TWI487180B - 非水系鋰型蓄電元件用正極材料 - Google Patents

非水系鋰型蓄電元件用正極材料 Download PDF

Info

Publication number
TWI487180B
TWI487180B TW097144019A TW97144019A TWI487180B TW I487180 B TWI487180 B TW I487180B TW 097144019 A TW097144019 A TW 097144019A TW 97144019 A TW97144019 A TW 97144019A TW I487180 B TWI487180 B TW I487180B
Authority
TW
Taiwan
Prior art keywords
activated carbon
positive electrode
storage element
amount
hours
Prior art date
Application number
TW097144019A
Other languages
English (en)
Other versions
TW200937709A (en
Inventor
Akihiro Mabuchi
Toshio Tsubata
Michiko Shimoyamada
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of TW200937709A publication Critical patent/TW200937709A/zh
Application granted granted Critical
Publication of TWI487180B publication Critical patent/TWI487180B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

非水系鋰型蓄電元件用正極材料
本發明係關於一種兼具有高能量密度與高輸出的非水系鋰型蓄電元件用正極材料。
近年來,由於注重地球環保及節能之有效利用能源之觀點,將目光集中於深夜電力貯存系統、藉由太陽能發電技術之家庭用分散型蓄電系統、電動汽車用之蓄電系統等。
於該等之蓄電系統中之第一要求事項,係使用具有高能量密度之電池。作為可因應此等要求之高能量密度電池之最佳候選,正致力於鋰離子電池之開發。
第二要求事項係具有高的輸出特性。例如,於高效率引擎與蓄電系統之組合(例如,混合電力汽車)、或是燃料電池與蓄電池系統之組合(例如,燃料電池電力汽車)中,要求加速時蓄電系統中的高輸出放電特性。
現在,就高輸出蓄電元件而言,已開發有一種電極使用活性碳之雙重電力電容器[以下,亦簡稱為電容器(capacitor)],具有高的耐久性(循環特性、高溫保存特性)、約0.5至1kW/L左右之輸出特性。該等之雙重電力電容器,可推測係於上述要求高輸出之領域中之最佳元件,但該能量密度係未超過1至5Wh/L左右,於實用上,輸出持續時間會成為絆腳石。
另一方面,現在於混合電力汽車所採用鎳氫電池,係實現與雙重電力電容器相同之高輸出,且具有160Wh/L左右之能量密度。因此,致力於進行更加提高該等電池之能量密度、輸出之同時,更加改善於高溫之穩定性、提高耐久性之研究。
再者,於鋰離子電池中,仍正在進行朝向高輸出化之研究。例如,正在開發於放電深度(表示已放電元件之放電容量的幾%之放電狀態之值)50%中,獲得超過3kW/L之高輸出之鋰離子電池,但該等之能量密度是100kW/L以下,係為具有抑制鋰離子電子之最大特徵之高能量密度之設計。再者,關於其耐久性(循環特性、高溫保存特性),與雙重電力電容器相比較會較差。因此,為了具有實用的耐久性,只能在放電深度比0至100%之範圍更狹窄的範圍內使用。因而實際上可使用之電容變得更小,正致力於進行為了更加提升耐久性之研究。
如上所述,強力要求兼具高輸出、高能量密度、耐久性的蓄電元件之實用化,但是,現在作為滿足該等技術上的要求之蓄電元件,正開發一種稱作鋰離子電容器之蓄電元件。
電容器之能量密度係與電容和耐電壓成正比例。雙重電力電容器之耐電壓是2至3V左右,嘗試在電解溶液中使用含有鋰鹽之非水系電解溶液,擬提升耐電壓,例如,提出有一種電容器之正極、負極使用活性碳、電解溶液使用含有鋰鹽之非水系電解溶液(參考後述之日本專利文獻1、2及3),但由於相對於負極活性碳之鋰離子的充放電效率不佳,故存在有循環特性之問題。再者,亦有檢討正極使用活性碳、負極使用石墨等碳質材料(參考後述之日本專利文獻4、5及6),但由於負極之石墨之輸入輸出之特性不佳,因此容易發生實施循環試驗之鋰的樹狀突起(dendrite)等循環特性之問題。
