WO2006070637A1 - 硬化性組成物 - Google Patents
硬化性組成物 Download PDFInfo
- Publication number
- WO2006070637A1 WO2006070637A1 PCT/JP2005/023323 JP2005023323W WO2006070637A1 WO 2006070637 A1 WO2006070637 A1 WO 2006070637A1 JP 2005023323 W JP2005023323 W JP 2005023323W WO 2006070637 A1 WO2006070637 A1 WO 2006070637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- acid
- component
- polymer
- curable composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/10—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
Definitions
- the present invention has a hydroxyl group or hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond (hereinafter also referred to as "reactive cage group”). And a curable composition containing an organic polymer.
- An organic polymer containing at least one reactive cage group in a molecule is crosslinked at room temperature by forming a siloxane bond accompanying a hydrolysis reaction of the reactive cage group by moisture or the like.
- a rubber-like cured product it is known to have a natural property.
- Patent Document 1 organic polymers whose main chain skeleton is a polyoxyalkylene polymer or an isobutylene polymer have already been industrially produced. Widely used in applications such as agents and paints.
- Patent Document 2 organic polymers whose main chain skeleton is a polyoxyalkylene polymer or an isobutylene polymer have already been industrially produced. Widely used in applications such as agents and paints.
- curable compositions containing an organic polymer having a reactive cage group are cured using a silanol condensation catalyst, and are usually dibutyltin bis (acetylacetonate).
- Sillanol condensation catalyst and are usually dibutyltin bis (acetylacetonate).
- Organotin catalysts having a carbon-tin bond are widely used.
- toxicity of organotin compounds has been pointed out, and development of non-organotin catalysts has been demanded.
- Patent Document 12 Japanese Patent Laid-Open No. 52-73998
- Patent Document 2 Japanese Patent Laid-Open No. 63-6041
- Patent Document 3 Japanese Patent Laid-Open No. 55-9669
- Patent Document 4 Japanese Patent No. 3062626
- Patent Document 5 JP-A-5-117519
- Patent Document 6 JP-A-6-322251
- Patent Document 7 Japanese Patent Laid-Open No. 9-12860
- Patent Document 8 WO00 56817
- Patent Document 9 WO04-31300
- Patent Document 10 Japanese Unexamined Patent Publication No. 2000-345054
- Patent Document 11 Japanese Unexamined Patent Application Publication No. 2004-189946
- Patent Document 12 WO00-056818
- Patent Document 13 Japanese Unexamined Patent Application Publication No. 2004-107397
- the present invention is a curable composition containing, as a component, an organic polymer having a reactive cage group, and has practical adhesiveness using a non-toxic non-organic tin curing catalyst, It is another object of the present invention to provide a liquid-liquid curable composition that has the same curability after storage as the initial one.
- a composition containing an organic polymer having a reactive cage group as a component, a carboxylic acid and Z as a catalyst is a composition containing an organic polymer having a reactive cage group as a component, a carboxylic acid and Z as a catalyst.
- an amine compound (C) having no reactive key group is added to improve the curability to a practical level, and an amino group-substituted silane group is further added.
- compound (D) and epoxy group-substituted silane compound (E) are used in combination, the adhesion to the substrate is dramatically improved when the total molar amount of component (D) and component (E) is above a certain level. I found out.
- the number of moles of all amino groups of the amino group-substituted silane compound (D) contained in the composition (d) force All epoxy groups of the epoxy group-substituted silane compound (E) contained in the composition. In many cases, it was found that the curability after storage was as good as in the initial stage, and the present invention was completed.
- the present invention provides, as a component, (A) an organic polymer having a silicon-containing group that can be crosslinked by forming a siloxane bond, (B) a carboxylic acid and a Z or carboxylic acid metal salt, C) a curable composition containing no amine group, (D) an amino group-substituted silane compound, and (E) an epoxy group-substituted silane compound, which is contained in the composition.
- the number of moles of all amino groups in the amino group-substituted silane compound (D) (d) and the number of moles of all epoxy groups in the epoxy group-substituted silane compound (E) contained in the composition (e ) Ratio (d) / (e) is 1 or more, and the total amount of (D) component and (E) component relative to (A) component lOOg is 30 mmol or more.
- the present invention relates to a liquid curable composition.
- the organic polymer of component (A) is preferably selected from the group consisting of a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylate polymer as the main chain skeleton. At least one polymer, and a more preferred polyoxyalkylene polymer is a polyoxypropylene polymer.
- the carboxylic acid and Z or carboxylic acid metal salt of component (B) is preferably a carbon nuclear grade carbon whose carbon atom adjacent to the carbonyl group is quaternary carbon and adjacent to Z or carbonyl group.
- the carboxylic acid metal salt is preferably a carbon nuclear grade carbon whose carbon atom adjacent to the carbonyl group is quaternary carbon and adjacent to Z or carbonyl group.
- the carboxylic acid metal salt is more preferable.
- the amine compound having no reactive silyl group of component (C) is a component necessary for increasing the activity of component (B).
- the (D) component amino group-substituted silane compound and the (E) component epoxy group-substituted silane compound are components necessary for improving the adhesion to the substrate.
- Preferred embodiments of the curable composition according to the present invention include: A one-component adhesive or a one-component sealant using a curable composition is exemplified. The invention's effect
- the curable composition of the present invention is a one-component curable composition having excellent adhesion and storage stability while using a non-organotin catalyst.
- the main chain skeleton of the organic polymer having a reactive cage group used in the present invention is not particularly limited, and those having various main chain skeletons can be used.
- polyoxyalkylene-based polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene polyoxypropylene copolymer, polyoxypropylene polyoxybutylene copolymer, etc.
- Copolymer Ethylene Propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, etc., copolymer of polychloroprene, polyisoprene, isoprene or butadiene and tali-tolyl and Z or styrene , Polybutadiene, isoprene or copolymers of butadiene with acrylonitrile, styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; adipic acid, etc.
- Dibasic acid and Dalicol Polyester polymers obtained by condensation of or by ring-opening polymerization of latatones; (meth) acrylic acid esters obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Polymers; vinyl polymers obtained by radical polymerization of monomers such as (meth) acrylic acid ester monomers, butyl acetate, acrylonitrile, styrene, etc .; grafts obtained by polymerizing vinyl monomers in the organic polymer Polymer; Polysulfide polymer; ⁇ —Nylon 6 by ring-opening polymerization of force prolatatam, Nylon 6 ⁇ 6, polycondensation of hexamethylenediamine and sebacic acid by condensation polymerization of hexamethylenediamine and adipic acid Nylon 6 ⁇ 10, ⁇ -aminoundecanoic acid polycondensation of nylon 11 Polyamide-based polymer such
- saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers have relatively high glass transition temperatures. Low cured products are preferred because of their excellent cold resistance.
- Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because they are excellent in adhesiveness.
- the glass transition temperature of the organic polymer as component (A) is not particularly limited, but is preferably 20 ° C or lower, more preferably 0 ° C or lower. Particularly preferably, it is C or less. If the glass transition temperature exceeds 20 ° C, the viscosity in winter or in cold regions may increase and workability may deteriorate, and the flexibility of the cured product may decrease and elongation may decrease.
- the glass transition temperature is a value obtained by DSC measurement.
- Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their high moisture permeability and excellent deep-part curability when made into a one-part composition. Polymers are the most preferred.
- the reactive silicon group contained in the organic polymer of the present invention has a hydroxyl group or a hydrolyzable group bonded to a silicon atom, and can be crosslinked by a reaction accelerated by a curing catalyst. Is the basis.
- Reactive key groups include general formula (2):
- R 2 and R 3 are each independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R ′) SiO 2
- R ′ is a hydrocarbon group having 1 carbon atom and 20 R's may be the same or different.
- X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they may be the same or different.
- a represents 0, 1, 2 or 3
- b represents 0, 1, or 2. Also, for b in m (SIR 3 XO) groups, they may be the same.
- m represents an integer from 0 to 19. However, a + ⁇ b ⁇ l Group).
- the hydrolyzable group is not particularly limited and may be a conventionally known hydrolyzable group! Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkoxy group. Of these, hydrogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, aminooxy groups, mercapto groups, and alkenyl groups are preferred because of their moderate hydrolyzability and handling! From the viewpoint of /, and! /, An alkoxy group is particularly preferable.
- the hydrolyzable group and hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and (a + ⁇ b) is preferably in the range of 1 to 5.
- two or more hydrolyzable groups or hydroxyl groups are bonded to the reactive silicon group, they may be the same or different.
- the number of key atoms forming the reactive key group is one or more. In the case of key atoms linked by a siloxane bond or the like, the number is preferably 20 or less.
- R 2 and R 3 in the general formulas (2) and (3) include, for example, an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, and a phenol.
- an aryl group such as a benzyl group, a aralkyl group such as a benzyl group, and a triorganosiloxy group represented by (R ′) SiO— in which R is a methyl group, a phenol group, or the like.
- Particularly preferred is a ruthenium group.
- More specific examples of reactive silicon groups include trimethoxysilyl groups, triethoxysilyl groups, triisopropoxysilyl groups, dimethoxymethylsilyl groups, diethoxymethylsilyl groups, diisopropoxy groups.
- a methylsilyl group is mentioned.
- a trimethoxysilyl group, more preferably a trimethoxysilyl group, a triethoxysilyl group, or a dimethoxymethylsilyl group is particularly preferred because of its high activity and good curability. Further, from the viewpoint of storage stability, a dimethoxymethylsilyl group is particularly preferable.
- triethoxysilyl group and diethoxymethyl The silyl group is particularly preferred because the alcohol produced by the hydrolysis reaction of the reactive silicon group is ethanol and has higher safety.
- the reactive cage group may be introduced by a known method! That is, for example, the following method can be mentioned.
- an organic polymer having a functional group such as a hydroxyl group in the molecule is reacted with an organic compound having an active group and an unsaturated group that are reactive to the functional group, and contains an unsaturated group.
- an organic polymer having an active group and an unsaturated group that are reactive to the functional group and contains an unsaturated group.
- an unsaturated group-containing organic polymer is obtained by copolymerization with an unsaturated group-containing epoxy compound.
- the reaction product obtained in step 2 is hydrosilylated by the action of a hydrosilane having a reactive silicon group.
- (C) A compound having a functional group reactive to this functional group and an organic group having a reactive group in an organic polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group in the molecule. React.
- the method (i) or the method (c) in which the polymer having a hydroxyl group at the terminal is reacted with a compound having an isocyanate group and a reactive group is comparative. It is preferable because a high conversion rate can be obtained in a short reaction time. Furthermore, the organic polymer having a reactive silicon group obtained by the method (i) is a curable composition having a lower viscosity and better workability than the organic polymer obtained by the method (c). In addition, since the organic polymer obtained by the (mouth) method has a strong odor based on mercaptosilane, the method (i) is particularly preferred.
- hydrosilane compound used in the method (i) include, for example, halogenosilanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane; Alkoxy silanes such as ethoxysilane, methyl jetoxy silane, methyl dimethoxy silane, and phenyl dimethoxy silane; Acyloxy silanes such as methyl diacetoxy silane, and phenyl dimethoxy silane; Bis (dimethyl ketoximate) methyl silane, bis (Cyclohexyl ketoximate) Forces including ketoximate silanes such as methyl silane are not limited to these.
- halogenosilanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane
- Alkoxy silanes such
- halogenated silanes and alkoxysilanes are particularly preferred.
- alkoxysilanes are most preferable because the resulting curable composition has a mild hydrolyzability and is easy to handle.
- methyldimethoxysilane is easily available.
- the curable composition containing the obtained organic polymer has high curability, storage stability, elongation characteristics, and high bow I tension strength! I like it.
- (Mouth) can be synthesized, for example, by subjecting a compound having a mercapto group and a reactive cage group to an organic polymer by radical addition reaction in the presence of a radical initiator and Z or a radical source.
- a radical initiator and Z or a radical source examples include introduction to an unsaturated binding site, but it is not particularly limited.
- Specific examples of the compound having a mercapto group and a reactive silicon group include, for example, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyl pyrmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, and ⁇ -mercaptopropyl. Examples thereof include, but are not limited to, methyl jetoxy silane and mercaptomethyl triethoxy silane.
- a disproportionation reaction may proceed in some silan compounds. As the disproportionation reaction proceeds, a rather dangerous compound such as dimethoxysilane is produced. However, this disproportionation reaction does not proceed with ⁇ -mercaptopropyltrimethoxysilane or ⁇ -isocyanatopropyltrimethoxysilane. For this reason, when three hydrolyzable groups such as trimethoxysilyl group are bonded to one key atom as the key group, the synthesis method of (mouth) or (c) is used. It is preferable to use it.
- the number of organic polymers having a reactive silicon group may be linear or branched.
- the average molecular weight is about 500 to 100,000 in terms of polystyrene in GPC, more preferably ⁇ 1,000 to 50,000, and particularly preferably ⁇ 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, it tends to be disadvantageous in terms of workability due to high viscosity.
- At least one reactive cage group contained in the organic polymer is averaged in one molecule of the polymer.
- 1.1 to 5 are present.
- the reactive cage group may be at the end of the main chain of the organic polymer molecular chain, at the end of the side chain, or at both ends.
- the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that high strength and high Elongation makes it easy to obtain a rubber-like cured product having a low elastic modulus.
- the polyoxyalkylene polymer essentially has the general formula (4):
- R 4 is a linear or branched alkylene group having 1 to 14 carbon atoms
- R 4 in the general formula (4) is the number of carbon atoms. 1-14, more preferably 2-4, linear or branched alkylene groups are preferred.
- Specific examples of the repeating unit represented by the general formula (4) include
- the main chain skeleton of the polyoxyalkylene polymer may have only one type of repeating unit force or two or more types of repeating unit forces.
- a polymer mainly composed of a propylene oxide polymer is used. It is preferable in that it is amorphous and has a relatively low viscosity.
- a method for synthesizing a polyoxyalkylene polymer for example, a polymerization method using an alkali catalyst such as KOH, obtained by reacting an organoaluminum compound and porphyrin disclosed in JP-A-61-215623 can be obtained.
- Transition metal compounds such as complexes—Polymerization method using Borfuline complex catalyst, Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,327,845 7, US Pat. No. 3,278,458, US Pat.
- a polymerization method using a catalyst which is also a polyphosphazene salt exemplified in JP-A-10-273512 examples thereof include, but are not limited to, a polymerization method using a catalyst having a phosphazene compound power exemplified in Kaihei 11-060722.
- a method for producing a polyoxyalkylene polymer having a reactive key group is disclosed in JP-B-45.
- the polyoxyalkylene polymer having the above reactive cage group may be used alone or in combination of two or more.
- the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer that forms the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene. Polymerize olefin compounds having 1 to 6 carbon atoms as the main monomer, or (2) homopolymerize gen compounds such as butadiene and isoprene, or combine the olefin compounds with the above olefin compounds. Force that can be obtained by methods such as hydrogenation after copolymerization Isobutylene-based polymers and hydrogenated polybutadiene-based polymers have a functional group at the end, and the molecular weight is controlled immediately. Base The preferred is an isobutylene-based polymer because the number of the polymer can be increased.
- all of the monomer units may be formed from isobutylene units or may be a copolymer with other monomers, but the surface property of rubber characteristics is derived from isobutylene. Those containing 50% by weight or more of repeating units are preferred. Those containing 80% by weight or more are more preferred. Those containing 90% by weight are particularly preferred.
- Examples of a method for producing a saturated hydrocarbon polymer having a reactive cation group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64. — Forces described in each specification of 22 904, JP-A-1-197509, Patent Publication No. 2539445, Patent Publication No. 2873395, JP-A-7-53882, etc. .
- the saturated hydrocarbon-based polymer having a reactive cage group may be used alone or in combination of two or more.
- the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (Meth) acrylic acid isobutyl, (meth) acrylic acid tert-butyl, (meth) acrylic acid n-pentyl, (meth) acrylic acid n xylyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid n- Heptyl, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth ) Noel acrylate, decyl (meth) acrylate
- the following bull monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
- the butyl monomers include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid and salts thereof; perfluoroethylene, perfluoroethylene, propylene, and vinylidene.
- Fluorine-containing butyl monomer C-containing butyl monomers such as butyltrimethoxysilane and butyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl esters and dialkyl esters of maleic acid; monoalkyl esters of fumaric acid and fumaric acid Ter and dialkyl esters; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecinoremaleimide, stearylmaleimide, phenolmaleimide, Maleimide monomers such as chlorohexylmaleimide; -Tolyl group-containing butyl monomers such as acrylonitrile and metatali-tolyl; Amyl group-containing butyl monomers such as acrylamide and methacrylamide; Acetyl butyl, propionate butyl, and pivalic acid
- a polymer having a styrene monomer and a (meth) acrylic monomer power is preferable from the physical properties of the product. More preferred is a (meth) acrylic polymer comprising an acrylic ester monomer and a methacrylic ester monomer, and particularly preferred is an acrylic polymer comprising an acrylic ester monomer.
- butyl acrylate monomers are more preferred from the viewpoints of low viscosity of the compound, low modulus of the cured product, high elongation, weather resistance, heat resistance and the like.
- a copolymer mainly composed of ethyl acrylate is more preferable.
- This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low-temperature characteristics (cold resistance). Therefore, in order to improve the low-temperature characteristics, a part of ethyl acrylate is acrylated. It is also possible to replace it with butyl.
- the ratio of butyl acrylate is increased, its good oil resistance is impaired, so for applications that require oil resistance, the ratio is preferably 40% or less, and even 30% More preferably, it is as follows.
- the ratio is preferably 40% or less when heat resistance is required.
- an example of an excellent balance of physical properties such as oil resistance, heat resistance, and low temperature properties is ethyl acrylate / butyl acrylate / acrylic acid 2-methoxychetyl (40-50Z20-30Z30 by weight) 20).
- these preferable monomers may be copolymerized with other monomers, and further block copolymerized. In that case, these preferable monomers are preferably contained in a weight ratio of 40% or more.
- (meth) acrylic acid means attalic acid and ⁇ means methacrylic acid.
- the method for synthesizing the (meth) acrylic acid ester-based polymer is not particularly limited. Just do it the law. However, a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution value is generally 2 or more and the viscosity becomes high. ing. Therefore, a low-viscosity (meth) acrylate polymer having a narrow molecular weight distribution and a (meth) acrylate polymer having a crosslinkable functional group at the molecular chain terminal at a high ratio. In order to obtain it, it is preferable to use a living radical polymerization method.
- the “living radical polymerization method” there is an “atom transfer radical” which polymerizes a (meth) acrylate ester monomer using an organic halide or a halogenated sulfonyl compound as an initiator and a transition metal complex as a catalyst.
- the “polymerization method” has a halogen, etc., which is relatively advantageous for functional group conversion reactions, and has a large degree of freedom in designing initiators and catalysts. More preferred as a method for producing a (meth) acrylic acid ester polymer having a specific functional group.
- this atom transfer radical polymerization method for example, Matyjaszewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614, and the like can be mentioned.
- Examples of the method for producing a (meth) acrylic acid ester-based polymer having a reactive cage group include Japanese Patent Publication No. 3-14068, Japanese Patent Publication No. 4-55444, and Japanese Patent Publication No. Hei 6- 211922. Discloses a production method using a free radical polymerization method using a chain transfer agent. Further, the power disclosed in JP-A-9-272714 and the like using a method using an atom transfer radical polymerization method is not particularly limited thereto.
- the (meth) acrylic acid ester-based polymer having the above reactive cage group may be used alone or in combination of two or more.
- organic polymers having a reactive cage group may be used alone or in combination of two or more.
- a polyoxyalkylene polymer having a reactive group a saturated hydrocarbon polymer having a reactive group, a (meth) acrylic acid ester polymer having a reactive group, Powerful group power Organic polymers made by blending two or more selected can also be used.
- the method for producing an organic polymer obtained by blending a (meth) acrylic acid ester polymer is The forces proposed in Japanese Utility Model Laid-Open Nos. 59-122541, 63-112642, 6-172631, and 11-116763 are not particularly limited thereto.
- a preferred example is a reactive chain group and a molecular chain substantially having the following general formula (5): -CH 2 -C (R 5 ) (COOR 6 ) (5)
- R 5 represents a hydrogen atom or a methyl group
- R 6 represents an alkyl group having 1 to 8 carbon atoms
- a (meth) acrylic acid ester having an alkyl group having 1 to 8 carbon atoms
- R 5 is the same as above, R 7 represents an alkyl group having 10 or more carbon atoms
- R 7 represents an alkyl group having 10 or more carbon atoms
- (meth) acrylate monomer unit having an alkyl group having 10 or more carbon atoms
- a polyoxyalkylene polymer having a reactive silicon group is blended with the copolymer.
- R 6 in the general formula (5) includes, for example, 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, and a 2-ethylhexyl group, Preferred is an alkyl group of 1 to 4, more preferably 1 or 2.
- the alkyl group of R 6 may be used alone or in combination of two or more.
- R 7 in the general formula (6) is, for example, 10 or more carbon atoms such as lauryl group, tridecyl group, cetyl group, stearyl group, and beryl group, usually 10 to 30, preferably Examples thereof include 10 to 20 long-chain alkyl groups.
- the alkyl group of R 7 may be used alone or in combination of two or more.
- the molecular chain of the (meth) acrylic acid ester-based copolymer substantially has a monomer unit force of the formula (5) and the formula (6). This means that the sum of the monomer units of formula (5) and formula (6) present in the copolymer exceeds 50% by weight.
- the sum of the monomer units of formula (5) and formula (6) is preferably 70% by weight or more.
- the abundance ratio of the monomer unit of the formula (5) and the monomer unit of the formula (6) is 95: 5 to 40:60, and 90:10 to 60:40 in weight ratio. More preferred.
- the monomer unit contained in the copolymer may be! / ⁇ other than formula (5) and formula (6), for example, acrylic acid such as acrylic acid and methacrylic acid; acrylamide, Methacrylamide, N— Contains an amide group such as methylol acrylamide and N-methylol methacrylamide, an epoxy group such as glycidyl acrylate and glycidyl methacrylate, and an amino group such as jetylaminoethyl acrylate, jetylaminoethyl methacrylate and aminoethyl vinyl ether
- a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a reactive cage functional group other organic compounds having a reactive cage group can be used.
- a method of polymerizing a (meth) acrylic acid ester monomer in the presence of a polymer can be used. This production method is disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, and the like. However, it is not limited to these.
- the main chain skeleton of the organic polymer may contain other components such as a urethane-bonding component as long as the effects of the present invention are not significantly impaired.
- the urethane bond component is not particularly limited, and examples thereof include a group (hereinafter also referred to as an amide segment) generated by a reaction between an isocyanate group and an active hydrogen group.
- the amide segment has the general formula (7):
- R 8 represents a hydrogen atom or a substituted! /, Represents an unsubstituted organic group).
- the amide segment include a urethane group generated by a reaction of an isocyanate group and a hydroxyl group; a urea group generated by a reaction of an isocyanate group and an amino group; an isocyanate group and a mercapto group.
- generated by reaction of this can be mentioned.
- a group formed by further reacting an active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group is also included in the group of the general formula (7).
- An example of an industrially easy method for producing an organic polymer having an amide segment and a reactive cage group is as follows.
- an excess polyisocyanate compound is combined. After reacting to form a polymer having an isocyanate group at the end of the polyurethane main chain, or at the same time, all or part of the isocyanate group may be represented by the general formula (8) WR 9 -SiR 2 X (8)
- R 9 is a divalent organic group, more preferably a substituted or unsubstituted divalent hydrocarbon having 1 to 20 carbon atoms.
- W is an active hydrogen-containing group selected from a hydroxyl group, a forcel-poxyl group, a mercapto group, and an amino group (unsubstituted or mono-substituted).
- Examples of known production methods for organic polymers related to this production method include Japanese Patent Publication No. 46-12154 (US Pat. No. 3,632,557), Japanese Patent Publication No. 58-109 529 (US Pat. No. 4,374,237), Japanese Patent Publication No. 62-13430 (US Pat. No.
- JP-A-8-53528 EP0676403
- JP-A-10-204144 EP0831108
- JP2003-508561 US Pat. No. 6,197912
- JP-A-6-212879 U.S. Pat. No. 536 4955;
- JP 10-53637 US Pat. No. 5756751;
- JP 11-100427, JP 2000-169544, JP 2000-169545, JP 2002-212415 Patent No. 3313360, U.S. Pat. No. 4067844, U.S. Pat. No. 3711445, JP-A-2001-323040, and the like.
- organic polymer having an active hydrogen-containing group at the terminal is represented by the general formula (9)
- a compound produced by reacting with a reactive silicon group-containing isocyanate compound can be exemplified.
- Examples of known production methods of organic polymers related to this production method include JP-A-11 279249 (US Pat. No. 5,990,257), JP-A 2000-119365 (US Pat. No. 6046270), and JP-A-58-29818. (US Pat. No. 4345053), JP-A-3-47825 (US Pat. No. 506 8304), JP-A-11-60724, JP-A-2002-155145, JP-A-2002-249538, WO03 / 018658, WO03Z059981, etc. Can be mentioned.
- the organic polymer having an active hydrogen-containing group at the terminal includes an ox having a hydroxyl group at the terminal.
- examples include salkylene polymers (polyether polyols), polyacrylic polyols, polyester polyols, saturated hydrocarbon polymers having hydroxyl groups at the ends (polyolefin polyols), polythiol compounds, and polyamine compounds. .
- polyether polyols, polyacrylic polyols, and polyolefin polyols are preferable because a cured product obtained with a relatively low glass transition temperature of the obtained organic polymer is excellent in cold resistance.
- polyether polyols are particularly preferred because the resulting organic polymer has low viscosity and good workability, and good deep-part curability.
- Polyacryl polyols and saturated hydrocarbon polymers are more preferred because the resulting cured organic polymer has good weather resistance and heat resistance.
- polyether polyol those produced by any of the above production methods can be used, but those having at least 0.7 hydroxyl groups at the molecular terminals per molecule average in the whole molecule average. Is preferred. Specifically, an oxyalkylene polymer produced by using a conventional alkali metal catalyst, a polyhydroxy compound having at least two hydroxyl groups in the presence of a double metal cyanide complex, cesium, etc. Examples of the initiator include an oxyalkylene polymer produced by reacting an alkylene oxide.
- a polymerization method using a double metal cyanide complex is a low unsaturated, low viscosity, narrow MwZMn, high acid resistance and high weather resistance oxyalkylene. It is preferable because a polymer can be obtained.
- Examples of the polyacrylic polyol include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule.
- the polymer synthesis method is more preferably an atom transfer radical polymerization method, which is preferred to a living radical polymerization method, because the molecular weight distribution is narrow and low viscosity can be achieved.
- Specific examples include Alfon UH-2000 manufactured by Toagosei Co., Ltd.
- polyisocyanate compound examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate.
- aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate.
- aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
- Kei-containing compounds of the general formula (8) is not particularly limited as Kei-containing compounds of the general formula (8), specific examples, y ⁇ amino propyl trimethoxy silane, N-(beta-aminoethyl) I - ⁇ amino propyl trimetrexate Kishishiran , ⁇ - ( ⁇ phenyl) aminopropyltrimethoxysilane, ⁇ ethylaminoisobutyltrimethoxysilane, ⁇ ⁇ ⁇ cyclohexylaminomethyltriethoxysilane, ⁇ cyclohexylaminomethyl ethoxymethylsilane, ⁇ phenyl Amino group-containing silanes such as aminomethyltrimethoxysilane; Hydroxy group-containing silanes such as y-hydroxypropyltrimethoxysilane; ⁇ ⁇ -Mercapto group-containing silanes such as mercaptopropyltrimethoxysilane; Also,
- the reactive silicon group-containing isocyanate compound represented by the general formula (9) is not particularly limited, but specific examples thereof include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triexylsilylpropylisoester. Examples thereof include cyanate, y-methyldimethoxysilylpropyl isocyanate, y-to, dimethoxymethylsilylmethyl isocyanate. Further, as described in JP-A 2000-1 19365 (US Pat. No. 6046270), it is obtained by reacting a key compound of the general formula (8) with an excess of the polyisocyanate ich compound. These compounds can also be used as reactive cyanide-containing isocyanate compounds of general formula (9).
- the main chain skeleton of the organic polymer which is the component (A) of the present invention
- contains a large number of amide segments the viscosity of the organic polymer increases and the composition may have poor workability.
- the amide segment in the main chain skeleton of component (A) tends to improve the curability of the composition of the present invention. Therefore, when an organic polymer having an amide segment in the main chain skeleton is used as component (A), the composition combined with component (B) cures faster while using a non-organotin catalyst. It is preferable because of its properties.
- the average number of amide segments per molecule is 1 10 is preferably 1.5, and 5 is more preferably 25. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the organic polymer may have a high viscosity, resulting in a poor workability composition.
- carboxylic acid (bl) and Z or carboxylic acid metal salt (b2) are used as component (B).
- These components (B) function as V silanol condensation catalysts that can form siloxane bonds from hydroxyl groups or hydrolyzable groups bonded to the carbon atoms contained in the organic polymer as component (A).
- the carboxylic acid (bl) and the carboxylic acid metal salt (b2) may be used alone or in combination. Both are preferred as non-organotin catalysts because of their low environmental impact.
- the carboxylic acid (bl) is not limited to carboxylic acid, and also includes carboxylic acid derivatives that generate carboxylic acid by hydrolysis of carboxylic acid anhydrides, esters, amides, nitriles, and acyl chlorides. .
- the carboxylic acid (bl) is particularly preferably carboxylic acid because of its high catalytic activity.
- carboxylic acid (bl) examples include acetic acid, propionic acid, butyric acid, valeric acid, cabronic acid, enanthic acid, strength prillic acid, pelargonic acid, strength puric acid, undecanoic acid, lauric acid, tridecyl.
- Linear saturated fatty acids such as acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, araquinic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, rataceric acid; Acid, Linderic acid, Tizzic acid, Fizetheric acid, Myristoleic acid, 2 Hexadecenoic acid, 6 Hexadecenoic acid, 7 Oxadecenoic acid, Palmitoleic acid, Petrothelic acid, Oleic acid, Elaidic acid, Asteredic acid, Batacenoic acid, Gadoleic acid, gondoic acid, cetreic acid, L-strength acid, brassic acid, ceracoleic acid Monoene unsaturated fatty acids such as xymenic acid, rumecenoic acid, acrylic acid, methacrylic acid, angelic power acid,
- aliphatic dicarboxylic acids examples include adipic acid, azelaic acid, pimelic acid, speric acid, sebacic acid, ethylmalonic acid, glutaric acid, oxalic acid, malonic acid, succinic acid, oxydiacetic acid, and the like; maleic acid , Unsaturated dicarboxylic acids such as fumaric acid, acetylenedicarboxylic acid, and itaconic acid.
- aliphatic polycarboxylic acid examples include tricarboxylic acids such as aconitic acid, citrate, and isocitrate.
- Aromatic carboxylic acids include aromatic monocarboxylic acids such as benzoic acid, 9 anthracene carboxylic acid, atrolactic acid, varnish acid, isopropyl benzoic acid, salicylic acid, toluic acid; phthalic acid, isophthalic acid, terephthalic acid, carboxyphenol -Aromatic polycarboxylic acids such as lucacetic acid and pyromellitic acid.
- amino acids such as alanine, leucine, threonine, aspartic acid, glutamic acid, arginine, cysteine, methionine, ferrolanine, tryptophan, histidine and the like can be mentioned.
- Carboxylic acid (bl) is 2-ethyl hexanoic acid, octylic acid, neodecanoic acid, oleic acid, or carboxylic acid (bl) because it is particularly easy to obtain and inexpensive and has good compatibility with component (A). Naphthenic acid is preferred.
- the melting point of the carboxylic acid is high (high crystallinity), the resulting curable composition tends to be difficult to handle (poor workability). Therefore, the melting point of the carboxylic acid (bl) is preferably 65 ° C or less, more preferably 50 to 50 ° C, particularly preferably -40 to 35 ° C! / ,.
- the carboxylic acid (bl) preferably has a force of 2 to 20 carbon atoms including the carbon of the force sulfonyl group, preferably 6 to 17 and more preferably 8 to 12. preferable.
- a monocarboxylic acid which is preferably a dicarboxylic acid or a monocarboxylic acid is more preferable! /.
- the carboxylic acid (bl) is a carboxylic acid (neodecanoic acid, a carboxylic acid having a tertiary carbon atom such as 2-ethylhexanoic acid) or a quaternary carbon in which the carbon atom adjacent to the carbo group is a tertiary carbon.
- carboxylic acids in which the carbon atom adjacent to the carbonyl group is a quaternary carbon such as pinoleic acid, which is more preferred because of its high curing rate.
- carboxylic acids in which the carbon atom adjacent to the carbonyl group is a quaternary carbon tend to have better adhesion than other carboxylic acids.
- Carboxylic acids in which the carbon atom adjacent to the carbonyl group is a quaternary carbon are represented by the general formula (1
- R 1Q , R 11 and R 12 are each independently substituted or unsubstituted monovalent hydrocarbon Group, which may contain a carboxyl group.
- R 1Q , R 11 and R 12 are each independently substituted or unsubstituted monovalent hydrocarbon Group, which may contain a carboxyl group.
- R 13 is a substituted or unsubstituted monovalent hydrocarbon group
- R 14 is a substituted or unsubstituted divalent hydrocarbon group, each of which may contain a carboxyl group
- R 15 is a substituted or unsubstituted trivalent hydrocarbon group, which may contain a carboxyl group).
- Specific examples include pivalic acid, 2,2-dimethylbutyric acid, 2-ethyl-2-butylbutyric acid, 2,2-ethylbutyric acid, 2,2-dimethylvaleric acid, 2-ethyl-2-methylvaleric acid, 2 , 2-Detylvaleric acid, 2,2-Dimethylhexanoic acid, 2,2-Detylhexanoic acid, 2,2-Dimethyloctanoic acid, 2-Ethyl-2,5-dimethylhexanoic acid, Neodecanoic acid, Versatic acid 2, 2-dimethyl-3-hydroxypropionic acid and other chain monocarboxylic acids, dimethylmalonic acid, ethylmethylmalonic acid, jetylmalonic acid, 2,2-dimethylsuccinic acid, 2,2-diethylsuccinic acid, 2
- neodecanoic acid 2,2 dimethyloctanoic acid, and 2 ethyl-2,5 dimethylhexanoic acid are particularly preferred from the viewpoint of ease of handling and availability.
- carboxylate metal salt (b2) tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate, hafnium carboxylate Vanadium carboxylate, manganese carboxylate, iron carboxylate, cobalt carboxylate, nickel carboxylate, cerium carbonate are preferred due to their high catalytic activity, and tin carboxylate, lead carboxylate, bismuth carboxylate, carboxyl Titanium acid, iron carboxylate, zirconium carboxylate Power is particularly preferred, tin carboxylate is particularly preferred. Divalent tin carboxylate is most preferred.
- Examples of the carboxylic acid having an acid group of the carboxylic acid metal salt (b2) include various carboxylic acids exemplified for the carboxylic acid (b 1).
- the carboxylic acid metal salt (b2) When the carboxylic acid metal salt (b2) is used, a curable composition having good restorability, durability, and creep resistance can be obtained. In addition, it can be expected to have an effect on water-resistant adhesion, adhesion durability under high-temperature and high-humidity conditions, residual tack, dust adhesion, contamination, surface weather resistance, heat resistance, and concrete adhesion.
- the amount of component (B) used is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, with respect to 100 parts by weight of component (A). ⁇ : L0 part by weight is preferred. If the blending power of component (B) is below this range, a practical curing rate may not be obtained, and the curing reaction may not proceed sufficiently. On the other hand, if the blending amount of component (B) exceeds this range, the pot life tends to be too short, resulting in poor workability and poor storage stability. [0101] In the present invention, the curability tends to be improved by using a! / Camine compound having no reactive cage group as the component (C) and adding the component (C).
- Component (C) does not have a reactive carbyl group! /
- amine compounds include methylamine, ethenoreamine, propylamine, isopropylamine, butinoreamine, aminoleamine, hexylamine, octylamine, Aliphatic primary amines such as 2-ethylhexylamine, noramine, decylamine, laurylamine, pentadecylamine, cetylamine, stearylamine, cyclohexylamine; dimethylamine, jetylamine, dipropylamine, diisopropylamine , Dibutylamine, diamylamine, dihexylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, butyl
- Ketimine can be used as the component (C). Ketimine is stable in the absence of moisture !, and is decomposed into primary amines and ketones by moisture. Such a ketimine can be obtained by a condensation reaction of an amine compound and a carbo-louie compound.
- amine compounds and carbo compounds may be used.
- amine compounds ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, 1 , 3 Diaminobutane, 2, 3 Diaminobutane, Pentamethylene Diamines such as diamine, 2,4-diaminopentane, hexamethylenediamine, p-phenylene diamine, p, ⁇ '-biphenyl-diamine; 1, 2, 3 triaminopropane, triaminobenzene, tris
- Polyvalent amines such as 2-aminoethyl) amine and tetra (aminomethyl) methane
- polyalkylene polyamines such as diethylenetriamine, triethylenetriamine and tetraethylenepentamine
- polyvalent xylanolylene polyamines such as trie
- the imino group When an imino group is present in the ketimine, the imino group may be reacted with styrene oxide; glycidyl ether such as butyl daricidyl ether or allyl glycidyl ether; glycidyl ester or the like.
- styrene oxide such as butyl daricidyl ether or allyl glycidyl ether
- glycidyl ester or the like.
- These ketimines may be used alone or in combination of two or more kinds, and may be used in combination with the amine compound.
- the cocatalyst ability varies greatly depending on the structure of the (C) component itself and the compatibility with the ( ⁇ ) component.
- primary amines such as octylamine and laurylamine are preferred because of their high promoter ability, and carbonization having at least one heteroatom.
- An amine compound having a hydrogen group is preferred.
- the hetero atom mentioned here includes N, 0, S and the like, but is not limited thereto. Examples of such amine compounds include those exemplified in the above other amines.
- amine compound having a hydrocarbon group More preferred is an amine compound having a hydrocarbon group.
- amine compounds include ethylenediamine, ethanolamine, dimethylaminoethylamine, jetylaminoethylamine, 3-hydroxypropylamine, diethylenetriamine, 3-methoxypropylamine, 3 lauryloxypropylamine.
- 3-jetylaminopropylamine and 3-morpholinopropylamine are more preferred because of their high promoter activity.
- 3-Jetylaminopropylamine is particularly preferred because it tends to give a curable composition that also has good adhesion, workability and storage stability.
- an isoptylene polymer is used as the component (A)
- a relatively long-chain aliphatic secondary amine such as dioctylamine or distearylamine is used, and aliphatic secondary amines such as dicyclohexylamine are aided. Point power with high catalytic ability is also preferable.
- the compounding amount of the amine compound as the component (C) is preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the organic polymer as the component (A). 5 parts by weight is more preferred. If the amount of the amine compound is less than 0.01 parts by weight, a sufficient curing rate may not be obtained, and the curing reaction may not proceed sufficiently. On the other hand, when the amount of the amine compound is more than 20 parts by weight, the pot life becomes too short, the workability tends to deteriorate, and the adhesion to the base material tends to be lowered. On the contrary, the curing speed may be slow.
- an amino group-substituted silane compound is used as the component (D).
- component (D) examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ - aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropyl.
- Methyljetoxysilane ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane ⁇ - (2-aminoethyl) aminopropylmethyljetoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ - (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane, ⁇ -(6-Aminohexyl) aminopropyltrimethoxysilane, 3— ( ⁇ 2-ethylpropyltrimethoxysilane, ⁇ -ureidopropyltrimethoxy Cysilane, ⁇ -Ureidopropyltriethoxysilane, ⁇ -
- the amount of the amino group-substituted silane compound as the component (D) must be determined together with the amount of the component (E).
- (A) Component The total amount of component (D) and component (E) relative to lOOg must be at least 30 mmol.
- the blending amount of component (D) is preferably about 2 to 20 parts by weight with respect to 100 parts by weight of organic polymer of component (A).
- the blending amount of component (D) is less than 2 parts by weight, sufficient adhesion may not be obtained.
- the blending amount of component (D) exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
- the number of moles (d) of all amino groups of the amino group-substituted silane compound (D) contained in the composition and the total epoxy of the epoxy group-substituted silane compound (E) contained in the composition is preferably 1 or more.
- Z (e) is less than 1, the curability after storage is significantly reduced.
- an epoxy group-substituted silane compound is used as the component (E).
- component (E) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -(3, 4- And epoxy group-containing silanes such as epoxycyclohexyl) ethyltrimethoxysilane and 13- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
- ⁇ -glycidoxypropyltrimethoxysilane ⁇ -glycidoxypropinoletriethoxysilane
- ⁇ -glycidoxypropylmethyldimethoxysilane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropinoletriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane are used. I like it.
- the amount of the epoxy group-substituted silane compound that is the component (ii) must be determined together with the amount of the component (D).
- the total amount of component (D) and component (E) relative to component lOOg must be at least 30 mmol.
- the blending amount of the component (E) is preferably about 1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the organic polymer of the component (A). If the amount of component (E) is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, if the amount of component (E) exceeds 20 parts by weight, the curing time will be too long.
- the number of moles (d) of all amino groups of the amino group-substituted silane compound (D) contained in the composition and the total epoxy groups of the epoxy group-substituted silane compound (E) contained in the composition is preferably 1 or more. When (d) / (e) is less than 1, the curability after storage is significantly reduced.
- the number of moles of all epoxy groups of the epoxy group-substituted silane compound (E) contained in the composition is more than the number of moles of all amino groups of the amino group-substituted silane compound (D).
- the (E) component excess epoxy group reacts with the (C) component amino group and is effective in increasing the activity of the (B) component (C ) The component will decrease. Therefore, when the curable composition is used, the catalytic activity of the component (B) cannot be sufficiently increased, and as a result, the curing rate becomes slow.
- a component other than the component (D) and the component (E), a reaction product of a silane coupling agent, a reaction product of a silane coupling agent, or a compound other than the silane coupling agent is used as an adhesion-imparting agent. Can be added.
- silane coupling agent examples include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, and ⁇ -iso Isocyanate group-containing silanes such as cyanate propyl methyl jetoxy silane, ⁇ isocyanate propyl methyl dimethoxy silane, (isocyanate methyl) trimethoxy silane, (isocyanate methyl) dimethoxy methyl silane; y-mercaptopropyl trimethoxy Mercapto group-containing silanes such as silane, ⁇ mercaptopropyltriethoxysilane, mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyljetoxysilane, mercaptomethyltriethoxysilane; / 3—carboxyethyltriethoxysilane, 13 ⁇ Carboxysilanes such as carboxyethyltri
- the condensate which condensed the said silane partially can also be used.
- derivatives of these such as amino-modified silyl polymers, silylamino polymers, unsaturated aminosilane complexes, phenylamino long chain alkylsilanes, aminosilylated silicones, silyl polyesters, etc. should also be used as silane coupling agents.
- the silane coupling agent used in the present invention is usually used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the organic polymer (i) having a reactive silicon group. In particular, it is preferably used in the range of 0.5 to 10 parts by weight.
- the effects of the silane coupling agent added to the curable composition of the present invention include various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, mortar, vinyl chloride, acrylic, polyester, When used on organic substrates such as polyethylene, polypropylene, and polycarbonate, it exhibits a significant improvement in adhesion under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving the adhesion to various adherends is particularly remarkable.
- Specific examples other than the silane coupling agent are not particularly limited, and examples thereof include epoxy resin, phenol resin, sulfur, alkyl titanates, and aromatic polyisocyanate.
- the adhesiveness-imparting agent may be used alone or in combination of two or more. With these adhesives Addition of the additive can improve adhesion to the adherend.
- the carboxylic acid and the Z component or carboxylic acid metal salt of component (B) are used as the curing catalyst, but other curing catalysts may be used in combination to the extent that the effects of the present invention are not reduced.
- specific examples include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titantetrakis (acetylylacetonate), bis (acetylacetonato) diisopropoxytitan; aluminum tris (acetylylacetonate).
- Organoaluminum compounds such as aluminum tris (ethylacetoacetate), diisopropoxyaluminum ethylacetate acetate; zirconium compounds such as zirconium tetrakis (acetylacetonate).
- a filler may be added to the composition of the present invention.
- reinforcing fillers such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous key acid, hydrous key acid, and carbon black; heavy calcium carbonate, calcium carbonate carbonate, Magnesium carbonate, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenol ⁇ Examples of such fillers include organic microballoons of fatty acid salt vinylidene resin, PVC powder, filler powder such as PMMA powder, and fibrous fillers such as asbestos, glass fiber, and filament.
- the amount used is 1 to 250 parts by weight, preferably 10 to 200 parts by weight, per 100 parts by weight of the poly
- a cured product having a high strength by using these fillers, mainly fumesili, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous key acid, hydrous key acid and carbon Filler selected from black, surface-treated fine calcium carbonate, calcined clay, clay, and active zinc white, etc.
- Preferred organic polymer having reactive key group (A) 1 to 200 parts by weight per 100 parts by weight If it is used within the range of parts, preferable results can be obtained.
- the surface treatment in which the particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 m or less, is preferably treated with a fatty acid or a fatty acid salt.
- the particle size of calcium carbonate having a large particle size is preferably 1 ⁇ m or more and can be used after being surface-treated.
- an organic balloon or inorganic balloon additive is preferred. These fillers can be surface-treated, and may be used alone or in combination of two or more.
- the balloon particle size is preferably 0.1 mm or less. In order to make the surface of the cured product matt, 5 to 300 m is preferable.
- the composition of the present invention has adhesives for outer wall joints and outer wall tiles of houses, such as sizing boards, especially ceramic sizing boards, because the cured product has good chemical resistance. It is preferably used for adhesives that leave the adhesive intact on the joints, but it is desirable that the design of the outer wall and the design of the sealing material be in harmony. In particular, high-quality outer walls have come to be used as outer walls due to the inclusion of spatter paints and colored aggregates. When the composition of the present invention contains a scaly or granular substance having a diameter of 0.1 mm or more, preferably about 0.1 to 5 Omm, the cured product has such a high-grade outer wall.
- Harmonized and excellent chemical resistance makes this cured product look good and lasts for a long time. If a granular material is used, the surface will be sandy or sandstone-like, and if a scaly material is used, the surface will be uneven.
- Preferred diameters, blending amounts, materials, and the like of the scaly or granular substance are as follows as described in JP-A-953063.
- the diameter is 0.1 mm or more, preferably about 0.1 to 5 Omm.
- the appropriate size is used. Those of about 0.2 mm to 5. Omm and about 0.5 mm to 5. Omm can also be used.
- the thickness is about 1Z10 to 1Z5 of the diameter (0.01 to about L00mm).
- the scale-like or granular substance is mixed in the main sealing material at the construction site at the time of use.
- the scale-like or granular substance is blended in an amount of about 1 to 200 parts by weight with respect to 100 parts by weight of a composition such as a sealing material composition or an adhesive composition.
- the amount to be blended is appropriately selected according to the size of each scale-like or granular substance, the material of the outer wall, the pattern, and the like.
- the scale-like or granular substance natural substances such as key sand and my strength, synthetic rubber, synthetic resin, and inorganic substances such as alumina are used. In order to enhance the design when filling the joint, it is colored in an appropriate color according to the material and pattern of the outer wall.
- finishing method is described in JP-A-9-53063.
- a balloon preferably having an average particle size of 0.1 mm or more
- the surface becomes sandy or sandstone-like, and the surface is lightweight.
- Preferred diameters, blending amounts, materials, and the like of the balloon are as follows as described in JP-A-10-251618.
- the balloon is a spherical filler with a hollow inside.
- This balloon material includes inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and Saran.
- inorganic materials such as glass, shirasu, and silica
- organic materials such as phenol resin, urea resin, polystyrene, and Saran.
- a combination of an inorganic material and an organic material can be combined, or a plurality of layers can be formed by stacking.
- Inorganic or organic balloons or a combination of these can be used.
- the same balloon may be used, or a mixture of different types of balloons may be used.
- a balloon whose surface is processed or coated can be used, and a balloon whose surface is treated with various surface treatment agents can also be used.
- an organic balloon may be coated with calcium carbonate, talc, oxytitanium, or the like, or an inorganic balloon may be surface-treated with a silane coupling agent.
- the balloon preferably has a particle size of 0.1 mm or more in order to obtain a surface with a sanding tone or sandstone tone. Those of about 0.2 mm to 5. Omm and about 0.5 mm to 5. Omm can also be used. When the amount is less than 1 mm, even when blended in a large amount, the viscosity of the composition is only increased, and a rough feeling may not be exhibited. The amount of nolane can be easily determined according to the desired degree of sanding or sandstone roughness.
- the volume concentration of the balloon is less than 5 vol%, the feeling of roughness does not occur.
- the volume concentration exceeds 25 vol% the viscosity of the adhesive becomes high and the modulus of the cured product becomes poor, and the modulus of the cured product becomes high.
- the basic performance of the agent tends to be impaired.
- the balance with the basic performance of the sealing material is particularly preferred, and the volume concentration is 8-22 vol%.
- an anti-slip agent as described in JP-A No. 2000-154368 and a surface of a cured product as described in JP-A No. 2001-164237 are uneven.
- an amin compound for making a frosted state particularly a primary and Z or secondary ammine having a melting point of 35 ° C or higher.
- balloons are disclosed in JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-7-113073, JP-A-953063, It is described in various publications such as Kaihei 10-251618, JP-A 2000-154368, JP-A 2001-164237, and WO 97/05 201.
- the cured product can form irregularities on the surface and improve the design.
- the diameter, blending amount, material, etc. of the cured sealant particles are as follows.
- the diameter is preferably 0.1 mm to: L mm, and more preferably about 0.2 to 0.5 mm.
- the blending amount is preferably 5 to: L00% by weight, more preferably 20 to 50% by weight in the curable composition.
- the material include urethane resin, silicone, modified silicone, and polysulfur rubber, and any material can be used as long as it is used as a sealing material, but a modified silicone-based sealing material is preferable.
- a silicate can be used in the composition of the present invention.
- This silicate is It functions as a bridging agent and has a function of improving the resilience, durability, and creep resistance of the organic polymer as the component (A) of the present invention. Furthermore, it also has the effect of improving adhesion and water-resistant adhesion and adhesion durability under high temperature and high humidity conditions.
- As the silicate tetraalkoxysilane or a partially hydrolyzed condensate thereof can be used.
- the amount used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the organic polymer of component (A).
- silicates include tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra- n -propoxysilane, tetra-i-propoxysilane, tetra- n -butoxysilane, Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as tetra-i-butoxysilane and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
- Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by partial hydrolysis by a conventional method.
- As the partially hydrolyzed condensate of the organosilicate compound a commercially available product can be used. Examples of such condensates include methyl silicate 51, ethenoresilicate 40 (V, manufactured by Colcoat Co., Ltd.) and the like.
- a plasticizer can be added to the composition of the present invention.
- a plasticizer By adding a plasticizer, the viscosity and slump property of the curable composition and the mechanical properties such as tensile strength and elongation of the cured product obtained by curing the composition can be adjusted.
- plasticizers include phthalates such as dibutyl phthalate, diheptyl phthalate, bis (2-ethylhexyl) phthalate and butyl benzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, succinate
- Non-aromatic dibasic acid esters such as isodecyl acid; Aliphatic esters such as ptyl oleate and methyl acetyl glycyliclinoleate; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic acid esters Chlorinated paraffins; hydrocarbon oils such as alkyl diphenols and partially hydrogenated terfals; process oils; epoxy plasticizers such as epoxy soybean oil and benzyl epoxystearate.
- a polymer plasticizer can be used.
- Polymer plasticizers are used when polymer plasticizers are used.
- the initial physical properties are maintained for a long period of time compared to the case of using a low molecular weight plasticizer that is a plasticizer that does not contain a component in the molecule.
- the drying property also referred to as paintability
- the polymer plasticizer include a bull polymer obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycol such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester.
- Polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like having a molecular weight of 500 or more, or 1000 or more, or the hydroxyl groups of these polyether polyols are ester groups or ether groups
- Converted poly ethers such derivatives as etc., polystyrene and poly one a - poly styrene such as methyl styrene; polybutadiene, polybutene, polyisobutylene, butadiene Atarironitori Le, polyclonal port Puren like are limited to forces which may be mentioned It is not a thing.
- polymer plasticizers those compatible with the polymer of component (A) are preferable. From this point, polyethers and bull polymers are preferable. In addition, when polyethers are used as plasticizers, deep-part curability is improved, and polypropylene glycol is more preferable because it does not cause hardening delay after storage. Further, a compatible point, bull-type polymer of weatherability and heat resistance is preferred.
- vinyl polymers acrylic polymers such as polyalkyl acrylates are preferred, with acrylic polymers and Z or methacrylic polymers being preferred.
- the polymer synthesis method is more preferably the atom transfer radical polymerization method, which is preferred to the living radical polymerization method, because the molecular weight distribution is narrow and the viscosity can be lowered.
