とする。
[0029] このため、本発明の他のトレンチゲートパワー半導体装置によれば、溝間領域に第 2の溝を形成し、この第 2の溝の下面にさらに第 2導電型のキャリア引き抜き領域を形 成することとしたので、セル領域にぉ 、てホールの回収を行 、た 、部位に第 2導電型 のキャリア引き抜き領域を形成することが可能になる。このため、セル領域に発生する ホールを、第 2導電型のキャリア引き抜き領域を介して効率よく回収することが可能に なり、スイッチング動作のさらなる高速ィ匕を図ることが可能なトレンチゲートパワー半導 体装置を提供することができる。
[0030] (12)上記(11)に記載のトレンチゲートパワー半導体装置においては、前記第 2の溝 は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域のうちすベての 溝間領域に形成されて 、ることが好ま 、。 [0031] このように構成することにより、セル領域の全面にわたって第 2導電型のキャリア引 き抜き領域を形成することが可能になるため、ホールを効率よく回収することが可能 になる。この場合、セル領域の全面にわたって第 2導電型のキャリア引き抜き領域が 形成されたとしても、トランジスタ動作にあまり悪影響を与えないようにすることが可能 であるため、必要以上にスイッチング性能を低下させてしまうこともな 、。
[0032] (13)上記(11)に記載のトレンチゲートパワー半導体装置においては、前記第 2の溝 は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域のうちすベての 溝間領域における一部の領域に形成されて 、ることが好ま 、。
[0033] このように構成することにより、セル領域の必要な部位にのみ第 2導電型のキャリア 引き抜き領域を形成することが可能になるため、トランジスタ動作に与える影響を最 小限のものにすることが可能になる。
[0034] (14)上記(11)に記載のトレンチゲートパワー半導体装置においては、前記第 2の溝 は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域のうち一部の溝 間領域における一部又は全部の領域に形成されて 、ることが好まし 、。
[0035] このように構成することによつても、セル領域の必要な部位にのみ第 2導電型のキヤ リア引き抜き領域を形成することが可能になるため、トランジスタ動作に与える影響を 最小限のものにすることが可能になる。
[0036] (15)上記(11)に記載のトレンチゲートパワー半導体装置においては、前記第 2の溝 は、前記複数本の溝のうち最も外側の溝のさらに外側の周辺領域に形成されて 、る ことが好ましい。
[0037] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域に第 2導電型のキャリア引き抜き領域が形成されているため、ホールをさらに効率 よく回収することが可能になる。
[0038] (16)上記(12)〜(14)のいずれかに記載のトレンチゲートパワー半導体装置におい ては、前記第 2の溝は、前記複数本の溝のうち最も外側の溝のさらに外側の周辺領 域にも形成されて 、ることが好ま 、。
[0039] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域にも第 2導電型のキャリア引き抜き領域が形成されているため、ホールをさらに効 率よく回収することが可能になる。
[0040] (17)上記(16)に記載のトレンチゲートパワー半導体装置においては、前記周辺領 域に形成された前記第 2の溝は、前記溝間領域に形成された前記第 2の溝よりも広
Vヽ幅を有することが好まし!/、。
[0041] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域に大面積の第 2導電型のキャリア引き抜き領域を設けることにより、比較的大量に 発生するホールをさらに効率よく回収することが可能になる。
[0042] (18)上記(16)又は(17)に記載のトレンチゲートパワー半導体装置においては、前 記周辺領域に形成された前記第 2導電型のキャリア引き抜き領域は、前記溝間領域 に形成された前記第 2導電型のキャリア引き抜き領域よりも深い位置まで形成されて 、ることが好まし!/、。
[0043] このように構成することにより、ホールが比較的大量に発生する領域である周辺領 域に、深い第 2導電型のキャリア引き抜き領域を設けることにより、比較的大量に発生 するホールをさらに効率よく回収することが可能になる。
[0044] (19)上記(11)〜(18)のいずれかに記載のトレンチゲートパワー半導体装置におい ては、前記第 2導電型のキャリア引き抜き領域は、前記溝の深さよりも深い位置まで 形成されて ヽることが好ま ヽ。
[0045] このように構成することにより、溝の下面にホールが衝突することが抑制されるため
、溝の底面近傍に形成されているゲート絶縁膜の損傷を抑制することが可能になる。
[0046] (20)上記(11)〜(19)の 、ずれかに記載のトレンチゲートパワー半導体装置にお!、 ては、前記第 2導電型のキャリア引き抜き領域における前記第 2の溝と接触する部位 には、前記第 2の溝の内部に充填されている前記金属層とのコンタクト抵抗を低減す るためのコンタクト層が形成されて 、ることが好ま 、。
[0047] このように構成することにより、第 2導電型のキャリア引き抜き領域で回収したホール を効率よく外部に排出することが可能になる。
[0048] (21)上記(1)〜(20)のいずれかに記載のトレンチゲートパワー半導体装置は、パヮ 一 MOSFETであることができる。
[0049] このように構成することにより、スイッチング動作のさらなる高速ィ匕を図ることが可能 なトレンチゲートパワー MOSFETとなる
[0050] (22)上記(1)〜(20)のいずれかに記載のトレンチゲートパワー半導体装置は、 IGB Tであることがでさる。
[0051] このように構成することにより、スイッチング動作のさらなる高速ィ匕を図ることが可能 なトレンチゲート IGBTとなる。
図面の簡単な説明
[0052] [図 1]実施形態 1に係るトレンチゲートパワー MOSFET1を説明するために示す断面 図である。
[図 2]実施形態 1に係るトレンチゲートパワー MOSFET1を説明するために示す平面 図である。
[図 3]実施形態 1に係るトレンチゲートパワー MOSFET1における深さ方向の不純物 濃度プロファイルを示す図である。
[図 4]実施形態 2に係るトレンチゲートパワー MOSFET2を説明するために示す断面 図である。
[図 5]実施形態 3に係るトレンチゲートパワー MOSFET3を説明するために示す断面 図である。
[図 6]実施形態 5に係るトレンチゲートパワー MOSFET5を説明するために示す断面 図である。
[図 7]実施形態 5に係るトレンチゲートパワー MOSFET5を説明するために示す平面 図である。
[図 8]実施形態 5に係るトレンチゲートパワー MOSFET5における深さ方向の不純物 濃度プロファイルを示す図である。
[図 9]実施形態 6に係るトレンチゲートパワー MOSFET6を説明するために示す平面 図である。
[図 10]実施形態 7に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。
[図 11]実施形態 7に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。 [図 12]実施形態 7に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。
