TW201145541A - Photoelectric conversion device and photoelectric conversion device manufacturing method - Google Patents
Photoelectric conversion device and photoelectric conversion device manufacturing method Download PDFInfo
- Publication number
- TW201145541A TW201145541A TW100111400A TW100111400A TW201145541A TW 201145541 A TW201145541 A TW 201145541A TW 100111400 A TW100111400 A TW 100111400A TW 100111400 A TW100111400 A TW 100111400A TW 201145541 A TW201145541 A TW 201145541A
- Authority
- TW
- Taiwan
- Prior art keywords
- photoelectric conversion
- layer
- semiconductor layer
- type semiconductor
- conversion unit
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 345
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 123
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 239000010409 thin film Substances 0.000 claims abstract description 14
- 239000010408 film Substances 0.000 claims description 138
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 49
- 229910052732 germanium Inorganic materials 0.000 claims description 48
- 229910052707 ruthenium Inorganic materials 0.000 claims description 35
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 33
- 239000004575 stone Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 7
- 239000012789 electroconductive film Substances 0.000 abstract 2
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract 1
- 238000005755 formation reaction Methods 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 21
- 229910052739 hydrogen Inorganic materials 0.000 description 21
- 239000007789 gas Substances 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000012495 reaction gas Substances 0.000 description 14
- 150000002431 hydrogen Chemical class 0.000 description 12
- 238000010248 power generation Methods 0.000 description 11
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000009832 plasma treatment Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052747 lanthanoid Inorganic materials 0.000 description 7
- 150000002602 lanthanoids Chemical class 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 5
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 239000013067 intermediate product Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- -1 Oxide Chemical class 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910021425 protocrystalline silicon Inorganic materials 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
- H01L31/202—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0368—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
- H01L31/03682—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
- H01L31/03685—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
- H01L31/03762—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
- H01L31/076—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
201145541 六、發明說明: 【發明所屬之技術領域】 本發明係關於光電轉換裝置及光電轉換裝置之製造方 法。 本申請案係基於2010年4月2曰在日本申請之專利2〇ι〇_ 0861 81號主張優先權,並在此處引用其内容。 【先前技術】 近年,光電轉換裝置普遍利用於太陽電池或光感測器 等,特別在太陽電池中,從能量之有效利用之觀點來看, 已開始廣泛普及。尤其是利用單晶矽之光電轉換裝置每單 位面積之能量轉換效率優良。但另一方面,由於利用單晶 矽之光電轉換裝置使用將單晶矽晶錠切片成之矽晶圓故 晶錠之製造需花費大量之能量,從而製造成本較高。例 如,若利用矽單晶製造設置於屋外等之大面積之光電裝換 裝置,目前相當花費成本。因此’利用能夠更價廉地製造 之非晶質(amorphous)矽薄膜(以下,亦標記成「心以薄 膜」)之光電轉換裝置已作為低成本之光電轉換裝置而 及中。 然而,利用該非晶質(amorph〇usy夕薄膜之光電轉換裝置 之轉換效率,低於利用單晶矽或多晶矽等之結晶型光電轉 換裝置之轉換效率。因此,作為提高光電轉換裝置之轉換 效率之構造,已提案有積層2個光電轉換單元之多接合型 構造。例如,已知有圖7所示之多接合型光電轉換裝置 200。在該多接合型光電轉換裝置2〇〇中使用的是配置有 155093.doc 201145541 透明導電膜202之絕緣性透明基板2〇 1。於透明導電膜2〇2 上,形成有依序積層ρ型半導體層231、i型矽層(非晶質矽 層)232、n型半導體層233而獲得之pin型第一光電轉換單元 2〇3。於第一光電轉換單元2〇3上’形成有依序積層p型半 導體層241.、i型矽層(結晶質矽層)242、n型半導體層243而 獲得之pin型第二光電轉換單元2〇4。再者,於第二光電轉 換單元204上形成有背面電極205 ^作為製造如此之多接合 i光電轉換裝置之方法,已知有例如專利文獻丨所揭示之 製造方法。 於圖8顯示在如此之多接合型構造之光電轉換裝置中, 包含非晶質矽系薄膜之pin型第一光電轉換單元,與包含 結晶質矽系薄膜之pin型第二光電轉換單元之波長與發電 效率之關係。 如圖8所示,包含結晶質矽系薄膜之pin型第二光電轉換 單疋長波長區域之發電效率低,難以提高作為裝置整體之 光電轉換效率。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利第3589581號公報 【發明内容】 [發明所欲解決之問題] 本發明係鑑於上述問題而完成者,其第一目的在於提供 一種在多接合型光電轉換裝置中’可改善包含結晶質石夕系 薄膜之pin型第二光電轉換單元之長波長區域之發電效 I55093.doc 201145541 率’使光電轉換效率提高之多接合型構造之光電轉換裝 置。 又,本發明係第:目的在於提供_種可以簡單之方法, 製造使光電轉換效率提高之多接合型構造之光電轉換裝置 的光電轉換裝置之製造方法。 又本發明之第二目的在於提供—種在具備包含結晶質 石夕系薄膜之pin型光電轉換單元之單接合型構造之光電轉 換裝置中’可改善長波長區域之發電效率,使光電轉換效 率提高之光電轉換裝置。 再者,本發明之第四目的在於提供一種可以簡單之方 法製&使光電轉換效率提高之單接合型構造之光電轉換 裝置之光電轉換裝置的製造方法。 [解決問題之技術手段] 本發明之第1態樣之光電轉換裝置具備:形成有透明導 電膜^基板,於上述透明導電膜上,依序積層包含非晶質 矽系薄膜之第lp型半導體層、第1實質性本徵i型半導體 層及第1 η型半導體層而形成之Pin型第一光電轉換單 ‘於上述第一光電轉換單元上,依序積層包含結晶質矽 ” 、之第2p型半導體層與第2實質性本徵丨型半導體層、 :包含非晶質矽系薄膜之第2n型半導體層而形成之_型 北—光電轉換單元;及形成於上述第二光電轉換單元上之 月面電極。 道在本發明之第1態樣之光電轉換裝置中,上述第2η型半 導體層之厚度較佳為20〜400 Α。 155093.doc 201145541 ^月之第24樣之光電轉換裝置之製造方法係於 =板之透明導電膜上,依序形成包含非…系薄膜且 構成_型第-光電轉換單元之第lp型半導體層 := 型半導體層、及第h型半導體層™型 =導體層上,依序形成包含結晶質“夕薄膜且構成_型 電轉換單元之第2P型半導體層、及第2實質性本徵i =!體層;於上述第2i型半導體層-,形成包含非晶質 缚膜且構成上述第二光電轉換單元之第2η型半導體 層;於上述第2η型半導體層上形成背面電極。 本發明之第3態樣之光電轉換裝置具備:形成有透明導 電膜^基板;於上述透明導電膜上,依序積層包含結晶質 石夕系薄膜之第3ρ型半導體層、第3實質性本徵i型半導體 層、及包含非晶質矽系薄膜之第孙型半導體層而形成之201145541 VI. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a photoelectric conversion device and a photoelectric conversion device. The present application claims priority based on the Japanese Patent Application No. 2 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Prior Art] In recent years, photoelectric conversion devices have been widely used in solar cells or photo sensors, and in particular, in solar cells, they have been widely used from the viewpoint of efficient use of energy. In particular, the photoelectric conversion device using single crystal germanium has excellent energy conversion efficiency per unit area. On the other hand, since the use of a single crystal germanium photoelectric conversion device for slicing a single crystal twin ingot into a wafer requires a large amount of energy to be produced, and the manufacturing cost is high. For example, it is currently costly to manufacture a large-area photovoltaic device that is installed outside the house using a single crystal. Therefore, a photoelectric conversion device using an amorphous ruthenium film (hereinafter also referred to as "heart-to-film") which can be manufactured at a lower cost has been used as a low-cost photoelectric conversion device. However, the conversion efficiency of the photoelectric conversion device using the amorphous material is lower than that of the crystalline photoelectric conversion device using single crystal germanium or polycrystalline germanium. Therefore, as a conversion efficiency of the photoelectric conversion device is improved. In the structure, a multi-junction type structure in which two photoelectric conversion units are laminated has been proposed. For example, a multi-junction type photoelectric conversion device 200 shown in Fig. 7 is known. In the multi-junction type photoelectric conversion device 2, An insulating transparent substrate 2〇1 of 155093.doc 201145541 transparent conductive film 202 is disposed. On the transparent conductive film 2〇2, a p-type semiconductor layer 231 and an i-type germanium layer (amorphous germanium layer) are sequentially formed. 232, a pin-type first photoelectric conversion unit 2〇3 obtained by the n-type semiconductor layer 233. On the first photoelectric conversion unit 2〇3, a sequentially laminated p-type semiconductor layer 241., an i-type germanium layer (crystallized) is formed. a pin-type second photoelectric conversion unit 2〇4 obtained by the n-type semiconductor layer 243. Further, a back surface electrode 205 is formed on the second photoelectric conversion unit 204 as a manufacturing unit turn For the method of the device, for example, a manufacturing method disclosed in the patent document is known. Fig. 8 shows a pin-type first photoelectric conversion unit including an amorphous lanthanoid film in a photoelectric conversion device having such a multi-joint type structure. The relationship between the wavelength and the power generation efficiency of the pin-type second photoelectric conversion unit including the crystalline lanthanoid film. As shown in Fig. 8, the power generation efficiency of the pin-type second photoelectric conversion unit long wavelength region including the crystalline lanthanoid film The present invention is based on the above-mentioned problems. The problem is that the first object of the present invention is to provide a power generation effect of a long-wavelength region of a pin-type second photoelectric conversion unit including a crystalline stone film in a multi-junction photoelectric conversion device. I55093.doc 201145541 rate A photoelectric conversion device having a multi-junction type structure for improving photoelectric conversion efficiency. Further, the present invention is directed to providing a simple type A method for producing a photoelectric conversion device of a photoelectric conversion device having a multi-junction structure for improving photoelectric conversion efficiency. A second object of the present invention is to provide a pin-type photoelectric conversion including a crystalline quartz film. In the photoelectric conversion device of the single junction type structure of the unit, the photoelectric conversion device which can improve the power generation efficiency in the long wavelength region and improve the photoelectric conversion efficiency. Further, the fourth object of the present invention is to provide a simple method for manufacturing & A method of manufacturing a photoelectric conversion device of a photoelectric conversion device of a single junction type, which has improved photoelectric conversion efficiency. [Technical Solution to Problem] A photoelectric conversion device according to a first aspect of the present invention includes: a transparent conductive film substrate; a Pin-type first photoelectric conversion formed by sequentially stacking an lp-type semiconductor layer including an amorphous lanthanoid thin film, a first substantial intrinsic i-type semiconductor layer, and a first n-type semiconductor layer on the transparent conductive film Single 'on the first photoelectric conversion unit, sequentially stacking a crystalline 矽", a second p-type semiconductor layer and a second Shu of intrinsic type semiconductor layer: an amorphous silicon thin film containing the first-type semiconductor layer is formed 2n _ type of North - photoelectric conversion means; and a lunar surface formed on the electrode of the second photoelectric conversion unit. In the photoelectric conversion device according to the first aspect of the invention, the thickness of the second n-type semiconductor layer is preferably 20 to 400 Å. 155093.doc 201145541 The manufacturing method of the photoelectric conversion device of the 24th type is based on the transparent conductive film of the plate, and sequentially forms the lp type semiconductor layer including the non-...