TWI741326B - Source driver and output buffer thereof - Google Patents

Source driver and output buffer thereof Download PDF

Info

Publication number
TWI741326B
TWI741326B TW108126532A TW108126532A TWI741326B TW I741326 B TWI741326 B TW I741326B TW 108126532 A TW108126532 A TW 108126532A TW 108126532 A TW108126532 A TW 108126532A TW I741326 B TWI741326 B TW I741326B
Authority
TW
Taiwan
Prior art keywords
voltage
terminal
coupled
transistor
circuit
Prior art date
Application number
TW108126532A
Other languages
Chinese (zh)
Other versions
TW202105346A (en
Inventor
錢佳駒
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW108126532A priority Critical patent/TWI741326B/en
Publication of TW202105346A publication Critical patent/TW202105346A/en
Application granted granted Critical
Publication of TWI741326B publication Critical patent/TWI741326B/en

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A source driver includes an output buffer and a feedback circuit. The output buffer includes an input stage circuit, an output stage circuit, a rising control circuit, and a falling control circuit. The input stage circuit correspondingly generates a first gate control voltage and a second gate control voltage according to an input voltage and a feedback voltage. The output stage circuit correspondingly generates an output voltage according to the first gate control voltage and the second gate control voltage. The feedback circuit generates and outputs the feedback voltage corresponding to the output voltage to the input stage circuit. The rising control circuit and the falling control circuit compare the input voltage with the feedback voltage, and pull down (or pull up) the first gate control voltage and the second gate control voltage according to the comparison result.

Description

源極驅動器及其輸出緩衝器Source driver and its output buffer

本發明是有關於一種顯示裝置,且特別是有關於一種源極驅動器及其輸出緩衝器。 The present invention relates to a display device, and more particularly to a source driver and its output buffer.

一般而言,源極驅動器被用來驅動顯示面板的多條資料線(或稱源極線)。源極驅動器配置有多個驅動通道電路,這些驅動通道電路的每一個經由不同的輸出緩衝器去驅動這些資料線中的一條對應資料線。源極驅動器配置有輸出緩衝器,輸出緩衝器可以將數位類比轉換器的類比電壓增益後輸出給顯示面板的資料線(或稱源極線)。隨著顯示面板的解析度以及/或是幀率(Frame rate)越來越高,對一條掃描線的充電時間越來越短。為了要在短時間對一個像素(pixel)進行驅動(充電或放電),輸出緩衝器須要足夠高的驅動能力。亦即,輸出緩衝器須要足夠高的迴轉率(Slew Rate)。為了提升迴轉率,習知的輸出緩衝器的尾電流(tail current)會被加大。尾電流的增加,意味著功耗的增加。 Generally speaking, the source driver is used to drive multiple data lines (or source lines) of the display panel. The source driver is configured with a plurality of driving channel circuits, and each of the driving channel circuits drives a corresponding one of the data lines through a different output buffer. The source driver is equipped with an output buffer, which can gain the analog voltage of the digital-to-analog converter and output it to the data line (or called the source line) of the display panel. As the resolution and/or frame rate of the display panel becomes higher, the charging time for one scan line becomes shorter and shorter. In order to drive (charge or discharge) a pixel in a short time, the output buffer needs a sufficiently high drive capability. That is, the output buffer needs a sufficiently high slew rate (Slew Rate). In order to increase the slew rate, the tail current of the conventional output buffer is increased. An increase in tail current means an increase in power consumption.

本發明提供一種源極驅動器及其輸出緩衝器,其可以在對一個像素(pixel)進行驅動的期間內選擇性地使輸出緩衝器進行過驅動(overdrive),以提高輸出電壓的迴轉率。 The present invention provides a source driver and an output buffer thereof, which can selectively overdrive the output buffer during a period of driving a pixel (pixel) to improve the slew rate of the output voltage.

本發明的實施例提供一種源極驅動器。源極驅動器包括輸出緩衝器與回授電路。輸出緩衝器包括輸入級電路、輸出級電路、上升控制電路與下降控制電路。輸入級電路的第一輸入端接收輸出緩衝器的輸入電壓。輸入級電路的第二輸入端耦接至回授電路的輸出端以接收第一回授電壓。輸入級電路經配置依照輸入電壓與第一回授電壓對應地產生第一閘控電壓與第二閘控電壓。輸出級電路耦接至輸入級電路,以接收第一閘控電壓與第二閘控電壓。輸出級電路用以依照第一閘控電壓與第二閘控電壓對應地產生輸出緩衝器的輸出電壓給顯示面板的資料線。輸出級電路的輸出端耦接至回授電路的輸入端。上升控制電路用以比較輸入電壓與第一回授電壓而獲得第一比較結果。當第一比較結果表示第一回授電壓要被拉升時,上升控制電路於第一暫態期間拉降第一閘控電壓與第二閘控電壓。下降控制電路用以比較輸入電壓與第一回授電壓而獲得第二比較結果。當第二比較結果表示第一回授電壓要被拉降時,下降控制電路於第二暫態期間拉升第一閘控電壓與第二閘控電壓。回授電路用以產生並輸出相關於輸出電壓的第一回授電壓至輸入級電路的第二輸入端。 The embodiment of the present invention provides a source driver. The source driver includes an output buffer and a feedback circuit. The output buffer includes an input stage circuit, an output stage circuit, a rise control circuit and a fall control circuit. The first input terminal of the input stage circuit receives the input voltage of the output buffer. The second input terminal of the input stage circuit is coupled to the output terminal of the feedback circuit to receive the first feedback voltage. The input stage circuit is configured to generate a first gating voltage and a second gating voltage corresponding to the input voltage and the first feedback voltage. The output stage circuit is coupled to the input stage circuit to receive the first gating voltage and the second gating voltage. The output stage circuit is used for generating the output voltage of the output buffer to the data line of the display panel according to the first gating voltage and the second gating voltage. The output terminal of the output stage circuit is coupled to the input terminal of the feedback circuit. The rise control circuit is used to compare the input voltage with the first feedback voltage to obtain the first comparison result. When the first comparison result indicates that the first feedback voltage is going to be increased, the rising control circuit pulls down the first gating voltage and the second gating voltage during the first transient period. The drop control circuit is used to compare the input voltage with the first feedback voltage to obtain a second comparison result. When the second comparison result indicates that the first feedback voltage is about to be pulled down, the down control circuit pulls up the first gating voltage and the second gating voltage during the second transient period. The feedback circuit is used for generating and outputting the first feedback voltage related to the output voltage to the second input terminal of the input stage circuit.

本發明的實施例提供一種輸出緩衝器,輸出緩衝器包括輸 入級電路、輸出級電路、上升控制電路與下降控制電路。輸入級電路具有第一輸入端與第二輸入端,輸入級電路的第一輸入端接收輸出緩衝器的輸入電壓,輸入級電路的第二輸入端用以接收輸出緩衝器的第一回授電壓。輸入級電路依照輸入電壓與第一回授電壓對應地產生第一閘控電壓與第二閘控電壓。輸出級電路耦接至輸入級電路以接收第一閘控電壓與第二閘控電壓,輸出級電路用以依照第一閘控電壓與第二閘控電壓對應地產生輸出緩衝器的輸出電壓。上升控制電路用以比較輸入電壓與第一回授電壓而獲得第一比較結果。當第一比較結果表示第一回授電壓要被拉升時,上升控制電路於第一暫態期間拉降第一閘控電壓與第二閘控電壓。下降控制電路用以比較輸入電壓與第一回授電壓而獲得第二比較結果。當第二比較結果表示第一回授電壓要被拉降時,下降控制電路於第二暫態期間拉升第一閘控電壓與第二閘控電壓。 The embodiment of the present invention provides an output buffer, and the output buffer includes an output Entry circuit, output stage circuit, rise control circuit and fall control circuit. The input stage circuit has a first input terminal and a second input terminal. The first input terminal of the input stage circuit receives the input voltage of the output buffer, and the second input terminal of the input stage circuit is used to receive the first feedback voltage of the output buffer . The input stage circuit generates a first gate control voltage and a second gate control voltage corresponding to the input voltage and the first feedback voltage. The output stage circuit is coupled to the input stage circuit to receive the first gating voltage and the second gating voltage, and the output stage circuit is used to generate the output voltage of the output buffer corresponding to the first gating voltage and the second gating voltage. The rise control circuit is used to compare the input voltage with the first feedback voltage to obtain the first comparison result. When the first comparison result indicates that the first feedback voltage is going to be increased, the rising control circuit pulls down the first gating voltage and the second gating voltage during the first transient period. The drop control circuit is used to compare the input voltage with the first feedback voltage to obtain a second comparison result. When the second comparison result indicates that the first feedback voltage is about to be pulled down, the down control circuit pulls up the first gating voltage and the second gating voltage during the second transient period.

基於上述,本發明諸實施例所述源極驅動器及其輸出緩衝器可以比較輸入電壓與第一回授電壓。當比較結果表示第一回授電壓將要被拉升時,拉降輸出緩衝器的輸出級電路的第一閘控電壓與第二閘控電壓,以提升輸出電壓的迴轉率。當比較結果表示第一回授電壓要被拉降時,拉升輸出緩衝器的輸出級電路的第一閘控電壓與第二閘控電壓,以提升輸出電壓的迴轉率。 Based on the above, the source driver and its output buffer of the embodiments of the present invention can compare the input voltage with the first feedback voltage. When the comparison result indicates that the first feedback voltage is about to be pulled up, the first gating voltage and the second gating voltage of the output stage circuit of the output buffer are pulled down to increase the slew rate of the output voltage. When the comparison result indicates that the first feedback voltage is going to be pulled down, the first gating voltage and the second gating voltage of the output stage circuit of the output buffer are pulled up to increase the slew rate of the output voltage.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10:顯示裝置 10: Display device

11:閘極驅動器 11: Gate driver

12:源極驅動器 12: Source driver

12_1、12_2、12_m:驅動通道電路 12_1, 12_2, 12_m: drive channel circuit

13:顯示面板 13: display panel

100:輸出緩衝器 100: output buffer

110:輸入級電路 110: Input stage circuit

120:輸出級電路 120: output stage circuit

130:上升控制電路 130: Rise control circuit

131、132:比較電路 131, 132: comparison circuit

140:下降控制電路 140: Descent control circuit

141、142:比較電路 141, 142: Comparison circuit

310、510:電流鏡 310, 510: current mirror

800:回授電路 800: feedback circuit

810:回授電壓產生電路 810: Feedback voltage generating circuit

811:阻抗電路 811: impedance circuit

1010:閂鎖器 1010: Latch

1020:轉換電路 1020: Conversion circuit

1021:準位移位器 1021: quasi-shifter

1022:數位類比轉換器 1022: Digital Analog Converter

1050:控制電路 1050: control circuit

1310:數位類比轉換電路 1310: digital-to-analog conversion circuit

1311:數位類比轉換器 1311: digital analog converter

1312:單元增益緩衝器 1312: unit gain buffer

DL_1、DL_2、DL_m:資料線 DL_1, DL_2, DL_m: data line

EN、ENB:控制信號 EN, ENB: control signal

N1~N12、P1~P12:電晶體 N1~N12, P1~P12: Transistor

NGATE、PGATE:閘控電壓 NGATE, PGATE: gate voltage

P(1,1)、P(m,1)、P(1,n)、P(m,n):像素電路 P(1,1), P(m,1), P(1,n), P(m,n): pixel circuit

Pc:目前像素資料 Pc: current pixel data

Pp:先前像素資料 Pp: previous pixel data

R1、R2、R3、R4:分壓電阻 R1, R2, R3, R4: voltage divider resistance

S1、S2、S3、S4、S5:控制信號 S1, S2, S3, S4, S5: control signal

S210~S270:步驟 S210~S270: steps

SL_1、SL_2、SL_n:掃描線 SL_1, SL_2, SL_n: scan line

SW1:回授開關 SW1: Feedback switch

SW2、SW3、SW4、SW5:開關 SW2, SW3, SW4, SW5: switch

T1:過驅動期間 T1: During overdrive

T2:正常驅動期間 T2: During normal driving

VC1、VC2:控制電壓 VC1, VC2: control voltage

VDDA:系統電壓 VDDA: system voltage

VFB、VFB1:回授電壓 VFB, VFB1: feedback voltage

VIN:輸入電壓 VIN: input voltage

VOUT:輸出電壓 VOUT: output voltage

VSSA:參考電壓 VSSA: Reference voltage

圖1是依照本發明實施例說明一種顯示裝置的電路方塊(circuit block)示意圖。 FIG. 1 is a schematic diagram illustrating a circuit block of a display device according to an embodiment of the present invention.

圖2是依照本發明的一實施例所繪示的一種源極驅動器的電路方塊示意圖。 FIG. 2 is a circuit block diagram of a source driver according to an embodiment of the invention.

圖3是依照本發明的一實施例所繪示的一種輸出緩衝器的操作方法的流程示意圖。 FIG. 3 is a schematic flowchart of an operation method of an output buffer according to an embodiment of the present invention.

圖4是依照本發明的一實施例說明圖2所示上升控制電路的電路方塊示意圖。 4 is a block diagram illustrating the circuit block diagram of the rising control circuit shown in FIG. 2 according to an embodiment of the present invention.

圖5是依照本發明的另一實施例說明圖2所示上升控制電路的電路方塊示意圖。 FIG. 5 is a circuit block diagram illustrating the ascending control circuit shown in FIG. 2 according to another embodiment of the present invention.

圖6是依照本發明的一實施例說明圖2所示下降控制電路的電路方塊示意圖。 FIG. 6 is a circuit block diagram illustrating the descending control circuit shown in FIG. 2 according to an embodiment of the present invention.

圖7是依照本發明的另一實施例說明圖2所示下降控制電路的電路方塊示意圖。 FIG. 7 is a circuit block diagram illustrating the descending control circuit shown in FIG. 2 according to another embodiment of the present invention.

圖8是依照本發明的一實施例所繪示一種源極驅動器的另一電路方塊示意圖。 FIG. 8 is a schematic block diagram of another circuit of a source driver according to an embodiment of the present invention.

圖9是依照本發明的另一實施例所繪示的一種源極驅動器的時序示意圖。 FIG. 9 is a timing diagram of a source driver according to another embodiment of the present invention.

圖10是依照本發明的另一實施例說明圖1所示驅動通道電路的電路方塊示意圖。 FIG. 10 is a circuit block diagram illustrating the driving channel circuit shown in FIG. 1 according to another embodiment of the present invention.

圖11是依照本發明的另一實施例說明圖10所示阻抗電路的電路方塊示意圖。 FIG. 11 is a circuit block diagram illustrating the impedance circuit shown in FIG. 10 according to another embodiment of the present invention.

圖12是依照本發明的又一實施例說明圖10所示阻抗電路的電路方塊示意圖。 FIG. 12 is a circuit block diagram illustrating the impedance circuit shown in FIG. 10 according to another embodiment of the present invention.

圖13是依照本發明的再一實施例說明圖10所示阻抗電路的電路方塊示意圖。 FIG. 13 is a circuit block diagram illustrating the impedance circuit shown in FIG. 10 according to still another embodiment of the present invention.

圖14是依照本發明的更一實施例說明圖10所示阻抗電路的電路方塊示意圖。 FIG. 14 is a circuit block diagram illustrating the impedance circuit shown in FIG. 10 according to another embodiment of the present invention.

在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。 The term "coupling (or connection)" used in the full description of the case (including the scope of the patent application) can refer to any direct or indirect connection means. For example, if it is described in the text that the first device is coupled (or connected) to the second device, it should be interpreted as that the first device can be directly connected to the second device, or the first device can be connected through other devices or some This kind of connection means is indirectly connected to the second device. In addition, wherever possible, elements/components/steps with the same reference numbers in the drawings and embodiments represent the same or similar parts. Elements/components/steps that use the same reference numerals or use the same terms in different embodiments may refer to related descriptions.

圖1是依照本發明實施例說明一種顯示裝置10的電路方塊(circuit block)示意圖。圖1所示顯示裝置10包括閘極驅動器11、源極驅動器12以及顯示面板13。顯示面板13可以是任何類型的平面面板顯示器,例如液晶顯示面板、有機發光二極體顯示面板或是 其他顯示面板。顯示面板13包含多條掃描線(或稱閘極線)、多條資料線(或稱源極線)與多個像素電路。例如圖1所示,所述多條掃描線包含n條掃描線SL_1、SL_2、…、SL_n,所述多條資料線包含m條資料線DL_1、DL_2、…、DL_m,以及所述多個像素電路包含m*n個像素電路P(1,1)、…、P(m,1)、…、P(1,n)、…、P(m,n),其中m與n可以是依照設計需求所決定的任何整數。 FIG. 1 is a schematic diagram illustrating a circuit block of a display device 10 according to an embodiment of the present invention. The display device 10 shown in FIG. 1 includes a gate driver 11, a source driver 12 and a display panel 13. The display panel 13 can be any type of flat panel display, such as a liquid crystal display panel, an organic light emitting diode display panel, or Other display panels. The display panel 13 includes a plurality of scan lines (or gate lines), a plurality of data lines (or source lines), and a plurality of pixel circuits. For example, as shown in FIG. 1, the multiple scan lines include n scan lines SL_1, SL_2,..., SL_n, and the multiple data lines include m data lines DL_1, DL_2,..., DL_m, and the multiple pixels The circuit contains m*n pixel circuits P(1,1),...,P(m,1),...,P(1,n),...,P(m,n), where m and n can be designed according to the design Any integer determined by demand.

閘極驅動器11的多個輸出端以一對一方式耦接至顯示面板13的不同掃描線。閘極驅動器11可以掃描/驅動顯示面板13的每一條掃描線。閘極驅動器11可以是任何類型的閘極驅動器。例如,依照設計需求,閘極驅動器11可以是習知的閘極驅動器或是其他閘極驅動器。 The multiple output terminals of the gate driver 11 are coupled to different scan lines of the display panel 13 in a one-to-one manner. The gate driver 11 can scan/drive each scan line of the display panel 13. The gate driver 11 can be any type of gate driver. For example, according to design requirements, the gate driver 11 may be a conventional gate driver or other gate drivers.