[図 13]実施形態 7の変形例に係るトレンチゲートパワー MOSFETの製造方法にお ける各製造工程を示す図である。
[図 14]実施形態 8に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。
[図 15]実施形態 8に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。
[図 16]実施形態 8に係るトレンチゲートパワー MOSFETの製造方法における各製造 工程を示す図である。
[図 17]従来のトレンチゲートパワー半導体装置 900の断面図である。
発明を実施するための最良の形態
[0053] 以下、図面を用いて、本発明の実施の形態を詳しく説明する。
[0054] [実施形態 1]
図 1は、実施形態 1に係るトレンチゲートパワー MOSFET1を説明するために示す 断面図である。図 2は、実施形態 1に係るトレンチゲートパワー MOSFET1を説明す るために示す平面図である。
実施形態 1に係るトレンチゲートパワー MOSFET1は、図 1及び図 2に示すように、 n+型シリコン基板 10の上面に形成された n—型ェピタキシャル層(第 1導電型の半導体 層) 12と、 n型ェピタキシャル層 12における上面近傍に形成された p型ボディ領域( 第 2導電型のボディ領域) 20と、 p型ボディ領域 20の上面側力 n—型ェピタキシャル 層 12に達するように形成された複数本の溝 14と、複数本の溝 14の中に形成された ゲート 18とを含むトレンチゲートパワー MOSFETである。そして、 n—型ェピタキシャ ル層 12における p型ボディ領域 20に対向する領域のうち一部の領域には、 p型キヤリ ァ引き抜き領域 26a, 26b, 26cが形成されている。なお、図 1において、符号 22は n 型ソース領域を示し、符号 24は p+型コンタクト領域を示し、符号 28及び符号 29は絶 縁層を示し、符号 32はソース電極を示し、符号 34はドレイン電極を示す。
[0055] このため、実施形態 1に係るトレンチゲートパワー MOSFET1によれば、 n—型ェピタ キシャル層 12における p型ボディ領域 20に対向する領域のうち一部の領域に p型キ ャリア引き抜き領域 26a, 26b, 26cを形成することとしたので、セル領域においてホ ールの回収を行いたい部位に p型キャリア引き抜き領域 26a, 26b, 26cを形成する ことが可能になる。このため、セル領域に発生するホールを、 p型キャリア引き抜き領 域 26a, 26b, 26cを介して効率よく回収することが可能になり、スイッチング動作のさ らなる高速ィ匕を図ることが可能なトレンチゲートパワー MOSFETを提供することがで きる。
[0056] p型キャリア引き抜き領域 26a, 26b, 26cのうち、セル領域に存在する p型キャリア 引き抜き領域 26aは、図 2に示すように、複数本の溝 14のうち一部の溝における一部 又は全部の領域を覆うように形成されて!ヽる。
このため、ホールの回収を行 、た 、部位における溝の一部又は全部の領域を覆う ように p型キャリア引き抜き領域 26aを形成することが可能になるため、ホールを効率 よく回収することが可能になる。また、この場合、複数本の溝 14のうち必要な溝の一 部又は全部の領域にのみ P型キャリア引き抜き領域 26aを形成することが可能になる ため、必要以上にオン抵抗を増大させてしまうこともない。
[0057] また、 p型キャリア引き抜き領域 26aは、図 2に示すように、複数本の溝 14のうち最も 外側に形成された溝における全部の領域を覆うように形成されて ヽる。
このため、ホールが発生し易い部位における溝の全部の領域を覆うように p型キヤリ ァ引き抜き領域 26aを形成することにより、ホールをさらに効率よく回収することが可 會 になる。
[0058] p型キャリア引き抜き領域 26a, 26b, 26cのうち、周辺領域に存在する p型キャリア 引き抜き領域 26b, 26cは、図 1及び図 2に示すように、複数本の溝 14のうち最も外 側に形成された溝のさらに外側の周辺領域に形成されている。
このため、ホールが比較的大量に発生する領域である周辺領域に p型キャリア引き 抜き領域 26b, 26cが形成されているため、ホールをさらに効率よく回収することが可 會 になる。
[0059] このうち、 p型キャリア引き抜き領域 26bは、 p型ボディ領域 20の下面側に形成され ており、 p型キャリア引き抜き領域 26cは、 pボディ領域 20の側面を覆うように形成され ている。
このため、ホールが比較的大量に発生する領域である周辺領域における、 p型ボデ ィ領域 20の下面や p型ボディ領域 20の側面に p型キャリア引き抜き領域 26b, 26cが 形成されているため、ホールをさらに効果的に回収することが可能になる。
[0060] また、実施形態 1に係るトレンチゲートパワー MOSFET1においては、 p型キャリア 引き抜き領域 26a, 26b, 26cは、溝 14の深さよりも深い位置まで形成されている。 このため、溝 14の下面にホールが衝突することが抑制されるため、溝 14の底面近 傍に形成されているゲート絶縁膜 16の損傷を抑制することが可能になる。
[0061] 図 3は、実施形態 1に係るトレンチゲートパワー MOSFET1における深さ方向の不 純物濃度プロファイルを示す図である。
実施形態 1に係るトレンチゲートパワー MOSFET1にお 、ては、 p型キャリア引き抜 き領域 26aは、図 3に示すように、 p型ボディ領域 20よりも深い位置まで形成されてい る。また、 p型キャリア引き抜き領域 26aの不純物濃度は、 p型ボディ領域 20の不純物 濃度よりも薄い。これによつて、効率的なキャリア引き抜きを行うことが可能になる。
[0062] [実施形態 2]
図 4は、実施形態 2に係るトレンチゲートパワー MOSFET2を説明するために示す 断面図である。
実施形態 2に係るトレンチゲートパワー MOSFET2は、実施形態 1に係るトレンチ ゲートパワー MOSFET1と基本的にはよく似た構造を有している力 セル領域に存 在する P型キャリア引き抜き領域の構成が、実施形態 1に係るトレンチゲートパワー M OSFET1の場合とは異なっている。すなわち、実施形態 2に係るトレンチゲートパヮ 一 MOSFET2においては、セル領域に存在する p型キャリア引き抜き領域 26dは、 図 4に示すように、複数本の溝 14のうちの隣接する 2本の溝に挟まれた溝間領域のう ち一部の溝間領域に形成されて 、る。
[0063] このように、実施形態 2に係るトレンチゲートパワー MOSFET2は、セル領域に存 在する P型キャリア引き抜き領域の構成が実施形態 1に係るトレンチゲートパワー MO SFET1の場合とは異なって!/、るが、 n型ェピタキシャル層 12における p型ボディ領 域 20に対向する領域のうち一部の領域に p型キャリア引き抜き領域 26d, 26b, 26c を形成することとしたので、セル領域にお!、てホールの回収を行 、た 、部位に p型キ ャリア引き抜き領域 26d, 26b, 26cを形成することが可能になる。このため、セル領 域に発生するホールを p型キャリア引き抜き領域 26d, 26b, 26cを介して効率よく回 収することが可能になり、スイッチング動作のさらなる高速ィ匕を図ることが可能なトレン チゲートパワー MOSFETとなる。
[0064] また、実施形態 2に係るトレンチゲートパワー MOSFET2においては、複数本の溝 14のうちの隣接する 2本の溝に挟まれた溝間領域のうち一部の溝間領域におけるさ らに一部又は全部の領域に p型キャリア引き抜き領域 26dを形成することが可能であ る。このため、ホールの回収を行いたい部位における領域にのみ p型キャリア引き抜 き領域 26dを形成することが可能になるため、必要以上にオン抵抗を増大させてしま うこともない。