- the number average molecular weight of the polymer plasticizer is preferably from 500 to 15000, more preferably from 380 to 10000, and more preferably from ⁇ 1000 to 8000, particularly from ⁇ It is 1000 ⁇ 500 0. Most preferably, it is 1000-3000. If the molecular weight is too low, it may be caused by heat or rain The plasticizer flows out over time, the initial physical properties cannot be maintained for a long time, and the alkyd paintability cannot be improved. Moreover, when molecular weight is too high, a viscosity will become high and workability
- the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow. 1. 70 or less is more preferred 1. 60 or less is still preferred 1. 50 or less is more preferred 1. 40 or less is particularly preferred 1. 30 or less is most preferred
- the number average molecular weight is measured by a GPC method in the case of a vinyl polymer, and by a terminal group analysis method in the case of a polyether polymer.
- the molecular weight distribution (MwZMn) is measured by GPC method (polystyrene conversion).
- the polymer plasticizer does not have a reactive cage group! /, But may have a reactive cage group.
- a reactive silicon group it acts as a reactive plasticizer, and can prevent the migration of a plasticizer having a strong cured product.
- the average number per molecule is preferably 1 or less, and more preferably 0.8 or less.
- Plasticizers may be used alone or in combination of two or more. A low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be added at the time of polymer production.
- the amount of the plasticizer used is 5 to 150 parts by weight, preferably 10 to 120 parts by weight, more preferably 20 to: LOO parts by weight, per 100 parts by weight of the polymer of component (A). If it is less than 5 parts by weight, the effect as a plasticizer is not expressed, and if it exceeds 150 parts by weight, the mechanical strength of the cured product is insufficient.
- a physical property modifier for adjusting the tensile properties of the cured product to be produced may be added, if necessary.
- the physical property modifier is not particularly limited, but examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropylene.
- Examples thereof include alkoxysilanes having an unsaturated group such as alkylisopropenoxysilane such as noxysilane, vinyltrimethoxysilane and vinyldimethylmethoxysilane; silicone varnishes; polysiloxanes and the like.
- V ⁇ the hardness when the composition of the present invention is cured can be increased, or conversely, the hardness can be decreased and elongation at break can be produced.
- the above physical property modifiers may be used alone or in combination of two or more.
- a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of lowering the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
- Particularly preferred are compounds that produce trimethylsilanol.
- Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521.
- derivatives of alkyl alcohols such as hexanol, octanol and decanol, which generate silicon compounds that generate R SiOH such as trimethylsilanol by hydrolysis,
- Derivatives of polyhydric alcohols having 3 or more hydroxyl groups such as trimethylolpropane, glycerin, pentaerythritol or sorbitol described in JP-A-11-241029, and R SiOH such as trimethylsilanol is produced by hydrolysis.
- generates a cone compound can also be mention
- a polymer having a crosslinkable hydrolyzable silicon-containing group described in JP-A-6-279693 and a silicon-containing group that can be converted into a monosilanol-containing compound by hydrolysis can also be used.
- the physical property modifier is used in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the organic polymer (A) having a reactive key group. .
- a thixotropic agent may be added to the curable composition of the present invention in order to prevent sagging and improve workability.
- the sagging preventing agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal stalates such as calcium stearate, aluminum stearate, and barium stearate.
- These thixotropic agents may be used alone or in combination of two or more.
- the thixotropic agent is used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the organic polymer (A) having a reactive silicon group.
- a plasticizer containing an epoxy group in one molecule can be used as an epoxy compound other than the component (E).
- a plasticizer having an epoxy group examples include epoxidized unsaturated fats and oils, epoxy-unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
- E-PS epoxidized soybean oil, epoxidized flax oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate
- epoxy otachi Nolestearate epoxybutyl stearate and the like.
- E-PS is particularly preferred.
- the epoxy plasticizer is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the organic polymer (A) having a reactive silicon group.
- a photocurable material can be used in the composition of the present invention.
- a photocurable material is used, a film of a photocurable material is formed on the surface of the cured product, and the stickiness and weather resistance of the cured product can be improved.
- a photo-curing substance is a substance that undergoes a chemical change in its molecular structure within a short period of time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resin, and compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polycalyx butyls, azide resins and the like. As unsaturated acrylic compounds
- a monomer, oligomer or mixture thereof having one or several acrylic or methacrylic unsaturated groups which is propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl dalycol
- examples thereof include monomers such as (meth) acrylate and oligoesters having a molecular weight of 10,000 or less.
- Aronix M-210 special allyrate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, A-Lux M-233, A-Lux-M-240, A-Lux-M — 245; (Trifunctional) M-305, A-M, M- 309, A-M, M- 310, A-M, M-315, Aronix, M- 320, Aronix, M— 325, and (polyfunctional) Aronix M-400, etc. can be exemplified, but a compound containing an acrylic functional group is particularly preferred, and a compound containing 3 or more same functional groups on average in one molecule.
- a compound containing an acrylic functional group is particularly preferred, and a compound containing 3 or more same functional groups on average in one molecule.
- polyvinyl cinnamates include photosensitive rosin having a cinnamoyl group as a photosensitive group, and poly (vinyl alcohol) esterified with cinnamate, as well as many polycainate butyl derivatives.
- Azide resin is known as a photosensitive resin having an azide group as a photosensitive group. Usually, it is a rubber photosensitive solution containing a diazide compound as a photosensitive agent. (Published 17th of May, published by the Printing Society Press, pages 93-, 106-, 117-), these are detailed examples. These are used alone or in combination, and sensitizers are added as necessary.
- the photo-curing substance is an organic polymer having a reactive carbon group (A) 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight per 100 parts by weight. 0. 1 part by weight or less is not effective in improving weather resistance. If it is 20 parts by weight or more, the cured product becomes too hard and tends to crack.
- An oxygen curable substance can be used in the composition of the present invention.
- An example of the oxygen curable substance is an unsaturated compound that can react with oxygen in the air.
- the oxygen curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product, resulting in surface stickiness or the surface of the cured product. It acts to prevent dust from adhering to dust.
- Specific examples of the oxygen curable substance include drying oil typified by drill oil, Amani oil, etc., various alkyd oils obtained by modifying the compound, acrylic polymer modified with drying oil, epoxy 1,2 polybutadiene, 1,4 polybutadiene, C5-C8 gel obtained by polymerizing or copolymerizing gen-based compounds such as butane, black-opened plane, isoprene, 1,3 pentagene, etc.
- NBR obtained by copolymerizing liquid polymers such as polymers of polymers and monomers such as Atariguchi nitrile and styrene that are copolymerizable with these gen compounds such that gen compounds are the main component.
- liquid copolymers such as SBR, and various modified products thereof (maleized modified products, boiled oil modified products, etc.). These may be used alone or in combination of two or more. Of these, drill oil and liquid gen-based polymers are particularly preferred.
- the use of a catalyst that promotes the oxidative curing reaction or a metal dryer may enhance the effect.
- Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amine compounds.
- the amount of oxygen curable substance used is Organic polymer having silicon group (A) It is more preferable to use in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight, more preferably 0.5 to: LO parts by weight. If the amount used is less than 0.1 parts by weight, the contamination is not improved sufficiently, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired.
- an oxygen curable substance is preferably used in combination with a photocurable substance.
- An antioxidant can be used in the composition of the present invention.
- Use of an antioxidant can increase the heat resistance of the cured product.
- examples of the antioxidant are hindered phenolic, monophenolic, bisphenolic and polyphenolic 1S, particularly hindered phenolic.
- the hindered amine light stabilizers shown can also be used.
- Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
- the amount of the antioxidant used is preferably in the range of 0.1 to 10 parts by weight, more preferably 0.2 to 100 parts by weight of the organic polymer (A) having a reactive key group. ⁇ 5 parts by weight.
- a light stabilizer can be used in the composition of the present invention. Use of a light stabilizer can prevent photoacid deterioration of the cured product.
- the amount of the light stabilizer used is preferably in the range of 0.1 to 10 parts by weight, more preferably 0.2 to 100 parts by weight with respect to 100 parts by weight of the organic polymer (A) having a reactive cage group. 5 parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.
- a photocurable substance is used in combination with the composition of the present invention, particularly when an unsaturated acrylic compound is used, as described in JP-A-5-70531, as a hindered amine light stabilizer 3
- a hindered amine light stabilizer containing grade amin preserves the composition U, preferred for stability improvement.
- Tertiary amine-containing hindered amine light stabilizers include TINUVIN 622LD, TINUVIN 144; CHIMASSORB119FL (above!
- An ultraviolet absorber can be used in the composition of the present invention.
- Use of a UV absorber can improve the surface weather resistance of the cured product.
- the UV absorber include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds. Particularly, benzotriazole-based is preferable.
- the amount of the UV absorber used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 100 parts by weight with respect to 100 parts by weight of the organic polymer (A) having a reactive key group. 5 parts by weight. It is preferable to use a combination of a phenolic or hindered phenolic acid inhibitor, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber.
- An epoxy resin can be added to the composition of the present invention as an epoxy compound other than the component (E).
- Compositions with added epoxy resin are particularly preferred as adhesives, especially for exterior wall tiles.
- Epoxy hydrins such as epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin bisphenol F type epoxy resin, tetrabromo bisphenol A glycidyl ether, flame retardant epoxy resin, novolac type Epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-amino Phenolic epoxy resin, diaminodiphenol-based epoxy resin, urethane-modified epoxy resin, various cycloaliphatic epoxy resins, N, N diglycidinole dilin, N, N diglycidyl mono-toluidine, triglycidyl is
- epoxies are not limited to these. Coffin can be used. At least epoxy group However, those containing two in the molecule are preferred because they are highly reactive during curing and the cured product tends to form a three-dimensional network. More preferred are bisphenol A type epoxy resins and novolac type epoxy resins.
- the preferred usage rate varies depending on the application of the curable resin composition and cannot be determined unconditionally.
- the component (A) is used in an amount of 1 to L00 parts by weight, more preferably 5 to L00 parts by weight, based on 100 parts by weight of the epoxy resin.
- 1 to 200 parts by weight more preferably 5 to 100 parts by weight of epoxy resin per 100 parts by weight of component (A) is used. Good.
- epoxy resin hardener a generally used epoxy resin hardener that is not particularly limited can be used.
- the amount used should be 100 parts by weight of epoxy resin. On the other hand, the range is from 0.1 to 300 parts by weight.
- Ketimine can be used as a curing agent for epoxy resin. Ketimine is stably present in the absence of moisture, and is decomposed into primary amines and ketones by moisture, and the resulting primary amine becomes a room temperature-curable curing agent for epoxy resin.
- ketimine When ketimine is used, a one-component composition can be obtained. Such a ketimine can be obtained by a condensation reaction between an amine compound and a carbonyl compound.
- ketimine For the synthesis of ketimine, known amine compounds and carbonyl compounds may be used.
- amine compounds ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine are used.
- Polyalkylene polyamine Poly-aged xylanolene-based polyamine; ⁇ -aminopropyltriethoxysilane New - (beta-aminoethyl) ⁇ - ⁇ amino propyl trimethoxy silane, ⁇ - ( ⁇ - Aminoechi Le) .gamma. ⁇ amino propyl aminosilane such as methyldimethoxysilane; and the Ru cormorants used.
- Carbon compounds include aldehydes such as cetaldehyde, propionaldehyde, ⁇ -butyraldehyde, isobutyraldehyde, jetyl acetoaldehyde, glyoxal, benzaldehyde; cyclopentanone, trimethylcyclopentanone Cyclic ketones such as xanone and trimethylcyclohexanone; aliphatics such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, ethyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, and diisoptyl ketone Ketones: 13 dicarbonyl compounds such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, jetyl malonate,
- the imino group When an imino group is present in the ketimine, the imino group may be reacted with styrene oxide; glycidyl ether such as butyl daricidyl ether or allyl glycidyl ether; glycidyl ester or the like.
- styrene oxide such as butyl daricidyl ether or allyl glycidyl ether
- glycidyl ester or the like.
- These ketimines can be used in two or more types. 1 to L00 parts by weight is used for 100 parts by weight of epoxy resin that may be used in combination with the above. The amount used depends on the type of epoxy resin and ketimine.
- a solvent can be used for the purpose of reducing the viscosity of the composition, increasing thixotropy, and improving workability.
- the solvent various compounds with no particular limitation can be used. Specific examples include toluene, xylene, heptane, hexane, hydrocarbon solvents such as petroleum solvents, halogen solvents such as trichloroethylene, ester solvents such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, Examples include ketone solvents such as methyl isobutyl ketone, alcohol solvents such as methanol, ethanol and isopropanol, and silicone solvents such as hexamethylcyclotrisiloxane, otamethylcyclotetrasiloxane and decamethylcyclopentasiloxane. These solvents may be used alone or in combination of two or more.
- the blending amount of the solvent is preferably 3 parts by weight or less, more preferably 1 part by weight or less with respect to 100 parts by weight of the organic polymer of the component (A), and the solvent is substantially contained. Included in, most preferred.
- additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
- additives include, for example, flame retardants, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, Examples include foaming agents and fungicides. These various additives may be used alone or in combination of two or more.
- the curable composition of the present invention can also be prepared as a one-component type in which all the ingredients are pre-blended and sealed and cured by moisture in the air after construction.
- Components such as a curing catalyst, a filler, a plasticizer, and water may be blended, and the blended material and the polymer composition may be prepared as a two-component type that is mixed before use. From the viewpoint of workability, a one-component type is preferable.
- the curable composition is of a one-component type, all the ingredients are pre-blended. Therefore, the water-containing ingredients are dehydrated and dried before use, or reduced in pressure during compounding kneading. Is preferably dehydrated.
- the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main ingredient containing a polymer having a reactive key group, so that the compounding agent contains some moisture.
- dehydration drying is preferred when long-term storage stability is required.
- a dehydration and drying method a heat drying method is preferable in the case of a solid material such as a powder, and a dehydration method using a reduced pressure dehydration method or a synthetic zeolite, activated alumina, silica gel or the like is preferable in the case of a liquid material.
- a small amount of isocyanate compound may be blended and the isocyanate group and water reacted to dehydrate.
- lower alcohols such as methanol and ethanol; n-propyl trifluoromethylsilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyljetoxy
- Storage stability is further improved by adding an alkoxysilane compound such as orchid and ⁇ -glycidoxypropyltrimethoxysilane.
- the amount of a dehydrating agent, particularly a key compound capable of reacting with water such as vinyltrimethoxysilane, is 0.1 to 20 with respect to 100 parts by weight of the organic polymer having a reactive key group. Part by weight, preferably in the range of 0.5 to 10 parts by weight.
- the method for preparing the curable yarn composition of the present invention is not particularly limited.
- the above-described components are mixed and kneaded using a mixer, a roll, a -1
- Ordinary methods may be employed such as using a small amount of a suitable solvent to dissolve and mix the components.
- the curable composition of the present invention When exposed to the atmosphere, the curable composition of the present invention forms a three-dimensional network structure by the action of moisture, and cures to a solid having rubbery elasticity.
- the curable composition of the present invention includes a pressure-sensitive adhesive, a sealing material for a building 'ship' automobile 'road, an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint Can be used for spraying materials. Since the cured product obtained by curing the curable composition of the present invention is excellent in flexibility and adhesiveness, among these, it is more preferable to use it as an adhesive or a sealing material.
- electrical and electronic component materials such as solar cell backside sealing materials, electrical insulating materials such as insulation covering materials for electric wires and cables, elastic adhesives, powder coating materials, casting materials, medical rubber materials, Medical adhesives, medical device sealants, food packaging materials, sealing materials for joints of exterior materials such as sizing boards, coating materials, primers, conductive materials for shielding electromagnetic waves, thermal conductive materials, hot melt materials, electrical and electronic equipment Potting agents, films, gaskets, various molding materials, and mesh-proof glass and laminated glass end faces (cutting parts) for protection and waterproofing, automotive parts, electrical parts, various machine parts, etc. It can be used for various applications such as liquid sealants.
- the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stones, an adhesive for ceiling finishing, an adhesive for floor finishing, and a wall finish.
- Adhesives, vehicle panel adhesives, electrical / electronic 'precision equipment assembly adhesives, direct glazing sealants, double-glazed sealants, SSG sealants, or building working joint sealants Can also be used.
- the average was 1.3.
- the molecular weight of (D) component ⁇ -1110 is 179.3, and the molecular weight of ⁇ -187 ( ⁇ ) component is 236.3. Therefore, the number of moles of all amino groups in component (D) (d) And the ratio (d) / (e) to the number of moles (e) of all epoxy groups in component (E) is 2.2.
- a curable composition was prepared in the same manner as in Example 1 except that the amount of A-1110 used in Example 1 was changed to 3.6 parts by weight and the amount of A-187 used was changed to 4.7 parts by weight. Obtained.
- the ratio (d) / (e) between the number of moles (d) of all the amino groups in component (D) and the number of moles (e) of all epoxy groups in component (E) is 1.0.
- Example 1 except that 100 parts by weight of the trimethoxysilyl group-terminated polyoxypropylene polymer (A-2) obtained in Synthesis Example 2 was used instead of the polymer (A-1) in Example 1. In the same manner, a curable composition was obtained.
- the ratio (d) / (e) between the number of moles (d) of all amino groups in component (D) and the monole number ( e ) of all epoxy groups in component (E) is 2.2.
- Example 1 Except for using 6.2 parts by weight of ⁇ - (2-aminoethyl) aminopropyltrimethyoxysilane (manufactured by Nippon Yuker Co., Ltd., trade name: ⁇ -1120) instead of A-1110 in Example 1.
- a curable composition was obtained in the same manner as in Example 1.
- Example 1 was used except that 3.4 parts by weight of neodecanoic acid tin salt (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan U-50) was used instead of the carboxylic acid in Example 2. Similarly, a curable composition was obtained.
- the ratio (d) / (e) of the number of moles (d) of all the amino groups in component (D) to the monole number ( e ) of all the epoxy groups in component (E) is 1.0.
- Example 2 except that 100 parts by weight of the methyldimethoxysilyl group-terminated polyoxypropylene polymer (A-3) obtained in Synthesis Example 3 was used instead of the polymer (A-1) in Example 2.
- a curable composition was obtained in the same manner as in 1.
- the ratio (d) / (e) of the number of moles (d) of all amino groups in component (D) to the number of moles (e) of all epoxy groups in component (E) is 1.0.
- a curable composition was obtained in the same manner as in Example 1 except that 3 parts by weight of bursilane (trade name: A-171, manufactured by Nippon Car Co., Ltd.) was used instead of A-187 in Example 4. It was. In this example, it contains component (E)! /.
- bursilane trade name: A-171, manufactured by Nippon Car Co., Ltd.
- a curable composition was obtained in the same manner as in Example 1 except that A-1110 in Example 3 was not used and the amount of A-187 used was changed to 9.4 parts by weight. In this example, component (D) is not contained.
- the curable composition was the same as in Example 1 except that the amount of A-1110 used in Example 1 was changed to 2.3 parts by weight and the amount of A-187 was changed to 6.6 parts by weight. Got.
- the ratio (d) 7) between the number of moles (d) of all amino groups in component (D) and the number of moles (e) of all epoxy groups in component (E) is 0.5.
- Example 1 except that 100 parts by weight of the trimethoxysilyl group-terminated polyoxypropylene polymer (A-2) obtained in Synthesis Example 2 was used instead of the polymer (A-1) in Comparative Example 3. In the same manner, a curable composition was obtained. Number of moles of all amino groups in component (D) (d) and component (E) The ratio (d) / (e) of all epoxy groups to the monole number ( e ) is 0.5.
- a curable composition was obtained in the same manner as in Example 1 except that the amount of A-1110 used in Example 5 was changed to 3 parts by weight and that the amount of A-187 was changed to 2 parts by weight.
- the total molar amount of component (D) and component (E) is 25.2 mmol.
- a curable composition was obtained in the same manner as in Example 1 except that 3-jetylaminopropylamine in Example 1 was not used. In this example, it contains the component (C)!
- each physical property was measured and evaluated as follows. As for the initial physical properties, each physical property evaluation was performed after preparing a one-component curable composition and placing it under conditions of 23 ° C. and 50% R.H. for 7 to 14 days. (Curing property)
- the above curable composition is stretched to a thickness of about 3 mm under conditions of 23 ° C and 50% RH, and the surface of the curable composition is sometimes lightly touched using a microspatula, and the composition is microspatella. The time until it was not followed was measured. The results are shown in Table 1.
- each one-component curable composition was placed in a 50 ° C dryer for 28 days, placed in a 23 ° C 50% RH condition for 1 day or longer, and then cured as described above. Evaluation was made and compared with the initial value.
- ⁇ when delay rate is 1.1 to 1.3, ⁇ , delay rate Is marked with ⁇ from 1.4 to 3.0, and X with a delay rate greater than 3.0.
- the curable composition was placed in close contact with various adherends (anodized aluminum, stainless steel plate, glass, acrylic plate) and cured for 7 days under a constant temperature and humidity condition of 23 ° C 50% RH. After cutting with a force razor blade at the interface between the substrate and the substrate and pulling it in the 90 ° direction, the fractured state of the cured product was observed, and the cohesive failure rate (CF rate) was measured.
- adherends anodized aluminum, stainless steel plate, glass, acrylic plate
- Whiteon SB (g) 50 50 50 50 50 50 50 50 50 50 50 50 50 Anti-sagging agent Disparon 6500 (g) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Antioxidant Ilganox 1010 (g) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- the (D) component and the (E) component are used in combination as an adhesion-imparting agent, and the moles of all the amino groups in the (D) component
- the ratio (d) / (e) of the number (d) to the number of moles (e) of all epoxide groups in the (E) component is 1 or more, and the (D) component to the (A) component lOOg and (
- the total amount of the component (E) is 30 mmol or more, the adhesion to the substrate is good and the curability after storage is good with little change compared to the initial value. Comparative Example 1 having no component (E) has poor adhesion to the substrate.
- Comparative Example 2 having no component (D), the curability after storage is greatly reduced compared to the initial stage, and the storage stability is lacking.
- Component (D) and component (E) are used together, but the number of moles of all amino groups in component (D) (d) and the number of moles of all epoxy groups in component (E) (e)
- Comparative Example 3 and Comparative Example 4 in which the ratio (d) / (e) is less than 1, although the adhesion to the base material is good, the curability after storage is lower than the initial value, and the storage stability Poor nature.
- Comparative Example 5 where the total number of moles of component (D) and component (E) is as low as 25.2 millimoles, the adhesion to the substrate is poor.