再者,已知有一種正極使用碳化氫材料之蓄電元件,該該蓄電元件係具有碳質材料之氫/碳之原子比為0.05至0.5、BET比表面積為300至2000M2 /g,且根據BJH法之介(meso)孔容積為0.02至3ml/g,根據MP法之全細孔容積為0.3至1.0ml/g之細孔構造(參考後述之日本專利文獻7),但本發明者等實施追加試驗後得知其存在有靜電容量雖大但輸出特性不充分之課題。
另一方面,已知有一種蓄電元件用負極材料,係當作吸藏(occlusion)釋放鋰離子之負極材料,於活性碳表面上以被覆碳質材料之碳質材料,將來自直徑20至500之細孔之介孔量設為Vml(cc/g)、將來自直徑未達20之細孔之微(micro)孔量設為Vm2(cc/g)時,0.01≦Vm1≦0.20且0,01≦Vm2≦0.40(參考後述之日本專利文獻8)。該負極材料係一種相對於鋰離子之充放電效率高、且輸出特性佳之材料。
專利文獻1:日本特開平11-121285號公報
專利文獻2:日本特開平11-297578號公報
專利文獻3:日本特開2000-124081號公報
專利文獻4:日本特開昭60-182670號公報
專利文獻5:日本特開平08-107048號公報
專利文獻6:日本特開平10-027733號公報
專利文獻7:日本特開2005-093778號公報
專利文獻8:日本特開2003-346801號公報
本發明之目的係提供一種於高輸出密度時,可維持高容量之蓄電元件用正極材料。
本發明人等係為了提升上述之日本專利文獻8所揭示之蓄電元件之輸出性能,包含日本專利文獻7中所述之具有細孔構造之活性碳,廣泛檢討正極活性物質之結果,發現當正極使用具有特定之細孔構造之活性碳時,在幾乎同樣地維持蓄電元件之能量密度之前提下,可大幅提升輸出力特性。
亦即,本發明係提供一種下述之非水系鋰型蓄電元件用正極材料;
1.一種非水系鋰型蓄電元件用正極材料,係於負極使用吸藏釋放鋰離子的材料之非水系鋰型蓄電元件用正極材料,其特徵為:將使用於該正極之正極活性物質的活性碳之來自直徑20至500之細孔之介孔量設為V1(cc/g)、將活性碳之來自直徑未達20之細孔之微孔量設為V2(cc/g)時,0.3<V1≦0.8且0.5≦V3≦1.0。
2.如上述1中所述之非水系鋰型蓄電元件用正極材料,其中,將使用於正極活性物質之活性碳之來自直徑20至500之細孔之介孔量設為V1(cc/g)、將活性碳之來自直徑未達20之細孔之微孔量設為V2(cc/g)時,0.3≦V1/V2≦0.9。
3.如上述1或2中所述之非水系鋰型蓄電元件,其中,使用於正極活性物質之活性碳之平均細孔徑為17至25
4.如上述1至3中任一項中所述之非水系鋰型蓄電元件用正極材料,其中,使用於正極活性物質之活性碳之BET比表面積為1500m2 /g至3000m2 /g。
本發明之非水系鋰型蓄電元件用正極材料,係具有相較於習知之電池或電容器於高輸出密度時更能維持高容量之效果。
以下,詳細地說明關於本發明之實施形態。
本發明之蓄電元件用正極活性物質係具有細孔之活性碳,將來自直徑20至500之細孔之介孔量設為V1(cc/g)、將來自直徑未達20之細孔之微孔量設為V2(cc/g)時。本發明之第1態樣之特徵係0.3<V1≦0.8,且0.5≦V2≦1.0。本發明之第2態樣之特徵係追加第1態樣之重要事項,為0.3≦V1/V2≦0.9。本發明之第3態樣之特徵,係追加第1態樣或第2態樣之重要事項,而且,平均細孔徑為17至25。本發明之第4態樣之特徵,係追加第1態樣至第3態樣中任一態樣之重要事項,BET比表面積為1500m2 /g至2500m2 /g。
作為上述活性碳之原料而使用之碳質材料,若為作為一般活性碳原料使用之碳來源時,則無特別限定,例如,可列舉木材、木粉、椰子殼、紙漿(pulp)製造時之副產物、蔗渣(bagasse)、廢糖蜜等之植物系原料;泥煤碳、褐媒(lignite)、褐媒(brown coal)、瀝青煤(bistuminous coal)、無煙煤、石油蒸餾殘渣成分、石油瀝青(pitch)、焦碳、煤焦油(coal tar)等之石化系原料;苯酚樹脂、氯化乙烯樹脂、乙酸乙烯樹脂、三聚氰胺(melamine)樹脂、尿素樹脂、間苯二酚(resorcinol)樹脂、賽璐珞(celluloid)、環氧樹脂、聚氨酯(polyurethane)樹脂、聚酯樹脂、聚醯胺(polyamide)樹脂等各種合成樹脂;聚丁烯(polybutylene)、聚丁二烯(polybutadiene)、聚氯丁烯(polycholoroprene)等之合成橡膠;其他合成木材、合成紙漿等,或是該等之碳化物。該等原料中以椰子殼、木粉等之植物系原料、或是該等之碳化物為佳,特別以椰子殼碳為最佳。
就原料碳化、活化方式而言,例如,可採用固定床方式、移動床方式、流動床方式、泥漿(slury)方式、旋轉窰爐(rotary kiln)方式等眾所周知之方式。