[0065] また、実施形態 2に係るトレンチゲートパワー MOSFET2においては、図 4からは 明らかでないが、 p型キャリア引き抜き領域 26dは、複数本の溝 14のうち最も外側に 形成された溝 14と当該溝 14に隣接する溝 14とに挟まれた領域のうち全部の領域に 形成されている。
このため、ホールが発生し易い部位においては、溝間領域の全部に p型キャリア引 き抜き領域を形成することが可能になるため、ホールをさらに効率よく回収することが 可會 になる。
[0066] [実施形態 3]
図 5は、実施形態 3に係るトレンチゲートパワー MOSFET3を説明するために示す 断面図である。
実施形態 3に係るトレンチゲートパワー MOSFET3は、実施形態 1に係るトレンチ ゲートパワー MOSFET1と基本的にはよく似た構造を有している力 セル領域に存 在する P型キャリア引き抜き領域の構成が、実施形態 1に係るトレンチゲートパワー M OSFET1の場合とは異なっている。すなわち、実施形態 3に係るトレンチゲートパヮ 一 MOSFET3においては、セル領域に存在する p型キャリア引き抜き領域 26eは、 図 5に示すように、複数本の溝 14のうちの隣接する 2本の溝 14及びこれらに挟まれ た溝間領域を覆うように形成されて!ヽる。 [0067] このように、実施形態 3に係るトレンチゲートパワー MOSFET3は、セル領域に存 在する P型キャリア引き抜き領域の構成が実施形態 1に係るトレンチゲートパワー MO SFET1の場合とは異なって!/、るが、 n型ェピタキシャル層 12における p型ボディ領 域 20に対向する領域のうち一部の領域に p型キャリア引き抜き領域 26e, 26b, 26c を形成することとしたので、セル領域にお!、てホールの回収を行 、た 、部位に p型キ ャリア引き抜き領域 26e, 26b, 26cを形成することが可能になる。このため、セル領 域に発生するホールを、 p型キャリア引き抜き領域 26e, 26b, 26cを介して効率よく 回収することが可能になり、スイッチング動作のさらなる高速ィ匕を図ることが可能なトレ ンチゲートパワー MOSFETとなる。
[0068] また、実施形態 3に係るトレンチゲートパワー MOSFET3においては、上記したよう に、 p型キャリア引き抜き領域 26eは、複数本の溝 14のうちの隣接する 2本の溝 14及 びこれらに挟まれた溝間領域をともに覆うように形成されて ヽるため、 p型キャリア弓 Iき 抜き領域の面積を広くすることが可能になり、ホールをさらに効率よく回収することが 可會 になる。
[0069] [実施形態 4]
実施形態 4に係るトレンチゲートパワー MOSFET4 (図示せず。)は、実施形態 1に 係るトレンチゲートパワー MOSFET1と基本的にはよく似た構造を有している力 セ ル領域に存在する p型キャリア引き抜き領域の構成が、実施形態 1に係るトレンチゲ ートパワー MOSFET1の場合とは異なっている。すなわち、実施形態 4に係るトレン チゲートパワー MOSFET4においては、セル領域に存在する p型キャリア引き抜き領 域は、実施形態 1に係るトレンチゲートパワー MOSFETl、実施形態 2に係るトレン チゲートパワー MOSFET2又は実施形態 3に係るトレンチゲートパワー MOSFET3 における P型キャリア引き抜き領域 26a, 26b, 26c, 26d, 26eのすベてを有して!/ヽる
[0070] このように、実施形態 4に係るトレンチゲートパワー MOSFET4は、セル領域に存 在する P型キャリア引き抜き領域の構成が実施形態 1〜3に係るトレンチゲートパワー MOSFET1, 2, 3の場合とは異なっている力 n—型ェピタキシャル層 12における p 型ボディ領域 20に対向する領域のうち一部の領域に p型キャリア引き抜き領域を形 成することとしたので、セル領域にお!、てホールの回収を行 、た!/、部位に p型キヤリ ァ引き抜き領域を形成することが可能になる。このため、セル領域に発生するホール を P型キャリア引き抜き領域を介して効率よく回収することが可能になり、スイッチング 動作のさらなる高速化を図ることが可能なトレンチゲートパワー MOSFETとなる。
[0071] また、実施形態 4に係るトレンチゲートパワー MOSFET4によれば、ホールの回収 を行 、た 、部位に、上記した p型キャリア引き抜き領域のな力から適宜選択した p型キ ャリア引き抜き領域を配置することが可能になるため、ホールをさらに効率よく回収す るように p型キャリア引き抜き領域を配置することが可能になる。
[0072] [実施形態 5]
図 6は、実施形態 5に係るトレンチゲートパワー MOSFET5を説明するために示す 断面図である。図 7は、実施形態 5に係るトレンチゲートパワー MOSFET5を説明す るために示す平面図である。
[0073] 実施形態 5に係るトレンチゲートパワー MOSFET5は、 n—型ェピタキシャル層(第 1 導電型の半導体層) 12と、 n型ェピタキシャル層 12における上面近傍に形成された p型ボディ領域 20 (第 2導電型のボディ領域)と、 p型ボディ領域 20の上面側から n型 ェピタキシャル層 12に達するように形成された複数本の溝 14と、複数本の溝 14の中 に形成されたゲート 18とを含むトレンチゲートパワー MOSFETであって、 p型ボディ 領域 20に、 p型ボディ領域 20の深さよりも浅く形成されるとともに、 p型ボディ領域の 上面に形成されるソース電極 38を内部に含む第 2の溝をさらに含み、第 2の溝の下 面には、ソース電極 38に接続され、 n型ェピタキシャル層 12に達するように p型キヤ リア引き抜き領域 36a, 36bが形成されている。
[0074] このため、実施形態 5に係るトレンチゲートパワー MOSFET5によれば、溝間領域 に第 2の溝を形成し、この第 2の溝の下面にさらに p型キャリア引き抜き領域 36a, 36 bを形成することとしたので、セル領域にお 、てホールの回収を行 、た 、部位に p型 キャリア引き抜き領域 36aを形成することが可能になる。このため、セル領域に発生 するホールを、 p型キャリア引き抜き領域 36aを介して効率よく回収することが可能に なり、スイッチング動作のさらなる高速ィ匕を図ることが可能なトレンチゲートパワー MO SFETを提供することができる。 [0075] 実施形態 5に係るトレンチゲートパワー MOSFET5においては、第 2の溝は、図 6 に示すように、複数本の溝 14のうちの隣接する 2本の溝 14に挟まれた溝間領域のう ちすベての溝間領域に形成されて 、る。
このため、セル領域の全面にわたつて p型キャリア弓 Iき抜き領域 36aを形成すること が可能になるので、ホールを効率よく回収することが可能になる。この場合、セル領 域の全面にわたって p型キャリア引き抜き領域 36aが形成されたとしても、トランジスタ 動作にあまり悪影響を与えないようにすることが可能であるため、必要以上にスィッチ ング性能を低下させることもな 、。
[0076] また、実施形態 5に係るトレンチゲートパワー MOSFET5においては、第 2の溝は、 図 6に示すように、複数本の溝 14のうち最も外側の溝のさらに外側の周辺領域にも 形成されている。
このため、ホールが比較的大量に発生する領域である周辺領域にも p型キャリア引 き抜き領域 36bが形成されているので、ホールをさらに効率よく回収することが可能 になる。
[0077] また、実施形態 5に係るトレンチゲートパワー MOSFET5においては、周辺領域に 形成された第 2の溝は、セル領域に形成された第 2の溝よりも広 、幅を有して 、る。 このため、ホールが比較的大量に発生する領域である周辺領域に大面積の p型キ ャリア引き抜き領域 36bを設けることにより、比較的大量に発生するホールをさらに効 率よく回収することが可能になる。
