TWI709995B - A plasma reactor for processing a workpiece with an array of plasma point sources - Google Patents
A plasma reactor for processing a workpiece with an array of plasma point sources Download PDFInfo
- Publication number
- TWI709995B TWI709995B TW105116211A TW105116211A TWI709995B TW I709995 B TWI709995 B TW I709995B TW 105116211 A TW105116211 A TW 105116211A TW 105116211 A TW105116211 A TW 105116211A TW I709995 B TWI709995 B TW I709995B
- Authority
- TW
- Taiwan
- Prior art keywords
- cavities
- plasma
- gas
- source
- cavity
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/12—Contacts characterised by the manner in which co-operating contacts engage
- H01H1/36—Contacts characterised by the manner in which co-operating contacts engage by sliding
- H01H1/46—Contacts characterised by the manner in which co-operating contacts engage by sliding self-aligning contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32422—Arrangement for selecting ions or species in the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3322—Problems associated with coating
- H01J2237/3323—Problems associated with coating uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
本揭示係關於諸如半導體晶圓的工件之電漿處理、以及處理不均勻度之降低。This disclosure relates to plasma processing of workpieces such as semiconductor wafers and reduction of processing unevenness.
在傳統的電漿處理中,處理過的晶圓可能由於不同的蝕刻環境而遭受各種局部不均勻性-應有的不均勻應力、不均勻膜組成物(對於沉積製程)、不均勻CD(特徵的臨界尺寸)。這可能是由於傳入的晶圓之間的差異或處理腔室的特性中的差異(例如,在旋轉料架式處理腔室中,旋轉的晶圓看到前緣和後緣的自由基停留時間差或不同的局部溫度)。In traditional plasma processing, the processed wafer may suffer from various local unevenness due to different etching environments-due to uneven stress, uneven film composition (for the deposition process), uneven CD (features) Critical size). This may be due to differences between the incoming wafers or differences in the characteristics of the processing chamber (for example, in a rotating rack-type processing chamber, the rotating wafer sees free radicals on the leading and trailing edges staying Time difference or different local temperature).
一種電漿反應器,包含:處理腔室及在該處理腔室中的工件支座,該腔室包含面對該工件支座的下頂板;疊置在該下頂板上方並面對該下頂板的上頂板及疊置在該上頂板上方的氣體分配器;在該上和下頂板之間界定複數個空腔的複數個腔壁,該氣體分配器包含到該複數個空腔中的各自空腔的複數個氣流路徑;在該下頂板中與該複數個空腔中的各自空腔對齊的複數個出口孔;以及鄰接該複數個空腔中的各自空腔的各自電力施加器、電源、被耦接到該等電力施加器中的各自電力施加器的複數個電力導體、及被耦接在該電源與該複數個電力導體之間的電力分配器。A plasma reactor includes: a processing chamber and a workpiece support in the processing chamber, the chamber includes a lower top plate facing the workpiece support; stacked above the lower top plate and facing the lower top plate The upper top plate and the gas distributor stacked above the upper top plate; a plurality of cavity walls defining a plurality of cavities between the upper and lower top plates, the gas distributor includes the respective cavities in the plurality of cavities A plurality of airflow paths of the cavity; a plurality of outlet holes in the lower top plate aligned with respective cavities of the plurality of cavities; and respective power applicators, power sources, A plurality of power conductors coupled to each of the power applicators, and a power distributor coupled between the power source and the plurality of power conductors.
在一個實施例中,該複數個腔壁包含介電質腔壁。In one embodiment, the plurality of cavity walls include dielectric cavity walls.
在進一步的實施例中,該電源包含RF發電機,而且其中該等各自電力施加器中的每個電力施加器藉由該複數個腔壁中的對應腔壁與該複數個空腔中的對應空腔之內部體積分隔。In a further embodiment, the power supply includes an RF generator, and wherein each of the respective power applicators uses a corresponding one of the plurality of cavity walls and a corresponding one of the plurality of cavities. The internal volume of the cavity is separated.
在一個實施例中,該電力施加器包含電極,用於將RF電力電容耦合到該複數個空腔中的對應空腔中。在一個實施例中,每個電極都可以圍繞該複數個空腔中的對應空腔之一部分。In one embodiment, the power applicator includes electrodes for capacitively coupling RF power into corresponding ones of the plurality of cavities. In one embodiment, each electrode may surround a portion of the corresponding cavity in the plurality of cavities.
在另一個實施例中,該電力施加器包含線圈天線,用於將RF電力感應耦合到該複數個空腔中的對應空腔中。在此實施例中,該線圈天線可以包含導體,該導體盤繞該複數個空腔中的對應空腔之一部分。In another embodiment, the power applicator includes a coil antenna for inductively coupling RF power into corresponding ones of the plurality of cavities. In this embodiment, the coil antenna may include a conductor that is wound around a part of the corresponding cavity of the plurality of cavities.
在又進一步的實施例中,該電源為直流發電機,該等電力施加器中的每個電力施加器皆包含用於直流放電的電極,而且其中該等介電質腔壁中的每個腔壁皆設以使對應電極暴露於該複數個空腔中的對應空腔之內部體積。In a further embodiment, the power supply is a DC generator, each of the power applicators includes an electrode for DC discharge, and each of the dielectric cavity walls The walls are arranged so that the corresponding electrode is exposed to the inner volume of the corresponding cavity among the plurality of cavities.