就原料之碳化方法而言,可列舉使用氮氣、二氧化碳、氦氣、氬氣、氙氣、氮氣、一氧化碳、燃燒廢氣等惰性氣體,或是與該等惰性氣體為主成分之其他氣體之混合氣體,在400℃至700℃(特別是450℃至600℃)左右下燒結30分鐘至10小時左右之方法。
就原料之活化方法而言,係使用水蒸氣、二氧化碳、氧氣等活化氣體進行燒結之氣體活化法。其中,活化氣體係以水蒸氣或二氧化碳為佳。
該活化方法係一邊以0.5至3.0kg/h(特別是以0.7至2.0kg/h)之比率供應活化氣體,一邊用3至12小時(較佳為5至11小時,最佳為6至10小時),升溫至800℃至1000℃以進行活化為佳。
再者,在實施上述之原料之活化處理之前,亦可預先將原料實施1次活化處理。通常是對碳質材料使用水蒸氣、二氧化碳、氧氣等活化氣體,以未達900℃實施燒結,以進行氣體活化即可。
藉由適當組合上述碳化方法中之燒結溫度/時間,與上述之活化方法中之活化氣體供給量/升溫速度/最高活化溫度,可製得具有下列特徵的本發明之活性碳。
藉由實施該等方法製得之活性碳,係於本發明中具有下列之特徵。
亦即,將來自活性碳之直徑20至500之細孔之介孔量設為V1(cc/g)、將來自直徑未達20之細孔之微孔量設為V2(cc/g)時,0.3<V1≦0.8,且0.5≦V2≦1.0。如後述之實施例所表示之介孔量V1與微孔量V2,乃係於上述之活化方法中,藉由加長達到最高活化溫度為止之升溫時間而可以增加其量。
由增大組裝在元件時之輸出特性的觀點來看,介孔量V1以比0.3g/cc大的值為佳,再者,由於抑制元件之容量降低之觀點來看,其值在0.8或以下為佳,而且,較佳者係0.35g/cc至0.7g/cc,最佳者係比0.4g/cc大的值、且於0.6g/cc或以下。
另一方面,為了加大活性碳之比表面積、增加容量,微孔量V2係以0.5g/cc或以上為佳,再者,由抑制活性碳之容積,增加作為電極之密度,且增加每單位體積之容量的觀點來看,以1.0g/cc或以下為佳,再者,較佳者係0.6g/cc至1.0g/cc,最佳者係0.8g/cc至1.0g/cc。而且,介孔量V1與微孔量V2係以0.3≦V1/V2≦0.9之範圍為佳。此乃由與微孔量相比較,介孔量較多,且一邊得到容量,一邊抑制輸出特性之降低之觀點來看,V1/V2係以0.3或以上為佳。再者,乃係由與介孔量相比較,微孔量較多,一邊得到輸出特性,一邊抑制容量之降低之觀點來看,V1/V2係以0.9或以下為佳。再且,較佳的範圍係0.4≦V1/V2≦0.7,最佳範圍係0.55≦V1/V2≦0.7。
再者,由於本發明的蓄電元件用正極活性物質之活性碳平均細孔徑,係由設定最大的輸出之觀點來看,較佳者為17或以上,更佳者為18或以上,最佳者為20或以上。而且,由設定最大容量之觀點,以25或以下為佳。於本發明中所述之平均細孔徑,乃係測定於液體氮溫度中各相對壓力下之氮氣的各平衡吸著量後所得到之每重量之全細孔容積除以BET比表面積而求得者。
再且,本發明之蓄電元件用正極活性物質之活性碳,該BET比表面積係以1500m2 /g至3000m2 /g為佳,較佳者為1500m2 /g至2500m2 /g。
於使用本發明之正極活性物質之蓄電元件所使用之負極活性物質,係可列舉出使用碳質材料、鋰鈦複合氧化物、導電性高分子等、吸藏釋放鋰離子之材料,但是,較佳者係難石墨性碳精粉、易石墨性碳精粉,如於日本專利文獻8中揭示之複合多孔性材料的碳質材料。再者,較佳者係於活性碳之表面上被覆碳質材料之複合多孔性材料,將來自直徑20至500之細孔之介孔量設為Vm1(cc/g)、將來自直徑未滿20之細孔之微孔量設為Vm2(cc/g)時,使用0.01≦Vm1≦0.20且0.01≦Vm2≦0.40之碳質材料更佳。如該等之碳質材料,係可利用於日本專利文獻8揭示之下列方法製得。
亦即,上述之碳質材料,係於活性碳與碳質材料前驅物共存之狀態下,可藉由熱處理製得。
在此,當作原料使用之活性碳,係只要所製得之複合多孔性材料發揮所期待之特性,則作為活性碳之前的原材料等無特別限製,可使用來自石油系、煤系、植物系、高分子系等之各種原材料之市售品,以使用平均粒徑1至500μm左右(較佳者係1至50μm)之活性碳粉末為佳。
再者,碳質材料前驅物乃係藉由熱處理,可於活性碳被覆碳質材料之液體或於溶劑中可溶解之有機質材料,例如,可列舉出瀝青、介穩相球狀碳(meso carbon micro beads)、焦炭或是苯酚樹脂等之合成樹脂。該等之碳質材料前驅物之中,於製造成本上以使用廉價的瀝青為佳。瀝青大致區分為石油系瀝青與煤系瀝青,例如,就石油系瀝青而言,有原油之蒸餾殘渣、流動性接觸分解殘渣(癸醯decantoyl等)、來自熱裂解(thermal cracker)之殘渣油、石腦油裂解時所得到的乙烯焦油等例。