源極驅動器12具有多個驅動通道電路,例如圖1所示m個驅動通道電路12_1、12_2、…、12_m。這些驅動通道電路12_1~12_m的輸出端以一對一方式耦接至顯示面板13的不同資料線。驅動通道電路12_1~12_m可以將數位的像素資料轉換為對應的輸出電壓(像素電壓),以及將這些輸出電壓分別輸出給顯示面板13的不同資料線。配合閘極驅動器11的掃描時序,源極驅動器12可以經由資料線DL_1~DL_m將這些輸出電壓寫入顯示面板13的對應像素電路中以顯示影像。 The source driver 12 has a plurality of driving channel circuits, for example, m driving channel circuits 12_1, 12_2,..., 12_m shown in FIG. 1. The output terminals of these driving channel circuits 12_1-12_m are coupled to different data lines of the display panel 13 in a one-to-one manner. The driving channel circuits 12_1-12_m can convert digital pixel data into corresponding output voltages (pixel voltages), and output these output voltages to different data lines of the display panel 13 respectively. In accordance with the scanning timing of the gate driver 11, the source driver 12 can write these output voltages into the corresponding pixel circuits of the display panel 13 via the data lines DL_1 to DL_m to display images.

圖2是依照本發明的一實施例說明圖1所示驅動通道電路12_1的電路方塊示意圖。圖1所示其他驅動通道電路12_2~12_m可以參照圖2所示驅動通道電路12_1的相關說明而類推,故不再贅 述。圖2所示驅動通道電路12_1包括輸出緩衝器100與回授電路800。輸出緩衝器100的第一輸入端從前級電路(未繪示)接收輸入電壓VIN,而輸出緩衝器100的輸出端將輸出電壓VOUT輸出至後級電路(例如顯示面板13的資料線DL_1),並將輸出電壓VOUT回授至回授電路800的輸入端。依據輸出電壓VOUT,回授電路800可以產生並輸出相關於輸出電壓VOUT的回授電壓VFB至輸出緩衝器100的第二輸入端。 FIG. 2 is a circuit block diagram illustrating the driving channel circuit 12_1 shown in FIG. 1 according to an embodiment of the present invention. The other driving channel circuits 12_2~12_m shown in FIG. 1 can be deduced by referring to the related description of the driving channel circuit 12_1 shown in FIG. Narrated. The driving channel circuit 12_1 shown in FIG. 2 includes an output buffer 100 and a feedback circuit 800. The first input terminal of the output buffer 100 receives the input voltage VIN from the previous circuit (not shown), and the output terminal of the output buffer 100 outputs the output voltage VOUT to the latter circuit (for example, the data line DL_1 of the display panel 13), And the output voltage VOUT is fed back to the input terminal of the feedback circuit 800. According to the output voltage VOUT, the feedback circuit 800 can generate and output the feedback voltage VFB related to the output voltage VOUT to the second input terminal of the output buffer 100.

於圖2所示實施例中,輸出緩衝器100包括輸入級電路110、輸出級電路120、上升控制電路130以及下降控制電路140。依照設計需求,輸入級電路110可以包括差動輸入對、增益電路以及/或是其他輸入級電路。舉例來說,輸入級電路110可以是習知運算放大器的輸入級電路或是其他放大器的輸入級電路以及/或是增益級電路。輸入級電路110的第一輸入端耦接至輸出緩衝器100的第一輸入端,以便接收輸入電壓VIN。輸入級電路110的第二輸入端經由輸出緩衝器100的第二輸入端耦接至回授電路800的輸出端,以便接收回授電壓VFB。輸入級電路110可以依照輸入電壓VIN與回授電壓VFB對應地產生閘控電壓PGATE與閘控電壓NGATE。 In the embodiment shown in FIG. 2, the output buffer 100 includes an input stage circuit 110, an output stage circuit 120, a rising control circuit 130 and a falling control circuit 140. According to design requirements, the input stage circuit 110 may include a differential input pair, a gain circuit, and/or other input stage circuits. For example, the input stage circuit 110 may be an input stage circuit of a conventional operational amplifier or an input stage circuit and/or a gain stage circuit of other amplifiers. The first input terminal of the input stage circuit 110 is coupled to the first input terminal of the output buffer 100 to receive the input voltage VIN. The second input terminal of the input stage circuit 110 is coupled to the output terminal of the feedback circuit 800 via the second input terminal of the output buffer 100 to receive the feedback voltage VFB. The input stage circuit 110 can generate the gating voltage PGATE and the gating voltage NGATE corresponding to the input voltage VIN and the feedback voltage VFB.

輸出級電路120的第一輸入端耦接至輸入級電路110的第一輸出端,以接收閘控電壓PGATE。輸出級電路120的第二輸入端耦接至輸入級電路110的第二輸出端,以接收閘控電壓NGATE。輸出級電路120的輸出端耦接至輸出緩衝器100的輸出端。輸出級電路120可以依照閘控電壓PGATE與閘控電壓NGATE而對應地產生 輸出緩衝器100的輸出電壓VOUT。在一實施例中,該輸出電壓VOUT可以被提供給顯示面板13的資料線DL_1。輸出級電路120的輸出端耦接至回授電路800的輸入端,以提供輸出電壓VOUT。 The first input terminal of the output stage circuit 120 is coupled to the first output terminal of the input stage circuit 110 to receive the gating voltage PGATE. The second input terminal of the output stage circuit 120 is coupled to the second output terminal of the input stage circuit 110 to receive the gating voltage NGATE. The output terminal of the output stage circuit 120 is coupled to the output terminal of the output buffer 100. The output stage circuit 120 can generate correspondingly according to the gating voltage PGATE and the gating voltage NGATE The output voltage VOUT of the output buffer 100. In an embodiment, the output voltage VOUT may be provided to the data line DL_1 of the display panel 13. The output terminal of the output stage circuit 120 is coupled to the input terminal of the feedback circuit 800 to provide an output voltage VOUT.

於圖2所示實施例中,輸出級電路120包括電晶體P1與電晶體N1。電晶體P1的控制端(例如閘極)耦接至輸入級電路110的第一輸出端,以接收閘控電壓PGATE。電晶體P1的第一端(例如源極)耦接至系統電壓VDDA。系統電壓VDDA的準位可以依照設計需求來決定。電晶體P1的第二端(例如汲極)耦接至輸出級電路120的輸出端,其中輸出級電路120的輸出端輸出所述輸出電壓VOUT。電晶體N1的控制端(例如閘極)耦接至輸入級電路110的第二輸出端,以接收閘控電壓NGATE。電晶體N1的第一端(例如源極)耦接至參考電壓VSSA。參考電壓VSSA的準位可以依照設計需求來決定。電晶體N1的第二端(例如汲極)耦接至輸出級電路120的輸出端與電晶體P1的第二端。 In the embodiment shown in FIG. 2, the output stage circuit 120 includes a transistor P1 and a transistor N1. The control terminal (eg, gate) of the transistor P1 is coupled to the first output terminal of the input stage circuit 110 to receive the gate control voltage PGATE. The first terminal (for example, the source) of the transistor P1 is coupled to the system voltage VDDA. The level of the system voltage VDDA can be determined according to design requirements. The second terminal (for example, the drain) of the transistor P1 is coupled to the output terminal of the output stage circuit 120, wherein the output terminal of the output stage circuit 120 outputs the output voltage VOUT. The control terminal (eg, gate) of the transistor N1 is coupled to the second output terminal of the input stage circuit 110 to receive the gate control voltage NGATE. The first terminal (for example, the source) of the transistor N1 is coupled to the reference voltage VSSA. The level of the reference voltage VSSA can be determined according to design requirements. The second terminal (for example, the drain) of the transistor N1 is coupled to the output terminal of the output stage circuit 120 and the second terminal of the transistor P1.

圖2所示輸出級電路120是一個範例。無論如何,輸出級電路120的實施方式不應受限於圖2所示實施例。依照設計需求,輸出級電路120可以包括任何類型的輸出電路。舉例來說,在其他實施例中,輸出級電路120可以是習知運算放大器的輸出級電路或是其他放大器的輸出級電路。 The output stage circuit 120 shown in FIG. 2 is an example. In any case, the implementation of the output stage circuit 120 should not be limited to the embodiment shown in FIG. 2. According to design requirements, the output stage circuit 120 may include any type of output circuit. For example, in other embodiments, the output stage circuit 120 may be the output stage circuit of a conventional operational amplifier or the output stage circuit of other amplifiers.

圖3是依照本發明的一實施例所繪示的一種輸出緩衝器的操作方法的流程示意圖。請參照圖2與圖3。於步驟S210中,輸入級電路110依照輸出緩衝器100的輸入電壓VIN與回授電壓VFB而 對應地產生第一閘控電壓(例如閘控電壓PGATE)與第二閘控電壓(例如閘控電壓NGATE)。於步驟S220中,輸出級電路120依照閘控電壓PGATE與閘控電壓NGATE而對應地產生輸出緩衝器100的輸出電壓VOUT。於步驟S230中,上升控制電路130比較輸入電壓VIN與回授電壓VFB而獲得第一比較結果,以及下降控制電路140比較輸入電壓VIN與回授電壓VFB而獲得第二比較結果。 FIG. 3 is a schematic flowchart of an operation method of an output buffer according to an embodiment of the present invention. Please refer to Figure 2 and Figure 3. In step S210, the input stage circuit 110 is configured according to the input voltage VIN and the feedback voltage VFB of the output buffer 100 Correspondingly, the first gating voltage (for example, the gating voltage PGATE) and the second gating voltage (for example, the gating voltage NGATE) are generated. In step S220, the output stage circuit 120 correspondingly generates the output voltage VOUT of the output buffer 100 according to the gating voltage PGATE and the gating voltage NGATE. In step S230, the up control circuit 130 compares the input voltage VIN with the feedback voltage VFB to obtain a first comparison result, and the down control circuit 140 compares the input voltage VIN with the feedback voltage VFB to obtain a second comparison result.

當所述第一比較結果表示回授電壓VFB要被拉升時(步驟S240為「要被拉升」),上升控制電路130可以於暫態期間拉降閘控電壓PGATE與閘控電壓NGATE(步驟S250)。當上升控制電路130拉降閘控電壓NGATE時,電晶體N1的截止(turn off)狀態可以被確保,以避免出現短路電流。當上升控制電路130拉降閘控電壓PGATE時,流經電晶體P1的電流可以暫時性地被增加,以便加速拉升輸出電壓VOUT。因此,輸出電壓VOUT的迴轉率(Slew Rate)可以被提昇。 When the first comparison result indicates that the feedback voltage VFB is about to be pulled up (step S240 is "to be pulled up"), the rising control circuit 130 can pull down the gate control voltage PGATE and the gate control voltage NGATE ( Step S250). When the rising control circuit 130 pulls down the gate voltage NGATE, the turn-off state of the transistor N1 can be ensured to avoid short-circuit current. When the rising control circuit 130 pulls down the gate control voltage PGATE, the current flowing through the transistor P1 can be temporarily increased to accelerate the pulling up of the output voltage VOUT. Therefore, the slew rate of the output voltage VOUT can be increased.

依照設計需求,在一些實施例中,步驟S250可能包括下述操作。當輸入電壓VIN大於回授電壓VFB時,上升控制電路130可以拉降閘控電壓PGATE與閘控電壓NGATE。當輸入電壓VIN小於或等於回授電壓VFB時,上升控制電路130可以不調整閘控電壓PGATE與閘控電壓NGATE。 According to design requirements, in some embodiments, step S250 may include the following operations. When the input voltage VIN is greater than the feedback voltage VFB, the up control circuit 130 can pull down the gating voltage PGATE and the gating voltage NGATE. When the input voltage VIN is less than or equal to the feedback voltage VFB, the rising control circuit 130 may not adjust the gating voltage PGATE and the gating voltage NGATE.

當所述第一比較結果與所述第二比較結果均表示回授電壓VFB不會被改變時(步驟S240為「沒改變」),上升控制電路130以及下降控制電路140可以不調整閘控電壓PGATE與閘控電壓 NGATE(步驟S260)。在上升控制電路130以及下降控制電路140沒有干涉閘控電壓PGATE與閘控電壓NGATE的情況下,閘控電壓PGATE的準位與閘控電壓NGATE的準位是由輸入級電路110來決定。 When the first comparison result and the second comparison result both indicate that the feedback voltage VFB will not be changed (step S240 is "no change"), the rising control circuit 130 and the falling control circuit 140 may not adjust the gate voltage PGATE and gating voltage NGATE (step S260). When the rising control circuit 130 and the falling control circuit 140 do not interfere with the gate voltage PGATE and the gate voltage NGATE, the level of the gate voltage PGATE and the level of the gate voltage NGATE are determined by the input stage circuit 110.

當所述第二比較結果表示回授電壓VFB要被拉降時(步驟S240為「要被拉降」),下降控制電路140可以於暫態期間拉升閘控電壓PGATE與閘控電壓NGATE(步驟S270)。當下降控制電路140拉升閘控電壓PGATE時,電晶體P1的截止(turn off)狀態可以被確保,以避免出現短路電流。當下降控制電路140拉升閘控電壓NGATE時,流經電晶體N1的電流可以暫時性地被增加,以便加速拉降輸出電壓VOUT。因此,輸出電壓VOUT的迴轉率可以被提昇。 When the second comparison result indicates that the feedback voltage VFB is about to be pulled down (step S240 is “to be pulled down”), the down control circuit 140 can pull up the gate voltage PGATE and the gate voltage NGATE ( Step S270). When the falling control circuit 140 raises the gate voltage PGATE, the turn-off state of the transistor P1 can be ensured to avoid short-circuit current. When the drop control circuit 140 pulls up the gate voltage NGATE, the current flowing through the transistor N1 can be temporarily increased to accelerate the pull down of the output voltage VOUT. Therefore, the slew rate of the output voltage VOUT can be improved.

依照設計需求,在一些實施例中,步驟S270可能包括下述操作。當輸入電壓VIN小於回授電壓VFB時,下降控制電路140可以拉升閘控電壓PGATE與閘控電壓NGATE。當輸入電壓VIN大於或等於回授電壓VFB時,下降控制電路140可以不調整閘控電壓PGATE與閘控電壓NGATE。 According to design requirements, in some embodiments, step S270 may include the following operations. When the input voltage VIN is less than the feedback voltage VFB, the drop control circuit 140 can increase the gate voltage PGATE and the gate voltage NGATE. When the input voltage VIN is greater than or equal to the feedback voltage VFB, the drop control circuit 140 may not adjust the gate voltage PGATE and the gate voltage NGATE.

依照不同的設計需求,上述上升控制電路130以及/或是下降控制電路140的方塊的實現方式可以是硬體(hardware)、韌體(firmware)、軟體(software,即程式)或是前述三者中的多者的組合形式。以硬體形式而言,上述上升控制電路130以及/或是下降控制電路140的方塊可以實現於積體電路(integrated circuit)上的邏輯電路。上述上升控制電路130以及/或是下降控制電路140的相 關功能可以利用硬體描述語言(hardware description languages,例如Verilog HDL或VHDL)或其他合適的編程語言來實現為硬體。舉例來說,上述上升控制電路130以及/或是下降控制電路140的相關功能可以被實現於一或多個控制器、微控制器、微處理器、特殊應用積體電路(Application-specific integrated circuit,ASIC)、數位信號處理器(digital signal processor,DSP)、場可程式邏輯閘陣列(Field Programmable Gate Array,FPGA)及/或其他處理單元中的各種邏輯區塊、模組和電路。 According to different design requirements, the implementation of the blocks of the ascending control circuit 130 and/or the descending control circuit 140 can be hardware, firmware, software (program) or the foregoing three. A combination of more than one of them. In terms of hardware, the blocks of the above-mentioned rising control circuit 130 and/or the falling control circuit 140 can be implemented in a logic circuit on an integrated circuit. The phase of the above-mentioned rising control circuit 130 and/or the falling control circuit 140 Related functions can be implemented as hardware using hardware description languages (for example, Verilog HDL or VHDL) or other suitable programming languages. For example, the related functions of the ascending control circuit 130 and/or the descending control circuit 140 may be implemented in one or more controllers, microcontrollers, microprocessors, and application-specific integrated circuits (Application-specific integrated circuit). ASIC), digital signal processor (DSP), Field Programmable Gate Array (FPGA) and/or various logic blocks, modules and circuits in other processing units.

於圖2所示實施例中,回授電路800的輸入端耦接至輸出級電路120的輸出端,以接收輸出電壓VOUT。回授電路800的輸出端耦接至輸入級電路110的第二輸入端。回授電路800依照輸出電壓VOUT產生並輸出相關於輸出電壓VOUT的回授電壓VFB至輸入級電路110的第二輸入端。 In the embodiment shown in FIG. 2, the input terminal of the feedback circuit 800 is coupled to the output terminal of the output stage circuit 120 to receive the output voltage VOUT. The output terminal of the feedback circuit 800 is coupled to the second input terminal of the input stage circuit 110. The feedback circuit 800 generates and outputs a feedback voltage VFB related to the output voltage VOUT to the second input terminal of the input stage circuit 110 according to the output voltage VOUT.

圖4是依照本發明的一實施例說明圖2所示上升控制電路130的電路方塊示意圖。於圖4所示實施例中,上升控制電路130包括比較電路131、電晶體N2以及電晶體N3。比較電路131可以比較輸入電壓VIN與回授電壓VFB而產生控制電壓VC1作為所述第一比較結果。電晶體N2的控制端(例如閘極)耦接至比較電路131的輸出端,以接收控制電壓VC1。電晶體N2的第一端(例如源極)耦接至參考電壓VSSA。電晶體N2的第二端(例如汲極)耦接至輸出級電路120的第一輸入端,以接收閘控電壓PGATE。電晶體N3的控制端(例如閘極)耦接至比較電路131的輸出端,以接收控 制電壓VC1。電晶體N3的第一端(例如源極)耦接至參考電壓VSSA。電晶體N3的第二端(例如汲極)耦接至輸出級電路120的第二輸入端,以接收閘控電壓NGATE。 FIG. 4 is a block diagram illustrating the circuit block diagram of the rising control circuit 130 shown in FIG. 2 according to an embodiment of the present invention. In the embodiment shown in FIG. 4, the rising control circuit 130 includes a comparison circuit 131, a transistor N2, and a transistor N3. The comparison circuit 131 can compare the input voltage VIN and the feedback voltage VFB to generate the control voltage VC1 as the first comparison result. The control terminal (eg, gate) of the transistor N2 is coupled to the output terminal of the comparison circuit 131 to receive the control voltage VC1. The first terminal (for example, the source) of the transistor N2 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N2 is coupled to the first input terminal of the output stage circuit 120 to receive the gate voltage PGATE. The control terminal (such as the gate) of the transistor N3 is coupled to the output terminal of the comparison circuit 131 to receive the control Control voltage VC1. The first terminal (for example, the source) of the transistor N3 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N3 is coupled to the second input terminal of the output stage circuit 120 to receive the gating voltage NGATE.