在一個實施例中,該電力分配器包含被耦接在該發電機的輸出與該等電力導體中的各自電力導體之間的複數個開關。In one embodiment, the power distributor includes a plurality of switches coupled between the output of the generator and each of the power conductors.
在一個實施例中,該電漿反應器進一步包含處理器,該處理器依據使用者定義的指令個別控制該複數個開關。In one embodiment, the plasma reactor further includes a processor which individually controls the plurality of switches according to user-defined instructions.
在一個實施例中,該電漿反應器進一步包含處理氣源和氣體分配器,該氣體分配器包含複數個閥,該複數個閥被耦接在該處理氣源與該複數個空腔中的各自空腔之間。該處理氣源可以包含不同氣體物種的複數個氣源,其中該複數個閥中的各自閥被耦接在該複數個氣源中的各自氣源與該複數個空腔中的各自空腔之間。在一個實施例中,該電漿反應器進一步包含處理器,該處理器依據使用者定義的指令個別控制該複數個閥。In one embodiment, the plasma reactor further includes a processing gas source and a gas distributor, the gas distributor including a plurality of valves, the plurality of valves are coupled between the processing gas source and the plurality of cavities Between their cavities. The process gas source may include a plurality of gas sources of different gas species, wherein each valve of the plurality of valves is coupled to the respective gas source of the plurality of gas sources and the respective cavity of the plurality of cavities between. In one embodiment, the plasma reactor further includes a processor that individually controls the plurality of valves according to user-defined instructions.
在一個實施例中,該電漿反應器進一步包含遠端電漿源,該遠端電漿源被耦接以遞送電漿副產物到該複數個空腔。In one embodiment, the plasma reactor further includes a remote plasma source, the remote plasma source being coupled to deliver plasma by-products to the plurality of cavities.
在一個實施例中,該處理腔室進一步包含圓柱形側壁,該反應器進一步包含感應耦合電漿源,該感應耦合電漿源包含線圈天線及RF發電機,該線圈天線圍繞該圓柱形側壁,該RF發電機通過阻抗匹配耦接到該線圈天線。In one embodiment, the processing chamber further includes a cylindrical side wall, the reactor further includes an inductively coupled plasma source, the inductively coupled plasma source includes a coil antenna and an RF generator, the coil antenna surrounds the cylindrical side wall, The RF generator is coupled to the coil antenna through impedance matching.
在一個實施例中,一種電漿反應器包含:處理腔室及在該處理腔室中的工件支座;疊置在該工件支座上方的氣體分配器;在該氣體分配器下方界定複數個空腔的複數個腔壁,該氣體分配器包含到該複數個空腔中的各自空腔的複數個氣流路徑;鄰接該複數個空腔中的各自空腔的各自電力施加器、電源、被耦接到該等電力施加器中的各自電力施加器的複數個電力導體、及被耦接在該電源與該複數個電力導體之間的電力分配器;以及處理氣源和氣體分配器,該氣體分配器包含複數個閥,該複數個閥被耦接在該處理氣源與該複數個空腔中的各自空腔之間。In one embodiment, a plasma reactor includes: a processing chamber and a workpiece support in the processing chamber; a gas distributor stacked above the workpiece support; and a plurality of gas distributors are defined below the gas distributor A plurality of cavity walls of the cavity, the gas distributor includes a plurality of gas flow paths to the respective cavities of the plurality of cavities; the respective power applicators, power supplies, and cavities adjacent to the respective cavities of the plurality of cavities A plurality of power conductors coupled to the respective power applicators of the power applicators, and a power distributor coupled between the power source and the plurality of power conductors; and a processing gas source and a gas distributor, the The gas distributor includes a plurality of valves, and the plurality of valves are coupled between the processing gas source and the respective cavities of the plurality of cavities.
在進一步的實施例中,一種在電漿反應器中處理工件的方法,該電漿反應器包含電漿點源陣列,該電漿點源陣列分佈於該工件之表面上方,包含以下步驟:在該工件上進行電漿處理;觀察橫跨該工件之該表面的處理速率之空間分佈中的不均勻性;以及藉由進行以下中之至少一者來降低該不均勻性: (a)調整在該電漿點源陣列中電漿源電力位準的分配,或 (b)調整在該電漿點源陣列中氣流的分配。In a further embodiment, a method for processing a workpiece in a plasma reactor, the plasma reactor comprising an array of plasma point sources, the array of plasma point sources being distributed over the surface of the workpiece, comprising the following steps: Plasma treatment on the workpiece; observing the unevenness in the spatial distribution of the processing rate across the surface of the workpiece; and reducing the unevenness by performing at least one of the following: (a) Adjust in The distribution of the plasma source power level in the plasma point source array, or (b) adjust the distribution of airflow in the plasma point source array.
介紹: 電漿源是由大量的或一個陣列的獨立控制局部電漿點源所組成,此舉允許在使用者界定的區域間以空間和時間控制帶電粒子物種(電子、負和正離子)和自由基。 Introduction: The plasma source is composed of a large number or an array of independently controlled local plasma point sources. This allows the space and time control of charged particle species (electrons, negative and positive ions) and freedom in the area defined by the user. base.