- Comparative Example 6 containing no amine compound (C) did not cure at all even after 7 days at room temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
シロキサン結合を形成することにより架橋し得るケイ素含有基を有する有機重合体を含有する硬化性組成物において、非有機錫硬化触媒を用いて、良好な接着性、貯蔵後も安定な硬化性を得ることを課題とし、以下の硬化性組成物により解決する。
(A)反応性ケイ素含有基を有する有機重合体、
(B)カルボン酸および/またはカルボン酸金属塩、
(C)反応性ケイ素基を有しないアミン化合物、
(D)アミノ基置換シラン化合物、
(E)エポキシ基置換シラン化合物
を含有する硬化性組成物において、組成物中に含まれるアミノ基置換シラン化合物(D)の全アミノ基のモル数(d)と、組成物中に含まれるエポキシ基置換シラン化合物(E)の全エポキシ基のモル数(e)との比(d)/(e)が1以上であり、(A)成分100gに対する(D)成分と(E)成分との総量が30ミリモル以上である。
Description
明 細 書
硬化性組成物
技術分野
[0001] 本発明は、ケィ素原子に結合した水酸基または加水分解性基を有し、シロキサン 結合を形成することにより架橋し得るケィ素含有基 (以下、「反応性ケィ素基」ともいう 。)を有する有機重合体を含有する硬化性組成物に関する。
背景技術
[0002] 分子中に少なくとも 1個の反応性ケィ素基を含有する有機重合体は、室温において も湿分等による反応性ケィ素基の加水分解反応等を伴うシロキサン結合の形成によ つて架橋し、ゴム状硬化物が得られると!、う性質を有することが知られて 、る。
[0003] これらの反応性ケィ素基を有する重合体中で、主鎖骨格がポリオキシアルキレン系 重合体またはイソブチレン系重合体である有機重合体は、既に工業的に生産され、 シーリング材、接着剤、塗料などの用途に広く使用されている。(特許文献 1)、(特許 文献 2)
これらの反応性ケィ素基を有する有機重合体を含有する硬化性組成物は、シラノ 一ル縮合触媒を用いて硬化させており、通常、ジブチル錫ビス(ァセチルァセトナー ト)などの、炭素 錫結合を有する有機錫系触媒が広く使用されている。しかしながら 、近年、有機錫系化合物はその毒性が指摘されており、非有機錫系触媒の開発が求 められている。
[0004] そのような非有機錫触媒として、各種カルボン酸金属塩やカルボン酸とアミン化合 物を併用した触媒系が提案されている。(特許文献 3)、(特許文献 4)、(特許文献 5) 、(特許文献 6)、(特許文献 7)、(特許文献 8)、(特許文献 9)、(特許文献 10)、(特 許文献 11)
一方、分子中に少なくとも 1個の反応性ケィ素基を含有する有機重合体は、シーリ ング材、接着剤、塗料などの用途に広く使用されるため、多種の基材に対する接着 性が求められる。接着性を改善するために、アミノ基置換シランィ匕合物を添加する方 法が一般に知られている。また、接着しにくい基材に接着させるために、エポキシ基
置換シランィ匕合物を併用する技術も公知である。(特許文献 12)、(特許文献 13) 特許文献 1:特開昭 52— 73998号公報
特許文献 2:特開昭 63 - 6041号公報
特許文献 3:特開昭 55— 9669号公報
特許文献 4:特許第 3062626号公報
特許文献 5:特開平 5— 117519号公報
特許文献 6:特開平 6— 322251号公報
特許文献 7:特開平 9 - 12860号公報
特許文献 8: WO00 56817号公報
特許文献 9: WO04 - 31300号公報
特許文献 10:特開 2000 - 345054号公報
特許文献 11 :特開 2004— 189946号公報
特許文献 12: WO00— 056818号公報
特許文献 13 :特開 2004— 107397号公報
発明の開示
発明が解決しょうとする課題
[0005] 上記特許に記載されて!ヽるカルボン酸金属塩やカルボン酸を使用した触媒を用い た場合、有機錫触媒を用いた場合に比べると、硬化性と接着性が劣る傾向にあると いう問題があった。
[0006] 本発明は、反応性ケィ素基を有する有機重合体を成分として含有する硬化性組成 物であって、毒性の少ない非有機錫硬化触媒を用いて実用的な接着性を有し、かつ 貯蔵後の硬化性が初期と変わらな ヽー液型硬化性組成物を提供することを目的とす る。
課題を解決するための手段
[0007] 本発明者らは、このような問題を解決するために鋭意検討した結果、反応性ケィ素 基を有する有機重合体を成分として含有する組成物に、触媒としてカルボン酸およ び Zまたはカルボン酸金属塩を用い、硬化性を実用的なレベルまで向上させるため に反応性ケィ素基を有しないアミンィ匕合物 (C)を添加し、さらにアミノ基置換シランィ匕
合物 (D)と、エポキシ基置換シラン化合物 (E)を併用して、(D)成分と (E)成分の総 モル量が一定以上の場合に基材への接着性が飛躍的に向上することを見出した。さ らに、組成物中に含まれるアミノ基置換シランィ匕合物(D)の全ァミノ基のモル数 (d) 力 組成物中に含まれるエポキシ基置換シランィ匕合物(E)の全エポキシ基のモル数 (e)より同等ある 、は多 、場合に、貯蔵後の硬化性が初期と変わらず良好であること を見出し、本発明を完成させた。
[0008] すなわち本発明は、成分として、(A)シロキサン結合を形成することにより架橋し得 るケィ素含有基を有する有機重合体、 (B)カルボン酸および Zまたはカルボン酸金 属塩、(C)反応性ケィ素基を有しないアミンィ匕合物、(D)アミノ基置換シランィ匕合物、 (E)エポキシ基置換シラン化合物、を含有する硬化性組成物であり、組成物中に含 まれるアミノ基置換シランィ匕合物(D)の全ァミノ基のモル数 (d)と、組成物中に含まれ るエポキシ基置換シランィ匕合物 (E)の全エポキシ基のモル数 (e)との比(d) / (e)が 1以上であり、さらに、(A)成分 lOOgに対する(D)成分と (E)成分との総量が 30ミリ モル以上であることを特徴とする一液型硬化性組成物に関する。
[0009] (A)成分の有機重合体の好ま 、主鎖骨格としては、ポリオキシアルキレン系重合 体、飽和炭化水素系重合体、および (メタ)アクリル酸エステル系重合体力 なる群か ら選択される少なくとも 1種の重合体であり、より好ましいポリオキシアルキレン系重合 体はポリオキシプロピレン系重合体である。
[0010] また、(B)成分のカルボン酸および Zまたはカルボン酸金属塩は、好ましくはカル ボニル基に隣接する炭素原子が 4級炭素のカルボン酸および Zまたはカルボニル基 に隣接する炭素原子力 級炭素のカルボン酸金属塩である。カルボニル基に隣接す る炭素原子が 4級炭素のカルボン酸金属塩のうち、さらに好ましくは、カルボ-ル基 に隣接する炭素原子力 級炭素のカルボン酸錫塩である。
[0011] (C)成分の反応性シリル基を有しないアミンィ匕合物は、(B)成分の活性を上げるた めに必要な成分である。
[0012] (D)成分のアミノ基置換シラン化合物と、 (E)成分のエポキシ基置換シランィ匕合物 は、基材との接着性を向上させるのに必要な成分である。
[0013] 本発明に係る硬化性組成物の好ま ヽ実施態様としては、前記 ヽずれかに記載の
硬化性組成物を用いてなる一液型接着剤または一液型シーリング材が挙げられる。 発明の効果
[0014] 本発明の硬化性組成物は、非有機錫触媒を使用しながら、接着性と貯蔵安定性に 優れる一液型硬化性組成物である。
発明を実施するための最良の形態
[0015] 以下、本発明について詳しく説明する。
[0016] 本発明に用いる反応性ケィ素基を有する有機重合体の主鎖骨格は特に制限はな ぐ各種の主鎖骨格を持つものを使用することができる。
[0017] 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオ キシテトラメチレン、ポリオキシエチレン ポリオキシプロピレン共重合体、ポリオキシ プロピレン ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;ェチ レン プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重 合体、ポリクロ口プレン、ポリイソプレン、イソプレンあるいはブタジエンとアタリ口-トリ ルおよび Zまたはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタ ジェンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフイン系重合 体に水素添加して得られる水添ポリオレフイン系重合体等の炭化水素系重合体;ァ ジピン酸等の 2塩基酸とダリコールとの縮合、または、ラタトン類の開環重合で得られ るポリエステル系重合体;ェチル (メタ)アタリレート、ブチル (メタ)アタリレート等のモノ マーをラジカル重合して得られる (メタ)アクリル酸エステル系重合体;(メタ)アクリル 酸エステル系モノマー、酢酸ビュル、アクリロニトリル、スチレン等のモノマーをラジカ ル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合し て得られるグラフト重合体;ポリサルファイド系重合体; ε—力プロラタタムの開環重合 によるナイロン 6、 へキサメチレンジァミンとアジピン酸の縮重合によるナイロン 6 · 6、 へキサメチレンジァミンとセバシン酸の縮重合によるナイロン 6 · 10、 ε アミノウンデ カン酸の縮重合によるナイロン 11、 εーァミノラウ口ラタタムの開環重合によるナイ口 ン 12、上記のナイロンのうち 2成分以上の成分を有する共重合ナイロン等のポリアミド 系重合体;たとえばビスフエノール Αと塩ィ匕カルボ-ルより縮重合して製造されるポリ カーボネート系重合体、ジァリルフタレート系重合体等が例示される。
[0018] さらに、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水 素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体 は比較的ガラス転移温度が低ぐ得られる硬化物が耐寒性に優れることからより好ま しい。
[0019] また、ポリオキシアルキレン系重合体および (メタ)アクリル酸エステル系重合体は、 接着性に優れることから特に好ましぐポリオキシアルキレン系重合体は最も好ま ヽ
[0020] (A)成分である有機重合体のガラス転移温度は、特に限定はな 、が、 20°C以下で あることが好ましぐ 0°C以下であることがより好ましぐ 20°C以下であることが特に 好ましい。ガラス転移温度が 20°Cを上回ると、冬季または寒冷地での粘度が高くなり 作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合 がある。前記ガラス転移温度は DSC測定による値を示す。
[0021] また、ポリオキシアルキレン系重合体および (メタ)アクリル酸エステル系重合体は、 透湿性が高く一液型組成物にした場合に深部硬化性に優れることから特に好ましぐ ポリオキシアルキレン系重合体は最も好ま 、。
[0022] 本発明の有機重合体中に含有される反応性ケィ素基は、ケィ素原子に結合した水 酸基又は加水分解性基を有し、硬化触媒によって加速される反応により架橋しうる基 である。反応性ケィ素基としては、一般式 (2):
- (SiR3 X O) -SiR2 X (2)
2— b b m 3 - a a
(式中、 R2および R3は、それぞれ独立に、炭素原子数 1から 20のアルキル基、炭素 原子数 6から 20のァリール基、炭素原子数 7から 20のァラルキル基または (R' ) SiO
3
—で示されるトリオルガノシロキシ基の ヽずれかを示し、 R2または R3が二個以上存在 するとき、それらは同一であってもよぐ異なっていてもよい。ここで R'は炭素原子数 1 力も 20の炭化水素基であり 3個の R'は同一であってもよぐ異なっていてもよい。 Xは 水酸基または加水分解性基を示し、 Xが二個以上存在する時、それらは同一であつ てもよく、異なっていてもよい。 aは 0、 1、 2または 3を、 bは 0、 1、または 2をそれぞれ 示す。また m個の(SIR3 X O)基における bについて、それらは同一であってもよぐ
2-b b
異なっていてもよい。 mは 0から 19の整数を示す。但し、 a+∑b≥lを満足するものと
する)で表される基があげられる。
[0023] 加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよ!、 。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、ァシルォキシ基、ケト キシメート基、アミノ基、アミド基、酸アミド基、アミノォキシ基、メルカプト基、ァルケ- ルォキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、ァシルォキ シ基、ケトキシメート基、アミノ基、アミド基、アミノォキシ基、メルカプト基およびアルケ -ルォキシ基が好ましぐ加水分解性が穏やかで取扱!/、やす!/、と!/、う観点からアルコ キシ基が特に好ましい。
[0024] 加水分解性基や水酸基は、 1個のケィ素原子に 1〜3個の範囲で結合することがで き、 (a+∑b)は 1〜5の範囲が好ましい。加水分解性基や水酸基が反応性ケィ素基 中に 2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
[0025] 反応性ケィ素基を形成するケィ素原子は 1個以上であるが、シロキサン結合などに より連結されたケィ素原子の場合には、 20個以下であることが好ましい。
[0026] とくに、一般式(3) :
-SiR2 X (3)
3-c c
(式中、 R2、 Xは前記と同じ。 cは 1〜3の整数)で表される反応性ケィ素基が、入手が 容易であるので好ましい。
[0027] また上記一般式(2)、 (3)における R2および R3の具体例としては、たとえばメチル基 、ェチル基等のアルキル基、シクロへキシル基等のシクロアルキル基、フエ-ル基等 のァリール基、ベンジル基等のァラルキル基や、 R,がメチル基、フエ-ル基等である (R' ) SiO—で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチ
3
ル基が特に好ましい。
[0028] 反応性ケィ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリ ル基、トリイソプロボキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル 基、ジイソプロボキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得ら れることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がよ り好ましぐトリメトキシシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキ シメチルシリル基が特に好ましい。また、トリエトキシシリル基およびジエトキシメチル
シリル基は、反応性ケィ素基の加水分解反応に伴って生成するアルコールが、ェタノ ールであり、より高 、安全性を有することから特に好まし 、。
[0029] 反応性ケィ素基の導入は公知の方法で行えばよ!、。すなわち、例えば以下の方法 が挙げられる。
[0030] (ィ)分子中に水酸基等の官能基を有する有機重合体に、この官能基に対して反応 性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有 する有機重合体を得る。もしくは、不飽和基含有エポキシィ匕合物との共重合により不 飽和基含有有機重合体を得る。つ!ヽで得られた反応生成物に反応性ケィ素基を有 するヒドロシランを作用させてヒドロシリル化する。
[0031] (口)(ィ)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基お よび反応性ケィ素基を有する化合物を反応させる。
[0032] (ハ)分子中に水酸基、エポキシ基やイソシァネート基等の官能基を有する有機重 合体に、この官能基に対して反応性を示す官能基および反応性ケィ素基を有する化 合物を反応させる。
[0033] 以上の方法のなかで、(ィ)の方法、または (ハ)のうち末端に水酸基を有する重合 体とイソシァネート基および反応性ケィ素基を有する化合物を反応させる方法は、比 較的短い反応時間で高い転ィ匕率が得られる為に好ましい。更に、(ィ)の方法で得ら れた反応性ケィ素基を有する有機重合体は、(ハ)の方法で得られる有機重合体より も低粘度で作業性の良い硬化性組成物となること、また、(口)の方法で得られる有機 重合体は、メルカプトシランに基づく臭気が強 、ことから、(ィ)の方法が特に好ま ヽ
[0034] (ィ)の方法において用いるヒドロシランィ匕合物の具体例としては、たとえば、トリクロ ロシラン、メチルジクロロシラン、ジメチルクロロシラン、フエニルジクロロシランのような ハロゲンィ匕シラン類;トリメトキシシラン、トリエトキシシラン、メチルジェトキシシラン、メ チルジメトキシシラン、フエ-ルジメトキシシランのようなアルコキシシラン類;メチルジ ァセトキシシラン、フエ-ルジァセトキシシランのようなァシロキシシラン類;ビス(ジメチ ルケトキシメート)メチルシラン、ビス(シクロへキシルケトキシメート)メチルシランのよう なケトキシメートシラン類などがあげられる力 これらに限定されるものではない。これ
らのうちではとくにハロゲンィ匕シラン類、アルコキシシラン類が好ましぐ特にアルコキ シシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱!/ヽやす!/、ため に最も好ましい。アルコキシシラン類の中で、メチルジメトキシシランは、入手し易ぐ 得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、 弓 I張強度が高!ヽ為に特に好まし 、。
[0035] (口)の合成法としては、たとえば、メルカプト基および反応性ケィ素基を有する化合 物を、ラジカル開始剤および Zまたはラジカル発生源存在下でのラジカル付加反応 によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限 定されるものではな ヽ。前記メルカプト基および反応性ケィ素基を有する化合物の具 体例としては、たとえば、 γ—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプ 口ピルメチルジメトキシシラン、 γ —メルカプトプロピルトリエトキシシラン、 γ —メルカ プトプロピルメチルジェトキシシラン、メルカプトメチルトリエトキシシランなどがあげら れるが、これらに限定されるものではない。
[0036] (ハ)の合成法のうち末端に水酸基を有する重合体とイソシァネート基および反応 性ケィ素基を有する化合物を反応させる方法としては、たとえば、特開平 3— 47825 号公報に示される方法等が挙げられる力 特に限定されるものではない。前記イソシ ァネート基および反応性ケィ素基を有する化合物の具体例としては、たとえば、 γ— イソシァネートプロピルトリメトキシシラン、 γ—イソシァネートプロピルメチルジメトキシ シラン、 γ —イソシァネートプロピルトリエトキシシラン、 γ —イソシァネートプロピノレメ チルジェトキシシランなどがあげられる力 これらに限定されるものではない。
[0037] トリメトキシシラン等の一つのケィ素原子に 3個の加水分解性基が結合して 、るシラ ン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシラ ンのようなかなり危険な化合物が生じる。しかし、 γ—メルカプトプロピルトリメトキシシ ランや γ —イソシァネートプロピルトリメトキシシランでは、このような不均化反応は進 行しない。このため、ケィ素含有基としてトリメトキシシリル基など 3個の加水分解性基 がーつのケィ素原子に結合して 、る基を用いる場合には、(口)または (ハ)の合成法 を用いることが好ましい。
[0038] 反応性ケィ素基を有する有機重合体は直鎖状、または分岐を有してもよぐその数
平均分子量は GPCにおけるポリスチレン換算において 500〜100, 000程度、より 好まし <は 1, 000〜50, 000であり、特に好まし <は 3, 000〜30, 000である。数平 均分子量が 500未満では、硬化物の伸び特性の点で不都合な傾向があり、 100, 0 00を越えると、高粘度となる為に作業性の点で不都合な傾向がある。
[0039] 高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に 含有される反応性ケィ素基は重合体 1分子中に平均して少なくとも 1個、好ましくは 1 . 1〜5個存在するのがよい。分子中に含まれる反応性ケィ素基の数が平均して 1個 未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しに《なる。反 応性ケィ素基は、有機重合体分子鎖の主鎖の末端ある!、は側鎖の末端にあってもよ いし、また、両方にあってもよい。特に、反応性ケィ素基が分子鎖の主鎖の末端にの みあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長 が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくな る。
[0040] 前記ポリオキシアルキレン系重合体は、本質的に一般式 (4):
-R4-0- (4)
(式中、 R4は炭素原子数 1〜14の直鎖状もしくは分岐アルキレン基である。)で示さ れる繰り返し単位を有する重合体であり、一般式 (4)における R4は、炭素原子数 1〜 14の、さらには 2〜4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式 (4)で 示される繰り返し単位の具体例としては、
[0041] [化 1]
CH3 C2H5
I I
—— CH20- —— CH2CH20—— CH2CHO— CH2CHO—
CH3
—— CH2_CO—— ― CH2CH2CH2CH2O
CH3
[0042] 等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、 1種類だけの繰り返 し単位力 なってもよいし、 2種類以上の繰り返し単位力 なってもよい。特にシーリン グ材等に使用される場合には、プロピレンォキシド重合体を主成分とする重合体から
成るものが非晶質であることや比較的低粘度である点から好ましい。
[0043] ポリオキシアルキレン系重合体の合成法としては、例えば、 KOHのようなアルカリ 触媒による重合法、特開昭 61— 215623号に示される有機アルミニウム化合物とポ ルフィリンとを反応させて得られる錯体のような遷移金属化合物—ボルフイリン錯体触 媒による重合法、特公昭 46— 27250号、特公昭 59— 15336号、米国特許 327845 7号、米国特許 3278458号、米国特許 3278459号、米国特許 3427256号、米国 特許 3427334号、米国特許 3427335号等に示される複合金属シアンィ匕物錯体触 媒による重合法、特開平 10— 273512号に例示されるポリホスファゼン塩カもなる触 媒を用いる重合法、特開平 11— 060722号に例示されるホスファゼン化合物力もな る触媒を用いる重合法等、があげられるが、特に限定されるものではない。
[0044] 反応性ケィ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭 45
— 36319号、同 46— 12154号、特開昭 50— 156599号、同 54— 6096号、同 55
— 13767号、同 55— 13468号、同 57— 164123号、特公平 3— 2450号、米国特 許 3632557、米国特許 4345053、米国特許 4366307、米国特許 4960844等の 各公報に提案されているもの、また特開昭 61— 197631号、同 61— 215622号、同 61— 215623号、同 61— 218632号、特開平 3— 72527号、特開平 3— 47825号
、特開平 8— 231707号の各公報に提案されている数平均分子量 6, 000以上、 Mw ZMnが 1. 6以下の高分子量で分子量分布が狭 、ポリオキシアルキレン系重合体が 例示できる力 特にこれらに限定されるものではない。
[0045] 上記の反応性ケィ素基を有するポリオキシアルキレン系重合体は、単独で使用して もよ 、し 2種以上併用してもょ 、。
[0046] 前記飽和炭化水素系重合体は芳香環以外の炭素 炭素不飽和結合を実質的に 含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、 1 ブテン、イソブチレンなどのような炭素原子数 1から 6のォレフイン系化合物を主モノ マーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジェン系化合物を単 独重合させ、あるいは、上記ォレフィン系化合物とを共重合させた後、水素添加する などの方法により得ることができる力 イソブチレン系重合体や水添ポリブタジエン系 重合体は、末端に官能基を導入しやすぐ分子量を制御しやすぐまた、末端官能基
の数を多くすることができるので好ましぐイソブチレン系重合体が特に好ましい。
[0047] 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び 、湿気遮断性に優れる特徴を有する。
[0048] イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されて いてもよいし、他単量体との共重合体でもよいが、ゴム特性の面力 イソブチレンに由 来する繰り返し単位を 50重量%以上含有するものが好ましぐ 80重量%以上含有す るものがより好ましぐ 90 99重量%含有するものが特に好ましい。
[0049] 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されて 、る 1S 特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合 体、特にイソブチレン系重合体の場合、 Kennedyらによって見出されたィ-ファー重 合(J. P. Kennedyら、 J. Polymer Sci. , Polymer Chem. Ed. 1997年、 1 5卷、 2843頁)を用いることにより容易に製造することが可能であり、分子量 500 1 00, 000程度を、分子量分布 1. 5以下で重合でき、分子末端に各種官能基を導入 でさることが知られている。
[0050] 反応性ケィ素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公 平 4— 69659号、特公平 7— 108928号、特開昭 63— 254149号、特開昭 64— 22 904号、特開平 1— 197509号、特許公報第 2539445号、特許公報第 2873395号 、特開平 7— 53882号の各明細書などに記載されている力 特にこれらに限定される ものではない。
[0051] 上記の反応性ケィ素基を有する飽和炭化水素系重合体は、単独で使用してもよい し 2種以上併用してもよい。
[0052] 前記 (メタ)アクリル酸エステル系重合体の主鎖を構成する (メタ)アクリル酸エステル 系モノマーとしては特に限定されず、各種のものを用いることができる。例示するなら ば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル 酸 n—プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸 n—ブチル、(メタ)ァ クリル酸イソブチル、(メタ)アクリル酸 tert—ブチル、(メタ)アクリル酸 n—ペンチル、( メタ)アクリル酸 n キシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸 n— ヘプチル、(メタ)アクリル酸 n—ォクチル、(メタ)アクリル酸 2—ェチルへキシル、(メタ
)アクリル酸ノエル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル 酸フヱ-ル、(メタ)アクリル酸トルィル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸 2 —メトキシェチル、(メタ)アクリル酸 3—メトキシブチル、(メタ)アクリル酸 2 ヒドロキシ ェチル、(メタ)アクリル酸 2—ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)ァ クリル酸グリシジル、(メタ)アクリル酸 2—アミノエチル、 Ύ— (メタクリロイルォキシプロ メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルォロメチルメチ ル、(メタ)アクリル酸 2—トリフルォロメチルェチル、(メタ)アクリル酸 2—パーフルォロ ェチルェチル、(メタ)アクリル酸 2—パーフルォロェチル 2—パーフルォロブチル ェチル、(メタ)アクリル酸パーフルォロェチル、(メタ)アクリル酸トリフルォロメチル、( メタ)アクリル酸ビス(トリフルォロメチル)メチル、(メタ)アクリル酸トリフルォロメチルバ 一フルォロェチルメチル、(メタ)アクリル酸 2—パーフルォ口へキシルェチル、(メタ) アクリル酸 2—パーフルォロデシルェチル、(メタ)アクリル酸 2—パーフルォ口へキサ デシルェチル等の (メタ)アクリル酸系モノマーが挙げられる。前記 (メタ)アクリル酸ェ ステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビュル系 モノマーを共重合することもできる。該ビュル系モノマーを例示すると、スチレン、ビ- ルトルエン、 α—メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等 のスチレン系モノマー;パーフノレオ口エチレン、パーフノレオ口プロピレン、フツイ匕ビ-リ デン等のフッ素含有ビュルモノマー;ビュルトリメトキシシラン、ビュルトリエトキシシラ ン等のケィ素含有ビュル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノ アルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエス テル及びジアルキルエステル;マレイミド、メチルマレイミド、ェチルマレイミド、プロピ ルマレイミド、ブチルマレイミド、へキシルマレイミド、ォクチルマレイミド、ドデシノレマレ イミド、ステアリルマレイミド、フエ-ルマレイミド、シクロへキシルマレイミド等のマレイミ ド系モノマー;アクリロニトリル、メタタリ口-トリル等の-トリル基含有ビュル系モノマー ;アクリルアミド、メタクリルアミド等のアミド基含有ビュル系モノマー;酢酸ビュル、プロ ピオン酸ビュル、ピバリン酸ビュル、安息香酸ビュル、桂皮酸ビュル等のビニルエス テル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジェン
類;塩化ビュル、塩ィ匕ビユリデン、塩化ァリル、ァリルアルコール等が挙げられる。これ らは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の 物性等から、スチレン系モノマー及び (メタ)アクリル酸系モノマー力もなる重合体が 好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノ マーからなる (メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマ 一からなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘 度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、ァ クリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求 される用途においては、アクリル酸ェチルを主とした共重合体が更に好ましい。この アクリル酸ェチルを主とした重合体は耐油性に優れるが低温特性 (耐寒性)にやや劣 る傾向があるため、その低温特性を向上させるために、アクリル酸ェチルの一部をァ クリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増 やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途には その比率は 40%以下にするのが好ましぐ更には 30%以下にするのがより好ましい 。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素 が導入されたアクリル酸 2—メトキシェチルゃアクリル酸 2—エトキシェチル等を用い るのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱 性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は 40%以下にす るのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱 性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可 能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランス に優れている例としては、アクリル酸ェチル /アクリル酸ブチル /アクリル酸 2—メトキ シェチル(重量比で 40〜50Z20〜30Z30〜20)の共重合体が挙げられる。本発 明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共 重合させても構わなぐその際は、これらの好ましいモノマーが重量比で 40%以上含 まれていることが好ましい。なお上記表現形式で例えば (メタ)アクリル酸とは、アタリ ル酸および Ζある 、はメタクリル酸を表す。
(メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方