使用上述之瀝青時,複合多孔性材料,係於活性碳之表面,藉由使瀝青之揮發成分或熱分解成分產生熱反應、藉由活性碳上被覆碳質材料而製得。此時,於200至500℃左右之溫度下,進行瀝青之揮發成分、或熱分解成分之對活性碳細孔內之被覆,於400℃以上該被覆成分會進行形成碳質材料之反應。熱處理之峰值溫度,係依據製得之複合多孔性材料之特性、熱反應圖案、熱反應環境氣體等,適當地決定,但以400℃或以上為佳,較佳者係450℃至1000℃,特別以500℃至600℃左右之峰值溫度為最佳。再者,維持熱處理時之峰值溫度之時間,係由30分鐘至10小時即可,較佳者為1小時至7小時,更佳者係2小時至5小時。於500至800℃左右之峰值溫度,實施2小時至5小時之熱處理時,可推測被覆於活性碳表面之碳質材料,係形成多環芳香族系碳化氫。
於本發明中,微孔量與介孔量係藉由如下列之方法而求得之值。亦即,以500℃實施試料之一晝夜真空乾燥,以氮為吸著質,進行吸脫著之等溫線之測定。使用此時之脫著側之等溫線,微孔量是藉由MP法、介孔量是藉由BJH法計算出。MP法乃係利用『t-polt(標繪圖)』(B. C. Lippens,J. H. de Boer,J. Catalysis,4319(1965)),求得微孔容積、微孔面積及微孔之分布的方法,藉由M. Mikhail,Brunauer,Bodor考察出之方法(R. S. Mikhail,S. Brunauer,E. E. Bodor,J. colloid Interface Sci,26,45(1968))。再者,BJH法一般係使用於介孔之解析之計算方法,藉由BarrEtt,Joyner,Halenda等提倡之方法。(B. P. Barrett,L. G. Joyner and P. Halenda,J. Amer. Chem. Soc.,73,373(1951))
上述之正極活性物質、負極活性物質,係藉由眾所周知之方法於電極上實施成型後,可使用組合由含有鋰鹽之非水系電解液與活性碳所形成之正極,當作非水系鋰型蓄電元件之構成材料。
就於電極上成型之方法而言,可藉由眾所周知的鋰離子電池、電容器等之電極製造技術製得,例如,使用屬於黏著劑之樹脂之有機溶劑溶液,於屬於集電體之金屬上塗佈活性物質層、進行乾燥,因應所需而藉由實施衝壓製得。再者,於活性物質層上,因應所需除了活性物質外,亦可含有微粒子石墨、乙炔炭黑(acetylene black)、乙烯酮炭黑(Ketene black)、氣相成長碳纖維等。
經成型後之正極、負極,係隔介隔離膜而形成積層或捲迴積層,插入由罐或是層壓薄膜形成之外裝體,隔離膜可使用被應用於鋰離子充電池之聚乙烯製之微多孔膜、聚丙烯製之微多孔膜、或是使用於雙重電力電容器之纖維素製之不織紙等。隔離膜之厚度,乃係由縮小因內部之微短路所致之自我放電之觀點來看,以10μm或以上為佳,再者,由增加蓄電元件之能量密度至最大,且抑制輸出特性之降低之觀點來看,以50μm或以下為佳。
就使用本發明的正極活性物之蓄電元件所使用之非水系電解液之溶媒而言,係可使用代表碳酸乙烯(EC)、碳酸丙烯(PC)之環狀碳酸酯、代表碳酸二乙酯(DEC:diethyl carbonate)、碳酸二甲酯(DMC:dimethyl carbonate)、碳酸甲乙酯(MEC)之鏈狀碳酸酯、γ-丁內酯(γ-butyrolactone)(γBL))等之內酯(lactone)類及該等之混合溶劑。
於該等溶媒中溶解之電解質,係必須為鋰鹽,例示適當之鋰鹽,可列舉出LiBF4 、LiPF6 、LiN(SO2 C2 F5 )2 、LiN(SO2 CF3 )(SO2 C2 F5 )、LiN(SO2 CF3 )(SO2 C2 F4 H)及該等之混合鹽。非水系電解液中之電解濃度,為了能抑制因陰離子不足造成之蓄電元件之容量的降低,以0.5mol/L以上為佳,再者,由於在該電解液中析出有未溶解之鹽,或是,該電解液之黏度變得過高,因此由防止傳導度降低、輸出特性下降之觀點來看,以2.0mol/L或以下為佳。
使用本發明的正極活性物質之非水系鋰型蓄電元件所使用之負極中,係可預先摻雜鋰,藉由預先摻雜鋰,可控制元件之容量及動作電壓。
(實施例)
以下表示實施例、比較例,更明確地說明木發明之特徵。
<實施例1>
於小型碳化爐中,對已打碎之椰子殼碳化品在氮氣中以500℃進行碳化。再者,於預熱爐中加熱之狀態下投入取代氮氣之1kg/h的水蒸氣至爐內,以8小時升溫至900℃後取出,於氮氣環境下冷卻後製得活性碳。將製得的活性碳實施10小時通水洗淨後去除水分,然後,於保持在115℃之電力乾燥機內,進行乾燥10小時後,以球磨機進行1小時之粉碎,而製得成為正極材料之活性碳。
使用YUASAAIONIX公司製之細孔分布測定裝置(AUTOSORB-1 AS-1-MP)對本活性碳測定細孔分布,結果,BET比表面積係2360m2 /g、介孔量(V1)係0.52cc/g、微孔量(V2)係0.88cc/g、V1/V2=0.59,平均細孔徑為22.9。於正極活性物質中使用該活性碳,混合活性碳83.4重量份、乙炔炭黑8.3重量份及聚偏二氟乙烯(PVDF:polyvinylidene flurorite)8.3重量份與N-甲基吡喀烷酮(NMP:N-methylpyrrolidone),製得泥漿液。再者,於厚度15μm之鋁箔之單一面塗佈所製得的泥漿液,進行乾燥、衝壓而製得厚度60μm之正極。