-type film and the photoelectric conversion unit :=================================================================================================== a body layer; a second n-type semiconductor layer constituting the second photoelectric conversion unit including the amorphous bonding film; and a back surface electrode formed on the second n-type semiconductor layer; The photoelectric conversion device according to the third aspect includes: a transparent conductive film substrate; and a third p-type semiconductor layer containing a crystalline stone film and a third substantial intrinsic i-type on the transparent conductive film a semiconductor layer and a semiconductor layer including an amorphous lanthanide film
Pin型第三光電轉換單元;及形成於上述第三光電轉換單 元上之背面電極。 在本發明之第3態樣之光電轉換裝置中,上述第%型半 導體層之厚度較佳為20〜4〇〇 A。 本發明之第4態樣之光電轉換裝置之製造方法係於形成 於基板之透明導電膜上,依序形成包含結晶質㈣薄膜且 構成pin型第三光電轉換單元之第3p型半導體層、及第3實 質性本徵i型半導體層;於上述第3丨型半導體層上,形成包 含非質矽系薄膜且構成上述第三光電轉換單元之第3口型 半導體層,於上述第3n型半導體層上形成背面電極。 [發明之效果] 155093.doc 201145541 在本發明之光電轉換裝 衣直(以下,亦稱為「裝置A」) 中構成上述第一光電轉換單元. a 平兀之P層、1層包含結晶質矽 系薄膜,配置於構成上述第二 _ ^ 尤冤裝換早το之i層與上述 背面電極之間,且構成上述第_ 心步一尤%轉換單兀之η層包含 非晶質系矽薄膜。藉此,可經 稽 了緩和包含結晶質系矽薄膜之i 層,與背面電極之界面, 介囟之不匹配。錯此,可在第一光電轉 換早元中有效地活用包含彡士曰哲会功贫时 G 3、·、〇日日質系矽溥膜之i層之作用, 從而可獲得該i層、與背面雷炻 月卸1:極之界面之晶格匹配,且提 高第二光電轉換單元側之開路電壓(v〇c)。因此,可使第 二光電轉換單元之發電效率提高,從而使裝置整體之光電 轉換效率提高。其結果,可根據本發明,可提供一種提高 光電轉換效率之多接合型構造之光電轉換裝置。 又,由於本發明之光電轉換裝置之製造方法(以下,亦 柄為裝置A之製法J ),至少依序具備以下步驟:依序形 成上述第一光電轉換單元之P層、i層、η層,·於上述第— 光電轉換單元之η層上,依序形成構成上述第二光電轉換 單元之ρ層、i層;於上述第二光電轉換單元之〗層上,形成 構成上述第二光電轉換單元in層;及於構成上述第二光 電轉換單元之n層上,形成上述背面電極;故所獲得之光 電轉換裝置可提高第二光電轉換單元側之開路電壓 (Voc)。因此’可使第二光電轉換單元之發電效率提高, 從而使裝置整體之光電轉換效率提高。其結果,可根據本 發明,提供一種能夠簡單地製造光電轉換效率提高之多接 合型構造之光電轉換裝置之光電轉換裝置的製造方法。 155093.doc 201145541 又,在本發明之光電轉換裝置(以下’亦稱為「裝置 B」)中’構成上述第三光電轉換單元之p層、i層包含社晶 質系石夕薄膜,配置於構成上述第三光電裝換單元之二 上述背面電極之間’且構成上述第三光電轉換單元之峭 包含非晶質系矽薄膜。藉此,可緩和包含結晶質系矽薄膜 之i層’與冑面電極之界面之不匹配。藉此,可有效地活 用包含結晶質系石夕薄膜之i層之作用,可提高開路電壓 (Voc)。其結果,可根據本發明,提供一種提高光電轉換 效率之單接合型構造之光電轉換裝置。 又,本發明之光電轉換裝置之製造方法(以下,亦稱為 「裝置B之製法」)’至少依序具備以下步驟:依序形成上 述第三光電轉換單元之P層、i層;形成上述第三光電轉換 单元之π層,及於構成上述第二光電轉換單元之η層上,形 成上述背面電極。藉此,在所獲得之光電轉換裝置中,開 路電麗(Voc)提咼。其結果,可根據本發明,提供—種能 夠簡單地製造光電轉換效率提高之單接合型構造之光電轉 換裝置之光電轉換裝置的製造方法。 [實施方式】 以下,基於圖式’說明本發明之光電轉換裝置及其製造 方法之實施形態。 <第一實施形態> 在以下之實施形態中,係就積層非晶質矽型光電轉換裝 置之第/光電轉換單元’與微晶石夕型光電轉換裝置之第二 光電轉換單元4而構成之多接合型構造的光電轉換裝置進 155093.doc 201145541 行說明。 圖1係顯示本發明之光電轉換裝置之層構成之剖面圖。 在本發明之光電轉換裝置10A(10)中,於具透明導電膜 之基板之第1面la上’於上述透明導電膜2上依序重疊設置 有:積層p型半導體層(p層)、實質性本徵i型半導體層(i 層)、及η型半導體層(n層)而成之pin型第一光電轉換單元 3 ’與第二光電轉換單元4。再者,於第二光電轉換單元4 上重疊形成有背面電極5。 基板1包含例如玻璃、透明樹脂等太陽光之透射性優 良’且具有耐久性之絕緣材料。該基板1具備透明導電膜 2 °作為透明導電膜2可舉例有例如IT〇(Incjium Tina Pin type third photoelectric conversion unit; and a back surface electrode formed on the third photoelectric conversion unit. In the photoelectric conversion device according to the third aspect of the invention, the thickness of the first-type semiconductor layer is preferably 20 to 4 Å. A method of manufacturing a photoelectric conversion device according to a fourth aspect of the present invention is a method of forming a third p-type semiconductor layer including a crystalline (tetra) thin film and forming a pin-type third photoelectric conversion unit, and sequentially forming a transparent conductive film formed on a substrate; a third substantially intrinsic i-type semiconductor layer; and a third-type semiconductor layer including the third-type photoelectric conversion unit including the non-ruthenium-based thin film, and the third n-type semiconductor; A back electrode is formed on the layer. [Effects of the Invention] 155093.doc 201145541 The first photoelectric conversion unit is constituted by the photoelectric conversion coating straight (hereinafter also referred to as "device A") of the present invention. The P layer and the first layer of the flat layer contain crystallinity. The lanthanoid film is disposed between the i layer constituting the second _ 换 换 τ τ 与 与 与 与 与 与 与 , , , , , , , , , , , η η η η η η η η η η η η η η η η η film. Thereby, it is possible to mitigate the mismatch between the interface of the i-layer containing the crystalline ruthenium film and the interface of the back electrode. In this case, the i-layer can be effectively utilized in the first photoelectric conversion early element, including the effect of the i-layer of the diarrhea G 3,·, 日 质 矽溥 矽溥 , , , It matches the lattice of the interface of the back rake month 1: and increases the open circuit voltage (v〇c) of the second photoelectric conversion unit side. Therefore, the power generation efficiency of the second photoelectric conversion unit can be improved, and the photoelectric conversion efficiency of the entire device can be improved. As a result, according to the present invention, it is possible to provide a photoelectric conversion device having a multi-junction type structure which improves photoelectric conversion efficiency. Moreover, the manufacturing method of the photoelectric conversion device of the present invention (hereinafter, the handle is the method J of the device A) has at least the following steps: sequentially forming the P layer, the i layer, and the η layer of the first photoelectric conversion unit. Forming a p layer and an i layer constituting the second photoelectric conversion unit on the n layer of the first photoelectric conversion unit; forming a second photoelectric conversion on the layer of the second photoelectric conversion unit The unit in layer; and the back surface electrode formed on the n layer constituting the second photoelectric conversion unit; therefore, the obtained photoelectric conversion device can increase the open circuit voltage (Voc) on the second photoelectric conversion unit side. Therefore, the power generation efficiency of the second photoelectric conversion unit can be improved, so that the photoelectric conversion efficiency of the entire device can be improved. As a result, according to the present invention, it is possible to provide a method of manufacturing a photoelectric conversion device which can easily manufacture a photoelectric conversion device having a multi-junction type structure having improved photoelectric conversion efficiency. 155093.doc 201145541 In the photoelectric conversion device of the present invention (hereinafter also referred to as "device B"), the p-layer and the i-layer constituting the third photoelectric conversion unit include a ceramsite-based film, which is disposed on The ridges constituting the third photoelectric conversion unit and the third photoelectric conversion unit are formed to include an amorphous ruthenium film. Thereby, the mismatch of the interface between the i layer' containing the crystalline ruthenium film and the tantalum electrode can be alleviated. Thereby, the effect of the i-layer including the crystalline system can be effectively utilized, and the open circuit voltage (Voc) can be improved. As a result, according to the present invention, it is possible to provide a photoelectric conversion device of a single junction type structure which improves photoelectric conversion efficiency. Further, the method for producing a photoelectric conversion device according to the present invention (hereinafter also referred to as "the method for manufacturing the device B") has at least the following steps: sequentially forming the P layer and the i layer of the third photoelectric conversion unit; The π layer of the third photoelectric conversion unit and the η layer constituting the second photoelectric conversion unit form the back surface electrode. Thereby, in the obtained photoelectric conversion device, the open circuit (Voc) is lifted. As a result, according to the present invention, there is provided a method of manufacturing a photoelectric conversion device capable of easily producing a photoelectric conversion device of a single junction type having improved photoelectric conversion efficiency. [Embodiment] Hereinafter, embodiments of a photoelectric conversion device and a method of manufacturing the same according to the present invention will be described based on the drawings. <First Embodiment> In the following embodiments, the second photoelectric conversion unit 4 of the amorphous 矽-type photoelectric conversion device and the second photoelectric conversion unit 4 of the microcrystalline photoelectric conversion device are laminated. The photoelectric conversion device of the multi-joint type configuration is described in 155093.doc 201145541. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the layer constitution of a photoelectric conversion device of the present invention. In the photoelectric conversion device 10A (10) of the present invention, a p-type semiconductor layer (p layer) is laminated on the first transparent surface of the substrate having a transparent conductive film. A pin-type first photoelectric conversion unit 3' and a second photoelectric conversion unit 4 which are substantially intrinsic i-type semiconductor layers (i layer) and n-type semiconductor layers (n layers). Further, a back surface electrode 5 is formed on the second photoelectric conversion unit 4 so as to overlap. The substrate 1 contains an insulating material which is excellent in transparency of sunlight such as glass or a transparent resin and has durability. The substrate 1 is provided with a transparent conductive film 2° as the transparent conductive film 2, for example, IT〇 (Incjium Tin)