法で行えばよい。但し、重合開始剤としてァゾ系化合物、過酸化物などを用いる通常 のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に 2以上と大 きぐ粘度が高くなるという問題を有している。従って、分子量分布が狭ぐ粘度の低 V、 (メタ)アクリル酸エステル系重合体であって、高 、割合で分子鎖末端に架橋性官 能基を有する (メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重 合法を用いることが好ましい。
[0054] 「リビングラジカル重合法」の中でも、有機ハロゲン化物ある 、はハロゲン化スルホ ニル化合物等を開始剤、遷移金属錯体を触媒として (メタ)アクリル酸エステル系モノ マーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の 特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤 や触媒の設計の自由度が大きいことから、特定の官能基を有する (メタ)アクリル酸ェ ステル系重合体の製造方法としてはさらに好まし 、。この原子移動ラジカル重合法と しては例えば、 Matyjaszewskiら、ジャーナル ·ォブ ·アメリカン ·ケミカルソサエティ 一 (J. Am. Chem. Soc. ) 1995年、 117卷、 5614頁など力挙げられる。
[0055] 反応性ケィ素基を有する (メタ)アクリル酸エステル系重合体の製法としては、たとえ ば、特公平 3— 14068号公報、特公平 4— 55444号公報、特開平 6— 211922号公 報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている 。また、特開平 9— 272714号公報等に、原子移動ラジカル重合法を用いた製法が 開示されている力 特にこれらに限定されるものではない。
[0056] 上記の反応性ケィ素基を有する (メタ)アクリル酸エステル系重合体は、単独で使用 してもょ 、し 2種以上併用してもょ 、。
[0057] これらの反応性ケィ素基を有する有機重合体は、単独で使用してもよいし 2種以上 併用してもよい。具体的には、反応性ケィ素基を有するポリオキシアルキレン系重合 体、反応性ケィ素基を有する飽和炭化水素系重合体、反応性ケィ素基を有する (メタ )アクリル酸エステル系重合体、力 なる群力 選択される 2種以上をブレンドしてなる 有機重合体も使用できる。
[0058] 反応性ケィ素基を有するポリオキシアルキレン系重合体と反応性ケィ素基を有する
(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特
開昭 59— 122541号、特開昭 63— 112642号、特開平 6— 172631号、特開平 11 — 116763号公報等に提案されている力 特にこれらに限定されるものではない。好 ましい具体例は、反応性ケィ素基を有し分子鎖が実質的に、下記一般式 (5): -CH -C (R5) (COOR6) (5)
2
(式中、 R5は水素原子またはメチル基、 R6は炭素原子数 1から 8のアルキル基を示す )で表される炭素原子数 1から 8のアルキル基を有する (メタ)アクリル酸エステル単量 体単位と、下記一般式 (6) :
CH— C (R5) (COOR7) (6)
2
(式中、 R5は前記に同じ、 R7は炭素原子数 10以上のアルキル基を示す)で表される 炭素原子数 10以上のアルキル基を有する (メタ)アクリル酸エステル単量体単位から なる共重合体に、反応性ケィ素基を有するポリオキシアルキレン系重合体をブレンド して製造する方法である。
[0059] 前記一般式(5)の R6としては、たとえばメチル基、ェチル基、プロピル基、 n—ブチ ル基、 t—ブチル基、 2 ェチルへキシル基等の炭素原子数 1から 8、好ましくは 1か ら 4、さらに好ましくは 1または 2のアルキル基があげられる。なお、 R6のアルキル基は 単独でもよぐ 2種以上混合していてもよい。
[0060] 前記一般式 (6)の R7としては、たとえばラウリル基、トリデシル基、セチル基、ステア リル基、ベへ-ル基等の炭素原子数 10以上、通常は 10〜30、好ましくは 10〜20の 長鎖のアルキル基があげられる。なお、 R7のアルキル基は R6の場合と同様、単独で もよぐ 2種以上混合したものであってもよい。
[0061] 該 (メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(5)及び式 (6)の 単量体単位力もなるが、ここでいう「実質的に」とは該共重合体中に存在する式 (5) 及び式 (6)の単量体単位の合計が 50重量%をこえることを意味する。式(5)及び式 ( 6)の単量体単位の合計は好ましくは 70重量%以上である。
[0062] また式(5)の単量体単位と式(6)の単量体単位の存在比は、重量比で 95: 5〜40: 60力 子ましく、 90 : 10〜60 :40力さらに好ましい。
[0063] 該共重合体に含有されて!ヽてもよ!/ヽ式(5)及び式 (6)以外の単量体単位としては、 たとえばアクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、 N—
メチロールアクリルアミド、 N—メチロールメタクリルアミド等のアミド基、グリシジルァク リレート、グリシジルメタタリレート等のエポキシ基、ジェチルアミノエチルアタリレート、 ジェチルアミノエチルメタタリレート、アミノエチルビ-ルエーテル等のアミノ基を含む 単量体;その他アクリロニトリル、スチレン、 α—メチルスチレン、アルキルビュルエー テル、塩化ビニル、酢酸ビニル、プロピオン酸ビュル、エチレン等に起因する単量体 単位があげられる。
[0064] 反応性ケィ素基を有する飽和炭化水素系重合体と反応性ケィ素基を有する (メタ) アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平 1 16876
4号、特開 2000— 186176号公報等に提案されている力 特にこれらに限定される ものではない。
[0065] さらに、反応性ケィ素官能基を有する (メタ)アクリル酸エステル系共重合体をプレン ドしてなる有機重合体の製造方法としては、他にも、反応性ケィ素基を有する有機重 合体の存在下で (メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。 この製造方法は、特開昭 59— 78223号、特開昭 59— 168014号、特開昭 60— 22 8516号、特開昭 60— 228517号等の各公報に具体的に開示されている力 これら に限定されるものではない。
[0066] 一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレ タン結合成分等の他の成分を含んで 、てもよ 、。
[0067] 前記ウレタン結合成分としては特に限定されないが、イソシァネート基と活性水素 基との反応により生成する基 (以下、アミドセグメントともいう)を挙げることができる。
[0068] 前記アミドセグメントは一般式(7) :
NR8 - C ( = 0) - (7)
(R8は水素原子または置換ある!/、は非置換の有機基を表す)で表される基である。
[0069] 前記アミドセグメントとしては、具体的には、イソシァネート基と水酸基との反応によ り生成するウレタン基;イソシァネート基とアミノ基との反応により生成する尿素基;イソ シァネート基とメルカプト基との反応により生成するチォウレタン基などを挙げることが できる。また、本発明では、上記ウレタン基、尿素基、及び、チォウレタン基中の活性 水素が、更にイソシァネート基と反応して生成する基も、一般式 (7)の基に含まれる。
[0070] アミドセグメントと反応性ケィ素基を有する有機重合体の工業的に容易な製造方法 を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシァネ 一トイ匕合物を反応させて、ポリウレタン系主鎖の末端にイソシァネート基を有する重合 体とした後、あるいは同時に、該イソシァネート基の全部または一部に一般式 (8) W-R9-SiR2 X (8)
3-c c
(ただし、式中、 R2、 X、 cは前記と同じ。 R9は、 2価の有機基であり、より好ましくは炭 素原子数 1から 20の置換もしくは非置換の 2価の炭化水素基である。 Wは水酸基、力 ルポキシル基、メルカプト基およびアミノ基 (非置換または一置換)から選ばれた活性 水素含有基である。 )で表されるケィ素化合物の W基を反応させる方法により製造さ れるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造 法を例示すると、特公昭 46— 12154号(米国特許 3632557号)、特開昭 58— 109 529号(米国特許 4374237号)、特開昭 62— 13430号(米国特許 4645816号)、 特開平 8— 53528号(EP0676403)、特開平 10— 204144号(EP0831108)、特 表 2003— 508561 (米国特許 6197912号)、特開平 6— 211879号(米国特許 536 4955号;)、特開平 10— 53637号(米国特許 5756751号;)、特開平 11— 100427 号、特開 2000— 169544号、特開 2000— 169545号、特開 2002— 212415号、 特許第 3313360号、米国特許 4067844号、米国特許 3711445号、特開 2001— 323040号、などが挙げられる。
[0071] また、末端に活性水素含有基を有する有機重合体に一般式 (9)
0 = C=N-R9-SiR2 X (9)
3-c c
(ただし、式中 R2、 R9、 X、 cは前記に同じ。)で示される反応性ケィ素基含有イソシァ ネートイ匕合物とを反応させることにより製造されるものを挙げることができる。この製造 方法に関連した、有機重合体の公知の製造法を例示すると、特開平 11 279249 号(米国特許 5990257号)、特開 2000— 119365号(米国特許 6046270号)、特 開昭 58 - 29818号(米国特許 4345053号)、特開平 3—47825号(米国特許 506 8304号)、特開平 11— 60724号、特開 2002— 155145号、特開 2002— 249538 号、 WO03/018658, WO03Z059981など力挙げられる。
[0072] 末端に活性水素含有基を有する有機重合体としては、末端に水酸基を有するォキ
シアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステル ポリオール、末端に水酸基を有する飽和炭化水素系重合体 (ポリオレフインポリオ一 ル)、ポリチオールィ匕合物、ポリアミンィ匕合物などが挙げられる。これらの中でも、ポリ エーテルポリオール、ポリアクリルポリオール、および、ポリオレフインポリオールは、 得られる有機重合体のガラス転移温度が比較的低ぐ得られる硬化物が耐寒性に優 れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度 が低く作業性が良好であり、深部硬化性が良好である為に特に好ましい。また、ポリ アクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物 の耐候性 ·耐熱性が良好である為により好ま 、。
[0073] ポリエーテルポリオールとしては、 、かなる製造方法にぉ 、て製造されたものでも使 用することが出来るが、全分子平均で分子末端当り少なくとも 0. 7個の水酸基を末端 に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造した ォキシアルキレン重合体や、複合金属シアン化物錯体ゃセシウムの存在下、少なくと も 2つの水酸基を有するポリヒドロキシィ匕合物などの開始剤に、アルキレンォキシドを 反応させて製造されるォキシアルキレン重合体などが挙げられる。
[0074] 上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低 不飽和度で、 MwZMnが狭ぐより低粘度でかつ、高耐酸性、高耐候性のォキシァ ルキレン重合体を得ることが可能であるため好ましい。
[0075] 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体 を骨格とし、かつ、分子内にヒドロキシル基を有するポリオールを挙げることができる。 この重合体の合成法は、分子量分布が狭ぐ低粘度化が可能なことからリビングラジ カル重合法が好ましぐ原子移動ラジカル重合法がさらに好ましい。また、特開 2001 - 207157号公報に記載されて 、るアクリル酸アルキルエステル系単量体を高温、 高圧で連続塊状重合によって得た、いわゆる SGOプロセスによる重合体を用いるの が好ましい。具体的には、東亞合成 (株)製のアルフォン UH— 2000等が挙げられる
[0076] 前記ポリイソシァネートイ匕合物の具体例としては、トルエン(トリレン)ジイソシァネー ト、ジフエ-ルメタンジイソシァネート、キシリレンジイソシァネート等の芳香族系ポリイ
ソシァネート;イソフォロンジイソシァネート、へキサメチレンジイソシァネート等の脂肪 族系ポリイソシァネートなどを挙げることができる。
[0077] 一般式 (8)のケィ素化合物としては特に限定はないが、具体的に例示すると、 y ァミノプロピルトリメトキシシラン、 N—(β—アミノエチル) Ί—ァミノプロピルトリメト キシシラン、 γ - (Ν フエ-ル)ァミノプロピルトリメトキシシラン、 Ν ェチルアミノィ ソブチルトリメトキシシラン、 Ν シクロへキシルァミノメチルトリエトキシシラン、 Ν シ クロへキシルアミノメチルジェトキシメチルシラン、 Ν フエニルアミノメチルトリメトキシ シラン、等のアミノ基含有シラン類; y—ヒドロキシプロピルトリメトキシシラン等のヒドロ キシ基含有シラン類; Ύ—メルカプトプロピルトリメトキシシラン等のメルカプト基含有 シラン類;等が挙げられる。また、特開平 6— 211879号 (米国特許 5364955号)、特 開平 10— 53637号(米国特許 5756751号)、特開平 10— 204144号(EP083110 8)、特開 2000— 169544号、特開 2000— 169545号【こ記載されて!ヽる様【こ、各種 の a , β 不飽和カルボ-ル化合物と一級アミノ基含有シランとの Michael付加反 応物、または、各種の (メタ)アタリロイル基含有シランと一級アミノ基含有化合物との Michael付加反応物もまた、一般式 (8)のケィ素化合物として用いることができる。
[0078] 一般式 (9)の反応性ケィ素基含有イソシァネートイ匕合物としては特に限定はな 、が 、具体的に例示すると、 γ—トリメトキシシリルプロピルイソシァネート、 γ—トリエキシ シリルプロピルイソシァネート、 yーメチルジメトキシシリルプロピルイソシァネート、 y ト、ジメトキシメチルシリルメチルイソシァネート等が挙げられる。また、特開 2000— 1 19365号 (米国特許 6046270号)に記載されている様に、一般式 (8)のケィ素化合 物と、過剰の前記ポリイソシァネートイヒ合物を反応させて得られる化合物もまた、一般 式 (9)の反応性ケィ素基含有イソシァネートイ匕合物として用いることができる。
[0079] 本発明の (A)成分である有機重合体の主鎖骨格中にアミドセグメントが多いと、有 機重合体の粘度が高くなり、作業性の悪い組成物となる場合がある。一方、(A)成分 の主鎖骨格中のアミドセグメントによって、本発明の組成物の硬化性が向上する傾向 がある。従って、主鎖骨格中にアミドセグメントを有する有機重合体を (A)成分として 用いた場合、(B)成分と組合せた組成物は、非有機錫触媒を用いながらより速硬化
性を有する為に好ましい。(A)成分の主鎖骨格中にアミドセグメントを含む場合、アミ ドセグメントは 1分子あたり平均で、 1 10個が好ましぐ 1. 5 7個がより好ましぐ 2 5個が特に好ましい。 1個よりも少ない場合には、硬化性が十分ではない場合があ り、 10個よりも大きい場合には、有機重合体が高粘度となり作業性の悪い組成物とな る場合がある。
[0080] 本発明では、 (B)成分として、カルボン酸 (bl)および Zまたはカルボン酸金属塩( b2)を使用する。これら (B)成分は、(A)成分である有機重合体に含有されるケィ素 原子に結合した水酸基または加水分解性基からシロキサン結合を形成させ得る、 V わゆるシラノール縮合触媒として機能する。
[0081] カルボン酸 (bl)およびカルボン酸金属塩 (b2)はそれぞれ単独で使用してもよ!/、し 、併用してもよい。いずれも非有機錫触媒として、環境への負荷が小さいことから好ま しい。
[0082] カルボン酸 (bl)としては、カルボン酸だけに限定されず、カルボン酸無水物、エス テル、アミド、二トリル、塩化ァシルなどの加水分解によってカルボン酸を生じるカル ボン酸誘導体も含まれる。カルボン酸 (bl)としては、触媒活性の高さから特にカルボ ン酸が好ましい。
[0083] カルボン酸 (bl)を具体的に例示すると、酢酸、プロピオン酸、酪酸、吉草酸、カブ ロン酸、ェナント酸、力プリル酸、ペラルゴン酸、力プリン酸、ゥンデカン酸、ラウリン酸 、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステ アリン酸、ノナデカン酸、ァラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン 酸、メリシン酸、ラタセル酸などの直鎖飽和脂肪酸類;ゥンデシレン酸、リンデル酸、ッ ズ酸、フィゼテリン酸、ミリストレイン酸、 2 へキサデセン酸、 6 へキサデセン酸、 7 キサデセン酸、パルミトレイン酸、ペトロセリン酸、ォレイン酸、エライジン酸、ァス タレピン酸、バタセン酸、ガドレイン酸、ゴンドイン酸、セトレイン酸、エル力酸、ブラシ ジン酸、セラコレイン酸、キシメン酸、ルメクェン酸、アクリル酸、メタクリル酸、アンゲリ 力酸、クロトン酸、イソクロトン酸、 10—ゥンデセン酸などのモノエン不飽和脂肪酸類; リノエライジン酸、リノール酸、 10, 12—ォクタデカジエン酸、ヒラゴ酸、 a—エレォス テアリン酸、 β エレォステアリン酸、プ-カ酸、リノレン酸、 8, 11, 14 エイコサトリ
ェン酸、 7, 10, 13 ドコサトリェン酸、 4, 8, 11, 14 へキサデカテトラェン酸、モロ クチ酸、ステアリドン酸、ァラキドン酸、 8, 12, 16, 19 ドコサテトラェン酸、 4, 8, 12 , 15, 18 エイコサペンタエン酸、イワシ酸、 -シン酸、ドコサへキサェン酸などのポ リエン不飽和脂肪酸類; 2—メチル酪酸、イソ酪酸、 2—ェチル酪酸、 2—ェチルへキ サン酸、イソ吉草酸、ッベルクロステアリン酸、ピバル酸、ネオデカン酸、 2—フエ-ル 酪酸などの枝分れ脂肪酸類;プロピオール酸、タリリン酸、ステアロール酸、タレべ- ン酸、キシメニン酸、 7—へキサデシン酸などの三重結合をもつ脂肪酸類;ナフテン 酸、マルバリン酸、ステルクリン酸、ヒドノカルビン酸、ショールムーグリン酸、ゴルリン 酸などの脂環式カルボン酸類;ァセト酢酸、エトキシ酢酸、ダリオキシル酸、グリコー ル酸、ダルコン酸、サビニン酸、 2—ヒドロキシテトラデカン酸、ィプロール酸、 2—ヒド ロキシへキサデカン酸、ャラピノール酸、ュ-ペリン酸、アンブレットール酸、ァリュー リット酸、 2 ヒドロキシォクタデカン酸、 12 ヒドロキシォクタデカン酸、 18 ヒドロキ シォクタデカン酸、 9, 10 ジヒドロキシォクタデカン酸、リシノール酸、カムロレン酸、 リカン酸、フエロン酸、セレブロン酸などの含酸素脂肪酸類;クロ口酢酸、 2—クロロア クリル酸、クロ口安息香酸などのモノカルボン酸のハロゲン置換体等が挙げられる。脂 肪族ジカルボン酸としては、アジピン酸、ァゼライン酸、ピメリン酸、スペリン酸、セバ シン酸、ェチルマロン酸、グルタル酸、シユウ酸、マロン酸、コハク酸、ォキシ二酢酸 などの飽和ジカルボン酸;マレイン酸、フマル酸、アセチレンジカルボン酸、ィタコン 酸などの不飽和ジカルボン酸、等が挙げられる。脂肪族ポリカルボン酸としては、アコ ニット酸、クェン酸、イソクェン酸などのトリカルボン酸等が挙げられる。芳香族カルボ ン酸としては、安息香酸、 9 アントラセンカルボン酸、アトロラクチン酸、ァニス酸、ィ ソプロピル安息香酸、サリチル酸、トルィル酸などの芳香族モノカルボン酸;フタル酸 、イソフタル酸、テレフタル酸、カルボキシフヱ-ル酢酸、ピロメリット酸などの芳香族 ポリカルボン酸、等が挙げられる。その他、ァラニン、ロイシン、トレオニン、ァスパラギ ン酸、グルタミン酸、アルギニン、システィン、メチォニン、フエ-ルァラニン、トリプトフ アン、ヒスチジンなどのアミノ酸が挙げられる。
特に入手が容易で安価であり、(A)成分との相溶性が良好である点から、カルボン 酸 (bl)は、 2—ェチルへキサン酸、ォクチル酸、ネオデカン酸、ォレイン酸、または
ナフテン酸などが好ましい。
[0085] カルボン酸の融点が高 ヽ (結晶性が高 、)場合には、得られる硬化性組成物が取り 扱い難い(作業性の悪い)ものとなる傾向がある。従って、カルボン酸 (bl)の融点は 、 65°C以下であることが好ましぐ 50〜50°Cであることがより好ましぐ -40-35 °Cであることが特に好まし!/、。
[0086] また、カルボン酸の炭素数が大きい (分子量が大きい)場合にも、固状または粘度 の高い液状となり、取り扱い難い (作業性の悪い)ものとなる。逆に、カルボン酸 (bl) の炭素数が小さい(分子量が小さい)と、加熱によって揮発しやすいため、触媒能が 低下する場合がある。特に、組成物を薄く引き延ばした (薄層)条件では加熱による 揮発が大きぐ触媒能が大きく低下する場合がある。従って、カルボン酸 (bl)は、力 ルポニル基の炭素を含めた炭素原子数力 2から 20であることが好ましぐ 6から 17 であることがより好ましぐ 8から 12であることが特に好ましい。
[0087] カルボン酸 (bl)の取り扱 、易さ(作業性、粘度)の点から、ジカルボン酸またはモノ カルボン酸であることが好ましぐモノカルボン酸がより好まし!/、。
[0088] また、カルボン酸 (bl)は、カルボ-ル基に隣接する炭素原子が 3級炭素である力 ルボン酸(2 ェチルへキサン酸など)や 4級炭素であるカルボン酸 (ネオデカン酸、 ピノ レ酸など)が、硬化速度が速いことからより好ましぐカルボニル基に隣接する炭 素原子が 4級炭素であるカルボン酸が特に好ましい。また、カルボニル基に隣接する 炭素原子が 4級炭素であるカルボン酸は、その他のカルボン酸に比べ、接着性にも 優れる傾向がある。
[0089] カルボニル基に隣接する炭素原子が 4級炭素であるカルボン酸としては一般式(1
0) :
R12
[0091] (式中、 R1Q、 R11および R12はそれぞれ独立した置換あるいは非置換の 1価炭化水素
基であり、カルボキシル基を含んでいてもよい。)で表される鎖状脂肪酸、または一般 式 (11) :
[0092] [化 3]
[0093] (式中、 R13は置換あるいは非置換の 1価炭化水素基、 R14は置換あるいは非置換の 2 価炭化水素基であり、それぞれカルボキシル基を含んでいてもよい。)および一般式 (12) :
[0094] [化 4]
[0095] (式中、 R15は置換あるいは非置換の 3価炭化水素基であり、カルボキシル基を含ん でいてもよい。)で表される構造を含有する環状脂肪酸が挙げられる。具体的に例示 すると、ピバル酸、 2, 2—ジメチル酪酸、 2—ェチルー 2—メチル酪酸、 2, 2—ジェチ ル酪酸、 2, 2—ジメチル吉草酸、 2—ェチルー 2—メチル吉草酸、 2, 2—ジェチル吉 草酸、 2, 2—ジメチルへキサン酸、 2, 2—ジェチルへキサン酸、 2, 2—ジメチルォク タン酸、 2—ェチルー 2, 5—ジメチルへキサン酸、ネオデカン酸、バーサチック酸、 2 , 2—ジメチルー 3—ヒドロキシプロピオン酸などの鎖状モノカルボン酸、ジメチルマロ ン酸、ェチルメチルマロン酸、ジェチルマロン酸、 2, 2—ジメチルこはく酸、 2, 2—ジ ェチルこはく酸、 2, 2—ジメチルダルタル酸などの鎖状ジカルボン酸、 3—メチルイソ クェン酸、 4, 4—ジメチルアコニット酸などの鎖状トリカルボン酸、 1—メチルシクロべ ンタンカルボン酸、 1, 2, 2—トリメチルー 1, 3—シクロペンタンジカルボン酸、 1—メ
チルシクロへキサンカルボン酸、 2—メチルビシクロ [2. 2. 1]— 5 ヘプテン一 2—力 ルボン酸、 2—メチル 7—ォキサビシクロ [2. 2. 1]— 5 ヘプテン一 2—カルボン 酸、 1—ァダマンタンカルボン酸、ビシクロ [2. 2. 1]ヘプタン一 1—カルボン酸、ビシ クロ [2. 2. 2]オクタン 1一力ルボン酸などの環状カルボン酸などが挙げられる。こ のような構造を含有する化合物は天然物に多く存在するが、もちろんこれらも使用で きる。
[0096] これらの中でも、取り扱い易さ、入手性の観点から、ネオデカン酸、バーサチック酸 、 2, 2 ジメチルオクタン酸、 2 ェチルー 2, 5 ジメチルへキサン酸が特に好まし い。
[0097] 一方、カルボン酸金属塩(b2)としては、カルボン酸錫、カルボン酸鉛、カルボン酸 ビスマス、カルボン酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン 酸チタン、カルボン酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、 カルボン酸マンガン、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、カル ボン酸セリウムが触媒活性が高いことから好ましぐ更にはカルボン酸錫、カルボン酸 鉛、カルボン酸ビスマス、カルボン酸チタン、カルボン酸鉄、カルボン酸ジルコニウム 力 り好ましぐ特にカルボン酸錫が好ましぐ 2価のカルボン酸錫が最も好ましい。
[0098] カルボン酸金属塩(b2)の酸基を有するカルボン酸としては、上記のカルボン酸(b 1)で例示した各種のカルボン酸が挙げられる。
[0099] また、カルボン酸金属塩 (b2)を用いると、良好な復元性、耐久性、および、耐クリー プ性を有する硬化性組成物が得られる。また、耐水接着性や高温高湿条件での接 着耐久性、残留タック、埃付着性、汚染性、表面耐候性、耐熱性、コンクリート接着性 等にも効果が期待できる。
[0100] (B)成分の使用量としては、(A)成分 100重量部に対して、 0. 01〜20重量部が 好ましく、更には 0. 1〜15重量部がより好ましぐ特に 1〜: L0重量部が好ましい。 (B) 成分の配合量力この範囲を下回ると実用的な硬化速度が得られない場合があり、ま た硬化反応が充分に進行し難くなる場合がある。一方、(B)成分の配合量がこの範 囲を上回ると可使時間が短くなり過ぎて作業性が悪くなつたり、貯蔵安定性が悪くな る傾向がある。
[0101] 本発明では (C)成分として反応性ケィ素基を有しな!/ヽァミン化合物を使用し、 (C) 成分を添加することにより、硬化性が向上する傾向がある。
[0102] (C)成分の反応性ケィ素基を有しな!/、アミンィ匕合物の具体例としては、メチルァミン 、ェチノレアミン、プロピルァミン、イソプロピルァミン、ブチノレアミン、アミノレアミン、へキ シルァミン、ォクチルァミン、 2—ェチルへキシルァミン、ノ-ルァミン、デシルァミン、 ラウリルァミン、ペンタデシルァミン、セチルァミン、ステアリルァミン、シクロへキシルァ ミン等の脂肪族第一級ァミン類;ジメチルァミン、ジェチルァミン、ジプロピルアミン、 ジイソプロピルァミン、ジブチルァミン、ジアミルァミン、ジへキシルァミン、ジォクチル ァミン、ジ(2—ェチルへキシル)ァミン、ジデシルァミン、ジラウリルァミン、ジセチルァ ミン、ジステアリルァミン、メチルステアリルァミン、ェチルステアリルァミン、ブチルステ ァリルアミン等の脂肪族第二級ァミン類;トリアミルァミン、トリへキシルァミン、トリオク チルァミン等の脂肪族第三級ァミン類;トリアリルァミン、ォレイルァミン、などの脂肪 族不飽和アミン類;ラウリルァ-リン、ステアリルァ-リン、トリフエ-ルァミン等の芳香 族ァミン類;および、その他のアミン類として、モノエタノールァミン、ジエタノールアミ ン、トリエタノールァミン、 3—ヒドロキシプロピルァミン、ジエチレントリァミン、トリエチレ ンテトラミン、ベンジルァミン、 3—メトキシプロピルァミン、 3—ラウリルォキシプロピル ァミン、 3—ジメチルァミノプロピルァミン、 3—ジェチルァミノプロピルァミン、キシリレ ンジァミン、エチレンジァミン、へキサメチレンジァミン、トリエチレンジァミン、グァニジ ン、ジフエ-ルグァ-ジン、 2, 4, 6 トリス(ジメチルアミノメチル)フエノール、モルホ リン、 N メチルモルホリン、 2 ェチル—4—メチルイミダゾール、 1, 8 ジァザビシ クロ(5, 4, 0)ゥンデセン 7 (DBU)、 1, 5 ジァザビシクロ(4, 3, 0)ノネンー 5 (D BN)等が挙げられる力 これらに限定されるものではない。
[0103] また、(C)成分としてケチミンを用いることができる。ケチミンは、水分のな!、状態で は安定に存在し、水分によって一級ァミンとケトンに分解される。このようなケチミンと しては、アミンィ匕合物とカルボ-ルイ匕合物との縮合反応により得ることができる。
[0104] ケチミンの合成には公知のァミン化合物、カルボ-ル化合物を用いればよいが、た とえばァミン化合物としてはエチレンジァミン、プロピレンジァミン、トリメチレンジァミン 、テトラメチレンジァミン、 1, 3 ジアミノブタン、 2, 3 ジアミノブタン、ペンタメチレン
ジァミン、 2, 4ージァミノペンタン、へキサメチレンジァミン、 p—フエ二レンジァミン、 p , ρ '—ビフエ-レンジァミンなどのジァミン; 1 , 2, 3 トリァミノプロパン、トリァミノベン ゼン、トリス(2—アミノエチル)ァミン、テトラ (アミノメチル)メタンなどの多価ァミン;ジ エチレントリァミン、トリエチレントリァミン、テトラエチレンペンタミンなどのポリアルキレ ンポリアミン;ポリ才キシァノレキレン系ポリアミン; γーァミノプロピルトリエトキシシラン、 Ν - ( β—アミノエチル) Ί—ァミノプロピルトリメトキシシラン、 Ν- ( β—アミノエチ ル) γ—ァミノプロピルメチルジメトキシシランなどのアミノシラン;などが使用されう る。また、カルボ-ル化合物としてはァセトアルデヒド、プロピオンアルデヒド、 η—ブ チルアルデヒド、イソブチルアルデヒド、ジェチルァセトアルデヒド、グリオキサール、 ベンズアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シク 口へキサノン、トリメチルシクロへキサノン等の環状ケトン類;アセトン、メチルェチルケ トン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジェチ ルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソプチルケトン 等の脂肪族ケトン類;ァセチルアセトン、ァセト酢酸メチル、ァセト酢酸ェチル、マロン 酸ジメチル、マロン酸ジェチル、マロン酸メチルェチル、ジベンゾィルメタン等の 13 ジカルボニル化合物;などが使用できる。
[0105] ケチミン中にイミノ基が存在する場合には、イミノ基をスチレンオキサイド;ブチルダリ シジルエーテル、ァリルグリシジルエーテルなどのグリシジルエーテル;グリシジルェ ステルなどと反応させてもよい。これらのケチミンは、単独で用いてもよぐ二種類以 上を併用して用いてもよぐ前記アミンィ匕合物と併用してもょ 、。
[0106] これら (C)成分としては、(C)成分自体の構造や (Α)成分との相溶性などにより助 触媒能が大きく異なるため、用いる (Α)成分の種類に応じて適したィ匕合物を選ぶこと が好まし!/、。例えば (Α)成分としてポリオキシアルキレン系重合体を用いる場合は、 助触媒能の高さから、ォクチルァミン、ラウリルアミン等の第 1級ァミンが好ましぐまた 、少なくとも 1つのへテロ原子を有する炭化水素基、を有するアミンィ匕合物が好ましい 。ここで言うヘテロ原子としては N、 0、 S等が挙げられる力 これらに限定されるもの ではない。このようなアミンィ匕合物としては、上記のその他のァミン類に例示されたも のなどが挙げられる。その中でも、 2位ないし 4位の炭素原子上にヘテロ原子を有す
る炭化水素基、を有するアミンィ匕合物がより好ましい。このようなアミンィ匕合物としては 、エチレンジァミン、エタノールァミン、ジメチルアミノエチルァミン、ジェチルアミノエ チノレアミン、 3—ヒドロキシプロピルァミン、ジエチレントリァミン、 3—メトキシプロピルァ ミン、 3 ラウリルォキシプロピルァミン、 N—メチルー 1, 3 プロパンジァミン、 3 ジ メチルァミノプロピルァミン、 3 ジェチルァミノプロピルァミン、 3—(1ーピペラジ-ル )プロピルァミン、 3—モルホリノプロピルアミン等が挙げられる。中でも 3—ジェチルァ ミノプロピルァミン、 3—モルホリノプロピルァミンが助触媒能の高さから、より好ましい 。 3—ジェチルァミノプロピルアミンは接着性、作業性、貯蔵安定性も良好な硬化性 組成物を与える傾向があることから、特に好ましい。また、(A)成分としてイソプチレン 系重合体を用いる場合は、ジォクチルァミンやジステアリルァミンなどの比較的長鎖 の脂肪族第二アミン類ゃジシクロへキシルァミンなどの脂肪族第二アミン類が、助触 媒能が高い点力も好ましい。
[0107] 前記 (C)成分であるアミンィ匕合物の配合量は、(A)成分の有機重合体 100重量部 に対して 0. 01〜20重量部程度が好ましぐ更に 0. 1〜5重量部がより好ましい。アミ ン化合物の配合量が 0. 01重量部未満であると十分な硬化速度が得られな ヽ場合 があり、また硬化反応が充分に進行し難くなる場合がある。一方、アミンィ匕合物の配 合量が 20重量部を越えると、ポットライフが短くなり過ぎて、作業性が悪くなり、また基 材との接着性が低下する傾向がある。また、逆に硬化速度が遅くなる場合がある。
[0108] 本発明では (D)成分として、アミノ基置換シラン化合物を用いる。
[0109] (D)成分の具体例としては、 γ ァミノプロピルトリメトキシシラン、 γ—ァミノプロピ ルトリエトキシシラン、 Ί—ァミノプロピルトリイソプロポキシシラン、 γ—ァミノプロピル メチルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシラン、 Ύ一(2—アミノエ チル)ァミノプロピルトリメトキシシラン、 γ— (2—アミノエチル)ァミノプロピルメチルジ メトキシシラン、 γ - (2—アミノエチル)ァミノプロピルトリエトキシシラン、 γ— (2—ァ ミノェチル)ァミノプロピルメチルジェトキシシラン、 γ—(2—アミノエチル)ァミノプロピ ルトリイソプロポキシシラン、 γ - (2- (2—アミノエチル)アミノエチル)ァミノプロピル トリメトキシシラン、 γ - (6—ァミノへキシル)ァミノプロピルトリメトキシシラン、 3— (Ν ーェチルァミノ) 2—メチルプロピルトリメトキシシラン、 γ ウレイドプロピルトリメトキ