使用能夠以空間和時間控制的電漿源能夠校正局部的不均勻性。這可以藉由在產生帶電粒子和自由基的不同電漿點源切換啟動或關閉電漿產生來完成。替代地或外加地,這可以藉由改變到不同電漿點源的處理氣流來實現。例如,氣流可以被切換成啟動或關閉及/或可以改變用於每個電漿點源的氣體混合物。使用者可以選擇在局部電漿點源被離子化或分解的氣體。使用者可以進一步選擇放電的時間或持續時間。Using a plasma source that can be controlled in space and time can correct local inhomogeneities. This can be accomplished by switching on or off plasma generation at different plasma point sources that generate charged particles and free radicals. Alternatively or additionally, this can be achieved by changing the process gas flow to a different plasma point source. For example, the gas flow can be switched on or off and/or the gas mixture used for each plasma point source can be changed. The user can select the gas to be ionized or decomposed at the local plasma point source. The user can further select the time or duration of the discharge.
人們可以藉由在不同的同時局部氣體放電中平行操作不同的氣體化學作用(空間控制)或藉由在同一局部放電中局部交替氣體化學作用來改變局部放電化學作用。 One can change the partial discharge chemistry by operating different gas chemistries in parallel in different simultaneous partial gas discharges (spatial control) or by locally alternating gas chemistry in the same partial discharge.
人們可以使整個工件(晶圓)接受恆定的負直流偏壓、但局部吸引離子來佈植、或蝕刻或沉積。 People can make the entire workpiece (wafer) receive a constant negative DC bias, but locally attract ions for implantation, etching or deposition.
可以將電漿點源的陣列與傳統非局部電漿源(例如電容耦合大電極電漿源或感應耦合電漿源)組合,並實時校正電漿生成中的局部不均勻性。 The array of plasma point sources can be combined with traditional non-local plasma sources (for example, capacitively coupled large electrode plasma sources or inductively coupled plasma sources), and local inhomogeneities in plasma generation can be corrected in real time.
可以將電漿點源的陣列與遠端電漿源(例如遠端自由基源)組合。自由基處理步驟之後可以是電漿處理步驟,在電漿處理步驟中人們可以改變成分和局部停留時間。過去的解決方案一直藉由改變通過基板支座中的局部加熱元件的電流而著重於溫度的局部變化。本文描述的實施例增添現有的解決方案,並能實現局部化學作用,而且影響帶電粒子和自由基的產生,而不是只依賴溫度來加速反應。 An array of plasma point sources can be combined with remote plasma sources (e.g., remote free radical sources). The radical treatment step can be followed by a plasma treatment step, in which one can change the composition and local residence time. Past solutions have focused on local changes in temperature by changing the current through the local heating elements in the substrate support. The embodiments described herein add to existing solutions, and can achieve local chemical effects, and affect the generation of charged particles and free radicals, instead of relying solely on temperature to accelerate the reaction.
第1A圖和第1B圖描繪具有多個電漿點源90的實施例,電漿點源90被使用RF頻率電容耦合。點源90可被排列成各種構形,例如圓形(第2A圖)或派形(第2B圖)。第1A圖的實施例包括具有處理區域92的處理腔室主體100,處理區域92被圓柱形側壁102、下頂板104及底板106包圍。工件支座94在處理區域92內支撐工件96。真空泵108可以通過底板106被耦接到處理區域92。被支撐在上圓柱形側壁126上的上頂板110疊置在下頂板104上方並支撐氣體分配器112。下頂板104包括氣體出口孔114的陣列。在第1A圖的實施例中,點源90是圓柱形腔115的陣列,圓柱形腔115被介電質圓柱形腔壁116包圍,每個介電質圓柱形腔壁116都平行於圓柱形側壁102的對稱軸並與各自的一個氣體出口孔114對齊。介電質圓柱形腔壁116被各自的圓柱形電極118環繞。Figures 1A and 1B depict an embodiment with multiple