當輸入電壓VIN大於回授電壓VFB時,比較電路131可以藉由控制電壓VC1去導通(turn on)電晶體N2以及電晶體N3,以拉降閘控電壓PGATE與閘控電壓NGATE。當輸入電壓VIN小於或等於回授電壓VFB時,比較電路131可以藉由控制電壓VC1去截止(turn off)電晶體N2以及電晶體N3,因此上升控制電路130可以不干涉(不調整)閘控電壓PGATE與閘控電壓NGATE。 When the input voltage VIN is greater than the feedback voltage VFB, the comparison circuit 131 can turn on the transistor N2 and the transistor N3 by the control voltage VC1 to pull down the gate voltage PGATE and the gate voltage NGATE. When the input voltage VIN is less than or equal to the feedback voltage VFB, the comparison circuit 131 can turn off the transistor N2 and the transistor N3 by the control voltage VC1, so the rising control circuit 130 can not interfere (do not adjust) the gate control Voltage PGATE and gating voltage NGATE.

在圖4所示實施例中,比較電路131包括電晶體N4、電晶體N5以及電流鏡310。電晶體N4的控制端(例如閘極)耦接至輸入電壓VIN。電晶體N4的第一端(例如源極)耦接至回授電壓VFB。電流鏡310的主電流端耦接至電晶體N4的第二端(例如汲極)。電流鏡310的僕電流端耦接至比較電路131的輸出端,其中比較電路131的所述輸出端可以提供控制電壓VC1給電晶體N2以及電晶體N3。電晶體N5的控制端(例如閘極)耦接至比較電路131的所述輸出端。電晶體N5的第一端(例如源極)耦接至參考電壓VSSA。電晶體N5的第二端(例如汲極)耦接至電流鏡310的僕電流端與電晶體N5的控制端。 In the embodiment shown in FIG. 4, the comparison circuit 131 includes a transistor N4, a transistor N5, and a current mirror 310. The control terminal (such as the gate) of the transistor N4 is coupled to the input voltage VIN. The first terminal (for example, the source) of the transistor N4 is coupled to the feedback voltage VFB. The main current end of the current mirror 310 is coupled to the second end (for example, the drain) of the transistor N4. The slave current terminal of the current mirror 310 is coupled to the output terminal of the comparison circuit 131, wherein the output terminal of the comparison circuit 131 can provide the control voltage VC1 to the transistor N2 and the transistor N3. The control terminal (eg, gate) of the transistor N5 is coupled to the output terminal of the comparison circuit 131. The first terminal (for example, the source) of the transistor N5 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N5 is coupled to the slave current terminal of the current mirror 310 and the control terminal of the transistor N5.

於圖4所示實施例中,電流鏡310包括電晶體P2以及電晶體P3。電晶體P2的第一端(例如源極)耦接至系統電壓VDDA。電晶體P2的第二端(例如汲極)與控制端(例如閘極)耦接至電流 鏡310的所述主電流端。電晶體P3的第一端(例如源極)耦接至系統電壓VDDA。電晶體P3的第二端(例如汲極)耦接至電流鏡310的所述僕電流端。電晶體P3的控制端(例如閘極)耦接至電晶體P2的控制端。 In the embodiment shown in FIG. 4, the current mirror 310 includes a transistor P2 and a transistor P3. The first terminal (for example, the source) of the transistor P2 is coupled to the system voltage VDDA. The second end (e.g. drain) and control end (e.g. gate) of transistor P2 are coupled to the current The main current end of the mirror 310. The first terminal (for example, the source) of the transistor P3 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P3 is coupled to the slave current terminal of the current mirror 310. The control terminal (such as the gate) of the transistor P3 is coupled to the control terminal of the transistor P2.

圖5是依照本發明的另一實施例說明圖2所示上升控制電路130的電路方塊示意圖。於圖5所示實施例中,上升控制電路130包括比較電路132、電晶體N2以及電晶體N3。圖5所示比較電路132、電晶體N2以及電晶體N3可以參照圖4所示比較電路131、電晶體N2以及電晶體N3的相關說明來類推,故不再贅述。 FIG. 5 is a circuit block diagram illustrating the ascending control circuit 130 shown in FIG. 2 according to another embodiment of the present invention. In the embodiment shown in FIG. 5, the rising control circuit 130 includes a comparison circuit 132, a transistor N2, and a transistor N3. The comparison circuit 132, the transistor N2, and the transistor N3 shown in FIG. 5 can be deduced by analogy with reference to the related description of the comparison circuit 131, the transistor N2 and the transistor N3 shown in FIG.

於圖5所示實施例中,比較電路132包括電晶體N6、電晶體N7、電晶體N8、電晶體N9、電晶體P4以及電流鏡310。電晶體N6的控制端(例如閘極)耦接至輸入電壓VIN。電晶體N6的第一端(例如源極)耦接至回授電壓VFB。電晶體N7的控制端(例如閘極)受控於控制信號EN。電晶體N7的第一端(例如源極)耦接至電晶體N6的第二端(例如汲極)。 In the embodiment shown in FIG. 5, the comparison circuit 132 includes a transistor N6, a transistor N7, a transistor N8, a transistor N9, a transistor P4, and a current mirror 310. The control terminal (such as the gate) of the transistor N6 is coupled to the input voltage VIN. The first terminal (for example, the source) of the transistor N6 is coupled to the feedback voltage VFB. The control terminal (such as the gate) of the transistor N7 is controlled by the control signal EN. The first terminal (for example, the source) of the transistor N7 is coupled to the second terminal (for example, the drain) of the transistor N6.

電流鏡310的主電流端耦接至電晶體N7的第二端(例如汲極)。電流鏡310的僕電流端耦接至比較電路132的輸出端,其中比較電路132的所述輸出端可以提供控制電壓VC1給電晶體N2以及電晶體N3。圖5所示電流鏡310可以參照圖4所示電流鏡310的相關說明來類推,故不再贅述。 The main current end of the current mirror 310 is coupled to the second end (for example, the drain) of the transistor N7. The slave current terminal of the current mirror 310 is coupled to the output terminal of the comparison circuit 132, wherein the output terminal of the comparison circuit 132 can provide the control voltage VC1 to the transistor N2 and the transistor N3. The current mirror 310 shown in FIG. 5 can be deduced by referring to the related description of the current mirror 310 shown in FIG. 4, so the details are not repeated here.

電晶體P4的控制端(例如閘極)受控於控制信號EN。電晶體P4的第一端(例如源極)耦接至系統電壓VDDA。電晶體P4 的第二端(例如汲極)耦接至電流鏡310的致能端。亦即,電晶體P4的第二端耦接至電晶體P2的控制端以及電晶體P3的控制端。電晶體N8的控制端(例如閘極)耦接至比較電路132的所述輸出端。電晶體N8的第一端(例如源極)耦接至參考電壓VSSA。電晶體N8的第二端(例如汲極)耦接至電流鏡310的僕電流端與電晶體N8的控制端。電晶體N9的控制端(例如閘極)受控於控制信號ENB。控制信號ENB是控制信號EN的反相信號。電晶體N9的第一端(例如源極)耦接至參考電壓VSSA。電晶體N9的第二端(例如汲極)耦接至電晶體N8的控制端。 The control terminal (such as the gate) of the transistor P4 is controlled by the control signal EN. The first terminal (for example, the source) of the transistor P4 is coupled to the system voltage VDDA. Transistor P4 The second terminal (for example, the drain) of φ is coupled to the enable terminal of the current mirror 310. That is, the second end of the transistor P4 is coupled to the control end of the transistor P2 and the control end of the transistor P3. The control terminal (such as the gate) of the transistor N8 is coupled to the output terminal of the comparison circuit 132. The first terminal (for example, the source) of the transistor N8 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N8 is coupled to the slave current terminal of the current mirror 310 and the control terminal of the transistor N8. The control terminal (such as the gate) of the transistor N9 is controlled by the control signal ENB. The control signal ENB is an inverted signal of the control signal EN. The first terminal (for example, the source) of the transistor N9 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N9 is coupled to the control terminal of the transistor N8.

當控制信號EN為高電壓準位(例如系統電壓VDDA的準位或其他準位)時,亦即當控制信號ENB為低電壓準位(例如參考電壓VSSA的準位或其他準位)時,電晶體N7為導通(turn on),而電晶體P4與電晶體N9為截止(turn off),此時圖5所示比較電路132的操作相似於圖4所示比較電路131的操作。當控制信號EN為低電壓準位(亦即控制信號ENB為高電壓準位)時,電晶體N7為截止,而電晶體P4與電晶體N9為導通,此時圖5所示比較電路132被禁能(disable),而且控制電壓VC1被下拉至低電壓準位。當控制電壓VC1被下拉至低電壓準位時,電晶體N2以及電晶體N3會被截止(turn off)。因此,當控制信號EN(控制信號ENB)禁能上升控制電路130時,上升控制電路130可以不干涉(不調整)閘控電壓PGATE與閘控電壓NGATE。 When the control signal EN is at a high voltage level (such as the level of the system voltage VDDA or other levels), that is, when the control signal ENB is at a low voltage level (such as the level of the reference voltage VSSA or other levels), The transistor N7 is turned on, and the transistor P4 and the transistor N9 are turned off. At this time, the operation of the comparison circuit 132 shown in FIG. 5 is similar to the operation of the comparison circuit 131 shown in FIG. 4. When the control signal EN is at a low voltage level (that is, the control signal ENB is at a high voltage level), the transistor N7 is turned off, and the transistor P4 and the transistor N9 are turned on. At this time, the comparison circuit 132 shown in FIG. 5 is blocked. Disable, and the control voltage VC1 is pulled down to a low voltage level. When the control voltage VC1 is pulled down to a low voltage level, the transistor N2 and the transistor N3 will be turned off. Therefore, when the control signal EN (control signal ENB) disables the rise control circuit 130, the rise control circuit 130 may not interfere (do not adjust) the gate voltage PGATE and the gate voltage NGATE.

在一些應用情境中,在回授電壓VFB被拉降後,回授電壓 VFB可能會在特定期間低於(小於)輸入電壓VIN,然後在所述特定期間結束後回授電壓VFB的準位回歸至與輸入電壓VIN一致。一般而言,所述特定期間是很短的。藉由控制信號EN(控制信號ENB)的控制,上升控制電路130可以在所述特定期間內被禁能,以及在所述特定期間外被致能(enable)。因此,上升控制電路130在所述特定期間中的誤動作可以被避免。 In some application scenarios, after the feedback voltage VFB is pulled down, the feedback voltage VFB may be lower than (less than) the input voltage VIN during a specific period, and then the level of the feedback voltage VFB returns to be consistent with the input voltage VIN after the specific period ends. Generally speaking, the specific period is very short. Through the control of the control signal EN (control signal ENB), the rising control circuit 130 can be disabled during the specific period and enabled outside the specific period. Therefore, the malfunction of the rising control circuit 130 in the specific period can be avoided.

圖6是依照本發明的一實施例說明圖2所示下降控制電路140的電路方塊示意圖。於圖6所示實施例中,下降控制電路140包括比較電路141、電晶體P5以及電晶體P6。比較電路141可以比較輸入電壓VIN與回授電壓VFB而產生控制電壓VC2作為所述第二比較結果。電晶體P5的控制端(例如閘極)耦接至比較電路141的輸出端,以接收控制電壓VC2。電晶體P5的第一端(例如源極)耦接至系統電壓VDDA。電晶體P5的第二端(例如汲極)耦接至輸出級電路120的第一輸入端,以接收閘控電壓PGATE。電晶體P6的控制端(例如閘極)耦接至比較電路141的輸出端,以接收控制電壓VC2。電晶體P6的第一端(例如源極)耦接至系統電壓VDDA。電晶體P6的第二端(例如汲極)耦接至輸出級電路120的第二輸入端,以接收閘控電壓NGATE。 FIG. 6 is a circuit block diagram illustrating the descending control circuit 140 shown in FIG. 2 according to an embodiment of the present invention. In the embodiment shown in FIG. 6, the drop control circuit 140 includes a comparison circuit 141, a transistor P5, and a transistor P6. The comparison circuit 141 can compare the input voltage VIN and the feedback voltage VFB to generate the control voltage VC2 as the second comparison result. The control terminal (eg, gate) of the transistor P5 is coupled to the output terminal of the comparison circuit 141 to receive the control voltage VC2. The first terminal (for example, the source) of the transistor P5 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P5 is coupled to the first input terminal of the output stage circuit 120 to receive the gating voltage PGATE. The control terminal (eg, gate) of the transistor P6 is coupled to the output terminal of the comparison circuit 141 to receive the control voltage VC2. The first terminal (for example, the source) of the transistor P6 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P6 is coupled to the second input terminal of the output stage circuit 120 to receive the gating voltage NGATE.

當輸入電壓VIN小於回授電壓VFB時,比較電路141可以藉由控制電壓VC2去導通(turn on)電晶體P5以及電晶體P6,以拉升閘控電壓PGATE與閘控電壓NGATE。當輸入電壓VIN大於或等於回授電壓VFB時,比較電路141可以藉由控制電壓VC2去截 止(turn off)電晶體P5以及電晶體P6,因此下降控制電路140可以不干涉(不調整)閘控電壓PGATE與閘控電壓NGATE。 When the input voltage VIN is less than the feedback voltage VFB, the comparison circuit 141 can turn on the transistor P5 and the transistor P6 by the control voltage VC2 to increase the gate voltage PGATE and the gate voltage NGATE. When the input voltage VIN is greater than or equal to the feedback voltage VFB, the comparison circuit 141 can be cut by the control voltage VC2. The transistor P5 and the transistor P6 are turned off, so the drop control circuit 140 may not interfere (do not adjust) the gate voltage PGATE and the gate voltage NGATE.

在圖6所示實施例中,比較電路141包括電晶體P7、電晶體P8以及電流鏡510。電晶體P7的控制端(例如閘極)耦接至輸入電壓VIN。電晶體P7的第一端(例如源極)耦接至回授電壓VFB。電流鏡510的主電流端耦接至電晶體P7的第二端(例如汲極)。電流鏡510的僕電流端耦接至比較電路141的輸出端,其中比較電路141的所述輸出端可以提供控制電壓VC2給電晶體P5以及電晶體P6。電晶體P8的控制端(例如閘極)耦接至比較電路141的所述輸出端。電晶體P8的第一端(例如源極)耦接至系統電壓VDDA。電晶體P8的第二端(例如汲極)耦接至電流鏡510的僕電流端與電晶體P8的控制端。 In the embodiment shown in FIG. 6, the comparison circuit 141 includes a transistor P7, a transistor P8 and a current mirror 510. The control terminal (such as the gate) of the transistor P7 is coupled to the input voltage VIN. The first terminal (for example, the source) of the transistor P7 is coupled to the feedback voltage VFB. The main current end of the current mirror 510 is coupled to the second end (for example, the drain) of the transistor P7. The slave current terminal of the current mirror 510 is coupled to the output terminal of the comparison circuit 141, wherein the output terminal of the comparison circuit 141 can provide the control voltage VC2 to the transistor P5 and the transistor P6. The control terminal (such as the gate) of the transistor P8 is coupled to the output terminal of the comparison circuit 141. The first terminal (for example, the source) of the transistor P8 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P8 is coupled to the slave current terminal of the current mirror 510 and the control terminal of the transistor P8.

於圖6所示實施例中,電流鏡510包括電晶體N10以及電晶體N11。電晶體N10的第一端(例如源極)耦接至參考電壓VSSA。電晶體N10的第二端(例如汲極)與控制端(例如閘極)耦接至電流鏡510的所述主電流端。電晶體N11的第一端(例如源極)耦接至參考電壓VSSA。電晶體N11的第二端(例如汲極)耦接至電流鏡510的所述僕電流端。電晶體N11的控制端(例如閘極)耦接至電晶體N10的控制端。 In the embodiment shown in FIG. 6, the current mirror 510 includes a transistor N10 and a transistor N11. The first terminal (for example, the source) of the transistor N10 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) and the control terminal (for example, the gate) of the transistor N10 are coupled to the main current terminal of the current mirror 510. The first terminal (for example, the source) of the transistor N11 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N11 is coupled to the slave current terminal of the current mirror 510. The control terminal (eg, gate) of the transistor N11 is coupled to the control terminal of the transistor N10.

圖7是依照本發明的另一實施例說明圖2所示下降控制電路140的電路方塊示意圖。於圖7所示實施例中,下降控制電路140包括比較電路142、電晶體P5以及電晶體P6。圖7所示比較電路 142、電晶體P5以及電晶體P6可以參照圖6所示比較電路141、電晶體P5以及電晶體P6的相關說明來類推,故不再贅述。 FIG. 7 is a circuit block diagram illustrating the descending control circuit 140 shown in FIG. 2 according to another embodiment of the present invention. In the embodiment shown in FIG. 7, the drop control circuit 140 includes a comparison circuit 142, a transistor P5, and a transistor P6. Figure 7 shows the comparison circuit 142, the transistor P5 and the transistor P6 can be deduced by referring to the related description of the comparison circuit 141, the transistor P5 and the transistor P6 shown in FIG.

於圖7所示實施例中,比較電路142包括電晶體P9、電晶體P10、電晶體P11、電晶體P12、電晶體N12以及電流鏡510。電晶體P9的控制端(例如閘極)耦接至輸入電壓VIN。電晶體P9的第一端(例如源極)耦接至回授電壓VFB。電晶體P10的控制端(例如閘極)受控於控制信號ENB。電晶體P10的第一端(例如源極)耦接至電晶體P9的第二端(例如汲極)。 In the embodiment shown in FIG. 7, the comparison circuit 142 includes a transistor P9, a transistor P10, a transistor P11, a transistor P12, a transistor N12, and a current mirror 510. The control terminal (such as the gate) of the transistor P9 is coupled to the input voltage VIN. The first terminal (for example, the source) of the transistor P9 is coupled to the feedback voltage VFB. The control terminal (such as the gate) of the transistor P10 is controlled by the control signal ENB. The first terminal (for example, the source) of the transistor P10 is coupled to the second terminal (for example, the drain) of the transistor P9.

電流鏡510的主電流端耦接至電晶體P10的第二端(例如汲極)。電流鏡510的僕電流端耦接至比較電路142的輸出端,其中比較電路142的所述輸出端可以提供控制電壓VC2給電晶體P5以及電晶體P6。圖7所示電流鏡510可以參照圖6所示電流鏡510的相關說明來類推,故不再贅述。 The main current end of the current mirror 510 is coupled to the second end (for example, the drain) of the transistor P10. The slave current terminal of the current mirror 510 is coupled to the output terminal of the comparison circuit 142, wherein the output terminal of the comparison circuit 142 can provide the control voltage VC2 to the transistor P5 and the transistor P6. The current mirror 510 shown in FIG. 7 can be deduced by referring to the related description of the current mirror 510 shown in FIG. 6, so it is not repeated here.