[0078] また、実施形態 5に係るトレンチゲートパワー MOSFET5においては、周辺領域に 形成された P型キャリア引き抜き領域 36bは、セル領域に形成された p型キャリア引き 抜き領域 36aよりも深 、位置まで形成されて!、る。
このため、ホールが比較的大量に発生する領域である周辺領域に深い p型キャリア 引き抜き領域 36bを設けることにより、比較的大量に発生するホールをさらに効率よく 回収することが可能になる。
[0079] また、実施形態 5に係るトレンチゲートパワー MOSFET5においては、 p型キャリア 引き抜き領域 36aは、溝 14の深さよりも深い位置まで形成されている。
このため、溝 14の下面にホールが衝突することが抑制されるようになり、溝 14の底 面近傍に形成されているゲート絶縁膜 16の損傷を抑制することが可能になる。
[0080] また、実施形態 5に係るトレンチゲートパワー MOSFET5においては、 p型キャリア 引き抜き領域 36a, 36bにおける第 2の溝と接触する部位には、第 2の溝の内部に充 填されている金属層(ソース電極 38)とのコンタクト抵抗を低減するための p+型コンタ タト層 24が形成されている。
このため、 p型キャリア引き抜き領域 36a, 36bで回収したホールを効率よく外部に 排出することが可能になる。
[0081] 図 8は、実施形態 5に係るトレンチゲートパワー MOSFET5における深さ方向の不 純物濃度プロファイルを示す図である。
実施形態 5に係るトレンチゲートパワー MOSFET5においては、 p型キャリア引き抜 き領域 36aは、図 8に示すように、 p型ボディ領域 20よりも深い位置まで形成されてい る。また、 p型キャリア引き抜き領域 36aの不純物濃度は、 p型ボディ領域 20の不純物 濃度よりも薄い。但し、 P+型コンタクト層 24の部分では、 p型ボディ領域 20の不純物 濃度よりも濃い。これによつて、効率的なキャリア引き抜きを行うことが可能になる。
[0082] [実施形態 6]
図 9は、実施形態 6に係るトレンチゲートパワー MOSFET6を説明するために示す 平面図である。
実施形態 6に係るトレンチゲートパワー MOSFET6は、実施形態 5に係るトレンチ ゲートパワー MOSFET5と基本的にはよく似た構造を有している力 溝 14のレイァゥ トが、実施形態 5に係るトレンチゲートパワー MOSFET5の場合とは異なっている。 すなわち、実施形態 6に係るトレンチゲートパワー MOSFET6においては、溝 14は、 図 9に示すように、格子状に形成されている。
[0083] このように、実施形態 6に係るトレンチゲートパワー MOSFET6は、溝 14のレイァゥ トが実施形態 5に係るトレンチゲートパワー MOSFET5の場合とは異なっているが、 溝間領域に第 2の溝を形成し、この第 2の溝の下面にさらに p型キャリア引き抜き領域 36a, 36bを形成することとしたので、セル領域においてホールの回収を行いたい部 位に p型キャリア引き抜き領域 36aを形成することが可能になる。このため、セル領域 に発生するホールを p型キャリア引き抜き領域 36aを介して効率よく回収することが可 能になり、スイッチング動作のさらなる高速ィ匕を図ることが可能なトレンチゲートパワー 半導体装置となる。
[0084] [実施形態 7]
実施形態 7に係るトレンチゲートパワー MOSFETの製造方法は、上記した実施形 態 4に係るトレンチゲートパワー MOSFET4を製造するためのトレンチゲートパワー MOSFETの製造方法である。
[0085] 図 10〜図 12は、実施形態 7に係るトレンチゲートパワー MOSFETの製造方法に おける各製造工程を示す図である。
実施形態 7に係るトレンチゲートパワー MOSFETの製造方法は、図 10〜図 12に 示すように、以下の(a)第 1の工程〜 (i)第 9の工程をこの順序で含んで 、る。
[0086] (a)第 1の工程
上面に n型ェピタキシャル層 12が形成された n+型シリコン基板 10を準備する(図 1 0 (a)参照。;)。 n型ェピタキシャル層 12の不純物濃度は、例えば 3 X 10+15個/ cm3と する。
[0087] (b)第 2の工程
次に、 n型ェピタキシャル層 12の表面に選択的にシリコン酸ィ匕膜 Mを形成し、この シリコン酸ィ匕膜 Mをマスクとして、例えばボロンイオンを打ち込み(例えば、 2. 6 X 101 3cm 2。)、ボロンイオン打ち込み層 25a, 25d, 25b, 25cを形成する。(図 10 (b)参 昭 )ノ
[0088] (c)第 3の工程
次に、熱ァニールを行い(例えば、 1100°C、 100分。)、 p型キャリア引き抜き領域と なる P型拡散層 25a', 25d' , 25b' , 25c'を形成する(図 10 (c)参照。)。
[0089] (d)第 4の工程
次に、シリコン酸ィ匕膜 Mを除去後、絶縁層 29をマスクとして、例えばボロンイオンを 打ち込み(例えば、 1. 5 X 1013cm 2、 50keV。;)、ボロンイオン打ち込み層 19を形成 する(図 11 (d)参照。;)。なお、符号 30は、 20〜40nm程度の厚みを有する熱酸化膜 を示す。
[0090] (e)第 5の工程 次に、熱ァニールを行い(例えば、 1100°C、 45分。)、 p型ボディ領域 20を形成す る(図 11 (e)参照。)。このとき、 p型キャリア引き抜き領域 26a, 26d, 26b, 26cが同 時に形成される。
[0091] (f)第 6の工程
次に、シリコン酸ィ匕膜 (図示せず。)をマスクとして溝 14を形成する。シリコン酸ィ匕膜 を除去後、熱酸ィ匕により溝 14の内面にゲート絶縁膜 16を形成し、その後、溝の内部 をリンがドープされたポリシリコンで埋め、上面をエッチングバックしさらに上面を熱酸 化して、ゲート 18を形成する(図 11 (f)参照。 )0
[0092] (g)第 7の工程
次に、 p+型コンタクト領域 24となる部分に、例えばボロンイオンを打ち込み (例えば 、 2 X 1014cm 2。)、その後、熱ァニールを行い(例えば、 900。C、 30分。)、 p+型コン タ外領域 24を形成する(図 12 (g)参照。 )0
[0093] (h)第 8の工程
次に、 n+型ソース領域 22に対応する部分に、例えば砒素イオンを打ち込み (例え ば、 4 X 1015cm 2。)、その後、熱ァニールを行い(例えば、 1000。C、 10分。)、 n+型 ソース領域 22を形成する(図 12 (h)参照。)。
[0094] (i)第 9の工程
次に、溝の上方に絶縁層 28を形成するとともに不要な絶縁層を除去し、その後、絶 縁層 28の上方にソース電極 32を形成する。また、裏面にドレイン電極 34を形成する (図 12 (i)参照。)。
[0095] 実施形態 7に係るトレンチゲートパワー MOSFETの製造方法によれば、以上のよう な工程を経て実施形態 4に係るトレンチゲートパワー MOSFET4を製造することがで きる。このため、実施形態 7に係るトレンチゲートパワー MOSFETの製造方法によれ ば、比較的容易な方法で、実施形態 4に係るトレンチゲートパワー MOSFET4を製 造することができる。
[0096] [変形例]
図 13は、実施形態 7の変形例に係るトレンチゲートパワー MOSFETの製造方法に おける各製造工程を示す図である。 実施形態 7の変形例に係るトレンチゲートパワー MOSFETの製造方法は、実施形 態 7に係るトレンチゲートパワー MOSFETの製造方法とよく似た製造方法であるが、 第 2の工程〜第 3の工程が異なっている。すなわち、実施形態 7の変形例に係るトレ ンチゲートパワー MOSFETの製造方法における第 2の工程〜第 3の工程は、以下 のような工程である。