每個電漿點源90都是局部的在於每個氣體出口孔114的面積相對於下頂板104或上頂板110的面積或相對於腔室主體100的直徑是小的。在一個實施例中,每個氣體出口孔114的面積都不超過下頂板104或上頂板110的面積或腔室主體100的面積之5%。Each
在第1A圖和第1B圖的圖示實施例中,每個氣體出口孔114的形狀都是圓形,並與圓柱形腔115的形狀一致。然而,在其他實施例中,每個氣體出口孔114都可以具有任意的形狀,並且可以不與圓柱形腔115的形狀一致。例如,每個氣體出口孔114都可以具有非圓形的形狀(例如橢圓形)、或可以具有多邊形的形狀或線性狹縫的形狀或一些前述形狀的組合。假使氣體出口孔114的形狀不與圓柱形腔115一致,則在一個實施例中,可以引入適配器(未圖示)來提供氣體出口孔114與圓柱形腔115之間的氣體密封。In the illustrated embodiment of FIGS. 1A and 1B, the shape of each
上頂板110具有氣體入口孔119的陣列,每個氣體入口孔119都與各自的一個圓柱形腔115對齊。氣體分配器112通過氣體入口孔119供應處理氣體到圓柱形腔115中。個別的電力導體120引導電力到個別的一個各自的圓柱形電極118。電力分配器122從電源124分配電力到電力導體120。在一個實施例中,電源124是交流(AC)發電機或具有射頻(RF)阻抗匹配的RF發電機。在相關的實施例中,例如電源124的頻率可以是從直流到超高頻的任何頻率。在一個實施例中,藉由從圓柱形電極118電容耦合RF電力通過介電質圓柱形腔壁116進入圓柱形腔115而在圓柱形腔115中產生電漿。下頂板104將圓柱形電極118與電漿隔離。The
氣體分配器112從多個氣體供應器250接收不同的氣體物種,並依據使用者指定用於不同圓柱形腔115的不同氣體配方通過各自的氣體入口孔119分配不同的氣體混合物到不同的圓柱形腔115。例如,氣體分配器112可以包括由處理器254依據使用者定義的指令個別控制的氣體閥252之陣列,該指令界定用於個別圓柱形腔115的氣體混合物。氣體閥252的陣列在多個氣體供應器250與氣體入口孔119之間被耦接到圓柱形腔115。The
在一個實施例中,電力分配器122控制被個別供應到每個電力導體120的電力。例如,電力分配器122可以包括電開關262的陣列,電開關262由處理器254依據使用者定義的指令個別控制。電力可以藉由脈寬調變控制,而且使用者定義的指令可以界定用於個別圓柱形腔115的電力之個別開/關持續時間(或工作週期)。電開關262的陣列被耦接在電源124與電力導體120之間。In one embodiment, the
在第一實施例中,下頂板104是由介電質材料形成,而上頂板110是由導電材料形成。在第二實施例中,下頂板104鄰接由導電材料形成的下板190,而且下板190和上頂板110皆接地。以這種方式,電漿源位於兩個接地板(即下板190與上頂板110)之間。In the first embodiment, the lower
第3圖描繪其中電漿是藉由直流放電產生並且電源124是直流發電機的實施例。每個介電質圓柱形腔壁116都終止於對應的圓柱形電極118上方。這個特徵可以使每個圓柱形電極118都直接暴露於電漿,以促進直流放電。Figure 3 depicts an embodiment where the plasma is generated by DC discharge and the
第4圖描繪第1A圖的實施例之變形,其中圓柱形電極118被個別的感應線圈210取代,以在每個圓柱形腔115內產生感應耦合電漿。每個感應線圈210都被圍繞各自的圓柱形介電質壁116的底部部分纏繞,如第4圖所描繪。在第4圖的實施例中,變化的磁場在圓柱形腔115中產生變化的電場,此舉接著產生封閉的轉動振盪電漿電流。FIG. 4 depicts a modification of the embodiment of FIG. 1A, in which the
第5圖描繪第1A圖的實施例之另一個變形,其中包括遠端電漿源220和自由基分配板280。自由基分配板280從遠端電漿源220導引自由基進入個別的圓柱形腔115。遠端電漿源220可以包括由電源224驅動的電漿源電力施加器222。遠端電漿源220可以進一步包括含有所需自由基物種之前驅物的受控制氣源226。還有一些遠端產生的化學活性自由基在晶圓的處理中發揮關鍵作用的製程。然而,可能有需要遵循使用電漿處理步驟的自由基處理。具有可在空間上和時間上控制的電漿源有助於解決自由基的不均勻性。在其中自由基的壽命短(重新結合成為惰性中性粒子)的情況下,具有可控制的電漿密度可以有助於重要的自由基再生。
FIG. 5 depicts another modification of the embodiment of FIG. 1A, which includes a
第6圖描繪第4圖的實施例之變形,其中包括遠端電漿源220和自由基分配板280。在第6圖的實施例中,將遠端電漿源220與第4圖的感應耦合電漿源(即感應耦合線圈210)組合。與第1A圖的實施例的電容耦合電漿源相比,感應耦合電漿源(線圈210)能夠在不同的(較低的)壓力狀態(例如低於25毫托)下操作。
FIG. 6 depicts a modification of the embodiment of FIG. 4, which includes a
第7圖描繪第1A圖的實施例之變形,其中將電漿點源90的陣列與較大的非局部感應耦合電漿源組合。第7圖的非局部感應耦合電漿源包括圍繞圓柱形側壁102的螺旋狀纏繞線圈天線240。螺旋狀纏繞線圈天線240是由RF發電機242通過RF阻抗匹配244驅動。在第7圖的實施例中,圓柱形側壁102是由非金屬材料形成,以使RF電力能夠通過圓柱形側壁102的感應耦合。下板190保護個別的電漿點源(對應個別的圓柱形腔115)
免受較大的感應耦合電漿源(對應螺旋狀纏繞線圈天線240)破壞。
Figure 7 depicts a variation of the embodiment of Figure 1A in which an array of
個別的電漿點源90(對應個別的圓柱形腔115)是可單獨控制的。這使電漿分佈的空間和時間能夠控制。這樣的控制可被以降低電漿分佈不均勻性的方式運用。 The individual plasma point sources 90 (corresponding to the individual cylindrical cavity 115) are individually controllable. This allows the space and time of plasma distribution to be controlled. Such control can be used in a way that reduces the unevenness of plasma distribution.