電晶體N12的控制端(例如閘極)受控於控制信號ENB。電晶體N12的第一端(例如源極)耦接至參考電壓VSSA。電晶體N12的第二端(例如汲極)耦接至電流鏡510的致能端。亦即,電晶體N12的第二端耦接至電晶體N10的控制端以及電晶體N11的控制端。電晶體P11的控制端(例如閘極)耦接至比較電路142的所述輸出端。電晶體P11的第一端(例如源極)耦接至系統電壓VDDA。電晶體P11的第二端(例如汲極)耦接至電流鏡510的僕電流端與電晶體P11的控制端。電晶體P12的控制端(例如閘極)受控於控制信號EN。控制信號EN是控制信號ENB的反相信號。 電晶體P12的第一端(例如源極)耦接至系統電壓VDDA。電晶體P12的第二端(例如汲極)耦接至電晶體P11的控制端。 The control terminal (such as the gate) of the transistor N12 is controlled by the control signal ENB. The first terminal (for example, the source) of the transistor N12 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N12 is coupled to the enable terminal of the current mirror 510. That is, the second terminal of the transistor N12 is coupled to the control terminal of the transistor N10 and the control terminal of the transistor N11. The control terminal (such as the gate) of the transistor P11 is coupled to the output terminal of the comparison circuit 142. The first terminal (for example, the source) of the transistor P11 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P11 is coupled to the slave current terminal of the current mirror 510 and the control terminal of the transistor P11. The control terminal (such as the gate) of the transistor P12 is controlled by the control signal EN. The control signal EN is an inverted signal of the control signal ENB. The first terminal (for example, the source) of the transistor P12 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P12 is coupled to the control terminal of the transistor P11.

當控制信號EN為高電壓準位(例如系統電壓VDDA的準位或其他準位)時,亦即當控制信號ENB為低電壓準位(例如參考電壓VSSA的準位或其他準位)時,電晶體P10為導通(turn on),而電晶體N12與電晶體P12為截止(turn off),此時圖7所示比較電路142的操作相似於圖6所示比較電路141的操作。當控制信號EN為低電壓準位(亦即控制信號ENB為高電壓準位)時,電晶體P10為截止,而電晶體N12與電晶體P12為導通,此時圖7所示比較電路142被禁能(disable),而且控制電壓VC2被上拉至高電壓準位。當控制電壓VC2被上拉至高電壓準位時,電晶體P5以及電晶體P6會被截止(turn off)。因此,當控制信號EN(控制信號ENB)禁能下降控制電路140時,下降控制電路140可以不干涉(不調整)閘控電壓PGATE與閘控電壓NGATE。 When the control signal EN is at a high voltage level (such as the level of the system voltage VDDA or other levels), that is, when the control signal ENB is at a low voltage level (such as the level of the reference voltage VSSA or other levels), The transistor P10 is turned on, and the transistor N12 and the transistor P12 are turned off. At this time, the operation of the comparison circuit 142 shown in FIG. 7 is similar to the operation of the comparison circuit 141 shown in FIG. 6. When the control signal EN is at a low voltage level (that is, the control signal ENB is at a high voltage level), the transistor P10 is turned off, and the transistor N12 and the transistor P12 are turned on. At this time, the comparison circuit 142 shown in FIG. 7 is blocked. Disable, and the control voltage VC2 is pulled up to a high voltage level. When the control voltage VC2 is pulled up to a high voltage level, the transistor P5 and the transistor P6 will be turned off. Therefore, when the control signal EN (control signal ENB) disables the down control circuit 140, the down control circuit 140 may not interfere (do not adjust) the gate voltage PGATE and the gate voltage NGATE.

在一些應用情境中,在回授電壓VFB被拉升後,回授電壓VFB可能會在特定期間超出(大於)輸入電壓VIN,然後在所述特定期間結束後回授電壓VFB的準位回歸至與輸入電壓VIN一致。一般而言,所述特定期間是很短的。藉由控制信號EN(控制信號ENB)的控制,下降控制電路140可以在所述特定期間內被禁能,以及在所述特定期間外被致能(enable)。因此,下降控制電路140在所述特定期間中的誤動作可以被避免。 In some application scenarios, after the feedback voltage VFB is pulled up, the feedback voltage VFB may exceed (greater than) the input voltage VIN for a specific period, and then the level of the feedback voltage VFB returns to Consistent with the input voltage VIN. Generally speaking, the specific period is very short. Through the control of the control signal EN (control signal ENB), the falling control circuit 140 can be disabled during the specific period and enabled outside the specific period. Therefore, the malfunction of the falling control circuit 140 in the specific period can be avoided.

圖8是依照本發明的一實施例說明圖2所示回授電路800 的電路方塊示意圖。在圖8所示實施例中,回授電路800包括回授開關SW1以及回授電壓產生電路810。回授開關SW1的第一端耦接至輸出緩衝器100的輸入級電路110的第二輸入端。回授開關SW1的第二端耦接至輸出緩衝器100的輸出級電路120的輸出端。回授開關SW1受控於控制信號S1。回授開關SW1於過驅動(overdrive)期間為截止(turn off),以及於正常驅動期間為導通(turn on)。當回授開關SW1為導通時,輸出緩衝器100相當於一個單元增益緩衝器(unity gain buffer)。此時,輸出電壓VOUT被用來作為回授電壓VFB而被回饋至輸出緩衝器100的輸入級電路110的第二輸入端。因此,輸出電壓VOUT可以追隨輸入電壓VIN。 FIG. 8 illustrates the feedback circuit 800 shown in FIG. 2 according to an embodiment of the present invention Schematic diagram of the circuit block. In the embodiment shown in FIG. 8, the feedback circuit 800 includes a feedback switch SW1 and a feedback voltage generating circuit 810. The first terminal of the feedback switch SW1 is coupled to the second input terminal of the input stage circuit 110 of the output buffer 100. The second terminal of the feedback switch SW1 is coupled to the output terminal of the output stage circuit 120 of the output buffer 100. The feedback switch SW1 is controlled by the control signal S1. The feedback switch SW1 is turned off during the overdrive period and turned on during the normal drive period. When the feedback switch SW1 is turned on, the output buffer 100 is equivalent to a unity gain buffer. At this time, the output voltage VOUT is used as the feedback voltage VFB to be fed back to the second input terminal of the input stage circuit 110 of the output buffer 100. Therefore, the output voltage VOUT can follow the input voltage VIN.

回授電壓產生電路810的輸出端耦接至輸出緩衝器100的輸入級電路110的第二輸入端。回授電壓產生電路810的輸入端耦接至輸出緩衝器100的輸出級電路120的輸出端,以接收輸出電壓VOUT。在過驅動期間,回授電壓產生電路810可以產生並輸出相關於輸出電壓VOUT的回授電壓VFB至輸出緩衝器100的輸入級電路110的第二輸入端。當輸入電壓VIN處於「上升模式」時,回授電壓VFB低於輸出電壓VOUT。當輸入電壓VIN處於「下降模式」時,回授電壓VFB高於輸出電壓VOUT。因此,輸出緩衝器100可以在過驅動期間內進行過驅動,以提高輸出電壓VOUT的迴轉率。在正常驅動期間,回授電壓產生電路810可以不輸出回授電壓VFB至輸出緩衝器100的第二輸入端。亦即,回授電壓產生電路810在正常驅動期間可以不干涉輸出緩衝器100的第二輸入端。 The output terminal of the feedback voltage generating circuit 810 is coupled to the second input terminal of the input stage circuit 110 of the output buffer 100. The input terminal of the feedback voltage generating circuit 810 is coupled to the output terminal of the output stage circuit 120 of the output buffer 100 to receive the output voltage VOUT. During the over-driving period, the feedback voltage generating circuit 810 can generate and output the feedback voltage VFB related to the output voltage VOUT to the second input terminal of the input stage circuit 110 of the output buffer 100. When the input voltage VIN is in the "rising mode", the feedback voltage VFB is lower than the output voltage VOUT. When the input voltage VIN is in the "falling mode", the feedback voltage VFB is higher than the output voltage VOUT. Therefore, the output buffer 100 can be overdriven during the overdrive period to increase the slew rate of the output voltage VOUT. During the normal driving period, the feedback voltage generating circuit 810 may not output the feedback voltage VFB to the second input terminal of the output buffer 100. That is, the feedback voltage generating circuit 810 may not interfere with the second input terminal of the output buffer 100 during the normal driving period.

於圖8所示實施例中,回授電壓產生電路810包括開關SW2、開關SW3、分壓電阻R1以及阻抗電路811。開關SW2受控於控制信號S2,而開關SW3受控於控制信號S3。於過驅動期間,開關SW2以及開關SW3為導通。於正常驅動期間,開關SW2以及開關SW3為截止。開關SW2的第一端耦接至輸出緩衝器100的輸出級電路120的輸出端。開關SW3的第一端耦接至輸出緩衝器100的輸入級電路110的第二輸入端。 In the embodiment shown in FIG. 8, the feedback voltage generating circuit 810 includes a switch SW2, a switch SW3, a voltage dividing resistor R1, and an impedance circuit 811. The switch SW2 is controlled by the control signal S2, and the switch SW3 is controlled by the control signal S3. During the overdrive period, the switch SW2 and the switch SW3 are turned on. During the normal driving period, the switch SW2 and the switch SW3 are turned off. The first terminal of the switch SW2 is coupled to the output terminal of the output stage circuit 120 of the output buffer 100. The first terminal of the switch SW3 is coupled to the second input terminal of the input stage circuit 110 of the output buffer 100.

分壓電阻R1的第一端耦接至開關SW2的第二端。分壓電阻R1的第二端耦接至開關SW3的第二端。阻抗電路811耦接至分壓電阻R1的第二端,以提供阻抗。分壓電阻R1與阻抗電路811可以進行分壓操作,以產生相關於輸出電壓VOUT的回授電壓VFB1。其中,當開關SW3導通時,回授電壓VFB1被傳輸至輸入級電路110的第二輸入端做為回授電壓VFB。當開關SW3截止時,回授電壓產生電路810可以不干涉輸入級電路110的第二輸入端。 The first end of the voltage dividing resistor R1 is coupled to the second end of the switch SW2. The second end of the voltage dividing resistor R1 is coupled to the second end of the switch SW3. The impedance circuit 811 is coupled to the second end of the voltage dividing resistor R1 to provide impedance. The voltage dividing resistor R1 and the impedance circuit 811 can perform a voltage dividing operation to generate a feedback voltage VFB1 related to the output voltage VOUT. Wherein, when the switch SW3 is turned on, the feedback voltage VFB1 is transmitted to the second input terminal of the input stage circuit 110 as the feedback voltage VFB. When the switch SW3 is turned off, the feedback voltage generating circuit 810 may not interfere with the second input terminal of the input stage circuit 110.

圖9是依照本發明的另一實施例所繪示的一種源極驅動器的時序示意圖。圖9所示橫軸表示時間,縱軸表示信號準位。請同時參考圖5、圖7、圖8與圖9。當輸入電壓VIN處於上升模式時,阻抗電路811輸出低於輸出電壓VOUT的回授電壓VFB1。在過驅動期間T1,控制信號S2與控制信號S3為高邏輯準位,而控制信號S1為低邏輯準位,因此開關SW2以及開關SW3被導通,而開關SW1不導通,低於輸出電壓VOUT的回授電壓VFB1會經過開關SW3被提供至輸出緩衝器100的輸入級電路110的第二輸入端。因此,在 過驅動期間T1輸出電壓VOUT可以高於目標準位。當輸入電壓VIN處於下降模式時,阻抗電路811輸出高於輸出電壓VOUT的回授電壓VFB1。亦即,高於輸出電壓VOUT的回授電壓VFB1在過驅動期間T1會經過開關SW3被提供至輸出緩衝器100的輸入級電路110的第二輸入端(此時回授開關SW1為截止)。因此,在過驅動期間T1輸出電壓VOUT可以低於目標準位。 FIG. 9 is a timing diagram of a source driver according to another embodiment of the present invention. The horizontal axis shown in FIG. 9 represents time, and the vertical axis represents signal level. Please refer to Figure 5, Figure 7, Figure 8 and Figure 9 at the same time. When the input voltage VIN is in the rising mode, the impedance circuit 811 outputs a feedback voltage VFB1 lower than the output voltage VOUT. During the overdrive period T1, the control signal S2 and the control signal S3 are at a high logic level, and the control signal S1 is at a low logic level, so the switch SW2 and the switch SW3 are turned on, and the switch SW1 is not turned on, which is lower than the output voltage VOUT. The feedback voltage VFB1 is provided to the second input terminal of the input stage circuit 110 of the output buffer 100 through the switch SW3. Thus, in During the overdrive period, the T1 output voltage VOUT can be higher than the target standard level. When the input voltage VIN is in the falling mode, the impedance circuit 811 outputs a feedback voltage VFB1 higher than the output voltage VOUT. That is, the feedback voltage VFB1 higher than the output voltage VOUT is provided to the second input terminal of the input stage circuit 110 of the output buffer 100 through the switch SW3 during the overdrive period T1 (the feedback switch SW1 is turned off at this time). Therefore, the T1 output voltage VOUT can be lower than the target level during the overdrive period.

在正常驅動期間T2,控制信號S2與控制信號S3為低邏輯準位,而控制信號S1為高邏輯準位,因此開關SW2以及開關SW3不導通,而開關SW1被導通,回授電壓VFB1不會被提供至輸出緩衝器100的輸入級電路110的第二輸入端。因此,在正常驅動期間T2輸出電壓VOUT可以回復至目標準位(例如輸入電壓VIN的準位)。關於控制信號EN對於上升控制電路130與下降控制電路140的操作時序,已於前述圖5、圖7進行說明,不再贅述。 During the normal driving period T2, the control signal S2 and the control signal S3 are at a low logic level, and the control signal S1 is at a high logic level. Therefore, the switch SW2 and the switch SW3 are not turned on, and the switch SW1 is turned on, and the feedback voltage VFB1 is not It is provided to the second input terminal of the input stage circuit 110 of the output buffer 100. Therefore, during the normal driving period T2, the output voltage VOUT can be restored to the target level (for example, the level of the input voltage VIN). The operation timing of the control signal EN for the rising control circuit 130 and the falling control circuit 140 has been described in FIGS. 5 and 7, and will not be repeated.

圖10是依照本發明的另一實施例說明圖1所示驅動通道電路12_1的電路方塊示意圖。圖1所示其他驅動通道電路12_2~12_m可以參照圖10所示驅動通道電路12_1的相關說明而類推,故不再贅述。圖10所示驅動通道電路12_1包括閂鎖器1010、轉換電路1020、輸出緩衝器100以及回授電路800。閂鎖器1010可以提供目前像素資料Pc給轉換電路1020。閂鎖器1010可以是任何類型的閂鎖器。例如,依照設計需求,閂鎖器1010可以是習知的線閂鎖器或是其他閂鎖器。 FIG. 10 is a circuit block diagram illustrating the driving channel circuit 12_1 shown in FIG. 1 according to another embodiment of the present invention. The other driving channel circuits 12_2 to 12_m shown in FIG. 1 can be deduced by referring to the related description of the driving channel circuit 12_1 shown in FIG. The driving channel circuit 12_1 shown in FIG. 10 includes a latch 1010, a conversion circuit 1020, an output buffer 100, and a feedback circuit 800. The latch 1010 can provide the current pixel data Pc to the conversion circuit 1020. The latch 1010 may be any type of latch. For example, according to design requirements, the latch 1010 may be a conventional wire latch or other latches.

轉換電路1020可以將目前像素資料Pc轉換為類比電壓(以 下稱為輸入電壓VIN),以及將輸入電壓VIN輸出給輸出緩衝器100。於圖10所示實施例中,轉換電路1020可以包括準位移位器(leve1shifter)1021以及數位類比轉換器(digital to analog converter,DAC)1022。準位移位器1021可以調大目前像素資料Pc的電壓擺幅(voltage swing),而數位類比轉換器1022可以將目前像素資料轉換為輸入電壓VIN。數位類比轉換器1022可以將輸入電壓VIN輸出給輸出緩衝器100。在其他實施例中,準位移位器1021可能會因為設計需求而被省略,使得數位類比轉換器1022可以直接接收目前像素資料Pc。 The conversion circuit 1020 can convert the current pixel data Pc into an analog voltage (with Hereinafter referred to as the input voltage VIN), and output the input voltage VIN to the output buffer 100. In the embodiment shown in FIG. 10, the conversion circuit 1020 may include a level shifter (leve1 shifter) 1021 and a digital to analog converter (DAC) 1022. The level shifter 1021 can increase the voltage swing of the current pixel data Pc, and the digital-to-analog converter 1022 can convert the current pixel data into the input voltage VIN. The digital-to-analog converter 1022 can output the input voltage VIN to the output buffer 100. In other embodiments, the quasi-shifter 1021 may be omitted due to design requirements, so that the digital-to-analog converter 1022 can directly receive the current pixel data Pc.

圖10所示輸出緩衝器100可以參照圖2至圖9的相關說明來類推,故不再贅述。輸出緩衝器100的第一輸入端(例如是非反相輸入端)耦接至數位類比轉換器1022的輸出端,以接收輸入電壓VINT。輸出緩衝器100的輸出端可以產生輸出電壓VOUT給顯示面板13的資料線DL_1以及回授電路800的輸入端。依據輸出電壓VOUT,回授電路800可以產生並輸出相關於輸出電壓VOUT的回授電壓VFB至輸出緩衝器100的第二輸入端(例如是反相輸入端)。圖10所示回授電路800可以參照圖2至圖9的相關說明來類推,故不再贅述。 The output buffer 100 shown in FIG. 10 can be deduced by analogy with reference to the related descriptions in FIGS. 2 to 9, so the details are not described again. The first input terminal (for example, a non-inverting input terminal) of the output buffer 100 is coupled to the output terminal of the digital-to-analog converter 1022 to receive the input voltage VINT. The output terminal of the output buffer 100 can generate an output voltage VOUT to the data line DL_1 of the display panel 13 and the input terminal of the feedback circuit 800. According to the output voltage VOUT, the feedback circuit 800 can generate and output a feedback voltage VFB related to the output voltage VOUT to the second input terminal (for example, an inverting input terminal) of the output buffer 100. The feedback circuit 800 shown in FIG. 10 can be deduced by analogy with reference to the related descriptions of FIGS. 2 to 9, so it will not be repeated.