Oxide,氧化銦錫)、Sn〇2、Zn〇等具有光透射性之金屬氧 化物。透明導電膜2係藉由真空蒸鍍法或濺鍍法形成於基 板1上。 在該光電轉換裝置10A( 10)中,如圖i中白色箭頭所示, 太陽光S入射於基板1之第2面lb。 又’第一光電轉換單元3具有積層有p型半導體層(p層、 第lp型半導體層)31、實質性本徵i型半導體層(丨層、第丨丨型 半導體層)32、η型半導體層(η層、第ιη型半導體層)3 3之 pin構造。即,第一光電轉換單元3係藉由依序積層1)層 31、i層32、η層33而形成。 5亥第一光電轉換卓元3係由非晶質(amorph〇us)石夕系材料 構成。在第一光電轉換單元3中,53層31之厚度為例如8〇 A,i層32之厚度為例如1800 A ’ η層33之厚度為例如1〇〇 155093.doc • 10- 201145541 A 〇 形成第一光電轉換單元3之p層3i、i層32、n層33之電漿 CVD反應室分別不同。 第一光電轉換單元4具有積層有p型半導體層(p層、第 型半導體層)41、實質性本徵i型半導體層(丨層、第2i型半導 體層)42、η型半導體層(η層、第2n型半導體層)43之pin構 造。即,第二光電轉換早元4係藉由依序積層卩層41、i層 42、η層43而形成。 且在本發明之光電轉換裝置10Α(10)中,係以結晶質系 矽薄膜,形成構成第二光電轉換單元4之9型半導體層(ρ 層)41、1型半導體層(:層)42 ;並於構成上述第二光電轉換 單元4之i層42與上述背面電極5之間,配置有以非晶質系 矽薄膜形成之構成上述第二光電轉換單元42 η型半導體層 (η層)43 〇 以非晶質矽系薄膜,形成配置於構成上述第二光電轉換 單元4之1層與上述背面電極之間而構成上述第二光電轉換 單元4的η層43,藉此’可緩和包含結晶質系矽薄膜之^ 42,與背面電極5之界面之不匹配。藉此,可在第二光電 轉換單元4中,有效地活用包含結晶質系矽薄膜之{層42之 作用,從而可獲得該1層42與背面電極5之界面之晶格匹 配’且提南第二光電轉換單元4側之開路電壓⑽卜藉 可使第一光電轉換單元4之發電效率提高’從而使裝 置王體之光電轉換效率提高。其結果’可根據本發明,提 供一種光電轉換效率提高之多接合型構造之光電轉換裝 155093.doc 201145541 置。 包含該非晶質系矽薄膜之!!層43,無法觀測到例如於以 雷射拉曼顯微鏡觀測到之非晶質n層43,由結晶質系矽薄 膜導致之拉曼散射光之強度(ic): 52〇nm附近之峰值。 \/ 又,該打層43導電率為例如1.0X10-4〜i.〇xnr2)^;m。 y/ 在第二光電轉換單元4中,p型半導體層(p層)41之厚度為 例如150 A,i型半導體層(i層)42之厚度為例如15〇〇〇 A。 η型半導體層(η層)43之厚度較佳為例如2〇〜4〇〇 A之範 圍,例如可設為50 A。n層43之厚度在20〜4〇〇 A之範圍 内,可看到填充因子(FF)與開路電壓(v〇c)增大,光電轉換 效率增大之效果。η層43之厚度在400 A以上之範圍下,會 導致Jsc與Voc降低。其推測是因為11層43吸收光,導致包 含結晶質系石夕薄膜之i層42側之Jsc降低。 背面電極5只要由Ag(銀)或A1(鋁)等導電性之光反射膜構 成即可。該背面電極5可藉由例如濺鍍法或蒸鍍法形成。 又,作為背面電極5,亦可採用於第二光電轉換單元4之 η型半導體層(n層)43與背面電極5之間,形成有包含IT〇、 Sn〇2、ΖηΟ等導電性氧化物之層之積層構造。 其次,說明用於製造具有上述構成之光電轉換裝置 1〇Α(1〇)之製造方法。 本發明之光電轉換裝置之製造方法至少依序具備以下步 驟.依序形成上述第一光電轉換單元3ip層31、丨層32、η 層33 ;於上述第一光電轉換單元32η層33上,依序形成構 成上述第二光電轉換單元4之P層41、i層42;於上述第二 155093.doc -12- 201145541 光電轉換單元4之1層42上’形成構成上述第二光電轉換單 tl4之η層43 ;及於構成上述第二光電轉換單元々之^^層^ 上,形成上述背面電極5。 由於本發明之光電轉換裝置之製造方法至少依序具備以 下步驟:依序形成上述第一光電轉換單元3之?層31、}層 32、η層33 ;於上述第一光電轉換單元3in層33上,依序 形成構成上述第二光電轉換單元4之ρ層41、i層42;於上 述第二光電轉換單元4之i層42上,形成構成上述第二光電 轉換單元4之n層43;及於構成上述第二光電轉換單元4之n 層43上,形成上述背面電極5 ;故所獲得之光電轉換裝置 1 〇可提高第二光電轉換單元4側之開路電壓(v〇c)。因此, 可使第二光電轉換單元4之發電效率提高,使裝置整體之 光電裝換效率提高《其結果,可根據本發明’能夠簡單地 製造光電轉換效率提高之多接合型構造之光電轉換裝置。 以下’依序說明步驟。 首先’如圖2 A所示,準備形成有透明導電膜2之絕緣性 透明基板1。 其次’如圖2B所示,在成膜於絕緣性透明基板丨上之透 明導電膜2上’形成第一光電轉換單元3之p型半導體層 31、 i型矽層(非晶質矽層)32、η型半導體層33,與第二光 電轉換單元4之ρ型半導體層41 ^此處,形成ρ層31、i層 32、 η層33及p層41之電漿CVD反應室分別不同。即,於第 一光電轉換單元3之η型半導體層33上,形成設置有構成第 二光電轉換單元4之ρ型半導體層41之光電轉換裝置第一中 155093.doc -13- 201145541 間產品1 〇a。 P型半導體層31係在個別反應室中,由電漿CVD法形 成。例如’可在基板溫度為180〜200。(:,電源頻率為13.56 MHz,反應室内壓力為7〇〜12〇 pa,反應氣體流量:甲矽 烧(SiH4)為3〇〇 sccm、氫(h2)為2300 sccm、將氫作為稀釋 氣體使用之乙硼烷⑻出/叫為⑽sccm、甲烷(CH4)為5〇〇 seem的條件下,成膜非晶質矽(a Si)之p層31。 又丨型石夕層(非晶質石夕層)32係在個別反應室内,藉由電 聚CVD法形成。例如,可在基板溫度為i8〇〜2〇〇{>c,電源 頻率為13.56 MHz,反應室内壓力為70〜120 Pa,反應氣體 机量.甲矽烷(SiH4)為12〇〇 sccni的條件下,成膜非晶質矽 (a-Si)之i層 32。 再者’ η型半導體層33係在個別之反應室内,藉由電聚 CVD法形成。例如,可在基板溫度為18〇〜2〇〇它,電源頻 率為13.56 MHz,反應室内壓力為70〜120 Pa,反應氣體流 量:將氫作為稀釋氣體使用之磷化氫(?113/112)為2〇〇 的條件下’成膜非晶質矽(a-Si)之η層43。 Ρ型半導體層41係在個別之反應室内,藉由電衆cvd法 形成。例如,可在基板溫度為180〜200°c,電源頻率為 13.56 MHz,反應室内壓力為500〜900 Pa,反應氣體流 量:曱矽烷(SiH4)為 100 seem、氫(H2)為 25000 sccm、將氮 作為稀釋氣體使用之乙硼烷為5〇 sccm的條件 下’成膜微晶矽(pc-Si)之ρ層41。 接著’使第二光電轉換單元4之ρ型半導體層41暴露於大 155093.doc •14· 201145541 氣中後’如圖2C所示,在相同之電漿CVD反應室内,於暴 露於大氣中之p型半導體層41上’形成構成第二光電轉換 單元4之i型矽層(結晶質矽層)42、n型半導體層(非晶質矽 層)43。即,於第一光電轉換單元3上,形成設置有第二光 電轉換單元4之光電轉換裝置之第二中間產品1〇b。 1型矽層(結晶質矽層)42係在與形成η型半導體層43之反 應室相同之反應室内’藉由電漿CVD法形成。例如,可在 基板溫度為180〜2001,電源頻率為13.56 MHz,反應室内 壓力為500〜900 Pa,反應氣體流量:曱矽烷(SiH4)為18〇 seem、氫(h2)為27000 seem的條件下,成膜微晶矽(gC_Si) 之i層。 η型半導體層43係在與形成i型矽層(結晶質矽層)42之反 應室相同之反應室内,藉由電漿CVD法形成。例如,可在 基板溫度為180〜20(TC,電源頻率為13 56 MHz,反應室内 壓力為70〜120 Pa,反應氣體流量:將氫作為稀釋氣體使 用之磷化氫(Ρί^/Η2)為200 ^(^的條件下,成膜非晶質矽 (a-Si)之η層 43。 而後於第二光電轉換單元4之η型半導體層43上形成背面 電極5,藉此獲得圖丨所示之光電轉換裝置ι〇α(丨〇)。 背面電極5由Ag(銀)或八!(铭)等導電性之光反射膜構成即 可。該背面電極5可藉由例如麟法或蒸鍍法形成。 其次’基於圖式’說明該光電轉換裝置1GA(i())之製造 系統。 本發明之光電轉換裝置1G之製造系統具有依序配置所謂 155093.doc -15- 201145541 的直列型成膜裝置、將第二光電轉換單元4之?層暴露於大 氣中之暴露裝置、及所謂的分批型第二成膜裝置之構成。 直列型第-成膜裝置具有被稱為腔室之複數個成膜反應室 直線狀連結配置之構成。在該第-成膜裝置巾,分別形成 有第-光電轉換單元型半導體層31、i㈣層(非晶質 石夕層)32、η型半導體層33、及第二光電轉換單元4之p型半 導體層41各層H成膜裝置中,同時在相同之成膜反 應室内,對複數個基板形成第二光電轉換單元4之丨型矽層 (結晶質矽層)42及η型半導體層(非晶質矽層)43各層。 於圖3顯示該光電轉換裝置1〇之製造系統。 如圖3所示,製造系統包含第一成膜裝置6〇、第二成膜 裝置70、及將以第一成臈裝置6〇處理之基板暴露於大氣 後,向第二成膜裝置70移動之暴露裝置8〇。 製造系統之第一成膜裝置6〇中最初被搬入基板,且配置 有減壓内部壓力之負載室(L: Load)61。再者,亦可於負 載室(L : Load)61之後段’根據成膜製程,設置將基板溫 度加熱至一定溫度之加熱室。接著,連續直線狀配置形成 第一光電轉換單元3之p型半導體層31ip層成膜反應室 62、形成i型矽層(非晶質矽層)32之丨層成膜反應室63、形 成η型半導體層33之η層成膜反應室64、及形成第二光電轉 換單元4之ρ型半導體層41之ρ層成膜反應室65。最後,於ρ 層成膜反應室65連接使減壓氛圍返回至大氣氛圍而搬出基 板之卸載室(UL : UnLoad,搬出裝置)66。 此時,在圖3所示之A地點處,如圖2A所示,準備形成 155093.doc -16- 201145541 有透明導電膜2之絕緣性透明基板1 »又,在圖3所示之B地 點處’如圖2B所示,在成膜於絕緣性透明基板1上之透明 導電膜2上,形成設置有第一光電轉換單元3之p型半導體 層31、i型矽層(非晶質矽層)32、η型半導體層33、第二光 電轉換單元4之ρ型半導體層41各層的光電轉換裝置之第一 中間產品10a » 又,製造系統之第二成膜裝置70具有負載·卸載室 (L/UL)71與in層成膜反應室72。負載.卸載室(l/UL)71係執 行搬入以第一成膜裝置60處理之光電轉換裝置之第一中間 產品10a,並在基板搬入後,減壓内部壓力,或在搬出基 板之際’使減壓氛圍返回至大氣氛圍等。in層成膜反應室 72係連續於負載.卸載室(L/UL)71連接。在比層成膜反應室 72中,在相同之反應室内,於第二光電轉換單元4之卩型半 導體層41上,依序形成第二光電轉換單元4之丨型矽層(結晶 質矽層)42及η型半導體層(非晶質矽層)43。又,該成膜處 理係對複數個基板同時進行。 此時’在圖3所示之C地點處,如圖2C所示,於第一光 電轉換單元3上形成設置有第二光電轉換單元4之光電轉換 裝置之第二中間產品l〇b。 又,如圖3所示,在直列型第一成膜裝置6〇中,係對以固 基板同時進行成膜處理,且丨層成膜反應室63包含4個反應 室63a、63b、63c、63d。又,在圖3中,分批型第二成膜 裝置70在構成上為同時處理6個基板。 根據如上所述之光電轉換裝置之製造方法,於非晶質光 155093.doc -17- 201145541 電轉換裝置之第一光電轉換單元3之p層31、i層32、η層33 上,形成結晶質光電轉換裝置之第二光電轉換單元4之Ρ層 41。於其上形成第二光電轉換單元4之i層42、η層43。藉 此,可使第二光電轉換單元4之i層42之結晶化分佈之控制 容易化。 又,在本發明中,較佳的是在暴露於大氣中之P型半導 體層41上,形成構成第二光電轉換單元4之i型矽層(結晶質 矽層)42、η型半導體層43之際,形成該i層42之前,對暴露 於大氣中之第二光電轉換單元4之p層41,施與含有OH自 由基之電漿處理或氫電漿處理。 含有OH自由基之電漿處理係在個別之成膜室,於具透 明金屬氧化物電極(透明導電膜2)之玻璃基板1之透明技術 氧化物電極上,形成第一光電轉換單元3之p層、i層、η層 33及第—光電轉換單元4之ρ層41後,在含有ΟΗ自由基之 電衆處理室進行。其後,亦可在個別之成膜室將構成第二 光電轉換單元4之i型矽層(結晶質矽層)42、η型半導體層43 成膜’亦可在相同之處理室内,連續於含有〇Η自由基之 電楽處理,積層第二光電轉換單元4之丨層42、η層43。 此處’在相同之處理室内,連續於含有〇Η自由基之電 襞處理而形成第二光電轉換單元4之i層42、η層43之情 形’每次處理均以含有〇Η自由基之電漿對成膜室施加處 理。藉此’可分解除去殘留雜質氣體ΡΗ3。因此,即使在 相同處理室内,重複第二光電轉換單元4之丨層42、η層43 之成膜,亦可獲得良好之雜質分佈,從而獲得發電效率良 155093.doc 201145541 好之積層薄膜光電轉換裝置10。 又’本發明在對第二光電轉換單元4之卩層“施加之含有 OH自由基之電漿處理中,較佳為使用包含c〇2、CH2〇2、 Ηβ或Hz之混合氣體作為處理氣體。即,含有〇H自由基之 電漿之生成可藉由在對成膜室流動以(c〇2+h2)、 (CH2〇2+H2)、(Ηβ+Η2)的狀態下,對電極間施加例如13 5 MHz、27 MHz、40 MHz等高頻,而有效地生成。在該含 有OH自由基之電漿之生成中,亦可使用(Hc〇〇CH2+H2)、 (CH2〇H+H2)等之醇類、曱酸酯類等之含氧碳氫化合物 類。但在有C雜質量增加之問題之系中,較佳為使用 (co2+h2)、(ch2o2+h2)或(h2o+h2)。 在該含有OH自由基之電漿之生成中,電漿生成氣體若 使用C〇2時,系中必須存在仏,而在使用除(CH2〇2+H2)、 (H2〇+H2)以外,又使用(HCOOCHdH2)、(CH3〇H+H2)等之 醇類、曱酸酯類等之含氧碳氫化合物類時,系中不一定要 存在H2。 如此’若施加含有OH自由基之電漿處理,則相較於〇自 由基反應穩定,且不會對下層造成損傷,從而對形成於第 一光電轉換單元3之p層31、i層32、n層33上之第二光電轉 換單元4之ρ層41之表面活性有其效果。因此,可使第二光 電轉換單元4之ρ層41表面活性化。可有效地對積層於其上 之第二光電轉換單元4之i層42之結晶生成發揮作用,即使 在大面積之基板仍可獲得均一之結晶率分佈。 取代含有OH自由基之電漿處理,若進行η電聚處理,亦 155093.doc -19· 201145541 可獲得與含有OH自由基之電漿處理相同之效果。 又,在個別之成膜室形成於第一光電轉換單元3之非晶 質P層31、!層32、n層33上之第二光電轉換單元々之^層“ 無論是於非晶質之非晶質矽(a_Si)層中分散有微晶矽 si)之膜,還是非晶質之非晶質氧化石夕(a Si〇)層中分散有 微晶矽bc-Si)之膜均可。但為獲得基板大面積化時所需之 結晶質光電轉換層之i層與〇層之結晶生長核的生成相關之 均一之結晶化分佈率,較佳為採用於非晶質之非晶質氧化 矽(a-SiO)層中分散有微晶矽hc_Si)之膜。 如此,於非晶質之非晶質氧化矽(a_Si〇)層中分散有微晶 矽hc-Si)之膜可進行調整,以便獲得較非晶質矽半 導體層低之折射率。因此,可將該層作為波長選擇反射膜 發揮功能,使短波長光局限於頂部單元側,藉此提高轉換 效率。 又,不拘有無將該光閉入之效果,於非晶質之非晶質氧 化矽(a_Si〇)層中分散有微晶矽(μ^-Si)之膜,可藉由含有 OH自由基之電漿處理,對第二光電轉換單元々之丨層42與n 層43之結晶生長核之生成有效地發揮作用,從而即使是大 面積之基板仍可獲得均一之結晶率分佈。 又,本發明亦可形成結晶質系矽薄膜,作為構成第—光 電轉換單元3之!1層33。即,於非晶質之第—光電轉換單元 3之Ρ層31、1層32上,形成結晶質η層33及結晶質之第二光 電轉換單元4之ρ層41。 如此,對於形成有η層33、及第二光電轉換單元4之?層 155093.doc •20- 201145541A light-transmitting metal oxide such as Oxide, indium tin oxide, Sn 〇 2, or Zn 〇. The transparent conductive film 2 is formed on the substrate 1 by a vacuum evaporation method or a sputtering method. In the photoelectric conversion device 10A (10), as indicated by a white arrow in Fig. i, the sunlight S is incident on the second surface 1b of the substrate 1. Further, the first photoelectric conversion unit 3 has a p-type semiconductor layer (p-layer, lp-type semiconductor layer) 31, a substantially intrinsic i-type semiconductor layer (germanium layer, a germanium-type semiconductor layer) 32, and an n-type layer. The pin structure of the semiconductor layer (n layer, the first n-type semiconductor layer) 33. That is, the first photoelectric conversion unit 3 is formed by sequentially laminating 1) the layer 31, the i layer 32, and the n layer 33. The 5th first photoelectric conversion Zhuoyuan 3 is composed of an amorphous (amorph〇us) stone material. In the first photoelectric conversion unit 3, the thickness of the 53 layer 31 is, for example, 8 〇A, and the thickness of the i layer 32 is, for example, 1800 A '. The thickness of the η layer 33 is, for example, 1 〇〇 155093.doc • 10- 201145541 A 〇 formation The plasma CVD reaction chambers of the p-layer 3i, the i-layer 32, and the n-layer 33 of the first photoelectric conversion unit 3 are different from each other. The first photoelectric conversion unit 4 has a p-type semiconductor layer (p-layer, first-type semiconductor layer) 41, a substantially intrinsic i-type semiconductor layer (germanium layer, second i-type semiconductor layer) 42, and an n-type semiconductor layer (n). The pin structure of the layer and the 2n-type