電源124可以以不同的模式對每個電漿點源90供電。在第一模式中,每個電漿點源90消耗固定量的電力,而且控制系統使用電開關262的陣列將被供應到電漿點源的電力切換成開或關。在一個實例中,每個點源在開啟時皆消耗約3瓦特的固定量。電開關262的陣列基本上依命令施加電力到個別的電漿點源90。電漿密度是被開啟的電漿點源90有多少的函數。以這種方式,被遞送到每個電漿點源90的淨電力可以藉由脈寬修改來控制。
The
在第二模式中,所控制的是被遞送到每個電漿點源90的電力之水平。同時,到個別電漿點源90(或電漿點源90的群組)的氣體成分可以被氣體分配器112改變。因此,不同的電漿點源90不必具有相同的氣體排放成分。每個電漿點源90都具有固定的地址。到每個電漿點源90的電力及/或氣流可以被有針對性地單獨開啟或關閉。
In the second mode, what is controlled is the level of power delivered to each
依據一個方法,量測橫跨工件表面的處理速率空間分佈。處理速率分佈中的不均勻性是藉由建立被供應到電漿點源90陣列的電力之開/關工作週期的空間分佈來補償,電力之開/關工作週期的空間分佈實際上是測得的處理速率空間分佈的倒數。換句話說,開/關電力工作週期的分佈在測得的處理速率分佈具有極小值的位置具有極大值,並且在測得的處理速率分佈具有極大值處具有極小值。
According to one method, the spatial distribution of the processing rate across the surface of the workpiece is measured. The unevenness in the processing rate distribution is compensated by establishing the spatial distribution of the on/off duty cycle of the power supplied to the
依據另一個方法,處理速率分佈中的不均勻性是藉由建立被供應到電漿點源90陣列的處理氣流之開/關工作週期的空間分佈來補償,處理氣流之開/關工作週期的空間分佈實際上是測得的處理速率空間分佈的倒數。換句話說,開/關氣流工作週期的分佈在測得的處理速率分佈具有極小值的位置具有極大值,並且在測得的處理速率分佈具有極大值處具有極小值。
According to another method, the unevenness in the processing rate distribution is compensated by establishing the spatial distribution of the on/off duty cycle of the processing air flow supplied to the
主要的優點是空間上和時間上完全控制帶電粒子和活性自由基的產生。這使得對於局部帶電粒子和活性自由基的分佈能夠進行空間上和時間上的控制。 The main advantage is the complete control of the generation of charged particles and active free radicals in space and time. This enables the spatial and temporal control of the distribution of locally charged particles and active free radicals.
雖然前述是針對本發明的實施例,但仍可以在不偏離本發明的基本範圍下設計出本發明的其他和進一步的實施例,而且本發明的範圍是由隨後的申請專利範圍決定。Although the foregoing is directed to the embodiments of the present invention, other and further embodiments of the present invention can be designed without departing from the basic scope of the present invention, and the scope of the present invention is determined by the scope of subsequent patent applications.
90‧‧‧電漿點源
92‧‧‧處理區域
94‧‧‧工件支座
96‧‧‧工件
100‧‧‧處理腔室主體
102‧‧‧圓柱形側壁
104‧‧‧下頂板
106‧‧‧底板
108‧‧‧真空泵
110‧‧‧上頂板
112‧‧‧氣體分配器
114‧‧‧氣體出口孔
115‧‧‧圓柱形腔
116‧‧‧介電質圓柱形腔壁
118‧‧‧圓柱形電極
119‧‧‧氣體入口孔
120‧‧‧電力導體
122‧‧‧電力分配器
124‧‧‧電源
126‧‧‧上圓柱形側壁
190‧‧‧下板
210‧‧‧線圈
220‧‧‧遠端電漿源
222‧‧‧電漿源電力施加器
224‧‧‧電源
226‧‧‧氣源
240‧‧‧線圈天線
242‧‧‧RF發電機
244‧‧‧RF阻抗匹配
250‧‧‧氣體供應器
252‧‧‧氣體閥
254‧‧‧處理器
262‧‧‧電開關
280‧‧‧自由基分配板90‧‧‧
為了可以詳細瞭解所得的本發明之例示性實施例,可參照圖示於附圖中的本發明實施例而對以上簡要概述的本發明作更特定的描述。應當理解的是,本文中未討論某些眾所周知的製程,以免模糊了本發明。In order to understand the obtained exemplary embodiments of the present invention in detail, the present invention briefly summarized above can be described more specifically with reference to the embodiments of the present invention illustrated in the drawings. It should be understood that some well-known manufacturing processes are not discussed in this article so as not to obscure the present invention.
第1A圖為具有電漿點源陣列的第一實施例之簡化圖。Figure 1A is a simplified diagram of the first embodiment with a plasma point source array.
第1B圖為第1A圖實施例中的電漿點源之放大平面圖。Figure 1B is an enlarged plan view of the plasma point source in the embodiment of Figure 1A.
第2A圖和第2B圖繪示電漿點源陣列的不同配置。Figure 2A and Figure 2B show different configurations of the plasma point source array.
第3圖繪示其中電漿點源採用電漿直流放電的實施例。Figure 3 shows an embodiment where the plasma point source uses plasma direct current discharge.
第4圖繪示其中電漿點源採用感應耦合的實施例。Figure 4 shows an embodiment where the plasma point source adopts inductive coupling.
第5圖繪示第1A圖的實施例採用遠端電漿源的變形。Fig. 5 shows a modification of the embodiment of Fig. 1A using a remote plasma source.
第6圖繪示第4圖的實施例採用遠端電漿源的變形。Fig. 6 shows a modification of the embodiment of Fig. 4 using a remote plasma source.