依照應用環境的需求,控制電路1050可以選擇性地將一個掃描線期間(一個像素電路被開啟(turn on)的期間)切分為過驅動(overdrive)期間與正常驅動期間。基於控制電路1050對回授開關SW1以及回授電壓產生電路810的控制,輸出緩衝器100可以在 過驅動期間對資料線DL_1進行過驅動,而在正常驅動期間對資料線DL_1進行正常驅動。輸出緩衝器100可以在過驅動期間內對顯示面板13的資料線DL_1進行過驅動,以提高輸出電壓VOUT的迴轉率(slew rate)。基此,輸出緩衝器100內部的電性參數,例如尾電流(tail current)等,不需要為了提高迴轉率而調整/改變。 According to the requirements of the application environment, the control circuit 1050 can selectively divide a scan line period (a period during which a pixel circuit is turned on) into an overdrive period and a normal drive period. Based on the control circuit 1050 controlling the feedback switch SW1 and the feedback voltage generating circuit 810, the output buffer 100 can be The data line DL_1 is overdriven during the overdriving period, and the data line DL_1 is normally driven during the normal driving period. The output buffer 100 can overdrive the data line DL_1 of the display panel 13 during the overdrive period to increase the slew rate of the output voltage VOUT. Based on this, the internal electrical parameters of the output buffer 100, such as tail current, do not need to be adjusted/changed in order to increase the slew rate.

依照應用環境的需求,控制電路1050也可以選擇性地將一個掃描線期間(一個像素電路被開啟的期間)全部做為正常驅動期間。亦即,輸出緩衝器100對資料線DL_1進行的過驅動操作可以選擇性地被禁能(disable)。 According to the requirements of the application environment, the control circuit 1050 can also selectively use one scan line period (a period during which a pixel circuit is turned on) as a normal driving period. That is, the overdrive operation performed by the output buffer 100 on the data line DL_1 can be selectively disabled.

關於過驅動期間的時間長度,其可以依照應用環境的需求而選擇性地被設置。於圖1所示實施例中,資料線DL_1耦接顯示面板13的近像素電路(例如像素電路P(1,1))與遠像素電路(例如像素電路P(1,n))。所述近像素電路至源極驅動器12的距離小於所述遠像素電路至源極驅動器12的距離。一般而言,所述遠像素電路的時間常數大於所述近像素電路的時間常數。基於設計需求,控制電路1050可以依照像素電路在顯示面板13中的位置(像素電路至源極驅動器12的距離)而動態地調整所述過驅動期間的時間長度。舉例來說,與近像素電路相關的過驅動期間的時間長度小於與遠像素電路相關的過驅動期間的時間長度。 Regarding the time length of the over-driving period, it can be selectively set according to the requirements of the application environment. In the embodiment shown in FIG. 1, the data line DL_1 is coupled to the near pixel circuit (for example, the pixel circuit P(1,1)) and the far pixel circuit (for example, the pixel circuit P(1,n)) of the display panel 13. The distance from the near pixel circuit to the source driver 12 is smaller than the distance from the far pixel circuit to the source driver 12. Generally speaking, the time constant of the far pixel circuit is greater than the time constant of the near pixel circuit. Based on design requirements, the control circuit 1050 can dynamically adjust the time length of the over-driving period according to the position of the pixel circuit in the display panel 13 (the distance from the pixel circuit to the source driver 12). For example, the time length of the overdrive period related to the near pixel circuit is smaller than the time length of the overdrive period related to the far pixel circuit.

回授開關SW1受控於控制電路1050的控制信號S1。控制電路1050於過驅動期間截止回授開關SW1,以及於正常驅動期間導通回授開關SW1。當回授開關SW1為導通時,輸出電壓VOUT 被用來作為回授電壓VFB而被回饋至輸出緩衝器100的第二輸入端。因此,輸出電壓VOUT可以追隨輸入電壓VIN。 The feedback switch SW1 is controlled by the control signal S1 of the control circuit 1050. The control circuit 1050 turns off the feedback switch SW1 during the over-driving period, and turns on the feedback switch SW1 during the normal driving period. When the feedback switch SW1 is on, the output voltage VOUT It is used as the feedback voltage VFB to be fed back to the second input terminal of the output buffer 100. Therefore, the output voltage VOUT can follow the input voltage VIN.

在過驅動期間,回授電壓產生電路810可以產生並輸出相關於輸出電壓VOUT的回授電壓VFB至輸出緩衝器100的第二輸入端。當輸入電壓VIN處於「上升模式」時,回授電壓VFB低於輸出電壓VOUT。當輸入電壓VIN處於「下降模式」時,回授電壓VFB高於輸出電壓VOUT。因此,輸出緩衝器100可以在過驅動期間內對顯示面板13的資料線DL_1進行過驅動,以提高輸出電壓VOUT的迴轉率。在正常驅動期間,回授電壓產生電路810可以不輸出回授電壓VFB1至輸出緩衝器100的第二輸入端。亦即,回授電壓產生電路810在正常驅動期間可以不干涉輸出緩衝器100的第二輸入端。 During the over-driving period, the feedback voltage generating circuit 810 can generate and output the feedback voltage VFB related to the output voltage VOUT to the second input terminal of the output buffer 100. When the input voltage VIN is in the "rising mode", the feedback voltage VFB is lower than the output voltage VOUT. When the input voltage VIN is in the "falling mode", the feedback voltage VFB is higher than the output voltage VOUT. Therefore, the output buffer 100 can overdrive the data line DL_1 of the display panel 13 during the overdrive period to increase the slew rate of the output voltage VOUT. During the normal driving period, the feedback voltage generating circuit 810 may not output the feedback voltage VFB1 to the second input terminal of the output buffer 100. That is, the feedback voltage generating circuit 810 may not interfere with the second input terminal of the output buffer 100 during the normal driving period.

於圖10所示實施例中,「輸入電壓VIN處於上升模式」可以被定義為「目前像素資料Pc所對應的輸入電壓VIN大於先前像素資料所對應的輸入電壓VIN」,以及「輸入電壓VIN處於下降模式」可以被定義為「目前像素資料Pc所對應的輸入電壓VIN小於先前像素資料所對應的輸入電壓VIN」。所述先前像素資料可以被理解為,在前一個掃描線期間中的目前像素資料Pc。相對地,目前像素資料Pc是在目前掃描線期間中的像素資料。控制電路1050可以檢查目前像素資料Pc與先前像素資料,以判定輸入電壓VIN要被拉升或是要被拉降。 In the embodiment shown in FIG. 10, "the input voltage VIN is in the rising mode" can be defined as "the input voltage VIN corresponding to the current pixel data Pc is greater than the input voltage VIN corresponding to the previous pixel data", and "the input voltage VIN is in the The falling mode" can be defined as "the input voltage VIN corresponding to the current pixel data Pc is less than the input voltage VIN corresponding to the previous pixel data". The previous pixel data can be understood as the current pixel data Pc in the previous scan line period. In contrast, the current pixel data Pc is the pixel data in the current scan line period. The control circuit 1050 can check the current pixel data Pc and the previous pixel data to determine whether the input voltage VIN should be pulled up or pulled down.

當目前像素資料Pc大於先前像素資料並且驅動通道電路 12_1操作於正極性(positive polarity)時,控制電路1050可以判定「輸入電壓VIN要被拉升」。或者,當目前像素資料Pc小於先前像素資料並且驅動通道電路12_1操作於負極性(negative polarity)時,控制電路1050可以判定「輸入電壓VIN要被拉升」。亦即,輸入電壓VIN處於上升模式。當輸入電壓VIN處於上升模式時,控制電路1050控制回授電壓產生電路810,使得回授電壓VFB1低於輸出電壓VOUT。回授電壓VFB1在過驅動期間會被提供至輸出緩衝器100的第二輸入端做為回授電壓VFB(此時回授開關SW1為截止)。因此,在過驅動期間輸出電壓VOUT1可以高於目標準位。所述目標準位可以符合輸入電壓VIN的準位。回授電壓VFB1在正常驅動期間不會被提供至輸出緩衝器100的第二輸入端(此時回授開關SW1為導通)。因此,在正常驅動期間輸出電壓VOUT可以回復至目標準位(例如輸入電壓VIN的準位)。 When the current pixel data Pc is greater than the previous pixel data and the channel circuit is driven When 12_1 operates in positive polarity, the control circuit 1050 can determine that "the input voltage VIN is going to be pulled up." Alternatively, when the current pixel data Pc is less than the previous pixel data and the driving channel circuit 12_1 is operating in negative polarity, the control circuit 1050 may determine that "the input voltage VIN is to be raised". That is, the input voltage VIN is in the rising mode. When the input voltage VIN is in the rising mode, the control circuit 1050 controls the feedback voltage generating circuit 810 so that the feedback voltage VFB1 is lower than the output voltage VOUT. The feedback voltage VFB1 is provided to the second input terminal of the output buffer 100 as the feedback voltage VFB during the over-driving period (the feedback switch SW1 is turned off at this time). Therefore, the output voltage VOUT1 can be higher than the target level during the over-driving period. The target standard level may meet the level of the input voltage VIN. The feedback voltage VFB1 will not be provided to the second input terminal of the output buffer 100 during the normal driving period (the feedback switch SW1 is turned on at this time). Therefore, the output voltage VOUT can be restored to the target level (for example, the level of the input voltage VIN) during the normal driving period.

當目前像素資料Pc小於先前像素資料並且驅動通道電路12_1操作於正極性時,控制電路1050可以判定「輸入電壓VIN要被拉降」。或者,當目前像素資料Pc大於先前像素資料並且驅動通道電路12_1操作於負極性時,控制電路1050可以判定「輸入電壓VIN要被拉降」。亦即,輸入電壓VIN處於下降模式。當輸入電壓VIN處於下降模式時,控制電路1050控制回授電壓產生電路810,使得回授電壓VFB1高於輸出電壓VOUT。回授電壓VFB1在過驅動期間會被提供至輸出緩衝器100的第二輸入端做為回授電壓VFB(此時回授開關SW1為截止)。因此,在過驅動期間輸出電壓VOUT 可以低於目標準位。所述目標準位可以符合輸入電壓VIN的準位。回授電壓VFB1在正常驅動期間不會被提供至輸出緩衝器100的第二輸入端(此時回授開關SW1為導通)。因此,在正常驅動期間輸出電壓VOUT可以回復至目標準位(例如輸入電壓VIN的準位)。 When the current pixel data Pc is less than the previous pixel data and the driving channel circuit 12_1 is operating in positive polarity, the control circuit 1050 can determine that "the input voltage VIN is to be pulled down." Alternatively, when the current pixel data Pc is greater than the previous pixel data and the driving channel circuit 12_1 is operating in negative polarity, the control circuit 1050 may determine that "the input voltage VIN is to be pulled down." That is, the input voltage VIN is in a falling mode. When the input voltage VIN is in the falling mode, the control circuit 1050 controls the feedback voltage generating circuit 810 so that the feedback voltage VFB1 is higher than the output voltage VOUT. The feedback voltage VFB1 is provided to the second input terminal of the output buffer 100 as the feedback voltage VFB during the over-driving period (the feedback switch SW1 is turned off at this time). Therefore, during the overdrive period, the output voltage VOUT Can be lower than the target standard position. The target standard level may meet the level of the input voltage VIN. The feedback voltage VFB1 will not be provided to the second input terminal of the output buffer 100 during the normal driving period (the feedback switch SW1 is turned on at this time). Therefore, the output voltage VOUT can be restored to the target level (for example, the level of the input voltage VIN) during the normal driving period.

在其他實施例中,依照設計需求(針對一些特殊顯示面板),當目前像素資料Pc小於先前像素資料並且驅動通道電路12_1操作於正極性時,控制電路1050可以判定「輸入電壓VIN要被拉升」。或者,當目前像素資料Pc大於先前像素資料並且驅動通道電路12_1操作於負極性時,控制電路1050可以判定「輸入電壓VIN要被拉升」。亦即,輸入電壓VIN處於上升模式。 In other embodiments, according to design requirements (for some special display panels), when the current pixel data Pc is less than the previous pixel data and the driving channel circuit 12_1 operates in positive polarity, the control circuit 1050 can determine that "the input voltage VIN is to be pulled up." ". Alternatively, when the current pixel data Pc is greater than the previous pixel data and the driving channel circuit 12_1 operates in negative polarity, the control circuit 1050 may determine that "the input voltage VIN is to be pulled up." That is, the input voltage VIN is in the rising mode.

在其他實施例中,依照不同的設計需求(針對一些特殊顯示面板),當目前像素資料Pc大於先前像素資料並且驅動通道電路12_1操作於正極性時,控制電路1050可以判定「輸入電壓VIN要被拉降」。或者,當目前像素資料Pc小於先前像素資料並且驅動通道電路12_1操作於負極性時,控制電路1050可以判定「輸入電壓VIN要被拉降」。亦即,輸入電壓VIN處於下降模式。 In other embodiments, according to different design requirements (for some special display panels), when the current pixel data Pc is greater than the previous pixel data and the driving channel circuit 12_1 is operating in positive polarity, the control circuit 1050 can determine that "the input voltage VIN is to be Pull down. Alternatively, when the current pixel data Pc is less than the previous pixel data and the driving channel circuit 12_1 is operating in negative polarity, the control circuit 1050 may determine that "the input voltage VIN is to be pulled down." That is, the input voltage VIN is in a falling mode.

圖11是依照本發明的一實施例說明圖10所示阻抗電路811的電路方塊示意圖。於圖11所示實施例中,阻抗電路811包括分壓電阻R2、開關SW4以及開關SW5。分壓電阻R2的第一端耦接至分壓電阻R1的第二端。分壓電阻R1與分壓電阻R2的阻值比例可以依照設計需求來決定。分壓電阻R1與分壓電阻R2可以進行分壓操作,以產生相關於輸出電壓VOUT的回授電壓VFB1。 FIG. 11 is a circuit block diagram illustrating the impedance circuit 811 shown in FIG. 10 according to an embodiment of the present invention. In the embodiment shown in FIG. 11, the impedance circuit 811 includes a voltage dividing resistor R2, a switch SW4, and a switch SW5. The first end of the voltage dividing resistor R2 is coupled to the second end of the voltage dividing resistor R1. The resistance ratio of the voltage divider resistor R1 to the voltage divider resistor R2 can be determined according to design requirements. The voltage dividing resistor R1 and the voltage dividing resistor R2 can perform a voltage dividing operation to generate a feedback voltage VFB1 related to the output voltage VOUT.

開關SW4的第一端與開關SW5的第一端共同耦接至分壓電阻R2的第二端。開關SW4的第二端耦接至參考電壓VSSA。依照設計需求,參考電壓VSSA可以是低於輸出電壓VOUT的任何電壓,例如接地電壓或是其他固定電壓。開關SW5的第二端耦接至系統電壓VDDA。依照設計需求,系統電壓VDDA可以是高於輸出電壓VIN的任何電壓。開關SW4受控於控制電路1050的控制信號S4,而開關SW5受控於控制電路1050的控制信號S5。當輸入電壓VIN處於上升模式時,控制電路1050導通開關SW4並且截止開關SW5。當輸入電壓VIN處於下降模式時,控制電路1050截止開關SW4並且導通開關SW5。 The first end of the switch SW4 and the first end of the switch SW5 are commonly coupled to the second end of the voltage dividing resistor R2. The second terminal of the switch SW4 is coupled to the reference voltage VSSA. According to design requirements, the reference voltage VSSA can be any voltage lower than the output voltage VOUT, such as the ground voltage or other fixed voltages. The second end of the switch SW5 is coupled to the system voltage VDDA. According to design requirements, the system voltage VDDA can be any voltage higher than the output voltage VIN. The switch SW4 is controlled by the control signal S4 of the control circuit 1050, and the switch SW5 is controlled by the control signal S5 of the control circuit 1050. When the input voltage VIN is in the rising mode, the control circuit 1050 turns on the switch SW4 and turns off the switch SW5. When the input voltage VIN is in the falling mode, the control circuit 1050 turns off the switch SW4 and turns on the switch SW5.

圖12是依照本發明的又一實施例說明圖10所示阻抗電路811的電路方塊示意圖。於圖12所示實施例中,阻抗電路811包括分壓電阻R3、分壓電阻R4、開關SW4以及開關SW5。開關SW4的第一端耦接至分壓電阻R1的第二端。分壓電阻R3的第一端耦接至開關SW4的第二端。分壓電阻R3的第二端耦接至參考電壓VSSA。依照設計需求,參考電壓VSSA可以是低於輸出電壓VOUT的任何電壓,例如接地電壓或是其他固定電壓。開關SW4受控於控制電路1050的控制信號S4。當輸入電壓VIN處於上升模式時,控制電路1050導通開關SW4。當輸入電壓VIN處於下降模式時,控制電路1050截止開關SW4。 FIG. 12 is a circuit block diagram illustrating the impedance circuit 811 shown in FIG. 10 according to another embodiment of the present invention. In the embodiment shown in FIG. 12, the impedance circuit 811 includes a voltage dividing resistor R3, a voltage dividing resistor R4, a switch SW4, and a switch SW5. The first end of the switch SW4 is coupled to the second end of the voltage dividing resistor R1. The first end of the voltage dividing resistor R3 is coupled to the second end of the switch SW4. The second end of the voltage dividing resistor R3 is coupled to the reference voltage VSSA. According to design requirements, the reference voltage VSSA can be any voltage lower than the output voltage VOUT, such as the ground voltage or other fixed voltages. The switch SW4 is controlled by the control signal S4 of the control circuit 1050. When the input voltage VIN is in the rising mode, the control circuit 1050 turns on the switch SW4. When the input voltage VIN is in the falling mode, the control circuit 1050 turns off the switch SW4.

開關SW5的第一端耦接至分壓電阻R1的第二端。分壓電阻R4的第一端耦接至開關SW5的第二端。分壓電阻R4的第二端 耦接至系統電壓VDDA。依照設計需求,系統電壓VDDA可以是高於輸出電壓VOUT的任何電壓。開關SW5受控於控制電路1050的控制信號S5。當輸入電壓VIN處於上升模式時,控制電路1050截止開關SW5。當輸入電壓VIN處於下降模式時,控制電路1050導通開關SW5。 The first end of the switch SW5 is coupled to the second end of the voltage dividing resistor R1. The first end of the voltage dividing resistor R4 is coupled to the second end of the switch SW5. The second end of the divider resistor R4 Coupled to the system voltage VDDA. According to design requirements, the system voltage VDDA can be any voltage higher than the output voltage VOUT. The switch SW5 is controlled by the control signal S5 of the control circuit 1050. When the input voltage VIN is in the rising mode, the control circuit 1050 turns off the switch SW5. When the input voltage VIN is in the falling mode, the control circuit 1050 turns on the switch SW5.