シシラン、 γ—ウレイドプロピルトリエトキシシラン、 Ν フエ二ノレ一 γ—ァミノプロピノレ トリメトキシシラン、 Ν ベンジル一 γ—ァミノプロピルトリメトキシシラン、 Ν ビニルベ ンジル一 γ—ァミノプロピルトリエトキシシラン、 Ν シクロへキシルァミノメチルトリエト キシシラン、 Ν シクロへキシルアミノメチルジェトキシメチルシラン、 Ν—フエニルアミ ノメチルトリメトキシシラン、 (2—アミノエチル)アミノメチルトリメトキシシラン、 Ν, Ν'— ビス [3— (トリメトキシシリル)プロピル]エチレンジァミン等のアミノ基含有シラン類; Ν 一(1, 3 ジメチルブチリデン) 3 (トリエトキシシリル) 1 プロパンァミン等のケ チミン型シラン類を挙げることができる。
[0110] これらのうち、良好な接着性を確保するためには、 γ—ァミノプロピルトリメトキシシラ ン、 γ— (2—アミノエチル)ァミノプロピルトリメトキシシラン、 y - (2—アミノエチル) ァミノプロピルメチルジメトキシシランが好ましい。
[0111] 前記 (D)成分であるアミノ基置換シラン化合物の配合量は、(E)成分の配合量とと もに決定する必要がある。 (A)成分 lOOgに対する(D)成分と (E)成分との総量が 30 ミリモル以上でなければならない。その際の(D)成分の配合量は、具体的には、 (A) 成分の有機重合体 100重量部に対して 2〜20重量部程度が好ましぐ更に 3〜: L0 重量部がより好ま 、。 (D)成分の配合量が 2重量部未満であると十分な接着性が 得られない場合がある。一方、(D)成分の配合量が 20重量部を越えると、硬化物が もろくなつて十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。さら に、組成物中に含まれるアミノ基置換シランィ匕合物(D)の全ァミノ基のモル数 (d)と、 組成物中に含まれるエポキシ基置換シランィ匕合物(E)の全エポキシ基のモル数 (e) との比(d)Z(e)が 1以上が好ましい。(d)Z(e)が 1よりも少ない場合には、貯蔵後の 硬化性が著しく低下する。
[0112] 本発明では (E)成分として、エポキシ基置換シラン化合物を用いる。
[0113] (E)成分の具体例としては、 γ—グリシドキシプロピルトリメトキシシラン、 γ—グリシ ドキシプロピルトリエトキシシラン、 Ί—グリシドキシプロピルメチルジメトキシシラン、 β - (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 13 - (3, 4—ェポキ シシクロへキシル)ェチルトリエトキシシラン等のエポキシ基含有シラン類を挙げること ができる。
[0114] これらのうち、良好な接着性を確保するためには、 γ—グリシドキシプロピルトリメト キシシラン、 γ—グリシドキシプロピノレトリエトキシシラン、 γ—グリシドキシプロピルメ チルジメトキシシランが好まし 、。
[0115] 前記 (Ε)成分であるエポキシ基置換シラン化合物の配合量は、(D)成分の配合量 とともに決定する必要がある。 (Α)成分 lOOgに対する(D)成分と (E)成分との総量 が 30ミリモル以上でなければならない。その際の(E)成分の配合量は、具体的には、 (A)成分の有機重合体 100重量部に対して 1〜 20重量部程度が好ましく、更に 1〜 10重量部がより好ましい。(E)成分の配合量が 1重量部未満であると十分な接着性 が得られない場合がある。一方、(E)成分の配合量が 20重量部を越えると硬化時間 が長くなり過ぎる。さらに、組成物中に含まれるアミノ基置換シラン化合物 (D)の全ァ ミノ基のモル数 (d)と、組成物中に含まれるエポキシ基置換シランィ匕合物 (E)の全ェ ポキシ基のモル数 (e)との比(d) / (e)が 1以上が好ま 、。 (d) / (e)が 1よりも少な い場合には、貯蔵後の硬化性が著しく低下する。
[0116] 組成物中に含まれるアミノ基置換シランィ匕合物(D)の全ァミノ基のモル数 (d)と、組 成物中に含まれるエポキシ基置換シランィ匕合物(E)の全エポキシ基のモル数 (e)と の比(d)Z(e)が 1より小さい場合に、貯蔵後の硬化性が低下するのは、以下に述べ る反応が生じるためと考えられる。本発明において (C)成分のアミンィ匕合物は、(B) 成分のカルボン酸および Zまたはカルボン酸金属塩がシラノール縮合触媒として働 く際に、触媒活性を上げる効果がある。組成物中に含まれるエポキシ基置換シランィ匕 合物(E)の全エポキシ基のモル数力 アミノ基置換シランィ匕合物(D)の全ァミノ基の モル数よりも多 、と、一液型硬化性組成物を貯蔵して!/ヽる間に (E)成分の過剰のェ ポキシ基が (C)成分のァミノ基と反応し、 (B)成分の活性を上げるのに有効な (C)成 分が減ってしまう。そのため、硬化性組成物を使用する際に、(B)成分の触媒活性を 十分上げることができず、その結果硬化速度が遅くなつてしまう。
[0117] 本発明の組成物には、(D)成分、(E)成分以外の、シランカップリング剤、シラン力 ップリング剤の反応物、またはシランカップリング剤以外の化合物を接着性付与剤と して添加することができる。シランカップリング剤の具体例としては、 γ—イソシァネー トプロピルトリメトキシシラン、 γ—イソシァネートプロピルトリエトキシシラン、 γ—イソ
シァネートプロピルメチルジェトキシシラン、 γ イソシァネートプロピルメチルジメトキ シシラン、(イソシァネートメチル)トリメトキシシラン、(イソシァネートメチル)ジメトキシ メチルシラン等のイソシァネート基含有シラン類; y—メルカプトプロピルトリメトキシシ ラン、 Ί メルカプトプロピルトリエトキシシラン、 メルカプトプロピルメチルジメトキ シシラン、 γ メルカプトプロピルメチルジェトキシシラン、メルカプトメチルトリエトキシ シラン等のメルカプト基含有シラン類; /3—カルボキシェチルトリエトキシシラン、 13 - カルボキシェチルフエ-ルビス(2—メトキシエトキシ)シラン、 Ν— β— (カルボキシメ チル)アミノエチル一 γ—ァミノプロピルトリメトキシシラン等のカルボキシシラン類;ビ ニルトリメトキシシラン、ビュルトリエトキシシラン、 γ—メタクリロイルォキシプロピルメ チルジメトキシシラン、 γ—アタリロイルォキシプロピルメチルトリエトキシシラン等のビ -ル型不飽和基含有シラン類; γ—クロ口プロピルトリメトキシシラン等のハロゲン含 有シラン類;トリス(トリメトキシシリル)イソシァヌレート等のイソシァヌレートシラン類等 を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。 さらに、これらを変性した誘導体である、ァミノ変性シリルポリマー、シリルィ匕ァミノポリ マー、不飽和アミノシラン錯体、フエ-ルァミノ長鎖アルキルシラン、アミノシリル化シリ コーン、シリルイ匕ポリエステル等もシランカップリング剤として用いることができる。本発 明に用いるシランカップリング剤は、通常、反応性ケィ素基を有する有機重合体 (Α) 100重量部に対して、 0. 1〜20重量部の範囲で使用される。特に、 0. 5〜10重量 部の範囲で使用するのが好ましい。
本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、 すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、 塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの 有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい 接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に 対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の具体 例としては、特に限定されないが、例えば、エポキシ榭脂、フエノール榭脂、硫黄、ァ ルキルチタネート類、芳香族ポリイソシァネート等が挙げられる。上記接着性付与剤 は 1種類のみで使用しても良いし、 2種類以上混合使用しても良い。これら接着性付
与剤は添加することにより被着体に対する接着性を改善することができる。
[0119] 本発明では硬化触媒として、(B)成分のカルボン酸および Zまたはカルボン酸金 属塩を使用するが、本発明の効果を低下させない程度に他の硬化触媒を併用する こともできる。具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チ タンテトラキス(ァセチルァセトナート)、ビス(ァセチルァセトナト)ジイソプロボキシチ タンなどのチタン化合物;アルミニウムトリス(ァセチルァセトナート)、アルミニウムトリ ス(ェチルァセトアセテート)、ジイソプロポキシアルミニウムェチルァセトアセテートな どの有機アルミニウム化合物類;ジルコニウムテトラキス(ァセチルァセトナート)など のジルコニウム化合物類が挙げられる。これらの硬化触媒を併用させることにより、触 媒活性が高くなり、深部硬化性、薄層硬化性、接着性等を改善する効果が期待でき る。
[0120] 本発明の組成物には充填剤を添加することができる。充填剤としては、フュームシリ 力、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケィ酸、含水ケィ酸、お よびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシゥ ム、炭酸マグネシウム、ケイソゥ土、焼成クレー、クレー、タルク、酸化チタン、ベントナ イト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、 活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フエノール榭脂ゃ塩ィ匕ビ -リデ ン榭脂の有機ミクロバルーン、 PVC粉末、 PMMA粉末など榭脂粉末の如き充填剤; 石綿、ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を 使用する場合、その使用量は (A)成分の重合体 100重量部に対して 1〜250重量 部、好ましくは 10〜 200重量部である。
[0121] これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリ 力、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケィ酸、含水ケィ酸およ びカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性 亜鉛華などから選ばれる充填剤が好ましぐ反応性ケィ素基を有する有機重合体 (A ) 100重量部に対し、 1〜200重量部の範囲で使用すれば好ましい結果が得られる。 また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重 質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、
酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、反応性ケィ素基を有 する有機重合体 (A) 100重量部に対して 5〜200重量部の範囲で使用すれば好ま しい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど 硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填 剤は 1種類のみで使用してもよいし、 2種類以上混合使用してもよい。炭酸カルシゥ ムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径 が大き 、炭酸カルシウムを併用することが望まし 、。表面処理微細炭酸カルシウムの 粒径は 0. 5 m以下が好ましぐ表面処理は脂肪酸や脂肪酸塩で処理されているこ とが好ましい。また、粒径が大きい炭酸カルシウムの粒径は 1 μ m以上が好ましく表 面処理されて ヽな 、ものを用いることができる。
[0122] 組成物の作業性 (キレなど)向上や硬化物表面を艷消し状にするために、有機バル ーン、無機バルーンの添カ卩が好ましい。これらの充填剤は表面処理することもでき、 1 種類のみで使用しても良いし、 2種類以上混合使用することもできる。作業性 (キレな ど)向上には、バルーンの粒径は 0. 1mm以下が好ましい。硬化物表面を艷消し状 にするためには、 5〜300 mが好ましい。
[0123] 本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイジング ボード、特に窯業系サイジングボード、など住宅の外壁の目地や外壁タイルの接着 剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用 いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁 としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるように なっている。本発明の組成物に直径が 0. 1mm以上、好ましくは 0. 1〜5. Omm程 度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある 外壁と調和し、耐薬品性がすぐれるためこの硬化物の外観は長期にわたつて持続す るすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき 感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
[0124] 鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平 9 53063 号公報に記載されて 、るように次の通りである。
[0125] 直径は 0. 1mm以上、好ましくは 0. 1〜5. Omm程度であり、外壁の材質、模様等
に合わせて適当な大きさのものが使用される。 0. 2mm〜5. Omm程度や 0. 5mm 〜5. Omm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の 1Z10〜1Z5程度の薄さ(0. 01〜: L 00mm程度)とされる。鱗片状または粒状の 物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬され る力、使用に際して、施工現場にてシーリング主材内に混合される。
[0126] 鱗片状または粒状の物質は、シーリング材組成物や接着剤組成物等の組成物 10 0重量部に対して、 1〜200重量部程度が配合される。配合量は、個々の鱗片状また は粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
[0127] 鱗片状または粒状の物質としては、ケィ砂、マイ力等の天然物、合成ゴム、合成榭 脂、アルミナ等の無機物が使用される。 目地部に充填した際の意匠性を高めるため に、外壁の材質、模様等に合わせて、適当な色に着色される。
[0128] 好ま 、仕上げ方法などは特開平 9 - 53063号公報に記載されて 、る。
[0129] また、同様の目的でバルーン (好ましくは平均粒径が 0. 1mm以上のもの)を用い れば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量ィ匕を図ること ができる。バルーンの好ましい直径、配合量、材料などは特開平 10— 251618号公 報に記載されて 、るように次の通りである。
[0130] バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料として は、ガラス、シラス、シリカなどの無機系の材料、および、フエノール榭脂、尿素樹脂、 ポリスチレン、サランなどの有機系の材料があげられる力 これらのみに限定されるも のではなぐ無機系の材料と有機系の材料とを複合させたり、また、積層して複数層 を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合 させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一の バルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用し ても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたも のを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使 用することもできる。たとえば、有機系のバルーンを炭酸カルシウム、タルク、酸ィ匕チ タンなどでコーティングしたり、無機系のノ レーンをシランカップリング剤で表面処理 することなどがあげられる。
[0131] 砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が 0 . 1mm以上であることが好ましい。 0. 2mm〜5. Omm程度や 0. 5mm〜5. Omm程 度のものも使用可能である。 0. 1mm未満のものでは、多量に配合しても組成物の粘 度を上昇させるだけで、ざらつき感が発揮されない場合がある。ノ レーンの配合量は 目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることが できる。通常、粒径が 0. 1mm以上のものを組成物中の容積濃度で 5〜25vol%の 範囲となる割合で配合することが望まし 、。バルーンの容積濃度が 5vol%未満であ るとざらつき感がなぐまた 25vol%を超えると、シーリング材ゃ接着剤の粘度が高く なり作業性が悪ぐ硬化物のモジュラスも高くなり、シーリング材ゃ接着剤の基本性能 が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ま 、容積 濃度は 8〜22vol%である。
[0132] バルーンを用いる際には特開 2000— 154368号公報に記載されているようなスリ ップ防止剤、特開 2001— 164237号公報に記載されているような硬化物の表面を 凹凸状態に加えて艷消し状態にするためのァミン化合物、特に融点 35°C以上の第 1 級および Zまたは第 2級ァミンを添加することができる。
[0133] バルーンの具体例は特開平 2— 129262号、特開平 4 8788号、特開平 4— 173 867号、特開平 5— 1225号、特開平 7— 113073号、特開平 9 53063号、特開平 10— 251618号、特開 2000— 154368号、特開 2001— 164237号、 WO97/05 201号などの各公報に記載されている。
[0134] 本発明の組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を 形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ま 、直径、 配合量、材料などは特開 2001— 115142号公報に記載されているように次の通りで ある。直径は 0. 1mm〜: Lmm、さらには 0. 2〜0. 5mm程度が好ましい。配合量は 硬化性組成物中に 5〜: L00重量%、さらには 20〜50重量%が好ましい。材料は、ゥ レタン樹脂、シリコーン、変成シリコーン、多硫ィ匕ゴム等を挙げることができシーリング 材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好 ましい。
[0135] また、本発明の組成物には、シリケートを用いることができる。このシリケートは、架
橋剤として作用し、本発明の (A)成分である有機重合体の復元性、耐久性、および、 耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温 高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキ シシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、 その使用量は (A)成分の有機重合体 100重量部に対して 0. 1〜20重量部であるこ と力 S好ましく、 0. 5〜10重量部がより好ましい。
[0136] シリケートの具体例としては、たとえばテトラメトキシシラン、テトラエトキシシラン、エト キシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラー n—プロボキシシラン、テトラー i プロボキシシラン、テトラー n—ブトキシシラン、テト ラ一 i-ブトキシシラン、テトラ一 t—ブトキシシランなどのテトラアルコキシシラン (テトラ アルキルシリケート)、および、それらの部分加水分解縮合物があげられる。
[0137] 前記テトラアルコキシシランの部分加水分解縮合物としては、たとえば通常の方法 でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげ られる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用 いることができる。このような縮合物としては、例えば、メチルシリケート 51、ェチノレシリ ケート 40 (V、ずれもコルコート (株)製)等が挙げられる。
[0138] 本発明の組成物には可塑剤を添加することができる。可塑剤の添カ卩により、硬化性 組成物の粘度やスランプ性および組成物を硬化して得られる硬化物の引張り強度、 伸びなどの機械特性が調整できる。可塑剤の例としては、ジブチルフタレート、ジへ プチルフタレート、ビス(2—ェチルへキシル)フタレート、ブチルベンジルフタレート等 のフタル酸エステル類;ジォクチルアジペート、ジォクチルセバケート、ジブチルセバ ケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;ォレイン酸プチル、 ァセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブ チルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類 ;アルキルジフヱ-ル、部分水添ターフェ-ル、等の炭化水素系油;プロセスオイル類 ;エポキシィ匕大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげる ことができる。
[0139] また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成
分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期 の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の 乾燥性 (塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モ ノマーを種々の方法で重合して得られるビュル系重合体;ジエチレングリコールジべ ンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等の ポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、ァゼライン酸、フタ ル酸等の 2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコー ル、プロピレングリコール、ジプロピレングリコール等の 2価アルコールから得られるポ リエステル系可塑剤;分子量 500以上、さらには 1000以上のポリエチレングリコール 、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール あるいはこれらポリエーテルポリオールの水酸基をエステル基、エーテル基などに変 換した誘導体等のポリエーテル類;ポリスチレンやポリ一 a—メチルスチレン等のポリ スチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン アタリロニトリ ル、ポリクロ口プレン等が挙げられる力 これらに限定されるものではない。
[0140] これらの高分子可塑剤のうちで、(A)成分の重合体と相溶するものが好ましい。こ の点から、ポリエーテル類やビュル系重合体が好ましい。また、ポリエーテル類を可 塑剤として使用すると、深部硬化性が改善され、貯蔵後の硬化遅延も起こらないこと 力も好ましぐ中でもポリプロピレングリコールがより好ましい。また、相溶性および耐 候性、耐熱性の点力 ビュル系重合体が好ましい。ビニル系重合体の中でもアクリル 系重合体および Z又はメタクリル系重合体が好ましぐポリアクリル酸アルキルエステ ルなどアクリル系重合体がさらに好ましい。この重合体の合成法は、分子量分布が狭 ぐ低粘度化が可能なことからリビングラジカル重合法が好ましぐ原子移動ラジカル 重合法がさらに好ましい。また、特開 2001— 207157号公報に記載されているアタリ ル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆ る SGOプロセスによる重合体を用いるのが好まし!/、。
[0141] 高分子可塑剤の数平均分子量は、好ましくは 500〜15000である力 より好ましく ίま 800〜10000であり、さら【こ好まし <ίま 1000〜8000、特【こ好まし <ίま 1000〜500 0である。最も好ましくは 1000〜3000である。分子量が低すぎると熱や降雨により可
塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が 改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子 可塑剤の分子量分布は特に限定されないが、狭いことが好ましぐ 1. 80未満が好ま しい。 1. 70以下がより好ましぐ 1. 60以下がなお好ましぐ 1. 50以下がさらに好ま しぐ 1. 40以下が特に好ましぐ 1. 30以下が最も好ましい。
[0142] 数平均分子量はビニル系重合体の場合は GPC法で、ポリエーテル系重合体の場 合は末端基分析法で測定される。また、分子量分布 (MwZMn) GPC法 (ポリスチレ ン換算)で測定される。
[0143] また、高分子可塑剤は、反応性ケィ素基を有しな!/、ものでょ 、が、反応性ケィ素基 を有してもよい。反応性ケィ素基を有する場合、反応性可塑剤として作用し、硬化物 力もの可塑剤の移行を防止できる。反応性ケィ素基を有する場合、 1分子あたり平均 して 1個以下、さらには 0. 8個以下が好ましい。反応性ケィ素基を有する可塑剤、特 に反応性ケィ素基を有するォキシアルキレン重合体を使用する場合、その数平均分 子量は (A)成分の重合体より低!、ことが必要である。
[0144] 可塑剤は、単独で使用してもよぐ 2種以上を併用してもよい。また低分子可塑剤と 高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合すること も可能である。
[0145] 可塑剤の使用量は、(A)成分の重合体 100重量部に対して 5〜 150重量部、好ま しくは 10〜120重量部、さらに好ましくは 20〜: LOO重量部である。 5重量部未満では 可塑剤としての効果が発現しなくなり、 150重量部を越えると硬化物の機械強度が不 足する。
[0146] 本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整す る物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、 メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、 n—プロ ピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロぺノキシシ ラン、メチルトリイソプロぺノキシシラン等のアルキルイソプロぺノキシシラン、ビニルトリ メトキシシラン、ビニルジメチルメトキシシラン、等の不飽和基を有するアルコキシシラ ン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用 Vヽ
ることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、 破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよぐ 2種以上併用し てもよい。
[0147] 特に、加水分解により分子内に 1価のシラノール基を有する化合物を生成する化合 物は硬化物の表面のベたつきを悪ィ匕させずに硬化物のモジュラスを低下させる作用 を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分 子内に 1価のシラノール基を有する化合物を生成する化合物としては、特開平 5— 1 17521号公報に記載されている化合物をあげることができる。また、へキサノール、 ォクタノール、デカノールなどのアルキルアルコールの誘導体であって加水分解によ りトリメチルシラノールなどの R SiOHを生成するシリコン化合物を生成する化合物、
3
特開平 11— 241029号公報に記載されているトリメチロールプロパン、グリセリン、ぺ ンタエリスリトールあるいはソルビトールなどの水酸基数が 3以上の多価アルコールの 誘導体であって加水分解によりトリメチルシラノールなどの R SiOHを生成するシリコ
3
ン化合物を生成する化合物をあげることができる。
[0148] また、特開平 7— 258534号公報に記載されているようなォキシプロピレン重合体 の誘導体であって加水分解によりトリメチルシラノールなどの R SiOHを生成するシリ
3
コンィ匕合物を生成する化合物もあげることができる。さらに特開平 6— 279693号公 報に記載されている架橋可能な加水分解性ケィ素含有基と加水分解によりモノシラ ノール含有化合物となりうるケィ素含有基を有する重合体を使用することもできる。
[0149] 物性調整剤は反応性ケィ素基を有する有機重合体 (A) 100重量部に対して、 0. 1 〜20重量部、好ましくは 0. 5〜10重量部の範囲で使用される。
[0150] 本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするため にチクソ性付与剤 (垂れ防止剤)を添加しても良い。また、垂れ防止剤としては特に 限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸 カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石酸類等が挙 げられる。これらチクソ性付与剤 (垂れ防止剤)は単独で用いてもよぐ 2種以上併用 してもよい。チクソ性付与剤は反応性ケィ素基を有する有機重合体 (A) 100重量部 に対して、 0. 1〜20重量部の範囲で使用される。
[0151] 本発明の組成物においては、(E)成分以外のエポキシィ匕合物として、 1分子中にェ ポキシ基を含有する可塑剤を使用できる。エポキシ基を有する可塑剤を使用すると 硬化物の復元性を高めることができる。エポキシ基を有する可塑剤としてはエポキシ 化不飽和油脂類、エポキシィ匕不飽和脂肪酸エステル類、脂環族エポキシィ匕合物類、 ェピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的 には、エポキシ化大豆油、エポキシ化アマ-油、ビス(2—ェチルへキシル)—4, 5— エポキシシクロへキサン一 1, 2—ジカーボキシレート(E— PS)、エポキシオタチノレス テアレート、エポキシブチルステアレート等があげられる。これらのなかでは E— PSが 特に好ましい。エポキシ可塑剤は反応性ケィ素基を有する有機重合体 (A) 100重量 部に対して 0. 5〜50重量部の範囲で使用するのがよい。
[0152] 本発明の組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化 物表面に光硬化性物質の皮膜が形成され、硬化物のベたつきや耐候性を改善でき る。光硬化性物質とは、光の作用によって力なり短時間に分子構造が化学変化をお こし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、 オリゴマー、榭脂或いはそれらを含む組成物等多くのものが知られており、市販の任 意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケィ皮 酸ビュル類あるいはアジドィ匕榭脂等が使用できる。不飽和アクリル系化合物としては
、アクリル系又はメタクリル系不飽和基を 1ないし数個有するモノマー、オリゴマー或 いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ (メ タ)アタリレート、ネオペンチルダリコールジ (メタ)アタリレート等の単量体又は分子量 10, 000以下のオリゴエステルが例示される。具体的には、例えば特殊アタリレート( 2官能)のァロニックス M— 210,ァロニックス M— 215,ァロニックス M— 220,ァ口- ックス M— 233,ァ口-ックス M— 240,ァ口-ックス M— 245 ; (3官能)のァ口-ックス M— 305,ァ口-ックス M— 309,ァ口-ックス M— 310,ァ口-ックス M— 315,ァロ ニックス M— 320,ァロニックス M— 325,及び(多官能)のァロニックス M— 400など が例示できるが、特にアクリル官能基を含有する化合物が好ましぐまた 1分子中に 平均して 3個以上の同官能基を含有する化合物が好ま 、。(以上ァロニックスは!、 ずれも東亜合成化学工業株式会社の製品である。 )