第7圖繪示第1A圖的實施例除了電漿點源陣列之外還具有腔室寬的感應耦合源的變形。Fig. 7 shows a variation of the embodiment of Fig. 1A in addition to the plasma point source array, which also has a cavity-wide inductive coupling source.
為了便於理解,已在可能處使用相同的元件符號來指稱對圖式而言相同的元件。構思的是,可以將一個實施例的元件和特徵有益地併入其他實施例中而無需進一步詳述。然而,應注意的是,附圖僅圖示本發明之例示性實施例,因此不應將該等附圖視為限制本發明之範圍,因本發明可認可其他等同有效的實施例。To facilitate understanding, the same element symbols have been used where possible to refer to the same elements in the drawings. It is conceived that the elements and features of one embodiment can be beneficially incorporated into other embodiments without further elaboration. However, it should be noted that the drawings only illustrate exemplary embodiments of the present invention, and therefore should not be regarded as limiting the scope of the present invention, because the present invention may recognize other equivalently effective embodiments.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date and number)
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date and number) None
(請換頁單獨記載) 無(Please change the page to record separately) None
90‧‧‧電漿點源 90‧‧‧Plasma point source
92‧‧‧處理區域 92‧‧‧Processing area
94‧‧‧工件支座 94‧‧‧Workpiece support
96‧‧‧工件 96‧‧‧Workpiece
100‧‧‧處理腔室主體 100‧‧‧Processing chamber body
102‧‧‧圓柱形側壁 102‧‧‧Cylindrical side wall
104‧‧‧下頂板 104‧‧‧Lower top plate
106‧‧‧底板 106‧‧‧Bottom plate
108‧‧‧真空泵 108‧‧‧Vacuum pump
110‧‧‧上頂板 110‧‧‧Top plate
112‧‧‧氣體分配器 112‧‧‧Gas distributor
114‧‧‧氣體出口孔 114‧‧‧Gas outlet hole
115‧‧‧圓柱形腔 115‧‧‧Cylindrical cavity
116‧‧‧介電質圓柱形腔壁 116‧‧‧Dielectric cylindrical cavity wall
118‧‧‧圓柱形電極 118‧‧‧Cylindrical electrode
119‧‧‧氣體入口孔 119‧‧‧Gas inlet hole
120‧‧‧電力導體 120‧‧‧Power conductor
122‧‧‧電力分配器 122‧‧‧Power Distributor
124‧‧‧電源 124‧‧‧Power
126‧‧‧上圓柱形側壁 126‧‧‧Upper cylindrical side wall
190‧‧‧下板 190‧‧‧Lower board
250‧‧‧氣體供應器 250‧‧‧Gas Supply
252‧‧‧氣體閥 252‧‧‧Gas valve
254‧‧‧處理器 254‧‧‧Processor
262‧‧‧電開關 262‧‧‧electric switch
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/867,240 US20170092470A1 (en) | 2015-09-28 | 2015-09-28 | Plasma reactor for processing a workpiece with an array of plasma point sources |
US14/867,240 | 2015-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201712722A TW201712722A (en) | 2017-04-01 |
TWI709995B true TWI709995B (en) | 2020-11-11 |
Family
ID=58409895
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105116211A TWI709995B (en) | 2015-09-28 | 2016-05-25 | A plasma reactor for processing a workpiece with an array of plasma point sources |
TW109135324A TWI778429B (en) | 2015-09-28 | 2016-05-25 | A plasma reactor for processing a workpiece with an array of plasma point sources |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109135324A TWI778429B (en) | 2015-09-28 | 2016-05-25 | A plasma reactor for processing a workpiece with an array of plasma point sources |
Country Status (5)
Country | Link |
---|---|
US (2) | US20170092470A1 (en) |
JP (3) | JP6831644B2 (en) |
KR (1) | KR102545738B1 (en) |
CN (3) | CN207503911U (en) |
TW (2) | TWI709995B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170092470A1 (en) * | 2015-09-28 | 2017-03-30 | Applied Materials, Inc. | Plasma reactor for processing a workpiece with an array of plasma point sources |
US20180174801A1 (en) * | 2016-12-21 | 2018-06-21 | Ulvac Technologies, Inc. | Apparatuses and methods for surface treatment |
JP6763815B2 (en) | 2017-03-31 | 2020-09-30 | 三菱重工コンプレッサ株式会社 | Centrifugal compressor and turbo chiller |
US10431427B2 (en) | 2017-05-26 | 2019-10-01 | Applied Materials, Inc. | Monopole antenna array source with phase shifted zones for semiconductor process equipment |
TWI794240B (en) * | 2017-06-22 | 2023-03-01 | 美商應用材料股份有限公司 | Processing tool for plasma process and plasma reactor |
TWI788390B (en) | 2017-08-10 | 2023-01-01 | 美商應用材料股份有限公司 | A distributed electrode array for plasma processing |
GB201813451D0 (en) * | 2018-08-17 | 2018-10-03 | Spts Technologies Ltd | Plasma apparatus |
US11094508B2 (en) * | 2018-12-14 | 2021-08-17 | Applied Materials, Inc. | Film stress control for plasma enhanced chemical vapor deposition |
JP7221115B2 (en) * | 2019-04-03 | 2023-02-13 | 東京エレクトロン株式会社 | Plasma processing method and plasma processing apparatus |
US20220316063A1 (en) * | 2019-09-04 | 2022-10-06 | Gallium Enterprises Pty Ltd | RPCVD Apparatus and Methods for Forming a Film |
KR102610445B1 (en) * | 2020-12-08 | 2023-12-05 | 세메스 주식회사 | Substrate processing apparatus and method using the plasma |