分壓電阻R3的阻值與分壓電阻R4的阻值可以依照設計需求來決定。舉例來說,分壓電阻R3的阻值可以不同於分壓電阻R4的阻值。因此,當輸入電壓VIN處於上升模式時,分壓電阻R1與分壓電阻R3可以提供第一阻值比例。當輸入電壓VIN處於下降模式時,分壓電阻R1與分壓電阻R4可以提供第二阻值比例,其中第二阻值比例不同於第一阻值比例。 The resistance value of the voltage divider R3 and the resistance value of the voltage divider R4 can be determined according to design requirements. For example, the resistance value of the voltage dividing resistor R3 may be different from the resistance value of the voltage dividing resistor R4. Therefore, when the input voltage VIN is in the rising mode, the voltage dividing resistor R1 and the voltage dividing resistor R3 can provide the first resistance ratio. When the input voltage VIN is in the falling mode, the voltage dividing resistor R1 and the voltage dividing resistor R4 can provide a second resistance ratio, where the second resistance ratio is different from the first resistance ratio.

圖13是依照本發明的再一實施例說明圖10所示阻抗電路811的電路方塊示意圖。於圖13所示實施例中,阻抗電路811包括分壓電阻R2以及數位類比轉換電路1310。分壓電阻R2的第一端耦接至分壓電阻R1的第二端。圖13所示分壓電阻R2可以參照圖11所示分壓電阻R2的相關說明來類推,故不再贅述。 FIG. 13 is a circuit block diagram illustrating the impedance circuit 811 shown in FIG. 10 according to still another embodiment of the present invention. In the embodiment shown in FIG. 13, the impedance circuit 811 includes a voltage divider resistor R2 and a digital-to-analog conversion circuit 1310. The first end of the voltage dividing resistor R2 is coupled to the second end of the voltage dividing resistor R1. The voltage divider resistor R2 shown in FIG. 13 can be deduced by analogy with reference to the relevant description of the voltage divider resistor R2 shown in FIG. 11, so it will not be repeated.

控制電路1050可以記錄在前一個掃描線期間中的目前像素資料Pc,作為先前像素資料Pp。數位類比轉換電路1310的輸入端耦接至控制電路1050,以接收先前像素資料Pp。數位類比轉換電路1310的輸出端耦接至分壓電阻R2的第二端。數位類比轉換電路1310可以將先前像素資料Pp轉換為先前電壓Vp。數位類比轉換電路1310可以將先前電壓Vp輸出給分壓電阻R2的第二端。當目前 像素資料Pc大於先前像素資料Pp並且驅動通道電路12_1操作於正極性時,相關於目前像素資料Pc的輸入電壓VIN大於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1低於輸出電壓VOUT。當目前像素資料Pc小於先前像素資料Pp並且驅動通道電路12_1操作於正極性時,相關於目前像素資料Pc的輸入電壓VIN小於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1高於輸出電壓VOUT。 The control circuit 1050 can record the current pixel data Pc in the previous scan line period as the previous pixel data Pp. The input terminal of the digital-to-analog conversion circuit 1310 is coupled to the control circuit 1050 to receive the previous pixel data Pp. The output terminal of the digital-to-analog conversion circuit 1310 is coupled to the second terminal of the voltage dividing resistor R2. The digital-to-analog conversion circuit 1310 can convert the previous pixel data Pp into the previous voltage Vp. The digital-to-analog conversion circuit 1310 can output the previous voltage Vp to the second end of the voltage dividing resistor R2. When currently When the pixel data Pc is greater than the previous pixel data Pp and the driving channel circuit 12_1 operates in positive polarity, the input voltage VIN related to the current pixel data Pc is greater than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is lower than the output voltage VOUT. When the current pixel data Pc is less than the previous pixel data Pp and the driving channel circuit 12_1 operates in positive polarity, the input voltage VIN related to the current pixel data Pc is less than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is higher than The output voltage VOUT.

當目前像素資料Pc小於先前像素資料Pp並且驅動通道電路12_1操作於負極性時,相關於目前像素資料Pc的輸入電壓VIN大於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1低於輸出電壓VOUT。當目前像素資料Pc大於先前像素資料Pp並且驅動通道電路12_1操作於負極性時,相關於目前像素資料Pc的輸入電壓Vi小於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1高於輸出電壓VOUT。 When the current pixel data Pc is less than the previous pixel data Pp and the driving channel circuit 12_1 operates in negative polarity, the input voltage VIN related to the current pixel data Pc is greater than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is lower than The output voltage VOUT. When the current pixel data Pc is greater than the previous pixel data Pp and the driving channel circuit 12_1 operates in negative polarity, the input voltage Vi related to the current pixel data Pc is less than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is higher than The output voltage VOUT.

在其他實施例中,依照不同的設計需求(針對一些特殊顯示面板),當目前像素資料Pc小於先前像素資料Pp並且驅動通道電路12_1操作於正極性時,相關於目前像素資料Pc的輸入電壓VIN大於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1低於輸出電壓VOUT。當目前像素資料Pc大於先前像素資料Pp並且驅動通道電路12_1操作於正極性時,相關於目前像素資料Pc的輸入電壓Vi小於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1高於輸出電壓VOUT。 In other embodiments, according to different design requirements (for some special display panels), when the current pixel data Pc is smaller than the previous pixel data Pp and the driving channel circuit 12_1 operates in positive polarity, the input voltage VIN related to the current pixel data Pc It is greater than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is lower than the output voltage VOUT. When the current pixel data Pc is greater than the previous pixel data Pp and the driving channel circuit 12_1 operates in positive polarity, the input voltage Vi related to the current pixel data Pc is less than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is higher than The output voltage VOUT.

在其他實施例中,依照不同的設計需求(針對一些特殊顯示面板),當目前像素資料Pc大於先前像素資料Pp並且驅動通道電路12_1操作於負極性時,相關於目前像素資料Pc的輸入電壓VIN大於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1低於輸出電壓VOUT。當目前像素資料Pc小於先前像素資料Pp並且驅動通道電路12_1操作於負極性時,相關於目前像素資料Pc的輸入電壓Vi小於相關於先前像素資料Pp的先前電壓Vp,使得回授電壓VFB1高於輸出電壓VOUT。 In other embodiments, according to different design requirements (for some special display panels), when the current pixel data Pc is greater than the previous pixel data Pp and the driving channel circuit 12_1 operates in negative polarity, the input voltage VIN related to the current pixel data Pc It is greater than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is lower than the output voltage VOUT. When the current pixel data Pc is smaller than the previous pixel data Pp and the driving channel circuit 12_1 operates in negative polarity, the input voltage Vi related to the current pixel data Pc is less than the previous voltage Vp related to the previous pixel data Pp, so that the feedback voltage VFB1 is higher than The output voltage VOUT.

於圖13所示實施例中,數位類比轉換電路1310包括數位類比轉換器1311以及單元增益緩衝器1312。數位類比轉換器1311的輸入端耦接至控制電路1050,以接收先前像素資料Pp。單元增益緩衝器1312的輸入端耦接至數位類比轉換器1311的輸出端。單元增益緩衝器1312的輸出端耦接至分壓電阻R2的第二端,以提供先前電壓Vp。數位類比轉換電路1310可以根據先前像素資料Pp動態地改變為先前電壓Vp。在其他實施例中,數位類比轉換電路1310可以自由地將先前電壓Vp設置為系統電壓VDDA、參考電壓VSSA或任何其他電壓。 In the embodiment shown in FIG. 13, the digital-to-analog conversion circuit 1310 includes a digital-to-analog converter 1311 and a unit gain buffer 1312. The input terminal of the digital-to-analog converter 1311 is coupled to the control circuit 1050 to receive the previous pixel data Pp. The input terminal of the unit gain buffer 1312 is coupled to the output terminal of the digital-to-analog converter 1311. The output terminal of the unit gain buffer 1312 is coupled to the second terminal of the voltage dividing resistor R2 to provide the previous voltage Vp. The digital-to-analog conversion circuit 1310 can dynamically change to the previous voltage Vp according to the previous pixel data Pp. In other embodiments, the digital-to-analog conversion circuit 1310 can freely set the previous voltage Vp to the system voltage VDDA, the reference voltage VSSA or any other voltage.

圖14是依照本發明的更一實施例說明圖10所示阻抗電路811的電路方塊示意圖。於圖14所示實施例中,阻抗電路811包括分壓電阻R3、分壓電阻R4、開關SW4、開關SW5以及數位類比轉換電路1310。圖6所示分壓電阻R3、分壓電阻R4、開關SW4以及開關SW5可以參照圖4所示分壓電阻R3、分壓電阻R4、開關SW4 以及開關SW5的相關說明來類推,故不再贅述。 FIG. 14 is a circuit block diagram illustrating the impedance circuit 811 shown in FIG. 10 according to another embodiment of the present invention. In the embodiment shown in FIG. 14, the impedance circuit 811 includes a voltage dividing resistor R3, a voltage dividing resistor R4, a switch SW4, a switch SW5, and a digital-to-analog conversion circuit 1310. The voltage dividing resistor R3, voltage dividing resistor R4, switch SW4, and switch SW5 shown in Figure 6 can refer to the voltage dividing resistor R3, voltage dividing resistor R4, and switch SW4 shown in Figure 4 And the related description of the switch SW5 is analogized, so it will not be repeated.

分壓電阻R3的第一端耦接至開關SW34的第二端。分壓電阻R4的第一端耦接至開關SW5的第二端。數位類比轉換電路1310的輸出端耦接至分壓電阻R3的第二端與分壓電阻R4的第二端。數位類比轉換電路1310可以將先前像素資料Pp轉換為先前電壓Vp。數位類比轉換電路1310可以將先前電壓Vp輸出給分壓電阻R3的第二端與分壓電阻R4的第二端。圖14所示數位類比轉換電路1310可以參照圖13所示數位類比轉換電路1310的相關說明來類推,故不再贅述。 The first end of the voltage dividing resistor R3 is coupled to the second end of the switch SW34. The first end of the voltage dividing resistor R4 is coupled to the second end of the switch SW5. The output end of the digital-to-analog conversion circuit 1310 is coupled to the second end of the voltage dividing resistor R3 and the second end of the voltage dividing resistor R4. The digital-to-analog conversion circuit 1310 can convert the previous pixel data Pp into the previous voltage Vp. The digital-to-analog conversion circuit 1310 can output the previous voltage Vp to the second end of the voltage dividing resistor R3 and the second end of the voltage dividing resistor R4. The digital-to-analog conversion circuit 1310 shown in FIG. 14 can be deduced by referring to the related description of the digital-to-analog conversion circuit 1310 shown in FIG. 13, so it will not be repeated here.

依照不同的設計需求,上述控制電路1050的方塊的實現方式可以是硬體、韌體、軟體(即程式)或是前述三者中的多者的組合形式。以硬體形式而言,上述控制電路1050的方塊可以實現於積體電路上的邏輯電路。上述控制電路1050的相關功能可以利用硬體描述語言(例如Verilog HDL或VHDL)或其他合適的編程語言來實現為硬體。舉例來說,上述控制電路1050的相關功能可以被實現於一或多個控制器、微控制器、微處理器、特殊應用積體電路(ASIC)、數位信號處理器(DSP)、場可程式邏輯閘陣列(FPGA)及/或其他處理單元中的各種邏輯區塊、模組和電路。 According to different design requirements, the implementation of the blocks of the control circuit 1050 may be hardware, firmware, software (ie, programs), or a combination of more of the three. In terms of hardware, the blocks of the control circuit 1050 described above can be implemented in a logic circuit on an integrated circuit. The above-mentioned related functions of the control circuit 1050 can be implemented as hardware using a hardware description language (for example, Verilog HDL or VHDL) or other suitable programming languages. For example, the related functions of the above-mentioned control circuit 1050 can be implemented in one or more controllers, microcontrollers, microprocessors, application-specific integrated circuits (ASIC), digital signal processors (DSP), field programmable Various logic blocks, modules and circuits in a logic gate array (FPGA) and/or other processing units.

綜上所述,本發明諸實施例所述源極驅動器12及其輸出緩衝器100可以選擇性地改變輸出緩衝器100的回授電壓VFB。在對一個像素進行驅動的期間可以包括過驅動期間與正常驅動期間。所述源極驅動器12中的回授電路800可以在過驅動期間內調高(或調 低)輸出緩衝器100的回授電壓VFB,並且輸出緩衝器100可以比較輸入電壓VIN與回授電壓VFB。當比較結果表示當回授電壓VFB要被拉升時,輸出緩衝器100的輸出級電路120的閘控電壓PGATE與閘控電壓NGATE被拉降,以提升輸出電壓VOUT的迴轉率。當回授電壓VFB要被拉降時,輸出緩衝器100的輸出級電路120的閘控電壓PGATE與閘控電壓NGATE被拉升,以提升輸出電壓VOUT的迴轉率。因此,本發明的源極驅動器12可在短時間內對輸出電壓VOUT進行過驅動。 In summary, the source driver 12 and its output buffer 100 according to the embodiments of the present invention can selectively change the feedback voltage VFB of the output buffer 100. The period during which one pixel is driven may include an overdrive period and a normal drive period. The feedback circuit 800 in the source driver 12 can be adjusted high (or adjusted during the overdriving period). Low) The feedback voltage VFB of the buffer 100 is output, and the output buffer 100 can compare the input voltage VIN with the feedback voltage VFB. When the comparison result indicates that when the feedback voltage VFB is about to be pulled up, the gating voltage PGATE and the gating voltage NGATE of the output stage circuit 120 of the output buffer 100 are pulled down to increase the slew rate of the output voltage VOUT. When the feedback voltage VFB is about to be pulled down, the gating voltage PGATE and the gating voltage NGATE of the output stage circuit 120 of the output buffer 100 are pulled up to increase the slew rate of the output voltage VOUT. Therefore, the source driver 12 of the present invention can overdrive the output voltage VOUT in a short time.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

12_1:驅動通道電路 12_1: drive channel circuit

100:輸出緩衝器 100: output buffer

110:輸入級電路 110: Input stage circuit

120:輸出級電路 120: output stage circuit

130:上升控制電路 130: Rise control circuit

140:下降控制電路 140: Descent control circuit

800:回授電路 800: feedback circuit

N1、P1:電晶體 N1, P1: Transistor

NGATE、PGATE:閘控電壓 NGATE, PGATE: gate voltage

VDDA:系統電壓 VDDA: system voltage

VFB:回授電壓 VFB: Feedback voltage

VIN:輸入電壓 VIN: input voltage

VOUT:輸出電壓 VOUT: output voltage

VSSA:參考電壓 VSSA: Reference voltage

Claims (33)