semiconductor layer 43). That is, the second photoelectric conversion element 4 is formed by sequentially stacking the germanium layer 41, the i layer 42, and the n layer 43. Further, in the photoelectric conversion device 10A (10) of the present invention, a 9-type semiconductor layer (p layer) 41 constituting the second photoelectric conversion unit 4, a type 1 semiconductor layer (: layer) 42 is formed by a crystalline ruthenium film. Between the i-layer 42 constituting the second photoelectric conversion unit 4 and the back surface electrode 5, an amorphous bismuth film is formed to form the second photoelectric conversion unit 42 n-type semiconductor layer (n layer) 43. The amorphous germanium-based film is formed to form an n layer 43 disposed between the first layer of the second photoelectric conversion unit 4 and the back surface electrode to form the second photoelectric conversion unit 4, thereby mitigating inclusion The interface between the crystalline germanium film 42 and the back electrode 5 does not match. Thereby, in the second photoelectric conversion unit 4, the effect of the layer 42 containing the crystalline ruthenium film can be effectively utilized, so that the lattice matching of the interface between the 1 layer 42 and the back electrode 5 can be obtained. The open circuit voltage (10) on the side of the second photoelectric conversion unit 4 can improve the power generation efficiency of the first photoelectric conversion unit 4, thereby improving the photoelectric conversion efficiency of the device body. As a result, according to the present invention, a photoelectric conversion device of 155093.doc 201145541 having a multi-junction type structure with improved photoelectric conversion efficiency can be provided. In the layer 43 containing the amorphous ruthenium film, the intensity of Raman scattered light caused by the crystalline ruthenium film is not observed, for example, in the amorphous n layer 43 observed by a laser Raman microscope (ic ): The peak near 52〇nm. \/ Again, the conductivity of the layer 43 is, for example, 1.0X10-4~i.〇xnr2)^;m. y / In the second photoelectric conversion unit 4, the thickness of the p-type semiconductor layer (p layer) 41 is, for example, 150 A, and the thickness of the i-type semiconductor layer (i layer) 42 is, for example, 15 Å. The thickness of the n-type semiconductor layer (n layer) 43 is preferably in the range of, for example, 2 〇 to 4 〇〇 A, and may be, for example, 50 Å. The thickness of the n layer 43 is in the range of 20 to 4 Å A, and the filling factor (FF) and the open circuit voltage (v 〇 c) are increased, and the photoelectric conversion efficiency is increased. The thickness of the η layer 43 is in the range of 400 A or more, which causes a decrease in Jsc and Voc. This is presumed to be because the 11 layer 43 absorbs light, resulting in a decrease in Jsc on the side of the i layer 42 containing the crystalline system. The back surface electrode 5 may be formed of a conductive light reflecting film such as Ag (silver) or A1 (aluminum). The back surface electrode 5 can be formed by, for example, a sputtering method or a vapor deposition method. Further, as the back surface electrode 5, a conductive oxide such as IT〇, Sn〇2, or ΖηΟ may be formed between the n-type semiconductor layer (n layer) 43 of the second photoelectric conversion unit 4 and the back surface electrode 5. The layered structure of the layer. Next, a manufacturing method for manufacturing the photoelectric conversion device 1 (1) having the above configuration will be described. The manufacturing method of the photoelectric conversion device of the present invention has at least the following steps: sequentially forming the first photoelectric conversion unit 3ip layer 31, the germanium layer 32, and the n layer 33; and on the first photoelectric conversion unit 32n layer 33, Forming the P layer 41 and the i layer 42 constituting the second photoelectric conversion unit 4; forming a second photoelectric conversion unit t14 on the first layer 42 of the second 155093.doc -12-201145541 photoelectric conversion unit 4 The η layer 43 is formed on the NMOS layer constituting the second photoelectric conversion unit 上述, and the back surface electrode 5 is formed. The manufacturing method of the photoelectric conversion device of the present invention has at least the following steps: sequentially forming the first photoelectric conversion unit 3 described above. a layer 31, a layer 32, an η layer 33; on the first photoelectric conversion unit 3in layer 33, sequentially forming a p layer 41, an i layer 42 constituting the second photoelectric conversion unit 4; and the second photoelectric conversion unit The n layer 43 constituting the second photoelectric conversion unit 4 is formed on the i layer 42 of 4; and the back surface electrode 5 is formed on the n layer 43 constituting the second photoelectric conversion unit 4; 1 〇 can increase the open circuit voltage (v〇c) on the side of the second photoelectric conversion unit 4. Therefore, the power generation efficiency of the second photoelectric conversion unit 4 can be improved, and the photoelectric replacement efficiency of the entire device can be improved. As a result, the photoelectric conversion device of the multi-junction type structure with improved photoelectric conversion efficiency can be easily manufactured according to the present invention. . The following steps are explained in order. First, as shown in Fig. 2A, an insulating transparent substrate 1 on which a transparent conductive film 2 is formed is prepared. Next, as shown in FIG. 2B, a p-type semiconductor layer 31 and an i-type germanium layer (amorphous germanium layer) of the first photoelectric conversion unit 3 are formed on the transparent conductive film 2 formed on the insulating transparent substrate. 32. The n-type semiconductor layer 33 and the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 are different from each other in the plasma CVD reaction chamber in which the p layer 31, the i layer 32, the n layer 33, and the p layer 41 are formed. That is, on the n-type semiconductor layer 33 of the first photoelectric conversion unit 3, a photoelectric conversion device provided with the p-type semiconductor layer 41 constituting the second photoelectric conversion unit 4 is formed in the first 155093.doc -13 - 201145541 product 1 〇a. The P-type semiconductor layer 31 is formed in a separate reaction chamber by a plasma CVD method. For example, 'the substrate temperature can be 180 to 200. (:, the power frequency is 13.56 MHz, the pressure in the reaction chamber is 7〇~12〇pa, and the reaction gas flow rate is 3〇〇sccm for methanogen (SiH4), 2300 sccm for hydrogen (h2), and hydrogen is used as the diluent gas. Under the condition that diborane (8) is (10) sccm and methane (CH4) is 5 〇〇 seem, the p layer 31 of amorphous yttrium (a Si) is formed. 32 layers are formed in an individual reaction chamber by electropolymerization CVD. For example, the substrate temperature is i8 〇 2 〇〇 {> c, the power frequency is 13.56 MHz, and the reaction chamber pressure is 70 to 120 Pa. , the amount of reaction gas. The formation of amorphous yttrium (a-Si) i layer 32 under conditions of 12 〇〇sccni of methooxane (SiH4). Further, the η-type semiconductor layer 33 is in a separate reaction chamber. It is formed by electropolymerization CVD. For example, it can be used at a substrate temperature of 18 〇 2 〇〇 2, a power supply frequency of 13.56 MHz, a reaction chamber pressure of 70 to 120 Pa, and a reaction gas flow rate: hydrogen is used as a diluent gas. The phosphine (?113/112) is a 〇〇 layer 43 of the amorphous yttrium (a-Si) under the condition of 2 。. The Ρ-type semiconductor layer 41 is In the reaction chamber, it is formed by the electricity cvd method. For example, the substrate temperature is 180 to 200 ° C, the power frequency is 13.56 MHz, the reaction chamber pressure is 500 to 900 Pa, and the reaction gas flow rate: silane (SiH4) is 100 seem, hydrogen (H2) is 25000 sccm, and dioxane used as a diluent gas is 5 〇sccm under the condition of 'film-forming microcrystalline germanium (pc-Si) ρ layer 41. Then 'making the second photoelectric The p-type semiconductor layer 41 of the conversion unit 4 is exposed to a large 155093.doc •14·201145541 gas, as shown in FIG. 2C, in the same plasma CVD reaction chamber, on the p-type semiconductor layer 41 exposed to the atmosphere. 