TWI829156B (en) * | 2021-05-25 | 2024-01-11 | 大陸商北京屹唐半導體科技股份有限公司 | Plasma source array, plasma processing apparatus, plasma processing system and method for processing workpiece in plasma processing apparatus |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683548A (en) * | 1996-02-22 | 1997-11-04 | Motorola, Inc. | Inductively coupled plasma reactor and process |
TW376531B (en) * | 1996-10-24 | 1999-12-11 | Applied Materials Inc | Parallel-plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density |
CN100372971C (en) * | 2000-06-30 | 2008-03-05 | 兰姆研究有限公司 | Switched uniformity control |
TW200839924A (en) * | 2007-01-15 | 2008-10-01 | Tokyo Electron Ltd | Plasma processing apparatus, plasma processing method and storage medium |
US20080309242A1 (en) * | 2005-05-11 | 2008-12-18 | Dublin City University | Plasma Source |
TW200920192A (en) * | 2007-10-22 | 2009-05-01 | New Power Plasma Co Ltd | Capacitively coupled plasma reactor |
US7976674B2 (en) * | 2007-06-13 | 2011-07-12 | Tokyo Electron Limited | Embedded multi-inductive large area plasma source |
CN103620729A (en) * | 2011-04-11 | 2014-03-05 | 朗姆研究公司 | E-beam enhanced decoupled source for semiconductor processing |
CN103748665A (en) * | 2011-05-10 | 2014-04-23 | 朗姆研究公司 | Semiconductor processing system having multiple decoupled plasma sources |
US20140265846A1 (en) * | 2013-03-15 | 2014-09-18 | Tokyo Electron Limited | Scalable and uniformity controllable diffusion plasma source |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683517A (en) * | 1995-06-07 | 1997-11-04 | Applied Materials, Inc. | Plasma reactor with programmable reactant gas distribution |
US5702530A (en) * | 1995-06-23 | 1997-12-30 | Applied Materials, Inc. | Distributed microwave plasma reactor for semiconductor processing |
US6267074B1 (en) * | 1997-02-24 | 2001-07-31 | Foi Corporation | Plasma treatment systems |
JP4056144B2 (en) * | 1998-09-10 | 2008-03-05 | 株式会社エフオーアイ | Plasma processing equipment |
JP2004296953A (en) * | 2003-03-28 | 2004-10-21 | Matsushita Electric Ind Co Ltd | Method and device for dry etching |
JP2007095905A (en) * | 2005-09-28 | 2007-04-12 | Matsushita Electric Ind Co Ltd | Dry etching device |
JP4784977B2 (en) * | 2005-09-29 | 2011-10-05 | 国立大学法人名古屋大学 | Radical generator |
JP4810281B2 (en) * | 2006-03-31 | 2011-11-09 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP2010103455A (en) * | 2008-09-26 | 2010-05-06 | Mitsubishi Electric Corp | Plasma processing apparatus |
KR20110028414A (en) * | 2009-09-12 | 2011-03-18 | 위순임 | Sputtering apparatus using multi discharge tubebridge |
KR101161169B1 (en) * | 2010-02-25 | 2012-07-02 | (주)젠 | Multi capacitively coupled electrode assembly and processing appartus the same |
US9190289B2 (en) * | 2010-02-26 | 2015-11-17 | Lam Research Corporation | System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas |
JP5689294B2 (en) * | 2010-11-25 | 2015-03-25 | 東京エレクトロン株式会社 | Processing equipment |
US8980046B2 (en) * | 2011-04-11 | 2015-03-17 | Lam Research Corporation | Semiconductor processing system with source for decoupled ion and radical control |
US8900403B2 (en) * | 2011-05-10 | 2014-12-02 | Lam Research Corporation | Semiconductor processing system having multiple decoupled plasma sources |
WO2012142038A1 (en) | 2011-04-11 | 2012-10-18 | Lam Research Corporation | E-beam enhanced decoupled source for semiconductor processing |
US20120255678A1 (en) * | 2011-04-11 | 2012-10-11 | Lam Research Corporation | Multi-Frequency Hollow Cathode System for Substrate Plasma Processing |
JP5792563B2 (en) | 2011-08-31 | 2015-10-14 | 東京エレクトロン株式会社 | Plasma etching method and plasma etching apparatus |
KR101246191B1 (en) | 2011-10-13 | 2013-03-21 | 주식회사 윈텔 | Plasma generation apparatus and substrate processing apparatus |
KR101504532B1 (en) * | 2012-03-09 | 2015-03-24 | 주식회사 윈텔 | Plasma Processing Method And Substrate Prosessing Apparatus |
JP5713043B2 (en) * | 2012-05-07 | 2015-05-07 | 株式会社デンソー | Manufacturing method of semiconductor substrate |
US10049948B2 (en) * | 2012-11-30 | 2018-08-14 | Lam Research Corporation | Power switching system for ESC with array of thermal control elements |
US20170092470A1 (en) * | 2015-09-28 | 2017-03-30 | Applied Materials, Inc. | Plasma reactor for processing a workpiece with an array of plasma point sources |
-
2015
- 2015-09-28 US US14/867,240 patent/US20170092470A1/en not_active Abandoned
-
2016
- 2016-05-25 TW TW105116211A patent/TWI709995B/en active
- 2016-05-25 TW TW109135324A patent/TWI778429B/en active