一種源極驅動器,包括一輸出緩衝器與一回授電路,其中該輸出緩衝器包括:一輸入級電路,具有一第一輸入端與一第二輸入端,其中該輸入級電路的該第一輸入端接收該輸出緩衝器的一輸入電壓,該輸入級電路的該第二輸入端耦接至該回授電路的一輸出端以接收一第一回授電壓,且該輸入級電路經配置以依照該輸入電壓與該第一回授電壓對應地產生一第一閘控電壓與一第二閘控電壓;一輸出級電路,耦接至該輸入級電路以接收該第一閘控電壓與該第二閘控電壓,經配置用以依照該第一閘控電壓與該第二閘控電壓對應地產生該輸出緩衝器的一輸出電壓給一顯示面板的一資料線,其中該輸出級電路的一輸出端耦接至該回授電路的一輸入端;一上升控制電路,經配置用以比較該輸入電壓與該第一回授電壓而獲得一第一比較結果,其中當該第一比較結果表示該第一回授電壓要被拉升,即該輸入電壓大於該第一回授電壓時,該上升控制電路於一第一暫態期間拉降該第一閘控電壓與該第二閘控電壓;以及一下降控制電路,經配置用以比較該輸入電壓與該第一回授電壓而獲得一第二比較結果,其中當該第二比較結果表示該第一回授電壓要被拉降,即該輸入電壓小於該第一回授電壓時,該下降控制電路於一第二暫態期間拉升該第一閘控電壓與該第二閘控 電壓,其中該回授電路用以產生並輸出相關於該輸出電壓的該第一回授電壓至該輸入級電路的該第二輸入端。 A source driver includes an output buffer and a feedback circuit, wherein the output buffer includes: an input stage circuit having a first input terminal and a second input terminal, wherein the first input stage circuit The input terminal receives an input voltage of the output buffer, the second input terminal of the input stage circuit is coupled to an output terminal of the feedback circuit to receive a first feedback voltage, and the input stage circuit is configured to According to the input voltage and the first feedback voltage, a first gating voltage and a second gating voltage are generated correspondingly; an output stage circuit is coupled to the input stage circuit to receive the first gating voltage and the The second gating voltage is configured to generate an output voltage of the output buffer to a data line of a display panel according to the first gating voltage and the second gating voltage, wherein the output stage circuit An output terminal is coupled to an input terminal of the feedback circuit; a rise control circuit is configured to compare the input voltage with the first feedback voltage to obtain a first comparison result, wherein when the first comparison result Indicates that the first feedback voltage is to be increased, that is, when the input voltage is greater than the first feedback voltage, the rising control circuit pulls down the first gate control voltage and the second gate control during a first transient period Voltage; and a drop control circuit configured to compare the input voltage with the first feedback voltage to obtain a second comparison result, wherein when the second comparison result indicates that the first feedback voltage is to be pulled down, That is, when the input voltage is less than the first feedback voltage, the down control circuit pulls up the first gate control voltage and the second gate control during a second transient period. Voltage, wherein the feedback circuit is used to generate and output the first feedback voltage related to the output voltage to the second input terminal of the input stage circuit. 如申請專利範圍第1項所述的源極驅動器,其中該輸出級電路包括:一第一電晶體,具有一控制端耦接至該輸入級電路以接收該第一閘控電壓,其中該第一電晶體的一第一端耦接至一系統電壓,該第一電晶體的一第二端耦接至該輸出級電路的該輸出端;以及一第二電晶體,具有一控制端耦接至該輸入級電路以接收該第二閘控電壓,其中該第二電晶體的一第一端耦接至一參考電壓,該第二電晶體的一第二端耦接至該輸出級電路的該輸出端。 The source driver according to claim 1, wherein the output stage circuit includes: a first transistor having a control terminal coupled to the input stage circuit to receive the first gate control voltage, wherein the first gate control voltage A first end of a transistor is coupled to a system voltage, a second end of the first transistor is coupled to the output end of the output stage circuit; and a second transistor has a control end coupled To the input stage circuit to receive the second gating voltage, wherein a first terminal of the second transistor is coupled to a reference voltage, and a second terminal of the second transistor is coupled to the output stage circuit The output terminal. 如申請專利範圍第1項所述的源極驅動器,其中當該輸入電壓大於該第一回授電壓時,該上升控制電路拉降該第一閘控電壓與該第二閘控電壓,以及當該輸入電壓小於或等於該第一回授電壓時,該上升控制電路不調整該第一閘控電壓與該第二閘控電壓。 The source driver as described in item 1 of the scope of patent application, wherein when the input voltage is greater than the first feedback voltage, the rising control circuit pulls down the first gate control voltage and the second gate control voltage, and when When the input voltage is less than or equal to the first feedback voltage, the rising control circuit does not adjust the first gating voltage and the second gating voltage. 如申請專利範圍第1項所述的源極驅動器,其中該上升控制電路包括:一比較電路,經配置用以比較該輸入電壓與該第一回授電壓而產生一控制電壓作為該第一比較結果;一第一電晶體,具有一控制端耦接至該比較電路的一輸出端 以接收該控制電壓,其中該第一電晶體的一第一端耦接至一參考電壓,該第一電晶體的一第二端耦接至該輸出級電路的一第一輸入端以接收該第一閘控電壓;以及一第二電晶體,具有一控制端耦接至該比較電路的該輸出端以接收該控制電壓,其中該第二電晶體的一第一端耦接至該參考電壓,該第二電晶體的一第二端耦接至該輸出級電路的一第二輸入端以接收該第二閘控電壓。 The source driver according to claim 1, wherein the rising control circuit includes: a comparison circuit configured to compare the input voltage with the first feedback voltage to generate a control voltage as the first comparison Result; a first transistor with a control terminal coupled to an output terminal of the comparison circuit To receive the control voltage, wherein a first terminal of the first transistor is coupled to a reference voltage, and a second terminal of the first transistor is coupled to a first input terminal of the output stage circuit to receive the A first gate control voltage; and a second transistor having a control terminal coupled to the output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the second transistor is coupled to the reference voltage A second terminal of the second transistor is coupled to a second input terminal of the output stage circuit to receive the second gating voltage. 如申請專利範圍第4項所述的源極驅動器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一電流鏡,具有一主電流端耦接至該第三電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;以及一第四電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第四電晶體的一第一端耦接至該參考電壓,該第四電晶體的一第二端耦接至該電流鏡的該僕電流端。 The source driver according to claim 4, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a current mirror with a main current terminal coupled to a second terminal of the third transistor, wherein a slave current terminal of the current mirror is coupled to the output terminal of the comparison circuit And a fourth transistor having a control terminal coupled to the output terminal of the comparison circuit, wherein a first terminal of the fourth transistor is coupled to the reference voltage, a second of the fourth transistor The terminal is coupled to the slave current terminal of the current mirror. 如申請專利範圍第4項所述的源極驅動器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一第四電晶體,具有一控制端受控於一第一控制信號,其中 該第四電晶體的一第一端耦接至該第三電晶體的一第二端;一電流鏡,具有一主電流端耦接至該第四電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;一第五電晶體,具有一控制端受控於該第一控制信號,其中該第五電晶體的一第一端耦接至一系統電壓,該第五電晶體的第二端耦接至該電流鏡的一致能端;以及一第六電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第六電晶體的一第一端耦接至該參考電壓,該第六電晶體的一第二端耦接至該電流鏡的該僕電流端。 The source driver according to claim 4, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a fourth transistor with a control terminal controlled by a first control signal, wherein A first end of the fourth transistor is coupled to a second end of the third transistor; a current mirror having a main current end coupled to a second end of the fourth transistor, wherein the current A slave current terminal of the mirror is coupled to the output terminal of the comparison circuit; a fifth transistor having a control terminal controlled by the first control signal, wherein a first terminal of the fifth transistor is coupled to A system voltage, the second end of the fifth transistor is coupled to the uniform energy end of the current mirror; and a sixth transistor having a control end coupled to the output end of the comparison circuit, wherein the sixth transistor A first terminal of the transistor is coupled to the reference voltage, and a second terminal of the sixth transistor is coupled to the slave current terminal of the current mirror. 如申請專利範圍第6項所述的源極驅動器,其中該比較電路更包括:一第七電晶體,具有一控制端受控於一第二控制信號,其中該第七電晶體的一第一端耦接至該參考電壓,該第七電晶體的一第二端耦接至該第六電晶體的該控制端。 According to the source driver described in claim 6, wherein the comparison circuit further includes: a seventh transistor having a control terminal controlled by a second control signal, wherein a first control signal of the seventh transistor The terminal is coupled to the reference voltage, and a second terminal of the seventh transistor is coupled to the control terminal of the sixth transistor. 如申請專利範圍第1項所述的源極驅動器,其中當該輸入電壓小於該第一回授電壓時,該下降控制電路拉升該第一閘控電壓與該第二閘控電壓,以及當該輸入電壓大於或等於該第一回授電壓時,該下降控制電路不調整該第一閘控電壓與該第二閘控電壓。 The source driver as described in item 1 of the scope of patent application, wherein when the input voltage is less than the first feedback voltage, the down control circuit pulls up the first gating voltage and the second gating voltage, and when When the input voltage is greater than or equal to the first feedback voltage, the drop control circuit does not adjust the first gating voltage and the second gating voltage. 如申請專利範圍第1項所述的源極驅動器,其中該下降控制電路包括:一比較電路,經配置用以比較該輸入電壓與該第一回授電壓 而產生一控制電壓作為該第二比較結果;一第一電晶體,具有一控制端耦接至該比較電路的一輸出端以接收該控制電壓,其中該第一電晶體的一第一端耦接至一系統電壓,該第一電晶體的一第二端耦接至該輸出級電路的一第一輸入端以接收該第一閘控電壓;以及一第二電晶體,具有一控制端耦接至該比較電路的該輸出端以接收該控制電壓,其中該第二電晶體的一第一端耦接至該系統電壓,該第二電晶體的一第二端耦接至該輸出級電路的一第二輸入端以接收該第二閘控電壓。 The source driver according to claim 1, wherein the drop control circuit includes: a comparison circuit configured to compare the input voltage with the first feedback voltage A control voltage is generated as the second comparison result; a first transistor has a control terminal coupled to an output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the first transistor is coupled Connected to a system voltage, a second terminal of the first transistor is coupled to a first input terminal of the output stage circuit to receive the first gate control voltage; and a second transistor having a control terminal coupled Connected to the output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the second transistor is coupled to the system voltage, and a second terminal of the second transistor is coupled to the output stage circuit To receive the second gating voltage. 如申請專利範圍第9項所述的源極驅動器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一電流鏡,具有一主電流端耦接至該第三電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;以及一第四電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第四電晶體的一第一端耦接至該系統電壓,該第四電晶體的一第二端耦接至該電流鏡的該僕電流端。 The source driver according to claim 9, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a current mirror with a main current terminal coupled to a second terminal of the third transistor, wherein a slave current terminal of the current mirror is coupled to the output terminal of the comparison circuit And a fourth transistor having a control terminal coupled to the output terminal of the comparison circuit, wherein a first terminal of the fourth transistor is coupled to the system voltage, a second of the fourth transistor The terminal is coupled to the slave current terminal of the current mirror. 如申請專利範圍第9項所述的源極驅動器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第 三電晶體的一第一端耦接至該第一回授電壓;一第四電晶體,具有一控制端受控於一第一控制信號,其中該第四電晶體的一第一端耦接至該第三電晶體的一第二端;一電流鏡,具有一主電流端耦接至該第四電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;一第五電晶體,具有一控制端受控於該第一控制信號,其中該第五電晶體的一第一端耦接至一參考電壓,該第五電晶體的第二端耦接至該電流鏡的一致能端;以及一第六電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第六電晶體的一第一端耦接至該系統電壓,該第六電晶體的一第二端耦接至該電流鏡的該僕電流端。 The source driver according to claim 9, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein the first transistor A first terminal of the three transistors is coupled to the first feedback voltage; a fourth transistor has a control terminal controlled by a first control signal, wherein a first terminal of the fourth transistor is coupled To a second end of the third transistor; a current mirror having a main current end coupled to a second end of the fourth transistor, wherein a slave current end of the current mirror is coupled to the comparison circuit The output terminal; a fifth transistor with a control terminal controlled by the first control signal, wherein a first terminal of the fifth transistor is coupled to a reference voltage, the second of the fifth transistor End coupled to the uniform energy end of the current mirror; and a sixth transistor having a control end coupled to the output end of the comparison circuit, wherein a first end of the sixth transistor is coupled to the system Voltage, a second terminal of the sixth transistor is coupled to the slave current terminal of the current mirror. 如申請專利範圍第11項所述的源極驅動器,其中該比較電路更包括:一第七電晶體,具有一控制端受控於一第二控制信號,其中該第七電晶體的一第一端耦接至該系統電壓,該第七電晶體的一第二端耦接至該第六電晶體的該控制端。 The source driver according to claim 11, wherein the comparison circuit further includes: a seventh transistor having a control terminal controlled by a second control signal, wherein a first control signal of the seventh transistor The terminal is coupled to the system voltage, and a second terminal of the seventh transistor is coupled to the control terminal of the sixth transistor. 如申請專利範圍第1項所述的源極驅動器,其中該回授電路包括:一回授開關,具有一第一端與一第二端分別耦接至該輸入級電路的該第二輸入端與該輸出級電路的該輸出端,其中該回授開關於一過驅動期間為截止,以及該回授開關於一正常驅動期間為導通以傳送該輸出電壓做為該第一回授電壓至該輸入級電路的該 第二輸入端;以及一回授電壓產生電路,用以在該過驅動期間產生並輸出相關於該輸出電壓的一第二回授電壓做為該第一回授電壓至該輸入級電路的該第二輸入端,以及在該正常驅動期間不輸出該第二回授電壓至該輸入級電路的該第二輸入端,其中當該輸入電壓處於一上升模式時,該第二回授電壓低於該輸出電壓,以及當該輸入電壓處於一下降模式時,該第二回授電壓高於該輸出電壓。 The source driver according to claim 1, wherein the feedback circuit includes: a feedback switch having a first terminal and a second terminal respectively coupled to the second input terminal of the input stage circuit And the output terminal of the output stage circuit, wherein the feedback switch is turned off during an over-driving period, and the feedback switch is turned on during a normal driving period to transmit the output voltage as the first feedback voltage to the The input stage circuit A second input terminal; and a feedback voltage generating circuit for generating and outputting a second feedback voltage related to the output voltage as the first feedback voltage to the input stage circuit during the overdrive period Second input terminal, and during the normal driving period, the second feedback voltage is not output to the second input terminal of the input stage circuit, wherein when the input voltage is in a rising mode, the second feedback voltage is lower than The output voltage and when the input voltage is in a falling mode, the second feedback voltage is higher than the output voltage. 如申請專利範圍第13項所述的源極驅動器,更包括:一數位類比轉換器,耦接至該輸入級電路的該第一輸入端,用以將一目前像素資料轉換為該輸入電壓,以及將該輸入電壓輸出給該輸入級電路的該第一輸入端;其中「該輸入電壓處於該上升模式」被定義為「該目前像素資料所對應的該輸入電壓大於一先前像素資料所對應的該輸入電壓」,以及「該輸入電壓處於該下降模式」被定義為「該目前像素資料所對應的該輸入電壓小於該先前像素資料所對應的該輸入電壓」。 For example, the source driver described in item 13 of the scope of patent application further includes: a digital-to-analog converter coupled to the first input terminal of the input stage circuit for converting a current pixel data into the input voltage, And output the input voltage to the first input terminal of the input stage circuit; wherein "the input voltage is in the rising mode" is defined as "the input voltage corresponding to the current pixel data is greater than that corresponding to a previous pixel data "The input voltage" and "the input voltage is in the falling mode" are defined as "the input voltage corresponding to the current pixel data is less than the input voltage corresponding to the previous pixel data". 如申請專利範圍第13項所述的源極驅動器,其中該資料線耦接該顯示面板的一近像素電路與一遠像素電路,該近像素電路至該源極驅動器的距離小於該遠像素電路至該源極驅動器的距離,以及與該近像素電路相關的該過驅動期間小於與該遠像素電路相關的該過驅動期間。 The source driver according to claim 13, wherein the data line is coupled to a near pixel circuit and a far pixel circuit of the display panel, and the distance from the near pixel circuit to the source driver is smaller than the far pixel circuit The distance to the source driver and the overdrive period related to the near pixel circuit are smaller than the overdrive period related to the far pixel circuit. 如申請專利範圍第13項所述的源極驅動器,其中該回授電壓產生電路包括:一第一開關,具有一第一端耦接至該輸出級電路的該輸出端,其中該第一開關於該過驅動期間為導通,以及該第一開關於該正常驅動期間為截止;一第二開關,具有一第一端耦接至該輸入級電路的該第二輸入端,其中該第二開關於該過驅動期間為導通,以及該第二開關於該正常驅動期間為截止;一第一分壓電阻,具有一第一端耦接至該第一開關的一第二端,其中該第一分壓電阻的一第二端耦接至該第二開關的一第二端;以及一阻抗電路,耦接至該第一分壓電阻的該第二端。 The source driver according to claim 13, wherein the feedback voltage generating circuit includes: a first switch having a first terminal coupled to the output terminal of the output stage circuit, wherein the first switch Regarding the over-driving period being on, and the first switch being off during the normal driving period; a second switch having a first terminal coupled to the second input terminal of the input stage circuit, wherein the second switch Regarding that the over-driving period is turned on and the second switch is turned off during the normal driving period; a first voltage dividing resistor has a first end coupled to a second end of the first switch, wherein the first A second end of the voltage dividing resistor is coupled to a second end of the second switch; and an impedance circuit is coupled to the second end of the first voltage dividing resistor. 如申請專利範圍第16項所述的源極驅動器,其中該阻抗電路包括:一第二分壓電阻,具有一第一端耦接至該第一分壓電阻的該第二端;一第三開關,具有一第一端耦接至該第二分壓電阻的一第二端,其中該第三開關的一第二端耦接至一參考電壓,該參考電壓低於該輸出電壓,當該輸入電壓處於該上升模式時該第三開關為導通,以及當該輸入電壓處於該下降模式時該第三開關為截止;以及一第四開關,具有一第一端耦接至該第二分壓電阻的該第二 端,其中該第四開關的一第二端耦接至一系統電壓,該系統電壓高於該輸出電壓,當該輸入電壓處於該上升模式時該第四開關為截止,以及當該輸入電壓處於該下降模式時該第四開關為導通。 The source driver according to claim 16, wherein the impedance circuit includes: a second voltage dividing resistor having a first end coupled to the second end of the first voltage dividing resistor; and a third The switch has a first terminal coupled to a second terminal of the second voltage divider resistor, wherein a second terminal of the third switch is coupled to a reference voltage, the reference voltage is lower than the output voltage, when the The third switch is turned on when the input voltage is in the rising mode, and the third switch is turned off when the input voltage is in the falling mode; and a fourth switch having a first terminal coupled to the second divided voltage The second of resistance Terminal, wherein a second terminal of the fourth switch is coupled to a system voltage, the system voltage is higher than the output voltage, when the input voltage is in the rising mode, the fourth switch is turned off, and when the input voltage is In the falling mode, the fourth switch is turned on. 如申請專利範圍第16項所述的源極驅動器,其中該阻抗電路包括:一第三開關,具有一第一端耦接至該第一分壓電阻的該第二端,其中當該輸入電壓處於該上升模式時該第三開關為導通,以及當該輸入電壓處於該下降模式時該第三開關為截止;一第二分壓電阻,具有一第一端耦接至該第三開關的一第二端,其中該第二分壓電阻的一第二端耦接至一參考電壓,該參考電壓低於該輸出電壓;一第四開關,具有一第一端耦接至該第一分壓電阻的該第二端,其中當該輸入電壓處於該上升模式時該第四開關為截止,以及當該輸入電壓處於該下降模式時該第四開關為導通;以及一第三分壓電阻,具有一第一端耦接至該第四開關的一第二端,其中該第三分壓電阻的一第二端耦接至一系統電壓,該系統電壓高於該輸出電壓。 The source driver according to claim 16, wherein the impedance circuit includes: a third switch having a first end coupled to the second end of the first voltage dividing resistor, wherein when the input voltage When in the rising mode, the third switch is turned on, and when the input voltage is in the falling mode, the third switch is turned off; a second voltage divider resistor having a first terminal coupled to a third switch A second terminal, wherein a second terminal of the second voltage divider resistor is coupled to a reference voltage, the reference voltage is lower than the output voltage; a fourth switch having a first terminal coupled to the first voltage divider The second end of the resistor, wherein the fourth switch is off when the input voltage is in the rising mode, and the fourth switch is on when the input voltage is in the falling mode; and a third voltage divider resistor has A first terminal is coupled to a second terminal of the fourth switch, and a second terminal of the third voltage dividing resistor is coupled to a system voltage, the system voltage is higher than the output voltage. 如申請專利範圍第16項所述的源極驅動器,其中該阻抗電路包括:一第二分壓電阻,具有一第一端耦接至該第一分壓電阻的該第二端;以及一數位類比轉換電路,具有一輸出端耦接至該第二分壓電阻 的一第二端,用以將一先前像素資料轉換為一先前電壓,以及將該先前電壓輸出給該第二分壓電阻的該第二端。 The source driver according to claim 16, wherein the impedance circuit includes: a second voltage dividing resistor having a first end coupled to the second end of the first voltage dividing resistor; and a digital bit The analog conversion circuit has an output terminal coupled to the second voltage divider resistor A second terminal of, used to convert a previous pixel data into a previous voltage, and output the previous voltage to the second terminal of the second voltage divider resistor. 如申請專利範圍第19項所述的源極驅動器,其中該數位類比轉換電路包括:一數位類比轉換器,具有一輸入端用以接收該先前像素資料;以及一單元增益緩衝器,具有一輸入端耦接至該數位類比轉換器的一輸出端,其中該單元增益緩衝器的一輸出端耦接至該第二分壓電阻的該第二端以供應該先前電壓。 For the source driver described in claim 19, the digital-to-analog conversion circuit includes: a digital-to-analog converter with an input terminal for receiving the previous pixel data; and a unit gain buffer with an input The terminal is coupled to an output terminal of the digital-to-analog converter, and an output terminal of the unit gain buffer is coupled to the second terminal of the second voltage divider to supply the previous voltage. 如申請專利範圍第16項所述的源極驅動器,其中該阻抗電路包括:一第三開關,具有一第一端耦接至該第一分壓電阻的該第二端,其中當該輸入電壓處於該上升模式時該第三開關為導通,以及當該輸入電壓處於該下降模式時該第三開關為截止;一第二分壓電阻,具有一第一端耦接至該第三開關的一第二端;一第四開關,具有一第一端耦接至該第一分壓電阻的該第二端,其中當該輸入電壓處於該上升模式時該第四開關為截止,以及當該輸入電壓處於該下降模式時該第四開關為導通;一第三分壓電阻,具有一第一端耦接至該第四開關的一第二端;以及一數位類比轉換電路,具有一輸出端耦接至該第二分壓電阻 的一第二端與該第三分壓電阻的一第二端,用以將一先前像素資料轉換為一先前電壓,以及將該先前電壓輸出給該第二分壓電阻的該第二端與該第三分壓電阻的該第二端。 The source driver according to claim 16, wherein the impedance circuit includes: a third switch having a first end coupled to the second end of the first voltage dividing resistor, wherein when the input voltage When in the rising mode, the third switch is turned on, and when the input voltage is in the falling mode, the third switch is turned off; a second voltage divider resistor having a first terminal coupled to a third switch A second end; a fourth switch having a first end coupled to the second end of the first voltage divider resistor, wherein the fourth switch is turned off when the input voltage is in the rising mode, and when the input The fourth switch is turned on when the voltage is in the falling mode; a third voltage divider resistor has a first end coupled to a second end of the fourth switch; and a digital-to-analog conversion circuit has an output terminal coupled Connect to the second voltage divider resistor A second end of the third voltage divider and a second end of the third voltage divider are used to convert a previous pixel data into a previous voltage, and output the previous voltage to the second end of the second voltage divider and The second end of the third voltage divider resistor. 一種輸出緩衝器,包括:一輸入級電路,具有一第一輸入端與一第二輸入端,其中該輸入級電路的該第一輸入端經配置用以接收該輸出緩衝器的一輸入電壓,該輸入級電路的該第二輸入端經配置用以接收該輸出緩衝器的一第一回授電壓,以及該輸入級電路依照該輸入電壓與該第一回授電壓對應地產生一第一閘控電壓與一第二閘控電壓;一輸出級電路,耦接至該輸入級電路以接收該第一閘控電壓與該第二閘控電壓,經配置用以依照該第一閘控電壓與該第二閘控電壓對應地產生該輸出緩衝器的一輸出電壓;一上升控制電路,經配置用以比較該輸入電壓與該第一回授電壓而獲得一第一比較結果,其中當該第一比較結果表示該第一回授電壓要被拉升,即該輸入電壓大於該第一回授電壓時,該上升控制電路於一第一暫態期間拉降該第一閘控電壓與該第二閘控電壓;以及一下降控制電路,經配置用以比較該輸入電壓與該第一回授電壓而獲得一第二比較結果,其中當該第二比較結果表示該第一回授電壓要被拉降,即該輸入電壓小於該第一回授電壓時,該下降控制電路於一第二暫態期間拉升該第一閘控電壓與該第二閘控電壓。 An output buffer includes: an input stage circuit having a first input terminal and a second input terminal, wherein the first input terminal of the input stage circuit is configured to receive an input voltage of the output buffer, The second input terminal of the input stage circuit is configured to receive a first feedback voltage of the output buffer, and the input stage circuit generates a first gate corresponding to the input voltage and the first feedback voltage Control voltage and a second gate control voltage; an output stage circuit coupled to the input stage circuit to receive the first gate control voltage and the second gate control voltage, and is configured to follow the first gate control voltage and The second gating voltage correspondingly generates an output voltage of the output buffer; a rising control circuit is configured to compare the input voltage with the first feedback voltage to obtain a first comparison result, wherein when the first A comparison result indicates that the first feedback voltage is to be raised, that is, when the input voltage is greater than the first feedback voltage, the rise control circuit pulls down the first gate control voltage and the first gate control voltage during a first transient period. Two gate control voltages; and a drop control circuit configured to compare the input voltage with the first feedback voltage to obtain a second comparison result, wherein when the second comparison result indicates that the first feedback voltage is to be Pull down, that is, when the input voltage is less than the first feedback voltage, the down control circuit pulls up the first gating voltage and the second gating voltage during a second transient period. 如申請專利範圍第22項所述的輸出緩衝器,其中該輸出級電路包括:一第一電晶體,具有一控制端耦接至該輸入級電路以接收該第一閘控電壓,其中該第一電晶體的一第一端耦接至一系統電壓,該第一電晶體的一第二端耦接至該輸出級電路的一輸出端,而該輸出級電路的該輸出端輸出該輸出緩衝器的該輸出電壓;以及一第二電晶體,具有一控制端耦接至該輸入級電路以接收該第二閘控電壓,其中該第二電晶體的一第一端耦接至一參考電壓,該第二電晶體的一第二端耦接至該輸出級電路的該輸出端。 According to the output buffer of claim 22, the output stage circuit includes: a first transistor having a control terminal coupled to the input stage circuit to receive the first gate control voltage, wherein the first gate control voltage A first terminal of a transistor is coupled to a system voltage, a second terminal of the first transistor is coupled to an output terminal of the output stage circuit, and the output terminal of the output stage circuit outputs the output buffer The output voltage of the device; and a second transistor having a control terminal coupled to the input stage circuit to receive the second gating voltage, wherein a first terminal of the second transistor is coupled to a reference voltage , A second end of the second transistor is coupled to the output end of the output stage circuit. 如申請專利範圍第22項所述的輸出緩衝器,其中當該輸入電壓大於該第一回授電壓時,該上升控制電路拉降該第一閘控電壓與該第二閘控電壓,以及當該輸入電壓小於或等於該第一回授電壓時,該上升控制電路不調整該第一閘控電壓與該第二閘控電壓。 The output buffer according to item 22 of the scope of patent application, wherein when the input voltage is greater than the first feedback voltage, the rising control circuit pulls down the first gate control voltage and the second gate control voltage, and when When the input voltage is less than or equal to the first feedback voltage, the rising control circuit does not adjust the first gating voltage and the second gating voltage. 如申請專利範圍第22項所述的輸出緩衝器,其中該上升控制電路包括:一比較電路,經配置用以比較該輸入電壓與該第一回授電壓而產生一控制電壓作為該第一比較結果;一第一電晶體,具有一控制端耦接至該比較電路的一輸出端以接收該控制電壓,其中該第一電晶體的一第一端耦接至一參考電壓,該第一電晶體的一第二端耦接至該輸出級電路的一第一輸 入端以接收該第一閘控電壓;以及一第二電晶體,具有一控制端耦接至該比較電路的該輸出端以接收該控制電壓,其中該第二電晶體的一第一端耦接至該參考電壓,該第二電晶體的一第二端耦接至該輸出級電路的一第二輸入端以接收該第二閘控電壓。 The output buffer according to claim 22, wherein the rising control circuit includes: a comparison circuit configured to compare the input voltage with the first feedback voltage to generate a control voltage as the first comparison Result; a first transistor having a control terminal coupled to an output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the first transistor is coupled to a reference voltage, the first transistor A second end of the crystal is coupled to a first output of the output stage circuit Input terminal to receive the first gate control voltage; and a second transistor having a control terminal coupled to the output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the second transistor is coupled Connected to the reference voltage, a second terminal of the second transistor is coupled to a second input terminal of the output stage circuit to receive the second gate control voltage. 如申請專利範圍第25項所述的輸出緩衝器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一電流鏡,具有一主電流端耦接至該第三電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;以及一第四電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第四電晶體的一第一端耦接至該參考電壓,該第四電晶體的一第二端耦接至該電流鏡的該僕電流端。 The output buffer according to claim 25, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a current mirror with a main current terminal coupled to a second terminal of the third transistor, wherein a slave current terminal of the current mirror is coupled to the output terminal of the comparison circuit And a fourth transistor having a control terminal coupled to the output terminal of the comparison circuit, wherein a first terminal of the fourth transistor is coupled to the reference voltage, a second of the fourth transistor The terminal is coupled to the slave current terminal of the current mirror. 如申請專利範圍第25項所述的輸出緩衝器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一第四電晶體,具有一控制端受控於一第一控制信號,其中該第四電晶體的一第一端耦接至該第三電晶體的一第二端;一電流鏡,具有一主電流端耦接至該第四電晶體的一第二 端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;一第五電晶體,具有一控制端受控於該第一控制信號,其中該第五電晶體的一第一端耦接至一系統電壓,該第五電晶體的第二端耦接至該電流鏡的一致能端;以及一第六電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第六電晶體的一第一端耦接至該參考電壓,該第六電晶體的一第二端耦接至該電流鏡的該僕電流端。 The output buffer according to claim 25, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a fourth transistor having a control terminal controlled by a first control signal, wherein a first terminal of the fourth transistor is coupled to a second terminal of the third transistor End; a current mirror with a second main current end coupled to the fourth transistor Terminal, wherein a slave current terminal of the current mirror is coupled to the output terminal of the comparison circuit; a fifth transistor having a control terminal controlled by the first control signal, wherein a first control signal of the fifth transistor One end is coupled to a system voltage, the second end of the fifth transistor is coupled to the uniform energy end of the current mirror; and a sixth transistor has a control end coupled to the output end of the comparison circuit , Wherein a first terminal of the sixth transistor is coupled to the reference voltage, and a second terminal of the sixth transistor is coupled to the slave current terminal of the current mirror. 如申請專利範圍第27項所述的輸出緩衝器,其中該比較電路更包括:一第七電晶體,具有一控制端受控於一第二控制信號,其中該第七電晶體的一第一端耦接至該參考電壓,該第七電晶體的一第二端耦接至該第六電晶體的該控制端。 According to the output buffer of claim 27, the comparison circuit further includes: a seventh transistor having a control terminal controlled by a second control signal, wherein a first of the seventh transistor The terminal is coupled to the reference voltage, and a second terminal of the seventh transistor is coupled to the control terminal of the sixth transistor. 如申請專利範圍第22項所述的輸出緩衝器,其中當該輸入電壓小於該第一回授電壓時,該下降控制電路拉升該第一閘控電壓與該第二閘控電壓,以及當該輸入電壓大於或等於該第一回授電壓時,該下降控制電路不調整該第一閘控電壓與該第二閘控電壓。 The output buffer according to item 22 of the scope of patent application, wherein when the input voltage is less than the first feedback voltage, the down control circuit pulls up the first gating voltage and the second gating voltage, and when When the input voltage is greater than or equal to the first feedback voltage, the drop control circuit does not adjust the first gating voltage and the second gating voltage. 如申請專利範圍第22項所述的輸出緩衝器,其中該下降控制電路包括:一比較電路,經配置用以比較該輸入電壓與該第一回授電壓而產生一控制電壓作為該第二比較結果;一第一電晶體,具有一控制端耦接至該比較電路的一輸出端 以接收該控制電壓,其中該第一電晶體的一第一端耦接至一系統電壓,該第一電晶體的一第二端耦接至該輸出級電路的一第一輸入端以接收該第一閘控電壓;以及一第二電晶體,具有一控制端耦接至該比較電路的該輸出端以接收該控制電壓,其中該第二電晶體的一第一端耦接至該系統電壓,該第二電晶體的一第二端耦接至該輸出級電路的一第二輸入端以接收該第二閘控電壓。 The output buffer of claim 22, wherein the drop control circuit includes: a comparison circuit configured to compare the input voltage with the first feedback voltage to generate a control voltage as the second comparison Result; a first transistor with a control terminal coupled to an output terminal of the comparison circuit To receive the control voltage, wherein a first terminal of the first transistor is coupled to a system voltage, and a second terminal of the first transistor is coupled to a first input terminal of the output stage circuit to receive the A first gate control voltage; and a second transistor having a control terminal coupled to the output terminal of the comparison circuit to receive the control voltage, wherein a first terminal of the second transistor is coupled to the system voltage A second terminal of the second transistor is coupled to a second input terminal of the output stage circuit to receive the second gating voltage. 如申請專利範圍第30項所述的輸出緩衝器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一電流鏡,具有一主電流端耦接至該第三電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;以及一第四電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第四電晶體的一第一端耦接至該系統電壓,該第四電晶體的一第二端耦接至該電流鏡的該僕電流端。 The output buffer according to claim 30, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a current mirror with a main current terminal coupled to a second terminal of the third transistor, wherein a slave current terminal of the current mirror is coupled to the output terminal of the comparison circuit And a fourth transistor having a control terminal coupled to the output terminal of the comparison circuit, wherein a first terminal of the fourth transistor is coupled to the system voltage, a second of the fourth transistor The terminal is coupled to the slave current terminal of the current mirror. 如申請專利範圍第30項所述的輸出緩衝器,其中該比較電路包括:一第三電晶體,具有一控制端耦接至該輸入電壓,其中該第三電晶體的一第一端耦接至該第一回授電壓;一第四電晶體,具有一控制端受控於一第一控制信號,其中 該第四電晶體的一第一端耦接至該第三電晶體的一第二端;一電流鏡,具有一主電流端耦接至該第四電晶體的一第二端,其中該電流鏡的一僕電流端耦接至該比較電路的該輸出端;一第五電晶體,具有一控制端受控於該第一控制信號,其中該第五電晶體的一第一端耦接至一參考電壓,該第五電晶體的第二端耦接至該電流鏡的一致能端;以及一第六電晶體,具有一控制端耦接至該比較電路的該輸出端,其中該第六電晶體的一第一端耦接至該系統電壓,該第六電晶體的一第二端耦接至該電流鏡的該僕電流端。 The output buffer according to claim 30, wherein the comparison circuit includes: a third transistor having a control terminal coupled to the input voltage, wherein a first terminal of the third transistor is coupled To the first feedback voltage; a fourth transistor with a control terminal controlled by a first control signal, wherein A first end of the fourth transistor is coupled to a second end of the third transistor; a current mirror having a main current end coupled to a second end of the fourth transistor, wherein the current A slave current terminal of the mirror is coupled to the output terminal of the comparison circuit; a fifth transistor having a control terminal controlled by the first control signal, wherein a first terminal of the fifth transistor is coupled to A reference voltage, the second end of the fifth transistor is coupled to the uniform energy end of the current mirror; and a sixth transistor having a control end coupled to the output end of the comparison circuit, wherein the sixth transistor A first end of the transistor is coupled to the system voltage, and a second end of the sixth transistor is coupled to the slave current end of the current mirror. 如申請專利範圍第32項所述的輸出緩衝器,其中該比較電路更包括:一第七電晶體,具有一控制端受控於一第二控制信號,其中該第七電晶體的一第一端耦接至該系統電壓,該第七電晶體的一第二端耦接至該第六電晶體的該控制端。According to the output buffer described in claim 32, the comparison circuit further includes: a seventh transistor having a control terminal controlled by a second control signal, wherein a first of the seventh transistor The terminal is coupled to the system voltage, and a second terminal of the seventh transistor is coupled to the control terminal of the sixth transistor.
TW108126532A 2019-07-26 2019-07-26 Source driver and output buffer thereof TWI741326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108126532A TWI741326B (en) 2019-07-26 2019-07-26 Source driver and output buffer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108126532A TWI741326B (en) 2019-07-26 2019-07-26 Source driver and output buffer thereof