再且,於小型碳化爐中,在氮氣中,以500℃對打碎之椰子殼碳化品進行碳化。再者,以預熱爐加溫之狀態下,投入取代氮氣的2kg/h之水蒸氣,以4小時升溫至900℃後取出,於氮氣環境下進行冷卻,而製得活化之活性碳,將製得的活性碳實施10小時之通水洗淨後去除水分。而且於保持115℃之電力乾燥機內,進行乾燥10小時後,以球磨機進行1小時之粉碎,以製得活性碳。
使用YUASAAIONIX公司製細孔分布測定裝置(AUTOSORB-1 AS-1-MP)測定該活性碳之細孔分布,結果,BET比表面積為1620m2 /g、介孔量(V1)為0.18cc/g、微孔量(V2)為0.67cc/g、V1/V2=0.27,平均細孔徑為20.7。於不銹鋼網製之籠子中,放入該活性碳150g,於不銹鋼製之槽(vat)上放置煤系瀝青(軟化點:80℃)300g,設置於電氣爐(爐內有效尺寸300mm×300mm×300mm)內,進行熱反應。熱處理係於氮氣環境下,以4小時升溫至670℃,於同溫度下保持4小時,接著藉由自然冷卻,冷卻至60℃後,由爐中取出。
製得之生成物(以下,係稱作「本複合多孔性材料」。)之BET比表面積係255m2 /g、重量係236.6g。由於原料活性碳之重量增加57.7%,複合比係計算為0.577。而且,本複合多孔性材料之介孔量(Vm1)係0.0656cc/g、微孔量(Vm2)係0.107cc/g。
再者,混合於上記所製得之本複合多孔性材料83.4重量份、乙炔炭黑8.3重量份及聚偏二氟乙烯(PVDF)8.3重量份與N-甲基吡喀酮(NMP),製得淤漿液。接著,於厚度14μm之銅箔之單一面上塗布所製得的泥漿液,再準行乾燥、衝壓而製得厚度40μm之負極。
分別切取上述所製得之正極、負極之2cm2 ,隔著厚度30μm之不織布製分離膜使活性物質面相對向,封入使用聚丙烯與鋁之由層壓薄膜製成之容器中,而組裝非水系鋰型蓄電元件。此時,負極係使用相當於材料重量每700mAh/g之鋰離子、鋰金屬,於電力化學上使用實施預摻雜之材料,使用以1mol/L之濃度將LiPF6 溶解在以3:7重量比混合當作電解液之碳酸乙烯酯與碳酸二乙酯之溶媒的溶液。
使用ASKA電子製造之充放電裝置(ACD-01),以1mA之電流將所製作之蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓之定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.42mA,再者,進行同樣之充電,以250mA放電至2.0V時,可得到0.27mAh之容量。亦即,以250mA之放電容量與以1mA之放電容量之比係0.64。
<比較例1>
就正極之活性碳而言,除了使用實施例1所述之本複合多孔性材料之原材料所用的活性碳(BET比表面積為1620m2 /g、介孔量(V1)為0.18cc/g、微孔量(V2)為0.67cc/g、V1/V2=0.27、平均細孔徑為20.7)直接當作正極活性物質以外,係以與實施例1相同之方法製作非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後以8小時進行施加4.0V之定電壓的定電流定電壓充電。再者,以1mA之定電流放電至2.0V。放電容量係0.39mAh。接著,進行同樣之充電,以250mA放電至2.0V時,得到0.17mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的此係0.44。
<實施例2>
於小型碳化爐中對被打碎之椰子殼碳化品在氮氣中以500℃進行碳化。然後,於預熱爐中在加溫狀態下往爐內投入取代氮氣之1kg/h之水蒸氣,以10小時升溫至900℃後取出,於氮氣環境下進行冷卻,以製得活性碳。對所製得之活性碳進行10小時之通水洗淨後去除水分。再者,於保持115℃之電力乾燥機內進行10小時之乾燥後,以球磨機進行1小時之粉碎,而製得成為正極材料之活性碳。
使用YUASAAIONIX公司製細孔分布測定裝置(AUTOSORB-1 AS-1-MP)測定本活性碳之細孔分布,結果,BET比表面積為2700m2 /g、介孔量(V1)為0.63cc/g、微孔量(V2)為0.92cc/g、V1/V2=0.68,平均細孔徑為20.3。除了使用該活性碳當作正極活性物質之外,以與實施例1同樣之方法製作電極,而製作出非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓的定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.47mAh。再者,進行同樣之充電方式,以250mA放電至2.0V時,得到0.29mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的比係是0.62。