- 2016-06-12 JP JP2016116738A patent/JP6831644B2/en active Active
- 2016-08-11 KR KR1020160102451A patent/KR102545738B1/en active IP Right Grant
- 2016-09-27 CN CN201721159736.9U patent/CN207503911U/en not_active Expired - Fee Related
- 2016-09-27 CN CN201621084463.1U patent/CN206546813U/en not_active Expired - Fee Related
- 2016-09-27 CN CN201610857555.7A patent/CN106558468B/en active Active
-
2020
- 2020-03-24 US US16/828,694 patent/US10957518B2/en active Active
-
2021
- 2021-01-29 JP JP2021012633A patent/JP7313387B2/en active Active
-
2023
- 2023-05-12 JP JP2023079118A patent/JP2023100969A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683548A (en) * | 1996-02-22 | 1997-11-04 | Motorola, Inc. | Inductively coupled plasma reactor and process |
TW376531B (en) * | 1996-10-24 | 1999-12-11 | Applied Materials Inc | Parallel-plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density |
CN100372971C (en) * | 2000-06-30 | 2008-03-05 | 兰姆研究有限公司 | Switched uniformity control |
US20080309242A1 (en) * | 2005-05-11 | 2008-12-18 | Dublin City University | Plasma Source |
TW200839924A (en) * | 2007-01-15 | 2008-10-01 | Tokyo Electron Ltd | Plasma processing apparatus, plasma processing method and storage medium |
US7976674B2 (en) * | 2007-06-13 | 2011-07-12 | Tokyo Electron Limited | Embedded multi-inductive large area plasma source |
TW200920192A (en) * | 2007-10-22 | 2009-05-01 | New Power Plasma Co Ltd | Capacitively coupled plasma reactor |
CN103620729A (en) * | 2011-04-11 | 2014-03-05 | 朗姆研究公司 | E-beam enhanced decoupled source for semiconductor processing |
CN103748665A (en) * | 2011-05-10 | 2014-04-23 | 朗姆研究公司 | Semiconductor processing system having multiple decoupled plasma sources |
US20140265846A1 (en) * | 2013-03-15 | 2014-09-18 | Tokyo Electron Limited | Scalable and uniformity controllable diffusion plasma source |
Also Published As
Publication number | Publication date |
---|---|
CN106558468B (en) | 2020-07-17 |
JP2017069540A (en) | 2017-04-06 |
TW202125572A (en) | 2021-07-01 |
CN207503911U (en) | 2018-06-15 |
TW201712722A (en) | 2017-04-01 |
US10957518B2 (en) | 2021-03-23 |
TWI778429B (en) | 2022-09-21 |
US20200312630A1 (en) | 2020-10-01 |
JP7313387B2 (en) | 2023-07-24 |
JP2023100969A (en) | 2023-07-19 |
JP2021093363A (en) | 2021-06-17 |
KR20170039557A (en) | 2017-04-11 |
CN206546813U (en) | 2017-10-10 |
US20170092470A1 (en) | 2017-03-30 |
JP6831644B2 (en) | 2021-02-17 |
KR102545738B1 (en) | 2023-06-19 |
CN106558468A (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI709995B (en) | A plasma reactor for processing a workpiece with an array of plasma point sources | |
KR100774521B1 (en) | Plasma reactor having multiple antenna structure | |
US20090294065A1 (en) | Ceiling electrode with process gas dispersers housing plural inductive rf power applicators extending into the plasma | |
KR101496841B1 (en) | Compound plasma reactor | |
JP2021044540A (en) | Substrate supporter and plasma processing apparatus | |
KR20090008932A (en) | Plasma reactor having multi-core plasma generation plate | |
US20140273538A1 (en) | Non-ambipolar electric pressure plasma uniformity control | |
JP2024086851A (en) | Plasma processing device | |
KR20080028848A (en) | Inductively coupled plasma reactor for wide area plasma processing | |
CN103715050A (en) | Substrate supporting assembly and substrate treating apparatus | |
KR101112745B1 (en) | Plasma reactor have a variable capacitively coupled plasma | |
KR20110027396A (en) | Apparatus and method for plasma processing | |
KR101775361B1 (en) | Plasma process apparatus | |
JP7504686B2 (en) | Plasma processing apparatus and plasma processing method | |
KR20080028518A (en) | Inductively coupled plasma reactor for wide area plasma processing | |
US11043362B2 (en) | Plasma processing apparatuses including multiple electron sources | |
KR100585198B1 (en) | Plasma generator for processing of wafer edge | |
KR101073833B1 (en) | Plasma processing apparatus | |
KR20090073327A (en) | Apparatus for high density remote plasma processing | |
KR20160081006A (en) | Shower head unit and apparatus for treating a substrate with the shower head unit | |
RU2178219C1 (en) | Method and device for plasmachemical treatment of substrates | |
KR102409167B1 (en) | Plasma generating apparatus | |
JP5650281B2 (en) | Plasma processing method and plasma processing apparatus | |
KR102197611B1 (en) | System for treating substrate | |
KR101237400B1 (en) | plasma etching apparatus |