[0097] (b,)第 2の工程
n型ェピタキシャル層 12の表面に選択的にシリコン酸ィ匕膜 Mを形成し、このシリコ ン酸ィ匕膜 Mをマスクとして、例えばボロンイオンを多段的に打ち込み (例えば、 50ke V〜2MeV。;)、ボロンイオン打ち込み層 25a", 25d", 25b", 25c"を形成する(図 1 3 (b' )参照。)。
[0098] (c,)第 3の工程
次に、熱ァニールを行い(例えば、 1000°C、 10分。)、 p型キャリア引き抜き領域と なる P型拡散層 25" ' , 25d" ' , 25b' " , 25c' ' 'を形成する(図 13 (c' )参照。;)。
[0099] このため、実施形態 7の変形例に係るトレンチゲートパワー MOSFETの製造方法 によれば、第 2の工程で、ボロンイオンを多段的に打ち込むこととしているため、第 3 の工程における熱ァニールによって、 p型拡散層 25a,,, , 25d, " , 25b' " , 25c" ,が深い位置まで形成される。このため、 p型ボディ領域 20よりも深い p型キャリア引き 抜き領域 26a, 26d, 26b, 26cを容易に形成することができるという効果がある。
[0100] [実施形態 8]
実施形態 8に係るトレンチゲートパワー MOSFETの製造方法は、上記した実施形 態 5に係るトレンチゲートパワー MOSFET5を製造するためのトレンチゲートパワー MOSFETの製造方法である。
[0101] 図 14〜図 16は、実施形態 8に係るトレンチゲートパワー MOSFETの製造方法に おける各製造工程を示す図である。
実施形態 8に係るトレンチゲートパワー MOSFETの製造方法は、図 14〜図 16に 示すように、以下の(a)第 1の工程〜 (i)第 9の工程をこの順序で含んで 、る。
[0102] (a)第 1の工程
上面に n型ェピタキシャル層 12が形成された n+型シリコン基板 10を準備する(図 1 4 (a)参照。;)。 n—型ェピタキシャル層 12の不純物濃度は、例えば 3 X 10+15個/ cm3と する。
[0103] (b)第 2の工程
次に、選択的に絶縁層 29を形成し、その後、絶縁層 29をマスクとして n—型ェピタキ シャル層 12の表面から、例えばボロンイオンを打ち込み(例えば、 1. 5 X 1013cm"2 o )、その後、熱ァニールを行い(例えば、 1100°C、 45分。)、 p型ボディ領域 20を形成 する(図 14 (b)参照。)。
[0104] (c)第 3の工程
次に、 n型ェピタキシャル層 12の表面に選択的にシリコン酸ィ匕膜(図示せず。)を 形成し、このシリコン酸ィ匕膜をマスクとして溝 14を形成する。シリコン酸ィ匕膜を除去後 、熱酸ィ匕により溝 14の内面にゲート絶縁膜 16を形成し、その後、溝の内部をリンがド ープされたポリシリコンで埋め、上面をエッチングバックしさらに上面を熱酸ィ匕して、ゲ ート 18を形成する(図 14 (c)参照。 )0
[0105] (d)第 4の工程
次に、溝 14と溝 14とに挟まれた溝間領域に、例えば砒素イオンを打ち込み (例え ば、 4 X 1015cm 2。)、砒素イオン打ち込み層 21を形成する(図 15 (d)参照。;)。
[0106] (e)第 5の工程
次に、絶縁層 28を形成し、この絶縁層 28をマスクとして、溝 14と溝 14とに挟まれた 溝間領域における中間領域及び周辺領域の所定位置に、第 2の溝を形成する(図 1 5 (e)参照。)。
[0107] (f)第 6の工程
次に、第 2の溝の底部に、例えばボロンイオンを打ち込み (例えば、 2.6 X 1015cm"2 。;)、ボロンイオン打ち込み層 35a, 35bを形成する(図 15 (f)参照。;)。
[0108] (g)第 7の工程
次に、熱ァニールを行い(例えば、 1000°C、 10分。)、 n+型ソース領域 22及び p型 キャリア引き抜き領域 36a, 36bを形成する(図 16 (g)参照。 )0
[0109] (h)第 8の工程
次に、絶縁層 28の上方にソース電極 38を形成する(図 16 (h)参照。 )。このとき、第 2の溝の内部は、ソース電極 38を構成する金属で埋められて ヽる。
[0110] (i)第 9の工程
次に、裏面にドレイン電極 34を形成する(図 16 (i)参照。)。
[0111] 実施形態 8に係るトレンチゲートパワー MOSFETの製造方法によれば、以上のよう な工程を経て実施形態 5に係るトレンチゲートパワー MOSFET5を製造することがで きる。このため、実施形態 8に係るトレンチゲートパワー MOSFETの製造方法によれ ば、比較的容易な方法で、実施形態 5に係るトレンチゲートパワー MOSFET5を製 造することができる。
[0112] 以上、本発明のトレンチゲートパワー半導体装置を上記の各実施形態に基づいて 説明したが、本発明は上記の各実施形態に限定されるものではなぐその要旨を逸 脱しない範囲において種々の態様において実施することが可能であり、例えば次の ような変形も可能である。
[0113] (1)上記した実施形態 8においては、実施形態 5に係るトレンチゲートパワー MOSF ET5を製造する方法を説明したが、本発明はこれに限定されるものではなぐ実施形 態 6に係るトレンチゲートパワー MOSFET6を製造する方法にも同様に適用可能で ある。
[0114] (2)上記した各実施形態においてはトレンチゲートパワー MOSFETを例にとって本 発明を説明したが、本発明はこれに限定されるものではなぐトレンチゲート IGBTに も同様に適用可能である。
符号の説明
[0115] 1, 2, 3, 4, 5, 6· ··トレンチゲートノ ヮ一 MOSFET、 10· "n+型シリコン基板、 12· ·· n型ェピタキシャル層、 14· ··溝、 16· ··ゲート絶縁膜、 18· ··ゲート、 20· ··ρ型ボディ領 域、 22· "n+型ソース領域、 24· "p+型コンタクト領域、 26a, 26b, 26c, 26d, 26e, 3 6a, 36b"'p型キャリア引き抜き領域、 28, 29…絶縁層、 30…熱酸化膜、 32, 38· ·· ソース電極、 34· ··ドレイン電極、 900· ··トレンチゲートパワー半導体装置

Claims

請求の範囲
[1] 第 1導電型の半導体層と、前記第 1導電型の半導体層における上面近傍に形成さ れ前記第 1導電型とは反対型の第 2導電型のボディ領域と、前記第 2導電型のボディ 領域の上面側カゝら前記第 1導電型の半導体層に達するように形成された複数本の溝 と、前記複数本の溝の中に形成されたゲートとを含むトレンチゲートパワー半導体装 置であって、
前記第 1導電型の半導体層における前記第 2導電型のボディ領域に対向する領域 のうち一部の領域には、第 2導電型のキャリア引き抜き領域が形成されていることを 特徴とするトレンチゲートパワー半導体装置。
[2] 請求項 1に記載のトレンチゲートパワー半導体装置において、
前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうち一部の溝におけ る一部又は全部の領域を覆うように形成されていることを特徴とするトレンチゲートパ ヮー半導体装置。
[3] 請求項 2に記載のトレンチゲートパワー半導体装置において、
前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成 された溝における一部又は全部の領域を覆うように形成されて ヽることを特徴とするト レンチゲートパワー半導体装置。