<實施例3>
於小型碳化爐中對被打碎之椰子殼碳化品在氮氣中以500℃進行碳化。然後於預熱爐中在加溫狀態下往爐內投入取代氮氣久1kg/h之水蒸氣,以6小時升溫至900℃後取出,於氮氣環境下進行冷卻,而製得活性碳。對所製得之活性碳進行10小時之通水洗淨後去除水分。再者,於保持115℃之電力乾燥機內進行10小時乾燥後,以球磨機進行1小時之粉碎,而製得成為正極材料之活性碳。
使用YUASAAIONIX公司製細孔分布測定裝置(AUTOSORB-1 AS-1-MP)測定本活性碳之細孔分布,結果,BET比表面積為1700m2 /g、介孔量(V1)為0.35cc/g、微孔量(V2)為0.68cc/g、V1/V2=0.52,平均細孔徑為21.6。除了使用該活性碳當作正極活性物質之外,以與實施例1同樣之方法製作電極,而製作出非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓的定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.40mAh。再者,進行同樣之充電方式,以250mA放電至2.0V時,得到0.21mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的比係0.53。
<實施例4>
於小型碳化爐中,對被打碎之椰子殼碳化品。於氮氣中以500℃進行碳化。然後,於預熱爐中在加溫狀態下往爐內投入取代氮氣之1kg/h之水蒸氣,以7小時升溫至900℃後取出,於氮氣環境下進行冷卻,而製得活性碳。對所製得之活性碳進行10小時之通水洗淨後去除水分。再者,於保持115℃之電力乾燥機內進行10小時之乾燥後,以球磨機進行1小時之粉碎,而製得成為正極材料之活性碳。
使用YUASAAIONIX公司製細孔分布測定裝置(AUTOSORB-1 AS-1-MP)測定本活性碳之細孔分布,結果,BET比表面積為2050m2 /g、介孔量(V1)為0.46cc/g、微孔量(V2)為0.77cc/g、V1/V2=0.60,平均細孔徑為20.9Å。除了使用該活性碳當作正極活性物質之外,以與實施例1同樣之方法製作電極,而製作出非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓的定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.44mAh。再者,進行同樣之充電方式,以250mA放電至2.0V時,得到0.25mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的比係0.57。
<比較例2>
除了正極活性碳係使用市售的瀝青系活性碳(BET比表面積為2300m2 /g、介孔量(V1)為0.11cc/g、微孔量(V2)為0.95cc/g、V1/V2=0.12,平均細孔徑為17.6Å)來作為正極活性物質之外,以與實施例1相同之方法製作電極,而製得非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓的定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.48mAh。再者,進行同樣之充電方式,以250mA放電至2.0V時,得到0.15mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的比係0.32。
<比較例3>
除了正極活性碳係使用市售的瀝青系活性碳(BET比表面積為1960m2 /g、介孔量(V1)為0.14cc/g、微孔量(V2)為0.78cc/g、V1/V2=0.18,平均細孔徑為18.7)為正極活性物質之外,以與實施例1相同之方法製作電極,而製得非水系鋰型蓄電元件。
以1mA之電流將所製作的蓄電元件充電至4.0V,然後,以8小時進行施加4.0V之定電壓的定電流定電壓充電。接著,以1mA之定電流放電至2.0V。放電容量係0.49mAh。再者,進行同樣之充電方式,以250mA放電至2.0V時,得到0.22mAh之容量,亦即,以250mA之放電容量與以1mA之放電容量的比係0.45。
於表1中彙集以上之結果(再者,表1中,上述之放電容量之比係表示為以250mA之容量保持率%)
[表1]
(產業上利用之可能性)
使用本發明之正極活性物質之蓄電元件,係可適當應用於汽車中組合內燃機或是燃料電池、馬達及蓄電元件之混合驅動系統之領域,再者,應用於瞬間電力高峰之補助用途等。
第1圖係使用本發之正極活性物質之蓄電元件之剖面之一例。
無元件符號