'The formation of the i-type germanium layer (crystalline germanium layer) 42 and the n-type semiconductor layer (amorphous germanium layer) 43 constituting the second photoelectric conversion unit 4 is formed on the first photoelectric conversion unit 3 The second intermediate product 1〇b of the photoelectric conversion device of the second photoelectric conversion unit 4. The 1-type tantalum layer (crystalline layer) 42 is in the same reaction chamber as the reaction chamber in which the n-type semiconductor layer 43 is formed. CVD method is formed. For example, the substrate temperature can be 180~2001, the power frequency It is 13.56 MHz, the pressure in the reaction chamber is 500 to 900 Pa, and the reaction gas flow rate is i ( (SiH4) is 18 〇seem, and hydrogen (h2) is 27000 seem, and the i-layer of the microcrystalline ruthenium (gC_Si) is formed. The n-type semiconductor layer 43 is formed by a plasma CVD method in the same reaction chamber as the reaction chamber in which the i-type germanium layer (crystalline germanium layer) 42 is formed. For example, the substrate temperature is 180 to 20 (TC, the power frequency is 13 56 MHz, the pressure in the reaction chamber is 70 to 120 Pa, and the flow rate of the reaction gas: phosphine (Ρί^/Η2) using hydrogen as a diluent gas is Under the condition of 200 ^, the n layer 43 of the amorphous germanium (a-Si) is formed. Then, the back surface electrode 5 is formed on the n-type semiconductor layer 43 of the second photoelectric conversion unit 4, thereby obtaining a pattern The photoelectric conversion device ι〇α (丨〇) is shown. The back electrode 5 may be composed of a conductive light reflecting film such as Ag (silver) or 八! (Ming). The back electrode 5 may be, for example, a lining method or steaming. The plating method is formed. Next, the manufacturing system of the photoelectric conversion device 1GA(i()) will be described based on the drawings. The manufacturing system of the photoelectric conversion device 1G of the present invention has an in-line type of so-called 155093.doc -15-201145541. a film forming apparatus, an exposing device that exposes a layer of the second photoelectric conversion unit 4 to the atmosphere, and a so-called batch type second film forming apparatus. The in-line type first film forming apparatus has a chamber called a chamber a plurality of film forming reaction chambers are arranged in a linear connection arrangement. In the first film forming apparatus, Each of the layers H film forming apparatus in which the p-type semiconductor layer 31, the i (four) layer (amorphous layer) 32, the n-type semiconductor layer 33, and the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 are formed At the same time, in the same film formation reaction chamber, each of the 光电-type 矽 layer (crystalline 矽 layer) 42 and the η-type semiconductor layer (amorphous 矽 layer) 43 of the second photoelectric conversion unit 4 is formed for a plurality of substrates. 3 shows a manufacturing system of the photoelectric conversion device 1. As shown in FIG. 3, the manufacturing system includes a first film forming device 6A, a second film forming device 70, and a substrate to be processed by the first film forming device 6〇. After the atmosphere, the exposure device 8 is moved to the second film forming apparatus 70. The first film forming apparatus 6 of the manufacturing system is first loaded into the substrate, and a load chamber (L: Load) 61 with a reduced pressure internal pressure is disposed. Further, in the load chamber (L: Load) 61, a heating chamber for heating the substrate temperature to a certain temperature may be provided according to the film forming process. Then, the first photoelectric conversion unit 3 is formed in a continuous linear configuration. Type semiconductor layer 31ip layer film formation reaction chamber 62, formation The ruthenium film formation reaction chamber 63 of the i-type ruthenium layer (amorphous ruthenium layer) 32, the η layer film formation reaction chamber 64 forming the n-type semiconductor layer 33, and the p-type semiconductor layer 41 forming the second photoelectric conversion unit 4 The ρ layer is formed into a reaction chamber 65. Finally, the ρ layer film formation reaction chamber 65 is connected to an unloading chamber (UL: UnLoad) 66 for returning the reduced pressure atmosphere to the atmosphere and carrying out the substrate. At the A site shown, as shown in Fig. 2A, an insulating transparent substrate 1 having a transparent conductive film 2 is prepared to be formed 155093.doc -16- 201145541. Further, at the point B shown in Fig. 3, as shown in Fig. 2B The p-type semiconductor layer 31 provided with the first photoelectric conversion unit 3, the i-type germanium layer (amorphous germanium layer) 32, and the n-type are formed on the transparent conductive film 2 formed on the insulating transparent substrate 1. The first intermediate product 10a of the photoelectric conversion device of each layer of the semiconductor layer 33, the p-type semiconductor layer 41 of the second photoelectric conversion unit 4, and further, the second film formation device 70 of the manufacturing system has a load/unload chamber (L/UL) 71 A reaction chamber 72 is formed with the in layer. The load unloading chamber (l/UL) 71 performs the first intermediate product 10a of the photoelectric conversion device processed by the first film forming device 60, and decompresses the internal pressure after the substrate is carried in, or when the substrate is unloaded. Return the reduced pressure atmosphere to the atmosphere and the like. The in-layer film formation reaction chamber 72 is connected to the load/unloading chamber (L/UL) 71 continuously. In the specific layer formation reaction chamber 72, in the same reaction chamber, on the 半导体-type semiconductor layer 41 of the second photoelectric conversion unit 4, a ruthenium-type ruthenium layer of the second photoelectric conversion unit 4 is sequentially formed (crystalline ruthenium layer) 42) an n-type semiconductor layer (amorphous germanium layer) 43. Further, the film formation process is performed simultaneously on a plurality of substrates. At this time, at the C point shown in Fig. 3, as shown in Fig. 2C, the second intermediate product 10b of the photoelectric conversion device provided with the second photoelectric conversion unit 4 is formed on the first photoelectric conversion unit 3. Further, as shown in FIG. 3, in the in-line type first film forming apparatus 6A, the film forming process is performed simultaneously on the solid substrate, and the ruthenium film forming reaction chamber 63 includes four reaction chambers 63a, 63b, and 63c. 63d. Further, in Fig. 3, the batch type second film forming apparatus 70 is configured to simultaneously process six substrates. According to the manufacturing method of the photoelectric conversion device as described above, crystal formation is formed on the p layer 31, the i layer 32, and the n layer 33 of the first photoelectric conversion unit 3 of the amorphous light 155093.doc -17- 201145541 electric conversion device. The layer 41 of the second photoelectric conversion unit 4 of the mass photoelectric conversion device. The i layer 42 and the n layer 43 of the second photoelectric conversion unit 4 are formed thereon. Thereby, the control of the crystallization distribution of the i layer 42 of the second photoelectric conversion unit 4 can be facilitated. Further, in the present invention, it is preferable that an i-type germanium layer (crystalline germanium layer) 42 and an n-type semiconductor layer 43 constituting the second photoelectric conversion unit 4 are formed on the P-type semiconductor layer 41 exposed to the atmosphere. At the time of forming the i layer 42, the p layer 41 of the second photoelectric conversion unit 4 exposed to the atmosphere is subjected to plasma treatment or hydrogen plasma treatment containing OH radicals. The plasma treatment containing OH radicals is formed in a separate film forming chamber on the transparent technical oxide electrode of the glass substrate 1 having a transparent metal oxide electrode (transparent conductive film 2) to form the first photoelectric conversion unit 3 The layer, the i layer, the η layer 33, and the p layer 41 of the first photoelectric conversion unit 4 are then subjected to a plasma processing chamber containing ruthenium radicals. Thereafter, the i-type germanium layer (crystalline germanium layer 42) and the n-type semiconductor layer 43 constituting the second photoelectric conversion unit 4 may be formed into a film in a separate film forming chamber, or may be continuous in the same processing chamber. The ruthenium layer 42 and the η layer 43 of the second photoelectric conversion unit 4 are laminated by electrothermal treatment containing ruthenium radicals. Here, in the same processing chamber, the i-layer 42 and the n-layer 43 of the second photoelectric conversion unit 4 are formed by continuous treatment with an electric enthalpy containing cerium radicals. The plasma applies a treatment to the film forming chamber. Thereby, the residual impurity gas ΡΗ3 can be decomposed and removed. Therefore, even in the same processing chamber, the film formation of the ruthenium layer 42 and the η layer 43 of the second photoelectric conversion unit 4 is repeated, and a good impurity distribution can be obtained, thereby obtaining a power generation efficiency. 