[4] 請求項 1に記載のトレンチゲートパワー半導体装置において、
前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうちの隣接する 2本 の溝に挟まれた溝間領域のうち一部の溝間領域における一部又は全部の領域に形 成されていることを特徴とするトレンチゲートパワー半導体装置。
[5] 請求項 4に記載のトレンチゲートパワー半導体装置において、
前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成 された溝と前記溝に隣接する溝に挟まれた溝間領域のうち一部又は全部の領域〖こ 形成されていることを特徴とするトレンチゲートパワー半導体装置。
[6] 請求項 1に記載のトレンチゲートパワー半導体装置において、
前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうちの隣接する 2本 の溝及びこれらに挟まれた溝間領域を覆うように形成されていることを特徴とするトレ ンチゲートパワー半導体装置。
[7] 請求項 2〜6のいずれかに記載のトレンチゲートパワー半導体装置において、 前記第 2導電型のキャリア引き抜き領域は、前記複数本の溝のうち最も外側に形成 された溝のさらに外側の周辺領域にも形成されていることを特徴とするトレンチゲート パワー半導体装置。
[8] 請求項 7に記載のトレンチゲートパワー半導体装置において、
前記周辺領域に形成された前記第 2導電型のキャリア引き抜き領域は、前記第 2導 電型のボディ領域の下面側に形成されていることを特徴とするトレンチゲートパワー 半導体装置。
[9] 請求項 7又は 8に記載のトレンチゲートパワー半導体装置において、
前記周辺領域に形成された前記第 2導電型のキャリア引き抜き領域は、前記第 2導 電型のボディ領域の側面を覆うように形成されて!ヽることを特徴とするトレンチゲート パワー半導体装置。
[10] 請求項 1〜9のいずれかに記載のトレンチゲートパワー半導体装置において、 前記第 2導電型のキャリア引き抜き領域は、前記溝の深さよりも深い位置まで形成 されていることを特徴とするトレンチゲートパワー半導体装置。
[11] 第 1導電型の半導体層と、前記第 1導電型の半導体層における上面近傍に形成さ れ前記第 1導電型とは反対型の第 2導電型のボディ領域と、前記第 2導電型のボディ 領域の上面側カゝら前記第 1導電型の半導体層に達するように形成された複数本の溝 と、前記複数本の溝の中に形成されたゲートとを含むトレンチゲートパワー半導体装 置であって、
前記第 2導電型のボディ領域に、前記第 2導電型のボディ領域の深さよりも浅く形 成されるとともに、前記第 1導電型の半導体層の上面に形成される電極のうちゲート 電極と異なる電極に接続される金属層を内部に含む第 2の溝をさらに含み、
前記第 2の溝の下面には、前記金属層に接続され、前記第 1導電型の半導体層に 達するように第 2導電型のキャリア引き抜き領域が形成されていることを特徴とするト レンチゲートパワー半導体装置。
[12] 請求項 11に記載のトレンチゲートパワー半導体装置にぉ 、て、 前記第 2の溝は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域 のうちすベての溝間領域に形成されていることを特徴とするトレンチゲートパワー半 導体装置。
[13] 請求項 11に記載のトレンチゲートパワー半導体装置にぉ 、て、
前記第 2の溝は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域 のうちすベての溝間領域における一部の領域に形成されていることを特徴とするトレ ンチゲートパワー半導体装置。
[14] 請求項 11に記載のトレンチゲートパワー半導体装置にぉ 、て、
前記第 2の溝は、前記複数本の溝のうちの隣接する 2本の溝に挟まれた溝間領域 のうち一部の溝間領域における一部又は全部の領域に形成されていることを特徴と するトレンチゲートパワー半導体装置。
[15] 請求項 11に記載のトレンチゲートパワー半導体装置にぉ 、て、
前記第 2の溝は、前記複数本の溝のうち最も外側の溝のさらに外側の周辺領域に 形成されていることを特徴とするトレンチゲートパワー半導体装置。
[16] 請求項 12〜14のいずれかに記載のトレンチゲートパワー半導体装置において、 前記第 2の溝は、前記複数本の溝のうち最も外側の溝のさらに外側の周辺領域に も形成されていることを特徴とするトレンチゲートパワー半導体装置。
[17] 請求項 16に記載のトレンチゲートパワー半導体装置において、
前記周辺領域に形成された前記第 2の溝は、前記溝間領域に形成された前記第 2 の溝よりも広い幅を有することを特徴とするトレンチゲートパワー半導体装置。
[18] 請求項 16又は 17に記載のトレンチゲートパワー半導体装置において、
前記周辺領域に形成された前記第 2導電型のキャリア引き抜き領域は、前記溝間 領域に形成された前記第 2導電型のキャリア引き抜き領域よりも深い位置まで形成さ れていることを特徴とするトレンチゲートパワー半導体装置。
[19] 請求項 11〜18のいずれかに記載のトレンチゲートパワー半導体装置において、 前記第 2導電型のキャリア引き抜き領域は、前記溝の深さよりも深い位置まで形成 されていることを特徴とするトレンチゲートパワー半導体装置。
[20] 請求項 11〜19のいずれかに記載のトレンチゲートパワー半導体装置において、 前記第 2導電型のキャリア引き抜き領域における前記第 2の溝と接触する部位には 、前記第 2の溝の内部に充填されている前記金属層とのコンタクト抵抗を低減するた めのコンタクト層が形成されていることを特徴とするトレンチゲートパワー半導体装置
[21] 請求項 1〜20のいずれかに記載のトレンチゲートパワー半導体装置において、 前記トレンチゲートパワー半導体装置は、パワー MOSFETであることを特徴とする トレンチゲートパワー半導体装置。
[22] 請求項 1〜20のいずれかに記載のトレンチゲートパワー半導体装置において、 前記トレンチゲートパワー半導体装置は、 IGBTであることを特徴とするトレンチゲ ートパワー半導体装置。
PCT/JP2005/021490 2005-11-22 2005-11-22 トレンチゲートパワー半導体装置 WO2007060716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/094,312 US7939886B2 (en) 2005-11-22 2005-11-22 Trench gate power semiconductor device
PCT/JP2005/021490 WO2007060716A1 (ja) 2005-11-22 2005-11-22 トレンチゲートパワー半導体装置
EP05809501.9A EP1959495B1 (en) 2005-11-22 2005-11-22 Trench gate power semiconductor device
JP2007546318A JP5047805B2 (ja) 2005-11-22 2005-11-22 トレンチゲートパワー半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021490 WO2007060716A1 (ja) 2005-11-22 2005-11-22 トレンチゲートパワー半導体装置

Publications (1)

Publication Number Publication Date
WO2007060716A1 true WO2007060716A1 (ja) 2007-05-31

Family