ポリケィ皮酸ビニル類としては、シンナモイル基を感光基とする感光性榭脂でありポ リビュルアルコールをケィ皮酸でエステル化したものの他、多くのポリケィ皮酸ビュル 誘導体が例示される。アジド化榭脂は、アジド基を感光基とする感光性榭脂として知 られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性 榭脂」(昭和 47年 3月 17日出版、印刷学会出版部発行、第 93頁〜、第 106頁〜、第 117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加 えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤ゃァミン類など の促進剤を添加すると、効果が高められる場合がある。光硬化性物質は反応性ケィ 素基を有する有機重合体 (A) 100重量部に対して 0. 1〜20重量部、好ましくは 0. 5 〜10重量部の範囲で使用するのがよぐ 0. 1重量部以下では耐候性を高める効果 はなぐ 20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。 本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質に は空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬 化物の表面付近に硬化皮膜を形成し表面のベたつきや硬化物表面へのゴミゃホコリ の付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマ 二油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド榭脂; 乾性油により変性されたアクリル系重合体、エポキシ系榭脂、シリコン榭脂;ブタジェ ン、クロ口プレン、イソプレン、 1, 3 ペンタジェンなどのジェン系化合物を重合また は共重合させてえられる 1, 2 ポリブタジエン、 1, 4 ポリブタジエン、 C5〜C8ジェ ンの重合体などの液状重合体や、これらジェン系化合物と共重合性を有するアタリ口 二トリル、スチレンなどの単量体とをジェン系化合物が主体となるように共重合させて えられる NBR、 SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン 化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよぐ 2 種以上併用してもよい。これらのうちではキリ油や液状ジェン系重合体がとくに好まし い。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高めら れる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフ テン酸鉛、ナフテン酸ジルコニウム、ォクチル酸コバルト、ォクチル酸ジルコニウム等 の金属塩や、ァミン化合物等が例示される。酸素硬化性物質の使用量は、反応性ケ
ィ素基を有する有機重合体 (A) 100重量部に対して 0. 1〜20重量部の範囲で使用 するのがよぐさらに好ましくは 0. 5〜: LO重量部である。前記使用量が 0. 1重量部未 満になると汚染性の改善が充分でなくなり、 20重量部をこえると硬化物の引張り特性 などが損なわれる傾向が生ずる。特開平 3— 160053号公報に記載されているように 酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
[0154] 本発明の組成物には酸ィ匕防止剤 (老化防止剤)を使用することができる。酸化防止 剤を使用すると硬化物の耐熱性を高めることができる。酸ィ匕防止剤としてはヒンダ一 ドフエノール系、モノフエノール系、ビスフエノール系、ポリフエノール系が例示できる 1S 特にヒンダードフエノール系が好ましい。同様に、チヌビン 622LD,チヌビン 144 ; CHIMASSORB944LD, CHIMAS SORB 119FL (以上!/、ずれもチノく'スぺシャ ルティ'ケミカルズ株式会社製); MARK LA- 57, MARK LA— 62, MARK L A— 67, MARK LA— 63, MARK LA— 68 (以上いずれも旭電化工業株式会 ネ土製);サノーノレ LS— 770,サノーノレ LS— 765,サノーノレ LS— 292,サノーノレ LS— 2626,サノーノレ: LS— 1114,サノーノレ: LS— 744 (以上!/、ずれも三共株式会社製)【こ 示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例 は特開平 4— 283259号公報ゃ特開平 9— 194731号公報にも記載されている。酸 化防止剤の使用量は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対し て 0. 1〜10重量部の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部であ る。
[0155] 本発明の組成物には光安定剤を使用することができる。光安定剤を使用すると硬 化物の光酸ィ匕劣化を防止できる。光安定剤としてべンゾトリアゾール系、ヒンダードァ ミン系、ベンゾエート系化合物等が例示できる力 特にヒンダードァミン系が好ましい 。光安定剤の使用量は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対し て 0. 1〜10重量部の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部であ る。光安定剤の具体例は特開平 9— 194731号公報にも記載されている。
[0156] 本発明の組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を 用いる場合、特開平 5 - 70531号公報に記載されて 、るようにヒンダードアミン系光 安定剤として 3級ァミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存
安定性改良のために好ま U、。 3級ァミン含有ヒンダードアミン系光安定剤としてはチ ヌビン 622LD,チヌビン 144; CHIMASSORB119FL (以上!/、ずれもチノく'スぺシ ャルティ'ケミカルズ株式会社製); MARKLA- 57, LA— 62, LA— 67, LA—63 ( 以上いずれも旭電ィ匕工業株式会社製);サノーノレ LS— 765, LS - 292, LS— 2626 , LS - 1114, LS— 744 (以上いずれも三共株式会社製)などの光安定剤が例示で きる。
[0157] 本発明の組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用 すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはべンゾフエ ノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合 物等が例示できる力 特にべンゾトリアゾール系が好ましい。紫外線吸収剤の使用量 は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対して 0. 1〜10重量部 の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部である。フエノール系や ヒンダードフエノール系酸ィ匕防止剤とヒンダードアミン系光安定剤とベンゾトリァゾー ル系紫外線吸収剤を併用して使用するのが好ましい。
[0158] 本発明の組成物には、(E)成分以外のエポキシィ匕合物として、エポキシ榭脂を添 加することができる。エポキシ榭脂を添加した組成物は特に接着剤、殊に外壁タイル 用接着剤として好まし ヽ。エポキシ榭脂としてはェピクロルヒドリン一ビスフエノール A 型エポキシ榭脂、ェピクロルヒドリン ビスフエノール F型エポキシ榭脂、テトラブロモ ビスフエノール Aのグリシジルエーテルなどの難燃型エポキシ榭脂、ノボラック型ェポ キシ榭脂、水添ビスフエノール A型エポキシ榭脂、ビスフエノール Aプロピレンォキシ ド付加物のグリシジルエーテル型エポキシ榭脂、 p ォキシ安息香酸グリシジルエー テルエステル型エポキシ榭脂、 m—ァミノフエノール系エポキシ榭脂、ジアミノジフエ -ルメタン系エポキシ榭脂、ウレタン変性エポキシ榭脂、各種脂環式エポキシ榭脂、 N, N ジグリシジノレア二リン、 N, N ジグリシジル一 o トルイジン、トリグリシジルイ ソシァヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどのごと き多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ榭脂、石油榭脂など のごとき不飽和重合体のエポキシィ匕物などが例示される力 これらに限定されるもの ではなぐ一般に使用されているエポキシ榭脂が使用されうる。エポキシ基を少なくと
も分子中に 2個含有するものが、硬化に際し反応性が高ぐまた硬化物が 3次元的網 目をつくりやすいなどの点から好ましい。さらに好ましいものとしてはビスフエノール A 型エポキシ榭脂類またはノボラック型エポキシ榭脂などがあげられる。これらのェポキ シ榭脂と反応性ケィ素基を有する有機重合体 (A)の使用割合は、重量比で (A) / エポキシ榭脂 = 100Z1〜: LZ100の範囲である。 (A) Zエポキシ榭脂の割合が 1Z 100未満になると、エポキシ榭脂硬化物の衝撃強度ゃ強靱性の改良効果がえられ がたくなり、(A)Zエポキシ榭脂の割合が 100Z1をこえると、有機系重合体硬化物 の強度が不十分となる。好ましい使用割合は、硬化性榭脂組成物の用途などにより 異なるため一概には決められないが、たとえばエポキシ榭脂硬化物の耐衝撃性、可 橈性、強靱性、剥離強度などを改善する場合には、エポキシ榭脂 100重量部に対し て (A)成分を 1〜: L00重量部、さらに好ましくは 5〜: L00重量部使用するのがよい。 一方、(A)成分の硬化物の強度を改善する場合には、(A)成分 100重量部に対して エポキシ榭脂を 1〜 200重量部、さらに好ましくは 5〜 100重量部使用するのがよい。
[0159] エポキシ榭脂を添加する場合、本発明の組成物には、エポキシ榭脂を硬化させる 硬化剤を併用できることは当然である。使用し得るエポキシ榭脂硬化剤としては、特 に制限はなぐ一般に使用されているエポキシ榭脂硬化剤を使用できる。具体的に は、例えば、トリエチレンテトラミン、テトラエチレンペンタミン、ジェチルァミノプロピル ァミン、 N—アミノエチルピペリジン、 m—キシリレンジァミン、 m—フエ二レンジァミン、 ジアミノジフエ-ルメタン、ジアミノジフエ-ルスルホン、イソホロンジァミン、ァミン末端 ポリエーテル等の一級、二級アミン類; 2, 4, 6—トリス(ジメチルアミノメチル)フエノー ル、トリプロピルァミンのような三級アミン類、及び、これら三級アミン類の塩類;ポリア ミド榭脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素錯ィ匕合物類、無水フタル 酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデシニル無水琥珀酸、無 水ピロメリット酸、無水クロレン酸等のような無水カルボン酸類;アルコール類;フエノ ール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン錯ィ匕合物等の化合 物を例示することができるが、これらに限定されるものではない。また、硬化剤も単独 でも 2種以上併用してもよい。
[0160] エポキシ榭脂の硬化剤を使用する場合、その使用量はエポキシ榭脂 100重量部に
対し、 0. 1〜300重量部の範囲である。
[0161] エポキシ榭脂の硬化剤としてケチミンを用いることができる。ケチミンは、水分のない 状態では安定に存在し、水分によって一級ァミンとケトンに分解され、生じた一級アミ ンがエポキシ榭脂の室温硬化性の硬化剤となる。ケチミンを用いると一液型の組成 物を得ることができる。このようなケチミンとしては、ァミン化合物とカルボニル化合物 との縮合反応により得ることができる。
[0162] ケチミンの合成には公知のァミン化合物、カルボ二ルイ匕合物を用いればよいが、た とえばァミン化合物としてはエチレンジァミン、プロピレンジァミン、トリメチレンジァミン 、テトラメチレンジァミン、 1, 3 ジアミノブタン、 2, 3 ジアミノブタン、ペンタメチレン ジァミン、 2, 4ージァミノペンタン、へキサメチレンジァミン、 p—フエ二レンジァミン、 p , ρ'—ビフエ-レンジァミンなどのジァミン; 1, 2, 3 トリァミノプロパン、トリァミノベン ゼン、トリス(2—アミノエチル)ァミン、テトラ (アミノメチル)メタンなどの多価ァミン;ジ エチレントリァミン、トリエチレントリァミン、テトラエチレンペンタミンなどのポリアルキレ ンポリアミン;ポリ才キシァノレキレン系ポリアミン; γーァミノプロピルトリエトキシシラン、 Ν - ( β—アミノエチル) Ί—ァミノプロピルトリメトキシシラン、 Ν- ( β—アミノエチ ル) γ—ァミノプロピルメチルジメトキシシランなどのアミノシラン;などが使用されう る。また、カルボ-ル化合物としてはァセトアルデヒド、プロピオンアルデヒド、 η—ブ チルアルデヒド、イソブチルアルデヒド、ジェチルァセトアルデヒド、グリオキサール、 ベンズアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シク 口へキサノン、トリメチルシクロへキサノン等の環状ケトン類;アセトン、メチルェチルケ トン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジェチ ルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソプチルケトン 等の脂肪族ケトン類;ァセチルアセトン、ァセト酢酸メチル、ァセト酢酸ェチル、マロン 酸ジメチル、マロン酸ジェチル、マロン酸メチルェチル、ジベンゾィルメタン等の 13 ジカルボニル化合物;などが使用できる。
[0163] ケチミン中にイミノ基が存在する場合には、イミノ基をスチレンオキサイド;ブチルダリ シジルエーテル、ァリルグリシジルエーテルなどのグリシジルエーテル;グリシジルェ ステルなどと反応させてもよい。これらのケチミンは、単独で用いてもよぐ二種類以
上を併用して用いてもよぐエポキシ榭脂 100重量部に対し、 1〜: L00重量部使用さ れ、その使用量はエポキシ榭脂およびケチミンの種類によって異なる。
[0164] 本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善す る目的で、溶剤を使用することができる。溶剤としては、特に限定は無ぐ各種の化合 物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、へキサン 、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸ェ チル、酢酸ブチル等のエステル系溶剤、アセトン、メチルェチルケトン、メチルイソブ チルケトン等のケトン系溶剤、メタノール、エタノール、イソプロパノール等のアルコー ル系溶剤、へキサメチルシクロトリシロキサン、オタタメチルシクロテトラシロキサン、デ カメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。これらの溶剤は 、単独で使用してもよぐ 2種以上併用してもよい。
[0165] 但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、 硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分 の有機重合体 100重量部に対して、 3重量部以下であることが好ましぐ 1重量部以 下であることがより好ましく、溶剤を実質的に含まな 、ことが最も好ま 、。
[0166] 本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的と して、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、た とえば、難燃剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防 止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防かび剤などがあげられる。こ れらの各種添加剤は単独で用いてもよぐ 2種類以上を併用してもよい。本明細書に あげた添加物の具体例以外の具体例は、たとえば、特公平 4— 69659号、特公平 7 — 108928号、特開昭 63— 254149号、特開昭 64— 22904号、特開 2001— 728 54号の各公報などに記載されて 、る。
[0167] 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空 気中の湿気により硬化する 1成分型として調製することも可能であり、硬化剤として別 途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成 物を使用前に混合する 2成分型として調製することもできる。作業性の点からは、 1成 分型が好ましい。
[0168] 前記硬化性組成物が 1成分型の場合、すべての配合成分が予め配合されるため、 水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に 減圧などにより脱水するのが好ましい。前記硬化性組成物が 2成分型の場合、反応 性ケィ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので 配合剤中には若干の水分が含有されて 、てもゲルイ匕の心配は少な 、が、長期間の 貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法とし ては粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合 成ゼオライト、活性アルミナ、シリカゲルなどを使用した脱水法が好適である。また、ィ ソシァネートイ匕合物を少量配合してイソシァネート基と水とを反応させて脱水してもよ い。力かる脱水乾燥法に加えてメタノール、エタノールなどの低級アルコール; n—プ 口ピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、 γ - メルカプトプロピルメチルジメトキシシラン、 γ —メルカプトプロピルメチルジェトキシシ ラン、 Ύ—グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添 加することにより、さらに貯蔵安定性は向上する。
[0169] 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケィ素化合物の使用量 は反応性ケィ素基を有する有機重合体 (Α) 100重量部に対して、 0. 1〜20重量部 、好ましくは 0. 5〜10重量部の範囲が好ましい。
[0170] 本発明の硬化性糸且成物の調整法には特に限定はなぐ例えば上記した成分を配 合し、ミキサーやロールや-一ダーなどを用いて常温または加熱下で混練したり、適 した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用さ れうる。
[0171] 本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に 網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
[0172] 本発明の硬化性組成物は、粘着剤、建造物'船舶'自動車'道路などのシーリング 材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使 用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着 性に優れることから、これらの中でも、接着剤またはシーリング材として用いることがよ り好ましい。
[0173] また、太陽電池裏面封止材などの電気'電子部品材料、電線 ·ケーブル用絶縁被 覆材などの電気絶縁材料、弾性接着剤、粉体塗料、注型材料、医療用ゴム材料、医 療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材の目地 用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性 材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形 材料、および、網入りガラスや合わせガラス端面 (切断部)の防鲭'防水用封止材、 自 動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様 々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、 磁器、木材、金属、榭脂成形物などの如き広範囲の基質に密着しうるので、種々のタ イブの密封組成物および接着組成物としても使用可能である。また、本発明の硬化 性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石 材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、 車両パネル用接着剤、電気 ·電子 '精密機器組立用接着剤、ダイレクトグレージング 用シーリング材、複層ガラス用シーリング材、 SSG工法用シーリング材、または、建築 物のワーキングジョイント用シーリング材、としても使用可能である。
実施例
[0174] つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれ に限定されるものではない。
[0175] (合成例 1)
分子量約 2, 000のポリオキシプロピレンジオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行 ヽ、末端が水酸基 である数平均分子量約 25, 500 (送液システムとして東ソー製 HLC -8120GPCを 用い、カラムは東ソー製 TSK— GEL Hタイプを用い、溶媒は THFを用いて測定し たポリスチレン換算分子量)のポリプロピレンォキシド (P— 1)を得た。続いて、この水 酸基末端ポリプロピレンォキシド(P— 1)の水酸基に対して 1. 2倍当量の NaOMeの メタノール溶液を添カ卩してメタノールを留去し、更に塩ィ匕ァリルを添カ卩して末端の水 酸基をァリル基に変換した。未反応の塩ィ匕ァリルを減圧脱揮により除去した。得られ た未精製のァリル基末端ポリプロピレンォキシド 100重量部に対し、 n—へキサン 30
0重量部と、水 300重量部を混合攪拌した後、遠心分離により水を除去し、得られた へキサン溶液に更に水 300重量部を混合攪拌し、再度遠心分離により水を除去した 後、へキサンを減圧脱揮により除去した。以上により、末端がァリル基である数平均 分子量約 25, 500の 2官能ポリプロピレンォキシド(P— 2)を得た。
[0176] 得られたァリル末端ポリプロピレンォキシド (P— 2) 100重量部に対し、白金ビュル シロキサン錯体の白金含量 3wt%のイソプロパノール溶液 150ppmを触媒として、ト リメトキシシラン 1. 1重量部と 90°Cで 5時間反応させ、トリメトキシシリル基末端ポリオ キシプロピレン系重合体 (A—1)を得た。 — NMR (日本電子 i^NM— LA400を 用いて、 CDC1溶媒中で測定)の測定により、末端のトリメトキシシリル基は 1分子あた
3
り平均して 1. 3個であった。
[0177] (合成例 2)
合成例 1で得られた水酸基末端ポリプロピレンォキシド (P— 1) 100重量部に対し、 y—イソシァネートプロピルトリメトキシシラン 1. 8重量部を加え、 90°Cで 5時間反応 させ、トリメトキシシリル基末端で主鎖骨格にウレタン結合を有するポリオキシプロピレ ン系重合体 (A— 2)を得た。合成例 1と同様に1 H— NMRの測定により、末端のトリメ トキシシリル基は 1分子あたり平均して 1. 3個であつた。
(合成例 3)
合成例 1で得られたァリル末端ポリプロピレンォキシド (P— 2) 100重量部に対し、白 金ビュルシロキサン錯体の白金含量 3wt%のイソプロパノール溶液 150ppmを触媒 として、メチルジメトキシシラン 0. 9重量部と 90°Cで 5時間反応させ、メチルジメトキシ シリル基末端ポリオキシプロピレン系重合体 (A— 3)を得た。合成例 1と同様に1 H— NMRの測定により、末端のメチルジメトキシシリル基は 1分子あたり平均して 1. 3個 であった。
[0178] (実施例 1)
合成例 1で得られたトリメトキシシリル基末端ポリオキシプロピレン系重合体 (A— 1) 100重量部に対して、表面処理膠質炭酸カルシウム(白石工業 (株)製、商品名:白 艷華 CCR) 50重量部、重質炭酸カルシウム(白石カルシウム (株)商品名:ホワイトン SB) 50重量部、タレ防止剤 (楠本ィ匕成 (株)製、商品名:デイスバロン 6500) 2重量部
、ヒンダードフエノール系酸化防止剤(チノく'スペシャルティ'ケミカルズ (株)製、商品 名:ィルガノックス 1010) 1重量部を計量、混合して充分混練りした後、 3本ペイント口 ールに 3回通して分散させた。この後、 120°Cで 2時間減圧脱水を行い、 50°C以下 に冷却後、接着付与剤として γ—ァミノプロピルトリメトキシシラン(日本ュ-カー (株) 製、商品名: Α— 1110) 5重量部、 γ—グリシドキシプロピルトリメトキシシラン(日本ュ 二カー (株)製、商品名: Α— 187) 3重量部、硬化触媒であるカルボン酸としてネオデ カン酸 (ジャパンエポキシレジン (株)製、商品名:バーサチック 10) 2. 5重量部、アミ ンとして 3—ジェチルァミノプロピルアミン (和光純薬工業 (株)製、 DEAPAと略す) 0 . 5重量部を加えて混練し、実質的に水分の存在しない状態で混練した後、防湿性 の容器に密閉し、一液型硬化性組成物を得た。(D)成分である Α— 1110の分子量 は 179. 3、(Ε)成分である Α— 187の分子量は 236. 3であることから、(D)成分の 全ァミノ基のモル数 (d)と、 (E)成分の全エポキシ基のモル数 (e)との比(d) / (e)は 2. 2である。
(実施例 2)
実施例 1における A— 1110の使用量を 3. 6重量部に変更し、 A— 187の使用量を 4. 7重量部に変更した以外は、実施例 1と同様にして硬化性組成物を得た。(D)成 分の全ァミノ基のモル数 (d)と、 (E)成分の全エポキシ基のモル数(e)との比(d) / (e )は 1. 0である。
(実施例 3)
実施例 1における重合体 (A— 1)の代わりに、合成例 2で得られたトリメトキシシリル 基末端ポリオキシプロピレン系重合体 (A— 2)を 100重量部用いた以外は、実施例 1 と同様にして硬化性組成物を得た。(D)成分の全ァミノ基のモル数 (d)と、(E)成分 の全エポキシ基のモノレ数 (e)との比(d) / (e)は 2. 2である。
(実施例 4)
実施例 1における A— 1110の代わりに γ— (2—アミノエチル)ァミノプロピルトリメト キシシラン(日本ュ-カー (株)製、商品名: Α— 1120)を 6. 2重量部用いた以外は、 実施例 1と同様にして硬化性組成物を得た。 Α— 1120の分子量は 222. 1であること 力 、 (D)成分の全ァミノ基のモル数 (d)と、 (E)成分の全エポキシ基のモル数(e)と
の比(d) Z (e)は 2. 2である。
(実施例 5)
実施例 2におけるカルボン酸の代わりに、カルボン酸錫塩としてネオデカン酸錫塩( 日東化成 (株)製、商品名:ネオスタン U— 50)を 3. 4重量部用いた以外は、実施例 1と同様にして硬化性組成物を得た。(D)成分の全ァミノ基のモル数 (d)と、(E)成分 の全エポキシ基のモノレ数 (e)との比(d) / (e)は 1. 0である。
(実施例 6)
実施例 2における重合体 (A— 1)の代わりに、合成例 3で得られたメチルジメトキシ シリル基末端ポリオキシプロピレン系重合体 (A— 3)を 100重量部を用いた以外は、 実施例 1と同様にして硬化性組成物を得た。(D)成分の全ァミノ基のモル数 (d)と、 ( E)成分の全エポキシ基のモル数(e)との比(d) / (e)は 1. 0である。
(比較例 1)
実施例 4における A— 187の代わりにビュルシラン(日本ュ-カー (株)製、商品名: A— 171)を 3重量部用いた以外は、実施例 1と同様にして硬化性組成物を得た。本 例では (E)成分を含有して!/、な!/、。
(比較例 2)
実施例 3における A— 1110を使用せず、さらに A— 187の使用量を 9. 4重量部に 変更した以外は、実施例 1と同様にして硬化性組成物を得た。本例では(D)成分を 含有していない。
(比較例 3)
実施例 1における A— 1110の使用量を 2. 3重量部に変更し、さらに A— 187の使 用量を 6. 6重量部に変更した以外は、実施例 1と同様にして硬化性組成物を得た。 ( D)成分の全ァミノ基のモル数 (d)と、 (E)成分の全エポキシ基のモル数(e)との比(d ) 7 )は0. 5である。
(比較例 4)
比較例 3における重合体 (A— 1)の代わりに、合成例 2で得られたトリメトキシシリル 基末端ポリオキシプロピレン系重合体 (A— 2)を 100重量部用いた以外は、実施例 1 と同様にして硬化性組成物を得た。(D)成分の全ァミノ基のモル数 (d)と、(E)成分
の全エポキシ基のモノレ数 (e)との比(d) / (e)は 0. 5である。
(比較例 5)
実施例 5における A— 1110の使用量を 3重量部に変更し、さらに A— 187の使用 量を 2重量部に変更した以外は、実施例 1と同様にして硬化性組成物を得た。本例 では(D)成分と(E)成分の総モル量は 25. 2ミリモルである。
(比較例 6)
実施例 1における 3 -ジェチルァミノプロピルアミンを使用しな ヽこと以外は、実施 例 1と同様にして硬化性組成物を得た。本例では(C)成分を含有して!/ヽな ヽ。
[0179] 上記実施例 1〜6及び比較例 1〜6で得られた硬化性組成物を用いて、各物性に ついて以下のようにして測定'評価を行った。なお、初期物性は、一液型硬化性組成 物を作成して 23°C50%R. H.条件に 7〜14日置いた後で、各物性評価を行った。 (硬化性)
23°C、 50%R. H.条件下にて上記硬化性組成物を厚みが約 3mmになるよう伸ば し、ミクロスパテユラを用いてときどき硬化性組成物の表面に軽く触れ、組成物がミクロ スパテユラについてこなくなるまでの時間を測定した。結果を表 1に示す。
(貯蔵後の硬化性)
貯蔵安定性を評価するために、各一液型硬化性組成物を 50°Cの乾燥機に 28日 間入れ、 23°C50%R. H.条件に 1日以上置いた後、上記と同様に硬化性評価を行 い、初期値との比較を行った。貯蔵後の硬化性の値が、初期の硬化性に比較して全 く変化ないもの(遅延率: 1. 0)を◎、遅延率が 1. 1〜1. 3のものを〇、遅延率が 1. 4 〜3. 0を△、遅延率が 3. 0より大きいものを Xと表記した。
(硬化物の接着性)
硬化性組成物を各種被着体(陽極酸化アルミ、ステンレス鋼板、ガラス、アクリル板 )上に密着するように乗せ、 23°C50%RHの恒温恒湿条件下で 7日養生した後、硬 化物と基材の界面に力ミソリ刃で切り込みを入れ、 90度方向に引張った後、硬化物 の破壊状態を観察し、凝集破壊率 (CF率)を測定した。
[0180] 結果を表 1に示す。表中、 CF率 100%を◎、 50%以上 100%未満を〇、 10%以 上 50%未満を△、 10%未満を Xと表記した。
İ181
実お例 比較例
1 2 3 4 5 6 1 2 3 4 5 6
A- 1 (g) 100 100 100 100 100 100 100 100
(A) 有機重合体 A— 2 (g) 100 100 100
A— 3 (g) 100
カルポン酸(b 1 ) バーサチック 10 (g) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
(B)
カルボン酸金属塩(b2 ) ネオスタン U- 50 (g) 3.4 3.4
(C)ァミン化合物 DEAPA (g) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
A-1 1 10 (Mw=1 79.3) (g) 5 3.6 5 3.6 3.6 2.3 2.3 3 5
(D)アミノシラン
A-1 120 (Mw=222.1 ) (g) 6.2 6.2
( E) エポキシシラン A- 187 (Mw=236.3) (g) 3 4.7 3 3 4.7 4.7 9.4 6.6 6.6 2 3 ビニ Jレシラン A-1 71 (g) 3
白艷華 CCR (g) 50 50 50 50 50 50 50 50 50 50 50 50 充填材
ホワイトン SB (g) 50 50 50 50 50 50 50 50 50 50 50 50 タレ防止剤 ディスパロン 6500 (g) 2 2 2 2 2 2 2 2 2 2 2 2 酸化防止剤 ィルガノックス 1010 (g) 1 1 1 1 1 1 1 1 1 1 1 1
(D)のモル量 (mmol) 27.9 20.1 27.9 27.9 20.1 20.1 27.9 0 12.8 12.8 16.7 27.9
(E)のモル量 (mmol) 12.7 19.9 12.7 12.7 19.9 19.9 0 39.8 27.9 27.9 8.5 12.7
(D) + (E)の総モル量 (mmol) 40.6 40.0 40.6 40.6 40.0 40.0 27.9 39.8 40.7 40.7 25.2 40.6
(D)の全ァミノ基のモル数 (d)/ (E)の全エポキシ基のモル数 (e) 2.2 1 .0 2.2 4.4 1.0 1.0 - 0 0.5 0.5 2.0 2.2 硬化性 初期の硬化時間 (分 )· · ·χ 50 70 40 45 45 150 50 60 70 60 40 硬化せず 貯蔵後の硬化時間 (分)… y 50 85 40 45 50 160 50 720 140 135 40 硬化せず 遅延率… y/x 1.0 1 .2 1 .0 1 .0 1.1 1.1 1 .0 12.0 2.0 2.3 1 .0 ― 貯蔵後の硬化性評価 ◎ 〇 ◎ ◎ 〇 〇 ◎ X Δ Δ 〇 ― 接着性 陽極酸化アルミ ◎ ◎ ◎ ◎ ◎ ◎ X ◎ ◎ ◎ X
ステンレス鋼鈑 ◎ ◎ ◎ ◎ ◎ ◎ X X ◎ ◎ X
ガラス ◎ ◎ ◎ ◎ ◎ ◎ X ◎ ◎ ◎ ◎ アクリル板 ◎ ◎ ◎ ◎ ◎ ◎ ◎ X ◎ ◎ X
接着性総合評価 ◎ ◎ ◎ ◎ ◎ ◎ X △ ◎ ◎ X