155093.doc 201145541 Good laminated film photoelectric conversion Device 10. Further, in the plasma treatment of the OH radicals applied to the tantalum layer of the second photoelectric conversion unit 4, it is preferred to use a mixed gas containing c〇2, CH2〇2, Ηβ or Hz as a processing gas. That is, the plasma containing the 〇H radical can be formed by the counter electrode in the state of (c〇2+h2), (CH2〇2+H2), (Ηβ+Η2) flowing in the film forming chamber. It is efficiently generated by applying high frequencies such as 13 5 MHz, 27 MHz, 40 MHz, etc. In the generation of the plasma containing OH radicals, (Hc〇〇CH2+H2), (CH2〇H) can also be used. +H2) Oxygen-containing hydrocarbons such as alcohols, phthalates, etc. However, in a system having a problem of an increase in C-mass, it is preferred to use (co2+h2), (ch2o2+h2) or (h2o+h2) In the formation of the plasma containing OH radicals, if C电2 is used as the plasma generating gas, enthalpy must be present in the system, and in addition to (CH2〇2+H2), (H2) In addition to 含+H2), when an oxygen-containing hydrocarbon such as an alcohol such as (HCOOCHdH2) or (CH3〇H+H2) or a phthalate ester is used, H2 is not necessarily present in the system. Containing OH radicals The slurry treatment is stable compared to the ruthenium radical reaction, and does not cause damage to the lower layer, thereby forming the second photoelectric conversion unit formed on the p layer 31, the i layer 32, and the n layer 33 of the first photoelectric conversion unit 3. The surface activity of the p layer 41 of 4 has an effect. Therefore, the p layer 41 of the second photoelectric conversion unit 4 can be surface-activated, and the i-layer 42 of the second photoelectric conversion unit 4 laminated thereon can be effectively used. Crystallization occurs, and a uniform crystallinity distribution can be obtained even in a large-area substrate. Instead of plasma treatment containing OH radicals, if η electropolymerization is performed, 155093.doc -19· 201145541 can be obtained and contained OH. The same effect is obtained by the plasma treatment of the radicals. Further, the second photoelectric conversion unit formed on the amorphous P layer 31, the ! layer 32, and the n layer 33 of the first photoelectric conversion unit 3 in the individual film forming chambers The layer "is a film in which a microcrystalline germanium (si) layer is dispersed in an amorphous amorphous germanium (a_Si) layer) or is dispersed in an amorphous amorphous oxide oxide (a Si〇) layer. The film of the wafer bc-Si) can be used. However, in order to obtain a uniform crystallization distribution ratio of the i-layer of the crystalline photoelectric conversion layer and the formation of the crystal growth nucleus of the ruthenium layer required for obtaining a large area of the substrate, it is preferably used for amorphous amorphous oxidation. A film of microcrystalline germanium hc_Si is dispersed in the a (SiO) layer. Thus, the film in which the microcrystalline 矽hc-Si is dispersed in the amorphous amorphous yttrium oxide (a_Si〇) layer can be adjusted to obtain a lower refractive index than the amorphous germanium semiconductor layer. Therefore, the layer can function as a wavelength selective reflection film to limit short-wavelength light to the top unit side, thereby improving conversion efficiency. Further, the film of the microcrystalline germanium (μ^-Si) is dispersed in the amorphous amorphous cerium oxide (a_Si〇) layer without any effect of blocking the light, and the OH radical can be contained. The plasma treatment effectively acts on the formation of the crystal growth nuclei of the second layer 42 and the n layer 43 of the second photoelectric conversion unit, so that a uniform crystallinity distribution can be obtained even for a large-area substrate. Further, in the present invention, a crystalline ruthenium film can be formed as the ?1 layer 33 constituting the first photo-electric conversion unit 3. Namely, on the tantalum layer 31 and the first layer 32 of the amorphous first photoelectric conversion unit 3, a crystalline η layer 33 and a ρ layer 41 of a crystalline second photoelectric conversion unit 4 are formed. Thus, is the formation of the n layer 33 and the second photoelectric conversion unit 4? Layer 155093.doc •20- 201145541
41之基板在個別反應室或相同之成膜室内,進行含有〇H 自由基之電漿處理’使其表面活化生成結晶核,接著,積 層結晶質之第二光電轉換單元4之丨層42,藉此,可獲得具 有大面積均一結晶率分佈,且發電效率良好之積層薄膜光 電轉換裝置I0A(10)。 <第一貫施形態> 其次’說明本發明之第二實施形態。 再者,以下之說明主要就與上述之第—實施形態不同之 部分進行說明,而對與第一實施形態相同之部分,省略其 說明。 〃 圖4係顯示本實施形態之光電轉換裝置之層構成之 圖。 ° 上述之第一實施形態雖已說明多接合型構造之光電轉換 裝置,但本發明並不僅限定於多接合型構造,亦可適用單 接合型構造之光電轉換裝置。 該光電轉換裝置1〇6(10)係使用具透明導電膜之基板, 於上述透明導電膜2上依序重疊積層有p型半導體層(p層、 第3P型半導體層)81、實質性本徵i型半導體層(丨層、第^型 半導體層)82、及n型半導體層(n層、第3n型半導體層)趵之 pin型光電轉換單元8,與背面電極5而形成。 且’在本發明之光電轉換裝置ΙΟΒ(ΙΟ)中,構成第三光 電轉換單元8之p層81、i層82係以結晶質系砂薄膜形成, 配置於構成第三光電轉換單元8之i層82與背面電極5之 間’而構成第三光電轉換單元8之η層83係以非晶質系石夕薄 155093.doc -21· 201145541 膜形成。 在該光電轉換裝置10B(10)中也是,.構成第三光電轉換 單708之p層81、丨層82係以結晶質系矽薄膜形成,配置於 構成第三光電轉換單元8之丨層82與背面電極5之間而構成 第三光電轉換單元8之!!層83以非晶質系矽薄膜形成,藉 此,可緩和以結晶質系矽薄膜形成之丨層82,與背面電極5 之界面之不匹配。藉此,可有效地活用以結晶質系矽薄膜 形成之1層82之作用,使開路電壓(v〇c)提高。其結果,光 電轉換裝置10B(10)之光電轉換效率提高。 且,本發明之光電轉換裝置1〇B(1〇)之製造方法至少依 序具備以下步驟:依序形成第三光電轉換單元8ip層81、 i層82、形成第三光電轉換單元8之11層83、及於構成第三 光電轉換單元8之n層83上形成背面電極$。 構成第二光電轉換單元8之ρ層8丨、丨層82、1^層83均可與 上述之第一實施形態之構成第二光電轉換單元4ip層41、 i層42、η層43同樣地形成。 在如此獲得之光電轉換裝置1〇Β(1〇)中,開路電壓(v〇c) 提高,且光電轉換效率提高》其結果,本發明之製造方法 可簡便地製造光電轉換效率提高之光電轉換裝置 1〇Β(10) 〇 [實施例] 其次,對本發明之光電轉換裝置進行如下所示之實驗。 根據各實施例及比較例製造之多接合型構造之光電轉換裝 置、及其製造條件如下所述。 155093.doc -22- 201145541 下述之任一實施例均係使用具有11 〇〇 mmχ 1400爪爪大 之基板,製造光電轉換裝置。 〈實施例1> 實施例1係於基板上,形成非晶質之包含非晶質矽(心以) 系薄膜之P層、緩衝層、非晶質之包含非晶質矽(a_Si)系薄 膜之i層、非晶質之包含非晶質矽(a-Si)系薄膜之0層、及構 成第一光電轉換皁元之包含微晶石夕(pC_Si)之p層,作為第 一光電轉換單元。該等之層係在分別不同之成膜室内連續 成形。其後,使第二光電轉換單元之P層暴露於大氣中, 且使用氫(H2)作為處理氣體而對第二光電轉換單元之p層 施加氫電漿處理。其後,形成構成第二光電轉換單元之包 含微晶矽(pc-Si)之i層、非晶質之包含非晶質矽(a_Si)系薄 膜之η層、及背面電極。 在實施例1中’第一光電轉換單元之ρ層、i層、η層及第 二光電轉換單元之ρ層係在個別之反應室内,藉由電漿 CVD法進行成膜。另一方面’第二光電轉換單元之丨層、η 層係在相同之成膜室内’藉由電漿CVD法進行成膜。 在基板溫度170°C、施加RF電力40 W、反應室内壓力80 Pa、反應氣體流量:曱石夕烧(§出4)為150 seem、氫(H2)為 470 seem、將氫作為稀釋氣體使用之乙硼烷(B2H6/h2)為45 seem、甲烷(ch4)為300 seem的條件下,將第一光電轉換 單元之ρ層成膜成80 A之膜厚。此時之成膜速度為116 A/ 分。 在基板溫度17(TC、施加RF電力40 W、反應室内壓力60 155093.doc •23- 201145541The substrate of 41 is subjected to a plasma treatment containing 〇H radical in an individual reaction chamber or the same film formation chamber to 'activate the surface to form a crystal nucleus, and then, to laminate the ruthenium layer 42 of the second photoelectric conversion unit 4 of the crystalline substance. Thereby, a laminated thin-film photoelectric conversion device I0A (10) having a large-area uniform crystallinity distribution and good power generation efficiency can be obtained. <First embodiment; > Next, a second embodiment of the present invention will be described. In the following description, the differences from the above-described first embodiment will be mainly described, and the description of the same portions as those in the first embodiment will be omitted. Fig. 4 is a view showing the layer constitution of the photoelectric conversion device of the embodiment. In the first embodiment described above, the photoelectric conversion device of the multi-joint type structure has been described. However, the present invention is not limited to the multi-joint type structure, and a photoelectric conversion device having a single junction type structure can be applied. In the photoelectric conversion device 1〇6 (10), a substrate having a transparent conductive film is used, and a p-type semiconductor layer (p-layer, third P-type semiconductor layer) 81 is laminated on the transparent conductive film 2 in this order, and the substantial portion is laminated. The pin type photoelectric conversion unit 8 of the i-type semiconductor layer (germanium layer, the second type semiconductor layer) 82 and the n-type semiconductor layer (n layer, third n-type semiconductor layer) is formed on the back surface electrode 5. In the photoelectric conversion device 本(ΙΟ) of the present invention, the p-layer 81 and the i-layer 82 constituting the third photoelectric conversion unit 8 are formed of a crystalline sand film, and are disposed in the third photoelectric conversion unit 8 The n layer 83 constituting the third photoelectric conversion unit 8 between the layer 82 and the back surface electrode 5 is formed of a film of an amorphous system 155093.doc -21·201145541. In the photoelectric conversion device 10B (10), the p-layer 81 and the ruthenium layer 82 constituting the third photoelectric conversion unit 708 are formed of a crystalline ruthenium film, and are disposed on the ruthenium layer 82 constituting the third photoelectric conversion unit 8. Between the back surface electrode 5 and the back surface electrode 5, the third photoelectric conversion unit 8 is formed of an amorphous ruthenium film, whereby the ruthenium layer 82 formed of the crystalline ruthenium film can be relaxed, and the back electrode 5 The interface does not match. Thereby, the function of the first layer 82 formed of the crystalline bismuth film can be effectively utilized to increase the open circuit voltage (v 〇 c). As a result, the photoelectric conversion efficiency of the photoelectric conversion device 10B (10) is improved. Further, the manufacturing method of the photoelectric conversion device 1B of the present invention has at least the following steps: sequentially forming the third photoelectric conversion unit 8ip layer 81, the i layer 82, and forming the third photoelectric conversion unit 8 The layer 83 and the back electrode $ are formed on the n layer 83 constituting the third photoelectric conversion unit 8. The p layer 8 丨, the 丨 layer 82, and the layer 83 constituting the second photoelectric conversion unit 8 may be the same as the second photoelectric conversion unit 4ip layer 41, the i layer 42, and the n layer 43 of the first embodiment described above. form. In the thus obtained photoelectric conversion device 1 (1〇), the open circuit voltage (v〇c) is increased and the photoelectric conversion efficiency is improved. As a result, the manufacturing method of the present invention can easily produce photoelectric conversion with improved photoelectric conversion efficiency. Apparatus 1 (10) 〇 [Examples] Next, an experiment shown below was carried out on the photoelectric conversion device of the present invention. The photoelectric conversion device of the multi-joint type structure manufactured according to each of the examples and the comparative examples, and the manufacturing conditions thereof are as follows. 