ID=38066958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021490 WO2007060716A1 (ja) 2005-11-22 2005-11-22 トレンチゲートパワー半導体装置

Country Status (4)

Country Link
US (1) US7939886B2 (ja)
EP (1) EP1959495B1 (ja)
JP (1) JP5047805B2 (ja)
WO (1) WO2007060716A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114152A (ja) * 2008-11-04 2010-05-20 Toyota Motor Corp 半導体装置および半導体装置の製造方法
JP2012064686A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 半導体装置
JP2012164854A (ja) * 2011-02-08 2012-08-30 Denso Corp 半導体装置およびその製造方法
JP2013539906A (ja) * 2010-09-14 2013-10-28 シーエスエムシー テクノロジーズ ファブ1 カンパニー リミテッド トレンチ垂直の二重拡散金属酸化物半導体トランジスター
WO2015029175A1 (ja) * 2013-08-29 2015-03-05 株式会社日立製作所 半導体装置およびその製造方法
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
JP2018166150A (ja) * 2017-03-28 2018-10-25 豊田合成株式会社 半導体装置の製造方法及び半導体装置の終端構造
CN113451388A (zh) * 2020-03-24 2021-09-28 株式会社东芝 半导体装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344552B2 (en) * 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
TWI402985B (zh) * 2009-06-02 2013-07-21 Anpec Electronics Corp 絕緣閘雙極電晶體與二極體之整合結構及其製作方法
US9425306B2 (en) * 2009-08-27 2016-08-23 Vishay-Siliconix Super junction trench power MOSFET devices
US9443974B2 (en) * 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
JP5452195B2 (ja) * 2009-12-03 2014-03-26 株式会社 日立パワーデバイス 半導体装置及びそれを用いた電力変換装置
CN104157685B (zh) * 2010-07-27 2018-01-16 株式会社电装 具有开关元件和续流二极管的半导体装置及其控制方法
DE102011079747A1 (de) 2010-07-27 2012-02-02 Denso Corporation Halbleitervorrichtung mit Schaltelement und Freilaufdiode, sowie Steuerverfahren hierfür
US8536646B2 (en) * 2011-09-21 2013-09-17 Sinopower Semiconductor Inc. Trench type power transistor device
WO2013046378A1 (ja) * 2011-09-28 2013-04-04 トヨタ自動車株式会社 Igbtとその製造方法
US9293558B2 (en) * 2012-11-26 2016-03-22 Infineon Technologies Austria Ag Semiconductor device
JP2016096307A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 半導体装置
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
CN107180855B (zh) * 2016-03-11 2022-07-22 富士电机株式会社 半导体装置
TWI689098B (zh) * 2019-01-30 2020-03-21 禾鼎科技股份有限公司 複合型溝槽式金氧半場效應電晶體及其製造方法
CN111509028B (zh) * 2019-01-30 2023-03-14 力士科技股份有限公司 复合型沟槽式金氧半场效应晶体管及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270512A (ja) 1996-04-01 1997-10-14 Mitsubishi Electric Corp 絶縁ゲート型半導体装置およびその製造方法
JPH11501459A (ja) * 1995-08-21 1999-02-02 シリコニックス・インコーポレイテッド 高密度トレンチ形dmosトランジスタ素子
JP2000101073A (ja) * 1998-09-24 2000-04-07 Denso Corp 半導体装置
JP2002164542A (ja) * 2000-09-19 2002-06-07 Fairchild Semiconductor Corp 集積回路装置及びその製造方法
JP2004153112A (ja) * 2002-10-31 2004-05-27 Toshiba Corp 電力用半導体装置
JP2004311716A (ja) * 2003-04-07 2004-11-04 Toshiba Corp 絶縁ゲート型半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603173B1 (en) * 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
JP2987040B2 (ja) * 1993-11-05 1999-12-06 三菱電機株式会社 絶縁ゲート型半導体装置
JPH08167713A (ja) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd 縦型mos半導体装置
US6110799A (en) 1997-06-30 2000-08-29 Intersil Corporation Trench contact process
WO2000038244A1 (de) * 1998-12-18 2000-06-29 Infineon Technologies Ag Feldeffekt-transistoranordnung mit einer grabenförmigen gate-elektrode und einer zusätzlichen hochdotierten schicht im bodygebiet
US6348712B1 (en) * 1999-10-27 2002-02-19 Siliconix Incorporated High density trench-gated power MOSFET
JP4696335B2 (ja) * 2000-05-30 2011-06-08 株式会社デンソー 半導体装置およびその製造方法
JP4357753B2 (ja) * 2001-01-26 2009-11-04 株式会社東芝 高耐圧半導体装置
JP4025063B2 (ja) * 2001-12-06 2007-12-19 株式会社ルネサステクノロジ 半導体装置