Claims (1)

  1. 一種非水系鋰型蓄電元件用正極材料,係於負極活性物質使用吸藏釋放鋰離子之碳質材料的非水系鋰型蓄電元件用正極材料,其特徵為:使用於該正極材料之正極活性物質之活性碳之BET比表面積為1500m2 /g至3000m2 /g,平均細孔徑為17Å至25Å,且將來自直徑20Å至500Å之細孔之介孔量設為V1(cc/g)、將來自直徑未達20Å之細孔之微孔量設為V2(cc/g)時,0.3<V1≦0.8且0.5≦V2≦1.0,並且0.3≦V1/V2≦0.9。
TW097144019A 2007-11-16 2008-11-14 非水系鋰型蓄電元件用正極材料 TWI487180B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297747 2007-11-16

Publications (2)

Publication Number Publication Date
TW200937709A TW200937709A (en) 2009-09-01
TWI487180B true TWI487180B (zh) 2015-06-01

Family

ID=40717562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144019A TWI487180B (zh) 2007-11-16 2008-11-14 非水系鋰型蓄電元件用正極材料

Country Status (7)

Country Link
US (1) US20100276631A1 (zh)
EP (1) EP2221841A4 (zh)
JP (1) JP5463144B2 (zh)
KR (1) KR101516461B1 (zh)
CN (1) CN101861634B (zh)
TW (1) TWI487180B (zh)
WO (1) WO2009072381A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563239B2 (ja) * 2009-05-13 2014-07-30 関西熱化学株式会社 多孔質炭素材料の製造方法
WO2011028804A2 (en) 2009-09-02 2011-03-10 Ut-Battelle, Llc Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
JP5498279B2 (ja) * 2010-06-30 2014-05-21 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極炭素材料用の原料油組成物
KR101155915B1 (ko) * 2010-09-13 2012-06-20 삼성에스디아이 주식회사 리튬 이차 전지
KR101375688B1 (ko) * 2010-12-31 2014-03-20 애경유화주식회사 리튬이차전지용 음극 활물질 및 그 제조방법, 이를 이용한 리튬이차전지
WO2012091515A2 (ko) * 2010-12-31 2012-07-05 애경유화 주식회사 리튬이차전지용 음극 활물질 및 그 제조방법, 이를 이용한 리튬이차전지
JP6011906B2 (ja) * 2011-01-19 2016-10-25 株式会社Gsユアサ 負極、電極体、蓄電素子、及び蓄電素子の製造方法
KR20130056668A (ko) * 2011-11-22 2013-05-30 삼성전자주식회사 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20130194721A1 (en) * 2012-01-26 2013-08-01 Samsung Electro-Mechanics Co., Ltd. Activated carbon for lithium ion capacitor, electrode including the activated carbon as active material, and lithium ion capacitor using the electrode
JP6161328B2 (ja) * 2012-05-18 2017-07-12 Jsr株式会社 電極活物質、電極及び蓄電デバイス
CN104620343B (zh) * 2012-09-20 2017-09-29 旭化成株式会社 锂离子电容器
CN104704586B (zh) * 2012-10-01 2017-05-17 旭化成株式会社 蓄电元件用电极以及非水系锂型蓄电元件
US9679703B2 (en) * 2012-10-08 2017-06-13 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
US20150318121A1 (en) * 2012-12-03 2015-11-05 Obschestvo S Organichennoy Otvetstvennostyu "Tovarischestvo Energeticheskikh 1 Electromobilnyk Method for manufacturing electrical double layer capacitor electrodes
US9748045B2 (en) * 2012-12-06 2017-08-29 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
TWI541845B (zh) 2013-01-22 2016-07-11 Asahi Chemical Ind Lithium ion capacitors
JP2014225574A (ja) * 2013-05-16 2014-12-04 住友電気工業株式会社 キャパシタおよびその充放電方法
JP2015225876A (ja) * 2014-05-26 2015-12-14 旭化成株式会社 非水系リチウム型蓄電素子用正極活物質及びそれを用いた非水系リチウム型蓄電素子
JP6736833B2 (ja) * 2014-09-09 2020-08-05 株式会社リコー 非水電解液蓄電素子
CN107924767B (zh) * 2015-09-10 2019-08-27 株式会社科特拉 锂离子电容器及用作其正极活性物质的碳材料
JP6228712B1 (ja) * 2016-01-22 2017-11-08 旭化成株式会社 非水系リチウム型蓄電素子
KR102049220B1 (ko) * 2016-01-22 2019-11-28 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자
WO2018092721A1 (ja) 2016-11-15 2018-05-24 株式会社クラレ 電気二重層キャパシタ用炭素質材料およびその製造方法
EP3699940B1 (en) * 2017-10-16 2024-10-23 Sekisui Chemical Co., Ltd. Composite body, electrode material for electricity storage devices, and electricity storage device
CN112638824A (zh) * 2018-08-28 2021-04-09 积水化学工业株式会社 碳材料及其制造方法、蓄电设备用电极材料以及蓄电设备
JPWO2021241334A1 (zh) * 2020-05-29 2021-12-02