実施例 1〜6に示すように、(A)〜(C)成分に加えて、接着付与剤として (D)成分と (E)成分を併用し、さらに(D)成分の全ァミノ基のモル数 (d)と、(E)成分の全ェポキ シ基のモル数 (e)との比(d) / (e)が 1以上であり、かつ (A)成分 lOOgに対する(D) 成分と (E)成分との総量が 30ミリモル以上である場合には、基材への接着性が良好 で、かつ貯蔵後の硬化性が初期値に比較して変化が少なく良好である。(E)成分を 有しない比較例 1は、基材への接着性に劣る。(D)成分を有しない比較例 2は、初期 に比べて貯蔵後の硬化性が大幅に低下しており、貯蔵安定性に欠ける。(D)成分と (E)成分を併用しているが、(D)成分の全ァミノ基のモル数 (d)と、(E)成分の全ェポ キシ基のモル数 (e)との比(d) / (e)が 1未満である比較例 3と比較例 4は、基材への 接着性は良好なものの、初期に比べて貯蔵後の硬化性が低下しており、貯蔵安定性 が悪い。(D)成分と (E)成分の総モル数が 25. 2ミリモルと少ない比較例 5は、基材 への接着性に劣る。(C)成分のアミンィ匕合物を含有しない比較例 6は、室温下で 7日 経過しても全く硬化しなカゝつた。
Claims
[1] 成分として
(A)シロキサン結合を形成することにより架橋し得るケィ素含有基を有する有機重合 体、
(B)カルボン酸および Zまたはカルボン酸金属塩、
(C)反応性ケィ素基を有しな!/、アミンィ匕合物、
(D)アミノ基置換シラン化合物、
(E)エポキシ基置換シラン化合物
を含有する硬化性組成物にお ヽて、組成物中に含まれるアミノ基置換シラン化合物(
D)の全ァミノ基のモル数 (d)と、組成物中に含まれるエポキシ基置換シランィ匕合物(
E)の全エポキシ基のモル数 (e)との比(d)Z(e)が 1以上であり、さらに、(A)成分 10 Ogに対する(D)成分と (E)成分との総量が 30ミリモル以上であることを特徴とする一 液型硬化性組成物。
[2] (A)成分の有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化 水素系重合体、および (メタ)アクリル酸エステル系重合体力 なる群力 選択される 少なくとも 1種の重合体である請求項 1に記載の硬化性組成物。
[3] ポリオキシアルキレン系重合体がポリオキシプロピレン系重合体である請求項 2に 記載の硬化性組成物。
[4] (B)成分が、(bl)カルボニル基に隣接する炭素原子力 級炭素であるカルボン酸 および Zまたは (b2)カルボ-ル基に隣接する炭素原子が 4級炭素であるカルボン酸 金属塩を含有することを特徴とする請求項 1〜3のいずれかに記載の硬化性組成物
[5] (b2)成分のカルボニル基に隣接する炭素原子力 級炭素であるカルボン酸金属 塩力 カルボン酸錫塩であることを特徴とする請求項 4に記載の硬化性組成物。
[6] (A)成分の有機重合体の主鎖骨格中に、一般式 (1):
NR1 - C ( = 0) - (1)
(R1は水素原子または置換ある!/ヽは非置換の有機基を表す)で表される基を有するこ とを特徴とする請求項 1〜5のいずれかに記載の硬化性組成物。
請求項 1〜6の!ヽずれかに記載の硬化性組成物を用いてなる一液型接着剤。 請求項 1〜6の 、ずれか〖こ記載の硬化性組成物を用いてなる一液型シーリング材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006550689A JP5179060B2 (ja) | 2004-12-28 | 2005-12-20 | 硬化性組成物 |
US11/794,053 US7781525B2 (en) | 2004-12-28 | 2005-12-20 | Curable composition |
EP05820309A EP1832626B1 (en) | 2004-12-28 | 2005-12-20 | Curable composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004378894 | 2004-12-28 | ||
JP2004-378894 | 2004-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006070637A1 true WO2006070637A1 (ja) | 2006-07-06 |
Family
ID=36614756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/023323 WO2006070637A1 (ja) | 2004-12-28 | 2005-12-20 | 硬化性組成物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7781525B2 (ja) |
EP (1) | EP1832626B1 (ja) |
JP (1) | JP5179060B2 (ja) |
WO (1) | WO2006070637A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2031024A1 (de) * | 2007-09-03 | 2009-03-04 | Wacker Chemie AG | Vernetzbare Massen auf der Basis von Organosiliciumverbindungen |
WO2010035821A1 (ja) * | 2008-09-29 | 2010-04-01 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
JP2011021107A (ja) * | 2009-07-16 | 2011-02-03 | Sekisui Fuller Co Ltd | 硬化性組成物、接着剤及びシーリング材 |
JP5226314B2 (ja) * | 2005-09-30 | 2013-07-03 | 株式会社カネカ | 硬化性組成物 |
KR20140106531A (ko) * | 2011-11-10 | 2014-09-03 | 모멘티브 퍼포먼스 머티리얼즈 인크. | 수분 경화성 오가노폴리실록산 조성물 |
US8846822B2 (en) | 2010-10-27 | 2014-09-30 | Kaneka Corporation | Curable composition |
JP2015509988A (ja) * | 2011-12-15 | 2015-04-02 | モーメンティブ・パフォーマンス・マテリアルズ・インク | 湿気硬化性オルガノポリシロキサン組成物 |
US9365755B2 (en) | 2010-12-13 | 2016-06-14 | Kaneka Corporation | Reactive plasticizer and curable composition containing same |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004031300A1 (ja) * | 2002-10-02 | 2004-04-15 | Kaneka Corporation | 硬化性組成物 |
WO2004099318A1 (ja) * | 2003-05-12 | 2004-11-18 | Kaneka Corporation | 硬化性組成物 |
JP5017111B2 (ja) * | 2005-04-15 | 2012-09-05 | 株式会社カネカ | 透明性に優れた硬化性組成物及び硬化物 |
US8378037B2 (en) * | 2007-12-26 | 2013-02-19 | Momentive Performance Materials Inc. | Moisture-curable silylated polyurea and adhesive, sealant and coating compositions containing same |
US8383716B2 (en) | 2010-07-30 | 2013-02-26 | E I Du Pont De Nemours And Company | Polyester nanocomposites |
JP2012126881A (ja) * | 2010-11-24 | 2012-07-05 | Kaneka Corp | 硬化性組成物 |
EP2791265A4 (en) | 2011-12-15 | 2016-01-13 | Momentive Performance Mat Inc | HUMIDITY-CURABLE POLYORGANOSILOXANE COMPOSITIONS |
CA2861659A1 (en) | 2011-12-29 | 2013-07-04 | Momentive Performance Materials, Inc. | Moisture curable organopolysiloxane composition |
CN104640576B (zh) | 2012-05-29 | 2017-04-19 | 3M创新有限公司 | 包括聚合物泡沫和中间体的吸收制品 |
EP2674450A1 (en) | 2012-06-11 | 2013-12-18 | 3M Innovative Properties Company | Nanosilica coating for retarding dew formation |
DE102012223139A1 (de) * | 2012-12-13 | 2014-06-18 | Wacker Chemie Ag | Vernetzbare Massen auf Basis von organyloxysilanterminierten Polymeren |
EP2762535A1 (de) * | 2013-02-04 | 2014-08-06 | Sika Technology AG | Vorbehandlung mit verbesserter Lagerstabilität und Haftung |
TW201434882A (zh) | 2013-03-13 | 2014-09-16 | Momentive Performance Mat Inc | 可濕氣固化之有機聚矽氧烷組成物 |
WO2014183029A2 (en) | 2013-05-10 | 2014-11-13 | Momentive Performance Materials Inc. | Non-metal catalyzed room temperature moisture curable organopolysiloxane compositions |
CN104830024B (zh) | 2014-01-15 | 2018-02-06 | 财团法人工业技术研究院 | 有机无机混成树脂、包含其的模塑组合物、以及光电装置 |
EP3359207A4 (en) | 2015-10-05 | 2019-05-08 | 3M Innovative Properties Company | ABSORBENT ARTICLE WITH A FLEXIBLE POLYMER FOAM AND INTERMEDIATE PRODUCTS |
JP2019533033A (ja) * | 2016-09-12 | 2019-11-14 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. | アルコキシシリル含有ポリマーを硬化させるための非スズ触媒 |
CN110310914B (zh) * | 2019-07-04 | 2021-12-31 | 京东方科技集团股份有限公司 | 一种柔性器件及其制作方法、柔性装置 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPH10273512A (ja) | 1997-03-31 | 1998-10-13 | Mitsui Chem Inc | ポリアルキレンオキシドの製造方法 |
JPH1160722A (ja) | 1997-08-19 | 1999-03-05 | Mitsui Chem Inc | ポリオキシアルキレンポリオールの製造方法 |
WO2000056818A1 (fr) | 1999-03-23 | 2000-09-28 | Kaneka Corporation | Compositions de resine durcissable |
JP2000345054A (ja) * | 1999-03-29 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | 1液型硬化性樹脂組成物 |
JP2004107397A (ja) | 2002-09-13 | 2004-04-08 | Sekisui Chem Co Ltd | 硬化性組成物 |
JP2004189946A (ja) | 2002-12-12 | 2004-07-08 | Nitto Kasei Co Ltd | シリル基含有有機重合体硬化性組成物 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1745526B2 (de) | 1967-03-16 | 1980-04-10 | Union Carbide Corp., New York, N.Y. (V.St.A.) | Verfahren zur Herstellung vulkanisierbarer, unter wasserfreien Bedingungen beständiger Polymerisate |
DE2157405C3 (de) | 1971-11-19 | 1975-10-16 | Chemische Werke Huels Ag, 4370 Marl | Verfahren zur Herstellung von polymeren Kohlenwasserstoffen mit reaktiven SiIyIe ndgruppen |
US3888815A (en) | 1973-08-20 | 1975-06-10 | Gen Electric | Self-bonding two-package room temperature vulcanizable silicone rubber compositions |
JPS5273998A (en) | 1975-12-16 | 1977-06-21 | Kanegafuchi Chem Ind Co Ltd | Room temperature curing compositions |
JPS559669A (en) | 1978-07-07 | 1980-01-23 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
US4449938A (en) | 1982-02-19 | 1984-05-22 | Lee Pharmaceuticals, Inc. | Endodontic filling and sealing composition |
JPS5924771A (ja) | 1982-08-02 | 1984-02-08 | Semedain Kk | 一液型室温硬化性シ−ラント組成物 |
DE3524452A1 (de) | 1985-07-09 | 1987-01-15 | Bayer Ag | Rtv-siliconpasten mit verkuerzter aushaertungszeit |
JPS636041A (ja) | 1986-06-25 | 1988-01-12 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
FR2617168B1 (fr) | 1987-06-25 | 1989-09-15 | Rhone Poulenc Chimie | Catalyseur a l'etain obtenu a partir d'oxyde d'etain et de compose b-dicarbonyle pour composition elastomere silicone |
JP2609256B2 (ja) | 1987-07-21 | 1997-05-14 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JP2541614B2 (ja) * | 1988-03-17 | 1996-10-09 | 鐘淵化学工業株式会社 | 硬化性組成物 |
US4960844A (en) | 1988-08-03 | 1990-10-02 | Products Research & Chemical Corporation | Silane terminated liquid polymers |
JP2771572B2 (ja) * | 1989-02-03 | 1998-07-02 | 三菱瓦斯化学株式会社 | 被覆用組成物 |
US5399607A (en) | 1989-02-10 | 1995-03-21 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | One component composition containing a catalyst and having increased storability |
WO1990009412A1 (en) | 1989-02-10 | 1990-08-23 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Thermosetting composition |
JP3062625B2 (ja) | 1990-03-09 | 2000-07-12 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JP2993778B2 (ja) | 1991-08-06 | 1999-12-27 | 旭硝子株式会社 | 室温硬化性組成物 |
JP3122775B2 (ja) | 1991-10-24 | 2001-01-09 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JPH05125272A (ja) | 1991-11-01 | 1993-05-21 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH06322251A (ja) | 1993-05-11 | 1994-11-22 | Asahi Glass Co Ltd | 室温硬化性組成物 |
JP3145011B2 (ja) | 1995-06-29 | 2001-03-12 | 旭硝子株式会社 | 室温硬化性組成物 |
AU6461998A (en) | 1997-03-14 | 1998-09-29 | Minnesota Mining And Manufacturing Company | Cure-on-demand, moisture-curable compositions having reactive silane functionality |
EP0918062B1 (en) | 1997-04-21 | 2004-02-18 | Asahi Glass Company Ltd. | Room temperature setting compositions |
DE69824961T2 (de) | 1997-07-28 | 2005-07-28 | Kaneka Corp. | Härtbare zusammensetzung |
WO1999005215A1 (fr) | 1997-07-28 | 1999-02-04 | Kaneka Corporation | Composition adhesive polymerisable |
JPH11116686A (ja) | 1997-10-09 | 1999-04-27 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
DE19908562A1 (de) | 1998-03-25 | 1999-10-07 | Henkel Kgaa | Polyurethan und polyurethanhaltige Zubereitung |
US6602964B2 (en) | 1998-04-17 | 2003-08-05 | Crompton Corporation | Reactive diluent in moisture curable system |
US6287701B1 (en) | 1998-05-25 | 2001-09-11 | Chuo Rika Kogyo Corporation | Resin compositions, processes for their production and their uses |
JP2000109678A (ja) | 1998-10-08 | 2000-04-18 | Asahi Glass Co Ltd | 改良された室温硬化性組成物 |
US6703442B1 (en) | 1999-03-24 | 2004-03-09 | Kaneka Corporation | Two-pack type curable composition and hardener therefor |
EP1041119B1 (en) * | 1999-03-29 | 2006-08-16 | Kaneka Corporation | One-pack type curable resin composition |
JP4414045B2 (ja) | 1999-06-01 | 2010-02-10 | 株式会社カネカ | 硬化性樹脂組成物 |
US6271309B1 (en) | 1999-07-30 | 2001-08-07 | 3M Innovative Properties Company | Curable compositions comprising the hydrosilation product of olefin-containing polymers and organosiloxane hydrides, cured compositions made therefrom, and methods of making same |
JP3593627B2 (ja) | 1999-12-28 | 2004-11-24 | コニシ株式会社 | 表面処理炭酸カルシウム製品及びその製造方法 |
JP4520003B2 (ja) | 2000-04-14 | 2010-08-04 | 株式会社カネカ | 硬化性組成物 |
JP3768072B2 (ja) | 2000-06-02 | 2006-04-19 | 日東化成株式会社 | 湿気硬化型組成物 |
US7176269B2 (en) * | 2000-07-25 | 2007-02-13 | Mitsui Chemicals, Inc. | Curable composition and its use |
US6720373B2 (en) | 2001-07-13 | 2004-04-13 | Dow Corning Corporation | High solids emulsions of curable elastomeric polymers |
EP1445287B1 (en) | 2001-07-27 | 2009-05-27 | Kaneka Corporation | Curable composition |
DE10139132A1 (de) | 2001-08-09 | 2003-02-27 | Consortium Elektrochem Ind | Alkoxyvernetzende einkomponentige feuchtigkeitshärtende Massen |
DE60203973T2 (de) | 2001-08-14 | 2006-02-23 | Kaneka Corp. | Härtbares Harz |
WO2004031300A1 (ja) * | 2002-10-02 | 2004-04-15 | Kaneka Corporation | 硬化性組成物 |
JP4101632B2 (ja) | 2002-11-01 | 2008-06-18 | 株式会社カネカ | 硬化性組成物および復元性、クリープ性改善方法 |
JP2004315614A (ja) * | 2003-04-14 | 2004-11-11 | Cemedine Co Ltd | 高意匠性組成物 |
WO2004099318A1 (ja) | 2003-05-12 | 2004-11-18 | Kaneka Corporation | 硬化性組成物 |
WO2005019345A1 (ja) | 2003-08-25 | 2005-03-03 | Kaneka Corporation | 耐熱性の改善された硬化性組成物 |
WO2005097906A1 (ja) | 2004-04-01 | 2005-10-20 | Kaneka Corporation | 一液型硬化性組成物 |
EP1736511A4 (en) | 2004-04-01 | 2009-08-12 | Kaneka Corp | VULCANIZABLE COMPOSITION |
-
2005
- 2005-12-20 US US11/794,053 patent/US7781525B2/en active Active
- 2005-12-20 EP EP05820309A patent/EP1832626B1/en active Active
- 2005-12-20 JP JP2006550689A patent/JP5179060B2/ja not_active Expired - Fee Related
- 2005-12-20 WO PCT/JP2005/023323 patent/WO2006070637A1/ja active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPH10273512A (ja) | 1997-03-31 | 1998-10-13 | Mitsui Chem Inc | ポリアルキレンオキシドの製造方法 |
JPH1160722A (ja) | 1997-08-19 | 1999-03-05 | Mitsui Chem Inc | ポリオキシアルキレンポリオールの製造方法 |
WO2000056818A1 (fr) | 1999-03-23 | 2000-09-28 | Kaneka Corporation | Compositions de resine durcissable |
JP2000345054A (ja) * | 1999-03-29 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | 1液型硬化性樹脂組成物 |
JP2004107397A (ja) | 2002-09-13 | 2004-04-08 | Sekisui Chem Co Ltd | 硬化性組成物 |
JP2004189946A (ja) | 2002-12-12 | 2004-07-08 | Nitto Kasei Co Ltd | シリル基含有有機重合体硬化性組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1832626A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5226314B2 (ja) * | 2005-09-30 | 2013-07-03 | 株式会社カネカ | 硬化性組成物 |
JP2009057563A (ja) * | 2007-09-03 | 2009-03-19 | Wacker Chemie Ag | 有機ケイ素化合物を基礎とする架橋可能なコンパウンド |
KR100978081B1 (ko) | 2007-09-03 | 2010-08-26 | 와커 헤미 아게 | 유기 규소 화합물을 주성분으로 하는 가교 가능한 재료 |
EP2031024A1 (de) * | 2007-09-03 | 2009-03-04 | Wacker Chemie AG | Vernetzbare Massen auf der Basis von Organosiliciumverbindungen |
US8399575B2 (en) | 2007-09-03 | 2013-03-19 | Wacker Chemie Ag | Crosslinkable materials based on organosilicon compounds |
JP5547641B2 (ja) * | 2008-09-29 | 2014-07-16 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
WO2010035821A1 (ja) * | 2008-09-29 | 2010-04-01 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
US8680184B2 (en) | 2008-09-29 | 2014-03-25 | Kaneka Corporation | Curable composition and cured product thereof |
JP2011021107A (ja) * | 2009-07-16 | 2011-02-03 | Sekisui Fuller Co Ltd | 硬化性組成物、接着剤及びシーリング材 |
US8846822B2 (en) | 2010-10-27 | 2014-09-30 | Kaneka Corporation | Curable composition |
US9365755B2 (en) | 2010-12-13 | 2016-06-14 | Kaneka Corporation | Reactive plasticizer and curable composition containing same |
KR20140106531A (ko) * | 2011-11-10 | 2014-09-03 | 모멘티브 퍼포먼스 머티리얼즈 인크. | 수분 경화성 오가노폴리실록산 조성물 |
CN104066509A (zh) * | 2011-11-10 | 2014-09-24 | 莫门蒂夫性能材料股份有限公司 | 可湿气固化的有机聚硅氧烷组合物 |
CN104066509B (zh) * | 2011-11-10 | 2016-12-21 | 莫门蒂夫性能材料股份有限公司 | 可湿气固化的有机聚硅氧烷组合物 |
KR102130348B1 (ko) * | 2011-11-10 | 2020-07-06 | 모멘티브 퍼포먼스 머티리얼즈 인크. | 수분 경화성 오가노폴리실록산 조성물 |
JP2015509988A (ja) * | 2011-12-15 | 2015-04-02 | モーメンティブ・パフォーマンス・マテリアルズ・インク | 湿気硬化性オルガノポリシロキサン組成物 |
US9663657B2 (en) | 2011-12-15 | 2017-05-30 | Momentive Performance Materials Inc. | Moisture curable organopolysiloxane compositions |
KR101804832B1 (ko) * | 2011-12-15 | 2017-12-05 | 모멘티브 퍼포먼스 머티리얼즈 인크. | 수분 경화성 오가노폴리실록산 조성물 |
Also Published As
Publication number | Publication date |
---|---|
EP1832626A4 (en) | 2010-04-07 |
JPWO2006070637A1 (ja) | 2008-06-12 |
EP1832626A1 (en) | 2007-09-12 |
US20080188624A1 (en) | 2008-08-07 |
US7781525B2 (en) | 2010-08-24 |
JP5179060B2 (ja) | 2013-04-10 |
EP1832626B1 (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5226217B2 (ja) | 硬化性組成物 | |
JP5080006B2 (ja) | 硬化性組成物 | |
JP5282164B2 (ja) | 硬化性組成物 | |
JP5179060B2 (ja) | 硬化性組成物 | |
JP4874650B2 (ja) | 耐熱性の改善された硬化性組成物 | |
JP5420840B2 (ja) | 硬化性と貯蔵安定性の改善された硬化性組成物 | |
WO2004031299A1 (ja) | 1液型硬化性組成物 | |
WO2004031300A1 (ja) | 硬化性組成物 | |
JP5068997B2 (ja) | 一液型硬化性組成物 | |
JPWO2005097898A1 (ja) | 硬化性組成物 | |
WO2007037484A1 (ja) | 硬化性組成物 | |
WO2007037485A1 (ja) | 硬化性組成物 | |
WO2008053875A1 (fr) | Polymère organique durcissable, procédé de fabrication de celui-ci, et composition durcissable contenant le polymère | |
WO2006112340A1 (ja) | 透明性に優れた硬化性組成物及び硬化物 | |
JP5081448B2 (ja) | 硬化性組成物 | |
JP5112688B2 (ja) | 硬化性組成物 | |
JP5476119B2 (ja) | 硬化性組成物 | |
JP5244413B2 (ja) | 反応性ケイ素基を有する有機重合体を含む組成物 | |
JP4481105B2 (ja) | 硬化性組成物 | |
JP5112689B2 (ja) | 1液型硬化性組成物 | |
JP5564312B2 (ja) | 硬化性組成物 | |
JP5243798B2 (ja) | 硬化性と接着性の改善された硬化性組成物 | |
JP2009120720A (ja) | 反応性ケイ素基を有する有機重合体を含む組成物 | |
JP2007131799A (ja) | 硬化性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006550689 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11794053 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005820309 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005820309 Country of ref document: EP |