JP4004843B2 (ja) * 2002-04-24 2007-11-07 Necエレクトロニクス株式会社 縦型mosfetの製造方法
JP3971327B2 (ja) * 2003-03-11 2007-09-05 株式会社東芝 絶縁ゲート型半導体装置
JP4109565B2 (ja) * 2003-03-31 2008-07-02 ローム株式会社 半導体装置の製造方法および半導体装置
JP4498796B2 (ja) * 2004-03-29 2010-07-07 トヨタ自動車株式会社 絶縁ゲート型半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501459A (ja) * 1995-08-21 1999-02-02 シリコニックス・インコーポレイテッド 高密度トレンチ形dmosトランジスタ素子
JPH09270512A (ja) 1996-04-01 1997-10-14 Mitsubishi Electric Corp 絶縁ゲート型半導体装置およびその製造方法
JP2000101073A (ja) * 1998-09-24 2000-04-07 Denso Corp 半導体装置
JP2002164542A (ja) * 2000-09-19 2002-06-07 Fairchild Semiconductor Corp 集積回路装置及びその製造方法
JP2004153112A (ja) * 2002-10-31 2004-05-27 Toshiba Corp 電力用半導体装置
JP2004311716A (ja) * 2003-04-07 2004-11-04 Toshiba Corp 絶縁ゲート型半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959495A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114152A (ja) * 2008-11-04 2010-05-20 Toyota Motor Corp 半導体装置および半導体装置の製造方法
JP2013539906A (ja) * 2010-09-14 2013-10-28 シーエスエムシー テクノロジーズ ファブ1 カンパニー リミテッド トレンチ垂直の二重拡散金属酸化物半導体トランジスター
JP2012064686A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 半導体装置
JP2012164854A (ja) * 2011-02-08 2012-08-30 Denso Corp 半導体装置およびその製造方法
US9490247B2 (en) 2013-08-29 2016-11-08 Hitachi, Ltd. Semiconductor device and method for manufacturing same
WO2015029175A1 (ja) * 2013-08-29 2015-03-05 株式会社日立製作所 半導体装置およびその製造方法
JP6084695B2 (ja) * 2013-08-29 2017-02-22 株式会社日立製作所 半導体装置の製造方法
JPWO2015029175A1 (ja) * 2013-08-29 2017-03-02 株式会社日立製作所 半導体装置の製造方法
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
JP2018166150A (ja) * 2017-03-28 2018-10-25 豊田合成株式会社 半導体装置の製造方法及び半導体装置の終端構造
US10879349B2 (en) 2017-03-28 2020-12-29 Toyoda Goset Co., Ltd. Method for manufacturing semiconductor device and edge termination structure of semiconductor device
CN113451388A (zh) * 2020-03-24 2021-09-28 株式会社东芝 半导体装置
JP2021153127A (ja) * 2020-03-24 2021-09-30 株式会社東芝 半導体装置
JP7263286B2 (ja) 2020-03-24 2023-04-24 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
EP1959495A4 (en) 2009-04-08
US7939886B2 (en) 2011-05-10
JP5047805B2 (ja) 2012-10-10
EP1959495B1 (en) 2017-09-20
JPWO2007060716A1 (ja) 2009-05-07
US20080315301A1 (en) 2008-12-25
EP1959495A1 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
WO2007060716A1 (ja) トレンチゲートパワー半導体装置
JP5715804B2 (ja) 半導体装置及びその製造方法
JP5569162B2 (ja) 半導体装置および半導体装置の製造方法
JP4403366B2 (ja) 半導体装置およびその製造方法
JP5687700B2 (ja) スーパージャンクショントレンチパワーmosfetデバイス
JP4575713B2 (ja) 絶縁ゲート型半導体装置
JP5693851B2 (ja) 半導体装置
JP2018067744A (ja) 半導体装置および半導体装置の製造方法
JP5492610B2 (ja) 半導体装置及びその製造方法
JP2010278312A (ja) 半導体装置
WO2016046900A1 (ja) 炭化ケイ素半導体装置、炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置の設計方法
JP2001077354A (ja) 縦型絶縁ゲート半導体装置
JP2011228643A (ja) 半導体装置及びその製造方法
WO2014207793A1 (ja) 半導体装置およびその製造方法
JP2011187693A (ja) 半導体装置
US8455953B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2011243919A (ja) 半導体装置およびその製造方法
JP4171286B2 (ja) 半導体装置およびその製造方法
JP3644438B2 (ja) 半導体装置及びその製造方法
JP5542623B2 (ja) 半導体装置及びその製造方法
JP3711906B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2009004493A (ja) 半導体装置及びその製造方法
JP4191025B2 (ja) 縦型misfet
JPH09260659A (ja) 半導体素子およびその製造方法
JP2003174164A (ja) 縦型mos半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546318

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12094312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005809501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005809501

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005809501

Country of ref document: EP