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221523A (ja) * 2002-11-22 2004-08-05 Hitachi Maxell Ltd 電気化学キャパシタおよびそれを構成要素とするハイブリッド電源
US20050207962A1 (en) * 2004-03-18 2005-09-22 Tda Research, Inc. Porous carbons from carbohydrates
JP2006310412A (ja) * 2005-04-26 2006-11-09 Fuji Heavy Ind Ltd リチウムイオンキャパシタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631073B1 (en) * 1998-08-25 2003-10-07 Kanebo, Limited Electrode material and method for producing the same
US6865068B1 (en) * 1999-04-30 2005-03-08 Asahi Glass Company, Limited Carbonaceous material, its production process and electric double layer capacitor employing it
JP2001089119A (ja) * 1999-04-30 2001-04-03 Adchemco Corp 炭素質材料およびその製造方法およびこれを用いた電気二重層キャパシタ
JP2001118753A (ja) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ用活性炭およびその製造方法
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
JP4527931B2 (ja) * 2002-08-16 2010-08-18 旭化成株式会社 非水系リチウム型蓄電素子
AU2003262276A1 (en) * 2002-08-23 2004-03-11 Nisshinbo Industries, Inc. Electric double-layer capacitor
CN100364021C (zh) * 2003-11-11 2008-01-23 石油大学(北京) 双电层电容器及其制备方法
JP2005286170A (ja) * 2004-03-30 2005-10-13 Daido Metal Co Ltd 電気二重層キャパシタ電極用活性炭の製造方法
JP4705566B2 (ja) * 2004-03-31 2011-06-22 富士重工業株式会社 電極材及びその製造方法
US20060093915A1 (en) * 2004-11-04 2006-05-04 Lundquist Eric G Carbons useful in energy storage devices
JP2006310514A (ja) * 2005-04-28 2006-11-09 Tohoku Univ 電気二重層キャパシタ用電極材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221523A (ja) * 2002-11-22 2004-08-05 Hitachi Maxell Ltd 電気化学キャパシタおよびそれを構成要素とするハイブリッド電源
US20050207962A1 (en) * 2004-03-18 2005-09-22 Tda Research, Inc. Porous carbons from carbohydrates
JP2006310412A (ja) * 2005-04-26 2006-11-09 Fuji Heavy Ind Ltd リチウムイオンキャパシタ

Also Published As

Publication number Publication date
JPWO2009072381A1 (ja) 2011-04-21
EP2221841A4 (en) 2018-03-28
US20100276631A1 (en) 2010-11-04
TW200937709A (en) 2009-09-01
WO2009072381A1 (ja) 2009-06-11
JP5463144B2 (ja) 2014-04-09
CN101861634B (zh) 2013-08-07
KR101516461B1 (ko) 2015-05-04
CN101861634A (zh) 2010-10-13
EP2221841A1 (en) 2010-08-25
KR20100101602A (ko) 2010-09-17

Similar Documents

Publication Publication Date Title
TWI487180B (zh) 非水系鋰型蓄電元件用正極材料
JP5255569B2 (ja) 非水系リチウム型蓄電素子
JP5654820B2 (ja) 正極材料及びその製造方法並びに蓄電素子
JP5554932B2 (ja) 非水系リチウム型蓄電素子
KR101811970B1 (ko) 리튬 이온 캐패시터
JP5479969B2 (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP6262432B2 (ja) リチウムイオンキャパシタの製造方法
JP2010267875A (ja) 非水系リチウム型蓄電素子用負極、及びそれを用いた非水系リチウム型蓄電素子
JP5654742B2 (ja) 非水系リチウム型蓄電素子
JP2015225876A (ja) 非水系リチウム型蓄電素子用正極活物質及びそれを用いた非水系リチウム型蓄電素子
JP5827085B2 (ja) 非水系リチウム型蓄電素子
JP2010205846A (ja) 非水系リチウム型蓄電素子
JP6453560B2 (ja) 非水系リチウム型蓄電素子用負極、及びそれを用いた非水系リチウム型蓄電素子
JP2013080780A (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP6292833B2 (ja) 非水系リチウム型蓄電素子
JP5759677B2 (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP6665033B2 (ja) 非水系リチウム型蓄電素子
JP2014131080A (ja) 非水系リチウム型蓄電素子
JP2014017286A (ja) 非水系リチウム型蓄電素子
JP5894725B2 (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP2023024002A (ja) 正極前駆体及びその製造方法