155093.doc -22- 201145541 Any of the following embodiments is to manufacture a photoelectric conversion device using a substrate having 11 〇〇 mm χ 1400 claws. <Example 1> Example 1 was formed on a substrate to form an amorphous P layer containing an amorphous germanium (heart) film, a buffer layer, and an amorphous inclusion of an amorphous germanium (a_Si) film. The i-layer, the amorphous 0 layer including the amorphous germanium (a-Si) thin film, and the p layer including the microcrystalline litter (pC_Si) constituting the first photoelectric conversion soap element, as the first photoelectric conversion unit. The layers are continuously formed in separate film forming chambers. Thereafter, the P layer of the second photoelectric conversion unit is exposed to the atmosphere, and hydrogen plasma treatment is applied to the p layer of the second photoelectric conversion unit using hydrogen (H2) as a processing gas. Thereafter, an i layer containing microcrystalline germanium (pc-Si) constituting the second photoelectric conversion unit, an amorphous n layer containing an amorphous germanium (a_Si) thin film, and a back surface electrode are formed. In the first embodiment, the p layer of the first photoelectric conversion unit, the i layer, the n layer, and the p layer of the second photoelectric conversion unit are formed in a separate reaction chamber by plasma CVD. On the other hand, the ruthenium layer and the η layer of the second photoelectric conversion unit are formed in the same film formation chamber by a plasma CVD method. At a substrate temperature of 170 ° C, application of RF power of 40 W, reaction chamber pressure of 80 Pa, and reaction gas flow rate: 曱石夕烧(§4) is 150 seem, hydrogen (H2) is 470 seem, and hydrogen is used as a diluent gas. Under the condition that the diborane (B2H6/h2) was 45 seem and the methane (ch4) was 300 seem, the p layer of the first photoelectric conversion unit was formed into a film thickness of 80 A. The film formation speed at this time was 116 A/min. At substrate temperature 17 (TC, applied RF power 40 W, reaction chamber pressure 60 155093.doc • 23- 201145541
Pa、反應氣體流量:曱矽烷(SiH4)為150 seem、氫(H2)為 1500 seem、曱烧(CH4)為200 seem的條件下,將緩衝層成 膜成60 A之膜厚。此時之成膜速度為66 A/分。 又’在基板溫度170°C、施加RF電力40 W、反應室内壓 力40 Pa、反應氣體流量:甲矽烷(SiH4)為300 seem的條件 下,將第一光電轉換單元之i層成膜成2000 A之膜厚。此 時之成膜速度為131 A/分。 再者’在基板溫度170 C、施加RF電力1〇〇〇 W、反應室 内壓力800 Pa、反應氣體流量:曱矽烷(siH4)為15〇 seem、氫(HO為550 seem、將氫作為稀釋氣體使用之磷化 氫(PHs/H2)為60 seem的條件下,將第一光電轉換單元之n 層成膜成20 A之膜厚。此時之成膜速度為158 A/分。 其次’在基板溫度170°C、施加rf電力750 W、反應室 内壓力1200 Pa、反應氣體流量:曱矽烷(SiH4)為3〇 seem、氫(H2)為9000 seem '將氫作為稀釋氣體使用之乙硼 烷(Β2Ηό/Η2)為12 seem的條件下,將第二光電轉換單元之p 層成膜成150人之膜厚。此時之成膜速度為174人/分。 此處,使第二光電轉換單元之p層暴露於大氣中。在基 板溫度190 C、電源頻率13.56 MHz、反應室内壓力700Pa, reaction gas flow rate: cesane (SiH4) was 150 seem, hydrogen (H2) was 1500 seem, and calcination (CH4) was 200 seem, and the buffer layer was formed into a film thickness of 60 A. The film formation speed at this time was 66 A/min. Further, the i-layer of the first photoelectric conversion unit was formed into a film at a substrate temperature of 170 ° C, application of RF power of 40 W, reaction chamber pressure of 40 Pa, and reaction gas flow rate: methanane (SiH 4 ) of 300 seem. The film thickness of A is. At this time, the film formation rate was 131 A/min. Furthermore, 'at the substrate temperature of 170 C, RF power of 1 〇〇〇W, reaction chamber pressure of 800 Pa, reaction gas flow rate: decane (siH4) is 15 〇 seem, hydrogen (HO is 550 seem, hydrogen is used as a diluent gas) The n-layer of the first photoelectric conversion unit was formed into a film thickness of 20 A under the conditions of using phosphine (PHs/H2) of 60 seem. The film formation rate at this time was 158 A/min. The substrate temperature is 170 ° C, the application of rf power is 750 W, the pressure in the reaction chamber is 1200 Pa, and the flow rate of the reaction gas is 3 〇seem for silane (SiH4) and 9000 seem for hydrogen (H2). 'Diborane using hydrogen as a diluent gas. (Β2Ηό/Η2) Under the condition of 12 seem, the p-layer of the second photoelectric conversion unit was formed into a film thickness of 150. The film formation speed at this time was 174 person/min. Here, the second photoelectric conversion was performed. The p layer of the unit is exposed to the atmosphere at a substrate temperature of 190 C, a power supply frequency of 13.56 MHz, and a reaction chamber pressure of 700.
Pa、作為處理氣體之Hz為1〇〇〇 sccmi條件下,對該p層施 加電漿處理。 接著,在基板溫度170°C、施加RF電力55〇 w、反應室 内壓力uoo Pa、反應氣體流量:甲石夕燒(8汨4)為45 seem、氫(HO為3150 seem的條件下,將第一光電轉換單元 155093.doc .24- 201145541 之i層成膜成15000 A之膜厚。此時之成膜速度為361 A/ 分。 又,在基板溫度170°C、施加RF電力100 W、反應室内 壓力80 Pa、反應氣體流量:曱矽烷(siH4)為150 seem、氫 (HO為550 seem、將氫作為稀釋氣體使用之磷化氫 (ΡΗνΗ2)為60 seem的條件下,將第二光電轉換單元之η層 成膜成20 Α之膜厚。此時之成膜速度為丨58 Α/分。 最後,於上述第二光電轉換單元之η層上,使用濺鍍 法,將氧化辞(ΖηΟ)成膜成800 Α之膜厚。進而,於其上將 銀(Ag)成膜成2000 A之膜厚,從而形成背面電極。 〈實施例2〜實施例6> 除將構成第二光電轉換單元之η層之厚度,代替2〇 A設 為50 A(實施例2)、100 A(實施例3)、150 A(實施例4)、200 A(實施例5)、400 A(實施例6)以外,其他與實施例i相同, 製作多接合型構造之光電轉換裝置。 <比較例> 除將構成第二光電轉換單元之n層設為包含微晶矽(^c-Pa, the p layer was subjected to a plasma treatment under the condition that the processing gas had a Hz of 1 〇〇〇 sccmi. Next, at a substrate temperature of 170 ° C, application of RF power of 55 〇 w, reaction chamber pressure uoo Pa, reaction gas flow rate: 甲石夕烧(8汨4) is 45 seem, hydrogen (HO is 3150 seem), The i-th layer of the first photoelectric conversion unit 155093.doc .24- 201145541 was formed into a film thickness of 15000 A. The film formation speed at this time was 361 A/min. Further, at a substrate temperature of 170 ° C, RF power was applied at 100 W. , the reaction chamber pressure 80 Pa, the reaction gas flow rate: silane (siH4) is 150 seem, hydrogen (HO is 550 seem, hydrogen is used as a diluent gas, phosphine (ΡΗνΗ2) is 60 seem, the second The η layer of the photoelectric conversion unit is formed into a film thickness of 20 。. The film formation speed at this time is 丨58 Α/min. Finally, on the η layer of the second photoelectric conversion unit, the oxidation is performed using a sputtering method. (ΖηΟ) was formed into a film thickness of 800 Å. Further, silver (Ag) was formed into a film thickness of 2000 A to form a back surface electrode. <Example 2 to Example 6> The thickness of the η layer of the photoelectric conversion unit is set to 50 A instead of 2 〇A (Example 2), 100 A (Example 3), 150 A (real In the same manner as in Example i except that Example 4), 200 A (Example 5), and 400 A (Example 6), a photoelectric conversion device having a multi-junction structure was produced. <Comparative Example> In addition to the second photoelectric composition The n layer of the conversion unit is set to contain microcrystals (^c-
Si)之η層以外,其他與實施例丨相同,製作多接合型構造之 光電轉換裝置。 在基板溫度170°C、施加RF電力1000 W、反應室内壓力 8〇〇 Pa、反應氣體流量··曱矽烷(SiH4)*2〇 sccm、氫(H2) 為2000 sccm、將氫作為稀釋氣體使用之磷化氫pH3/H2)為 15 -m的條件下’將第二光電轉換單元之犓成膜成21〇。 A之膜厚。此時之成膜速度為174人/分。 155093.doc •25- 201145541 對如上所述製作之實施例1〜5及比較例之光電轉換襄 置,以100 mW/cm2之光量照射AM1.5之光,在25°C下作為 輸出特性測定光電轉換效率(η)、開路電壓(Voc)。將其結 果顯示於表1。 [表1] n層膜厚 [A] 光電轉換效率 η[%] 開路電壓 Voc [mV] 實施例1 20 9.42 1230^00^ 實施例2 50 10.52 1267.92 實施例3 100 11.47 1354.ΤΓ~~ 實施例4 150 11.64 1362.88—~ 實施例5 200 11.65 1355.00 實施例6 400 9.98 1287.25 比較例 100 11.06 1331.43 如表1所示,在第二光電轉換單元方面,本發明之由非 晶質矽系薄膜構成n層之光電轉換裝置(實施例卜6)相較於 先刖之光電轉換裝置(比較例),顯示有良好之特性,尤其 疋可使光電轉換效率提高〇5 %左右(實施例3與比較例之對 比)。 又圖5、圖6係顯示改變實施例丨〜6之光電轉換裝置之 第二光電轉換單元之n層之厚度時,所獲得之光電轉換效 率(η)與開路電壓(voc)的測定結果。即,圖5、目6分別爲 十於^之厚度(橫轴),纷製η、v〇e(縱軸)而成之曲線 圖。 155093.doc 26· 201145541 如表1及圖5、圖6所示,確認n層之厚度(膜厚)在2〇〜4〇〇 A之範圍内,有開路電壓(v〇c)增大,光電轉換效率”增大 之效果。尤其是若η層之厚度在1〇〇〜2〇〇 Α之範圍内,則光 電轉換效率η與開路電壓v〇c兩者為超過先前(比較例)之 值。再者,若n層之厚度為4〇〇 a以上,則會導致v〇c降 低。推斷其原因為,n層若吸收光,會導致包含結晶質系 矽薄膜之1層側之JSC降低。其結果,可想像光電轉換效率” 亦降低。因此,構成第二光電轉換單元之n層之膜厚較佳 為20〜400 A之範圍,更佳為100〜200 A之範圍。 以上,雖已說明本發明之光電轉換裝置及光電轉換裴置 之製造方法,但本發明並不限定於此,可在不脫離發明之 主旨之範圍内進行適宜變更。 [產業上之可利用性] 本發明可廣泛適用於光電轉換裝置及光電轉換裝置 造方法。 【圖式簡單說明】 例的剖面圖。 圖1係顯*本發明之光電轉換裝置(裝置A)之層構成之 之製造方法之步驟 之製造方法之步驟 圖2 A係顯不圖1所示之光電轉換裝置 例的說明圖》 圖2B係顯示圖1所示之光電轉換裝置 例的說明圖。A photoelectric conversion device having a multi-junction structure was produced in the same manner as in Example 以外 except for the η layer of Si). At a substrate temperature of 170 ° C, application of RF power of 1000 W, reaction chamber pressure of 8 〇〇 Pa, reaction gas flow rate · decane (SiH4) * 2 〇 sccm, hydrogen (H2) of 2000 sccm, use of hydrogen as a diluent gas When the phosphine pH 3/H2) is 15 -m, the ruthenium of the second photoelectric conversion unit is formed into 21 Å. The film thickness of A is. The film formation speed at this time was 174 person/min. 155093.doc • 25- 201145541 For the photoelectric conversion devices of Examples 1 to 5 and Comparative Examples produced as described above, the light of AM 1.5 was irradiated with a light amount of 100 mW/cm 2 , and the output characteristics were measured at 25 ° C. Photoelectric conversion efficiency (η), open circuit voltage (Voc). The results are shown in Table 1. [Table 1] n-layer film thickness [A] photoelectric conversion efficiency η [%] open circuit voltage Voc [mV] Example 1 20 9.42 1230^00^ Example 2 50 10.52 1267.92 Example 3 100 11.47 1354.ΤΓ~~ Implementation Example 4 150 11.64 1362.88-~ Example 5 200 11.65 1355.00 Example 6 400 9.98 1287.25 Comparative Example 100 11.06 1331.43 As shown in Table 1, in the second photoelectric conversion unit, the present invention consists of an amorphous lanthanide film. The photoelectric conversion device of the layer (Example 6) exhibits good characteristics compared to the photoelectric conversion device (Comparative Example) of the prior art, and in particular, the photoelectric conversion efficiency can be improved by about 5% (Example 3 and Comparative Example) Comparison). Further, Fig. 5 and Fig. 6 show the results of measurement of the photoelectric conversion efficiency (η) and the open circuit voltage (voc) obtained when the thickness of the n-layer of the second photoelectric conversion unit of the photoelectric conversion device of the embodiment 丨6 was changed. That is, Fig. 5 and Fig. 6 are graphs in which the thickness (horizontal axis) of ten is equal to η and v〇e (vertical axis). 