Publications (2)

Publication Number Publication Date
TW202105346A TW202105346A (en) 2021-02-01
TWI741326B true TWI741326B (en) 2021-10-01

Family

ID=75745150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126532A TWI741326B (en) 2019-07-26 2019-07-26 Source driver and output buffer thereof

Country Status (1)

Country Link
TW (1) TWI741326B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12081232B2 (en) 2022-05-30 2024-09-03 Novatek Microelectronics Corp. Digital-to-analog conversion device and operation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211972A (en) * 2010-09-13 2012-03-16 Chimei Innolux Corp Control board for amorphous silicon gate
CN103106883A (en) * 2013-01-28 2013-05-15 南京中电熊猫液晶显示科技有限公司 Voltage regulating method of liquid crystal display
WO2019123738A1 (en) * 2017-12-22 2019-06-27 ソニーセミコンダクタソリューションズ株式会社 Sensor chip, electronic device, and apparatus
US20190206565A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Method for operating surgical instrument systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211972A (en) * 2010-09-13 2012-03-16 Chimei Innolux Corp Control board for amorphous silicon gate
CN103106883A (en) * 2013-01-28 2013-05-15 南京中电熊猫液晶显示科技有限公司 Voltage regulating method of liquid crystal display
WO2019123738A1 (en) * 2017-12-22 2019-06-27 ソニーセミコンダクタソリューションズ株式会社 Sensor chip, electronic device, and apparatus
US20190206565A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Method for operating surgical instrument systems

Also Published As

Publication number Publication date
TW202105346A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US11054849B2 (en) Source driver and output buffer thereof
US9275595B2 (en) Output buffer circuit and source driving circuit including the same
US9543912B2 (en) Buffer circuit having an enhanced slew-rate and source driving circuit including the same
US20190221153A1 (en) Semiconductor device
US20180254004A1 (en) Integrated circuit for driving display panel and fan-out compensation method thereof
US20110175942A1 (en) Gamma Reference Voltage Output Circuit of Source Driver
US9311844B2 (en) Source driver and method to reduce peak current therein
US11081036B1 (en) Slew rate enhancement circuit
CN101114421A (en) Output driver and diplay device
US10037731B2 (en) Driver, electro-optical apparatus, and electronic device
CN111696462B (en) Output buffer and method of operating the same
TWI741326B (en) Source driver and output buffer thereof
US10452088B1 (en) Source driver and operation method thereof
US11837132B2 (en) Output buffer, data driver, and display device having the same
US20080278090A1 (en) Reset Circuit for Power-On and Power-Off
CN115482763A (en) Buffer circuit including offset blocking circuit and display device including the same
US11488507B2 (en) Power management device and display device
TWI544472B (en) Source driver, display driving circuit, and display apparatus
CN112349234B (en) Source driver and output buffer thereof
TWI699743B (en) Source driver
US10505532B1 (en) Output buffer and operation method thereof
CN111862893B (en) Source driver
TWI686784B (en) Output buffer and operation method thereof
US11749159B2 (en) Gate driver circuit and method for driving the same
KR20220162013A (en) Buffer circuit having offset blocking circuit and display device including the same