155093.doc 26· 201145541 As shown in Table 1 and Figs. 5 and 6, it is confirmed that the thickness (film thickness) of the n layer is in the range of 2 〇 to 4 〇〇 A, and the open circuit voltage (v 〇 c) is increased. The effect of increasing the photoelectric conversion efficiency. Especially if the thickness of the η layer is in the range of 1 〇〇 to 2 ,, both the photoelectric conversion efficiency η and the open circuit voltage v 〇 c are higher than the previous (comparative example). Further, if the thickness of the n layer is 4 〇〇 a or more, v 〇 c is lowered. It is presumed that the reason why the n layer absorbs light causes the JSC including the one side of the crystalline ruthenium film. As a result, it is conceivable that the photoelectric conversion efficiency is also lowered. Therefore, the film thickness of the n layer constituting the second photoelectric conversion unit is preferably in the range of 20 to 400 Å, more preferably in the range of 100 to 200 Å. In the above, the photoelectric conversion device and the method of manufacturing the photoelectric conversion device of the present invention have been described, but the present invention is not limited thereto, and can be appropriately modified without departing from the gist of the invention. [Industrial Applicability] The present invention is widely applicable to a photoelectric conversion device and a photoelectric conversion device manufacturing method. [Simple description of the diagram] A cross-sectional view of an example. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a step of a manufacturing method of a method for manufacturing a layer of a photoelectric conversion device (device A) of the present invention; Fig. 2A is an explanatory view showing an example of a photoelectric conversion device shown in Fig. 1; An illustration of an example of the photoelectric conversion device shown in Fig. 1 is shown.
例的說明圖。 不之光電轉換裝置之製造方法之步禪 155093.doc •27- 201145541 圖3係顯示製造本發明之光電轉換裝置之製造系統之一 例的概略圖。 圖4係顯示本發明之光電轉換裝置(裝置B)之層構成之一 例的剖面圖。 圖5係顯示在實施例_製作之光電轉換裝置之第二光電 轉換單元之n層之厚度與光電轉換效率η的關係圖。 圖6係顯示在實施例中製作之光電轉換裝置之第二光電 轉換單元之η層之厚度與開路電壓v〇c的關係圓。 圖7係顯示先前之光電轉換裝置之層構成之一例的剖面 圖。 圖8係顯示先前之光電轉換裝置之波長與發電效率之關 係圖。 【主要元件符號說明】 1 透明基板(基板) 2 透明導電膜 3 第一光電轉換單元 4 第一光電轉換單元 5 背面電極 8 第三光電轉換單元 10A ' 10B(10) 光電轉換裝置 31 P型半導體層(第lp型半導體 層) 32 i型矽層(非晶質矽層、第η划 半導體層) 155093.doc - 28 - 201145541 33 n型半導體層(第In型半導體 層) 41 P型半導體層(第2p型半導體 層) 42 i型矽層(結晶質矽層、第2i型 半導體層) 43 η型半導體層(第2n型半導體 層) 60 第一成膜室 61 負載室 62 P層成膜反應室 63(63a、63b、63c、63d) i層成膜反應室 64 η層成膜反應室 65 Ρ層成膜反應室 66 卸載室 70 第二成膜室 71 負載·卸載室 72 in層成膜反應室 80 暴露裝置 81 P型半導體層(第3p型半導體 層) 82 i型矽層(結晶質矽層、第3i型 半導體層) 83 η型半導體層(第3n型半導體 層) S 太陽光 155093.doc ·29·An illustration of an example. The step of the manufacturing method of the photoelectric conversion device is not shown. 155093.doc • 27- 201145541 Fig. 3 is a schematic view showing an example of a manufacturing system for manufacturing the photoelectric conversion device of the present invention. Fig. 4 is a cross-sectional view showing an example of a layer configuration of a photoelectric conversion device (device B) of the present invention. Fig. 5 is a graph showing the relationship between the thickness of the n layer of the second photoelectric conversion unit of the photoelectric conversion device produced in the embodiment_ and the photoelectric conversion efficiency η. Fig. 6 is a view showing the relationship between the thickness of the n layer of the second photoelectric conversion unit of the photoelectric conversion device fabricated in the embodiment and the open circuit voltage v?c. Fig. 7 is a cross-sectional view showing an example of the layer constitution of the prior photoelectric conversion device. Fig. 8 is a graph showing the relationship between the wavelength of the prior photoelectric conversion device and the power generation efficiency. [Description of main component symbols] 1 Transparent substrate (substrate) 2 Transparent conductive film 3 First photoelectric conversion unit 4 First photoelectric conversion unit 5 Back electrode 8 Third photoelectric conversion unit 10A ' 10B (10) Photoelectric conversion device 31 P-type semiconductor Layer (the lp-type semiconductor layer) 32 i-type germanium layer (amorphous germanium layer, n-th semiconductor layer) 155093.doc - 28 - 201145541 33 n-type semiconductor layer (in-type semiconductor layer) 41 P-type semiconductor layer (second p-type semiconductor layer) 42 i-type germanium layer (crystalline germanium layer, second i-type semiconductor layer) 43 n-type semiconductor layer (second n-type semiconductor layer) 60 first film forming chamber 61 load chamber 62 P layer film forming Reaction chamber 63 (63a, 63b, 63c, 63d) i layer film formation reaction chamber 64 η layer film formation reaction chamber 65 Ρ layer film formation reaction chamber 66 unloading chamber 70 second film forming chamber 71 load/unload chamber 72 in layer Membrane reaction chamber 80 Exposure device 81 P-type semiconductor layer (third p-type semiconductor layer) 82 i-type germanium layer (crystalline germanium layer, third i-type semiconductor layer) 83 n-type semiconductor layer (third n-type semiconductor layer) S sunlight 155093.doc ·29·
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010086181 | 2010-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201145541A true TW201145541A (en) | 2011-12-16 |
Family
ID=44762816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100111400A TW201145541A (en) | 2010-04-02 | 2011-03-31 | Photoelectric conversion device and photoelectric conversion device manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2011125878A1 (en) |
TW (1) | TW201145541A (en) |
WO (1) | WO2011125878A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2895213B2 (en) * | 1990-11-26 | 1999-05-24 | キヤノン株式会社 | Photovoltaic element |
JP2000068533A (en) * | 1998-08-25 | 2000-03-03 | Sharp Corp | Microscopic crystal silicon thin film solar battery, and manufacture thereof |
JP2006120745A (en) * | 2004-10-20 | 2006-05-11 | Mitsubishi Heavy Ind Ltd | Thin film silicon laminated solar cell |
EP2216826A4 (en) * | 2007-11-30 | 2016-10-12 | Kaneka Corp | Silicon thin film photoelectric conversion device |
-
2011
- 2011-03-31 TW TW100111400A patent/TW201145541A/en unknown
- 2011-03-31 JP JP2012509593A patent/JPWO2011125878A1/en active Pending
- 2011-03-31 WO PCT/JP2011/058289 patent/WO2011125878A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2011125878A1 (en) | 2011-10-13 |
JPWO2011125878A1 (en) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090242019A1 (en) | Method to create high efficiency, low cost polysilicon or microcrystalline solar cell on flexible substrates using multilayer high speed inkjet printing and, rapid annealing and light trapping | |
US20150136210A1 (en) | Silicon-based solar cells with improved resistance to light-induced degradation | |
CN101820007A (en) | High-conversion rate silicon and thin film compound type multijunction PIN solar cell and manufacturing method thereof | |
KR20080104696A (en) | High efficiency solar cell and manufacturing method thereof, and solar cell manufacturing apparatus for the same | |
US20120107996A1 (en) | Surface treatment process performed on a transparent conductive oxide layer for solar cell applications | |
US20100229912A1 (en) | Photovoltaic device through lateral crystallization process and fabrication method thereof | |
TW201017917A (en) | Method and system for manufacturing photoelectric conversion device, and photoelectric conversion device | |
WO2012173814A1 (en) | Tandem solar cell with improved tunnel junction | |
US7352044B2 (en) | Photoelectric transducer, photoelectric transducer apparatus, and iron silicide film | |
US20100229934A1 (en) | Solar cell and method for the same | |
TW201110388A (en) | Method and system for manufacturing photoelectric conversion device, photoelectric conversion device, and using method of system for manufacturing photoelectric conversion device | |
CN101894871A (en) | High-conversion rate silicon crystal and thin film compound type unijunction PIN (Positive Intrinsic-Negative) solar battery and manufacturing method thereof | |
TW201117403A (en) | Solar cell and method for fabricating the same | |
TW201145541A (en) | Photoelectric conversion device and photoelectric conversion device manufacturing method | |
US20120202316A1 (en) | Plasma treatment of tco layers for silicon thin film photovoltaic devices | |
JP2004111551A (en) | Silicon photovoltaic device and method for manufacturing the same | |
WO2010146846A1 (en) | Photoelectric conversion device and method for producing photoelectric conversion device | |
JP2010283162A (en) | Solar cell and method for manufacturing the same | |
WO2011102352A1 (en) | Solar cell, and process for production of solar cell | |
KR101554565B1 (en) | Method for manufacturing of ZnO:Al:Ag passivation layer and ZnO:Al:Ag passivation layer thereof | |
TWI436493B (en) | Solar cell with simple electrode design and manufacturing method thereof | |
TW201041166A (en) | Flexible substrate and solar cell using the same | |
TW201133886A (en) | Photoelectric conversion device and photoelectric conversion device manufacturing method | |
TW201230372A (en) | Photoelectric conversion device | |
JP2004172269A (en) | Manufacturing apparatus of silicon photovoltaic element, the silicon photovoltaic element, and its manufacturing method |